TWI393352B - Digital/analog converter and driving apparatus using the same and image data converting method thereof - Google Patents
Digital/analog converter and driving apparatus using the same and image data converting method thereof Download PDFInfo
- Publication number
- TWI393352B TWI393352B TW98145802A TW98145802A TWI393352B TW I393352 B TWI393352 B TW I393352B TW 98145802 A TW98145802 A TW 98145802A TW 98145802 A TW98145802 A TW 98145802A TW I393352 B TWI393352 B TW I393352B
- Authority
- TW
- Taiwan
- Prior art keywords
- image data
- value
- reference signal
- signal
- interval
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
本發明是有關於一種數位類比轉換器,且特別是有關於一種應用於發光二極體顯示器的數位類比轉換器。The present invention relates to a digital analog converter, and more particularly to a digital analog converter for use in a light emitting diode display.
發光二極體(Light Emitting Diode,LED)的體積小、省電且耐用,而且隨著製程的成熟,價格下降,近來以發光二極體做為光源之產品越來越普遍。此外,發光二極體工作電壓低(僅1.5-3V)、能主動發光且有一定亮度,亮度可用電壓或電流調節,同時具備耐衝擊、抗振動、壽命長(10萬小時)之特點,是以,發光二極體在各種終端設備中被廣泛使用,從汽車前照燈、交通信號燈、文字顯示器、看板及大螢幕視頻顯示器,到普通及建築照明和LCD背光等領域。Light Emitting Diode (LED) is small, power-saving and durable, and as the process matures, the price drops. Recently, products using light-emitting diodes as light sources are becoming more and more popular. In addition, the light-emitting diode has a low operating voltage (only 1.5-3V), can actively emit light and has a certain brightness, and the brightness can be adjusted by voltage or current, and has the characteristics of impact resistance, vibration resistance and long life (100,000 hours). Light-emitting diodes are widely used in a variety of terminal equipment, from automotive headlights, traffic lights, text displays, billboards and large-screen video displays, to general and architectural lighting and LCD backlighting.
發光二極體的驅動電路通常會利用脈波寬度調變(Pulse Width Modulation,PWM)信號來調整發光二極體的亮度,也可以說是灰階值。驅動電路根據PWM信號中的工作週期來決定發光二極體的導通時間,藉此可決定顯示器的灰階值。然而,由於習知PWM信號中會有影像更新率不足的問題,這樣會造成影像閃爍。為克服畫面閃爍現象,習知技術將影像灰階所對的工作週期分散以降低在人眼可視範圍內之諧波訊號能量,但是過度的分散處裡將造成影像訊號失真。The driving circuit of the light-emitting diode usually uses the pulse width modulation (PWM) signal to adjust the brightness of the light-emitting diode, which is also a gray scale value. The driving circuit determines the on-time of the light-emitting diode according to the duty cycle in the PWM signal, thereby determining the grayscale value of the display. However, due to the problem of insufficient image update rate in the conventional PWM signal, this may cause image flicker. In order to overcome the phenomenon of flickering, the prior art disperses the duty cycle of the grayscale of the image to reduce the harmonic signal energy in the visible range of the human eye, but the excessive dispersion will cause image signal distortion.
本發明提供一種適應性控制之數位類比轉換器與使用其驅動裝置,可應用於發光二極體顯示器的驅動電路中,此數位類比轉換器會依照影像資料的灰階度將其工作週期分割為不同的子工作週期以提高影像更新率,並同時避免失真損耗的問題。The invention provides an adaptive control digital analog converter and a driving device thereof, which can be applied to a driving circuit of a light emitting diode display, and the digital analog converter divides the duty cycle according to the gray scale of the image data into Different sub-work cycles to increase the image update rate while avoiding the problem of distortion loss.
本發明提供一種影像資料的轉換方法,其依據影像資料的灰階度,將其工作週期分割為不同的子工作週期以提供影像更新率,並同時避免失真損耗的問題。The invention provides a method for converting image data, which divides the working period into different sub-working periods according to the gray scale of the image data to provide an image update rate, and at the same time avoids the problem of distortion loss.
承上述,本發明提供一種數位類比轉換器與使用其之驅動裝置,驅動裝置包括數位類比轉換器與驅動電路,用以驅動發光二極體顯示面板。上述數位類比轉換器包括一灰階判決電路與一脈波分段單元,其中灰階判決電路根據影像資料的數值輸出一判斷信號,此判斷信號用以表示影像資料的數值位於一第一數值區間或一第二數值區間,其中第二數值區間的數值大於第一數值區間的數值,影像資料的數值對應於一工作週期。脈波分段單元耦接於灰階判決電路以接收該判斷信號,當影像資料的數值位於第一數值區間時,脈波分段單元將影像資料所對應的工作週期最多分割為N個子工作週期以產生一分段脈波信號。當影像資料的數值位於第二數值區間時,脈波分段單元將影像資料所對應的工作週期最多分割為M個子工作週期以產生該分段脈波信號,其中M、N為正整數且M大於N。In view of the above, the present invention provides a digital analog converter and a driving device using the same, the driving device comprising a digital analog converter and a driving circuit for driving the LED display panel. The digital analog converter includes a gray-scale decision circuit and a pulse segmentation unit, wherein the gray-scale decision circuit outputs a determination signal according to the value of the image data, and the determination signal is used to indicate that the value of the image data is located in a first numerical interval. Or a second numerical interval, wherein the value of the second numerical interval is greater than the value of the first numerical interval, and the value of the image data corresponds to a working period. The pulse segmentation unit is coupled to the grayscale decision circuit to receive the determination signal. When the value of the image data is in the first numerical interval, the pulse segmentation unit divides the work cycle corresponding to the image data into a maximum of N sub-work cycles. To generate a segmented pulse wave signal. When the value of the image data is in the second numerical interval, the pulse segmentation unit divides the working period corresponding to the image data into M sub-working periods at most to generate the segmented pulse wave signal, where M and N are positive integers and M Greater than N.
在本發明一實施例中,上述N個子工作週期或上述M個子工作週期的總和實質上等於該工作週期。In an embodiment of the invention, the sum of the N sub-working cycles or the M sub-working cycles is substantially equal to the duty cycle.
在本發明一實施例中,上述脈波分段單元包括一序列計數器、一輸出調整電路與一數位比較器。序列計數器用以輸出一參考信號,參考信號的位元數與影像資料的位元數相同。輸出調整電路耦接於序列計數器與灰階判決電路,根據判斷信號調整參考信號的位元順序以產生一分段參考信號。數位比較器耦接於輸出調整電路,用以比較分段參考信號與影像資料以產生分段脈波信號。其中,當影像資料的數值位於第一數值區間時,分段參考信號對應於一第一位元順序。當影像資料的數值位於第二數值區間時,分段參考信號對應於一第二位元順序。In an embodiment of the invention, the pulse segmentation unit includes a sequence counter, an output adjustment circuit, and a digital comparator. The sequence counter is used to output a reference signal, and the number of bits of the reference signal is the same as the number of bits of the image data. The output adjustment circuit is coupled to the sequence counter and the gray scale decision circuit, and adjusts the bit sequence of the reference signal according to the determination signal to generate a segment reference signal. The digital comparator is coupled to the output adjustment circuit for comparing the segment reference signal and the image data to generate a segmented pulse wave signal. Wherein, when the value of the image data is in the first numerical interval, the segment reference signal corresponds to a first bit sequence. When the value of the image data is in the second numerical interval, the segment reference signal corresponds to a second bit sequence.
上述輸出調整電路包括複數個選擇電路,耦接於灰階判決電路與序列計數器所輸出的參考信號。該些選擇單元根據判斷信號調整參考信號的位元順序以產生分段參考信號。其中,各該選擇電路之一第一輸入端對應於該第一位元順序,各該選擇電路之一第二輸入端對應於該第二位元順序。The output adjustment circuit includes a plurality of selection circuits coupled to the reference signals output by the gray scale decision circuit and the sequence counter. The selection units adjust the bit order of the reference signals according to the determination signal to generate a segment reference signal. The first input end of each of the selection circuits corresponds to the first bit order, and the second input end of each of the selection circuits corresponds to the second bit order.
從另一個角度來看,本發明提出一種影像資料的轉換方法,適用於一顯示器之驅動裝置,上述轉換方法包括下列步驟:首先,根據一影像資料的數值輸出一判斷信號,判斷信號用以表示影像資料的數值位於一第一數值區間或一第二數值區間,其中第二數值區間的數值大於第一數值區間的數值,影像資料的數值對應於一工作週期。當影像資料的數值位於第一數值區間時,將影像資料所對應的工作週期最多分隔為N個子工作週期以產生一分段脈波信號;當影像資料的數值位於第二數值區間時,將影像資料所對應的工作週期最多分割為M個子工作週期以產生分段脈波信號,其中M、N為正整數且M大於N。其中上述N個子工作週期或上述M個子工作週期總和實質上等於該工作週期。From another point of view, the present invention provides a method for converting image data, which is suitable for a driving device of a display. The conversion method includes the following steps: First, a judgment signal is output according to the value of an image data, and the determination signal is used to represent The value of the image data is located in a first value interval or a second value interval, wherein the value of the second value interval is greater than the value of the first value interval, and the value of the image data corresponds to a duty cycle. When the value of the image data is in the first numerical interval, the working period corresponding to the image data is separated into N sub-working periods at most to generate a segmented pulse wave signal; when the value of the image data is in the second numerical interval, the image is imaged The working period corresponding to the data is divided into M sub-working periods at most to generate a segmented pulse wave signal, where M and N are positive integers and M is greater than N. The sum of the N sub-work cycles or the M sub-work cycles is substantially equal to the work cycle.
基於上述,本發明提出一種適應性控制之數位類比轉換器,其可根據影像資料的數值(灰階度)使用不同位元順序的參考信號來進行比較以產生不同數目的子工作週期。在高灰階度時,將其工作週期分割為相對較多數目的子工作週期以提高畫面的更新率,在低灰階度時,將其工作週期分割為相對較少數目的子工作週期以避免波形失真。Based on the above, the present invention proposes an adaptively controlled digital analog converter that can use different bit order reference signals for comparison based on the value of the image data (grayscale) to produce a different number of sub-periods. In the case of high grayscale, the duty cycle is divided into a relatively large number of sub-work cycles to increase the update rate of the picture. At low gray levels, the duty cycle is divided into a relatively small number of sub-work cycles to avoid Waveform distortion.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
請參照圖1,圖1繪示本發明一實施例之顯示器之驅動裝置功能方塊圖。顯示器101包括驅動裝置100與顯示面板150,驅動裝置100耦接於顯示面板150,根據影像資料ID來驅動顯示面板150。顯示面板150例如發光二極體元件所組成的顯示器。驅動裝置100包括數位類比轉換器105與驅動電路140,其中數位類比轉換器105尚包括脈波分段單元120與灰階判決電路130。脈波分段單元120包括序列記數器122、輸出調整電路124與數位比較器126。灰階判決電路130與序列計數器122耦接於輸出調整電路124,輸出調整電路124的輸出耦接於數位比較器126,數位比較器126的輸出則耦接於驅動電路140。Please refer to FIG. 1. FIG. 1 is a functional block diagram of a driving device of a display according to an embodiment of the present invention. The display device 100 includes a driving device 100 and a display panel 150. The driving device 100 is coupled to the display panel 150 to drive the display panel 150 according to the image data ID. The display panel 150 is, for example, a display composed of light emitting diode elements. The driving device 100 includes a digital analog converter 105 and a driving circuit 140, wherein the digital analog converter 105 further includes a pulse segmentation unit 120 and a grayscale decision circuit 130. The pulse segmentation unit 120 includes a sequence counter 122, an output adjustment circuit 124, and a digital comparator 126. The grayscale decision circuit 130 and the sequence counter 122 are coupled to the output adjustment circuit 124. The output of the output adjustment circuit 124 is coupled to the digital comparator 126. The output of the digital comparator 126 is coupled to the drive circuit 140.
灰階判決電路130接收影像資料ID,並根據影像資料ID的數值輸出一判斷信號SET,判斷信號SET用以表示影像資料ID的數值所處的數值區間為何。以兩個數值區間為例,灰階判決電路130會依照影像灰階度,判斷影像資料ID是位於為灰階度較小的第一數值區間(以8位元的灰階為例,例如0~127)或灰階度較高的第二數值區間(以8位元的灰階為例,例如128~255),然後據以輸出判斷信號SET。判斷信號SET可用來表示影像資料ID位於第一數值區間或第二數值區間,而第二數值區間的數值大於第一數值區間的數值。影像資料ID為一數位信號(例如8位元的影像資料),其數值對應於一脈波寬度調整信號之一工作週期,也可以視為灰階度。The gray scale decision circuit 130 receives the image data ID, and outputs a judgment signal SET according to the value of the image data ID, and the judgment signal SET is used to indicate the numerical interval in which the value of the image data ID is located. Taking two numerical intervals as an example, the gray-scale decision circuit 130 determines that the image data ID is located in the first numerical interval with a small gray scale according to the gray scale of the image (for example, an 8-bit gray scale, for example, 0) ~127) or a second numerical interval with a higher grayscale (taking an 8-bit grayscale as an example, for example, 128~255), and then outputting a judgment signal SET. The determination signal SET can be used to indicate that the image data ID is located in the first value interval or the second value interval, and the value of the second value interval is greater than the value in the first value interval. The image data ID is a digital signal (for example, 8-bit image data), and the value corresponds to one duty cycle of a pulse width adjustment signal, and can also be regarded as gray scale.
脈波分段單元120會根據判斷信號SET,將影像資料ID所對應的工作週期區分為多個子工作週期,其子工作週期的總和會等於影像資料ID所對應的工作週期,也就是整體的工作週期不變。脈波分段單元120會將子工作週期分散於整個信號週期的不同位置以產生一分段脈波信號PDM。以上述兩個數值區間為例,當影像資料ID的數值位於第一數值區間時,脈波分段單元將影像資料ID所對應的工作週期最多分割為N個子工作週期以產生分段脈波信號PDM。當影像資料ID的數值位於第二數值區間時,脈波分段單元120將影像資料ID所對應的工作週期最多分割為M個子工作週期以產生分段脈波信號,其中M、N為正整數且M大於N。The pulse segmentation unit 120 divides the work cycle corresponding to the image data ID into multiple sub-work cycles according to the determination signal SET, and the sum of the sub-work cycles is equal to the work cycle corresponding to the image data ID, that is, the overall work. The period is unchanged. The pulse segmentation unit 120 spreads the sub-work cycles at different locations throughout the signal period to produce a segmented pulse signal PDM. Taking the above two numerical intervals as an example, when the value of the image data ID is located in the first numerical interval, the pulse segmentation unit divides the working period corresponding to the image data ID into N sub-working cycles at most to generate the segmented pulse wave signal. PDM. When the value of the image data ID is located in the second numerical interval, the pulse segmentation unit 120 divides the duty cycle corresponding to the image data ID into M sub-working cycles to generate a segmented pulse wave signal, where M and N are positive integers. And M is greater than N.
換句話說,脈波分段單元120會依據影像資料ID所對應的灰階度,調整子工作週期的數量。當影像資料ID所對應的灰階度較高時,其工作週期會以較多的子工作週期來取代。當影像資料ID所對應的灰階度較低時,其工作週期會以較少的子工作週期來取代。藉此,在灰階度較低的影像中,可減少波形被區分為過多的子工作週期而造成的信號失真損耗的問題;在灰階度較高的影像中,可藉由較多的子工作週期來提高影像更新率以避免畫面閃爍的問題。In other words, the pulse segmentation unit 120 adjusts the number of sub-working cycles according to the grayscale corresponding to the image data ID. When the gray level corresponding to the image data ID is high, the duty cycle is replaced by more sub-work cycles. When the gray level corresponding to the image data ID is low, the duty cycle is replaced by a small sub-work cycle. Thereby, in the image with lower gray scale, the problem of signal distortion loss caused by the waveform being divided into excessive sub-work cycles can be reduced; in the image with higher gray scale, more children can be used Work cycle to increase the image update rate to avoid flickering.
接下來,進一步說明脈波分段單元120的內部架構,序列計數器122依照數值順序輸出一參考信號BS,參考信號BS的位元數與影像資料ID的位元數相同。序列計數器122可由低數值至高數值依序調整參考信號BS或由高數值至低數值依序調整參考信號BS。在本實施例中,序列計數器122是由低數值至高數值依序調整參考信號BS,以供輸出調整電路124使用。在傳統技術中,數位比較器126是直接使用參考信號BS來與影像資料ID比較以產生脈波寬度調變信號。而在本實施例中,為了將工作週期分為多個子工作週期,參考信號BS會先經由輸出調整電路124調整參考信號BS的數值變化順序以產生一分段參考信號DBS,然後再提供給數位比較器126使用。在本實施例中,輸出調整電路124可依照判斷信號SET調整參考信號BS的位元配置方式(例如將第二位元與第三位元調換)輸出具有不同位元順序的分段參考信號DBS。Next, the internal architecture of the pulse segmentation unit 120 is further explained. The sequence counter 122 outputs a reference signal BS in numerical order, and the number of bits of the reference signal BS is the same as the number of bits of the image data ID. The sequence counter 122 can sequentially adjust the reference signal BS from a low value to a high value or sequentially adjust the reference signal BS from a high value to a low value. In the present embodiment, the sequence counter 122 sequentially adjusts the reference signal BS from a low value to a high value for use by the output adjustment circuit 124. In the conventional technique, the digital comparator 126 directly compares the image data ID with the reference signal BS to generate a pulse width modulation signal. In this embodiment, in order to divide the duty cycle into multiple sub-working periods, the reference signal BS first adjusts the sequence of numerical changes of the reference signal BS via the output adjustment circuit 124 to generate a segment reference signal DBS, and then supplies the digital signal to the digital signal. The comparator 126 is used. In this embodiment, the output adjustment circuit 124 can adjust the bit configuration manner of the reference signal BS according to the determination signal SET (for example, swapping the second bit and the third bit) to output the segment reference signal DBS having different bit order. .
在本實施例中,當影像資料ID的數值位於第一數值區間時,分段參考信號DBS對應於第一位元順序,當影像資料ID的數值位於第二數值區間時,分段參考信號DBS對應於第二位元順序。經由數位比較器126進行比較後,不同位元順序的分段參考信號DBS可將影像資料ID的工作週期區分為不同數目的子工作週期以產生具有不同更新率的分段脈波信號PDM。因此,此分段脈波信號PDM也可以稱為適應性脈波密度調變(Adaptive Pulse Density Modulation)信號,可經由分段參考信號DBS的位元順序調整子工作週期的脈波密度。In this embodiment, when the value of the image data ID is in the first numerical interval, the segment reference signal DBS corresponds to the first bit sequence, and when the value of the image data ID is in the second numerical interval, the segment reference signal DBS Corresponds to the second bit order. After comparison by the digital comparator 126, the segment reference signals DBS of different bit orders can differentiate the duty cycle of the image material ID into a different number of sub-work cycles to generate segmented pulse wave signals PDM having different update rates. Therefore, the segmented pulse wave signal PDM can also be referred to as an Adaptive Pulse Density Modulation signal, and the pulse wave density of the sub-period can be adjusted via the bit order of the segment reference signal DBS.
以四位元的影像資料ID與四位元的參考信號BS為例,請同時參照圖2,圖2繪示本發明第一實施例之四位元輸出調整電路。輸出調整電路224包括選擇電路210、220、230、240,個別選擇電路210、220、230、240具有兩個輸入端(“1”與“2”),分別接收參考信號BS的各個位元,其選擇端“3”耦接於判斷信號SET,可依據判斷信號SET切換輸入端(“1”或“2”)作為輸出。選擇電路210、220、230、240例如為多工器。參考信號BS的位元順序以C[3]C[2]C[1]C[0]表示,其中C[3]為最高有效位元(Most Significant Bits,MSB),C[0]為最低有效位元(Least Significant Bits,LSB)。序列計數器122所輸出的參考信號BS的位元順序如下圖3(a)所示,圖3(a)~圖3(c)繪示本發明第一實施例之參考信號BS與分段參考信號DBS的位元順序。序列計數器122會依序遞增其參考信號BS的數值,如圖3(a)中由上而下的順序,其中“十進位”欄位表示參考信號BS的數值,“二進位”欄位則是二進位方式表示參考信號BS。Taking a four-bit image data ID and a four-bit reference signal BS as an example, please refer to FIG. 2 at the same time, and FIG. 2 illustrates a four-bit output adjustment circuit according to the first embodiment of the present invention. The output adjustment circuit 224 includes selection circuits 210, 220, 230, 240 having two inputs ("1" and "2") for receiving respective bits of the reference signal BS, The selection terminal "3" is coupled to the determination signal SET, and the input terminal ("1" or "2") can be switched as an output according to the determination signal SET. The selection circuits 210, 220, 230, 240 are, for example, multiplexers. The bit order of the reference signal BS is represented by C[3]C[2]C[1]C[0], where C[3] is the Most Significant Bits (MSB) and C[0] is the lowest. Least Significant Bits (LSB). The bit sequence of the reference signal BS outputted by the sequence counter 122 is as shown in FIG. 3(a), and FIG. 3(a) to FIG. 3(c) show the reference signal BS and the segment reference signal according to the first embodiment of the present invention. The bit order of DBS. The sequence counter 122 sequentially increments the value of its reference signal BS, as shown in the top-down order of FIG. 3(a), wherein the "decimal" field indicates the value of the reference signal BS, and the "binary" field is The binary mode represents the reference signal BS.
若輸出調整電路124直接將參考信號BS輸出至數位比較器126,則數位比較器126比較參考信號BS與影像信號ID後所輸出的分段脈波信號PDM會僅具有單一的工作週期。以影像信號ID的數值等於8為例,其分段脈波信號PDM的波形請參照圖4(a),圖4(a)~圖4(c)繪示本發明第一實施例之分段脈波信號PDM之波形圖。其中,在圖4(a)中,分段脈波信號PDM為單段式的脈波調變信號,其具有半週期的工作週期,與一般的脈波調變信號波形相同,其對應於影像信號ID的數值等於8的狀況。If the output adjustment circuit 124 directly outputs the reference signal BS to the digital comparator 126, the segmented pulse wave signal PDM output by the digital comparator 126 after comparing the reference signal BS with the video signal ID will have only a single duty cycle. Taking the value of the image signal ID equal to 8 as an example, the waveform of the segmented pulse wave signal PDM is shown in FIG. 4( a ), and FIGS. 4( a ) to 4 ( c ) illustrate the segmentation of the first embodiment of the present invention. Waveform of pulse wave signal PDM. In FIG. 4(a), the segmented pulse wave signal PDM is a single-stage pulse wave modulation signal having a half cycle duty cycle, which is the same as a general pulse wave modulation signal waveform, which corresponds to an image. The value of the signal ID is equal to the condition of 8.
在本實施例中,選擇電路210、220、230、240的輸入端“1”所耦接於位元依序為C[1]C[2]C[3]C[0],此作為本實施例中之第一位元順序;輸入端“2”所耦接於位元依序為C[0]C[2]C[1]C[3],此作為本實施例中之第二位元順序。具有第一位元順序的分段參考信號DBS的輸出順序如圖3(b)所示,其數值輸出順序為0、1、8、9、4、5、12、13、2、3、10、11、6、7、14、15,二進位的表示方式則如圖3(b)所示。具有第二位元順序的分段參考信號DBS的輸出順序如圖3(c)所示,其數值輸出順序為0、8、2、10、4、12、6、14、1、9、3、11、5、13、7、15,二進位的表示方式則如圖3(c)所示。在本實施例中,以0~8為第一數值區間,以9-15為第二數值區間為例作為說明。因此,當影像資料ID的數值為0~8時,選擇電路210、220、230、240會選擇輸入端“1”作為輸出;當影像資料ID的數值為9~15時,選擇電路210、220、230、240會選擇輸入端“2”作為輸出。In this embodiment, the input terminal "1" of the selection circuit 210, 220, 230, 240 is coupled to the bit sequentially in the order of C[1]C[2]C[3]C[0]. The first bit sequence in the embodiment; the input terminal "2" is coupled to the bit sequentially in the order of C[0]C[2]C[1]C[3], which is the second in the embodiment. Bit order. The output sequence of the segment reference signal DBS having the first bit order is as shown in FIG. 3(b), and the numerical output order is 0, 1, 8, 9, 4, 5, 12, 13, 2, 3, 10 11, 11, 6, 14, 15 and binary representations are shown in Figure 3(b). The output sequence of the segment reference signal DBS having the second bit order is as shown in FIG. 3(c), and the numerical output order is 0, 8, 2, 10, 4, 12, 6, 14, 1, 9, 3 11, 11, 5, 13, 7, and 15, the representation of the binary is shown in Figure 3 (c). In the present embodiment, 0 to 8 are taken as the first numerical interval, and 9-15 is taken as the second numerical interval as an example. Therefore, when the value of the image data ID is 0-8, the selection circuits 210, 220, 230, 240 select the input terminal "1" as the output; when the value of the image data ID is 9-15, the selection circuits 210, 220 230, 240 will select the input "2" as the output.
以影像資料ID的數值等於8為例,選擇電路210、220、230、240會選擇輸入端“1”作為輸出,此時數位比較器126所接收到的分段參考信號DBS的波形如圖3(b)所示,所輸出的分段脈波信號PDM則如圖4(b)所示。在圖4(b)中,分段脈波信號PDM會具有4個子工作週期421~424,4個子工作週期421~424的總和等於半個週期,其與圖4(a)中的工作週期410相等。因此,同樣可達到灰階度為8的效果,但卻可提高其影像更新率以避免畫面閃爍。Taking the value of the image data ID equal to 8 as an example, the selection circuit 210, 220, 230, 240 selects the input terminal "1" as the output. At this time, the waveform of the segment reference signal DBS received by the digital comparator 126 is as shown in FIG. As shown in (b), the segmented pulse wave signal PDM outputted is as shown in Fig. 4(b). In FIG. 4(b), the segmented pulse signal PDM has four sub-working periods 421 to 424, and the sum of the four sub-working periods 421 to 424 is equal to half a period, which is the duty cycle 410 in FIG. 4(a). equal. Therefore, the effect of gray scale of 8 can also be achieved, but the image update rate can be improved to avoid flickering.
以影像資料ID的數值等於9為例,選擇電路210、220、230、240會選擇輸入端“2”作為輸出,此時數位比較器126所接收到的分段參考信號DBS的波形如圖3(c)所示,所輸出的分段脈波信號PDM則如圖4(c)所示。在圖4(c)中,分段脈波信號PDM會將工作週期分為7段,產生7個子工作週期432~438。7個子工作週期432~438的總和為整個週期的16分之9(9/16),等於影像資料ID的數值等於9所對應的工作週期。因此,同樣可達到灰階度為9的效果,但卻更加提高其影像更新率以避免畫面閃爍。Taking the value of the image data ID equal to 9 as an example, the selection circuit 210, 220, 230, 240 selects the input terminal "2" as the output. At this time, the waveform of the segment reference signal DBS received by the digital comparator 126 is as shown in FIG. As shown in (c), the segmented pulse wave signal PDM outputted is as shown in Fig. 4(c). In Figure 4(c), the segmented pulse signal PDM divides the duty cycle into 7 segments, resulting in 7 sub-periods 432~438. The sum of the 7 sub-periods 432~438 is 9/16 of the entire cycle ( 9/16), equal to the image data ID value equal to 9 corresponding work cycle. Therefore, the effect of gray scale of 9 can also be achieved, but the image update rate is further increased to avoid flickering.
由上述可知,本實施例會依據影像資料ID的數值選擇不同位元順序的分段參考信號DBS來與影像資料ID進行比較。藉由具有不同位元順序的分段參考信號DBS,當影像資料ID的數值較低時,使用具有第一位元順序的分段參考信號DBS將工作週期區分為相對數目較少的子工作週期。當影像資料ID的數值較高時,使用具有第二位元順序的分段參考信號DBS將工作週期區分為相對數目較多的子工作週期。影像資料ID的高低判斷可依照設計需求而定。例如影像資料ID為4位元時,可將第一數值區間訂為0~8,將第二數值區間訂為9~15。影像資料ID為8位元時,可將第一數值區間訂為0~127,將第二數值區間訂為128~255,本發明並不限定其數值區間的設定方式,只要第二數值區間的數值大於第一數值區間即可。As can be seen from the above, in this embodiment, the segment reference signal DBS of different bit order is selected according to the value of the image data ID to be compared with the image data ID. By using the segment reference signal DBS having different bit order, when the value of the image data ID is low, the work cycle is divided into a relatively small number of sub-work cycles using the segment reference signal DBS having the first bit order. . When the value of the image data ID is high, the work cycle is divided into a relatively large number of sub-work cycles using the segment reference signal DBS having the second bit order. The height and low judgment of the image data ID can be determined according to the design requirements. For example, when the image data ID is 4 bits, the first value interval can be set to 0 to 8, and the second value interval can be set to 9 to 15. When the image data ID is 8 bits, the first numerical interval may be set to 0 to 127, and the second numerical interval may be set to 128 to 255. The present invention does not limit the setting manner of the numerical interval, as long as the second numerical interval is The value is greater than the first value interval.
然後,依據影像資料ID所處的數值區間,採用不同位元順序的分段參考信號DBS來與影像資料ID進行比較。這樣的區分方式,在低亮度時,可避免分割為過多的子工作週期而造成波形失真而造成亮度下降,在高亮度時,可利用較多個數的子工作週期來提高更新率,避免畫面閃爍。Then, according to the numerical interval in which the image data ID is located, the segment reference signal DBS of different bit order is used to compare with the image data ID. In such a way of distinguishing, when the brightness is low, it is possible to avoid the waveform distortion caused by the division into too many sub-periods, and the brightness is decreased. In the case of high brightness, the sub-work period of the plurality of numbers can be utilized to improve the update rate and avoid the picture. flicker.
個別位元順序與數值區間之間的對應關係,則是根據該位元順序所能區分的最多子工作週期數目而定。以上述第一位元順序與第二位元順序為例,由圖4(b)、圖4(c)可知,第一位元順序在第一數值區間(0~8)中,最多能將工作週期分割為4個子工作週期(即N等於4),而第二位元順序在第二數值區間(9~15)中,最多能將工作週期分割為7個子工作週期(即M等於7)。此外,若將第一數值區間調整為(0~7),將第二數值區間調整為(8~15),以圖4(c)為例,當影像資料ID等於8時,在分段參考信號DBS等於8的地方會轉換為邏輯低電位,此時即可得到8個分開的子工作週期,這樣M會等於8。因此,在這樣的數值區間設定中,上述第一位元順序與第二位元順序依然適用,可讓數值較大的數值區間獲得相對較多的子工作週期。The correspondence between the individual bit order and the numerical interval is determined according to the maximum number of sub-work cycles that can be distinguished by the bit order. Taking the first bit order and the second bit order as an example, as shown in FIG. 4(b) and FIG. 4(c), the first bit order is in the first numerical interval (0~8), and at most The duty cycle is divided into 4 sub-working cycles (ie, N is equal to 4), and the second bit sequence is in the second numerical interval (9~15), and the working cycle can be divided into up to 7 sub-working cycles (ie, M is equal to 7). . In addition, if the first numerical interval is adjusted to (0~7), the second numerical interval is adjusted to (8~15), and as shown in Fig. 4(c), when the image data ID is equal to 8, the segmentation reference is used. When the signal DBS is equal to 8, it will be converted to logic low, and then 8 separate sub-periods can be obtained, so M will be equal to 8. Therefore, in such numerical interval setting, the first bit order and the second bit order are still applicable, and a relatively large sub-period can be obtained for a numerical interval having a large value.
由於在高亮度時,所致能的子工作週期會佔據整個週期的大部分期間,這樣會造成其波形未被分割的錯覺,其實是子工作週期相互連接所造成的效果。反之,在低亮度時,影像資料ID的工作週期並無法分割為多個子工作週期,例如影像資料ID的數值等於1,就僅能產生單一的子工作週期。因此,子工作週期的數目會隨影像資料ID的數值而變,所以位元順序的設定是以在對應的數值區間中所能分割的最大數目而定。此外,透過適當的位元順序設定,可讓子工作週期平均分布於整個週期中,如圖4(b)、圖4(c)所示,這樣可進一步提升畫面品質,避免閃爍的問題發生。Since the sub-work cycle of the energy is occupied for most of the period during high brightness, this will cause the illusion that the waveform is not split, which is actually the effect of the sub-work cycles being connected to each other. Conversely, at low brightness, the work cycle of the image data ID cannot be divided into multiple sub-work cycles. For example, if the value of the image data ID is equal to 1, only a single sub-work cycle can be generated. Therefore, the number of sub-work cycles varies with the value of the image data ID, so the bit order is set by the maximum number that can be divided in the corresponding value interval. In addition, through the appropriate bit order setting, the sub-work cycle can be evenly distributed throughout the cycle, as shown in Fig. 4(b) and Fig. 4(c), which can further improve the picture quality and avoid the problem of flicker.
再者,第一位元順序與第二位元順序的位元順序並不限定於圖3(b)與圖3(c)中之排列方式,使用者可參照不同文獻或設計需求,採用不同的位元排列順序(即數值的輸出順序)。值得注意的是,第一位元順序與第二位元順序均須包括所有的數值,例如4位元的分段參考信號DBS就需要包括0~15等數值,而8位元的分段參考信號DBS就需要包括0~255等數值,且每個數值在同一週期中僅能出現一次。然後,依照個別位元順序所對應的最大分割數目,決定其對應的數值區間。分割數目愈少的位元順序對應於數值愈小的數值區間。Furthermore, the order of the first bit order and the second bit order is not limited to the arrangement in FIG. 3(b) and FIG. 3(c), and the user may refer to different documents or design requirements and adopt different The order of the bits (ie the order in which the values are output). It should be noted that both the first bit order and the second bit order must include all values. For example, the 4-bit segment reference signal DBS needs to include values from 0 to 15, and the 8-bit segment reference. The signal DBS needs to include values from 0 to 255, and each value can only appear once in the same cycle. Then, according to the maximum number of divisions corresponding to the individual bit order, the corresponding numerical interval is determined. The order in which the number of divisions is smaller corresponds to the numerical interval in which the numerical value is smaller.
此外,值得注意的是,上述分段參考信號DBS可依照影像資料ID的數值區分為更多種位元順序,例如3種或6種,本實施例並不受限。只要增加選擇電路210、220、230、240的輸入端數目便可產生具有不同位元順序的分段參考信號DBS。需要3種順序就使用具有3個輸入端的選擇電路210、220、230、240,需要6種順序就使用具有6個的輸入端的選擇電路210、220、230、240。同樣的,數值區間的個數也不限定於兩個,可依照設計需求自行設定,本實施例並不受限。在經由本發明之揭露後,本技術領域具有通常知識者應可輕易推知其實施方式,在此不加累述。In addition, it should be noted that the segment reference signal DBS may be divided into more bit sequences according to the value of the image data ID, for example, three or six types, and the embodiment is not limited. The segment reference signal DBS having a different bit order can be generated by increasing the number of inputs of the selection circuits 210, 220, 230, 240. The selection circuits 210, 220, 230, 240 having three inputs are used in three sequences, and the selection circuits 210, 220, 230, 240 having six inputs are used in six sequences. Similarly, the number of numerical intervals is not limited to two, and can be set according to design requirements, and the embodiment is not limited. After the disclosure of the present invention, those skilled in the art should readily infer the implementation thereof, and will not be described herein.
由上述圖1~圖4可歸納出一種影像資料的轉換方法,適用於一發光二極體顯示器之驅動裝置,此數位類比轉換方法請參照圖5。圖5繪示本發明第二實施例之影像資料的轉換方法流程圖。首先,接收一影像資料(步驟S510),影像資料的數值對應於一工作週期。然後,判斷影像資料的數值處於第一數值區間或第二數值區間(步驟S520),其中第二數值區間的數值大於第一數值區間的數值。當影像資料的數值位於第一數值區間時,將影像資料所對應的工作週期最多分割為N個子工作週期以產生一分段脈波信號(步驟S530)。當影像資料的數值位於第二數值區間時,將影像資料所對應的工作週期最多分割為M個子工作週期以產生分段脈波信號,其中M、N為正整數且M大於N。其中,上述N個子工作週期或上述M個子工作週期的總和等於工作週期。本方法之其餘實施細節請參照上述第一實施例的說明,在此不再累述。A method for converting image data can be summarized from FIG. 1 to FIG. 4 above, which is suitable for a driving device of a light-emitting diode display. Please refer to FIG. 5 for the digital analog conversion method. FIG. 5 is a flow chart showing a method for converting image data according to a second embodiment of the present invention. First, an image data is received (step S510), and the value of the image data corresponds to a duty cycle. Then, it is determined that the value of the image data is in the first value interval or the second value interval (step S520), wherein the value of the second value interval is greater than the value of the first value interval. When the value of the image data is in the first numerical interval, the working period corresponding to the image data is divided into N sub-working periods at most to generate a segmented pulse wave signal (step S530). When the value of the image data is in the second numerical interval, the working period corresponding to the image data is divided into M sub-working periods at most to generate a segmented pulse wave signal, where M and N are positive integers and M is greater than N. The sum of the N sub-work cycles or the M sub-work cycles is equal to the work cycle. For the remaining implementation details of the method, please refer to the description of the first embodiment above, and no further description is provided herein.
綜上所述,本發明先偵測影像資料的數值,然後依照影像資料的數值選擇不同數值順序的參考信號來進行比較以將工作週期分割為不同的子工作週期。藉此可在低亮度時,避免工作週期分割過多而失真,在高亮度時,可提升影像更新率以避免畫面閃爍的問題發生。In summary, the present invention first detects the value of the image data, and then selects the reference signals of different numerical order according to the value of the image data for comparison to divide the duty cycle into different sub-working periods. Therefore, when the brightness is low, the work cycle is prevented from being excessively divided and distorted, and in the case of high brightness, the image update rate can be improved to avoid the problem of flickering of the screen.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...驅動裝置100. . . Drive unit
101...顯示器101. . . monitor
105...數位類比轉換器105. . . Digital analog converter
120...脈波分段單元120. . . Pulse segmentation unit
122...序列記數器122. . . Sequence counter
124...輸出調整電路124. . . Output adjustment circuit
126...數位比較器126. . . Digital comparator
130...階判決電路130. . . Order decision circuit
140...驅動電路140. . . Drive circuit
150...顯示面板150. . . Display panel
210、220、230、240...選擇電路210, 220, 230, 240. . . Selection circuit
410...工作週期410. . . Working period
421~424、432~438...子工作週期421~424, 432~438. . . Sub-work cycle
ID...影像資料ID. . . video material
SET...判斷信號SET. . . Judgment signal
PDM...分段脈波信號PDM. . . Segmented pulse signal
SET...判斷信號SET. . . Judgment signal
BS...參考信號BS. . . Reference signal
DBS...分段參考信號DBS. . . Segmented reference signal
C[3]C[2]C[1]C[0]...參考信號BS的位元C[3]C[2]C[1]C[0]. . . Bit of reference signal BS
S510~S540...流程圖步驟S510~S540. . . Flow chart step
圖1繪示本發明一實施例之顯示器之驅動裝置功能方塊圖。1 is a functional block diagram of a driving device of a display according to an embodiment of the present invention.
圖2繪示本發明第一實施例之四位元輸出調整電路。2 is a diagram showing a four-bit output adjustment circuit of the first embodiment of the present invention.
圖3(a)~圖3(c)繪示本發明第一實施例之參考信號BS與分段參考信號DBS的位元順序。3(a) to 3(c) illustrate the bit order of the reference signal BS and the segment reference signal DBS of the first embodiment of the present invention.
圖4(a)~圖4(c)繪示本發明第一實施例之分段脈波信號PDM之波形圖。4(a) to 4(c) are diagrams showing waveforms of the segmented pulse wave signal PDM according to the first embodiment of the present invention.
圖5繪示本發明第二實施例之影像資料的轉換方法流程圖。FIG. 5 is a flow chart showing a method for converting image data according to a second embodiment of the present invention.
100...驅動裝置100. . . Drive unit
101...顯示器101. . . monitor
105...數位類比轉換器105. . . Digital analog converter
120...脈波分段單元120. . . Pulse segmentation unit
122...序列記數器122. . . Sequence counter
124...輸出調整電路124. . . Output adjustment circuit
126...數位比較器126. . . Digital comparator
130...階判決電路130. . . Order decision circuit
140...驅動電路140. . . Drive circuit
150...顯示面板150. . . Display panel
ID...影像資料ID. . . video material
SET...判斷信號SET. . . Judgment signal
PDM...分段脈波信號PDM. . . Segmented pulse signal
SET...判斷信號SET. . . Judgment signal
BS...參考信號BS. . . Reference signal
DBS...分段參考信號DBS. . . Segmented reference signal
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98145802A TWI393352B (en) | 2009-12-30 | 2009-12-30 | Digital/analog converter and driving apparatus using the same and image data converting method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98145802A TWI393352B (en) | 2009-12-30 | 2009-12-30 | Digital/analog converter and driving apparatus using the same and image data converting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201123742A TW201123742A (en) | 2011-07-01 |
TWI393352B true TWI393352B (en) | 2013-04-11 |
Family
ID=45046804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98145802A TWI393352B (en) | 2009-12-30 | 2009-12-30 | Digital/analog converter and driving apparatus using the same and image data converting method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI393352B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI740715B (en) * | 2020-11-16 | 2021-09-21 | 明陽半導體股份有限公司 | Grayscale generating circuit and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200516865A (en) * | 2003-11-13 | 2005-05-16 | Silicon Touch Tech Inc | D/A converter applied in the multi-channel data driver circuit of display |
TW200733029A (en) * | 2006-02-24 | 2007-09-01 | Sitronix Technology Corp | Driving method for increasing gray level |
TW200803183A (en) * | 2006-06-15 | 2008-01-01 | Mstar Semiconductor Inc | Digital-to-analog converter and related method |
US20090066620A1 (en) * | 2007-09-07 | 2009-03-12 | Andrew Ian Russell | Adaptive Pulse-Width Modulated Sequences for Sequential Color Display Systems |
-
2009
- 2009-12-30 TW TW98145802A patent/TWI393352B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200516865A (en) * | 2003-11-13 | 2005-05-16 | Silicon Touch Tech Inc | D/A converter applied in the multi-channel data driver circuit of display |
TW200733029A (en) * | 2006-02-24 | 2007-09-01 | Sitronix Technology Corp | Driving method for increasing gray level |
TW200803183A (en) * | 2006-06-15 | 2008-01-01 | Mstar Semiconductor Inc | Digital-to-analog converter and related method |
US20090066620A1 (en) * | 2007-09-07 | 2009-03-12 | Andrew Ian Russell | Adaptive Pulse-Width Modulated Sequences for Sequential Color Display Systems |
Also Published As
Publication number | Publication date |
---|---|
TW201123742A (en) | 2011-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1172280C (en) | Modulation circuit and image display using said modulation circuit | |
US8288969B2 (en) | Driving apparatus of light emitting diode and driving method thereof | |
CN104021767B (en) | Gamma curve method of adjustment and its gal code voltage generator and display device | |
US6646654B2 (en) | Modulation circuit, image display using the same, and modulation method | |
TWI506609B (en) | Method for adjusting gamma curve and gamma voltage generator and display control system therof | |
US8493004B2 (en) | Ilumination device comprising multiple LEDs | |
CN209947399U (en) | LED display system | |
CN112204646A (en) | Driver for LED display | |
CN102054434B (en) | Light-emitting diode (LED) display system and method having pulse scattering mode | |
JP2005292804A (en) | Control device and image display device | |
CN112466250B (en) | LED driving chip display algorithm with low gray and high brush | |
TWI701648B (en) | LED display drive circuit, LED drive current modulation method, and LED display | |
US8049690B2 (en) | Circuit and method for driving light emitting diodes | |
CN103165075B (en) | Driving circuit of light emitting diode and method thereof | |
KR20160110749A (en) | Backlight unit, display apparatus having the same and operating method of backlight unit | |
TW202403716A (en) | Led display driving method, led display driving chip and device, display panel | |
CN113436574A (en) | LED driving chip algorithm for optimizing low-gray display effect | |
TWI393352B (en) | Digital/analog converter and driving apparatus using the same and image data converting method thereof | |
CN102026439B (en) | Driving device and driving method for light emitting diode | |
TWI507079B (en) | Driving apparatus of light emitting diode and driving method thereof | |
TWI799241B (en) | Gray-scale current dimming method, LED driver chip, display device and information processing device | |
TW201528869A (en) | Binary distribution control method of multi-channel light emitting diode driving system | |
CN102129827B (en) | Digital-analogue converter, drive device of display and image data conversion method | |
CN104582108A (en) | Pulse width modulation (PWM) method for LED (light-emitting diode) drive integrated circuit | |
CN116721627B (en) | Data signal processing method and data signal processing device |