TWI396180B - A cellular transistor and an integrated circuit - Google Patents

A cellular transistor and an integrated circuit Download PDF

Info

Publication number
TWI396180B
TWI396180B TW98132225A TW98132225A TWI396180B TW I396180 B TWI396180 B TW I396180B TW 98132225 A TW98132225 A TW 98132225A TW 98132225 A TW98132225 A TW 98132225A TW I396180 B TWI396180 B TW I396180B
Authority
TW
Taiwan
Prior art keywords
layer
well
transistor
nbl
ngrd
Prior art date
Application number
TW98132225A
Other languages
Chinese (zh)
Other versions
TW201013932A (en
Inventor
Jungcheng Kao
Yanjun Li
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/399,276 external-priority patent/US8278712B2/en
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Publication of TW201013932A publication Critical patent/TW201013932A/en
Application granted granted Critical
Publication of TWI396180B publication Critical patent/TWI396180B/en

Links

Description

單元電晶體及積體電路 Unit transistor and integrated circuit

本發明係關於一種功率電晶體,尤其是關於一種單元電晶體、單元電晶體積體電路及顯示系統。 The present invention relates to a power transistor, and more particularly to a unit transistor, a unit cell crystal body circuit, and a display system.

在過去的幾十年間,在需要功率器件的高壓(HV)應用領域,功率金屬氧化物半導體場效電晶體(MOSFET)技術逐漸成為熱門技術。 In the past few decades, power metal oxide semiconductor field effect transistor (MOSFET) technology has become a hot technology in high voltage (HV) applications requiring power devices.

在習知的HV應用中,由於功率MOSFET及其控制器電路的整合技術存在一些障礙,所以通常將作為開關的功率MOSFET置於控制器(例如,反流器控制器)的積體電路的外部,該控制器控制功率MOSFET的導通/關斷(ON/OFF)。例如,將功率MOSFET和控制器整合於同一晶片上時需要較大的晶粒尺寸(die size),從而增加成本。 In conventional HV applications, the power MOSFET as a switch is usually placed outside the integrated circuit of the controller (eg, the inverter controller) due to some obstacles in the integration technique of the power MOSFET and its controller circuit. The controller controls the power MOSFET on/off (ON/OFF). For example, integrating a power MOSFET and controller on the same wafer requires a larger die size, which increases cost.

為解決上述技術問題,本發明提供了一種單元電晶體。該單元電晶體包括N型高摻雜(N+)掩埋層(NBL),與NBL相連的N井,與N井相連的第一N+層,以及透過N井和第一N+層與NBL相連的多個汲極。N井在NBL形成之後形成。第一N+層在N井形成之後形成。 In order to solve the above technical problems, the present invention provides a unit transistor. The unit transistor includes an N-type highly doped (N+) buried layer (NBL), an N-well connected to the NBL, a first N+ layer connected to the N-well, and a multi-connected N-hole and the first N+ layer connected to the NBL. Bungee jumping. The N well is formed after the formation of the NBL. The first N+ layer is formed after the formation of the N well.

本發明還提供了一種積體電路。該積體電路包括包含單元電晶體的開關和與開關相連且控制開關的控制器電路。該單元電晶體包括N型高摻雜(N+)掩埋層(NBL), 與NBL相連的N井,與N井相連的第一N+層,以及透過N井和第一N+層與NBL相連的多個汲極。N井在NBL形成之後形成。第一N+層在N井形成之後形成。 The present invention also provides an integrated circuit. The integrated circuit includes a switch including a unit transistor and a controller circuit connected to the switch and controlling the switch. The unit transistor includes an N-type highly doped (N+) buried layer (NBL), The N well connected to the NBL, the first N+ layer connected to the N well, and the plurality of drains connected to the NBL through the N well and the first N+ layer. The N well is formed after the formation of the NBL. The first N+ layer is formed after the formation of the N well.

本發明還提供了一種顯示系統。該顯示系統包括多個光源和與光源相連的反流器電路。反流器電路將直流電壓轉換成交流電壓對光源供電。反流器電路包括包含單元電晶體的開關和與開關相連且控制開關的控制器電路。該單元電晶體包括N型高摻雜(N+)掩埋層(NBL),與NBL相連的N井,與N井相連的第一N+層,以及透過N井和第一N+層與NBL相連的多個汲極。N井在NBL形成之後形成。第一N+層在N井形成之後形成。 The invention also provides a display system. The display system includes a plurality of light sources and a inverter circuit coupled to the light source. The inverter circuit converts the DC voltage into an AC voltage to power the light source. The inverter circuit includes a switch including a unit transistor and a controller circuit connected to the switch and controlling the switch. The unit transistor includes an N-type highly doped (N+) buried layer (NBL), an N-well connected to the NBL, a first N+ layer connected to the N-well, and a multi-connected N-hole and the first N+ layer connected to the NBL. Bungee jumping. The N well is formed after the formation of the NBL. The first N+ layer is formed after the formation of the N well.

以下結合附圖和具體實施例對本發明的技術方案進行詳細的說明,以使本發明的特性和優點更為明顯。 The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious.

以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解為這並非意指將本發明限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種可選項、可修改項和均等物。為提供對本發明之完整理解,以下詳細說明將提供大量特定細節。然而,本技術領域中具有通常知識者應理解,在不具備這些細節或使用這些細節之均等物的情況下,本發明亦可實施。在其他情況下,習知之方法、程序、元件和電路將不做詳細說明,以凸顯本發明之特徵。 A detailed description of the embodiments of the present invention will be given below. While the invention will be described in conjunction with the embodiments, it should be understood that the invention is not limited to the embodiments. Rather, the invention is intended to cover various alternatives, modifications, and equivalents as defined by the scope of the invention. The detailed description below provides a number of specific details for the purpose of providing a complete understanding of the invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without the details or the equivalents. In other instances, well-known methods, procedures, components, and circuits are not described in detail to highlight the features of the invention.

以下的具體實施模式中的某些部分是以程序、邏輯方塊、處理製程和其他對製造半導體裝置操作的象徵性表示來呈現的。這些描述和表示法是熟悉半導體裝置製造技術領域人士最有效地向該領域內的其他人士傳達他們工作實質的方法。在本申請中,一個程序、邏輯方塊、處理製程、或相似者,被構思成彼此一致之步驟或指令的序列以實現想要的結果。這些步驟是需要對物理量進行物理操作的步驟。然而,應該明白的是,注意這些術語及其相似表述都與適當的物理量相關,並僅僅是運用於這些物理量的便利的標記。除非在之後的討論中特別說明,在本申請的全部內容中,運用“形成(form)”、“執行(perform)”、“生產(produce)”、“沈積(deposit)”、“蝕刻(etch)”、“製造(fabricate)”、“相連/連接(connect)”、“佈植(implant)、“整合(integrate)”或類似術語之處,指的都是半導體裝置製造之動作及製程。 Some portions of the following detailed implementation modes are presented in terms of procedures, logic blocks, processing processes, and other symbolic representations of the operation of the fabricated semiconductor device. These descriptions and representations are a method of familiarizing those skilled in the art of semiconductor device fabrication with the most effective way of communicating the substance of their work to others in the field. In the present application, a program, a logical block, a processing process, or the like, is conceived as a sequence of steps or instructions consistent with each other to achieve a desired result. These steps are steps that require physical manipulation of physical quantities. However, it should be understood that these terms and their similar expressions are to be associated with the appropriate physical quantities and are merely convenient labels for the application. Unless specifically stated in the discussion that follows, throughout the application, the use of "form", "perform", "produce", "deposit", "etch" (etch) "," "fabricate", "connected", "implanted", "integrate" or the like, refers to the operation and process of semiconductor device fabrication.

應理解圖式並未按照比例繪製,且僅描述其中部分結構,以及顯示形成這些結構之各層。 It is understood that the drawings are not to scale, and only a

此外,亦可結合其他的製程及步驟與此處所討論之製程與步驟,亦即,此處所顯示及描述之步驟之前、中間及/或之後可有多種製程及步驟。重要的是,本發明之實施例可結合其他製程與步驟而實施之,並不會對其造成重大影響。一般而言,本發明之各種實施例可取代習知製程的某些部分,而不會對其周邊製程及步驟造成重大影響。 In addition, other processes and steps may be combined with the processes and steps discussed herein, that is, there may be multiple processes and steps before, during, and/or after the steps shown and described herein. Importantly, embodiments of the present invention can be implemented in conjunction with other processes and steps without significant impact. In general, the various embodiments of the present invention may replace portions of the conventional process without significantly affecting its peripheral processes and steps.

圖1所示為根據本發明的一個實施例的積體電路(IC)100的方塊圖。IC 100的應用可包括,但並不限於,需要 一個或多個功率半導體裝置的高壓(HV)電子電路(例如,工作電壓高於5V),例如冷陰極螢光燈反流器、發光二極體照明設備、電池充電器、直流/直流(DC/DC)轉換器、背光反流器、電池充電器控制器等。IC 100可包括開關(例如,電流開關或電壓開關)120和控制開關120的控制器電路110。有利的是,在一實施例中,開關120和控制器電路110整合在單一晶片上。開關120可以是功率金屬氧化物半導體場效電晶體(MOSFET)。 1 is a block diagram of an integrated circuit (IC) 100 in accordance with one embodiment of the present invention. Applications for IC 100 may include, but are not limited to, need High voltage (HV) electronic circuits of one or more power semiconductor devices (eg, operating voltages above 5V), such as cold cathode fluorescent lamp inverters, light emitting diode lighting devices, battery chargers, DC/DC (DC) /DC) converter, backlight inverter, battery charger controller, etc. The IC 100 can include a switch (eg, a current switch or voltage switch) 120 and a controller circuit 110 that controls the switch 120. Advantageously, in one embodiment, switch 120 and controller circuit 110 are integrated on a single wafer. Switch 120 can be a power metal oxide semiconductor field effect transistor (MOSFET).

在一實施例中,包括控制器電路110和開關120的IC 100可以採用金屬氧化物半導體(MOS)技術來製造。在一實施例中,控制器電路110包括一個或多個MOS電晶體。在一實施例中,控制器電路110中的MOS電晶體可以製造成,但並不限於,橫向擴散金屬氧化物半導體(LDMOS)電晶體。開關120可以製造成,但並不限於,雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體。 In an embodiment, the IC 100 including the controller circuit 110 and the switch 120 can be fabricated using metal oxide semiconductor (MOS) technology. In an embodiment, controller circuit 110 includes one or more MOS transistors. In an embodiment, the MOS transistor in the controller circuit 110 can be fabricated, but not limited to, a laterally diffused metal oxide semiconductor (LDMOS) transistor. Switch 120 can be fabricated, but is not limited to, a double diffused drain metal oxide semiconductor (DDDMOS) transistor.

在一實施例中,控制器電路110包括一個或多個LDMOS電晶體。有利的是,在一實施例中,控制器電路110採用LDMOS電晶體。與採用其他類型電晶體(例如DDDMOS電晶體)相比,控制器電路110具有增強的可靠性。由於LDMOS電晶體可工作在高工作電壓下(例如,30-40V),因此採用LDMOS電晶體的控制器電路110具有增強的可靠性。例如,採用LDMOS電晶體的控制器電路110具有足夠的容忍度,抵抗不期望的電氣/電壓壓力狀態,例如熱載流子佈植(HCI)測試。 In an embodiment, controller circuit 110 includes one or more LDMOS transistors. Advantageously, in one embodiment, controller circuit 110 employs an LDMOS transistor. Controller circuit 110 has enhanced reliability as compared to other types of transistors, such as DDDMOS transistors. Since the LDMOS transistor can operate at a high operating voltage (for example, 30-40 V), the controller circuit 110 employing the LDMOS transistor has enhanced reliability. For example, controller circuit 110 employing LDMOS transistors has sufficient tolerance to withstand undesired electrical/voltage stress conditions, such as hot carrier placement (HCI) testing.

開關120採用單元DDDMOS電晶體。與採用其它類 型的電晶體(例如LDMOS電晶體)相比,開關120的尺寸更小,反應速度更快。在一實施例中,開關120(例如,功率MOSFET)的汲極可選擇性地連接到最大工作電壓或較低電壓。更具體地說,當開關(單元DDDMOS電晶體)120導通時,汲極電壓可降到較低電壓,例如0.5伏,而當開關(單元DDDMOS電晶體)120關斷時,汲極電壓可恢復至最大工作電壓(可根據不同的應用而改變)。此外,在一實施例中,在控制器電路110的控制下,開關120的導通時間(例如,傳導(conduction)時間)相對較短。因此,在這樣的操作中將不會誘發HCI效應,並且開關(單元DDDMOS電晶體)120可勝任高壓狀態。 Switch 120 employs a unit DDDMOS transistor. And adopting other classes The size of the switch 120 is smaller and the reaction speed is faster than that of a type of transistor such as an LDMOS transistor. In an embodiment, the drain of switch 120 (eg, a power MOSFET) can be selectively coupled to a maximum operating voltage or a lower voltage. More specifically, when the switch (cell DDDMOS transistor) 120 is turned on, the drain voltage can be lowered to a lower voltage, such as 0.5 volts, and when the switch (cell DDDMOS transistor) 120 is turned off, the drain voltage can be restored. Maximum operating voltage (can vary depending on the application). Moreover, in an embodiment, the conduction time (e.g., conduction time) of the switch 120 is relatively short under the control of the controller circuit 110. Therefore, the HCI effect will not be induced in such an operation, and the switch (cell DDDMOS transistor) 120 can be used in a high voltage state.

據此,IC 100包括開關120和控制器電路110,開關120是單元DDDMOS電晶體,控制器電路110控制開關120且包括一個或多個LDMOS電晶體。有利的是,IC 100具有增強的可靠性和較小的晶片尺寸。在一實施例中,根據圖2所示的製程,可實現LDMOS電晶體和單元DDDMOS電晶體整合在同一晶片上。採用圖2所示的製程,透過在製程中加入N型坡度(N-type grade;NGRD)佈植物可增強單元DDDMOS電晶體的穿透能力。因此,在高壓應用中,包括LDMOS和DDDMOS電晶體的IC 100的可靠性可進一步增強。 Accordingly, IC 100 includes switch 120 and controller circuit 110, switch 120 is a unit DDDMOS transistor, and controller circuit 110 controls switch 120 and includes one or more LDMOS transistors. Advantageously, the IC 100 has enhanced reliability and a smaller wafer size. In one embodiment, according to the process shown in FIG. 2, the LDMOS transistor and the cell DDDMOS transistor can be integrated on the same wafer. Using the process shown in Figure 2, the penetration capability of the unit DDDMOS transistor can be enhanced by adding N-type grade (NGRD) cloth plants to the process. Therefore, the reliability of the IC 100 including LDMOS and DDDMOS transistors can be further enhanced in high voltage applications.

圖2所示為根據本發明的一個實施例的將開關和控制器電路整合在單一晶片上的製程的流程圖200。流程圖200結合表1進行描述。 2 is a flow diagram 200 of a process for integrating a switch and controller circuit on a single wafer in accordance with one embodiment of the present invention. Flowchart 200 is described in conjunction with Table 1.

表1 Table 1

在步驟1中,製作晶圓。隨後,在半導體基底(substrate)上沈積不同的光阻劑,然後透過曝光和顯影製程進行選擇性圖樣化(patterned)。在步驟2中,將第一光阻劑沈積為N型高摻雜掩埋層(N-type heavily doped buried layer;NBL)光罩。在步驟3-4中,在上述圖樣化的NBL掩膜光罩所選的晶圓區域中注入佈植N型高摻雜(N+)雜質離子,並且注入佈植適當深度。在步驟5中,透過P型磊晶(P-epi)沈積來形成P型磊晶(P-epi)層。因此,在步驟201中,根據步驟1-5形成NBL。在一些高壓應用中,NBL的形成是可選的。 In step 1, a wafer is fabricated. Subsequently, different photoresists are deposited on the semiconductor substrate and then selectively patterned through exposure and development processes. In step 2, the first photoresist is deposited as an N-type heavily doped buried layer (NBL) mask. In step 3-4, implanted N-type highly doped (N+) impurity ions are implanted into the selected wafer region of the patterned NBL mask reticle and implanted at a suitable depth. In step 5, a P-type epitaxial (P-epi) layer is formed by P-type epitaxial (P-epi) deposition. Therefore, in step 201, NBL is formed according to steps 1-5. In some high pressure applications, the formation of NBL is optional.

然後,從晶片表面去除第一光阻劑。在步驟6中,將第二光阻劑沈積為N井(N-well)光罩。在步驟7-8中,利用上述圖樣化的N井光罩進行N井的佈植,並且佈植適當深度。類似地,在步驟9進行P井的佈植。因此,在步 驟203中,在步驟6-8中形成N井,且在步驟9中形成P井。 The first photoresist is then removed from the surface of the wafer. In step 6, the second photoresist is deposited as an N-well mask. In step 7-8, the N well shimming is performed using the patterned N well reticle described above, and the appropriate depth is implanted. Similarly, the implantation of the P well is performed at step 9. Therefore, at step In step 203, an N-well is formed in steps 6-8, and a P-well is formed in step 9.

然後,去除第二光阻劑。在步驟10中,將第三光阻劑沈積為光密度(OD)光罩以限定主動區(active areas)。然後,透過氮化矽(SiN)對第三光阻劑進行選擇性地蝕刻,例如在步驟11中進行氮化矽蝕刻。在去除第三光阻劑後,在步驟12中,將第四光阻劑沈積為P-場光罩。在步驟13中佈植P-場後,在步驟14中進行場氧化。因此,在步驟205中,根據步驟10-14形成場氧化層/區域。 Then, the second photoresist is removed. In step 10, a third photoresist is deposited as an optical density (OD) mask to define active areas. Then, the third photoresist is selectively etched through tantalum nitride (SiN), for example, a tantalum nitride etch is performed in step 11. After removing the third photoresist, in step 12, the fourth photoresist is deposited as a P-field mask. After the P-field is implanted in step 13, field oxidation is performed in step 14. Thus, in step 205, a field oxide layer/region is formed in accordance with steps 10-14.

然後,在步驟15中進行閘極氧化。在去除第四光阻劑之後,在步驟16中,將第五光阻劑沈積為HV閘極氧化光罩。在步驟17中進行濕蝕刻。然後,在步驟18中進行第二閘極氧化。因此,在步驟207中,根據步驟15-18形成閘極氧化層。 Then, gate oxidation is performed in step 15. After removing the fourth photoresist, in step 16, the fifth photoresist is deposited as a HV gate oxide mask. Wet etching is performed in step 17. Then, a second gate oxidation is performed in step 18. Therefore, in step 207, a gate oxide layer is formed in accordance with steps 15-18.

然後,去除第五光阻劑。在步驟19中,佈植Vt,用於調整MOS電晶體的臨限(threshold)電壓值。在步驟20中,摻雜多晶矽。在步驟21中進行N+多晶摻雜。在步驟22中將第六光阻劑沈積為多晶光罩,之後,在步驟23中進行多晶矽蝕刻。因此,在步驟209中,根據步驟19-23形成多晶矽。 Then, the fifth photoresist is removed. In step 19, Vt is implanted for adjusting the threshold voltage value of the MOS transistor. In step 20, the polysilicon is doped. N+ polymorphic doping is performed in step 21. The sixth photoresist is deposited as a polycrystalline reticle in step 22, after which polysilicon etch is performed in step 23. Therefore, in step 209, polysilicon is formed according to steps 19-23.

在去除第六光阻劑之後,在步驟24中,將第七光阻劑沈積為N型坡度(NGRD)光罩。在NGRD光罩沈積後,在步驟25中進行NGRD的佈植。在一實施例中,可省略NGRD光阻劑以形成NGRD層。相反,在一實施例中,如果合理地設計裝置(例如,單一晶片100),只進行NGRD 的空佈植也可實現單元DDDMOS電晶體所需的裝置特性,且並不影響其它裝置特性。在一實施例中,NGRD的佈植量大約在1.0E12 atoms/cm2到9.0E13 atoms/cm2之間。NGRD的佈植量可以改變,但需在一定的範圍內,由此使NGRD層的濃度小於在步驟31中形成的N+層的濃度且NGRD層的深度稍大於在步驟31中形成的N+層的深度。因此,在步驟211中,根據步驟24-25形成NGRD區域(例如NGRD層)。 After removing the sixth photoresist, in step 24, the seventh photoresist is deposited as an N-type slope (NGRD) mask. After the NGRD reticle is deposited, the NGRD is implanted in step 25. In an embodiment, the NGRD photoresist can be omitted to form an NGRD layer. In contrast, in one embodiment, if the device is properly designed (eg, a single wafer 100), only NGRD is performed. The empty layout can also achieve the device characteristics required for the unit DDDMOS transistor without affecting other device characteristics. In one embodiment, the NGRD is implanted between about 1.0E12 atoms/cm2 and 9.0E13 atoms/cm2. The amount of NGRD implanted may vary, but needs to be within a certain range, thereby making the concentration of the NGRD layer smaller than the concentration of the N+ layer formed in step 31 and the depth of the NGRD layer slightly larger than the N+ layer formed in step 31. depth. Therefore, in step 211, an NGRD region (e.g., an NGRD layer) is formed according to steps 24-25.

在去除第七光阻劑之後,在步驟26中,將第八光阻劑沈積為N型橫向雙汲極(NLDD)光罩。在步驟27中,利用圖樣化的NLDD光罩進行NLDD的佈植。因此,在步驟213中,根據步驟26-27形成NLDD。 After removing the seventh photoresist, in step 26, the eighth photoresist is deposited as an N-type lateral double drain (NLDD) reticle. In step 27, the implantation of the NLDD is performed using a patterned NLDD mask. Therefore, in step 213, the NLDD is formed according to steps 26-27.

在步驟28中,四乙基原矽酸鹽(TEOS)沈積後,在步驟29中進行隔離物的乾蝕刻。因此,在步驟215中,根據步驟28-29形成隔離層。 In step 28, after deposition of tetraethyl orthosilicate (TEOS), dry etching of the spacer is performed in step 29. Thus, in step 215, an isolation layer is formed in accordance with steps 28-29.

在去除第八光阻劑之後,在步驟30中,將第九光阻劑沈積為N+光罩。隨後,在步驟31中進行N+源極/汲極(S/D)的佈植。同樣,在步驟32中使用P型高摻雜(P+)光罩,並且在步驟33中進行P+源極/汲極(S/D)的佈植。因此,在步驟217中,根據步驟30-33形成源極/汲極。 After removing the eighth photoresist, in step 30, the ninth photoresist is deposited as an N+ mask. Subsequently, implantation of N+ source/drain (S/D) is performed in step 31. Again, a P-type highly doped (P+) reticle is used in step 32, and a P+ source/drain (S/D) implant is performed in step 33. Thus, in step 217, the source/drain is formed in accordance with steps 30-33.

在步驟34中進行硼磷矽玻璃(BPSG)沈積之後,在步驟35中實現硼磷矽玻璃流,以平滑上述各層和/或區域的表面。在步驟36-37中,採用光罩進行蝕刻,以形成不同的接觸(contact)。在步驟38中進行後端金屬化。因此,在步驟219中,根據步驟34-38進行後端製程。 After the borophosphorus bismuth glass (BPSG) deposition is performed in step 34, a borophosphonium glass stream is achieved in step 35 to smooth the surface of each of the layers and/or regions described above. In steps 36-37, etching is performed using a photomask to form different contacts. Backend metallization is performed in step 38. Therefore, in step 219, the backend process is performed in accordance with steps 34-38.

由此,在一實施例中,透過在製程中加入NGRD佈植物,可實現LDMOS電晶體和單元DDDMOS電晶體整合在同一IC100中。在一實施例中,可以在多晶矽形成之後而在隔離層形成之前加入NGRD佈植物。在另一個實施例中,可在NGRD光罩和NGRD佈植程序(步驟211,步驟24-25)之前形成隔離層(步驟215,步驟28-29)。表1所示的製程是用於說明性目的,而不限於此特定製程。 Thus, in one embodiment, the LDMOS transistor and the cell DDDMOS transistor can be integrated into the same IC 100 by adding an NGRD cloth plant to the process. In an embodiment, the NGRD cloth plant may be added after the polycrystalline germanium is formed and before the isolation layer is formed. In another embodiment, an isolation layer can be formed prior to the NGRD reticle and NGRD implantation process (step 211, steps 24-25) (step 215, steps 28-29). The process shown in Table 1 is for illustrative purposes and is not limited to this particular process.

圖3所示為根據本發明的一個實施例的具有橫向擴散(laterally diffused;LD)架構的MOS電晶體,例如LDMOS電晶體300的架構圖。LDMOS電晶體300是根據圖2和/或表1所示的製程製造而成的,並且可作為圖1中的控制器電路110中的HV電晶體。在一實施例中,LDMOS電晶體300可以包括P型井(P井)301、N型井(N井)303、N型高摻雜(N+)層/區311、P型高摻雜(N+)層/區313、N+層/區315以及多晶閘極321。多晶閘極321包含隔離層341。LDMOS電晶體300還可以包括場氧化層/區331、333和335。 3 is a block diagram of an MOS transistor having a laterally diffused (LD) architecture, such as LDMOS transistor 300, in accordance with an embodiment of the present invention. The LDMOS transistor 300 is fabricated in accordance with the process illustrated in FIG. 2 and/or Table 1, and can be used as the HV transistor in the controller circuit 110 of FIG. In an embodiment, the LDMOS transistor 300 may include a P-well (P-well) 301, an N-well (N-well) 303, an N-type highly doped (N+) layer/zone 311, and a P-type high doping (N+). Layer/Zone 313, N+ layer/Zone 315, and polysilicon gate 321 . The poly gate 321 includes an isolation layer 341. The LDMOS transistor 300 can also include field oxide layers/regions 331, 333, and 335.

在一實施例中,在步驟6-8中形成N井303。在步驟9中形成P井301。在步驟10-14中形成場氧化層/區331、333和335。在步驟15-23中形成多晶閘極321。在步驟28-29中形成隔離層341。在步驟31中形成N+層311和315。在步驟32-33中形成P+層313。 In an embodiment, the N-well 303 is formed in steps 6-8. A P-well 301 is formed in step 9. Field oxide layers/regions 331, 333 and 335 are formed in steps 10-14. A poly gate 321 is formed in steps 15-23. The isolation layer 341 is formed in steps 28-29. N+ layers 311 and 315 are formed in step 31. A P+ layer 313 is formed in steps 32-33.

在一實施例中,P井301與N井303毗鄰。N+層311與P+層313毗鄰。N+層311和P+層313在P井301中預定的深度處,以構成源極區。N+層315在N井303中預 定的深度處,以構成汲極區。多晶閘極321在P井301和N井303上,以構成閘極區。有利的是,在一實施例中,LDMOS電晶體300具有增強的可靠性,且能夠對不期望的電氣/電壓壓力狀態具有足夠的容忍度。 In an embodiment, the P-well 301 is adjacent to the N-well 303. The N+ layer 311 is adjacent to the P+ layer 313. The N+ layer 311 and the P+ layer 313 are at a predetermined depth in the P well 301 to constitute a source region. N+ layer 315 is pre-formed in N-well 303 At a given depth to form a bungee zone. The poly gate 321 is on the P well 301 and the N well 303 to form a gate region. Advantageously, in an embodiment, the LDMOS transistor 300 has enhanced reliability and is capable of having sufficient tolerance to undesired electrical/voltage stress conditions.

圖4所示為根據本發明的一個實施例的具有雙擴散汲極(double diffused drain;DDD)架構的MOS電晶體,例如非對稱DDDMOS電晶體400的架構圖。DDDMOS電晶體400是根據圖2和/或表1的製程製造而成的,且可用作圖1中的功率MOSFET(例如電流開關或電壓開關)120。DDDMOS電晶體400具有較高的崩潰電壓(breakdown voltage),因此DDDMOS電晶體400具有高耐壓能力。在一實施例中,DDDMOS電晶體400可包括P井401、N+層/區411、N型坡度(NGRD)層/區413、N+層/區415、P+層/區417和多晶閘極421。多晶閘極421包含隔離層441。DDDMOS電晶體400還包括場氧化層/區431和433。 4 is a block diagram of an MOS transistor having a double diffused drain (DDD) architecture, such as an asymmetric DDDMOS transistor 400, in accordance with an embodiment of the present invention. The DDDMOS transistor 400 is fabricated in accordance with the process of FIG. 2 and/or Table 1, and can be used as the power MOSFET (eg, current switch or voltage switch) 120 of FIG. The DDDMOS transistor 400 has a high breakdown voltage, and thus the DDDMOS transistor 400 has a high withstand voltage capability. In an embodiment, DDDMOS transistor 400 may include P-well 401, N+ layer/region 411, N-type slope (NGRD) layer/region 413, N+ layer/region 415, P+ layer/region 417, and polysilicon gate 421. . The poly gate 421 includes an isolation layer 441. DDDMOS transistor 400 also includes field oxide layers/regions 431 and 433.

圖4中與圖3中標記類似的元件以如圖2中所述之表1/圖2中的步驟形成,在此不再贅述。另外,在步驟24-25中形成NGRD層413。 Elements in FIG. 4 that are similar to those in FIG. 3 are formed by the steps in Table 1/FIG. 2 as described in FIG. 2, and are not described herein again. Additionally, an NGRD layer 413 is formed in steps 24-25.

在一實施例中,NGRD層413在多晶閘極421和N+層415之間。由於NGRD層413包圍N+層415,且N+層415的深度小於NGRD層413的深度,所以可增強DDDMOS電晶體400的擊穿能力。另外,多晶閘極421和N+層415之間的距離可減少電場強度,因此也增強了DDDMOS電晶體400的擊穿能力。因此,可提升DDDMOS電晶體400的崩潰電壓(例如,汲極和源極之間的電壓)。 In an embodiment, the NGRD layer 413 is between the poly gate 421 and the N+ layer 415. Since the NGRD layer 413 surrounds the N+ layer 415, and the depth of the N+ layer 415 is less than the depth of the NGRD layer 413, the breakdown capability of the DDDMOS transistor 400 can be enhanced. In addition, the distance between the poly gate 421 and the N+ layer 415 can reduce the electric field strength and thus also enhance the breakdown capability of the DDDMOS transistor 400. Therefore, the breakdown voltage of the DDDMOS transistor 400 (for example, the voltage between the drain and the source) can be increased.

在一實施例中,N+層411、NGRD層413和P+層417形成在P井401中。在一實施例中,N+層415形成於NGRD層413中,可由磷或砷等形成。NGRD層413包圍N+層415。在一實施例中,N+層415的濃度大於NGRD層413的濃度。N+層411構成DDDMOS電晶體400的源極區。NGRD層413和N+層415構成DDDMOS電晶體400的汲極區。多晶閘極421位於P井401和NGRD層413的預定區域上,以構成DDDMOS電晶體400的閘極區。有利的是,在一實施例中,DDDMOS電晶體400具有較小的尺寸和較快的反應速度。另外,透過在汲極區的N+層415加入NGRD層413,可提升DDDDMOS電晶體400的擊穿崩潰特性。 In an embodiment, the N+ layer 411, the NGRD layer 413, and the P+ layer 417 are formed in the P well 401. In an embodiment, the N+ layer 415 is formed in the NGRD layer 413 and may be formed of phosphorus or arsenic or the like. The NGRD layer 413 surrounds the N+ layer 415. In an embodiment, the concentration of the N+ layer 415 is greater than the concentration of the NGRD layer 413. The N+ layer 411 constitutes the source region of the DDDMOS transistor 400. The NGRD layer 413 and the N+ layer 415 constitute the drain region of the DDDMOS transistor 400. The poly gate 421 is located on a predetermined area of the P well 401 and the NGRD layer 413 to constitute a gate region of the DDDMOS transistor 400. Advantageously, in one embodiment, the DDDMOS transistor 400 has a smaller size and a faster reaction rate. In addition, by incorporating the NGRD layer 413 in the N+ layer 415 of the drain region, the breakdown breakdown characteristics of the DDDDMOS transistor 400 can be improved.

因此,在一實施例中,提供了一種用於整合開關(功率MOSFET)120和控制該開關的控制器電路110的方法。在一實施例中,該方法包括以大約在1.0E12 atoms/cm2到9.0E13 atoms/cm2之間的佈植量形成NGRD層413,以及控制器電路110的多個電晶體和開關120製造在單一晶片上。控制器電路110的多個電晶體和開關120中是高壓電晶體。該方法還包括在形成NGRD層413之後或形成NGRD層413之前形成隔離層411。該方法還包括形成被NGRD層413所包圍的N型高摻雜(N+)層415。在一實施例中,N+層415的深度略小於NGRD層413的深度。在一實施例中,N+層415的濃度大於NGRD層413的濃度。控制器電路110中的多個電晶體可以是,但並不限於,橫向擴散金屬氧化物半導體(LDMOS)電晶體。開關120 可以是,但並不限於,單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體。 Accordingly, in an embodiment, a method for integrating a switch (power MOSFET) 120 and a controller circuit 110 that controls the switch is provided. In one embodiment, the method includes forming the NGRD layer 413 at an implant between about 1.0E12 atoms/cm2 to 9.0E13 atoms/cm2, and the plurality of transistors and switches 120 of the controller circuit 110 are fabricated in a single On the wafer. Among the plurality of transistors and switches 120 of the controller circuit 110 is a high voltage transistor. The method further includes forming the isolation layer 411 after forming the NGRD layer 413 or before forming the NGRD layer 413. The method also includes forming an N-type highly doped (N+) layer 415 surrounded by the NGRD layer 413. In an embodiment, the depth of the N+ layer 415 is slightly less than the depth of the NGRD layer 413. In an embodiment, the concentration of the N+ layer 415 is greater than the concentration of the NGRD layer 413. The plurality of transistors in the controller circuit 110 can be, but are not limited to, laterally diffused metal oxide semiconductor (LDMOS) transistors. Switch 120 It may be, but is not limited to, a unit double diffused drain metal oxide semiconductor (DDDMOS) transistor.

在一實施例中,單一積體電路100包括開關120和控制該開關的控制器電路110,其中開關120包括N型坡度(NGRD)層413。開關120還包括N型高摻雜(N+)層415和包圍N+層415的NGRD層413。NGRD層415和N+層413構成開關120的汲極區。有利的是,根據本發明的一個實施例的製造技術可以將開關120和控制器電路110整合在單一晶片上,從而減小晶片尺寸、增強在高壓應用中的可靠性耐受量並減少成本。 In one embodiment, a single integrated circuit 100 includes a switch 120 and a controller circuit 110 that controls the switch, wherein the switch 120 includes an N-type slope (NGRD) layer 413. The switch 120 also includes an N-type highly doped (N+) layer 415 and an NGRD layer 413 surrounding the N+ layer 415. The NGRD layer 415 and the N+ layer 413 form the drain region of the switch 120. Advantageously, fabrication techniques in accordance with one embodiment of the present invention can integrate switch 120 and controller circuit 110 on a single wafer, thereby reducing wafer size, enhancing reliability tolerance in high voltage applications, and reducing cost.

有利的是,IC 100中的控制器電路110採用多個LDMOS電晶體,開關120採用單元DDDMOS電晶體(例如,DDDMOS電晶體400),所以IC 100具有增強的可靠性和較小的晶片尺寸。在不悖離本發明精神和保護範圍的前提下,控制器電路110和開關120可以採用其它類型的電晶體。IC100還透過在DDDMOS電晶體400中佈植NGRD層413來增強DDDMOS電晶體400的擊穿能力,從而增強其可靠性。 Advantageously, the controller circuit 110 in the IC 100 employs a plurality of LDMOS transistors, and the switch 120 employs a unit DDDMOS transistor (e.g., DDDMOS transistor 400), so the IC 100 has enhanced reliability and a smaller wafer size. Controller circuit 110 and switch 120 may employ other types of transistors without departing from the spirit and scope of the present invention. The IC 100 also enhances the breakdown capability of the DDDMOS transistor 400 by implanting the NGRD layer 413 in the DDDMOS transistor 400, thereby enhancing its reliability.

圖5所示為根據本發明的一個實施例的具有雙擴散汲極(DDD)架構的MOS電晶體,例如非對稱DDDMOS電晶體500的架構圖。DDDMOS電晶體500是根據圖2和/或表1中的製程製造而成的,圖1中的功率MOSFET(例如,電流開關或電壓開關)可採用DDDMOS電晶體500的架構。DDDMOS電晶體500具有較高的擊穿電壓,因此,可增強DDDMOS電晶體500的高壓耐受能力。在 一實施例中,DDDMOS電晶體500包括P型基底501,N+掩埋層(NBL)511,P井521、523和525,N井522和524,P+層/區531,N+層/區532、533、534和535,NGRD層537和多晶閘極541。多晶閘極541包含隔離層561。DDDMOS電晶體500還包括場氧化層/區551、553、555和557。 5 is a block diagram of an MOS transistor having a double diffused drain (DDD) architecture, such as an asymmetric DDDMOS transistor 500, in accordance with an embodiment of the present invention. The DDDMOS transistor 500 is fabricated in accordance with the process of FIG. 2 and/or Table 1, and the power MOSFET (eg, current switch or voltage switch) of FIG. 1 may employ the architecture of the DDDMOS transistor 500. The DDDMOS transistor 500 has a high breakdown voltage and, therefore, can enhance the high voltage withstand capability of the DDDMOS transistor 500. in In one embodiment, DDDMOS transistor 500 includes a P-type substrate 501, an N+ buried layer (NBL) 511, P-wells 521, 523, and 525, N-wells 522 and 524, a P+ layer/region 531, and an N+ layer/region 532, 533. , 534 and 535, NGRD layer 537 and polysilicon gate 541. The poly gate 541 includes an isolation layer 561. DDDMOS transistor 500 also includes field oxide layers/regions 551, 553, 555, and 557.

在一實施例中,NGRD層537形成於多晶閘極541和N+層535之間。由於NGRD層537包圍N+層535,所以增強了DDDMOS電晶體500的擊穿能力。另外,多晶閘極541和N+層535之間的距離可減小電場強度,由此可增強DDDMOS電晶體500的擊穿能力。從而,可提升DDDMOS電晶體500的崩潰電壓(例如,汲極和源極之間的電壓)。 In an embodiment, the NGRD layer 537 is formed between the poly gate 541 and the N+ layer 535. Since the NGRD layer 537 surrounds the N+ layer 535, the breakdown capability of the DDDMOS transistor 500 is enhanced. In addition, the distance between the poly gate 541 and the N+ layer 535 can reduce the electric field strength, thereby enhancing the breakdown capability of the DDDMOS transistor 500. Thereby, the breakdown voltage of the DDDMOS transistor 500 (for example, the voltage between the drain and the source) can be increased.

圖5中與圖3/圖4中標記類似的元件以如圖3/圖4中所述表1/圖2中的步驟形成,在此不再贅述。另外,在表1中的步驟2-5中形成NBL 511。在一實施例中,NBL 511將P井523和525與P型基底501隔離。因此,P井523或525的電勢具有與P型基底501不同的電勢。P+層531、N+層533和535以及NGRD層537形成於P井521中。在一實施例中,N+層535的濃度大於NFRD層537的濃度,且N+層535的深度小於NGRD層的深度。P+層531和N+層533構成DDDMOS電晶體500的源極區。多晶閘極541形成在P井521和NGRD層537的預定區域上,以構成DDDMOS電晶體500的閘極區。N+層535和NGRD層537構成DDDMOS電晶體500的汲極區。有利的是, 在一實施例中,DDDMOS電晶體500具有較小的尺寸和較快的反應速度。另外,透過在汲極區的N+層535中加入NGRD層537,可增強DDDMOS電晶體500的擊穿崩潰能力。 Elements in FIG. 5 that are similar to those in FIG. 3/FIG. 4 are formed in the steps in Table 1/FIG. 2 as described in FIG. 3/FIG. 4, and are not described herein again. In addition, NBL 511 is formed in steps 2-5 in Table 1. In an embodiment, the NBL 511 isolates the P-wells 523 and 525 from the P-type substrate 501. Therefore, the potential of the P well 523 or 525 has a different potential than the P type substrate 501. A P+ layer 531, N+ layers 533 and 535, and an NGRD layer 537 are formed in the P well 521. In one embodiment, the concentration of the N+ layer 535 is greater than the concentration of the NFRD layer 537, and the depth of the N+ layer 535 is less than the depth of the NGRD layer. The P+ layer 531 and the N+ layer 533 constitute the source region of the DDDMOS transistor 500. A poly gate 541 is formed on a predetermined region of the P well 521 and the NGRD layer 537 to constitute a gate region of the DDDMOS transistor 500. The N+ layer 535 and the NGRD layer 537 constitute the drain region of the DDDMOS transistor 500. Advantageously, In an embodiment, the DDDMOS transistor 500 has a smaller size and a faster reaction rate. In addition, by incorporating the NGRD layer 537 into the N+ layer 535 of the drain region, the breakdown breakdown capability of the DDDMOS transistor 500 can be enhanced.

圖6所示為根據本發明的另一個實施例的具有雙擴散汲極(DDD)架構的MOS電晶體,例如非對稱DDDMOS電晶體600的架構圖。圖6中與圖5中標記相同的元件具有類似的功能,在此不再贅述。 6 is a block diagram of an MOS transistor having a double diffused drain (DDD) architecture, such as an asymmetric DDDMOS transistor 600, in accordance with another embodiment of the present invention. Elements in FIG. 6 that are the same as those in FIG. 5 have similar functions and will not be described again.

在一實施例中,DDDMOS電晶體600包括形成於多晶閘極541和NGRD層537之間的場氧化層/區650。場氧化層650與N+層535毗鄰。有利的是,場氧化層650的佈植可進一步提升高壓電晶體(例如,DDDMOS電晶體600)的崩潰電壓,由此,可增強DDDMOS電晶體600的高壓耐受能力。在一實施例中,DDDMOS電晶體600的製程可略不同於表1。NGRD的佈植步驟(例如,步驟24-25)可在場氧化步驟(例如,步驟10-14)之前進行。因此,NGRD層537可形成於場氧化層650之下,而在步驟10-14中可同時形成場氧化層551、553、555、557和650。在一實施例中,NGRD佈植步驟可在場氧化步驟之前或之後進行,但是在NGRD佈植步驟之後可形成獨立的場氧化層,例如場氧化層650(可較厚或較薄),而NGRD層,例如NGRD層537位於獨立的場氧化層650之下。 In an embodiment, DDDMOS transistor 600 includes a field oxide layer/region 650 formed between poly gate 541 and NGRD layer 537. Field oxide layer 650 is adjacent to N+ layer 535. Advantageously, the implantation of the field oxide layer 650 can further enhance the breakdown voltage of the high voltage transistor (eg, DDDMOS transistor 600), thereby enhancing the high voltage withstand capability of the DDDMOS transistor 600. In an embodiment, the process of DDDMOS transistor 600 may be slightly different from Table 1. The implantation step of the NGRD (eg, steps 24-25) can be performed prior to the field oxidation step (eg, steps 10-14). Thus, the NGRD layer 537 can be formed under the field oxide layer 650, while the field oxide layers 551, 553, 555, 557, and 650 can be formed simultaneously in steps 10-14. In one embodiment, the NGRD implantation step can be performed before or after the field oxidation step, but an independent field oxide layer, such as field oxide layer 650 (which can be thicker or thinner), can be formed after the NGRD implantation step. An NGRD layer, such as NGRD layer 537, is located below separate field oxide layer 650.

圖7所示為根據本發明的一個實施例的單元電晶體,例如單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體700的架構的截面圖。圖7中與圖5/圖6標記相同的元 件採用如圖5/圖6所述表1/圖2中類似的步驟形成。 7 is a cross-sectional view of the architecture of a unit cell, such as a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor 700, in accordance with an embodiment of the present invention. The same elements in Figure 7 as those in Figure 5/Figure 6 The parts are formed using steps similar to those in Table 1/Fig. 2 as shown in Fig. 5/Fig.

單元DDDMOS電晶體700可根據表1、圖2和/或圖4-6的製程製造而成。單元DDDMOS電晶體700與DDDMOS電晶體500/600相比,在表1中的步驟15-18中形成多個閘極,且在表1中的步驟30-33中形成多個汲極和源極。 The unit DDDMOS transistor 700 can be fabricated according to the processes of Table 1, Figure 2, and/or Figures 4-6. The unit DDDMOS transistor 700 forms a plurality of gates in steps 15-18 of Table 1 as compared to the DDDMOS transistor 500/600, and forms a plurality of drains and sources in steps 30-33 of Table 1. .

圖7A所示為根據本發明的一個實施例的單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體,例如單元DDDMOS電晶體700的架構的俯視圖。圖7A中與圖7標記相同的元件以如圖7所述表1/圖2中的步驟形成。N井522與N井524相同,兩者在表1中的步驟6-8中形成。類似地,P井523與P井525相同,兩者在表1中的步驟9中形成。 7A is a top plan view of the architecture of a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor, such as cell DDDMOS transistor 700, in accordance with an embodiment of the present invention. The same elements in Fig. 7A as those in Fig. 7 are formed in the steps shown in Table 1/Fig. 2 as shown in Fig. 7. N Well 522 is the same as Well N 524, both formed in steps 6-8 of Table 1. Similarly, P-well 523 is identical to P-well 525, both formed in step 9 of Table 1.

圖8所示為根據本發明的另一個實施例的單元電晶體,例如單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體800的架構圖。圖8結合圖5-7進行描述。單元DDDMOS電晶體800根據表1、圖2和/或圖4-7所示的製程製造而成。 8 is a block diagram of a unit cell, such as a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor 800, in accordance with another embodiment of the present invention. Figure 8 is described in conjunction with Figures 5-7. The unit DDDMOS transistor 800 is fabricated according to the process shown in Table 1, Figure 2, and/or Figures 4-7.

在一實施例中,N井522/524與NBL 511相連,且在形成NBL 511之後形成。N+層532/534與N井522/524相連,且在N井522/524形成之後形成。單元DDDMOS電晶體800可包括在表1中的步驟15-18中形成的多個閘極和在表1中的步驟30-33中形成的多個汲極和源極。 In an embodiment, the N-well 522/524 is coupled to the NBL 511 and formed after the NBL 511 is formed. N+ layer 532/534 is connected to N well 522/524 and formed after formation of N well 522/524. The unit DDDMOS transistor 800 can include a plurality of gates formed in steps 15-18 of Table 1 and a plurality of drains and sources formed in steps 30-33 of Table 1.

在一實施例中,單元DDDMOS電晶體800的所有汲極分別經由N+層532和534與N井522和524相連。因 此,單元DDDMOS電晶體800的所有汲極經由N+層532/534和N井522/524與NBL 511相連。因此,單元DDDMOS電晶體800的所有汲極的電壓值實質等於NBL 511的電壓值。在不悖離本發明精神和保護範圍的前提下,可採用其它方法將單元DDDMOS電晶體800的所有汲極與NBL 511相連。例如,可採用外部連線將單元DDDMOS電晶體800的所有汲極與NBL 511相連。因此,單元DDDMOS電晶體800形成一絕緣功率MOSFET,可作為電流開關。在一實施例中,所有的源極連在一起。在一實施例中,所有的多晶閘極連在一起。當所有的多晶閘極設為邏輯O時,單元DDDMOS電晶體800關斷。當所有的多晶閘極設為邏輯1時,單元DDDMOS電晶體800導通,且電流從汲極流向源極。有利的是,單元DDDMOS電晶體800的崩潰電壓(BV)可增加至較高值(例如,從35伏特增加到46伏特),而導通電阻可保持較低值。單元DDDMOS電晶體800的靜電放電(ESD)特性亦可增強。 In one embodiment, all of the drains of cell DDDMOS transistor 800 are coupled to N-wells 522 and 524 via N+ layers 532 and 534, respectively. because Thus, all of the drains of the unit DDDMOS transistor 800 are connected to the NBL 511 via the N+ layer 532/534 and the N well 522/524. Therefore, the voltage values of all the drains of the unit DDDMOS transistor 800 are substantially equal to the voltage values of the NBL 511. Other methods of connecting all of the drains of the unit DDDMOS transistor 800 to the NBL 511 may be employed without departing from the spirit and scope of the present invention. For example, all of the drains of the unit DDDMOS transistor 800 can be connected to the NBL 511 by external wiring. Thus, cell DDDMOS transistor 800 forms an insulated power MOSFET that acts as a current switch. In an embodiment, all of the sources are connected together. In one embodiment, all of the poly gates are connected together. When all of the poly gates are set to logic 0, the cell DDDMOS transistor 800 is turned off. When all of the poly gates are set to logic 1, the cell DDDMOS transistor 800 is turned on and current flows from the drain to the source. Advantageously, the breakdown voltage (BV) of the cell DDDMOS transistor 800 can be increased to a higher value (eg, from 35 volts to 46 volts) while the on resistance can be kept low. The electrostatic discharge (ESD) characteristics of the unit DDDMOS transistor 800 can also be enhanced.

圖9所示為根據本發明的一個實施例的單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體,例如單元DDDMOS電晶體700的電勢梯度的示例圖。圖9結合圖7和7A進行描述。 9 is a diagram showing an example of a potential gradient of a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor, such as cell DDDMOS transistor 700, in accordance with an embodiment of the present invention. Figure 9 is described in conjunction with Figures 7 and 7A.

在崩潰電壓測試中,當汲極區被偏置時,電勢梯度901-907如圖9所示。在這種情況下,單元DDDMOS電晶體700的所有汲極不與NBL 511相連。在位置911或913,例如閘極911或汲極913的N+底部可能崩潰。 In the breakdown voltage test, when the drain region is biased, the potential gradients 901-907 are as shown in FIG. In this case, all the drains of the cell DDDMOS transistor 700 are not connected to the NBL 511. At position 911 or 913, for example, the N+ bottom of gate 911 or drain 913 may collapse.

圖10所示為根據本發明的一個實施例的單元雙擴散 汲極金屬氧化物半導體(DDDMOS)電晶體,例如單元DDDMOS電晶體800的電勢梯度的示例圖1000。圖10結合圖8進行描述。 Figure 10 shows cell double diffusion in accordance with one embodiment of the present invention. An exemplary diagram 1000 of a potential gradient of a germanium metal oxide semiconductor (DDDMOS) transistor, such as cell DDDMOS transistor 800. Figure 10 is described in conjunction with Figure 8.

汲極區,例如單元DDDMOS電晶體800的所有汲極經由N井522/524和N+層532/534與NBL 511相連。因此,NBL 511具有與所有汲極實質相同的偏置電壓。在崩潰電壓測驗中,當經由單元DDDMOS電晶體800的所有汲極的偏置電壓偏置NBL 511時,電勢梯度1001-1007如圖10所示。NBL 511可空乏(deplete)汲極區下面的P井521。汲極區周圍空乏的P井可產生較高的崩潰電壓。因此,汲極區的偏置電壓越高,汲極區周圍的P井越容易被空乏,其可產生較高的崩潰電壓。 The drain regions, such as all of the drains of the cell DDDMOS transistor 800, are connected to the NBL 511 via an N-well 522/524 and an N+ layer 532/534. Therefore, the NBL 511 has substantially the same bias voltage as all the drains. In the breakdown voltage test, when the NBL 511 is biased via the bias voltages of all the drains of the cell DDDMOS transistor 800, the potential gradients 1001-1007 are as shown in FIG. The NBL 511 can deplete the P-well 521 below the bungee zone. A well P in the bungee area can produce a high breakdown voltage. Therefore, the higher the bias voltage of the drain region, the more easily the P well around the drain region is depleted, which can generate a higher breakdown voltage.

如果NGRD層537的濃度相對較低(例如大約在1.0E12 atoms/cm2至9.0E13 atoms/cm2之間),NGRD層537提供有限的電荷,閘極區的電場相對較低。汲極區的N+層535具有較多的電荷,N+層535下的電場可達到最高值,由此可導致N+層535崩潰。有利的是,當NGRD層537的濃度相對較低時,經由N井522/524偏置NBL 511可有利於提升崩潰電壓。單元DDDMOS電晶體800的靜電放電(ESD)特性亦可增強。 If the concentration of the NGRD layer 537 is relatively low (e.g., between about 1.0E12 atoms/cm2 to 9.0E13 atoms/cm2), the NGRD layer 537 provides a finite charge and the electric field in the gate region is relatively low. The N+ layer 535 of the drain region has more charge, and the electric field under the N+ layer 535 can reach a maximum value, thereby causing the N+ layer 535 to collapse. Advantageously, when the concentration of the NGRD layer 537 is relatively low, biasing the NBL 511 via the N-well 522/524 can facilitate boosting the breakdown voltage. The electrostatic discharge (ESD) characteristics of the unit DDDMOS transistor 800 can also be enhanced.

另外,當單元DDDMOS電晶體800被偏置到崩潰,例如當汲極區的偏置電壓增加到崩潰電壓,單元DDDMOS電晶體800不會損壞。在一實施例中,當崩潰電壓重設為0時,單元DDDMOS電晶體800仍然完好無損。在一實施例中,將單元DDDMOS電晶體800的所有汲極經由N 井522/524和N+層532/534與NBL 511相連,所有汲極的電壓值與NBL 511、N井522/524和N+層532/534的電壓值實質相同。因此,在一實施例中,當過擊(overshot)雜訊電壓在正常工作期間襲擊單元DDDMOS電晶體800的汲極時,N井到P井(例如,N井522/524到P井533/525)可能會首先崩潰,而不是單元DDDMOS電晶體800(例如,汲極區和源極區)本身崩潰,因此避免誘導觸發內建NPN雙極且避免損壞單元DDDMOS電晶體800。當意外的過擊雜訊電壓襲擊單元DDDMOS電晶體800時,N井到P井可作為本徵二極體(body diode)來保護單元DDDMOS電晶體800。 In addition, when the unit DDDMOS transistor 800 is biased to collapse, for example, when the bias voltage of the drain region is increased to a breakdown voltage, the cell DDDMOS transistor 800 is not damaged. In one embodiment, when the breakdown voltage is reset to zero, the cell DDDMOS transistor 800 is still intact. In an embodiment, all of the drains of the unit DDDMOS transistor 800 are via N Well 522/524 and N+ layer 532/534 are connected to NBL 511, and the voltage values of all the drains are substantially the same as those of NBL 511, N well 522/524, and N+ layer 532/534. Thus, in one embodiment, when an overshot noise voltage strikes the drain of the unit DDDMOS transistor 800 during normal operation, the N well to the P well (eg, N well 522/524 to P well 533/) 525) may collapse first, rather than the cell DDDMOS transistor 800 (eg, the drain region and the source region) itself collapsing, thus avoiding the induction of triggering the built-in NPN bipolar and avoiding damage to the cell DDDMOS transistor 800. When an unexpected overshooting noise voltage strikes the unit DDDMOS transistor 800, the N-to-P-well can act as an intrinsic diode to protect the unit DDDMOS transistor 800.

圖11所示為根據本發明的一個實施例的顯示系統1100的方塊圖。在一實施例中,顯示系統1100包括液晶顯示(LCD)面板1110。反流器電路1111可用來將來自電源(未示出)的直流電壓DC轉換成交流電壓AC,對多個光源1113供電,以照亮LCD面板1110。反流器電路1111包括反流器控制器和一個或多個開關。在一實施例中,反流器電路1111可整合在積體電路中,類似於圖1所示的包括控制器電路110和一個或多個開關120的架構。 Figure 11 is a block diagram of a display system 1100 in accordance with one embodiment of the present invention. In an embodiment, display system 1100 includes a liquid crystal display (LCD) panel 1110. The inverter circuit 1111 can be used to convert a DC voltage DC from a power source (not shown) into an AC voltage AC, and power the plurality of light sources 1113 to illuminate the LCD panel 1110. The inverter circuit 1111 includes a inverter controller and one or more switches. In an embodiment, the inverter circuit 1111 can be integrated into an integrated circuit, similar to the architecture including the controller circuit 110 and one or more switches 120 shown in FIG.

在一實施例中,開關120可以採用,但並不限於,上述電晶體中的任意一種電晶體。例如,開關120可採用單元DDDMOS電晶體(例如圖8中的DDDDMOS電晶體800),包括例如圖5中的DDDMOS電晶體500或圖6中的DDDMOS電晶體600的架構。 In an embodiment, the switch 120 can employ, but is not limited to, any one of the above-described transistors. For example, switch 120 can employ a unit DDDMOS transistor (such as DDDDMOS transistor 800 in FIG. 8), including, for example, the architecture of DDDMOS transistor 500 in FIG. 5 or DDDMOS transistor 600 in FIG.

因此,在一實施例中,開關120和控制開關120的控制器電路110可整合在單一IC 100上。採用DDDMOS電晶體400/500/600架構的單元電晶體(例如,單元DDDMOS電晶體800)可作為開關120。單元DDDMOS電晶體800包括NBL 511,與NBL511相連的N井522/524,以及與N井522/524相連的N+層532/534。單元DDDMOS電晶體800還包括多個汲極,多個源極和多個多晶閘極。在一實施例中,單元DDDMOS電晶體800的所有汲極經由N+層532/534和N井522/524與NBL511相連。因此,單元DDDMOS電晶體800可作為絕緣MOS電晶體。有利的是,單元DDDMOS電晶體800的崩潰電壓可增加到較高電壓值,而保持較低的導通電阻。單元DDDMOS電晶體800的靜電放電(ESD)特性亦可增強。控制器電路110和開關120所採用的電晶體的類型並不限於上述的電晶體,在不悖離本發明精神和保護範圍的前提下可以採用其它類型的電晶體。 Thus, in an embodiment, the switch 120 and the controller circuit 110 that controls the switch 120 can be integrated on a single IC 100. A unit transistor (e.g., unit DDDMOS transistor 800) employing a DDDMOS transistor 400/500/600 architecture can be used as the switch 120. The unit DDDMOS transistor 800 includes an NBL 511, an N-well 522/524 connected to the NBL 511, and an N+ layer 532/534 connected to the N-well 522/524. The unit DDDMOS transistor 800 also includes a plurality of drains, a plurality of sources, and a plurality of poly gates. In one embodiment, all of the drains of cell DDDMOS transistor 800 are coupled to NBL 511 via N+ layer 532/534 and N well 522/524. Therefore, the unit DDDMOS transistor 800 can function as an insulating MOS transistor. Advantageously, the breakdown voltage of the cell DDDMOS transistor 800 can be increased to a higher voltage value while maintaining a lower on-resistance. The electrostatic discharge (ESD) characteristics of the unit DDDMOS transistor 800 can also be enhanced. The type of transistor employed by the controller circuit 110 and the switch 120 is not limited to the above-described transistors, and other types of transistors may be employed without departing from the spirit and scope of the present invention.

上文具體實施模式和附圖僅為本發明之常用實施例。顯然,在不悖離後附申請專利範圍所界定的本發明精神和保護範圍的前提下可以有各種增補、修改和替換。本技術領域中具有通常知識者應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、架構、佈局、比例、材料、元素、組件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附申請專利範圍及其合法均等界定,而不限於此前之描述。 The above detailed implementation modes and drawings are merely common embodiments of the present invention. It is apparent that various additions, modifications, and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those of ordinary skill in the art that the present invention can be applied in the form of the form, the structure, the arrangement, the ratio, the materials, the elements, the components, and the like in the actual application and the specific requirements. Changed. Therefore, the embodiments disclosed herein are intended to be illustrative and not limiting, and the scope of the invention is defined by the scope of the appended claims

100‧‧‧積體電路(IC)/晶片 100‧‧‧Integrated Circuit (IC) / Wafer

110‧‧‧控制器電路 110‧‧‧Controller Circuit

120‧‧‧開關 120‧‧‧ switch

200‧‧‧流程圖 200‧‧‧flow chart

201-219‧‧‧步驟 201-219‧‧‧Steps

300‧‧‧橫向擴散電晶體(LDMOS) 300‧‧‧Transverse Diffusion Transistor (LDMOS)

301‧‧‧P型井(P井) 301‧‧‧P type well (P well)

303‧‧‧N型井(N井) 303‧‧‧N type well (N well)

311‧‧‧N型高摻雜(N+)層/區 311‧‧‧N-type highly doped (N+) layer/zone

313‧‧‧P型高摻雜(N+)層/區 313‧‧‧P-type highly doped (N+) layer/zone

315‧‧‧N+層/區 315‧‧‧N+ floor/zone

321‧‧‧多晶閘極 321‧‧‧ polycrystalline gate

341‧‧‧隔離層 341‧‧‧Isolation

331、333、335‧‧‧場氧化層/區 331, 333, 335‧ ‧ field oxide layer / zone

400、500、600‧‧‧雙擴散汲極(DDDMOS)電晶體 400, 500, 600‧ ‧ double diffused drain (DDDMOS) transistors

401‧‧‧P井 401‧‧‧P well

411‧‧‧N+層/區 411‧‧‧N+ floor/zone

413‧‧‧N型坡度(NGRD)層/區 413‧‧‧N grade slope (NGRD) layer/zone

415‧‧‧N+層/區 415‧‧‧N+ floor/zone

417‧‧‧P+層/區 417‧‧‧P+ floor/zone

421‧‧‧多晶閘極 421‧‧‧ polycrystalline gate

441‧‧‧隔離層 441‧‧‧Isolation

431、433‧‧‧場氧化層/區 431, 433‧‧‧ field oxide layer/zone

501‧‧‧P型基底 501‧‧‧P type substrate

511‧‧‧N+掩埋層(NBL) 511‧‧‧N+ buried layer (NBL)

521、523、525‧‧‧P井 521, 523, 525‧‧‧P well

522、524‧‧‧N井 522, 524‧‧‧N well

531‧‧‧P+層/區 531‧‧‧P+ floor/zone

532、533、534、535‧‧‧N+層/區 532, 533, 534, 535‧‧‧N+ layers/districts

537‧‧‧NGRD層 537‧‧‧NGRD layer

541‧‧‧多晶閘極 541‧‧‧ polycrystalline gate

561‧‧‧隔離層 561‧‧‧Isolation

551、553、555、557‧‧‧場氧化層/區 551, 553, 555, 557‧‧‧ field oxide layer/zone

650‧‧‧場氧化層/區 650‧‧‧ field oxide layer/zone

700、800‧‧‧單元雙擴散汲極(DDDMOS)電晶體 700, 800‧‧‧ unit double diffused drain (DDDMOS) transistor

901-907、1001-1007‧‧‧電勢梯度 901-907, 1001-1007‧‧‧ potential gradient

911‧‧‧位置/閘極 911‧‧‧ position/gate

913‧‧‧位置/汲極 913‧‧‧Location/Bungee

1100‧‧‧顯示系統 1100‧‧‧Display system

1110‧‧‧液晶顯示(LCD)面板 1110‧‧‧Liquid Crystal Display (LCD) Panel

1111‧‧‧反流器電路 1111‧‧‧inverter circuit

1113‧‧‧光源 1113‧‧‧Light source

圖1所示為根據本發明的一個實施例的積體電路的方塊圖。 1 is a block diagram of an integrated circuit in accordance with an embodiment of the present invention.

圖2所示為根據本發明的一個實施例的將開關和控制器電路整合在單一晶片上的製程的流程圖。 2 is a flow diagram of a process for integrating a switch and controller circuit on a single wafer in accordance with one embodiment of the present invention.

圖3所示為根據本發明的一個實施例的橫向擴散金屬氧化物半導體(LDMOS)電晶體的架構圖。 3 is a block diagram of a laterally diffused metal oxide semiconductor (LDMOS) transistor in accordance with an embodiment of the present invention.

圖4所示為根據本發明的一個實施例的非對稱雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的架構圖。 4 is a block diagram of an asymmetric double diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with an embodiment of the present invention.

圖5所示為根據本發明的一個實施例的雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的架構圖。 Figure 5 is a block diagram of a dual diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with one embodiment of the present invention.

圖6所示為根據本發明的另一個實施例的雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的架構圖。 6 is a block diagram of a double diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with another embodiment of the present invention.

圖7所示為根據本發明的一個實施例的單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的架構的截面圖。 7 is a cross-sectional view showing the architecture of a unit double diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with an embodiment of the present invention.

圖7A所示為根據本發明的一個實施例的單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的架構的俯視圖。 7A is a top plan view of the architecture of a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with an embodiment of the present invention.

圖8所示為根據本發明的另一個實施例的單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的架構圖。 Figure 8 is a block diagram of a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with another embodiment of the present invention.

圖9所示為根據本發明的一個實施例的單元雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體的電勢梯度的示例圖。 Figure 9 is a diagram showing an example of a potential gradient of a cell double diffused drain metal oxide semiconductor (DDDMOS) transistor in accordance with one embodiment of the present invention.

圖10所示為根據本發明的一個實施例的單元雙擴散 汲極金屬氧化物半導體(DDDMOS)電晶體的電勢梯度的示例圖。 Figure 10 shows cell double diffusion in accordance with one embodiment of the present invention. An example plot of the potential gradient of a drain metal oxide semiconductor (DDDMOS) transistor.

圖11所示為根據本發明的一個實施例的顯示系統的方塊圖。 Figure 11 is a block diagram of a display system in accordance with one embodiment of the present invention.

100‧‧‧積體電路(IC)/晶片 100‧‧‧Integrated Circuit (IC) / Wafer

110‧‧‧控制器電路 110‧‧‧Controller Circuit

120‧‧‧開關 120‧‧‧ switch

Claims (25)

一種單元(cellular)電晶體,其包括:一N型高摻雜(N+)掩埋層(NBL);與該NBL相連的一N井,該N井在該NBL形成之後形成;與該N井相連的一第一N+層,該第一N+層在該N井形成之後形成;一P井,部分該P井被該NBL以及該N井圍繞;多個汲極,與該P井相鄰,其中,每一該汲極包含一第二N+層,且經由該N井和該第一N+層與該NBL相連;以及一源極,在該P井上形成,其中,該源極包含一第三N+層,在每一該汲極之該第二N+層以及該源極之該第三N+層間形成一通道;其中,當該些汲極之一汲極電壓增加時,該單元電晶體之一崩潰電壓增加。 A cellular transistor comprising: an N-type highly doped (N+) buried layer (NBL); an N-well connected to the NBL, the N-well formed after the NBL is formed; connected to the N-well a first N+ layer formed after the formation of the N well; a P well, a portion of the P well surrounded by the NBL and the N well; and a plurality of drains adjacent to the P well, wherein Each of the drains includes a second N+ layer connected to the NBL via the N well and the first N+ layer; and a source formed on the P well, wherein the source includes a third N+ a layer, a channel is formed between the second N+ layer of each of the drains and the third N+ layer of the source; wherein when one of the drain electrodes increases in voltage, one of the unit transistors collapses The voltage increases. 如申請專利範圍第1項之單元電晶體,其中該多個汲極中的每個汲極還包括一N型坡度(NGRD)層,包圍該第二N+層。 The unit cell of claim 1, wherein each of the plurality of drains further comprises an N-type slope (NGRD) layer surrounding the second N+ layer. 如申請專利範圍第2項之單元電晶體,其中該第二N+層的深度小於該NGRD層的深度,且其中該第二N+層的濃度大於該NGRD層的濃度。 The unit cell of claim 2, wherein the depth of the second N+ layer is less than the depth of the NGRD layer, and wherein the concentration of the second N+ layer is greater than the concentration of the NGRD layer. 如申請專利範圍第2項之單元電晶體,其中該NGRD層以大約在1.0E12 atoms/cm2到9.0E13 atoms/cm2之間之佈植量形成。 The unit cell of claim 2, wherein the NGRD layer is formed at a planting amount of between about 1.0E12 atoms/cm2 and 9.0E13 atoms/cm2. 如申請專利範圍第1項之單元電晶體,還包括:多個源極,其中該多個源極連接在一起。 The unit transistor of claim 1, further comprising: a plurality of sources, wherein the plurality of sources are connected together. 如申請專利範圍第1項之單元電晶體,還包括:多個多晶閘極,其中該多個多晶閘極連接在一起。 The unit cell of claim 1, further comprising: a plurality of polysilicon gates, wherein the plurality of polysilicon gates are connected together. 如申請專利範圍第6項之單元電晶體,其中一場氧化層形成於每個多晶閘極和每一該汲極之間。 A cell transistor according to claim 6 wherein a field oxide layer is formed between each of the polysilicon gates and each of the drain electrodes. 如申請專利範圍第7項之單元電晶體,其中,每一該汲極還包含一N型坡度(NGRD)層,包圍該第二N+層,且其中,該場氧化層與該第二N+層相鄰。 The unit cell of claim 7, wherein each of the drains further comprises an N-type slope (NGRD) layer surrounding the second N+ layer, and wherein the field oxide layer and the second N+ layer Adjacent. 如申請專利範圍第1項之單元電晶體,其中,該崩潰電壓包含一介於每一該汲極與該單元電晶體之一源極間之一汲-源崩潰電壓。 The unit cell of claim 1, wherein the breakdown voltage comprises a 汲-source breakdown voltage between each of the drain electrodes and a source of the unit transistor. 如申請專利範圍第1項之單元電晶體,其中,當該汲極電壓增加時,該NBL空乏(deplete)該汲極下面的該P井。 The unit cell of claim 1, wherein when the drain voltage is increased, the NBL depletes the P well below the drain. 如申請專利範圍第1項之單元電晶體,其中,該P井形成於該NBL之上且與該N井相鄰。 The unit cell of claim 1, wherein the P well is formed above the NBL and adjacent to the N well. 一種積體電路,其包括:包含一單元(cellular)電晶體的一開關,其中該單元電晶體包括:一N型高摻雜(N+)掩埋層(NBL);與該NBL相連的一N井,該N井在該NBL形成之後形成;與該N井相連的一第一N+層,該第一N+層在該N井形成之後形成; 一P井,部分該P井被該NBL以及該N井圍繞;多個汲極,與該P井相鄰,其中,每一該汲極包含一第二N+層,經由該N井和該第一N+層與該NBL相連;一源極,在該P井上形成,其中,該源極包含一第三N+層,在每一該汲極之該第二N+層以及該源極之該第三N+層間形成一通道;以及與該開關耦接且控制該開關的一控制器電路;其中,當該些汲極之一汲極電壓增加時,該單元電晶體之一崩潰電壓增加。 An integrated circuit comprising: a switch comprising a cellular transistor, wherein the unit transistor comprises: an N-type highly doped (N+) buried layer (NBL); and an N well connected to the NBL The N well is formed after the NBL is formed; a first N+ layer connected to the N well, the first N+ layer being formed after the N well is formed; a P well, a portion of the P well being surrounded by the NBL and the N well; a plurality of drains adjacent to the P well, wherein each of the drains includes a second N+ layer, via the N well and the first An N+ layer is coupled to the NBL; a source is formed on the P well, wherein the source includes a third N+ layer, the second N+ layer of each of the drains, and the third of the source A channel is formed between the N+ layers; and a controller circuit coupled to the switch and controlling the switch; wherein when one of the drain electrodes increases in voltage, a breakdown voltage of one of the unit transistors increases. 如申請專利範圍第12項之積體電路,其中,該汲極中的每一該汲極包括一N型坡度(NGRD)層,包圍該第二N+層。 The integrated circuit of claim 12, wherein each of the drains includes an N-type slope (NGRD) layer surrounding the second N+ layer. 如申請專利範圍第13項之積體電路,其中該第二N+層的深度小於該NGRD層的深度,且其中該第二N+層的濃度大於該NGRD層的濃度。 The integrated circuit of claim 13, wherein the depth of the second N+ layer is less than the depth of the NGRD layer, and wherein the concentration of the second N+ layer is greater than the concentration of the NGRD layer. 如申請專利範圍第13項之積體電路,其中該NGRD層以大約在1.0E12 atoms/cm2到9.0E13 atoms/cm2之間之佈植量形成。 The integrated circuit of claim 13, wherein the NGRD layer is formed at a planting amount of between about 1.0E12 atoms/cm2 and 9.0E13 atoms/cm2. 如申請專利範圍第12項之積體電路,其中該單元電晶體還包括:多個源極,其中該多個源極連接在一起。 The integrated circuit of claim 12, wherein the unit transistor further comprises: a plurality of sources, wherein the plurality of sources are connected together. 如申請專利範圍第12項之積體電路,其中該單元電晶體還包括:多個多晶閘極,其中該多個多晶閘極連接在一起。 The integrated circuit of claim 12, wherein the unit transistor further comprises: a plurality of polysilicon gates, wherein the plurality of polysilicon gates are connected together. 如申請專利範圍第17項之積體電路,其中一場氧化層形成於每個多晶閘極和每個汲極之間。 For example, in the integrated circuit of claim 17, a field oxide layer is formed between each of the poly gates and each of the drain electrodes. 如申請專利範圍第18項之積體電路,其中,每一該汲極還包含一N型坡度(NGRD)層,包圍該第二N+層,且其中,該場氧化層與該第二N+層相鄰。 The integrated circuit of claim 18, wherein each of the drains further includes an N-type slope (NGRD) layer surrounding the second N+ layer, and wherein the field oxide layer and the second N+ layer Adjacent. 如申請專利範圍第12項之積體電路,其中該單元電晶體包括一雙擴散汲極金屬氧化物半導體(DDDMOS)電晶體。 The integrated circuit of claim 12, wherein the unit transistor comprises a double diffused drain metal oxide semiconductor (DDDMOS) transistor. 如申請專利範圍第12項之積體電路,其中,該控制器電路包括多個橫向擴散金屬氧化物半導體(LDMOS)電晶體。 The integrated circuit of claim 12, wherein the controller circuit comprises a plurality of laterally diffused metal oxide semiconductor (LDMOS) transistors. 如申請專利範圍第12項之積體電路,其中,該崩潰電壓包含一介於每一該汲極與該單元電晶體之一源極間之一汲-源崩潰電壓。 The integrated circuit of claim 12, wherein the breakdown voltage comprises a 汲-source breakdown voltage between each of the drains and a source of the unit transistor. 如申請專利範圍第12項之積體電路,其中,當該汲極電壓增加時,該NBL空乏(deplete)該汲極下面的該P井。 The integrated circuit of claim 12, wherein when the drain voltage is increased, the NBL depletes the P well below the drain. 如申請專利範圍第12項之積體電路,其中,該控制器電路設定該單元電晶體的一多晶閘極至邏輯1,一電流從該些汲極之其中之一流至該單元電晶體的一源極。 The integrated circuit of claim 12, wherein the controller circuit sets a poly gate of the unit transistor to logic 1, and a current flows from one of the drains to the unit transistor. A source. 如申請專利範圍第12項之積體電路,其中,該P井形成於該NBL之上且與該N井相鄰。 The integrated circuit of claim 12, wherein the P well is formed above the NBL and adjacent to the N well.
TW98132225A 2008-09-29 2009-09-24 A cellular transistor and an integrated circuit TWI396180B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19458708P 2008-09-29 2008-09-29
US12/399,276 US8278712B2 (en) 2007-09-25 2009-03-06 Power MOSFET integration

Publications (2)

Publication Number Publication Date
TW201013932A TW201013932A (en) 2010-04-01
TWI396180B true TWI396180B (en) 2013-05-11

Family

ID=42418006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132225A TWI396180B (en) 2008-09-29 2009-09-24 A cellular transistor and an integrated circuit

Country Status (2)

Country Link
CN (1) CN101714553B (en)
TW (1) TWI396180B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569267A (en) * 2010-12-08 2012-07-11 凹凸电子(武汉)有限公司 Integrated circuit, signal transmission method, and method for manufacturing such integrated circuit
CN103035733B (en) * 2012-12-26 2016-10-26 上海华虹宏力半导体制造有限公司 High pressure MOS transistor structure and manufacture method thereof
US9006825B1 (en) * 2013-09-27 2015-04-14 Mediatek Inc. MOS device with isolated drain and method for fabricating the same
CN112713182B (en) * 2020-12-29 2022-06-28 浙大城市学院 Silicon carbide cellular level power integrated chip structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231506A (en) * 1998-04-07 1999-10-13 日本电气株式会社 High-speed and low parasitic capacitance semiconductor device and making method thereof
US20040051133A1 (en) * 2002-09-13 2004-03-18 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device and process for producing the same
US20060011985A1 (en) * 2004-07-15 2006-01-19 Jun Cai Asymmetric hetero-doped high-voltage MOSFET (AH2MOS)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231506A (en) * 1998-04-07 1999-10-13 日本电气株式会社 High-speed and low parasitic capacitance semiconductor device and making method thereof
US20040051133A1 (en) * 2002-09-13 2004-03-18 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device and process for producing the same
US20060011985A1 (en) * 2004-07-15 2006-01-19 Jun Cai Asymmetric hetero-doped high-voltage MOSFET (AH2MOS)

Also Published As

Publication number Publication date
TW201013932A (en) 2010-04-01
CN101714553A (en) 2010-05-26
CN101714553B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5994939B2 (en) Semiconductor device
JP4037472B2 (en) Thin epitaxial RESURF integrated circuit comprising HVp-channel and n-channel devices with sources or drains not connected to ground potential
CN106663699B (en) Method and apparatus for LDMOS device with cascaded RESURF implants and double buffers
KR101228365B1 (en) Lateral double diffused metal oxide semiconductor and method for fabricating the same
US20100171149A1 (en) Symmetrical bi-directional semiconductor esd protection device
KR100985373B1 (en) Drain-extended mosfets with diode clamp
JP2010157636A (en) Semiconductor device and method of manufacturing the same
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
US9171916B1 (en) LDMOS with thick interlayer-dielectric layer
US20100163990A1 (en) Lateral Double Diffused Metal Oxide Semiconductor Device
JP2011040690A (en) Semiconductor device
US8278712B2 (en) Power MOSFET integration
US11322610B2 (en) High voltage lateral junction diode device
TWI396180B (en) A cellular transistor and an integrated circuit
TWI629785B (en) High voltage junction terminating structure of high voltage integrated circuit
US8247870B2 (en) Power MOSFET integration
JP4304779B2 (en) Semiconductor device and manufacturing method thereof
US20120187484A1 (en) Lateral double diffused metal oxide semiconductor device
JP5964091B2 (en) Semiconductor device and manufacturing method thereof
CN111279488A (en) High voltage drain extended MOS transistor
TWI805182B (en) Diode structure and semiconductor device
TWI793660B (en) Semiconductor device and manufacturing method thereof
KR100731092B1 (en) High voltage semiconductor device and method of manufacturing the same
JP2005056915A (en) Semiconductor device and its fabricating process
KR20100115027A (en) High voltage semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees