TWI398215B - Casing and manufacturing method thereof - Google Patents
Casing and manufacturing method thereof Download PDFInfo
- Publication number
- TWI398215B TWI398215B TW98142751A TW98142751A TWI398215B TW I398215 B TWI398215 B TW I398215B TW 98142751 A TW98142751 A TW 98142751A TW 98142751 A TW98142751 A TW 98142751A TW I398215 B TWI398215 B TW I398215B
- Authority
- TW
- Taiwan
- Prior art keywords
- casing
- thermal
- diffusion layer
- heat
- layer
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
本發明有關一種用於電子裝置的機殼,並且特別是有關一種有助於散熱之機殼及其製作方法。The present invention relates to a casing for an electronic device, and more particularly to a casing that contributes to heat dissipation and a method of fabricating the same.
目前消費性電子產品如數位相機、手機、筆記型電腦等,其具有的功能愈趨複雜繁多,功率晶體的數量也不斷的增加,且機體要求輕薄短小,內部的空間甚為狹小,使熱能累積的情況格外嚴重。為使功率晶體在正常的操作溫度下運作、保有產品正常的使用壽命,各種電子裝置中大多設置有相對應的散熱模組或散熱結構。此外,為降低產品的噪音及節約可攜式裝置的電力消耗,排熱風扇的使用亦受一定限制,使得熱管理的問題愈加嚴苛。At present, consumer electronic products such as digital cameras, mobile phones, notebook computers, etc., have increasingly complex functions, the number of power crystals is constantly increasing, and the body requirements are light and thin, and the internal space is very small, so that heat accumulation The situation is particularly serious. In order to make the power crystal operate at normal operating temperature and maintain the normal service life of the product, most of the electronic devices are provided with corresponding heat dissipation modules or heat dissipation structures. In addition, in order to reduce the noise of the product and save the power consumption of the portable device, the use of the exhaust fan is also limited, which makes the problem of thermal management more severe.
目前電子產品多半使用塑膠及金屬合金(如鋁鎂合金)作為機殼。以塑膠機殼的電子產品為例,多在電子產品的塑膠機殼內鋪設銅箔、鋁箔或石墨片,利用銅箔、鋁箔或石墨片等較大的散熱面積進行散熱,以降低功率晶體的操作溫度。At present, most electronic products use plastic and metal alloys (such as aluminum-magnesium alloy) as the casing. Taking the electronic products of the plastic case as an example, copper foil, aluminum foil or graphite sheets are often placed in the plastic casing of the electronic product, and a large heat dissipation area such as copper foil, aluminum foil or graphite sheet is used for heat dissipation to reduce the power crystal. Operating temperature.
其中,塑膠機殼具有成型容易、比重小,表面處理技術成熟且變化多樣等優點。然而,塑膠機殼本身缺乏對電磁干擾(Electromagnetic Interference,EMI)及射頻干擾(Radio Frequency Interference,RFI)的屏蔽效果,且塑膠材料的熱傳導係數低、散熱性能差,使得發熱元件溫度過高,縮短原件壽命。若是額外加貼銅箔、鋁箔及石墨片等材料,則將使得產品生產時程加長且依賴大量人工,增加產品的成本及體積。Among them, the plastic casing has the advantages of easy molding, small specific gravity, mature surface treatment technology and various changes. However, the plastic case itself lacks the shielding effect of electromagnetic interference (EMI) and radio frequency interference (RFI), and the thermal conductivity of the plastic material is low, and the heat dissipation performance is poor, so that the temperature of the heating element is too high and shortened. Original life. If additional materials such as copper foil, aluminum foil and graphite sheet are added, the production time will be lengthened and the labor will be increased, which increases the cost and volume of the product.
另一方面,若採用金屬機殼(如鋁鎂合金)的電子產品,可直接利用鋁鎂機殼將熱量導入外界,以進行散熱。鋁鎂合金比重小,電磁波及射頻遮蔽效果佳,高回收性利於環保,且熱傳導係數高,散熱性能佳。On the other hand, if an electronic product using a metal case (such as an aluminum-magnesium alloy) is used, the aluminum-magnesium case can be directly used to introduce heat into the outside to dissipate heat. The aluminum-magnesium alloy has a small specific gravity, good electromagnetic wave and radio frequency shielding effect, high recycling property is environmentally friendly, and has high heat transfer coefficient and good heat dissipation performance.
然而,金屬機殼因導熱性能好,故在緊鄰發熱元件的局部機殼處表面容易發生熱集中,使機殼溫度局部上升。若使用者操作該電子裝置並接觸到該處時,則可能感覺燙手而不舒適,舉例來說,若筆記型電腦的置手處(palm rest)底下埋設有電源供應模組、顯示晶片或中央處理器等高功率發熱元件,則可能造成操作者不舒適的感受。However, due to the good thermal conductivity of the metal casing, heat is concentrated on the surface of the local casing adjacent to the heating element, causing the temperature of the casing to rise locally. If the user operates the electronic device and comes into contact with it, it may feel hot and uncomfortable. For example, if the notebook computer has a power supply module, display chip or central under the palm rest. High-power heating elements such as processors may cause an operator's uncomfortable feeling.
為了解決習知電子裝置於散熱時部份殼體表面的熱集中問題,本發明提出一種機殼以及機殼製作方法的概念,其利用對應發熱元件位置的熱屏障層,避免熱能直接傳導至機殼本體表面上特定區域,以解決上述之熱集中問題。In order to solve the problem of heat concentration of a part of the casing surface during heat dissipation of the conventional electronic device, the present invention provides a concept of a casing and a manufacturing method of the casing, which utilizes a thermal barrier layer corresponding to the position of the heating element to prevent direct conduction of heat energy to the machine. A specific area on the surface of the shell body to solve the above heat concentration problem.
本發明之一範疇在於提供一種機殼,應用於一電子裝置,其中該電子裝置內至少包含有一發熱元件。One aspect of the present invention is to provide a housing for use in an electronic device wherein the electronic device includes at least one heat generating component therein.
根據一具體實施例,機殼包含一機殼本體、一熱屏障層以及一熱擴散層。其中,機殼本體係為金屬材質。熱屏障層設置於機殼本體之內壁上,且其位置對應發熱元件。熱擴散層設置於熱屏障層與機殼本體之內壁上,且熱擴散層包含複數個扁平狀的孔洞,該些孔洞之孔洞方向平行於機殼本體之一延伸方向。According to a specific embodiment, the housing includes a housing body, a thermal barrier layer, and a thermal diffusion layer. Among them, the shell system is made of metal. The thermal barrier layer is disposed on the inner wall of the casing body and has a position corresponding to the heating element. The thermal diffusion layer is disposed on the inner wall of the thermal barrier layer and the casing body, and the thermal diffusion layer comprises a plurality of flat holes, the holes of the holes being parallel to the direction in which one of the casing bodies extends.
本發明之另一範疇在於提供一種機殼製作方法,應用於製作一電子裝置的一機殼,其中電子裝置內至少包含有一發熱元件。Another aspect of the present invention is to provide a casing manufacturing method for manufacturing a casing of an electronic device, wherein the electronic device includes at least one heating element therein.
根據一具體實施例,機殼製作方法包含下列步驟:首先提供一機殼本體。接著,形成一熱屏障層於機殼本體之內壁上,且熱屏障層之位置對應發熱元件。最後,形成一熱擴散層於熱屏障層與機殼本體之內壁上,其中熱擴散層包含複數個扁平狀的孔洞,該些孔洞之孔洞方向平行於機殼本體之一延伸方向。According to a specific embodiment, the housing manufacturing method comprises the steps of first providing a housing body. Next, a thermal barrier layer is formed on the inner wall of the casing body, and the position of the thermal barrier layer corresponds to the heating element. Finally, a thermal diffusion layer is formed on the inner wall of the thermal barrier layer and the casing body, wherein the thermal diffusion layer comprises a plurality of flat holes, the holes of which are parallel to the direction in which one of the casing bodies extends.
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.
請參閱圖一,圖一繪示根據本發明之一具體實施例中的電子裝置2及其機殼1的示意圖。如圖一所示,機殼1適用於設置在電子裝置2的表面上,電子裝置2可為筆記型電腦、個人電腦系統、手機或各種其他電子裝置,電子裝置2內部設置可能各種運作所需的電子元件,各種電子元件通電運作時都會產生不同程度的熱能,這些運行中的電子元件即為發熱元件20。舉例來說,電子裝置2中常見的主要發熱元件20可為無線通訊模組、顯示模組、背光源、儲存媒體、電池、處理晶片或繪圖晶片等。在現今高效能且高頻處理的電子裝置中,這些發熱元件20逸散的熱能將使得電子裝置2的內部溫度升高,若無法適當散熱,將降低電子裝置2的穩定性,甚至造成電子裝置2永久性的損壞。於此實施例中,機殼1有助於發熱元件20的散熱。Please refer to FIG. 1. FIG. 1 is a schematic diagram of an electronic device 2 and a casing 1 thereof according to an embodiment of the present invention. As shown in FIG. 1 , the casing 1 is suitable for being disposed on the surface of the electronic device 2 , and the electronic device 2 can be a notebook computer, a personal computer system, a mobile phone or various other electronic devices. The electronic components, when the various electronic components are energized, generate different degrees of thermal energy, and the electronic components in these operations are the heating elements 20. For example, the main heating element 20 commonly found in the electronic device 2 can be a wireless communication module, a display module, a backlight, a storage medium, a battery, a processing chip, or a graphics chip. In today's high-performance and high-frequency processing electronic devices, the thermal energy dissipated by these heating elements 20 will cause the internal temperature of the electronic device 2 to rise, and if the heat is not properly dissipated, the stability of the electronic device 2 will be lowered, and even the electronic device will be caused. 2 permanent damage. In this embodiment, the casing 1 contributes to heat dissipation of the heat generating component 20.
圖二繪示根據本發明之一具體實施例中的機殼1的剖面示意圖。2 is a cross-sectional view of the casing 1 in accordance with an embodiment of the present invention.
如圖二所示,機殼1包含機殼本體10、熱屏障層12以及熱擴散層14。且於此實施例中,機殼1進一步包含電絕緣導熱層16。於此實施例中的機殼1中,機殼本體10設置於電子裝置2的外側表面上,暴露於外界空間中,舉例來說,機殼本體10之材料可為鎂合金、鋁合金、鋼材或鐵材等,但本發明並不以此為限。機殼本體10本身為熱的良導體可與外界進行熱交換,作為散熱之用。As shown in FIG. 2, the casing 1 includes a casing body 10, a thermal barrier layer 12, and a thermal diffusion layer 14. In this embodiment, the casing 1 further includes an electrically insulating thermally conductive layer 16. In the casing 1 of the embodiment, the casing body 10 is disposed on the outer surface of the electronic device 2 and exposed to the external space. For example, the material of the casing body 10 may be magnesium alloy, aluminum alloy, or steel. Or iron, etc., but the invention is not limited thereto. The casing body 10 itself is a good conductor of heat for heat exchange with the outside world for heat dissipation.
如圖二所示,於機殼本體10的內壁上設置有電絕緣導熱層16。於實際應用中,電絕緣導熱層16可為採熔射噴覆製程方式噴塗粉末狀之電絕緣高導熱陶磁材料(electrics-insulation and high-thermal-conductivity ceramic),形成厚度介於10~50μm,且孔隙率(porosity)小於10%的電絕緣導熱陶磁層。實際應用中,此電絕緣導熱層16的高導熱陶磁材料,其材質可選擇自由氧化鋁(Al2 O3 )、氮化矽(Si3 N4 )、氮化硼(BN)及氮化鋁(AlN)所組成之群組,或亦可採用其他具高導熱係數但電絕緣之材料,其中以氮化鋁較佳,而陶磁粉末的顆粒尺寸可為10~500nm。於此實施例中,電絕緣導熱層16可避免因異質材料之間(即機殼本體10相對熱屏障層12及熱擴散層14之間)的標準電位差引起的電化學腐蝕(如伽凡尼腐蝕,Galvanic corrosion),增加機殼本體10其內部抗腐蝕性。需特別說明的是,本發明並不限定必需於機殼本體10與熱擴散層14之間增設電絕緣導熱層16,若電化學腐蝕效應不明顯時,亦可略去電絕緣導熱層16,藉此降低製造成本並精簡製造流程。As shown in FIG. 2, an electrically insulating and thermally conductive layer 16 is disposed on the inner wall of the casing body 10. In practical applications, the electrically insulating and thermally conductive layer 16 can be spray-sprayed and sprayed in the form of electric-insulating and high-thermal-conductivity ceramics, and the thickness is between 10 and 50 μm. And an electrically insulating thermally conductive ceramic layer having a porosity of less than 10%. In practical applications, the highly thermally conductive ceramic material of the electrically insulating and thermally conductive layer 16 is made of free alumina (Al 2 O 3 ), tantalum nitride (Si 3 N 4 ), boron nitride (BN) and aluminum nitride. The group consisting of (AlN) may also be other materials having high thermal conductivity but electrically insulating, wherein aluminum nitride is preferred, and the ceramic powder may have a particle size of 10 to 500 nm. In this embodiment, the electrically insulating thermally conductive layer 16 can avoid electrochemical corrosion caused by standard potential differences between the heterogeneous materials (ie, between the casing body 10 and the thermal barrier layer 12 and the thermal diffusion layer 14) (eg, Gavigny). Galvanic corrosion) increases the internal corrosion resistance of the casing body 10. It should be noted that the present invention does not limit the necessity of adding an electrically insulating and thermally conductive layer 16 between the casing body 10 and the thermal diffusion layer 14. If the electrochemical corrosion effect is not obvious, the electrically insulating and thermally conductive layer 16 may be omitted. This reduces manufacturing costs and streamlines the manufacturing process.
本發明之熱屏障層12可直接設置於該機殼本體10之內壁上。於此實施例中,因機殼1進一步具有電絕緣導熱層16,故如圖二所示,熱屏障層12係形成於熱擴散層14與機殼本體10之內壁上的電絕緣導熱層16之間,亦即電絕緣導熱層設置於熱屏障層12與機殼本體10之內壁間以及熱擴散層14與機殼本體10之內壁間,且熱屏障層12之位置對應電子裝置2的該發熱元件的所在。也就是說,本發明的機殼1在靠近發熱元件20的處,可噴覆、塗佈或以其它方式設置具低導熱係數的材料層,形成厚度約10~500μm且孔隙率5~10%的熱屏障層12,其低導熱係數的材質可選自高分子聚合物(polymer)、玻璃纖維、低導熱陶瓷材料或各式氧化物等等,但不以此為限。The thermal barrier layer 12 of the present invention can be directly disposed on the inner wall of the casing body 10. In this embodiment, since the casing 1 further has an electrically insulating and thermally conductive layer 16, the thermal barrier layer 12 is formed on the inner wall of the thermal diffusion layer 14 and the casing body 10 as shown in FIG. Between the 16th, that is, the electrically insulating and thermally conductive layer is disposed between the thermal barrier layer 12 and the inner wall of the casing body 10 and between the thermal diffusion layer 14 and the inner wall of the casing body 10, and the position of the thermal barrier layer 12 corresponds to the electronic device. 2 where the heating element is located. That is, the casing 1 of the present invention can be sprayed, coated or otherwise provided with a layer of material having a low thermal conductivity near the heat generating component 20 to form a thickness of about 10 to 500 μm and a porosity of 5 to 10%. The material of the thermal barrier layer 12, which has a low thermal conductivity, may be selected from, but not limited to, a polymer, a glass fiber, a low thermal conductive ceramic material, or various oxides.
於另一實施例中,本發明之熱擴散層14可直接設置於熱屏障層12與機殼本體10之內壁上。於此實施例中,因機殼1進一步具有電絕緣導熱層16,故如圖二所示,熱擴散層14之一側連接熱屏障層12與電絕緣導熱層16,另一側則面向電子裝置2之發熱元件20。如圖二所示,熱擴散層14可透過導熱介面材料18間接與發熱元件20接觸。此處之導熱介面材料18可為導熱膏或導熱片等,本發明並不以此為限。於另一實施例中,本發明之熱擴散層14亦可不透過導熱介面材料18,而直接與發熱元件20接觸。In another embodiment, the thermal diffusion layer 14 of the present invention can be disposed directly on the inner walls of the thermal barrier layer 12 and the casing body 10. In this embodiment, since the casing 1 further has an electrically insulating and thermally conductive layer 16, as shown in FIG. 2, one side of the thermal diffusion layer 14 is connected to the thermal barrier layer 12 and the electrically insulating thermally conductive layer 16, and the other side is facing the electron. The heating element 20 of the device 2. As shown in FIG. 2, the thermal diffusion layer 14 is in indirect contact with the heat generating component 20 through the thermally conductive interface material 18. The heat conductive interface material 18 herein may be a thermal conductive paste or a thermal conductive sheet, etc., and the invention is not limited thereto. In another embodiment, the thermal diffusion layer 14 of the present invention may also be in direct contact with the heat generating component 20 without passing through the thermally conductive interface material 18.
實際應用中,熱擴散層14的製作,可採用熔射噴覆製程將具有高導熱係數之材料(例如:銅、銀、鋁、高導熱陶瓷材料、碳纖維、石墨、類鑽石等)熔融產生直徑約1~250μm大小的熔融顆粒,高速撞擊基材並附著堆疊於基材表面上,以形成厚度約0.1~1.0mm且孔隙率約5~40%的熱擴散層14。In practical applications, the thermal diffusion layer 14 can be formed by melting a material having a high thermal conductivity (for example, copper, silver, aluminum, high thermal conductivity ceramic material, carbon fiber, graphite, diamond-like, etc.) by a spray coating process. The molten particles having a size of about 1 to 250 μm are impacted on the substrate at a high speed and adhered to the surface of the substrate to form a thermal diffusion layer 14 having a thickness of about 0.1 to 1.0 mm and a porosity of about 5 to 40%.
需特別說明的是,在熱擴散層14的製作流程中,因單一熔融狀噴覆顆粒在高速撞擊到基材表面時,分別形成一扁平狀薄片,多數個薄片分別凝固固化並累積堆疊,便形成連續的覆膜層,在累積堆疊的薄片與薄片之間仍有細小的孔洞(void),使得熱擴散層14具有複數個扁平狀的孔洞140,該些孔洞140之孔洞方向平行於機殼本體10之一延伸方向(如圖二所示)。In particular, in the manufacturing process of the thermal diffusion layer 14, when a single molten sprayed particle hits the surface of the substrate at a high speed, a flat sheet is formed, and each of the sheets is solidified and solidified and stacked. Forming a continuous film layer, there are still small voids between the accumulated stacked sheets and the sheet, so that the heat diffusion layer 14 has a plurality of flat holes 140 whose holes are parallel to the casing One of the bodies 10 extends in the direction (as shown in Figure 2).
因熔融顆粒撞擊的緣故,這些熱擴散層14中的孔洞140亦形成與薄片平行的扁平形狀,因扁平狀孔洞140阻擋了熱能的傳遞路徑,使得熱擴散層14中垂直熱擴散層14之延伸方向的垂直熱傳導係數下降,也就使得,熱擴散層14沿該延伸方向之水平導熱速率大於垂直該延伸方向之垂直導熱速率。此一狀態導致多孔隙覆膜層(熱擴散層14)具有各方向熱傳導係數不同的特性,而可以作為熱的橫向擴散層。Due to the impact of the molten particles, the holes 140 in the heat diffusion layer 14 also form a flat shape parallel to the sheet, since the flat holes 140 block the heat energy transmission path, so that the vertical heat diffusion layer 14 extends in the heat diffusion layer 14. The vertical heat transfer coefficient of the direction is decreased, so that the horizontal heat transfer rate of the heat diffusion layer 14 in the extending direction is greater than the vertical heat transfer rate perpendicular to the extending direction. This state causes the porous coating layer (the thermal diffusion layer 14) to have characteristics of different heat transfer coefficients in all directions, and can function as a thermal lateral diffusion layer.
請一併參閱圖三,圖三繪示機殼1中熱擴散層14其熱能流動路徑示意圖。於此實施例的機殼1中,熱擴散層14本身水平方向的導熱速率大於垂直方向的導熱速率,且配合低導熱係數之熱屏障層12的設置,其阻斷了發熱元件20至機殼本體10的直線路徑。當電子裝置2中的發熱元件20產生熱能時,該熱能可在熱擴散層14沿水平的延伸方向擴散,最後平均傳導至機殼本體10上,藉此可減少電子裝置2其機殼表面局部溫度偏高的現象。Please refer to FIG. 3 together. FIG. 3 is a schematic diagram showing the thermal energy flow path of the thermal diffusion layer 14 in the casing 1. In the casing 1 of this embodiment, the thermal diffusion rate of the thermal diffusion layer 14 in the horizontal direction is greater than the thermal conduction rate in the vertical direction, and the arrangement of the thermal barrier layer 12 with a low thermal conductivity blocks the heating element 20 to the casing. A straight path of the body 10. When the heat generating component 20 in the electronic device 2 generates thermal energy, the thermal energy can be diffused in the horizontal extending direction of the thermal diffusion layer 14 and finally transmitted to the casing body 10 on average, thereby reducing the surface of the casing of the electronic device 2 The phenomenon of high temperature.
請參閱圖四,圖四繪示根據本發明之一具體實施例中的機殼製作方法的方法流程圖。機殼製作方法應用於製作一電子裝置的一機殼,其中該電子裝置內至少包含有一發熱元件。Referring to FIG. 4, FIG. 4 is a flow chart of a method for fabricating a casing according to an embodiment of the present invention. The casing manufacturing method is applied to a casing for manufacturing an electronic device, wherein the electronic device includes at least one heating element therein.
如圖四所示,該機殼製作方法首先執行步驟S100,提供一機殼本體。接著,執行步驟S102,形成電絕緣導熱層於該機殼本體的內壁上。接著,執行步驟S104,形成熱屏障層於於機殼本體的內壁的電絕緣導熱層上,且該熱屏障層的位置對應電子裝置的發熱元件之所在。最後,執行步驟S106,形成一熱擴散層於熱屏障層與機殼本體之內壁的電絕緣導熱層上,其中熱擴散層包含複數個扁平狀的孔洞,該些孔洞之孔洞方向平行於機殼本體之一延伸方向。As shown in FIG. 4, the casing manufacturing method first performs step S100 to provide a casing body. Next, step S102 is performed to form an electrically insulating thermally conductive layer on the inner wall of the casing body. Next, step S104 is performed to form a thermal barrier layer on the electrically insulating and thermally conductive layer of the inner wall of the casing body, and the position of the thermal barrier layer corresponds to the heating element of the electronic device. Finally, step S106 is performed to form a thermal diffusion layer on the electrically insulating and thermally conductive layer of the thermal barrier layer and the inner wall of the casing body, wherein the thermal diffusion layer comprises a plurality of flat holes, the holes of which are parallel to the machine One of the shell bodies extends in the direction.
其中,步驟S102中形成電絕緣導熱層、步驟S104中形成熱屏障層以及步驟S106中形成熱擴散層等製造流程皆可經由熔射噴覆製程完成。The manufacturing process of forming the electrically insulating and thermally conductive layer in step S102, forming the thermal barrier layer in step S104, and forming the thermal diffusion layer in step S106 can be completed by the spray coating process.
其中,熱擴散層可用以直接接觸電子裝置之發熱元件。或於另一實施例中,亦可進一步添加製造步驟以設置導熱介面材料於熱擴散層與發熱元件之間,使熱擴散層透過導熱介面材料間接與發熱元件接觸。Wherein, the thermal diffusion layer can be used to directly contact the heating element of the electronic device. Or in another embodiment, a manufacturing step may be further added to provide a thermal interface material between the thermal diffusion layer and the heat generating component, and the thermal diffusion layer is indirectly contacted with the heat generating component through the thermal interface material.
其中,上述實施例中,步驟S102係形成電絕緣導熱層於機殼本體與內側兩層(熱屏障層及熱擴散層)之間。於另一具體實施例中,亦可略去步驟S102中及其所形成的電絕緣導熱層,使步驟S104中的熱屏障層直接形成於機殼本體上,同理使步驟S106中的熱擴散層形成於機殼本體及熱屏障層上。In the above embodiment, step S102 forms an electrically insulating and thermally conductive layer between the casing body and the inner two layers (the thermal barrier layer and the thermal diffusion layer). In another embodiment, the electrically insulating and thermally conductive layer formed in step S102 and the insulating layer may be omitted, so that the thermal barrier layer in step S104 is directly formed on the casing body, and the heat diffusion in step S106 is similarly performed. The layer is formed on the casing body and the thermal barrier layer.
需特別注意的是,其中以熔射噴覆製程形成的熱擴散層包含複數個扁平狀的孔洞,該些孔洞之孔洞方向平行於機殼本體之一延伸方向,使得熱擴散層之一水平導熱速率大於垂直該延伸方向之一垂直導熱速率。It should be noted that the thermal diffusion layer formed by the spray coating process comprises a plurality of flat holes whose holes are parallel to the direction in which one of the casing bodies extends, so that one of the thermal diffusion layers is horizontally thermally conductive. The rate is greater than the vertical thermal conductivity rate of one of the vertical extension directions.
有關上述機殼製作方法其形成的機殼,採用之材料及製作方式可參閱上述實施例的機殼的細部描述,故在此不另贅述。For the housing of the above-mentioned casing manufacturing method, the material and the manufacturing method can be referred to the detailed description of the casing of the above embodiment, and therefore no further details are provided herein.
為改善習知的電子裝置其機殼表面溫度不均勻的現象,本發明提出的機殼及機殼製作方法,其具有各方向的熱傳導係數不同的熱擴散層,使機殼溫度均勻化,避免機殼表面局部溫度偏高。其中熱擴散層的孔洞呈扁平狀,且孔洞方向與機殼基材方向平行,使得熱擴散層各方向的熱傳導係數不同,垂直方向的熱傳導係數較另二方向小,使熱量大部分以擴散方式散開,而較少直接穿透機殼,避免機殼表面局部溫度偏高。In order to improve the temperature unevenness of the surface of the casing of the conventional electronic device, the method for manufacturing the casing and the casing provided by the invention has a heat diffusion layer with different heat conduction coefficients in all directions, so that the temperature of the casing is uniformized and avoided. The local temperature of the surface of the casing is too high. The pores of the thermal diffusion layer are flat, and the direction of the holes is parallel to the direction of the substrate of the casing, so that the thermal conductivity of the thermal diffusion layer is different in each direction, and the thermal conductivity in the vertical direction is smaller than the other two directions, so that most of the heat is diffused. Spread out, and less directly penetrate the casing to avoid high local temperature on the surface of the casing.
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.
1...機殼1. . . cabinet
10...機殼本體10. . . Chassis body
12...熱屏障層12. . . Thermal barrier layer
14...熱擴散層14. . . Thermal diffusion layer
16...電絕緣導熱層16. . . Electrically insulating layer
18...導熱介面材料18. . . Thermal interface material
140...孔洞140. . . Hole
2...電子裝置2. . . Electronic device
20...發熱元件20. . . Heating element
S100~S106...流程步驟S100~S106. . . Process step
圖一繪示根據本發明之一具體實施例中的電子裝置及其機殼的示意圖。1 is a schematic diagram of an electronic device and a casing thereof according to an embodiment of the present invention.
圖二繪示根據本發明之一具體實施例中的機殼的剖面示意圖。2 is a cross-sectional view of a casing in accordance with an embodiment of the present invention.
圖三繪示根據本發明之一具體實施例中機殼之熱擴散層其熱能流動路徑示意圖。3 is a schematic view showing a thermal energy flow path of a thermal diffusion layer of a casing according to an embodiment of the present invention.
圖四繪示根據本發明之一具體實施例中的機殼製作方法的方法流程圖。4 is a flow chart of a method of fabricating a casing in accordance with an embodiment of the present invention.
1...機殼1. . . cabinet
10...機殼本體10. . . Chassis body
12...熱屏障層12. . . Thermal barrier layer
14...熱擴散層14. . . Thermal diffusion layer
16...電絕緣導熱層16. . . Electrically insulating layer
18...導熱介面材料18. . . Thermal interface material
140...孔洞140. . . Hole
2...電子裝置2. . . Electronic device
20...發熱元件20. . . Heating element
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98142751A TWI398215B (en) | 2009-12-14 | 2009-12-14 | Casing and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98142751A TWI398215B (en) | 2009-12-14 | 2009-12-14 | Casing and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201121401A TW201121401A (en) | 2011-06-16 |
TWI398215B true TWI398215B (en) | 2013-06-01 |
Family
ID=45045557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98142751A TWI398215B (en) | 2009-12-14 | 2009-12-14 | Casing and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI398215B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM330424U (en) * | 2007-08-28 | 2008-04-11 | Wen-Long Chyn | Heat dissipation module |
TWI298208B (en) * | 2004-10-29 | 2008-06-21 | Ledengin Inc | Light emitting device with a thermal insulating and refractive index matching material |
TWI298410B (en) * | 2005-12-23 | 2008-07-01 | Au Optronics Corp | Backlight module |
-
2009
- 2009-12-14 TW TW98142751A patent/TWI398215B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI298208B (en) * | 2004-10-29 | 2008-06-21 | Ledengin Inc | Light emitting device with a thermal insulating and refractive index matching material |
TWI298410B (en) * | 2005-12-23 | 2008-07-01 | Au Optronics Corp | Backlight module |
TWM330424U (en) * | 2007-08-28 | 2008-04-11 | Wen-Long Chyn | Heat dissipation module |
Also Published As
Publication number | Publication date |
---|---|
TW201121401A (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2262354B1 (en) | Assemblies and methods for dissipating heat from handheld electronic devices | |
WO2021000880A1 (en) | Electronic device | |
TW201127266A (en) | Vapor chamber and manufacturing method thereof | |
WO2011137756A2 (en) | Composite material and electron device | |
TWI603441B (en) | Power module and manufacturing method thereof | |
WO2015074447A1 (en) | Mobile terminal heat dissipation apparatus and shielding cover frame | |
WO2009003411A1 (en) | A mobile terminal preventing temperature rising of user-sensitive surface | |
EP4236642A1 (en) | Heat dissipation apparatus and electronic device | |
WO2017206682A1 (en) | Mobile display device | |
CN110012643B (en) | Heat dissipation assembly, preparation method thereof and electronic equipment | |
JP2008218618A (en) | Printed circuit board | |
CN102098886B (en) | Cabinet and manufacturing method thereof | |
WO2017045232A1 (en) | Natural graphite/aluminum composite heat sink | |
JP2001230578A (en) | Heat radiating structure of portable communication terminal | |
TWI398215B (en) | Casing and manufacturing method thereof | |
CN107306489A (en) | The manufacture method of fin and fin | |
CN217116715U (en) | Chip heat radiation structure and electronic equipment | |
JP3164067U (en) | Circuit board | |
CN207235341U (en) | Radiator structure and terminal based on terminal | |
CN114126368B (en) | Directional high-heat-conductivity electronic module box body and heat-conductivity design method | |
CN215834516U (en) | Heat conducting device for electronic element | |
CN104883859A (en) | Electronic device and housing | |
WO2018157545A1 (en) | Thermally-conductive component and mobile terminal | |
TW201706768A (en) | Heat dissipation buffer conductive compound molding structure of mobile electronic device (IV) embodying functions of heat dissipation, buffering, conductivity and insulation in one work | |
CN205467591U (en) | Thermal insulation piece |