TWI399561B - Test Method for Nonlinear Error of High - speed Digital Analogy Converter - Google Patents
Test Method for Nonlinear Error of High - speed Digital Analogy Converter Download PDFInfo
- Publication number
- TWI399561B TWI399561B TW98139660A TW98139660A TWI399561B TW I399561 B TWI399561 B TW I399561B TW 98139660 A TW98139660 A TW 98139660A TW 98139660 A TW98139660 A TW 98139660A TW I399561 B TWI399561 B TW I399561B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- digital analog
- error
- analog converter
- low frequency
- Prior art date
Links
Landscapes
- Analogue/Digital Conversion (AREA)
Description
一種數位類比轉換器測試方法,尤指一種高速數位類比轉換器非線性誤差之測試方法。A digital analog converter test method, especially a test method for nonlinear error of a high speed digital analog converter.
高速數位類比轉換器已經廣泛的被應用在消費性電子產品以及通訊技術上。請參閱「圖1」所示,傳統的數位類比轉換器1的測試法通常於輸出端2須建置一精準之類比信號量測電路3,量測電路3之中,必須包含類似於類比數位之取樣保持電路4。此取樣保持電路4效能將直接影響量測結果之正確性,其中關鍵在取樣保持電路4中之精確性與穩定性,不論是高速或高解析度之取樣保持電路4設計上皆有其困難,不易實現。High-speed digital analog converters have been widely used in consumer electronics and communication technologies. Please refer to "Figure 1". The traditional digital analog converter 1 test method usually requires a precision analog signal measurement circuit 3 at the output terminal 2. The measurement circuit 3 must contain analog-like digital bits. The sample hold circuit 4 is provided. The performance of the sample-and-hold circuit 4 will directly affect the accuracy of the measurement result, wherein the accuracy and stability of the sample-and-hold circuit 4 are difficult to design, whether the high-speed or high-resolution sample-and-hold circuit 4 is designed. Not easy to achieve.
除此之外,待測信號可以被轉成特殊的測試特徵以利於我們分析。被轉換出來的大小值可被表示成脈波信號頻率或者是工作比(duty ratio),數位計數信號可以被用來量測類比信號。然而,這些技術於晶片內都需建置一高速電路以因應高速數位類比轉換器,這大大提高了設計的難度以及增加了設計的問題。In addition, the signal to be tested can be converted into special test features to facilitate our analysis. The converted size value can be expressed as a pulse signal frequency or a duty ratio, and the digital count signal can be used to measure the analog signal. However, these techniques require the construction of a high-speed circuit in the chip to accommodate high-speed digital analog converters, which greatly increases the design difficulty and increases the design problem.
爰是,本發明的主要目的在於基於降頻取樣技術發展出一套新的數位類比轉換器測試架構,將數位類比轉換器之類比信號轉成一連串的低速脈波信號(pulse stream),再由此脈波信號的寬度找出數位類比轉換器的非線性誤差(nonlinearity error)。Therefore, the main purpose of the present invention is to develop a new digital analog converter test architecture based on down-clock sampling technology, which converts the analog signal of the digital analog converter into a series of low-speed pulse streams, and then The width of this pulse signal finds the nonlinearity error of the digital analog converter.
基於上述目的,本發明的步驟包含取得該高速數位類比轉換器 的數位類比轉換調變輸出信號,接著提供一低頻載波訊號,再接著提供一比較器,讓該數位類比轉換調變輸出信號與該低頻載波訊號輸入該比較器,以取得一低速脈波信號,接著藉由一邏輯分析儀量測該低速脈波信號的脈波寬度的變動,最後由脈波寬度的變動得知該數位類比轉換器的非線性誤差。Based on the above object, the steps of the present invention comprise obtaining the high speed digital analog converter The digital analog conversion converts the output signal, and then provides a low frequency carrier signal, and then provides a comparator for inputting the digital analog conversion output signal and the low frequency carrier signal to the comparator to obtain a low speed pulse signal. Then, the fluctuation of the pulse width of the low-speed pulse wave signal is measured by a logic analyzer, and finally the nonlinear error of the digital analog converter is obtained from the variation of the pulse width.
據此,本發明不需使用高速的電路,而可以使用一般的邏輯分析儀去估測數位類比轉換器的非線性誤差並且提高自動化測試設備(ATE)測試高速數位類比轉換器的能力。Accordingly, the present invention does not require the use of high speed circuitry, but can use a general logic analyzer to estimate the nonlinearity of the digital analog converter and improve the ability of automated test equipment (ATE) to test high speed digital analog converters.
為使 貴委員對本發明之特徵、目的及功效,有更加深入之瞭解與認同,茲列舉較佳實施例並配合圖式說明如后:請參閱「圖2」與「圖3」所示,其為本發明的取樣技術理論,假設f (ωt )是數位類比轉換器10的輸出波形,且具週期T 。我們取三個取樣點p 1 至p 3 ,分別配置於三個週期中個別取樣,將原本必須於一個週期內取出三個取樣點,分別於三個週期內取樣。假設定義第一取樣點與第二取樣點間之信號電壓與時間大小差異值為△V i 與△W i ,其間存在一關係式△W i =W i -T 。因此,待測電路之非線性誤差,f (ωt )/dt ,可以將取樣點信號大小差異值表示成脈波寬度信號,即脈波寬度的變動量,即△W i 。In order to give your members a better understanding and recognition of the features, objects and effects of the present invention, the preferred embodiments are illustrated with the following description: see Figure 2 and Figure 3, For the sampling technique theory of the present invention, it is assumed that f ( ωt ) is the output waveform of the digital analog converter 10 and has a period T . We take three sampling points p 1 to p 3 , which are respectively arranged in three cycles for individual sampling. It is necessary to take out three sampling points in one cycle and sample them in three cycles respectively. Defining a first sampling point is assumed and the signal voltage magnitude difference between the second time point sample value △ V i and △ W i, there is a relationship between △ W i = W i - T . Therefore, the nonlinear error of the circuit to be tested, f ( ωt ) / dt , can represent the difference value of the sample point signal size as the pulse width signal, that is, the variation of the pulse width, that is, Δ W i .
而本發明所使用的取樣電路如「圖3」所示,於「圖3」中所示,f (ωt )為數位類比轉換器10之數位類比轉換調變輸出信號,其可經一低通濾波器11濾除高頻雜訊,f (ω't )為另一頻率略低之低頻載波 訊號31,其可藉一載波產生器30產生,本發明將f (ωt )與f (ω 't )此兩信號送至比較器20中做比較後,得到一脈衝信號s (t ),再將此脈衝信號s (t )存入一暫存器40,以得到低速脈波信號w (t ),此低速脈波信號w (t )即反映了數位類比轉換器10之輸出端的線性度誤差值。因此可以使用邏輯分析儀量測(圖未示)去觀測低速脈波信號w (t ),以替代量測高速類比信號,因而在此一作法之下,即可不需建置高速或高解析度之信號量測電路。The sampling circuit used in the present invention is as shown in FIG. 3, and as shown in FIG. 3, f ( ωt ) is a digital analog conversion conversion output signal of the digital analog converter 10, which can pass through a low pass. filter out high frequency noise 11, f (ω't) slightly lower frequency to another carrier of the low frequency signal 31, which may be by a carrier generator 30 generates, according to the present invention will be f (ωt) and f (ω ' t ) The two signals are sent to the comparator 20 for comparison, and a pulse signal s ( t ) is obtained, and the pulse signal s ( t ) is stored in a register 40 to obtain a low-speed pulse wave signal w ( t The low speed pulse signal w ( t ) reflects the linearity error value of the output of the digital analog converter 10. Therefore, logic analyzer measurement (not shown) can be used to observe the low-speed pulse signal w ( t ) instead of measuring the high-speed analog signal, so that under this method, high-speed or high-resolution is not required. Signal measurement circuit.
此外,由於W i 對應到的是兩個取樣點的差值,所以比較器20上之偏移誤差(offset error)將自然的被抵銷掉。因測試方法是在低速取樣之工作模式,每個週期只取一個取樣點,因此電路之工作頻率很低,相當容易實現,而且最後之測試特徵值為數位訊號之脈波寬度,因此傳送至晶片外的過程中較不易失真,而且目前既有之自動測試設備上的示波器設備,均具良好之時域取樣能力,因此在量測信號之脈波寬度時,可達相當高之精確度。若考量雜訊對調變過程中脈波寬度值之影響,可藉由延長操作此測試方法之週期,使其對相同位置做重複取樣的動作,取一平均脈波寬度值降低雜訊影響。Further, since W i is the difference corresponding to the two sampling points, the comparator offset error (offset error) of the 20 naturally will be offset away. Because the test method is in the low-speed sampling mode, only one sampling point is taken per cycle, so the operating frequency of the circuit is very low, which is quite easy to implement, and the final test characteristic value is the pulse width of the digital signal, so it is transmitted to the chip. The external process is less prone to distortion, and the oscilloscope equipment on the existing automatic test equipment has good time domain sampling capability, so the measurement pulse width of the signal can reach a relatively high precision. If we consider the influence of noise on the pulse width value during the modulation process, we can reduce the noise effect by taking an average pulse width value by extending the period of the test method to make the same position repeat sampling.
又本發明可以使用三角波當低頻載波訊號31,或者亦可使用正弦波。請參閱「圖4-1」、「圖4-2」、「圖4-3」與「圖5」所示,首先為使用三角波。定義低頻載波訊號31週期T C
與待測信號12(即數位類比轉換調變輸出信號)之週期T da
,其關係為T C
=T da
+△T
,△T
為待測信號12與低頻載波訊號31週期之差值。低頻載波訊號31之斜
率與待測信號12之關係我們可以表示為:
其中T da
=2×(2 n
-1)×t da
;T c
=2×(2 n
-1)×t da
+△T
因此,脈波寬度將可以表示為「圖5」:
假設考量待測電路(即數位類比轉換器10)為n 位元之元件,只有N =2 n -1個量化區間,因此也該有N 個測試脈波寬度W i ,分別取樣自N +1個信號週期內,必須先推得待測信號12與低頻載波訊號31週期之差異值△T ,待測電路位元數n 及待測信號12週期T da 之間的關係方能決定該以多少頻率之低頻載波訊號31進行調變。假設需要N 個取樣點,必須花(N +0.5)個週期去得到W i 的特徵值,然而i =1,2,3....,N 。Suppose that the circuit under test (ie digital analog converter 10) is an n- bit component, only N = 2 n -1 quantization interval, so there should be N test pulse widths W i , respectively sampled from N +1 the signal periods, must push the relationship between the test signal and the low frequency carrier signal 12 cycles of 31 difference values △ T, the number of bits n circuit under test 12 and the test signal T da period in order to determine how much the The low frequency carrier signal 31 of the frequency is modulated. Suppose N sample points needs to be spent (N +0.5) cycles to obtain feature values W i, whereas i = 1,2,3 ...., N.
請參閱「圖6」所示,所以必須去定義低頻載波訊號31之工作頻率。在此例中,可以將總取樣時間表示為ΣT 。Please refer to "Figure 6", so the operating frequency of the low frequency carrier signal 31 must be defined. In this case, the total sampling time can be expressed as Σ T .
且ΣT
須符合下列關係式:
因此,我們可由上式得知低頻載波訊號31頻率f c
將可以表示為:
接下來,請參閱「圖7-1」與「圖7-2」,其為測試脈波寬度與待測電路非線性誤差之關係。首先,假設待測電路之某個量化區間存在一非線性誤差,造成待測訊號於某一小段之斜率產生變動△w
。如「圖7-1」中所示。將「圖7-1」放大於「圖7-2」,此發生錯誤之變動斜率訊號可由下式表示:
由上式可知,W j 所代表的是脈波調變信號。由此結果可以使用低頻載波訊號31與待測信號12做比較後所得到的脈波寬度去推導出非線性誤差。It can be seen from the above formula that W j represents a pulse wave modulation signal. From this result, the nonlinearity error can be derived by using the pulse width obtained by comparing the low frequency carrier signal 31 with the signal 12 to be measured.
請再參閱「圖8」所示,為使用正弦波當低頻載波訊號32的示意圖,在實際的測試環境中,精準且可調之三角波產生器其硬體實現難度高,產生正弦波信號當低頻載波訊號32遠比產生三角波信號來的容易許多。但是以正弦波當低頻載波訊號32之方式並非是直覺的線性化之調變方式,因此必須推導其待測訊號12與調變後之測試特徵值之間的關連性。Please refer to the figure shown in Figure 8 for the use of sine wave as low frequency carrier signal 32. In the actual test environment, the precise and adjustable triangular wave generator is difficult to implement, and the sine wave signal is generated as low frequency. The carrier signal 32 is much easier than the generation of a triangular wave signal. However, the way of using the sine wave as the low frequency carrier signal 32 is not an intuitive linearization modulation method, so the correlation between the signal 12 to be tested and the test characteristic value after modulation must be derived.
首先,將正弦波的低頻載波訊號32想成是許多片段線性斜率(piecewise linear)之組合,因為取樣之點具一定數量,換句話說,任兩點取樣點間之訊號差異值均很小。假設任兩取樣點間之電壓訊號乃呈線性關係,但相異區間之取樣點的線性關係也是不同的,且正弦訊號之波峰與波谷斜率變化量太大並不適合拿來當低頻載波訊號32,所以正弦信號V c 必需稍微大於待測訊號V da ,以確保兩訊號交越之取樣點不會出現在低頻載波訊號32之波峰與波谷附近。First, the sinusoidal low frequency carrier signal 32 is considered to be a combination of many pieces of piecewise linearity, since the sampling point has a certain number, in other words, the signal difference value between any two sampling points is small. It is assumed that the voltage signals between any two sampling points are linear, but the linear relationship of the sampling points in the different interval is also different, and the variation of the peak and valley slope of the sinusoidal signal is too large to be used as the low frequency carrier signal 32, Therefore, the sinusoidal signal V c must be slightly larger than the signal to be tested V da to ensure that the sampling points where the two signals cross are not present near the peaks and troughs of the low frequency carrier signal 32.
因此,必須將公式重新表示為:
請再參閱「圖9」所示,上式方程式中,m c
[i
]可進一步表示為:
接著,請參閱「圖10」與「圖11」所示,同樣須將測試脈波寬度W i 表示為類似之形式,並推導待測訊號12與低頻載波訊號32之週期之差異值△T ,以決定進行調變的載波訊號之頻率。Next, please refer to FIG. 10 and FIG. 11 , and the test pulse width W i should be expressed in a similar form, and the difference value Δ T between the period of the signal 12 to be tested and the low-frequency carrier signal 32 is derived. The frequency of the carrier signal that determines the modulation.
由於取樣點具一定之數量,換句話說,任兩點間之取樣差異值很小,假設相鄰兩點間之電壓乃呈現線性關係,但相異區間之取樣點線性關係是不同的,因此,要將公式(1)稍做修正:
請參閱「圖12-1」與「圖12-2」所示,同樣地,也將公式(2)做些修正,於「圖12-1」所示,假設待測電路中有某個量化區間內存在非線性誤差,造成待測訊號12於某一小段之斜率產生變動△w
,發生變動之斜率修正如下:
本發明推導出數位類比轉換器10輸出信號非線性誤差與脈波寬度調變之關係。為了減少估測誤差,可以直覺地增加取樣點。這個方式我們可以輕易的利用改變低頻載波訊號32的工作頻率來實現。舉例來說,一個8-bits數位類比轉換器10有255個量化高度(quantization levels),在此假設需要1020個取樣點,即每個量化高度(quantization levels)平均被取樣到四次,然而吾人就從這1020個取樣點設法去估測出原有的255個量化高度。The present invention derives the relationship between the nonlinearity error of the output signal of the digital to analog converter 10 and the pulse width modulation. In order to reduce the estimation error, the sampling point can be intuitively increased. This method can be easily realized by changing the operating frequency of the low frequency carrier signal 32. For example, an 8-bit digital analog converter 10 has 255 quantization levels. It is assumed that 1020 sampling points are required, that is, each quantization level is sampled four times on average, but we From these 1020 sampling points, we tried to estimate the original 255 quantization heights.
請參閱「圖3」、「圖13-1」與「圖13-2」所示,假使數位類比轉換器10為理想並且取樣到的點數都是相同的。於此例中,m f
斜率估測可由相鄰兩點之間的斜率平均值得到,m i
,i
=1,...,4。但不幸的是,數位類比轉換器10之量化高度並不是理想的,所以每個取樣點也不盡相同。如「圖13-2」所示。由此圖可知,我們不難發現介於第三與第四個取樣點之間是斜率的轉折點,即m 4
。所以吾人在計算m f
1
與m f
2
時,必須要將m 4
給考慮進去平均值內。因此,微分非線性誤差(DNL)可以透過下列等式估算
此外,還必須考慮另一種狀況,此情況也會導致待測電路估測非線性誤差。若條件為m 5
>m 4
>m 3
如「圖13-2」所示,其涵義為第三個取樣點非常靠近量化高度斜率轉折點。換句話說,m 3
的斜率會遠小於m 4
。因此,不可以將m 4
的斜率平均計算於m f
1
內,因為m 3
、m 4
平均下來幾乎是m 4
的斜率,故估測微分非線性誤差我們必須做些修正如下式:
請參閱「圖14」所示,為了解釋微分非線性誤差(DNL)之估測,假設有N 個取樣點,「圖14」為介於每個相鄰取樣點之斜率分布圖。首先,必須先找出於「圖14」中所有斜率最大值的位置當做每個code的起始點,然後再計算與這些斜率最大值相關之斜率平均值。Please refer to "Figure 14". To explain the estimation of differential nonlinearity error (DNL), assume that there are N sampling points, and "Figure 14" is the slope distribution map between each adjacent sampling point. First, you must first find the position of all the slope maxima in "Figure 14" as the starting point of each code, and then calculate the average of the slopes associated with the maximum of these slopes.
舉例來說,因為m 5j
>m 3j
>m 4j
所以可以由前面章節得知與。於另一種情況中,即m 5k
>m 4k
>m 3k
,吾人將可以得到與
因此,對於n-bits數位類比轉換器10取N個取樣點,將微分非線性誤差(DNL)估測正規化如下式:
因為(m i
;i
=1到N
)找出最大斜率值於m max
[k
]={m mk
},k
=1,2......,2 n
-1由於(k
=1至2 n
-1)第一種情況
另一種情況
積分非線性誤差(INL)可由微分非線性誤差(DNL)相加表示:
在計算積分非線性誤差時,可以很直覺的使用上面這個的式子來表示,就可以很容易的將積分非線性誤差給算進去。但是在計算微分非線性誤差時,也順便會將存在於微分非線性誤差之中的系統誤差(systematic error)給算進積分非線性誤差裡。When calculating the integral nonlinearity error, it can be intuitively expressed using the above equation, and the integral nonlinearity error can be easily calculated. However, when calculating the differential nonlinearity error, the systematic error existing in the differential nonlinear error is also calculated into the integral nonlinear error.
因此為了解決這個問題,要找出系統誤差之來源,並且將系統誤差與實際積分非線性誤差做個區別。於脈波寬度調變(PWM)的過程中本身就存在著系統誤差。這是因為在估測微分非線性誤差時,將正弦波載波當做許多片段線性斜率之組合所造成的,但實際上並非片段線性之斜率,而是一連串的連續曲線。因此,在估測微分非線性誤差時,會有一些微小的誤差量存在於估測的微分
非線性誤差與實際的微分非線性誤差之間。另外,此系統誤差之變動量是週期性的,它會隨著數位類比轉換器輸出信號之頻率一直循環發生。基於這個理由,估測積分非線性誤差時,將由下式描述:
由信號觀點來看,可以將積分非線性誤差信號當成由微分非線性誤差積分組合而成,此外裡面還包含了系統誤差。因為數位類比轉換器輸出信號週期是一個相當大的值,已知系統誤差之頻率遠小於微分非線性誤差信號。因此,可以將系統誤差給移除掉,使得積分非線性誤差之估測更加精準,在此,只需透過一簡單的高通濾波器(HPF)將低頻之系統誤差給濾除掉,所以對於積分非線性誤差之式子稍做修正:
如上所述,針對高速數位類比轉換器之非理想效應提出了一套測試法。此方法基於降頻取樣之技術去實現成一個脈波寬度調變信號。將待測電路之非線性誤差轉換為脈波寬度之變動。利用此方法之優點為不需高速或是高解析度之儀器來捕捉類比信號。As mentioned above, a set of test methods is proposed for the non-ideal effects of high speed digital analog converters. This method is based on the technique of down-sampling to implement a pulse width modulation signal. The nonlinear error of the circuit to be tested is converted into a variation of the pulse width. The advantage of using this method is that it does not require high speed or high resolution instruments to capture analog signals.
惟上述僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。即凡依本發明申請專利範圍所做的均等變化與修 飾,皆為本發明專利範圍所涵蓋。The above are only the preferred embodiments of the present invention and are not intended to limit the scope of the embodiments of the present invention. That is, the equal change and repair done in accordance with the scope of patent application of the present invention Decorations are covered by the scope of the invention.
1‧‧‧數位類比轉換器1‧‧‧Digital Analog Converter
2‧‧‧輸出端2‧‧‧output
3‧‧‧量測電路3‧‧‧Measurement circuit
4‧‧‧取樣保持電路4‧‧‧Sampling and holding circuit
10‧‧‧數位類比轉換器10‧‧‧Digital Analog Converter
11‧‧‧低通濾波器11‧‧‧Low-pass filter
12‧‧‧待測信號12‧‧‧Signal to be tested
20‧‧‧比較器20‧‧‧ comparator
30‧‧‧載波產生器30‧‧‧Carrier generator
31‧‧‧低頻載波訊號31‧‧‧Low-frequency carrier signal
32‧‧‧低頻載波訊號32‧‧‧Low-frequency carrier signal
40‧‧‧暫存器40‧‧‧ register
圖1為習知數位類比轉換器之測試環境圖。FIG. 1 is a test environment diagram of a conventional digital analog converter.
圖2為本發明降頻取樣技術基本概念圖。2 is a basic conceptual diagram of a down-conversion sampling technique of the present invention.
圖3為本發明降頻取樣技術架構與信號示意圖。FIG. 3 is a schematic diagram of a frequency down sampling technology architecture and signal of the present invention.
圖4-1為本發明使用三角波當低頻載波訊號示意圖。Figure 4-1 is a schematic diagram of a low frequency carrier signal using a triangular wave according to the present invention.
圖4-2為本發明待測信號與三角載波交越示意圖。4-2 is a schematic diagram of crossover of a signal to be tested and a triangular carrier according to the present invention.
圖4-3為本發明圖4-1局部放大圖。Figure 4-3 is a partial enlarged view of Figure 4-1 of the present invention.
圖5為本發明測試特徵示意圖。Figure 5 is a schematic view of the test features of the present invention.
圖6為本發明待測信號與低頻載波訊號週期差異圖。FIG. 6 is a diagram showing the difference between the signal to be tested and the low frequency carrier signal period according to the present invention.
圖7-1為本發明非線性誤差與測試脈波寬度之關係圖。Figure 7-1 is a graph showing the relationship between the nonlinear error and the test pulse width according to the present invention.
圖7-2為本發明圖7-1局部放大圖。Figure 7-2 is a partially enlarged view of Figure 7-1 of the present invention.
圖8為本發明使用正弦波當低頻載波訊號示意圖。FIG. 8 is a schematic diagram of a low frequency carrier signal using a sine wave according to the present invention.
圖9為本發明待測訊號與低頻載波訊號之振幅關係圖。FIG. 9 is a diagram showing amplitude relationship between a signal to be tested and a low frequency carrier signal according to the present invention.
圖10為本發明測試特徵示意圖。Figure 10 is a schematic view of the test features of the present invention.
圖11為本發明待測信號與正弦載波週期差異圖。Figure 11 is a diagram showing the difference between the signal to be tested and the sinusoidal carrier cycle of the present invention.
圖12-1為待測電路之非線性誤差與測試脈波寬度關係圖。Figure 12-1 shows the relationship between the nonlinear error of the circuit under test and the width of the test pulse.
圖12-2為本發明圖12-1局部放大圖。Figure 12-2 is a partial enlarged view of Figure 12-1 of the present invention.
圖13-1為本發明理想量化高度四個取樣點之示意圖。Figure 13-1 is a schematic diagram of four sampling points of an ideal quantized height according to the present invention.
圖13-2為本發明實際量化高度四個取樣點之示意圖。Figure 13-2 is a schematic diagram of the actual quantized height of four sampling points of the present invention.
圖14為本發明相鄰取樣點之斜率分布圖。Figure 14 is a diagram showing the slope distribution of adjacent sampling points of the present invention.
10‧‧‧數位類比轉換器10‧‧‧Digital Analog Converter
11‧‧‧低通濾波器11‧‧‧Low-pass filter
20‧‧‧比較器20‧‧‧ comparator
30‧‧‧載波產生器30‧‧‧Carrier generator
31‧‧‧低頻載波訊號31‧‧‧Low-frequency carrier signal
40‧‧‧暫存器40‧‧‧ register
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98139660A TWI399561B (en) | 2009-11-23 | 2009-11-23 | Test Method for Nonlinear Error of High - speed Digital Analogy Converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98139660A TWI399561B (en) | 2009-11-23 | 2009-11-23 | Test Method for Nonlinear Error of High - speed Digital Analogy Converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201118397A TW201118397A (en) | 2011-06-01 |
TWI399561B true TWI399561B (en) | 2013-06-21 |
Family
ID=44935634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98139660A TWI399561B (en) | 2009-11-23 | 2009-11-23 | Test Method for Nonlinear Error of High - speed Digital Analogy Converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI399561B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI236230B (en) * | 2003-11-13 | 2005-07-11 | Silicon Touch Tech Inc | Digital-analog converter used for multi-channel data driving circuit in display |
TW200534071A (en) * | 2004-03-01 | 2005-10-16 | Int Rectifier Corp | Hybrid digital-analog switched power supply |
US20080204293A1 (en) * | 2003-11-13 | 2008-08-28 | Silicon Touch Technology Inc. | Multi-channel display driver circuit incorporating modified d/a converters |
-
2009
- 2009-11-23 TW TW98139660A patent/TWI399561B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI236230B (en) * | 2003-11-13 | 2005-07-11 | Silicon Touch Tech Inc | Digital-analog converter used for multi-channel data driving circuit in display |
US20080204293A1 (en) * | 2003-11-13 | 2008-08-28 | Silicon Touch Technology Inc. | Multi-channel display driver circuit incorporating modified d/a converters |
TW200534071A (en) * | 2004-03-01 | 2005-10-16 | Int Rectifier Corp | Hybrid digital-analog switched power supply |
US7221133B2 (en) * | 2004-03-01 | 2007-05-22 | International Rectifier Corporation | Hybrid digital-analog switched power supply |
Also Published As
Publication number | Publication date |
---|---|
TW201118397A (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7532145B2 (en) | High resolution and wide dynamic range integrator | |
Napolitano et al. | A survey on time interval measurement techniques and testing methods | |
CN103475369B (en) | The high-precision ADC test of identification is disposably calibrated based on signal source error | |
WO2015131197A1 (en) | On-chip analog-to-digital converter (adc) linearity test for embedded devices | |
Goyal et al. | Test time reduction of successive approximation register A/D converter by selective code measurement | |
Jin et al. | Linearity testing of precision analog-to-digital converters using stationary nonlinear inputs | |
US7129734B2 (en) | Method for testing analog and mixed-signal circuits using functionally related excitations and functionally related measurements | |
Hafed et al. | A stand-alone integrated excitation/extraction system for analog BIST applications | |
Kerzérho et al. | Fast digital post-processing technique for integral nonlinearity correction of analog-to-digital converters: Validation on a 12-bit folding-and-interpolating analog-to-digital converter | |
TWI399561B (en) | Test Method for Nonlinear Error of High - speed Digital Analogy Converter | |
Serra et al. | Fast ADC testing by repetitive histogram analysis | |
Jin et al. | High-performance ADC linearity test using low-precision signals in non-stationary environments | |
Wu et al. | Fast & accurate algorithm for jitter test with a single frequency test signal | |
Korhonen et al. | Combining the standard histogram method and a stimulus identification algorithm for A/D converter INL testing with a low-quality sine wave stimulus | |
Balestrieri et al. | Research trends and challenges on DAC testing | |
TWI393904B (en) | High-speed dac linearity measurement | |
Sheng et al. | Predicting dynamic specifications of ADCs with a low-quality digital input signal | |
Carni et al. | Static characterization of high resolution DAC based on over sampling and low resolution ADC | |
Balestrieri et al. | DAC testing: recent research directions | |
Olleta et al. | A deterministic dynamic element matching approach for testing high-resolution ADCs with low-accuracy excitations | |
WO2012165940A1 (en) | A method of measuring non-linearity specification of an analog-to-digital converter (adc) | |
US6281819B1 (en) | Device for ENOB estimation for ADC's based on dynamic deviation and method therefor | |
US7982642B1 (en) | Method for testing nonlinearity error of high speed digital-to-analog converter | |
Lin et al. | A new approach for nonlinearity test of high speed DAC | |
Korhonen | On-chip testing of A/D and D/A converters: static linearity testing without statistically known stimulus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |