TWI391471B - Preparation method of nitride fluorescent powder - Google Patents

Preparation method of nitride fluorescent powder Download PDF

Info

Publication number
TWI391471B
TWI391471B TW97145147A TW97145147A TWI391471B TW I391471 B TWI391471 B TW I391471B TW 97145147 A TW97145147 A TW 97145147A TW 97145147 A TW97145147 A TW 97145147A TW I391471 B TWI391471 B TW I391471B
Authority
TW
Taiwan
Prior art keywords
manufacturing
mixture
source
combination
powder
Prior art date
Application number
TW97145147A
Other languages
English (en)
Other versions
TW201020312A (en
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97145147A priority Critical patent/TWI391471B/zh
Publication of TW201020312A publication Critical patent/TW201020312A/zh
Application granted granted Critical
Publication of TWI391471B publication Critical patent/TWI391471B/zh

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

氮化物螢光粉之製造方法
本發明是有關於一種螢光粉之製造方法,特別是指一種氮化物螢光粉之製造方法。
在節能與環保的訴求下,開發高效率、省能源並符合環保需求的「綠色」照明光源已成為國內外迫切且重要的研究課題,其中尤以白光發光二極體(LED)因具有體積小、發熱量低、耗電量小、壽命長、反應速度快、環保、可平面封裝、易開發成輕薄短小產品等優點,且又無白熾燈泡高耗電、易碎及日光燈廢棄物含汞污染等缺點,進而被認為是未來取代傳統照明燈具之重要技術。而目前被視為最具應用潛力的LED螢光材料則是氮化物與氮氧化物螢光粉,因為其具有無毒性、化學安定、熱穩定性佳、高能源效率、高發光強度及化學組成與發光波長之可調變性等諸多優點。
目前主要的合成氮化物螢光粉的方法有下面三種:(1)固態反應法(solid-state reaction method),其通常係將反應物置於一氣壓燒結爐內進行反應,故又被稱為氣壓燒結法(gas pressure sintering method;簡稱GPS),更進一步地說,其係將一構成主體晶格之金屬氮化物粉體、一金屬元素或金屬氧化物粉體及一含矽化合物於高溫的氮氣環境下進行氮化反應,其中,最早且最常被使用的含矽化合物為Si3 N4 ,且由於此化合物的化學惰性,使固態反應法必須在 高溫(即一介於1500℃至2000℃之間的溫度)及高壓(通常是一介於10至100 atm之間的氮氣壓力)的環境下進行,所以需要使用較貴的反應設備,成本較高,雖然後來陸續有人使用不同的含矽化合物,但仍是需要在上述範圍的高溫高壓下進行反應。例如:Schnick之團隊在J.Phys.Chem.Solids 61(2000)2001上所發表的論文中所使用的含矽化合物為Si(NH)2 ,且其係在一介於1500℃至1650℃之間的溫度下進行反應,進而製得一化學式表示為Ba2 Si5 N8 :Eu2+ 的氮化物螢光粉,又例如US 7,252,788一案是將氮化鈣、氮化鋁、氮化矽與氧化銪粉混合後,於氮氣氣氛中加熱至1500℃下反應3小時,進而製得一化學式表示為Ca0.985 Si5 AlN3 :Eu的氮化物螢光粉。(2)熱碳還原法(carbothermal reduction nitridation method;簡稱CRN),其與固態反應法的差異在於:還進一步在氮化反應中添加碳粉作為還原劑,藉此使反應能在較低壓(即1~5 atm之間)的氮氣環境下進行,但也因此使反應時間變長,約需耗時8小時。此外,還需要準確地控制碳含量,因為過量的碳會形成碳化矽且會影響到螢光強度,而針對此問題,一般會在氮化反應完成後進行一除碳步驟,不過產物中的殘碳並不易完全去除,故此方法雖然能在較低的氮壓下進行反應,但是會有耗時、耗能及步驟繁複的問題。(3)氣體還原氮化法(gas-reduction nitridation method;簡稱GRN),其原理與熱碳還原法相同,不同的是此方法是以如甲烷等有機氣體代替碳粉作為還原劑進行氮化反應,此方法雖可解決 碳過量之問題,不過此方法因使用氣體且於高溫下進行反應,故極具有危險性且仍有耗時及耗能源的缺點。
此外,還有一種較少人使用的液相介質法,其係將SiCl4 與NH3 在一有機溶劑中混合並形成一前驅物(矽醯亞胺或矽醯胺),再將經分離洗淨後的前驅物與其他反應物進行鍛燒熱分解,進而製得一氮化物螢光粉,此方法的缺點是步驟繁複,因為在製備該前驅物前,還需要先形成鹵化物型態的氯化矽,且此化合物因易與氧氣或水氣反應而相當不穩定,再者,此反應須在約1600℃的高溫下進行且反應時間需超過40小時,因此,同樣會有耗時、耗能源及步驟繁複等缺點。
另,Xianqing Piao等人在Chem.Mater.,Vol.19,No.18(2007)提供了一種與固態反應法相近的製備方法,稱之為自蔓延高溫合成法(self-propagating high-temperature synthesis method;簡稱SHS)其與固態反應法不同的地方是此方法會先在氬氣環境下以電弧熔融(arc melting)的方式將反應物混合,但是同樣地需要在高溫(1450℃~1550℃)下反應6小時,才能製得一化學式表示為CaAlSiN3 :Eu的氮化物螢光粉。
綜上所述,現有的氮化物螢光粉之合成皆需要在較嚴苛的環境下進行,不是需要在高溫高壓下進行,就是需要較長的反應時間或是繁瑣的步驟,且通常產量不大,故生產成本高,使得目前市面上的氮化物螢光粉的每公斤售價高達台幣20萬元以上,導致其應用受限。因此,仍有需要 發展出一種製程簡單、省能源、低成本且產率高的氮化物螢光粉之製造方法。
鑒於以往用以製備氮化物螢光粉的方法大多需要在高溫高壓的環境下進行,或是反應時間較長,因此本案發明人思及將他先前應用於製備機械性質佳的氮化矽及導熱性佳的氮化鋁之製造方法轉用到螢光粉的領域,他以相近似於TW 247897一案中所揭示的方式來製備氮化物螢光粉。需特別說明的是,一般是不會將前者的製備方法轉用來製備後者,因為製造氮化矽和氮化鋁時是在製造一種純的化合物,而製造氮化物螢光粉時則是要在一主體晶格中摻入至少一活性劑離子,因此一般的認知是氮化物螢光粉製造必需是在高溫且長時間反應的條件下才能製得的,且在一般條件下要使多種反應物均勻混合也是不容易的,但是本案發明人跳脫傳統的思考模式,大膽地以短時間的操作條件進行螢光粉的製備並驚奇地發現確實可以製得能產生螢光的氮化物螢光粉。
本案製造方法是利用引燃劑燃燒時所釋放的熱量來引發氮化反應,如此一來,可以不用在高溫的環境下進行氮化反應,且整個製備過程僅需於起初加熱引燃劑時需要來自系統外界的少量能源,此外,該引燃劑在燃燒後會形成一具有緻密結構的生成物,進而將該引燃劑自身燃燒所產生的熱量包覆於其中,同時也可以減少氮氣的逸散,使反應更有效率。再者,發明人還思及搭配使用固態氮源取代 氮氣來提供氮,免去使用氣態氮源時所須要的高壓,使得氮化反應也不需要在高壓下進行。
因此,本發明之目的,即在提供一種製程簡單、省能源、低成本且產率高的氮化物螢光粉之製造方法。
於是,本發明氮化物螢光粉之製造方法係包含以下步驟:(a)提供一錠狀物,其係由一混合物所組成且該混合物包含一主體晶格(host lattice)矽(Si)離子源、一第一主體晶格陽離子源、一固態氮源、一鹵化銨鹽及一活化劑離子源;(b)以一燃燒後會形成具有緻密結構的生成物之引燃劑包覆該步驟(a)的錠狀物,以形成一反應錠;以及(c)加熱該步驟(b)的引燃劑(igniting agent)使其燃燒,以引發該錠狀物進行氮化反應,進而製得一氮化物螢光粉。
本發明氮化物螢光粉之製造方法的功效在於:發明人使用有別於現有需要在高溫高壓的環境下進行的製造方法,其係使用固態氮源並利用引燃劑燃燒反應所釋放的熱量來引發氮化反應,且由於該引燃劑在燃燒後所形成的生成物的結構緻密而能減少產生的熱量及反應所需的氮氣的逸散,故本發明製造方法可以在不使用昂貴的高溫高壓設備及較短的反應時間下完成氮化物螢光粉的製備。
本發明氮化物螢光粉之製造方法係包含以下步驟:(a)提供一錠狀物,其係由一混合物所組成且該混合物包含一主體晶格矽離子源、一第一主體晶格陽離子源、一固態氮源、一鹵化銨鹽及一活化劑離子源;(b)以一燃燒後會形成 具有緻密結構的生成物之引燃劑包覆該步驟(a)的錠狀物,以形成一反應錠;以及(c)加熱該步驟(b)的引燃劑使其燃燒,以引發該錠狀物進行氮化反應,進而製得一氮化物螢光粉。
更進一步說明的是,該步驟(a)中的固態氮源在受熱分解後,可以提供氮,且其分解所產生的氮可與上述的主體晶格矽離子及陽離子源所產生的離子充分接觸。當該固態氮源是擇自於一鹼金屬氮化物或一鹼土金屬氮化物時,其分解產生的金屬蒸氣(如鈉蒸氣)還可以催化氮化反應(詳細機制請參見下面描述鹵化銨鹽的作用的段落),並與鹵化銨鹽分解產生的含鹵素物質(如鹵化氫)反應,進而形成鹽類(如NaCl、NaF、KCl、BaCl2 等)以降低對反應設備的侵蝕,同時也可作為助熔劑。
另,該步驟(a)中的鹵化銨鹽的作用為:(1)因其本身的分解反應是需要吸收熱量,故可以降低燃燒溫度,減緩固態氮源的分解,使固態氮源能較為充分地被利用;(2)鹵化銨鹽分解後所產生的含鹵素物質會與金屬形成鹵化物型態的活化物質,如金屬鹵化物或鹵化矽,而金屬鹵化物或鹵化矽在上述金屬蒸氣的催化作用下,很容易與固態氮源所分解出來的氮氣反應,進而形成氮化物螢光粉的主體晶格,同時,活化劑離子源中的陽離子會因高溫而擴散進入主體晶格內,藉此製得一氮化物螢光粉;(3)鹵化銨鹽能與上述固態氮源分解後產生的金屬蒸氣反應生成鹽類,減少金屬蒸氣之逸出,降低對反應設備的侵蝕。
至於該步驟(b)中的引燃劑的作用,除了能在短時間內提供足夠熱量使該錠狀物進行氮化反應外,其燃燒後所產生的生成物,因具有緻密性,故能降低該固態氮源產生之氮氣及反應產生之熱量逸散的機率,有助於氮化物螢光粉的生成。
較佳地,該步驟(a)的錠狀物是藉由將該混合物置於一壓模機中而製得的,且較佳地,該壓模機的壓模壓力是設定在1 kg/cm2 至50 kg/cm2 之間。更佳地,該壓模壓力是設定在10 kg/cm2 至20 kg/cm2 之間。
較佳地,該步驟(a)的主體晶格矽離子源是擇自於矽元素、一含矽化合物,或此等之一組合。更佳地,該步驟(a)的主體晶格矽離子源是擇自於矽粉、二氧化矽、氧化矽、四碘化矽,或此等之一組合。
較佳地,該步驟(a)的第一主體晶格陽離子源是擇自於一金屬粉體、一金屬化合物,或此等之一組合,且該金屬是擇自於Be、Mg、Ca、Sr、Ba、Zn、Cd或Hg。更佳地,該步驟(a)的第一主體晶格陽離子源是擇自於鈣粉、鋇粉、鍶粉、氧化鈣,或此等之一組合。
較佳地,該步驟(a)的固態氮源是擇自於一鹼金屬氮化物、一鹼土金屬氮化物、一有機氮化物,或此等之一組合。更佳地,該步驟(a)的固態氮源是擇自於疊氮化鈉(NaN3 )、疊氮化鉀(KN3 )、Ba3 N2 ,或此等之一組合。本案之一具體實施例是添加疊氮化鈉;本案之另一具體實施例是添加疊氮化鉀。附註說明的是,上述的固態氮源所提供的氮離子 即是主體晶格中的陰離子。
較佳地,該步驟(a)的鹵化銨鹽是擇自於氟化銨、氯化銨、溴化銨、碘化銨,或此等之一組合。更佳地,該步驟(a)的鹵化銨鹽是擇自於氟化銨、氯化銨,或此等之一組合。本案之一具體實施例是添加氟化銨;本案之另一具體實施例是添加氯化銨。
較佳地,該步驟(a)的活化劑離子源是擇自於一過渡金屬元素、一含過渡金屬之化合物,或此等之一組合。更佳地,該步驟(a)的活化劑離子源是擇自於一過渡金屬粉體、一含過渡金屬之氧化物、一含過渡金屬之氫氧化物、一含過渡金屬之氮化物,或此等之一組合。最佳地,該過渡金屬是銪(Eu)或鈰(Ce)。本案之一具體實施例是添加氧化銪;本案之另一具體實施例是添加氮化銪;本案之又一具體實施例是添加氧化鈰。
較佳地,該步驟(a)的混合物還包含一第二主體晶格陽離子源,且該第二主體晶格陽離子源是擇自於一金屬粉體、一金屬化合物,或此等之一組合,且該金屬是擇自於Sc、Y、La、B、Al、Ga、In或Tl。更佳地,該步驟(a)的第二主體晶格陽離子源是擇自於鋁粉、釔粉、氫氧化鋁、二甲基胺鋁,或此等之一組合。
較佳地,以該錠狀物總重量計,該步驟(a)的固態氮源的含量是介於30wt%至80 wt%之間。當固態氮源的含量低於30 wt%時,會因氮源不足而無法進行氮化反應;當固態氮源的含量高於80 wt%時,在燃燒過程中,該固態氮源會 裂解並吸熱,進而導致反應溫度降低而無法繼續進行反應,甚至會有反應錠因大量氣體衝出而裂開的現象發生。更佳地,是介於30 wt%至65 wt%之間,最佳地,是介於33 wt%至55 wt%之間。
較佳地,以該錠狀物總重量計,該步驟(a)的鹵化銨鹽的含量是介於2 wt%至35 wt%之間。當鹵化銨鹽的含量低於2 wt%時,鹵化銨鹽便無法提供足夠的金屬蒸氣來催化反應,導致反應速率極低;當鹵化銨鹽的含量高於35 wt%時,則是會發生與固態氮源的含量過高時相同的狀況。更佳地,是介於10 wt%至26 wt%之間,最佳地,是介於12 wt%至20 wt%之間。
較佳地,以該錠狀物總重量計,該步驟(a)的活化劑離子源的含量是介於0.1 wt%至9 wt%之間。當活化劑離子源的含量低於0.1 wt%時,會因發光中心(即活化劑離子)不足而使得螢光強度降低;當活化劑離子源的含量高於9 wt%時,會因產生的多數個活化劑離子互相干擾而使得螢光強度降低。更佳地,是介於0.5 wt%至7.2 wt%之間,最佳地,是介於0.9 wt%至5.7 wt%之間。
本案所製得的氮化物螢光粉的化學式可以表示為Mm Aa Sib Nn :Z,且Mm Aa Sib Nn 表示該氮化物螢光粉的主體晶格部分,其中,M所表示的離子是源自於第一主體晶格陽離子源;A所表示的離子是源自於第二主體晶格陽離子源;Z所表示的離子是源自於活化劑離子源,而下標的m、a、b及n則是代表M離子、A離子、Si離子及N離子在主體晶 格中所佔的莫耳比值。
較佳地,m:a:b:n為1:1:1:3、1:0:1:2、1:1:4:7、2:0:5:8或1:0:7:10,更佳地,m:a:b:n為1:1:1:3或2:0:5:8。
較佳地,[由Mm Aa Sib Nn 所表示的主體晶格]與[由Z所表示的活化劑離子]的莫耳比值是介於1:0.0001至1:0.5之間,更佳地,莫耳比值是介於1:0.01至1:0.1之間,最佳地,莫耳比值為1:0.02、1:0.04、1:0.06、1:0.08或1:0.1。
較佳地,該步驟(b)的引燃劑完全包覆該步驟(a)的錠狀物,因為若有部分未包覆到時,引燃時所產生的氮氣就會從未包覆到的地方流出,進而造成內部氮氣及熱量較不足夠,以至於轉化率及螢光性質會較低。
較佳地,該步驟(b)的引燃劑是擇自於Ti/C(鈦粉與碳粉)混合物、Mg/Fe3 O4 (鎂粉與四氧化三鐵粉)混合物、Al/Fe3 O4 (鋁粉與四氧化三鐵粉)混合物、Al/Fe2 O3 (鋁粉與三氧化二鐵粉)混合物,或此等之一組合。更佳地,該步驟(b)的引燃劑為Ti/C混合物、Mg/Fe3 O4 混合物,或此等之一組合。本案之一具體實施例中的引燃劑是Mg/Fe3 O4 的混合物;本案之另一具體實施例中的引燃劑是Ti/C的混合物。
選擇性地,該步驟(b)的引燃劑為Mg/Fe3 O4 ,且該引燃劑燃燒後所產生的生成物是以氧化鎂(MgO)及鐵為主。此時,較佳地,該Mg/Fe3 O4 混合物中的Mg與Fe3 O4 的莫耳比 值是介於0.01至50之間,更佳地,該莫耳比值是介於3至5之間。
選擇性地,該步驟(b)的引燃劑為Ti/C混合物,且該引燃劑燃燒後所產生的生成物為碳化鈦(TiC)。此時,較佳地,該Ti/C混合物中的Ti與C的莫耳比值是介於0.01至50之間,更佳地,該莫耳比值是介於0.8至1.2之間。
較佳地,該步驟(b)是藉由一壓模機壓模成該反應錠,且較佳地,該壓模機的壓模壓力是設定在5 kg/cm2 至50 kg/cm2 之間。更佳地,該壓模壓力是設定在10 kg/cm2 至20 kg/cm2 之間。
較佳地,該步驟(c)的加熱處理是在一特定氛圍中進行,該特定氣圍中的氣體是擇自於氮氣、氨氣、惰性氣體,或此等之一組合。該特定氛圍的壓力可以是小於1 Mpa(相當於10 atm),本案之一具體實施例即是在0.5 MPa的壓力下進行的。
較佳地,該步驟(c)的加熱處理是在一密閉反應器中進行。
較佳地,該步驟(c)的加熱處理是藉由通電、電磁波或熱輻射的方式達成的。通電的方式可以是利用將鎢絲、鎢片、石墨片或石墨帶等電阻加熱件通電並靠近該反應錠的方式進行加熱。在本案之一具體實施例中是利用鎢絲線圈通電的方式來進行加熱。
由於以本案製造方法製得的氮化物螢光粉是被包覆於由引燃劑燃燒所形成的生成物內,因此,較佳地,該步驟 (c)還包括一將該氮化物螢光粉與該生成物分離的步驟。在本案之具體實施例中,發明人是藉由將該生成物敲開,並以勺子挖取的方式將該氮化物螢光粉與該生成物分離。
較佳地,依照本案製備氮化物螢光粉時,首先要製備出一如該步驟(a)中所述的錠狀物,該錠狀物是藉由將特定比例的主體晶格矽離子源、第一及第二主體晶格陽離子源、固態氮源、鹵化銨鹽及活化劑離子源混合均勻成一第一混合物,並以一壓模機將該第一混合物壓成一具有特定形狀之錠狀物而製得的。接著,以該引燃劑包覆住該步驟(a)之錠狀物,再以壓模機將其壓成一具有特定形狀之反應錠。在本案之具體實施例中,該錠狀物及該反應錠的形狀皆是圓柱體,但不需要以此為限,也可以是角柱體、平行四面體或角錐體等形狀。
最後,將該步驟(b)之反應錠置於一填充有氮氣的密閉反應器中,並加熱該反應錠,藉此使該反應錠外圈的引燃劑燃燒,並引發該反應錠內部的第一錠狀物進行氮化反應,即可得到一具有一外殼的經燃燒後的反應錠,且該外殼為一具有緻密結構的生成物,接著,將該經燃燒後的反應錠靜置一段時間,使其冷卻,再將其外殼敲開,即可製得一氮化物螢光粉。
如圖1所示,當該反應錠外圈的引燃劑的一端被引燃後,燃燒波隨即由該端往另一端傳遞,即如圖中的箭頭所表示的方向,且同時將燃燒所產生的熱量提供給該錠狀物中的反應物。由於引燃劑燃燒的速率非常快,因此燃燒波 從1a傳遞至1d是很快的,同樣地,當該錠狀物也開始燃燒時,該錠狀物中的燃燒波也是依照圖中的箭頭所表示的方向傳遞,即從2a傳遞至2d,進而生成氮化物螢光粉。
原則上,上述的密閉反應器中的壓力的大小會和下列因素有關:(1)固態氮源之種類與含量:使用不同種類的固態氮源時,由於其裂解所產生的氮氣量不同,因此使用的氮氣壓力當然不同。(2)反應錠體積與外覆之引燃劑厚度之相對大小。(3)引燃劑之種類、顆粒大小與緻密度。
另,本發明製造方法製得的氮化物螢光粉的性質可藉由調控該混合物中的各組份的種類及用量、錠狀物的大小及緻密度、引燃劑的種類、反應時的溫度及氮氣壓力等操作條件來控制。
實施例
本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。
<儀器來源>
1.壓模機:購自於莊合企業,型號為06。
2. X光繞射儀(X-ray diffraction Spectroscopy;以下簡稱XRD儀):購自於Rigaku,型號為DMAX-200/PC。
3.紫外光-可見光光譜儀(UV-Visible Spectroscopy;以下簡稱UV-Visible儀):購自於GBC,型號為cintra 10e。
4.光致發光儀(Photo-Luminescence Spectroscopy;以下簡稱PL儀):購自於Hitachi,型號為F-4500。
5.密閉反應器:由大應鐵工廠製造,其規格是參照李威昌於84年6月所發表的論文「燃燒合成高性能材料:製程開發與反應機構探討 」之第20至21頁上所記載的密閉反應器。
<化學品來源>
以下實施例中所使用的化學品來源如下表1所示。
製備本發明氮化物螢光粉
<實施例1>
本實施例的製備步驟如下:
(1)將莫耳比為1:0.4:1.080:0.525:0.002的矽粉、鈣粉、疊氮化鈉粉、氯化銨粉與氧化銪粉均勻混 合成一第一混合物,再以一壓模機(設定為20 kg/cm2 )將該第一混合物壓成一直徑為1 cm且長為1 cm的圓柱體形狀之錠狀物。
(2)將莫耳比為4:1的鎂粉與四氧化三鐵粉均勻混合成一第二混合物,並以該第二混合物將步驟(1)之錠狀物完全包覆,再以壓模機(設定為25 kg/cm2 )將其壓成一直徑為1.7 cm且長為1.7cm的圓柱體形狀之反應錠。
(3)將步驟(2)之反應錠置於一填充有5 atm的氮氣的密閉反應器中,並以鎢絲線圈通電(1千瓦之功率)加熱該反應錠,歷時30秒,藉此使該反應錠外圈的鎂粉與四氧化三鐵粉燃燒,並引發該反應錠內部的第一混合物進行氮化反應,歷時約1~3秒後,即可得到一具有一外殼的經燃燒後的反應錠。
(4)待該步驟(3)之經燃燒後的反應錠靜置一段時間,使其冷卻,再將其外殼敲開,即可製得一棕色多孔性粉狀物。
<實施例2~21>
實施例2至21是以與實施例1相同的製備步驟製備本發明氮化物螢光粉,不同之處在於:該步驟(1)中的第一混合物中的各組份的種類及用量,而該等組份的用量如下表2所示。
<實施例22>
實施例22是以與實施例2相同的製備步驟製備本發明氮化物螢光粉,不同之處在於:該步驟(2)的第二混合物是由莫耳比為1:1的鈦粉與碳粉混合而成的。
<實施例23>
實施例23是以與實施例2相同的製備步驟製備本發明氮化物螢光粉,不同之處在於:該步驟(1)的錠狀物的大小改為直徑為1.7 cm且長為1.7 cm;該步驟(2)的反應錠的大小改為直徑為4.98 cm且長為2.8 cm。
<實施例24及25>
實施例24及25是以與實施例2相同的製備步驟製備本發明氮化物螢光粉,不同之處在於:該步驟(3)之密閉反應器中所填充氣體種類及其壓力,其中,實施例24的步驟(3)之密閉反應器中所填充的是3 atm的氮氣,而實施例25則是總壓為5 atm的氮氣與氦氣。
<實施例26>
實施例26是以與實施例2相同的製備步驟製備本發明氮化物螢光粉,不同之處在於:該步驟(3)是以微波加熱的方式取代鎢絲線圈通電加熱。
發明人將實施例1至25製得之產物經簡單研磨後,分別以XRD儀鑑定、UV-Visible鑑定及PL鑑定(激發波長設定為460 nm),該等結果如下表3所示,可以得知該等實施例製得的產物確實為氮化物螢光粉。
綜上所述,本發明製造方法是利用一引燃劑燃燒時所釋放的熱量來引發氮化反應,且在上述具體實施例中,發明人僅需對該反應錠通電加熱約為30秒,即可使其表面上 的引燃劑燃燒並引發其內部的反應物進行氮化反應。此外,該引燃劑在燃燒後會形成一具有緻密結構的生成物,進而將該引燃劑自身燃燒所產生的熱量包覆於其中,同時也可以減少氮氣的逸散,使得該氮化反應在數秒間即可完成,不需要使用造價較為昂貴的設備(例如電熱爐),相較之下,現有技術皆須在高溫高壓下或是需歷經數小時才能完成氮化反應,本發明製造方法確實兼具製程簡單、省能源、低成本及產率高等優點。再者,使用本發明製造方法時所能使用的原料種類較廣,因此可以藉由選用價位較低的原料降低生產成本,故確實能達到本發明之功效。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
1‧‧‧錠狀物
2‧‧‧引燃劑
圖1是一示意圖,說明反應錠受熱時,引燃劑及錠狀物中的燃燒波的傳遞情形。
1‧‧‧錠狀物
2‧‧‧引燃劑

Claims (27)

  1. 一種氮化物螢光粉之製造方法,係包含以下步驟:(a)提供一錠狀物,其係由一混合物所組成且該混合物包含一主體晶格矽離子源、一第一主體晶格陽離子源、一固態氮源、一鹵化銨鹽及一活化劑離子源;(b)以一燃燒後會形成具有緻密結構的生成物之引燃劑包覆該步驟(a)的錠狀物,並形成一反應錠;以及(c)加熱該步驟(b)的引燃劑使其燃燒,以引發該錠狀物進行氮化反應,進而製得一氮化物螢光粉。
  2. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的錠狀物是藉由將該混合物置於一壓模機中而製得的。
  3. 依據申請專利範圍第2項所述的製造方法,其中,該壓模機的壓模壓力是設定在1 kg/cm2 至50 kg/cm2 之間。
  4. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的主體晶格矽離子源是擇自於矽元素、一含矽化合物,或此等之一組合。
  5. 依據申請專利範圍第4項所述的製造方法,其中,該步驟(a)的主體晶格矽離子源是擇自於矽粉、二氧化矽、氧化矽、四碘化矽,或此等之一組合。
  6. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的第一主體晶格陽離子源是擇自於一金屬粉體、一金屬化合物,或此等之一組合,且該金屬是擇自於Be、Mg、Ca、Sr、Ba、Zn、Cd或Hg。
  7. 依據申請專利範圍第6項所述的製造方法,其中,該步驟(a)的第一主體晶格陽離子源是擇自於鈣粉、鋇粉、鍶粉、氧化鈣,或此等之一組合。
  8. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的固態氮源是擇自於一鹼金屬氮化物、一鹼土金屬氮化物、一有機氮化物,或此等之一組合。
  9. 依據申請專利範圍第8項所述的製造方法,其中,該步驟(a)的固態氮源是擇自於NaN3 、KN3 、Ba3 N2 ,或此等之一組合。
  10. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的鹵化銨鹽是擇自於氟化銨、氯化銨、溴化銨、碘化銨,或此等之一組合。
  11. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的活化劑離子源是擇自於一過渡金屬元素、一含過渡金屬之化合物,或此等之一組合。
  12. 依據申請專利範圍第11項所述的製造方法,其中,該步驟(a)的活化劑離子源是擇自於一過渡金屬粉體、一含過渡金屬之氧化物、一含過渡金屬之氫氧化物、一含過渡金屬之氮化物,或此等之一組合。
  13. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(a)的混合物還包含一第二主體晶格陽離子源,且該第二主體晶格陽離子源是擇自於一金屬粉體、一金屬化合物,或此等之一組合,且該金屬是擇自於Sc、Y、La、B、Al、Ga、In或Tl。
  14. 依據申請專利範圍第13項所述的製造方法,其中,該步驟(a)的第二主體晶格陽離子源是擇自於鋁粉、釔粉、氫氧化鋁、二甲基胺鋁,或此等之一組合。
  15. 依據申請專利範圍第1項所述的製造方法,其中,以該錠狀物總重量計,該步驟(a)的固態氮源的含量是介於30 wt%至80 wt%之間。
  16. 依據申請專利範圍第1項所述的製造方法,其中,以該錠狀物總重量計,該步驟(a)的鹵化銨鹽的含量是介於2 wt%至35 wt%之間。
  17. 依據申請專利範圍第1項所述的製造方法,其中,以該錠狀物總重量計,該步驟(a)的活化劑離子源的含量是介於0.1 wt%至9 wt%之間。
  18. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(b)的引燃劑是擇自於Ti/C混合物、Mg/Fe3 O4 混合物、Al/Fe3 O4 混合物、Al/Fe2 O3 混合物,或此等之一組合。
  19. 依據申請專利範圍第18項所述的製造方法,其中,該步驟(b)的引燃劑為Mg/Fe3 O4 混合物。
  20. 依據申請專利範圍第19項所述的製造方法,其中,該Mg/Fe3 O4 混合物中的Mg與Fe3 O4 的莫耳比值是介於0.01至50之間。
  21. 依據申請專利範圍第18項所述的製造方法,其中,該步驟(b)的引燃劑為Ti/C混合物。
  22. 依據申請專利範圍第21項所述的製造方法,其中,該 Ti/C混合物中的Ti與C的莫耳比值是介於0.01至50之間。
  23. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(b)是藉由一壓模機壓模成該反應錠。
  24. 依據申請專利範圍第23項所述的製造方法,其中,該壓模機的壓模壓力是設定在5 kg/cm2 至50 kg/cm2 之間。
  25. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(c)的加熱處理是在一特定氛圍中進行,該特定氣圍中的氣體是擇自於氮氣、氨氣、惰性氣體,或此等之一組合。
  26. 依據申請專利範圍第25項所述的製造方法,其中,該步驟(c)的加熱處理是在一氮氣氛圍中進行。
  27. 依據申請專利範圍第1項所述的製造方法,其中,該步驟(c)的加熱處理是藉由通電、電磁波或熱輻射的方式達成的。
TW97145147A 2008-11-21 2008-11-21 Preparation method of nitride fluorescent powder TWI391471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97145147A TWI391471B (zh) 2008-11-21 2008-11-21 Preparation method of nitride fluorescent powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97145147A TWI391471B (zh) 2008-11-21 2008-11-21 Preparation method of nitride fluorescent powder

Publications (2)

Publication Number Publication Date
TW201020312A TW201020312A (en) 2010-06-01
TWI391471B true TWI391471B (zh) 2013-04-01

Family

ID=44832139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145147A TWI391471B (zh) 2008-11-21 2008-11-21 Preparation method of nitride fluorescent powder

Country Status (1)

Country Link
TW (1) TWI391471B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476905A (en) * 1987-09-18 1989-03-23 Nat Res Inst Metals Production of nitride
TW247897B (en) * 1993-02-25 1995-05-21 Nat Science Committee Method for producing aluminum nitride powder
TWI258499B (en) * 2002-03-22 2006-07-21 Nichia Corp Nitride phosphor and method for preparation thereof, and light emitting device
JP2007046004A (ja) * 2005-08-12 2007-02-22 Tohoku Univ 窒化物蛍光体の製造方法
US20080182127A1 (en) * 2004-04-27 2008-07-31 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
US20080197321A1 (en) * 2005-01-27 2008-08-21 Tsnational Institute For Materials Science Phosphor, its Production Method, and Light Emitting Apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476905A (en) * 1987-09-18 1989-03-23 Nat Res Inst Metals Production of nitride
TW247897B (en) * 1993-02-25 1995-05-21 Nat Science Committee Method for producing aluminum nitride powder
TWI258499B (en) * 2002-03-22 2006-07-21 Nichia Corp Nitride phosphor and method for preparation thereof, and light emitting device
US20080182127A1 (en) * 2004-04-27 2008-07-31 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
US20080197321A1 (en) * 2005-01-27 2008-08-21 Tsnational Institute For Materials Science Phosphor, its Production Method, and Light Emitting Apparatus
JP2007046004A (ja) * 2005-08-12 2007-02-22 Tohoku Univ 窒化物蛍光体の製造方法

Also Published As

Publication number Publication date
TW201020312A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
Kim et al. Luminescence properties of CaAlSiN3: Eu2+ phosphor prepared by direct-nitriding method using fine metal hydride powders
TWI364449B (en) Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
TWI555825B (zh) 螢光體及其用途
TW200829681A (en) Phosphor, method for production thereof, and light-emitting apparatus
Yao et al. Combustion synthesis and luminescent properties of a new material Li2 (Ba0. 99, Eu0. 01) SiO4: B3+ for ultraviolet light emitting diodes
WO2012167517A1 (zh) 一种白光led用氮化物/氧氮化物荧光粉的制备方法
Chen et al. The luminescence properties of novel α-Mg 2 Al 4 Si 5 O 18: Eu 2+ phosphor prepared in air
Chung et al. Combustion synthesis of Ca 2 Si 5 N 8: Eu 2+ phosphors and their luminescent properties
JP2004277663A (ja) サイアロン蛍光体とその製造方法
Chen et al. Comparative study on the synthesis, photoluminescence and application in InGaN-based light-emitting diodes of TAG: Ce3+ phosphors
JP5339976B2 (ja) 橙色蛍光体とその製造方法
Hua et al. Synthesis, luminescence properties and electronic structure of Tb 3+-doped Y 4− x SiAlO 8 N: x Tb 3+–a novel green phosphor with high thermal stability for white LEDs
CN105331365B (zh) 一种led荧光粉的制备方法
TWI391471B (zh) Preparation method of nitride fluorescent powder
TW201235445A (en) Manufacturing method for phosphor material using Mg-α-SiAlON as host lattice and post-process method of phosphor material
Lu et al. Hydrothermal synthesis, morphology and photoluminescence of hexagonal SrSiO3: Eu2+ micro-octahedrons and prism-like hollow microstructures
CN107418575A (zh) 一种铕激活的硅酸盐蓝绿色荧光粉及其制备方法
WO1999028410A1 (fr) Phosphore photoluminescent, son procede de preparation et son utilisation
Chung et al. Synthesis and luminescence properties of a red nitride phosphor (CaAlSiN3: Eu2+) for white light LED applications
TW201221622A (en) Luminescence material and manufacturing method and manufacturing equipment thereof
CN107760303B (zh) 一种低温固相制备YAG:Ce荧光粉的方法
Lia et al. Study on the preparation of luminescent material BaCaSiO4 by combustion method and its luminescent properties
TW201814028A (zh) 發光二極體用螢光材料之製備方法
Ge et al. Impact of Si/Al ratio in comburents on the combustion synthesis of Eu2+-doped α-SiAlON yellow phosphors
JP5512708B2 (ja) 希土類添加アルカリ土類金属シリケート蛍光体及びその製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees