TWI395338B - Thin film solar cells having a paticular back electrode and manufacturing method thereof - Google Patents

Thin film solar cells having a paticular back electrode and manufacturing method thereof Download PDF

Info

Publication number
TWI395338B
TWI395338B TW098143036A TW98143036A TWI395338B TW I395338 B TWI395338 B TW I395338B TW 098143036 A TW098143036 A TW 098143036A TW 98143036 A TW98143036 A TW 98143036A TW I395338 B TWI395338 B TW I395338B
Authority
TW
Taiwan
Prior art keywords
back electrode
layer
thin film
solar cell
film solar
Prior art date
Application number
TW098143036A
Other languages
Chinese (zh)
Other versions
TW201123473A (en
Inventor
Chien Nan Lin
Hung Tse Huang
Yu Hung Tai
Yu Che Tsai
Cheng Ying Yu
Original Assignee
Nexpower Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexpower Technology Corp filed Critical Nexpower Technology Corp
Priority to TW098143036A priority Critical patent/TWI395338B/en
Publication of TW201123473A publication Critical patent/TW201123473A/en
Application granted granted Critical
Publication of TWI395338B publication Critical patent/TWI395338B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

具有特殊背電極結構之薄膜太陽能電池及其製作方法 Thin film solar cell with special back electrode structure and manufacturing method thereof

本發明係有關於一種具有特殊背電極結構之薄膜太陽能電池及其製作方法,其中此薄膜太陽能電池之背電極層係依序導入第一金屬層、中介層及第二金屬層而形成者。 The invention relates to a thin film solar cell having a special back electrode structure and a method for fabricating the same, wherein the back electrode layer of the thin film solar cell is formed by sequentially introducing a first metal layer, an interposer and a second metal layer.

20世紀70年代,由美國貝爾實驗室首先研製出的矽太陽能電池逐步發展起來。隨著太陽電池之發展,如今太陽能電池有多種類型,典型的有晶體矽太陽能電池、多晶矽太陽能電池、非晶矽太陽能電池、化合物太陽能電池、染料敏化太陽能電池等。太陽能電池主要是利用光伏效應(photovoltaic effect),將光能吸收後直接轉換成電能的一種P/N接面(p-n junction)的半導體結構。近年來,為因應太陽能電池薄型化的要求,薄膜疊層太陽能電池成為現今之發展趨勢。薄膜疊層太陽電池最大優點就是生產成本較低,然其效率和穩定度的問題也尚待改善。 In the 1970s, the first solar cells developed by Bell Labs in the United States gradually developed. With the development of solar cells, there are many types of solar cells today, typically crystalline germanium solar cells, polycrystalline germanium solar cells, amorphous germanium solar cells, compound solar cells, dye-sensitized solar cells, and the like. The solar cell is mainly a P/N junction semiconductor structure that utilizes a photovoltaic effect to directly convert light energy into electrical energy. In recent years, thin film laminated solar cells have become the trend of development in response to the demand for thinning of solar cells. The biggest advantage of thin film laminated solar cells is that the production cost is low, but the problems of efficiency and stability have yet to be improved.

請參考第1圖,係為一種習知之薄膜太陽能電池結構,而此習知之薄膜太陽能電池10包含依序堆疊形成的基板11、前電極層12、光吸收層13與背電極層14,其中此背電極層14之組成進一步包含依序堆疊形成的透明導電層(GZO)141、銀(Ag)金屬層142及鈦(Ti)金屬薄膜145。然,在上述習知之背電極層14之材質中,相較於透明導電物GZO與金屬Ti的膜厚比例,銀的膜厚佔最高,也就是GZO與Ti的膜厚分別是800埃(Å)與150埃(Å),而銀的膜厚必須在2100埃(Å)才可維持背電極層較高之反射率。由於背電極層14導入銀的膜厚較高,使得整個薄膜太陽能電池製作成本也相對提高,不利大量生產,實有必要加以改良。 Please refer to FIG. 1 , which is a conventional thin film solar cell structure, and the conventional thin film solar cell 10 includes a substrate 11 , a front electrode layer 12 , a light absorbing layer 13 and a back electrode layer 14 which are sequentially stacked, wherein The composition of the back electrode layer 14 further includes a transparent conductive layer (GZO) 141, a silver (Ag) metal layer 142, and a titanium (Ti) metal film 145 which are sequentially stacked. However, in the material of the above-mentioned conventional back electrode layer 14, the film thickness of silver is the highest compared with the film thickness ratio of the transparent conductive material GZO and the metal Ti, that is, the film thickness of GZO and Ti is 800 Å, respectively. ) with 150 Å (Å), and the film thickness of silver must be 2100 Å (Å) to maintain a higher reflectivity of the back electrode layer. Since the film thickness of the silver introduced into the back electrode layer 14 is relatively high, the manufacturing cost of the entire thin film solar cell is relatively increased, which is unfavorable for mass production, and it is necessary to improve it.

為了解決上述先前技術不盡理想之處,本發明提供一種具有特殊背電 極結構之薄膜太陽能電池,包含依序堆疊形成的基板、前電極層、光吸收層與背電極層,其中此背電極層進一步包含依序堆疊形成的透明導電層、第一金屬層、中介層、第二金屬層以及金屬薄膜,其中此中介層具有大於1微歐姆-公分(μΩ-cm)之電阻係數值,以提供第一金屬層與第二金屬層之間的導電障壁。 In order to solve the above-mentioned prior art, the present invention provides a special back-up. The thin-film solar cell of the pole structure comprises a substrate, a front electrode layer, a light absorbing layer and a back electrode layer which are sequentially stacked, wherein the back electrode layer further comprises a transparent conductive layer, a first metal layer and an interposer which are sequentially formed by stacking And a second metal layer and a metal film, wherein the interposer has a resistivity value greater than 1 micro ohm-cm (μΩ-cm) to provide a conductive barrier between the first metal layer and the second metal layer.

因此,本發明之主要目的在於提供一種有特殊背電極結構之薄膜太陽能電池,其中此第一金屬層、中介層及第二金屬層所形成之結構可提供背電極層之光反射率達到98%以上。 Therefore, the main object of the present invention is to provide a thin film solar cell having a special back electrode structure, wherein the first metal layer, the interposer layer and the second metal layer are formed to provide a light reflectance of the back electrode layer of 98%. the above.

本發明之另一目的在於提供一種有特殊背電極結構之薄膜太陽能電池,其中此第一金屬層、中介層及第二金屬層所形成之結構可大幅降低背電極層之導入成本。 Another object of the present invention is to provide a thin film solar cell having a special back electrode structure, wherein the structure formed by the first metal layer, the interposer layer and the second metal layer can greatly reduce the introduction cost of the back electrode layer.

此外,本發明進一步提供一種具有特殊背電極結構之薄膜太陽能電池之製作方法,包含以下步驟:提供一基板;形成前電極層在此基板;形成光吸收層在上述前電極層;以及形成背電極層在此光吸收層,其中背電極層依序導入有透明導電層、第一金屬層、中介層、第二金屬層及金屬薄膜,其中中介層具有一電阻係數值大於1微歐姆-公分(μΩ-cm),以提供第一金屬層與第二金屬層之間的導電障壁。 In addition, the present invention further provides a method for fabricating a thin film solar cell having a special back electrode structure, comprising the steps of: providing a substrate; forming a front electrode layer on the substrate; forming a light absorbing layer on the front electrode layer; and forming a back electrode The layer is in the light absorbing layer, wherein the back electrode layer is sequentially introduced with a transparent conductive layer, a first metal layer, an interposer, a second metal layer and a metal film, wherein the interposer has a resistivity value greater than 1 micro ohm-cm ( μΩ-cm) to provide a conductive barrier between the first metal layer and the second metal layer.

因此,本發明之主要目的在於提供一種具有特殊背電極結構之薄膜太陽能電池之製作方法,其中依序導入之第一金屬層、中介層及第二金屬層而形成之背電極層結構可使得光反射率達到98%以上。 Therefore, the main object of the present invention is to provide a method for fabricating a thin film solar cell having a special back electrode structure, wherein the back electrode layer structure formed by sequentially introducing the first metal layer, the interposer layer and the second metal layer can make the light The reflectance is over 98%.

本發明之另一目的在於提供一種具有特殊背電極結構之薄膜太陽能電池之製作方法,其中依序導入第一金屬層、中介層及第二金屬層而形成之背電極層結構可大幅降低背電極層之導入成本。 Another object of the present invention is to provide a method for fabricating a thin film solar cell having a special back electrode structure, wherein the back electrode layer structure formed by sequentially introducing the first metal layer, the interposer layer and the second metal layer can greatly reduce the back electrode The import cost of the layer.

由於本發明係揭露一種具有特殊背電極結構之薄膜太陽能電池及其製作方法,其中所利用太陽能發電原理與基本功能,已為相關技術領域具有 通常知識者所能明瞭,故以下文中之說明,不再完整描述。同時,以下文中所對照之圖式,係表達與本發明特徵有關之結構示意,並未亦不需要依據實際尺寸完整繪製,盍先敘明。 The present invention discloses a thin film solar cell having a special back electrode structure and a manufacturing method thereof, wherein the principle and basic functions of the solar power generation utilized have been Usually the knowledge can be understood, so the description below will not be fully described. At the same time, the drawings referred to in the following texts express the structural schematics related to the features of the present invention, and need not be completely drawn according to the actual size, which is first described.

首先請參考第2圖,係根據本發明所提供之較佳實施例,為一種薄膜太陽能電池結構,此薄膜太陽能電池20主要包含有依序堆疊形成的基板21、前電極層22、光吸收層23與背電極層24,其中此背電極層24進一步包含依序堆疊形成的透明導電層241、第一金屬層242、中介層243、第二金屬層244以及金屬薄膜245,其中此中介層243具有大於1微歐姆-公分(μΩ-cm)之電阻係數值,以提供第一金屬層242與第二金屬層244之間的導電障壁。 First, please refer to FIG. 2, which is a thin film solar cell structure mainly comprising a substrate 21, a front electrode layer 22 and a light absorbing layer which are sequentially stacked according to a preferred embodiment of the present invention. And the back electrode layer 24, wherein the back electrode layer 24 further comprises a transparent conductive layer 241, a first metal layer 242, an interposer 243, a second metal layer 244 and a metal film 245 formed by sequentially stacking, wherein the interposer 243 A resistivity value greater than 1 micro ohm-cm (μΩ-cm) is provided to provide a conductive barrier between the first metal layer 242 and the second metal layer 244.

在上述實施例中,金屬薄膜245可以是鈦(Ti)、鎳釩合金(Ni-V)、鎳鈦合金(Ni-Ti)及鎳鎘合金(Ni-Cd)等其中之一,在本實施例中係使用Ti且此金屬薄膜Ti具有厚度150埃(Å)。前電極層22係為一透明導電氧化物(TCO)。光吸收層23係為一非晶矽(a-Si)。背電極層24之透明導電層241係為鎵鋅氧化物(GZO),而此透明導電層GZO具有厚度800埃(Å)。背電極層24之第一金屬層242係為銀(Ag),而此第一金屬層Ag具有厚度300埃(Å)到2100埃(Å)之間。背電極層24之中介層243係為透明導電氧化物(TCO)或金屬,在本實施例中係使用TCO且此中介層TCO具有厚度100埃(Å)。背電極層24之第二金屬層244可以是鋁(Al)、銅(Cu)及金(Au)等其中之一,在本實施例中係使用Al且此第二金屬層Al具有厚度300埃(Å)到2100埃(Å)之間。 In the above embodiment, the metal thin film 245 may be one of titanium (Ti), nickel vanadium alloy (Ni-V), nickel titanium alloy (Ni-Ti), and nickel cadmium alloy (Ni-Cd), etc., in this embodiment. In the example, Ti is used and the metal thin film Ti has a thickness of 150 Å. The front electrode layer 22 is a transparent conductive oxide (TCO). The light absorbing layer 23 is an amorphous germanium (a-Si). The transparent conductive layer 241 of the back electrode layer 24 is gallium zinc oxide (GZO), and the transparent conductive layer GZO has a thickness of 800 Å. The first metal layer 242 of the back electrode layer 24 is silver (Ag), and the first metal layer Ag has a thickness of between 300 Å and 2100 Å. The interposer layer 243 of the back electrode layer 24 is a transparent conductive oxide (TCO) or a metal. In the present embodiment, a TCO is used and the interposer TCO has a thickness of 100 Å. The second metal layer 244 of the back electrode layer 24 may be one of aluminum (Al), copper (Cu), and gold (Au). In the present embodiment, Al is used and the second metal layer A1 has a thickness of 300 Å. (Å) to between 2100 angstroms (Å).

在上述實施例中,可藉由調整中介層TCO的片電阻以形成所需之導電障壁,進而提昇背電極層之光反射率達到98%以上。關於導電障壁之實驗數據,請參考如下之表1。 In the above embodiment, the sheet resistance of the interposer TCO can be adjusted to form a desired conductive barrier, thereby improving the light reflectance of the back electrode layer to 98% or more. For experimental data on conductive barriers, please refer to Table 1 below.

從上述各膜層組合測試表,可發現傳統薄膜太陽能電池為了維持背電極層較高之反射率,必須將背電極層的銀膜維持在2100 Å(如表1所示之標準值)的厚度,導致整個薄膜太陽能電池製作成本也相對提高,不利大量生產。但根據本發明之特殊背電極結構,也就是以實驗組數5、6、7之規格為例,銀膜的厚度只要300Å(大約是習知銀膜標準值的七分之一),再以透明導電層之GZO膜厚100Å搭配第二金屬層之鋁膜厚1000Å、1500Å或2100Å,控制這三種堆疊之材質Ag/GZO/Al的膜厚比例就可以使背電極層之光反射率達到98%以上。換言之,使用成本較低廉的材質GZO與鋁,且控制GZO與鋁之膜厚在某一範圍之內,就可大幅降低使用銀膜的用量(只需要300Å),卻可達到習知完全使用純銀之高成本才能達成的高反射率。 From the combination of the above various film layers, it can be found that in order to maintain a high reflectance of the back electrode layer, the conventional thin film solar cell must maintain the thickness of the silver film of the back electrode layer at 2100 Å (as shown in Table 1). As a result, the manufacturing cost of the entire thin film solar cell is relatively increased, which is disadvantageous for mass production. However, according to the special back electrode structure of the present invention, the specifications of the experimental group number 5, 6, and 7 are taken as an example, and the thickness of the silver film is only 300 Å (about one-seventh of the standard value of the conventional silver film), and then transparent conductive The GZO film thickness of the layer is 100Å and the thickness of the aluminum film of the second metal layer is 1000Å, 1500Å or 2100Å. By controlling the film thickness ratio of the three stacked materials Ag/GZO/Al, the light reflectance of the back electrode layer can reach 98% or more. . In other words, using the lower cost material GZO and aluminum, and controlling the film thickness of GZO and aluminum within a certain range, the amount of silver film used can be greatly reduced (only 300Å), but the conventional use of pure silver can be achieved. The high cost can be achieved with high cost.

接著,請分別參考第3A、3B、3C圖,再從反射率與光譜之關係,來說明使用不同膜厚之純鋁、純銀及本發明之特殊堆疊結構Ag/GZO/Al對照標準膜厚2100 Å之純銀,隨著不同之光譜而分別對薄膜太陽能電池呈現反射率之變化。其中X軸為光譜波長,單位是奈米(nm),Y軸為反射率,單位是百分比(%)。 Next, please refer to the 3A, 3B, and 3C diagrams, and then explain the relationship between the reflectance and the spectrum, and use the pure aluminum, pure silver and the special stack structure Ag/GZO/Al standard film thickness 2100 of the present invention. Å sterling silver exhibits a change in reflectivity for thin film solar cells with different spectra. The X axis is the spectral wavelength, the unit is nanometer (nm), the Y axis is the reflectance, and the unit is percentage (%).

在第3A圖中,在背電極層只導入不同膜厚之純鋁與對照導入標準膜厚2100 Å之純銀之間的效益比較,其中左手邊的關係圖係用以表示烘烤前之薄膜太陽能發電單元(unit cell),而右手邊的關係圖係用以表示烘烤後之薄膜太陽能發電模組(module)。從第3A圖可發現,僅導入純鋁的背電極層之反射率較導入純銀差,也就是導入純鋁的膜厚從500Å變化到2100Å,背電極層對大部份光譜波長之反射率相較於導入標準膜厚2100 Å之純銀而言,反射率普遍不佳,由於背電極層之反射率不佳,因此對薄膜太陽能電池之光電轉換效益有負面影響。因此純鋁的無法直接取代純銀在背電極層反射率之提昇。 In Fig. 3A, the benefit comparison between pure aluminum with different film thicknesses and pure silver with a standard film thickness of 2100 Å is introduced in the back electrode layer, wherein the left-hand relationship diagram is used to indicate the thin film solar energy before baking. The unit cell and the right-hand diagram are used to represent the baked thin film solar module. It can be found from Fig. 3A that the reflectivity of the back electrode layer only with pure aluminum is inferior to the introduction of pure silver, that is, the film thickness of the introduced pure aluminum changes from 500 Å to 2100 Å, and the reflectance of the back electrode layer to most spectral wavelengths. Compared with the introduction of standard silver film with a thickness of 2100 Å, the reflectivity is generally poor, and the reflectivity of the back electrode layer is not good, so the photoelectric conversion efficiency of the thin film solar cell is negatively affected. Therefore, pure aluminum cannot directly replace the increase in the reflectivity of pure silver in the back electrode layer.

在第3B圖中,在背電極層只導入不同膜厚之純銀與對照導入標準膜厚2100 Å之純銀之間的效益比較,其中左手邊的關係圖係用以表示烘烤前之薄膜太陽能發電單元(unit cell),而右手邊的關係圖係用以表示烘烤後之薄膜太陽能發電模組(module)。從第3B圖可發現,導入純銀的背電極層之反射率將隨著銀膜的厚度遞減而呈現較差趨勢,特別是當導入純銀的膜厚低於900 Å以下時,相較於導入標準膜厚2100 Å之純銀而言,背電極層之光反射率遞減幅度隨著光譜波長之遞減而呈現大幅惡化。因此若需維持背電極層之反射率在可接受之效益時,純銀的膜厚必須至少高於900 Å。 In Figure 3B, the benefit of comparing only the pure silver with different film thicknesses into the standard silver film with a thickness of 2100 Å is introduced in the back electrode layer. The left-hand relationship diagram is used to indicate the thin film solar power before baking. The unit cell and the right-hand relationship diagram are used to represent the baked thin film solar power module. It can be seen from Fig. 3B that the reflectance of the back electrode layer introduced with pure silver will be inferior with the thickness of the silver film, especially when the film thickness of the introduced pure silver is less than 900 Å, compared with the introduction of the standard film. In the case of 2100 Å thick silver, the decrease in the light reflectance of the back electrode layer is greatly degraded as the wavelength of the spectrum decreases. Therefore, if it is necessary to maintain the reflectivity of the back electrode layer with acceptable benefits, the film thickness of pure silver must be at least higher than 900 Å.

在第3C圖中,在背電極層導入本發明之特殊堆疊結構Ag/GZO/Al對照導入標準膜厚2100 Å之純銀之間的效益比較,其中左手邊的關係圖係用以表示烘烤前之薄膜太陽能發電單元(unit cell),而右手邊的關係圖係用以表示烘烤後之薄膜太陽能發電模組(module)。從第3C圖可發現,導入特殊堆疊結構Ag/GZO/Al的背電極層之反射率完全不亞於導入標準膜厚2100 Å之純銀,也就是這樣的堆疊結構Ag/GZO/Al(膜厚分別是300 Å、100 Å、1000 Å~2100Å)對大部份光譜波長之反射率效果極佳,所以這樣的堆疊結構Ag/GZO/Al對薄膜太陽能電池之光電轉換效益有正面影響。因此本發明之特殊堆疊結構Ag/GZO/Al可直接取代標準膜厚2100 Å之純銀在背電極層反 射率之效果,進而降低純銀使用率達66%,故可有效降低背電極層之導入成本。除了製程成本可有效降低之外,從整個薄膜太陽能電池之發電功率而言,相較於使用標準膜厚2100 Å之純銀在背電極層,用在背電極層之本發明特殊堆疊結構Ag/GZO/Al更可進一步使得整個薄膜太陽能電池之發電功率大致相同於使用標準膜厚2100 Å純銀之薄膜太陽能電池之發電功率。 In Figure 3C, a comparison of the benefits of introducing a special stack structure Ag/GZO/Al control of the present invention into a standard film thickness of 2100 Å of pure silver in the back electrode layer, wherein the left hand side relationship diagram is used to indicate before baking The thin film solar cell unit cell, and the right hand side relationship diagram is used to indicate the baked thin film solar power module. It can be found from Fig. 3C that the reflectivity of the back electrode layer introduced into the special stack structure Ag/GZO/Al is completely inferior to that of the standard silver film of 2100 Å, which is the stack structure Ag/GZO/Al (film thickness). 300 Å, 100 Å, 1000 Å to 2100 Å, respectively, have excellent reflectivity for most spectral wavelengths, so such a stacked structure Ag/GZO/Al has a positive effect on the photoelectric conversion efficiency of thin film solar cells. Therefore, the special stack structure Ag/GZO/Al of the present invention can directly replace the standard film thickness of 2100 Å of pure silver in the back electrode layer. The effect of the rate of incidence, which in turn reduces the use rate of pure silver by 66%, can effectively reduce the introduction cost of the back electrode layer. In addition to the reduction in process cost, from the power generation of the entire thin film solar cell, the special stack structure Ag/GZO of the present invention used in the back electrode layer is compared to the use of a standard film thickness of 2100 Å of pure silver in the back electrode layer. /Al further enables the power generation of the entire thin film solar cell to be approximately the same as that of a thin film solar cell using a standard film thickness of 2100 Å sterling silver.

此外,本發明提供另一較佳實施例,係為具有特殊背電極結構之薄膜太陽能電池之製作方法,包含以下步驟: In addition, the present invention provides another preferred embodiment, which is a method for fabricating a thin film solar cell having a special back electrode structure, comprising the following steps:

(1)提供基板21。 (1) A substrate 21 is provided.

(2)形成前電極層22在上述基板21。 (2) The front electrode layer 22 is formed on the above substrate 21.

(3)形成光吸收層23在上述前電極層22,以及(4)形成背電極層24在上述光吸收層23,其中背電極層24依序導入有透明導電層241、第一金屬層242、中介層243、第二金屬層244及金屬薄膜245,其中中介層243具有一電阻係數值大於1微歐姆-公分(μΩ-cm),以提供第一金屬層242與第二金屬層244之間的導電障壁。 (3) forming the light absorbing layer 23 on the front electrode layer 22, and (4) forming the back electrode layer 24 on the light absorbing layer 23, wherein the back electrode layer 24 is sequentially introduced with the transparent conductive layer 241 and the first metal layer 242. The interposer 243, the second metal layer 244, and the metal film 245, wherein the interposer 243 has a resistivity value greater than 1 micro ohm-cm (μΩ-cm) to provide the first metal layer 242 and the second metal layer 244. Conductive barrier between.

在上述方法實施例中,金屬薄膜245可以是鈦(Ti)、鎳釩合金(Ni-V)、鎳鈦合金(Ni-Ti)及鎳鎘合金(Ni-Cd)等其中之一,在本實施例中係使用Ti且此金屬薄膜Ti具有厚度150埃(Å)。前電極層22係為一透明導電氧化物(TCO)。光吸收層23係為一非晶矽(a-Si)。背電極層24之透明導電層241係為鎵鋅氧化物(GZO),而此透明導電層GZO具有厚度800埃(Å)。背電極層24之第一金屬層242係為銀(Ag),而此第一金屬層Ag具有厚度300埃(Å)到2100埃(Å)之間。背電極層24之中介層243係為透明導電氧化物(TCO)或金屬,在本實施例中係使用TCO且此中介層TCO具有厚度100埃(Å)。背電極層24之第二金屬層244可以是鋁(Al)、銅(Cu)及金(Au)等其中之一,在本實施例中係使用Al且此第二金屬層Al具有厚度300埃(Å)到2100埃(Å) 之間。 In the above method embodiment, the metal film 245 may be one of titanium (Ti), nickel vanadium alloy (Ni-V), nickel titanium alloy (Ni-Ti), and nickel cadmium alloy (Ni-Cd). Ti is used in the embodiment and the metal thin film Ti has a thickness of 150 Å. The front electrode layer 22 is a transparent conductive oxide (TCO). The light absorbing layer 23 is an amorphous germanium (a-Si). The transparent conductive layer 241 of the back electrode layer 24 is gallium zinc oxide (GZO), and the transparent conductive layer GZO has a thickness of 800 Å. The first metal layer 242 of the back electrode layer 24 is silver (Ag), and the first metal layer Ag has a thickness of between 300 Å and 2100 Å. The interposer layer 243 of the back electrode layer 24 is a transparent conductive oxide (TCO) or a metal. In the present embodiment, a TCO is used and the interposer TCO has a thickness of 100 Å. The second metal layer 244 of the back electrode layer 24 may be one of aluminum (Al), copper (Cu), and gold (Au). In the present embodiment, Al is used and the second metal layer A1 has a thickness of 300 Å. (Å) to 2100 angstroms (Å) between.

以上所述僅為本發明之較佳實施例,並非用以限定本發明之權利範圍。同時以上的描述,對於熟知本技術領域之專門人士應可明瞭及實施,因此其他未脫離本發明所揭示之精神下所完成的等效改變或修飾,均應包含在申請專利範圍中。 The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the invention. The above description is intended to be apparent to those skilled in the art, and the equivalents and modifications may be included in the scope of the invention.

10(先前技術)、20‧‧‧薄膜太陽能電池 10 (prior art), 20‧ ‧ thin film solar cells

11(先前技術)、21‧‧‧基板 11 (previous technology), 21‧‧‧ substrate

12(先前技術)、22‧‧‧前電極層 12 (prior art), 22‧‧‧ front electrode layer

13(先前技術)、23‧‧‧光吸收層 13 (prior art), 23‧‧ ‧ light absorbing layer

14(先前技術)、24‧‧‧背電極層 14 (prior art), 24‧‧ ‧ back electrode layer

141(先前技術)、241‧‧‧透明導電層 141 (prior art), 241‧‧ ‧ transparent conductive layer

142(先前技術)、242‧‧‧第一金屬層 142 (prior art), 242‧‧‧ first metal layer

243‧‧‧中介層 243‧‧‧Intermediary

244‧‧‧第二金屬層 244‧‧‧Second metal layer

145(先前技術)、245‧‧‧金屬薄膜 145 (prior art), 245‧‧‧ metal film

第1圖為一示意圖,係為一種習知之薄膜太陽能電池結構。 Figure 1 is a schematic view showing a conventional thin film solar cell structure.

第2圖為一示意圖,係根據本發明提出之較佳實施例,為一種薄膜太陽能電池結構。 Figure 2 is a schematic view of a thin film solar cell structure in accordance with a preferred embodiment of the present invention.

第3A圖為一反射率與光譜之影響關係,係比較背電極層所用不同膜厚之純鋁對照標準膜厚之純銀,隨著不同之光譜而分別對薄膜太陽能電池呈現反射率之變化。 Fig. 3A shows the relationship between the reflectance and the spectrum. The pure aluminum is compared with the standard film thickness of the pure film used for the back electrode layer, and the reflectance changes are exhibited for the thin film solar cell with different spectra.

第3B圖為一反射率與光譜之影響關係,係比較背電極層所用不同膜厚之純銀對照標準膜厚之純銀,隨著不同之光譜而分別對薄膜太陽能電池呈現反射率之變化。 Fig. 3B is a graph showing the relationship between the reflectance and the spectrum. The pure silver is compared with the standard film thickness of the pure film used for the back electrode layer, and the reflectance changes are exhibited for the thin film solar cell with different spectra.

第3C圖為一反射率與光譜之影響關係,係比較本實施例之背極層所用不同膜厚之銀/鎵鋅氧化物/鋁對照標準膜厚之純銀,隨著不同之光譜而分別對薄膜太陽能電池呈現反射率之變化。 Fig. 3C is a graph showing the relationship between reflectance and spectrum. The silver/gallium zinc oxide/aluminum standard film thickness of different thicknesses used in the back electrode layer of the present embodiment is compared with that of different spectra. Thin film solar cells exhibit a change in reflectivity.

20‧‧‧薄膜太陽能電池 20‧‧‧Thin solar cells

21‧‧‧基板 21‧‧‧Substrate

22‧‧‧前電極層 22‧‧‧ front electrode layer

23‧‧‧光吸收層 23‧‧‧Light absorbing layer

24‧‧‧背電極層 24‧‧‧ back electrode layer

241‧‧‧透明導電層 241‧‧‧Transparent conductive layer

242‧‧‧第一金屬層 242‧‧‧First metal layer

243‧‧‧中介層 243‧‧‧Intermediary

244‧‧‧第二金屬層 244‧‧‧Second metal layer

245‧‧‧金屬薄膜 245‧‧‧Metal film

Claims (26)

一種具有特殊背電極結構之薄膜太陽能電池,包含依序堆疊形成的一基板、一前電極層、一光吸收層與一背電極層,其特徵在於該背電極層進一步包含依序堆疊形成的一透明導電層、一第一金屬層、一中介層、一第二金屬層以及一金屬薄膜;其中,該中介層之厚度小於該第一金屬層及該第二金屬層的厚度。 A thin film solar cell having a special back electrode structure, comprising a substrate, a front electrode layer, a light absorbing layer and a back electrode layer, which are sequentially stacked, wherein the back electrode layer further comprises a stack formed in sequence a transparent conductive layer, a first metal layer, an interposer, a second metal layer, and a metal film; wherein the interposer has a thickness smaller than a thickness of the first metal layer and the second metal layer. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該金屬薄膜係選自於由鈦(Ti)、鎳釩合金(Ni-V)、鎳鈦合金(Ni-Ti)及鎳鎘合金(Ni-Cd)所構成之群組。 A thin film solar cell having a special back electrode structure according to the first aspect of the patent application, wherein the metal film is selected from the group consisting of titanium (Ti), nickel vanadium alloy (Ni-V), nickel titanium alloy (Ni-Ti), and A group of nickel-cadmium alloys (Ni-Cd). 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該前電極層係為一透明導電氧化物(TCO)。 A thin film solar cell having a special back electrode structure according to the first aspect of the patent application, wherein the front electrode layer is a transparent conductive oxide (TCO). 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該光吸收層係為一非晶矽(a-Si)。 A thin film solar cell having a special back electrode structure according to the first aspect of the patent application, wherein the light absorbing layer is an amorphous germanium (a-Si). 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該背電極層之透明導電層係為鎵鋅氧化物(GZO)。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the transparent conductive layer of the back electrode layer is gallium zinc oxide (GZO). 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該背電極層之第一金屬層係為銀(Ag)。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the first metal layer of the back electrode layer is silver (Ag). 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該背電極層之中介層係為透明導電氧化物(TCO)或金屬。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the interposer layer of the back electrode layer is a transparent conductive oxide (TCO) or a metal. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該背電極層之第二金屬層係選自於由鋁(Al)、銅(Cu)及金(Au)所構成之群組。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the second metal layer of the back electrode layer is selected from the group consisting of aluminum (Al), copper (Cu), and gold (Au). Group. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該透明導電層具有厚度800埃(Å)。 A thin film solar cell having a special back electrode structure according to the first aspect of the patent application, wherein the transparent conductive layer has a thickness of 800 Å. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該第一金屬層具有厚度300埃(Å)到2100埃(Å)之間。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the first metal layer has a thickness of between 300 Å and 2100 Å. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該中介層具有厚度100埃(Å)。 A thin film solar cell having a special back electrode structure according to the first aspect of the patent application, wherein the interposer has a thickness of 100 Å. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該二金屬層具有厚度300埃(Å)到2100埃(Å)之間。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the two metal layers have a thickness of between 300 Å and 2100 Å. 依據申請專利範圍第2項之具有特殊背電極結構之薄膜太陽能電池,其中該金屬薄膜具有厚度150埃(Å)。 A thin film solar cell having a special back electrode structure according to the second aspect of the patent application, wherein the metal film has a thickness of 150 Å. 一種具有特殊背電極結構之薄膜太陽能電池之製作方法,包含提供一基板;形成一前電極層在該基板;形成一光吸收層在該前電極層;以及形成一背電極層在該光吸收層;其特徵在於該背電極層依序導入有一透明導電層、一第一金屬層、一中介層、一第二金屬層及一金屬薄膜;其中,該中介層之厚度小於該第一金屬層及該第二金屬層的厚度。 A method for fabricating a thin film solar cell having a special back electrode structure, comprising: providing a substrate; forming a front electrode layer on the substrate; forming a light absorbing layer on the front electrode layer; and forming a back electrode layer on the light absorbing layer The back electrode layer is sequentially introduced with a transparent conductive layer, a first metal layer, an interposer, a second metal layer and a metal film; wherein the interposer has a thickness smaller than the first metal layer and The thickness of the second metal layer. 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該金屬薄膜係選自於由鈦(Ti)、鎳釩合金(Ni-V)、鎳鈦合金(Ni-Ti)及鎳鎘合金(Ni-Cd)所構成之群組。 A method for fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the metal film is selected from the group consisting of titanium (Ti), nickel vanadium alloy (Ni-V), and nickel titanium alloy (Ni- Group of Ti) and nickel-cadmium alloys (Ni-Cd). 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該前電極層係為一透明導電氧化物(TCO)。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the front electrode layer is a transparent conductive oxide (TCO). 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該光吸收層係為一非晶矽(a-Si)。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the light absorbing layer is an amorphous germanium (a-Si). 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該背電極層之透明導電層係為鎵鋅氧化物(GZO)。 A method for fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the transparent conductive layer of the back electrode layer is gallium zinc oxide (GZO). 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該背電極層之第一金屬層係為銀(Ag)。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the first metal layer of the back electrode layer is silver (Ag). 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該背電極層之中介層係為透明導電氧化物(TCO)或金屬。 A method for fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the interposer layer of the back electrode layer is a transparent conductive oxide (TCO) or a metal. 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該背電極層之第二金屬層係選自於由鋁(Al)、銅(Cu)及金(Au)所構成之群組。 A method for fabricating a thin film solar cell having a special back electrode structure according to claim 14 wherein the second metal layer of the back electrode layer is selected from the group consisting of aluminum (Al), copper (Cu), and gold (Au). The group formed. 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該透明導電層具有厚度800A。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 of the patent application, wherein the transparent conductive layer has a thickness of 800A. 依據申請專利範圍第1項之具有特殊背電極結構之薄膜太陽能電池,其中該第一金屬層具有厚度300埃(Å)到2100埃(Å)之間。 A thin film solar cell having a special back electrode structure according to claim 1, wherein the first metal layer has a thickness of between 300 Å and 2100 Å. 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該中介層具有厚度100A。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 of the patent application, wherein the interposer has a thickness of 100A. 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該二金屬層具有厚度300A到2100A之間。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 of the patent application, wherein the two metal layers have a thickness of between 300 A and 2100 A. 依據申請專利範圍第14項之具有特殊背電極結構之薄膜太陽能電池之製作方法,其中該金屬薄膜具有厚度150A。 A method of fabricating a thin film solar cell having a special back electrode structure according to claim 14 of the patent application, wherein the metal film has a thickness of 150A.
TW098143036A 2009-12-16 2009-12-16 Thin film solar cells having a paticular back electrode and manufacturing method thereof TWI395338B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098143036A TWI395338B (en) 2009-12-16 2009-12-16 Thin film solar cells having a paticular back electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098143036A TWI395338B (en) 2009-12-16 2009-12-16 Thin film solar cells having a paticular back electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201123473A TW201123473A (en) 2011-07-01
TWI395338B true TWI395338B (en) 2013-05-01

Family

ID=45046688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098143036A TWI395338B (en) 2009-12-16 2009-12-16 Thin film solar cells having a paticular back electrode and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI395338B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592447B2 (en) 2014-10-06 2019-10-16 株式会社カネカ SOLAR CELL AND SOLAR CELL MODULE, AND SOLAR CELL AND SOLAR CELL MODULE MANUFACTURING METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720826A (en) * 1995-05-30 1998-02-24 Canon Kabushiki Kaisha Photovoltaic element and fabrication process thereof
US20070068571A1 (en) * 2005-09-29 2007-03-29 Terra Solar Global Shunt Passivation Method for Amorphous Silicon Thin Film Photovoltaic Modules
TW200929573A (en) * 2007-12-27 2009-07-01 Ind Tech Res Inst Back contact for solar cell
TW200939498A (en) * 2007-12-21 2009-09-16 Qualcomm Mems Technologies Inc Multijunction photovoltaic cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720826A (en) * 1995-05-30 1998-02-24 Canon Kabushiki Kaisha Photovoltaic element and fabrication process thereof
US20070068571A1 (en) * 2005-09-29 2007-03-29 Terra Solar Global Shunt Passivation Method for Amorphous Silicon Thin Film Photovoltaic Modules
TW200939498A (en) * 2007-12-21 2009-09-16 Qualcomm Mems Technologies Inc Multijunction photovoltaic cells
TW200929573A (en) * 2007-12-27 2009-07-01 Ind Tech Res Inst Back contact for solar cell

Also Published As

Publication number Publication date
TW201123473A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
JP4945088B2 (en) Stacked photovoltaic device
CN207320169U (en) A kind of perovskite battery of graded bandgap
TW201021229A (en) Solar cell having reflective structure
CN104781445A (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
CN111916523A (en) Heterojunction solar cell, assembly thereof and preparation method
US20130104971A1 (en) Transparent conductive structure
CN101236997A (en) Back contact layer of film silicon solar battery
JP2008270562A (en) Multi-junction type solar cell
TW201222845A (en) Photoelectric conversion device
WO2009154137A1 (en) Solar cell and method for manufacturing the same
JP2012244065A (en) Thin film photoelectric conversion device, manufacturing method thereof, and thin film photoelectric conversion module
TWI395338B (en) Thin film solar cells having a paticular back electrode and manufacturing method thereof
CN101777588B (en) Light scattering multilayered structure and manufacturing method thereof
CN105308206A (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
CN217788409U (en) Solar cell, assembly and system
WO2012171146A1 (en) Thin film solar cell with new type anti-reflection layer and fabrication method thereof
KR101474487B1 (en) Thin film solar cell and Method of fabricating the same
CN101556973A (en) Film photovoltaic device and composite electrode thereof
CN114188422A (en) Metal oxide doping layer, solar cell and preparation method thereof
TW201330291A (en) Crystalline silicon solar cell and method of fabricating the same
Steltenpool et al. Nano-imprint technology combined with rough TCO morphology as double textured light-trapping superstrate for thin film solar cells
KR20090065894A (en) Tandem structure cigs solar cell and method for manufacturing the same
JP2014503129A (en) Solar cell and manufacturing method thereof
CN217788412U (en) Solar cell and assembly and system thereof
TWI501407B (en) Enhanced light absorption thin film used in solar cell, solar cell structure and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees