TWI396830B - 巡邏裝置及其巡邏路徑規劃方法 - Google Patents

巡邏裝置及其巡邏路徑規劃方法 Download PDF

Info

Publication number
TWI396830B
TWI396830B TW097146430A TW97146430A TWI396830B TW I396830 B TWI396830 B TW I396830B TW 097146430 A TW097146430 A TW 097146430A TW 97146430 A TW97146430 A TW 97146430A TW I396830 B TWI396830 B TW I396830B
Authority
TW
Taiwan
Prior art keywords
patrol
path
value
paths
area
Prior art date
Application number
TW097146430A
Other languages
English (en)
Other versions
TW201020525A (en
Inventor
Wei Han Hung
Shih Chung Kang
Peter Liu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW097146430A priority Critical patent/TWI396830B/zh
Priority to US12/507,747 priority patent/US8396620B2/en
Publication of TW201020525A publication Critical patent/TW201020525A/zh
Application granted granted Critical
Publication of TWI396830B publication Critical patent/TWI396830B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

巡邏裝置及其巡邏路徑規劃方法
本案係指一種巡邏裝置及其巡邏路徑規劃方法,尤指一種保全機器人及其巡邏路徑規劃方法。
現今保全機器人的發展仍著重於硬體機構的設計開發、運動路徑規劃(motion and path planning)、以及導航(navigation)上,其它延伸的相關發明如人臉、聲紋的辨識,屬於機器人本身感知分析及物理上的運動層級範圍,其實際運用於保全實業上仍有許多限制,目前多半擔任輔助性的工作,執行保全巡邏勤務方面目前只在重要地點或是在整個區域內作隨機的巡視,在整個巡邏動線與路徑方面尚無完整的發明與探討,但保全機器人執行巡邏勤務為機器人應用在保全實業裡為很基本且重要的能力,如能根據巡邏環境特性作有意義性的巡邏路徑規劃則能夠使自主式保全機器人有效的執行巡邏勤務,減少入侵與財產損失等狀況的發生機率,當機器人的人工智慧、運動控制以及各種演算法愈趨成熟時,巡邏路徑規劃必為我們所會面臨到的課題。目前在習知技術中,有以下數種的巡邏路徑規劃方法。
使用勢能場(Potential Field)為機器人路徑規劃中常見的方法之一,該方法係將整個環境視為一個勢能場,勢能的定義可以代表環境的障礙物、追蹤物體位置的機率、以及未探索的區域,以勢能的流向規劃機器人的移動路徑,在具有較高的勢能的位置即為障礙物所在處(G. Dozier,A. et al.1998)。
馬爾可夫決策過程(Markov Decision Processes,簡稱MDP)與部分觀察馬爾可夫決策過程(Partially Observable Markov Decision Processes,簡稱POMDPs)作動態的規劃決策用以處理簡單的機器人路徑決策及自主學習(J. Pineau et al. 2003;M. T. J. Spaan and N. Vlassis 2004),為路徑規劃決策中常見的方法,其方法之結果部分為隨機而部分為其決策決定。
其它與巡邏路徑規劃相關的發明包括旅行銷售員問題(Traveling Salesman Problem,TSP)以及車輛路線問題(Vehicle Routing Problem,VRP)(Vigo 2001),TSP方法主要用於尋找一條使銷售員能夠從一個起始節點出發後並行經所有的節點再回到起始點的最短路徑;VRP方法則是找尋單一或多台車輛執行送貨(deliver)勤務之路徑規劃的問題如城市公車路線規劃。
雖然在習知技術中已存在了上述各式的巡邏路徑規畫方法,但現今前的習知技術中,關於基於圖(graph)的路徑規劃方法,則是附之厥如。職是之故,申請人鑑於習知技術中所產生之缺失,經過悉心試驗與發明,並一本鍥而不捨之精神,終構思出本案「巡邏裝置及其巡邏路徑規劃方法」,能夠克服上述缺點,以下為本案之簡要說明。
本發明係建立保全機器人在室內環境下執行巡邏勤務的巡邏模型和巡邏規劃評估指標,以及發展出保全機器人在巡邏區域內作自主式的巡邏路徑規劃方法並發展採用此種巡邏路徑規劃方法規劃巡邏路徑的保全機器人,且本發明所建立的巡邏裝置及其巡邏路徑規劃方法,均是以基於圖,特別是以基於有向圖(directed graph)的演算法作為規劃核心,能夠極有效率的進行路徑規劃。
根據本發明的第一構想,提出一種巡邏路徑規劃方法,其包括步驟將一待巡邏區域劃分為複數巡邏區,該等巡邏區彼此之間為相鄰或非相鄰,其中彼此相鄰的該等巡邏區係通過複數可能路徑連接;以一基於有向圖(directed graph)的演算法自該等可能路徑中確定複數巡邏路徑;計算每一該等巡邏路徑的一巡邏疏失指標以及一巡邏品質指標;以該等巡邏疏失指標以及該等巡邏品質指標評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑。
較佳地,本發明所提供之該種巡邏路徑規劃方法,其中該等巡邏路徑為該等可能路徑的組合。
較佳地,本發明所提供之該種巡邏路徑規劃方法,更包括步驟將該等巡邏區與該等可能路徑製作為一有向圖。
較佳地,本發明所提供之該種巡邏路徑規劃方法,其中該基於有向圖的演算法為一最短路徑排列組合法(SPPM)或一局部時間建議巡邏路徑重複規劃方法(LORM)。
較佳地,本發明所提供之該種巡邏路徑規劃方法,其中該SPPM係利用一迪克斯徹(Dijkstra)演算法執行。
較佳地,本發明所提供之該種巡邏路徑規劃方法,其中該LORM係利用一深度優先搜尋(depth-first search)演算法執行。
一種用於運算所述的該種巡邏路徑規劃方法的一電子運算單元。
較佳地,本發明所提供之該種電子運算單元係為一桌上型電腦、一工業型電腦、一筆記型電腦或一具有運算處理器的電子裝置。
一種裝設有所述的該種電子運算單元的機器人。
一種依所述的該種巡邏路徑規劃方法移動的機器人。
根據本發明的第二構想,提出一種巡邏路徑規劃方法,其包括步驟建構一基於有向圖的一巡邏模型,該巡邏模型包括複數巡邏區及用於連接彼此相鄰的該等巡邏區的複數可能路徑;以一基於有向圖的演算法自該等可能路徑中確定複數巡邏路徑;計算每一該等巡邏路徑的一巡邏疏失指標以及一巡邏品質指標;以及以該等巡邏疏失指標以及該等巡邏品質指標評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑。
根據本發明的第三構想,提出一種巡邏裝置,其包括一電子運算單元,其用於執行包括以下步驟:建構一基於有向圖的一巡邏模型,該巡邏模型包括複數巡邏區及用於連接彼此相鄰的該等巡邏區的複數可能路徑;以一基於有向圖的演算法自該等可能路徑中確定複數巡邏路徑;計算每一該等巡邏路徑的一巡邏疏失指標以及一巡邏品質指標;以該等巡邏疏失指標以及該等巡邏品質指標評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑;以及基於該建議巡邏路徑而產生一路徑指令;以及一動力載具,其接收來自該電子運算單元的該路徑指令而依該建議巡邏路徑移動。
較佳地,本發明所提供之該種巡邏裝置,其中該電子運算單元係為一桌上型電腦、一工業型電腦、一筆記型電腦或一具有運算處理器的電子裝置。
較佳地,本發明所提供之該種巡邏裝置係為一保全機器人。
較佳地,本發明所提供之該種巡邏裝置,其中該保全機器人係用於執行保全勤務。
本案將可由以下的實施例說明而得到充分瞭解,使得熟習本技藝之人士可以據以完成之,然本案之實施並非可由下列實施案例而被限制其實施型態。
◎巡邏模型建構◎
在著手規劃巡邏路徑之前,須先建構巡邏模型。請參閱第一圖(a),係為本案的擬巡邏區域示意圖,請參閱第一圖(b),係為對應於擬巡邏區域的巡邏模型示意圖。巡邏的目的是巡邏者必須在特定時間內到達某些具有意義的巡邏點,諸如大樓的出入口、重要機房以及走道角落等處所,執行查看及檢查的勤務,假設有一個如第一圖(a)所示的平面區域需要巡邏,先將此平面區域定義為擬巡邏區域,再將擬巡邏區域依照巡邏點劃分為許多具有意義的巡邏區(Patrol Region),包括了巡邏區A、B、C、D、E、F、G及H,每一巡邏區之間有可能為彼此相鄰或非相鄰,若為彼此相鄰的巡邏區與巡邏區之間以通道相連接,因此上述的巡邏問題可化成由一個如第一圖(b)中所示,以有向圖(directed graph)的方式所表達的巡邏模型,在第一圖(b)中包括了巡邏區A、B、C、D、E、F、G及H及連接彼此相鄰之巡邏區與巡邏區之間的可能路徑r,可能路徑r旁所標註者為巡邏者從一個巡邏區到另一個巡邏區所需要花費的時間成本。依以上所述,可建立一個以有向圖表示的巡邏模型,在此巡邏模型中包括複數巡邏區A、B、C、D、E、F、G及H及用於連接彼此相鄰的該等巡邏區的複數可能路徑。
在建立巡邏模型之後,本發明將巡邏區依照性質的不同劃分為三個主要的類型:
A.區域出入口巡邏區(Exit& Entrance Region):影響整個巡邏區域安全最主要的因素就是出入口的監控,所以巡邏區域的出入口在整個巡邏的過程中佔有很重要的地位,比如說大樓的進出的門口、電梯或是樓梯口,出入口的疏失導致入侵者進入的機會增加,將連帶會造成整個區域的危險度增高。
B.有特殊功用與價值的巡邏區(Valuable Region):此類型的巡邏區代表的是整個巡邏區域裡面具有特別意義或有關財產價值等需要被保護的部分,例如:電腦機房、商場店家等可能會造成損失的區域,是在整個巡邏區域裡面最重要的部分。
C.一般巡邏區(Common Region):有關地形幾何形狀的區域,諸如:狹長的走廊通道、角落,或具有其它意義但卻無實質價值的區域如:學校裡面大樓中的教室、廁所等,這類的區域都被歸類到其它巡邏區,當這些巡邏區發生疏失時,其重要性相對不比其他兩個類型的巡邏區來的高。
為了模擬巡邏的情境,本發明定義了如表二所示的四個巡邏區的參數,用來計算出某個時刻巡邏區的巡邏權重,再以所有巡邏權重評斷可能路徑是否能有效的維護整個巡邏區域的安全,而這些參數依據巡邏區的性質不同,也會有不同的計算方式。
巡邏區依殘餘允許空缺時間(RVT)的值有劃分為兩種狀態,平常時是正常(Normal)狀態,當殘餘允許空缺時間(RVT)小於零的時候,代表巡邏區超過了應該要被巡邏的時間,這時候巡邏區便進入了巡邏警戒(Patrol Alert)狀態,如果巡邏區進入了此狀態,代表了巡邏疏失(Patrol Omission,簡稱PO)的發生,疏失的嚴重性依照巡邏區性質不同,其值等於在巡邏警戒狀態下的PP值,越重要的巡邏區其PO值則會越高。每當保全機器人對巡邏區執行巡邏的動作以後,殘餘允許空缺時間(RVT)將會被重新設定至其允許空缺時間(AVT)的值。
◎巡邏路徑規劃◎
當巡邏模型建構完畢後,本發明希望在巡邏模型中所具有的複數可能路徑中找出巡邏路徑,就是巡邏者能夠將所有巡邏區都走過一次並回到起始巡邏區的一條或一條以上的路徑,因此該等巡邏路徑基本上可視為該等可能路徑的組合,在本發明中採用數種基於有向圖的演算法,包括了最短路徑排列組合法(Shortest Path Permutations Method,SPPM)及局部時間建議巡邏路徑重複規劃方法(Locally Optimum Repetitious Method,LORM),以自前述複數可能路徑中確定複數巡邏路徑。
◆最短路徑排列組合法(SPPM)
請參閱第二圖,係為本案在SPPM中所採用的巡邏模型示意圖。在一個如第二圖所示的巡邏模型中,希望找出一條或一條較佳的周期性的巡邏路徑,本發明定義巡邏機器人將所有巡邏區A~I都走過一次並回到起始點為一個巡邏周期,若不管兩巡邏區之間的路徑為何,所有巡邏區的順序都將成為可能路徑,因此成為排列組合的問題,以第二圖所示的巡邏模型為例,在扣除起點與終點後仍有多達8!條可能的巡邏路徑。茲將存在於第二圖的巡邏模型中的所有可能路徑的一部分列舉如表一,由於巡邏者在兩巡邏區間的移動有可能會經過其它巡邏區,所以表一中的某些解在實際上並不會發生,最短路徑排列組合法(SPPM)能夠濾除這些不可能的路徑。
請參閱第三圖,係為SPPM的演算過程示意圖。以表一中的可能巡邏路徑2為例,其演算過程如第三圖所示,紅色巡邏區為每次步驟的起點,黃色部分為終點,紅色邊則為起點到終點的最短路徑,本發明使用迪克斯徹(Dijkstra)演算法以找出圖中所有任兩巡邏區間的最短路徑,步驟1從A走到C必定經過B,於是發現此路徑順序的不合理性,便可將步驟5的巡邏區去除掉,最後得到做完一個巡邏周期的其中一個路徑解為A-B-C-D-E-G-E-F-E-I-H-I-B-A,這個結果將與表一中的可能巡邏路徑3的結果相同,用此方法我們可以去除掉重複的路徑順序以及其它不可能的路徑順序如表一中的可能巡邏路徑4,因為A到C之間必定經過B巡邏區。
反覆以SPPM測試巡邏模型中的每一條可能路徑,以去除掉重複的可能路徑以及其它不可能的路徑,因而自該等可能路徑中確定出複數巡邏路徑。最後再計算這些以SPPM選出的巡邏路徑的巡邏疏失(PO)值以及巡邏品質(PQ)值,經由評估每一條巡邏路徑的PO及PQ而自該等巡邏路徑中選出一建議巡邏路徑,巡邏者即依此建議巡邏路徑執行巡邏勤務。
◆局部時間建議巡邏路徑重複規劃方法(LORM)
局部時間建議巡邏路徑重複規劃方法(Locally Optimum Repetitious Method,簡稱LORM),考慮第二圖中的一個巡邏區域,我們希望找出一條建議巡邏路徑,可能的方法就是將所有可能的路徑一一做數值計算測試,再依一個評估的準則選出一條建議的解,但因為在巡邏區域中長時間行走的路徑有無限多種可能,我們只能找出特定時間內所有的可能路徑,比如先找出2小時的建議巡邏路徑,再由2小時後的狀態找出2到4小時的建議路徑,依此類推做長時間的路徑規劃,此為本發明所發展的局部時間建議巡邏路徑規劃方法(Locally Optimum Method,簡稱LOM)。
本發明中使用深度優先搜尋演算法(Depth-First Search,DFS)來尋找局部時間內的建議巡邏路徑,此演算法主要是針對圖的深度(depth)先做搜尋,當走過的巡邏區到達給定的深度限制時,才停止搜尋,而後回到上一巡邏區對其他分支(breadth)繼續做搜尋的動作。以第二圖的巡邏模型為例,若給定深度限制是6,起始巡邏區是A,第一條搜尋到的可能路徑是A-B-C-D-E-F;第二條則是A-B-C-D-E-G,如此我們便可以找到6個深度下所有的可能路徑,但這是習知的深度優先搜尋演算法,本發明另外發展一個巡邏路徑深度優先搜尋法(Patrol Depth First Search,簡稱P-DFS),可解決習知深度優先搜尋演算法會遇到兩個問題:
(1)以深度做停止搜尋的限制將會導致路徑花費的時間不一致:因為每一個邊的時間成本並不一樣,所以以深度為限制找出的所有路徑時間皆不同,在時間不同的狀況下無法對巡邏疏失(PO)與巡邏品質(PQ)作一比較,若勉強將這些結果最測試比較,找出的路徑並非是真的建議巡邏路徑。為了將時間統一,本發明將深度優先搜尋法的停止限制修改成以巡邏時間(Patrol Time,簡稱PT)為限制,以第二圖的巡邏模型為例,起始點為A,若我們給定巡邏時間為22分鐘,則找出的所有可能巡邏路徑有三種,如第四圖所示,其中第四圖係為巡邏時間(PT)為22分鐘的所有可能路徑示意圖,如此一來所有可能的路徑在同樣的時間內便可以做數值測試與比較,找出適合的巡邏路徑解。
(2)習知深度優先搜尋演算法不考慮已經走過的巡邏區:因為巡邏的問題並沒有限制巡邏過的區域不能再巡邏短時間內重複巡邏,有些比較重要的巡邏區,可能在某些比較不重要的巡邏區巡邏之前應該要被巡邏兩次以上,這樣才能確保重要的重要巡邏區的安全,而不是當全部巡邏區巡邏完畢才重新再巡邏一次。可是習知的深度優先搜尋演算法是為了要找到某一個特定巡邏區,所以限制了巡邏區並不能重覆經過,本發明針對問題對深度優先搜尋演算法又做了修改,就是將此限制去除掉,但是又將衍生了另外一個問題,大量不合理的巡邏路徑解所造成電腦的龐大計算量與時間。以第二圖的巡邏模型為例,我們做了總巡邏時間對於巡邏路徑解的數量與電腦計算時間的關係圖,如第五圖與第六圖所示,其中第五圖係為巡邏時間與電腦計算時間之間的關係圖,而第六圖係為巡邏時間與可能路徑解數量之間的關係圖,當巡邏時間超過140分鐘之後,路徑解的數目便急速地成指數曲線增加,其成長數率與圖的邊緣數目以及成本有關,而所謂不合理的巡邏路徑如:A-B-A-B-A-B....這種重複來回的路徑,為了濾除掉這些大部分不合理的巡邏路徑解,本發明中在作深度優先搜尋時,我們給定巡邏區允許重覆經過的次數限制Repeat Limit(RL),用以減少電腦的運算時間量,如此便能夠找到巡邏時間更長的建議巡邏路徑解,次數限制的給定須根據巡邏時間(PT)與圖中全部邊(edge)的成本總合來訂定,其值若假設過低將會過濾掉其中有效的巡邏路徑。
透過本發明發展之P-DFS方法我們可以找到在特定時間內巡邏模型中的所有巡邏路徑,再計算並評估每一條巡邏路徑的APO及APQ而自該等巡邏路徑中選出合適的建議巡邏路徑,巡邏者即依此建議巡邏路徑執行巡邏勤務。
小結而言,使用SPPM方法可以找出極短時間內巡遍所有巡邏區的建議路徑,並維持整體平均巡邏品質;而LORM可以針對巡邏區特性與重要性分布作完整長期的巡邏路徑規劃,有效減少巡邏疏失的發生,其不具週期性的巡邏路徑,較能防範具計畫性的入侵者入侵,降低損失,再者透過每時刻巡邏疏失的紀錄,管理者更可以針對其巡邏路徑發生巡邏疏失的時間與巡邏區,以其它方式來增加其安全性,使得保全機器人更能有效輔助保全作業。
◎巡邏路徑評估指標◎
本發明透過巡邏模型的建立,發展出兩項提供決策者作評估的巡邏指標:平均單位時間巡邏疏失(Average Patrol Omission,APO)與平均巡邏品質(Average Patrol Quality,APQ)分別用以評估巡邏路徑的疏失風險與可能路徑的整體品質。
◆平均單位時間巡邏疏失(APO)
巡邏疏失(PO)其值代表巡邏區超過允許空缺時間(AVT)的單位時間,當一個巡邏區剛超過允許空缺時間時其PO值設為1,當繼續累積超過允許空缺時間一個時間單位時,其PO值為2,依此類推下去,我們可以透過PO的值得知此時此刻有巡邏區超過了多少允許空缺時間,其值應當越少越好,但因為每個巡邏區的重要性不同,使得PO值無法判定其巡邏區所發生巡邏疏失時可能造成的損失程度,於是本發明將PO值設為巡邏區進入巡邏警戒狀態(Patrol Alert)的巡邏權重(PP),即區域出入口和具有特殊功能與價值巡邏區殘餘允許空缺時間RVT為0時的PO值為1.5;一般巡邏區的PO值為0.5,我們便可透過其值判斷整個巡邏規劃所可能造成的損失大小,其可視為巡邏路徑規劃的風險評估值,我們以平均單位時間巡邏疏失(Average Patrol Omission,簡稱APO)作為評估的指標,其計算方式如方程式(1),其值的意義為在某時刻內的平均每單位時間巡邏區的巡邏疏失值,其值若高於1,則表示巡邏路徑規劃會造成每時刻都有超過一個巡邏區發生疏失,本發明以APO為0.5作為巡邏路徑規劃所需首要達到的基本標準。
其中t 為時間變數;y (t p )為在t =t p 時所累積的平均單位時間巡邏疏失(APO)值;PO i (t )巡邏區i在時間t時發生巡邏疏失(PO)的值,計算方式依巡邏區類型不同為3-3、3-4、3-5RVT小於零時的PP值。
◆平均巡邏品質(APQ)
巡邏品質(Patrol Quality,簡稱PQ),計算方式如方程式(2),代表此巡邏路徑規劃的結果平均空缺的時間與巡邏區允許空缺時間的比值,此值越低越好,本發明以所有巡邏的平均巡邏品質(Average Patrol Quality,簡稱APQ)為另一項巡邏評估指標,代表其巡邏規劃在其規定的允許空缺時間內的平均達成率,低於100%則表示路徑規劃能使巡邏區平均達到所規定的時間。
其中q (t p )為巡邏區在時間為t p 時的巡邏品質(PQ);n 為在時間t p 內巡邏區所被巡邏到的次數。
本發明定義有效的巡邏路徑規劃為達到APO值0.5以下以及APQ值100%以下,代表巡邏規劃能夠維持每單位時間少於1個巡邏區的巡邏疏失,0.5則為加入0.5安全係數後的值,APQ值100%保式巡邏區平均能夠達到所規定的允許空缺時間,其值的評估用途並非絕對性的,而是相對的,同一個案例中其各巡邏區的參數設定不同,對一樣的巡邏路徑規劃之APO及APQ值有很大的影響。
APO為影響巡邏區域安全性所需優先考量的巡邏指標,藉由APO值我們可以評估其規定巡邏區之允許空缺失時間的可行性,繼而根據結果作調整,當巡邏路徑規劃能夠維持很低的APO值時,便可以根據APQ結果降低巡邏區之允許空缺時間,APQ為評估整體巡邏區的允許空缺時間達成率,低於100%表示大部分巡邏區能在規定的時間內作到巡邏的勤務。兩指標之間並無絕對的關係,若能夠維持APO為零的路徑規劃,其巡邏過程並無巡邏疏失的發生,代表其APQ值則一定能達到100%以下,越低的APO值將使APQ能夠維持在一定的標準內,但APQ值的高低卻對APO無太大的影響,其路徑規劃應以要求低APO為準則,減少發生疏失的可能性,繼而在針對APQ作整體的巡邏品質提升。
藉由計算並評估每一條巡邏路徑的APO及APQ,可自該等巡邏路徑中選出合適的建議巡邏路徑,巡邏者即可依此建議巡邏路徑執行巡邏勤務。
小結而言,本發明所提出的巡邏路徑規劃方法,可表示為如第七圖所示,其中第七圖係為本發明所提出的巡邏路徑規劃方法的流程圖。第七圖中所示的本發明所提出的巡邏路徑規劃方法的執行步驟包括了步驟71將一待巡邏區域劃分為複數巡邏區,其中該等巡邏區彼此之間為相鄰或非相鄰,其中彼此相鄰的該等巡邏區係通過複數可能路徑連接;步驟72以圖論(graph theory)將該等巡邏區與該等可能路徑製作為一有向圖;步驟73以一基於有向圖(directed graph)的演算法自該等可能路徑中確定複數巡邏路徑;步驟74計算每一該等巡邏路徑的一巡邏疏失指標以及一巡邏品質指標;步驟75以該等巡邏疏失指標以及該等巡邏品質指標評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑。
前述本發明所提出的巡邏路徑規劃方法的運算,可通過至少一個電子運算單元,諸如:桌上型電腦、工業型電腦、筆記型電腦或具有運算處理器的電子裝置等而完成,而設有這個電子運算單元的機器人,即可依前述巡邏路徑規劃方法所規劃出的建議巡邏路徑移動。
◎巡邏裝置◎
基於前述本發明所提出的巡邏路徑規劃方法,本發明更設計出一種能夠依照前述巡邏路徑規劃方法而進行巡邏的巡邏裝置。請參閱第八圖,係為本發明之巡邏裝置之示意圖。在最簡單的架構下,第八圖中的巡邏裝置80至少包括了電子運算單元82及動力載具84,電子運算單元82可為桌上型電腦、工業型電腦、筆記型電腦或具有運算處理器的電子裝置,而動力載具84用以驅動巡邏裝置80,第八圖中揭示的電子運算單元82可以執行前述本發明所提出的巡邏路徑規劃方法,在計算出建議巡邏路徑之後,電子運算單元82將此建議巡邏路徑以路徑指令的方式傳輸至動力載具84,動力載具84接收路徑指令並按建議巡邏路徑而行進,藉此巡邏裝置80得以按前述巡邏路徑規劃方法所規劃出的建議巡邏路徑進行巡邏及相關保全勤務。此種巡邏裝置較佳地可透過構型為機器人而得以實現,此機器人特別適合用於保全用途。
總結而言,本案實為一難得一見,值得珍惜的難得發明,惟以上所述者,僅為本發明之建議實施例而已,當不能以之限定本發明所實施之範圍。即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內,謹請貴審查委員明鑑,並祈惠准,是所至禱。
A...巡邏區
B...巡邏區
C...巡邏區
D...巡邏區
E...巡邏區
F...巡邏區
G...巡邏區
H...巡邏區
I...巡邏區
r...可能路徑
71...將一待巡邏區域劃分為複數巡邏區
72...以圖論將該等巡邏區與該等可能路徑製作為一有向圖
73...以一基於有向圖的演算法自該等可能路徑中確定複數巡邏路徑
74...計算每一該等巡邏路徑的一巡邏疏失指標以及一巡邏品質指標
75...以該等巡邏疏失指標以及該等巡邏品質指標評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑
80...巡邏裝置
82...電子運算單元
84...動力載具
第一圖(a)係為本案的擬巡邏區域示意圖;
第一圖(b)係為對應於擬巡邏區域的巡邏模型示意圖;
第二圖係為本案在SPPM中所採用的巡邏模型示意圖;
第三圖係為SPPM的演算過程示意圖;
第四圖係為巡邏時間(PT)為22分鐘的所有可能路徑示意圖;
第五圖係為巡邏時間與電腦計算時間之間的關係圖;
第六圖係為巡邏時間與可能路徑解數量之間的關係圖;
第七圖係為本發明所提出的巡邏路徑規劃方法的流程圖;以及
第八圖係為本發明之巡邏裝置之示意圖。
71...將一待巡邏區域劃分為複數巡邏區
72...以圖論將該等巡邏區與該等可能路徑製作為一有向圖
73...以一基於有向圖的演算法自該等可能路徑中確定複數巡邏路徑
74...計算每一該等巡邏路徑的一巡邏疏失指標以及一巡邏品質指標
75...以該等巡邏疏失指標以及該等巡邏品質指標評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑

Claims (13)

  1. 一種巡邏路徑規劃方法,其包括步驟:設定一允許空缺時間(AVT);提供複數巡邏路徑,每一條巡邏路徑通過複數巡邏區域,每一個巡邏區域具有一巡邏疏失(PO)值以及一巡邏品質(PQ)值,該PO值係經由計算各該等巡邏區域在該AVT內是否被巡邏而確定,該PQ值係經由計算每一個巡邏區域的一每次巡邏平均時間相對該AVT的比值而確定;以所獲得的該等PO值以及該等PQ值為基礎來計算每一條巡邏路徑的一平均巡邏疏失(APO)值以及一平均巡邏品質(APQ)值;以及根據每一條巡邏路徑所對應的該APO值以及該APQ值來評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑。
  2. 如申請專利範圍第1項所述的該種巡邏路徑規劃方法,更包括步驟:將該等巡邏區與該等巡邏路徑製作為一有向圖。
  3. 如申請專利範圍第1項所述的該種巡邏路徑規劃方法,其中該有向圖係經由一最短路徑排列組合法(SPPM)或一局部時間建議巡邏路徑重複規劃方法(LORM)而製作。
  4. 如申請專利範圍第3項所述的該種巡邏路徑規劃方法,其中該SPPM係利用一迪克斯徹(Dijkstra)演算法執行。
  5. 如申請專利範圍第3項所述的該種巡邏路徑規劃方法,其中該LORM係利用一深度優先搜尋(depth-first search)演算法執行。
  6. 一種用於運算如申請專利範圍第1項所述的該種巡邏路徑 規劃方法的一電子運算單元。
  7. 如申請專利範圍第6項所述的該種電子運算單元係為一桌上型電腦、一工業型電腦、一筆記型電腦或一具有運算處理器的電子裝置。
  8. 一種裝設有如申請專利範圍第6項所述的該種電子運算單元的機器人。
  9. 一種如申請專利範圍第1項所述的該種巡邏路徑規劃方法進行移動的機器人。
  10. 一種巡邏裝置,其包括:一電子運算單元,其用於執行包括以下步驟:設定一允許空缺時間(AVT);提供複數巡邏路徑,每一條巡邏路徑通過複數巡邏區域,每一個巡邏區域具有一巡邏疏失(PO)值以及一巡邏品質(PQ)值,該PO值係經由計算各該等巡邏區域在該AVT內是否被巡邏而確定,該PQ值係經由計算每一個巡邏區域的一每次巡邏平均時間相對該AVT的比值而確定;以所獲得的該等PO值以及該等PQ值為基礎來計算每一條巡邏路徑的一平均巡邏疏失(APO)值以及一平均巡邏品質(APQ)值;以及根據每一條巡邏路徑所對應的該APO值以及該APQ值來評估該等巡邏路徑而自該等巡邏路徑中選出一建議巡邏路徑;以及基於該建議巡邏路徑而產生一路徑指令;以及一動力載具,其接收來自該電子運算單元的該路徑指令而依該建議巡邏路徑移動。
  11. 如申請專利範圍第10項所述的該種巡邏裝置,其中該電子運算單元係為一桌上型電腦、一工業型電腦、一筆記型電腦或一具有運算處理器的電子裝置。
  12. 如申請專利範圍第10項所述的該種巡邏裝置,係為一保全機器人。
  13. 如申請專利範圍第12項所述的該種巡邏裝置,其中該保全機器人係用於執行保全勤務。
TW097146430A 2008-11-28 2008-11-28 巡邏裝置及其巡邏路徑規劃方法 TWI396830B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097146430A TWI396830B (zh) 2008-11-28 2008-11-28 巡邏裝置及其巡邏路徑規劃方法
US12/507,747 US8396620B2 (en) 2008-11-28 2009-07-22 Patrol device and patrol path planning method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097146430A TWI396830B (zh) 2008-11-28 2008-11-28 巡邏裝置及其巡邏路徑規劃方法

Publications (2)

Publication Number Publication Date
TW201020525A TW201020525A (en) 2010-06-01
TWI396830B true TWI396830B (zh) 2013-05-21

Family

ID=42223565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097146430A TWI396830B (zh) 2008-11-28 2008-11-28 巡邏裝置及其巡邏路徑規劃方法

Country Status (2)

Country Link
US (1) US8396620B2 (zh)
TW (1) TWI396830B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079763B2 (en) 2018-08-22 2021-08-03 Pegatron Corporation Trajectory planning method and system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120072020A1 (en) * 2010-09-20 2012-03-22 Electronics And Telecommunications Research Institute Method and apparatus for dynamically reconfiguring robot components
CN102129249B (zh) * 2011-01-10 2013-03-13 中国矿业大学 一种危险源环境下的机器人全局路径规划方法
US8938348B2 (en) * 2011-12-13 2015-01-20 Mitsubishi Electric Research Laboratories, Inc. Method for optimizing run curve of vehicles
US9753441B2 (en) * 2013-05-13 2017-09-05 Massachusetts Institute Of Technology Controlling dynamical systems with bounded probability of failure
US9585056B2 (en) 2014-11-07 2017-02-28 Motorola Solutions, Inc. Method and apparatus for routing traffic within a communication system
TWI571717B (zh) * 2015-08-26 2017-02-21 國立勤益科技大學 無人飛行器大樓監控管理方法及系統
CN106094834A (zh) * 2016-07-19 2016-11-09 芜湖哈特机器人产业技术研究院有限公司 基于已知环境下的移动机器人路径规划方法
US10482400B2 (en) * 2017-01-26 2019-11-19 International Business Machines Corporation Cognitive route planning for unit replenishment in a distributed network
CN106851223B (zh) * 2017-03-24 2019-04-05 深圳供电局有限公司 一种监控效果良好的城市安全监控机器人
CN108921328B (zh) * 2018-06-07 2022-01-07 国网上海市电力公司 一种基于电力巡线网格图密集度的最优路径确定方法
CN109116848B (zh) * 2018-08-29 2021-09-10 广州市君望机器人自动化有限公司 送餐机器人避让方法及装置
US10991060B2 (en) * 2019-03-15 2021-04-27 Motorola Solutions, Inc. Device, system and method for dispatching responders to patrol routes
CN110766179B (zh) * 2019-11-21 2023-02-03 中冶华天工程技术有限公司 一种采用风险优先策略的多站点巡检路径设计方法
CN111459191A (zh) * 2020-03-16 2020-07-28 天津大学 适用于无人艇-无人机联合的海上搜救方法
CN111857121A (zh) * 2020-03-20 2020-10-30 北京国泰蓝盾科技有限公司 基于惯导和激光雷达的巡逻机器人行走避障方法及系统
CN111754083B (zh) * 2020-06-01 2022-06-03 三峡大学 一种换流站直流场智能巡检机器人巡检路径规划方法
CN112650238B (zh) * 2020-12-21 2022-09-30 东南大学 一种利用可见性信息的实时路径规划方法
CN113311841B (zh) * 2021-05-31 2021-12-03 广州科利大数据产业有限公司 一种数据中心机房环境监控系统
CN115113625B (zh) * 2022-07-14 2022-12-09 北京蒙帕信创科技有限公司 一种基于区域划分的机器人机房巡检路径规划方法及装置
CN115086565B (zh) * 2022-08-19 2023-01-17 北京电科智芯科技有限公司 实验室设备影像数据的巡采方法、存储介质和巡采装置
CN116862092B (zh) * 2023-09-05 2024-01-09 山东道万电气有限公司 一种自动巡检装置的自适应路径规划模块及方法
CN117474530A (zh) * 2023-12-26 2024-01-30 北京云庐科技有限公司 基于最短路径搜索算法的燃气管网巡检方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279576A (ja) * 2001-03-21 2002-09-27 Kumohei Otani 最適巡回路探索システム
TW200508826A (en) * 2003-03-14 2005-03-01 Matsushita Electric Works Ltd Autonomous moving robot
US20080009970A1 (en) * 2006-07-05 2008-01-10 Battelle Energy Alliance, Llc Robotic Guarded Motion System and Method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU634341B2 (en) * 1990-01-11 1993-02-18 Kabushiki Kaisha Toshiba Apparatus for supporting inspection of plant
JP2002170197A (ja) * 2000-12-04 2002-06-14 Nec Corp 巡回経路案内方法、システム、装置およびプログラムを記録した記録媒体
JP2007187584A (ja) * 2006-01-13 2007-07-26 Navitime Japan Co Ltd 巡回経路探索機能を有するナビゲーションシステムおよび経路探索サーバならびに巡回経路探索方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279576A (ja) * 2001-03-21 2002-09-27 Kumohei Otani 最適巡回路探索システム
TW200508826A (en) * 2003-03-14 2005-03-01 Matsushita Electric Works Ltd Autonomous moving robot
US20080009970A1 (en) * 2006-07-05 2008-01-10 Battelle Energy Alliance, Llc Robotic Guarded Motion System and Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079763B2 (en) 2018-08-22 2021-08-03 Pegatron Corporation Trajectory planning method and system

Also Published As

Publication number Publication date
US8396620B2 (en) 2013-03-12
TW201020525A (en) 2010-06-01
US20100138096A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
TWI396830B (zh) 巡邏裝置及其巡邏路徑規劃方法
Peng et al. A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks
Lolli et al. FlowSort-GDSS–A novel group multi-criteria decision support system for sorting problems with application to FMEA
Kim et al. Task planning strategy and path similarity analysis for an autonomous excavator
Wang Fuzzy logic based robot path planning in unknown environment
Can An intutionistic approach based on failure mode and effect analysis for prioritizing corrective and preventive strategies
CA2705613A1 (en) System and method for occupancy estimation
CN101657766A (zh) 用于分布式工厂控制系统的在线故障检测和避免框架
Boguslawski et al. A dynamic approach for evacuees' distribution and optimal routing in hazardous environments
CN111461551A (zh) 一种基于深度学习和spc准则的电潜泵故障预警方法
Tan et al. Targeted adversarial attacks against neural network trajectory predictors
Mustafa et al. Probabilistic risk assessment for chance-constrained collision avoidance in uncertain dynamic environments
Mirahadi et al. A real-time path-planning model for building evacuations
Wu et al. An application of space syntax to critical working space analysis: The case of building construction
Nguyen et al. Social constraints-based socially aware navigation framework for mobile service robots
Goller et al. Runtime assessment of the parameter utilisation in adaptive systems
Mokhtari et al. Don't Get Yourself into Trouble! Risk-aware Decision-Making for Autonomous Vehicles
Fazlollahtabar et al. Adapted Markovian model to control reliability assessment in multiple AGV
Althoff Safety assessment for motion planning in uncertain and dynamic environments
Li et al. Building occupancy estimation with people flow modeling in AnyLogic
Liu A novel edge computing based architecture for intelligent tool condition monitoring
JP2017224201A (ja) シミュレーションプログラム、シミュレーション方法およびシミュレーション装置
Müller et al. Adaptive models for safe maintenance planning of CPS
Ordieres-Meré et al. Advanced predictive quality control strategy involving different facilities
Agarwal et al. Computation of cause and effect relationship for acceptance of autonomous mobile robots in industries