TWI399866B - Solid-state light-emitting element - Google Patents

Solid-state light-emitting element Download PDF

Info

Publication number
TWI399866B
TWI399866B TW96147870A TW96147870A TWI399866B TW I399866 B TWI399866 B TW I399866B TW 96147870 A TW96147870 A TW 96147870A TW 96147870 A TW96147870 A TW 96147870A TW I399866 B TWI399866 B TW I399866B
Authority
TW
Taiwan
Prior art keywords
type
light
layer
solid
semiconductor layer
Prior art date
Application number
TW96147870A
Other languages
Chinese (zh)
Other versions
TW200926448A (en
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96147870A priority Critical patent/TWI399866B/en
Publication of TW200926448A publication Critical patent/TW200926448A/en
Application granted granted Critical
Publication of TWI399866B publication Critical patent/TWI399866B/en

Links

Landscapes

  • Led Devices (AREA)

Description

固態發光元件 Solid state light emitting element

本發明涉及一種發光元件,特別係一種固態發光元件。 The present invention relates to a light-emitting element, and more particularly to a solid-state light-emitting element.

目前,發光二極體(Light Emitting Diode,LED)作為一種固態發光元件,其具有光質佳(亦即光源輸出之光譜)及發光效率高等特性而逐漸取代冷陰極螢光燈(Cold Cathode Fluorescent Lamp,CCFL)作為照明裝置之發光元件,具體可參見Michael S.Shur等人於文獻Proceedings of the IEEE,Vol.93,No.10(2005年10月)中發表之“Solid-State Lighting:Toward Superior Illumination”一文。 At present, the Light Emitting Diode (LED) is a solid-state light-emitting element that has a good light quality (that is, a spectrum of light source output) and high luminous efficiency, and gradually replaces the cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp). , CCFL) as a illuminating element of a lighting device, see "Spider-State Lighting: Toward Superior" by Michael S. Shur et al., Proceedings of the IEEE, Vol. 93, No. 10 (October 2005). Illumination" article.

一般的發光二極體(Light Emitting Diode,LED)包括發光結構及正負電極,該發光結構包括:一N型束縛層(Cladding layer),一P型束縛層及一設置於該N型束縛層與P型束縛層之間的未摻雜之活性層(Active layer),該正電極設置於該P型束縛層上,該負電極設置於該N型束縛層上。該發光二極體一般可發出特定波長的光,例如可見光,惟發光二極體所接收能量的大約80~90%被轉換為熱量,其餘的能量才被真正轉換為光能。當發光二極體之溫度達到70度以上時,發光 二極體中之量子效率會明顯的降低,故發光二極體之散熱效率係保證其正常運作的重要因素。有鑑於此,提供一種散熱效率較高的固態發光元件實為必要。 A general light emitting diode (LED) includes a light emitting structure and positive and negative electrodes, and the light emitting structure includes: an N-type Cladding layer, a P-type binding layer, and a N-type binding layer disposed on the N-type binding layer An undoped active layer between the P-type tie layers, the positive electrode is disposed on the P-type tie layer, and the negative electrode is disposed on the N-type tie layer. The light-emitting diode generally emits light of a specific wavelength, such as visible light, but about 80-90% of the energy received by the light-emitting diode is converted into heat, and the remaining energy is actually converted into light energy. When the temperature of the light-emitting diode reaches 70 degrees or more, the light is emitted The quantum efficiency in the diode is significantly reduced, so the heat dissipation efficiency of the LED is an important factor to ensure its normal operation. In view of this, it is necessary to provide a solid-state light-emitting element having high heat dissipation efficiency.

下面將以實施例說明一種散熱效率較高的固態發光元件。 A solid state light-emitting element having high heat dissipation efficiency will be described below by way of example.

一種固態發光元件,其包括一透明導電基板,一設置於該透明導電基板上之第一型束縛層,一設置於該第一型束縛層上之發光活性層,一設置於該發光活性層上之第二型束縛層,一設置於該第二型束縛層上之電極,該透明導電基板所用材料為氫化碳化矽。 A solid-state light-emitting device comprising a transparent conductive substrate, a first-type binding layer disposed on the transparent conductive substrate, a light-emitting active layer disposed on the first-type binding layer, and a light-emitting active layer disposed on the light-emitting active layer The second type of binding layer is an electrode disposed on the second type of binding layer, and the material of the transparent conductive substrate is hydrogenated tantalum carbide.

相對於先前技術,該固態發光元件中之透明導電基板所用材料為氫化碳化矽,利用氫化碳化矽之高熱傳導率可將該固態發光元件發光時所產生的熱及時有效地傳導出去,從而使得該固態發光元件保持較高的量子效率。利用氫化碳化矽之高電導率可使該透明導電基板直接作為一電極使用,使得由該發光活性層發出之光子可直接經由該透明導電基板於沒有遮擋物之情況下射出,從而提高了光取出效率。 Compared with the prior art, the material used for the transparent conductive substrate in the solid-state light-emitting element is hydrogenated tantalum carbide, and the heat generated by the solid-state light-emitting element can be efficiently and efficiently conducted by using the high thermal conductivity of the hydrogenated tantalum carbide. Solid state light emitting elements maintain high quantum efficiency. The high conductivity of the hydrogenated ruthenium carbide can be used as an electrode directly, so that photons emitted from the luminescent active layer can be directly emitted through the transparent conductive substrate without obstruction, thereby improving light extraction. effectiveness.

10‧‧‧發光二極體 10‧‧‧Lighting diode

11‧‧‧透明導電基板 11‧‧‧Transparent conductive substrate

12‧‧‧N型束縛層 12‧‧‧N-type binding layer

13‧‧‧發光活性層 13‧‧‧Lighting active layer

14‧‧‧P型束縛層 14‧‧‧P-type binding layer

15‧‧‧電極 15‧‧‧Electrode

16‧‧‧奈米粒子 16‧‧‧Nano particles

圖1係本發明實施例提供之發光二極體之剖面圖。 1 is a cross-sectional view of a light emitting diode according to an embodiment of the present invention.

下面結合附圖對本發明固態發光元件作進一步的詳細說明。 The solid state light-emitting device of the present invention will be further described in detail below with reference to the accompanying drawings.

為了便於理解,以下將以本發明實施例提供之固態發光元件 為發光二極體為例進行說明。請參見圖1,一發光二極體10包括:一透明導電基板11,一設置於該透明導電基板11上之N型束縛層12,一設置於該N型束縛層12上之發光活性層13,一設置於該發光活性層13上之P型束縛層14,一設置於該P型束縛層14上之電極15。該N型束縛層12,發光活性層13及P型束縛層14組成一發光結構。 For ease of understanding, the solid state light emitting device provided by the embodiment of the present invention will be hereinafter described below. The case of a light-emitting diode will be described as an example. Referring to FIG. 1 , a light-emitting diode 10 includes a transparent conductive substrate 11 , an N-type binding layer 12 disposed on the transparent conductive substrate 11 , and a light-emitting active layer 13 disposed on the N-type binding layer 12 . A P-type binding layer 14 disposed on the luminescent active layer 13 and an electrode 15 disposed on the P-type binding layer 14. The N-type tie layer 12, the luminescent active layer 13 and the P-type tie layer 14 constitute a light-emitting structure.

該透明導電基板11所用材料為氫化碳化矽(SiC:H),由於該氫化碳化矽係一種電導率及熱傳導率均較高的材料,故於該發光二極體10發光時所產生的熱能夠及時有效地經由該透明導電基板11傳導出去,從而使得該發光二極體10保持較高的量子效率,並且該透明導電基板11可作為另一電極與該電極15與一外部電源電性連接以向該發光結構提供電能。於本實施例中,由該發光結構發出之光子可直接經由該透明導電基板11於沒有遮擋物之情況下射出,從而提高了光取出效率。不用於透明導電基板11上形成電極亦可使該發光二極體10之製程簡化、成本降低。 The material of the transparent conductive substrate 11 is hydrogenated tantalum carbide (SiC: H). Since the hydrogenated tantalum carbide is a material having high electrical conductivity and thermal conductivity, the heat generated when the light emitting diode 10 emits light can The transparent conductive substrate 11 is conducted in time and effectively, so that the light emitting diode 10 maintains a high quantum efficiency, and the transparent conductive substrate 11 can be electrically connected to the electrode 15 and an external power source as another electrode. Electrical energy is supplied to the light emitting structure. In this embodiment, photons emitted by the light emitting structure can be directly emitted through the transparent conductive substrate 11 without obstructing, thereby improving light extraction efficiency. The use of the electrode on the transparent conductive substrate 11 can also simplify the process and reduce the cost of the light-emitting diode 10.

該N型束縛層12為含有奈米粒子16之N型半導體層。該N型半導體層所用材料可選自N型氮化鎵(n-type GaN)、N型磷化銦(n-type InP)、N型磷化銦鎵(n-type InGaP)及N型磷化鋁鎵銦(n-type AlGaInP)中之一。於本實施例中,該N型束縛層12係由矽摻雜之氮化鎵組成。 The N-type binding layer 12 is an N-type semiconductor layer containing the nanoparticles 16 . The material for the N-type semiconductor layer may be selected from the group consisting of N-type GaN, N-type InP, N-type InGaP, and N-type phosphorus. One of aluminum gallium indium (n-type AlGaInP). In the present embodiment, the N-type tie layer 12 is composed of germanium-doped gallium nitride.

該奈米粒子16之材料為矽氧化物、矽氮化物、鋁氧化物、鎵氧化物或硼氮化物。於本實施例中,該奈米粒子16為二氧化 矽奈米粒子,其粒徑範圍為20~200奈米。 The material of the nanoparticle 16 is cerium oxide, cerium nitride, aluminum oxide, gallium oxide or boron nitride. In this embodiment, the nanoparticle 16 is dioxide. Nanoparticles with a particle size ranging from 20 to 200 nm.

該發光活性層13所用材料為氮化銦鎵(InGaN)、砷化鋁鎵(AlGaAs)等,其中具有單個量子阱結構(Single Quantum Well)或多量子阱結構(Multi-Quantum Well)。 The material used for the luminescent active layer 13 is indium gallium nitride (InGaN), aluminum gallium arsenide (AlGaAs), or the like, and has a single quantum well structure (Single Quantum Well) or a multi-quantum well structure (Multi-Quantum Well).

該P型束縛層14為含有奈米粒子16之P型半導體層。該P型半導體層所用材料可選自P型氮化鋁鎵(p-type AlGaN)、P型砷化鋁鎵(p-type AlGaAs)等。於此,可藉由於氮化鋁鎵中摻雜鎂或氫來得到P型半導體層。 The P-type binding layer 14 is a P-type semiconductor layer containing the nanoparticles 16 . The material for the P-type semiconductor layer may be selected from p-type aluminum gallium nitride (p-type AlGaN), p-type aluminum gallium arsenide (p-type AlGaAs), or the like. Here, the P-type semiconductor layer can be obtained by doping magnesium or hydrogen in aluminum gallium nitride.

該P型半導體層中摻雜之奈米粒子16所用材料同樣可選自矽氧化物、矽氮化物、鋁氧化物、鎵氧化物或硼氮化物。可理解之係,該奈米粒子16於該N型束縛層12及該P型束縛層14中之濃度分佈可根據實際需要進行設定。 The material used for the doped nanoparticles 16 in the P-type semiconductor layer may also be selected from the group consisting of tantalum oxide, tantalum nitride, aluminum oxide, gallium oxide or boron nitride. It can be understood that the concentration distribution of the nanoparticle 16 in the N-type binding layer 12 and the P-type binding layer 14 can be set according to actual needs.

該電極15所用材料為鎳(Ni),金(Au),鎳金合金(Ni/Au),鈦(Ti),鋁(Al),鈦鋁合金(Ti/Al),銅(Cu),銀(Ag),鋁銅合金(Al/Cu),或銀銅合金(Ag/Cu)等金屬材料。 The material of the electrode 15 is nickel (Ni), gold (Au), nickel gold alloy (Ni/Au), titanium (Ti), aluminum (Al), titanium aluminum alloy (Ti/Al), copper (Cu), silver. (Ag), aluminum-copper alloy (Al/Cu), or silver-copper alloy (Ag/Cu).

於本實施例中,可利用金屬有機化學氣相沈積法(Metal Organic Chemical Vapor Deposition,MOCVD)或電漿增強化學氣相沈積法(Plasma Enhanced Chemical Vapor Deposition,PECVD)將該N型束縛層12及該P型束縛層14分別形成於該透明導電基板11及該發光活性層13上,利用磁控濺射法將該電極15沈積於該P型束縛層14上。 In this embodiment, the N-type binding layer 12 can be formed by Metal Organic Chemical Vapor Deposition (MOCVD) or Plasma Enhanced Chemical Vapor Deposition (PECVD). The P-type binding layer 14 is formed on the transparent conductive substrate 11 and the luminescent active layer 13, respectively, and the electrode 15 is deposited on the P-type binding layer 14 by magnetron sputtering.

由於該N型束縛層12為含有奈米粒子16之N型半導體層,該P 型束縛層14為含有奈米粒子16之P型半導體層,該N型半導體層及該P型半導體層中含有奈米粒子,從而可阻止該N型束縛層12與該發光活性層13之間、該P型束縛層14與該發光活性層13之間所形成之位錯移動(Dislocation Motion),以增進發光活性層13之晶體性質,進而提高了該發光結構之量子效率,即該發光活性層13中之光子轉換效率更高。另,該N型束縛層12與P型束縛層14中之奈米粒子可改變其所於之N型半導體層或P型半導體層之晶格常數(Lattice Constant),減少了N型束縛層12與P型束縛層14自身之晶格畸變(Lattice Strain),從而有利於減小該N型束縛層12與該發光活性層13之間,以及該P型束縛層14與該發光活性層13之間的應力,有利於提高該發光二極體10內部之量子效率。 Since the N-type binding layer 12 is an N-type semiconductor layer containing nano particles 16, the P The type tie layer 14 is a P-type semiconductor layer containing the nano particles 16, and the N-type semiconductor layer and the P-type semiconductor layer contain nano particles, thereby preventing the N-type tie layer 12 and the luminescent active layer 13 from being blocked. a dislocation motion formed between the P-type binding layer 14 and the luminescent active layer 13 to enhance the crystal properties of the luminescent active layer 13, thereby improving the quantum efficiency of the luminescent structure, that is, the luminescent activity. The photon conversion efficiency in layer 13 is higher. In addition, the nanoparticles in the N-type tie layer 12 and the P-type tie layer 14 can change the lattice constant of the N-type semiconductor layer or the P-type semiconductor layer, and the N-type tie layer 12 is reduced. Lattice Strain with the P-type tie layer 14 itself, thereby facilitating reduction between the N-type tie layer 12 and the luminescent active layer 13, and the P-type tie layer 14 and the luminescent active layer 13 The inter-stress is beneficial to increase the quantum efficiency inside the light-emitting diode 10.

此外,該本發明實施例提供之發光二極體10中之發光結構具有較高量子效率之同時,於該發光結構中並不需要量子點(Quantum Dot),從而使得該發光二極體10與傳統發光二極體相比更適於量產。 In addition, the light-emitting structure in the light-emitting diode 10 provided by the embodiment of the present invention has higher quantum efficiency, and quantum dots are not needed in the light-emitting structure, so that the light-emitting diode 10 and the light-emitting diode 10 are Conventional light-emitting diodes are more suitable for mass production than conventional light-emitting diodes.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。例如:所述P型束縛層14生長於所述透明導電基板11上,所述發光活性層13磊晶生長於所述P型束縛層14上,而所述N型束縛層12則生長於所述發光活性層13上,此時所述發光活性層13同樣夾設於含有奈米粒子的P型半導體層與含有奈米粒子的N型半導體層之間,故 同樣可以使本發明實施例提供之發光二極體具有較好的量子效率。故,該等變化或提供結構原理與所述發光二極體基本相同的其他固態發光元件,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. For example, the P-type binding layer 14 is grown on the transparent conductive substrate 11, the luminescent active layer 13 is epitaxially grown on the P-type binding layer 14, and the N-shaped binding layer 12 is grown on the In the luminescent active layer 13, the luminescent active layer 13 is also interposed between the P-type semiconductor layer containing the nanoparticles and the N-type semiconductor layer containing the nanoparticles. The light-emitting diode provided by the embodiment of the invention can also have better quantum efficiency. Therefore, such changes or other solid-state light-emitting elements that provide substantially the same structural principle as the light-emitting diodes are intended to be included in the following claims.

10‧‧‧發光二極體 10‧‧‧Lighting diode

11‧‧‧透明導電基板 11‧‧‧Transparent conductive substrate

12‧‧‧N型束縛層 12‧‧‧N-type binding layer

13‧‧‧發光活性層 13‧‧‧Lighting active layer

14‧‧‧P型束縛層 14‧‧‧P-type binding layer

15‧‧‧電極 15‧‧‧Electrode

16‧‧‧奈米粒子 16‧‧‧Nano particles

Claims (7)

一種固態發光元件,其包括一透明導電基板,一設置於該透明導電基板上之第一型束縛層,一設置於該第一型束縛層上之發光活性層,一設置於該發光活性層上之第二型束縛層,一設置於該第二型束縛層上之電極,其改進在於:該透明導電基板所用材料為氫化碳化矽,其中,該第一型束縛層與該第二型束縛層分別為含有奈米粒子之第一型半導體層與含有奈米粒子之第二型半導體層。 A solid-state light-emitting device comprising a transparent conductive substrate, a first-type binding layer disposed on the transparent conductive substrate, a light-emitting active layer disposed on the first-type binding layer, and a light-emitting active layer disposed on the light-emitting active layer a second type of tie layer, an electrode disposed on the second type of tie layer, wherein the transparent conductive substrate is made of hydrogenated tantalum carbide, wherein the first type of tie layer and the second type of tie layer Each is a first type semiconductor layer containing nano particles and a second type semiconductor layer containing nano particles. 如申請專利範圍第1項所述之固態發光元件,其中,該奈米粒子之材料為矽氧化物、矽氮化物、鋁氧化物、鎵氧化物或硼氮化物。 The solid-state light-emitting device according to claim 1, wherein the material of the nanoparticle is cerium oxide, cerium nitride, aluminum oxide, gallium oxide or boron nitride. 如申請專利範圍第2項所述之固態發光元件,其中,該奈米粒子之粒徑為20~200奈米。 The solid-state light-emitting device according to claim 2, wherein the nanoparticle has a particle diameter of 20 to 200 nm. 如申請專利範圍第1項所述之固態發光元件,其中,該第一型半導體層為N型半導體層,該第二型半導體層為P型半導體層。 The solid-state light-emitting device according to claim 1, wherein the first-type semiconductor layer is an N-type semiconductor layer, and the second-type semiconductor layer is a P-type semiconductor layer. 如申請專利範圍第4項所述之固態發光元件,其中,該N型半導體層所用材料為N型氮化鎵,N型磷化銦,N型磷化銦鎵或N型磷化鋁鎵銦。 The solid-state light-emitting device according to claim 4, wherein the material for the N-type semiconductor layer is N-type gallium nitride, N-type indium phosphide, N-type indium phosphide or N-type aluminum gallium indium phosphide. . 如申請專利範圍第4項所述之固態發光元件,其中,該P型半導體層所用材料為P型氮化鋁鎵或P型砷化鋁鎵。 The solid-state light-emitting device of claim 4, wherein the material of the P-type semiconductor layer is P-type aluminum gallium nitride or P-type aluminum gallium arsenide. 如申請專利範圍第4項所述之固態發光元件,其中,該發光 活性層中具有單個量子阱結構或多量子阱結構。 The solid state light emitting device of claim 4, wherein the light emitting The active layer has a single quantum well structure or a multiple quantum well structure.
TW96147870A 2007-12-14 2007-12-14 Solid-state light-emitting element TWI399866B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96147870A TWI399866B (en) 2007-12-14 2007-12-14 Solid-state light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96147870A TWI399866B (en) 2007-12-14 2007-12-14 Solid-state light-emitting element

Publications (2)

Publication Number Publication Date
TW200926448A TW200926448A (en) 2009-06-16
TWI399866B true TWI399866B (en) 2013-06-21

Family

ID=44729698

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96147870A TWI399866B (en) 2007-12-14 2007-12-14 Solid-state light-emitting element

Country Status (1)

Country Link
TW (1) TWI399866B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW541732B (en) * 2002-08-28 2003-07-11 Arima Optoelectronics Corp Manufacturing method of LED having transparent substrate
TW200633250A (en) * 2005-03-07 2006-09-16 Arima Computer Corp Light emitting semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW541732B (en) * 2002-08-28 2003-07-11 Arima Optoelectronics Corp Manufacturing method of LED having transparent substrate
TW200633250A (en) * 2005-03-07 2006-09-16 Arima Computer Corp Light emitting semiconductor device

Also Published As

Publication number Publication date
TW200926448A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
Chen et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures
KR101047721B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
Chang et al. Nitride-based flip-chip ITO LEDs
US20060186552A1 (en) High reflectivity p-contacts for group lll-nitride light emitting diodes
TWI462334B (en) Light emitting diode structure and manufacture method thereof
TW200921928A (en) Light-emitting device, light-emitting diode and method for forming a light-emitting device
USRE47088E1 (en) Nitride semiconductor structure and semiconductor light emitting device including the same
JP2009076896A (en) Semiconductor light-emitting element
TWI426626B (en) Light-emitting diode, light-emitting-lamp and lighting device
KR102075713B1 (en) Light emitting device and light emitting device package
TW201034252A (en) Light emitting device
CN101447536A (en) Solid state luminous element
US20090134380A1 (en) Solid-state lighting element
JP2008130894A (en) Light emitting element and illumination apparatus
Hsu et al. High-efficiency 1-mm $^{2} $ AlGaInP LEDs sandwiched by ITO omni-directional reflector and current-spreading layer
Lee et al. Heat-resistant reflectors for enhanced 850-nm near infrared light-emitting diode efficiency
KR101907542B1 (en) Nitride-based light emitting diode
Lee et al. Effective color conversion of GaN-based LEDs via coated phosphor layers
TWI399866B (en) Solid-state light-emitting element
Chen et al. Light output improvement of AlGaInP-based LEDs with nano-mesh ZnO layers by nanosphere lithography
TWI446580B (en) Light-emitting diode, light-emitting diode lamp and lighting device
TWI785930B (en) Optoelectronic semiconductor device
JP2006339384A (en) Light emitting element, method of manufacturing same, and illuminating apparatus using same
Liou et al. On a GaN-based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface
TW202038482A (en) Semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees