TWI390749B - Transparent photodetector and method for manufacture the same - Google Patents

Transparent photodetector and method for manufacture the same Download PDF

Info

Publication number
TWI390749B
TWI390749B TW099102168A TW99102168A TWI390749B TW I390749 B TWI390749 B TW I390749B TW 099102168 A TW099102168 A TW 099102168A TW 99102168 A TW99102168 A TW 99102168A TW I390749 B TWI390749 B TW I390749B
Authority
TW
Taiwan
Prior art keywords
zinc oxide
transparent
active layer
transparent electrode
photodetector
Prior art date
Application number
TW099102168A
Other languages
Chinese (zh)
Other versions
TW201126737A (en
Inventor
Hung Wei Wu
Chin Min Hsiung
ru yuan Yang
Chien Lin Chen
Shu Ting Teng
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW099102168A priority Critical patent/TWI390749B/en
Publication of TW201126737A publication Critical patent/TW201126737A/en
Application granted granted Critical
Publication of TWI390749B publication Critical patent/TWI390749B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

透明光檢測器及其製造方法Transparent light detector and method of manufacturing same

本發明係有關於一種光檢測器,其特別有關於一種以氧化鋅薄膜為主動層與以氧化鋅摻雜金(ZnO:Au)為電極之金屬-半導體-金屬(MSM)結構透明光檢測器。The invention relates to a photodetector, in particular to a metal-semiconductor-metal (MSM) structured transparent photodetector with a zinc oxide film as an active layer and zinc oxide doped gold (ZnO: Au) as an electrode. .

隨著太空科技的日益發展,紫外光(ultraviolet,UV)波段偵測器的研究越顯重要;自1801年由W. Ritter和W. H. Wollaston發現紫外光波段後,一些相關的研究及應用,一直受到重視。太陽是紫外光的主要來源,一般可分為UV-A(400nm~320nm)、UV-B(320nm~280nm)、UV-C(280nm以下)三個波段。由於臭氧層和其它大氣層氣體會吸收來自太陽的紫外光,只有波長大於280nm的紫外光可到達地球表面,因此UV-A和UV-B波段的紫外光會影響人類的健康及地球的生態系統。由於紫外光被廣泛的應用及研究包括紫外光天文學、火焰偵測、飛彈偵測、燃燒技術、空對空通訊、污染監測、醫學、殺菌及農業等,所以對有效率且可信賴的紫外光偵測器的需求日益增加。目前,能將光訊號轉換為電訊號的光檢測器(Photodetector)的習知做法有三種:分別是採用真空管的光倍增管(Photo Multiplier,PMT)、使用矽材料的光檢測器、以及使用寬能隙材料之光檢測器。在這三種做法之中,光倍增管的成本高、需要高操作電壓、而且真空管容易破碎。矽光檢測器則具有製作容易、成本低廉、與低操作電壓等特性。又,紫外光檢測元件仍然以使用矽材料之光二極體所構成。然而,受限於矽之能隙在室溫下僅僅只有1.2eV。矽基光二極體之最靈敏波長並非落在紫外光區域以致於在紫外光區域的響應非常低。因此,若以寬能隙材料製作之光檢測器,由於材料可以具有較大的能隙(BandGap)。故非常適合應用於紫外光的偵測。With the development of space technology, the research of ultraviolet (UV) band detectors is more and more important. After the ultraviolet band was discovered by W. Ritter and WH Wollaston in 1801, some related research and applications have been Pay attention to it. The sun is the main source of ultraviolet light, and can be generally divided into three bands: UV-A (400 nm to 320 nm), UV-B (320 nm to 280 nm), and UV-C (below 280 nm). Since the ozone layer and other atmospheric gases absorb ultraviolet light from the sun, only ultraviolet light with a wavelength greater than 280 nm can reach the Earth's surface, so UV-A and UV-B ultraviolet light can affect human health and the Earth's ecosystem. Because UV light is widely used and researched, including ultraviolet astronomy, flame detection, missile detection, combustion technology, air-to-air communication, pollution monitoring, medicine, sterilization, and agriculture, it is efficient and reliable. The demand for detectors is increasing. At present, there are three conventional methods for converting a photo signal into a photodetector: a photomultiplier (PMT) using a vacuum tube, a photodetector using a germanium material, and a wide use. Light detector for energy gap materials. Among these three methods, the photomultiplier tube is high in cost, requires a high operating voltage, and the vacuum tube is easily broken. The twilight detector has the characteristics of easy fabrication, low cost, and low operating voltage. Further, the ultraviolet light detecting element is still constituted by a photodiode using a tantalum material. However, the energy gap limited by 矽 is only 1.2 eV at room temperature. The most sensitive wavelength of the bismuth-based photodiode does not fall in the ultraviolet region so that the response in the ultraviolet region is very low. Therefore, if a photodetector is made of a wide bandgap material, the material can have a larger bandgap (BandGap). Therefore, it is very suitable for the detection of ultraviolet light.

氧化鋅(ZnO)之能隙約為3.3eV,恰好是在藍光到UV光的波段。氧化鋅的激子束縛能約60meV,常溫的熱擾動(KT=25meV)無法使激子分開成為自由電子與自由電洞,因此氧化鋅的激子可以在室溫下存在。在應用上,氧化鋅廣泛用於半導體雷射、光檢測器、發光二極體與壓電感測器等。另外,氧化鋅具有本質n-type半導的特性,對於開發新型的UV光檢測器而言,是目前相當熱門的研究主題。另外,有鑑於目前環保與綠能科技意識抬頭,其節能玻璃中所應用之電致變色(electrochromic)片是相當重要的元件之一。電致色變技術是指利用外加電場,使離子注入物質中使之產生顏色變化,進而影響了物質對於光穿透抵抗能力。該技術除了用於建築節能窗材以調節照明與空調之負擔外,更可以延伸應用於各類低階數位顯示器上。然而,電致變色片需以電流驅動,故需外接電源裝置。若能以本發明所揭示之透明光檢測器提供電源,將可大幅應用在汽車擋風玻璃與天窗上,減少外加電源所造成的成本與環境污染。因此,為了解決上述問題,有需要提供一種透明光檢測器以克服先前技術的缺點。職是之故,申請人乃細心試驗與研究,並一本鍥而不捨的精神,終於研究出以氧化鋅薄膜作為主動層,以透明導電膜為電極之透明光檢測器。The energy gap of zinc oxide (ZnO) is about 3.3 eV, which happens to be in the blue to UV light band. The exciton binding energy of zinc oxide is about 60 meV, and the thermal perturbation at normal temperature (KT = 25 meV) cannot separate the excitons into free electrons and free holes, so the excitons of zinc oxide can exist at room temperature. In application, zinc oxide is widely used in semiconductor lasers, photodetectors, light-emitting diodes and piezoelectric sensors. In addition, zinc oxide has an essentially n-type semiconducting property, which is a very popular research topic for the development of new UV photodetectors. In addition, in view of the current awareness of environmental protection and green energy technology, the electrochromic sheet used in energy-saving glass is one of the most important components. Electrochromic technology refers to the use of an applied electric field to inject ions into a substance to cause a color change, thereby affecting the ability of the substance to resist light penetration. In addition to building energy-saving window materials to adjust the burden of lighting and air conditioning, the technology can be extended to a variety of low-end digital displays. However, the electrochromic sheet needs to be driven by an electric current, so an external power supply device is required. If the transparent light detector disclosed in the present invention can be used for power supply, it can be widely applied to the windshield and the sunroof of the automobile, thereby reducing the cost and environmental pollution caused by the external power supply. Therefore, in order to solve the above problems, it is desirable to provide a transparent light detector to overcome the disadvantages of the prior art. The job is the reason, the applicant is carefully tested and researched, and a perseverance spirit, finally developed a transparent photodetector with a transparent zinc oxide film as the active layer and a transparent conductive film as the electrode.

本發明之主要目的在提供一種透明光檢測器。該光檢測器為金屬-半導體-金屬(MSM)結構,其主動層係使用氧化鋅薄膜且電極係使用透明導電膜(ZnO:Au)並製作在玻璃基板上,以得到具全透光性之光檢測器。The main object of the present invention is to provide a transparent light detector. The photodetector is a metal-semiconductor-metal (MSM) structure, and the active layer is made of a zinc oxide thin film and the electrode is made of a transparent conductive film (ZnO: Au) and formed on a glass substrate to obtain a full light transmittance. Photodetector.

為達上述之主要目的,本發明提出一種透明光檢測器,其包含一玻璃基板、一氧化鋅緩衝層、一氧化鋅主動層以及一透明電極。該氧化鋅緩衝層以濺鍍法沈積在該玻璃基板上,其厚度為2~10nm。該氧化鋅主動層以濺鍍法沈積在該氧化鋅緩衝層上,其厚度為800~1200nm。該透明電極以濺鍍法沈積在該氧化鋅主動層上,其厚度為80~120nm。該氧化鋅緩衝層用以提高吸收效率,並且阻止電子-電洞對向下擴散移動與阻擋來自該玻璃基板的載子。該氧化鋅主動層用以在照光後產生光致電流效應。該透明電極用以作為接收該氧化鋅主動層電子-電洞對之傳導媒介。另外,該透明電極係為矩形指插式電極且係由氧化鋅摻雜金(Au)所構成之薄膜。To achieve the above primary object, the present invention provides a transparent photodetector comprising a glass substrate, a zinc oxide buffer layer, a zinc oxide active layer, and a transparent electrode. The zinc oxide buffer layer is deposited on the glass substrate by sputtering, and has a thickness of 2 to 10 nm. The zinc oxide active layer is deposited on the zinc oxide buffer layer by sputtering, and has a thickness of 800 to 1200 nm. The transparent electrode is deposited on the active layer of zinc oxide by sputtering, and has a thickness of 80 to 120 nm. The zinc oxide buffer layer serves to increase absorption efficiency and prevent electron-hole diffusion from moving downward and blocking carriers from the glass substrate. The zinc oxide active layer is used to generate a photocurrent effect after illumination. The transparent electrode is used as a conductive medium for receiving the electron-hole pair of the active layer of the zinc oxide. Further, the transparent electrode is a rectangular finger-inserted electrode and is a film made of zinc oxide doped with gold (Au).

根據本發明之一種透明光檢測器之另一目的,本發明之製造方法包含四個步驟:一、提供一玻璃基板;二、形成一氧化鋅緩衝層於該玻璃基板上;三、形成一氧化鋅主動層於該氧化鋅緩衝層上;以及四、形成一透明電極於該氧化鋅主動層上。According to another object of a transparent photodetector of the present invention, the manufacturing method of the present invention comprises four steps: first, providing a glass substrate; second, forming a zinc oxide buffer layer on the glass substrate; and forming an oxidation a zinc active layer is on the zinc oxide buffer layer; and fourth, a transparent electrode is formed on the zinc oxide active layer.

根據本發明之一種透明光檢測器之另一特徵,該氧化鋅主動層之載子遷移率係在30~150cm2 /V-S之間。According to another feature of a transparent photodetector of the present invention, the zirconium oxide active layer has a carrier mobility of between 30 and 150 cm 2 /VS.

根據本發明之一種透明光檢測器之另一特徵,該透明電極係為氧化鋅摻雜金(ZnO:Au)所構成之薄膜。According to another feature of a transparent photodetector of the present invention, the transparent electrode is a film composed of zinc oxide doped gold (ZnO: Au).

根據本發明之一種透明光檢測器之另一特徵,該透明電極之透光率在80~90%。According to another feature of a transparent photodetector of the present invention, the transparent electrode has a light transmittance of 80 to 90%.

根據本發明之一種透明光檢測器之另一特徵,該透明電極之電阻率在2×10-3 ~2×10-4 Ωcm之間。According to another feature of a transparent photodetector of the present invention, the transparent electrode has a resistivity of between 2 x 10 -3 and 2 x 10 -4 Ωcm.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features, and advantages of the present invention will become more apparent and understood.

雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並請了解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖式及/或所描述之特定實施例中。While the invention may be embodied in various forms, the embodiments illustrated in the drawings It is not intended to limit the invention to the drawings and/or the particular embodiments described.

請參照第1圖,其所示為金屬-半導體-金屬(metal-semiconductor-metal,MSM)結構之光檢測器100。該MSM結構之光檢測器100包含一玻璃基板110、一氧化鋅緩衝層120、一氧化鋅主動層130以及一透明電極140。玻璃基板110之厚度約為200μm。該氧化鋅緩衝層120以濺鍍法沈積在該玻璃基板110上,其厚度為2~10nm且以5nm為最佳。該氧化鋅主動層130以濺鍍法沈積在該氧化鋅緩衝層120上,其厚度為800~1200nm且以950nm為最佳;其能隙值係約為3.3且為無摻雜任何雜質之半導體材料。該透明電極140以濺鍍法沈積在該氧化鋅主動層130上,其厚度為80~120nm且以100nm為最佳。該氧化鋅緩衝層120用以提高吸收效率,並且阻止電子-電洞對向下擴散移動與阻擋來自該玻璃基板110的載子。該氧化鋅主動層130用以在照光後產生光致電流效應。該透明電極140用以作為接收該氧化鋅主動層130電子-電洞對之傳導媒介。另外,該透明電極140係為矩形指插式電極且係由氧化鋅摻雜金(Au)所構成之薄膜。需注意的是,經實際量測結果得該氧化鋅主動層130之表面平均粗糙度在3~25nm以及載子遷移率係在30~150cm2 /V-S之間。以本發明之最佳實施例而言,其該透明電極140之載子濃度在8×1018 ~6×1020 cm-3 之間、透光率在80~90%、電阻率在2×10-3 ~2×10-4 Ωcm之間。該MSM結構之透明光檢測器100可實質應用在光波長約為370nm之紫外光波段。Referring to FIG. 1, a photo-detector 100 of a metal-semiconductor-metal (MSM) structure is shown. The photodetector 100 of the MSM structure comprises a glass substrate 110, a zinc oxide buffer layer 120, a zinc oxide active layer 130, and a transparent electrode 140. The glass substrate 110 has a thickness of about 200 μm. The zinc oxide buffer layer 120 is deposited on the glass substrate 110 by sputtering, and has a thickness of 2 to 10 nm and preferably 5 nm. The zinc oxide active layer 130 is deposited on the zinc oxide buffer layer 120 by sputtering, and has a thickness of 800 to 1200 nm and is preferably 950 nm; the gap value is about 3.3 and is a semiconductor doped without any impurities. material. The transparent electrode 140 is deposited on the zinc oxide active layer 130 by sputtering, and has a thickness of 80 to 120 nm and preferably 100 nm. The zinc oxide buffer layer 120 serves to increase absorption efficiency and prevent electron-hole diffusion from moving downward and blocking carriers from the glass substrate 110. The zinc oxide active layer 130 is used to generate a photocurrent effect after illumination. The transparent electrode 140 serves as a conductive medium for receiving the electron-hole pair of the zinc oxide active layer 130. Further, the transparent electrode 140 is a rectangular finger-inserted electrode and is a film made of zinc oxide doped with gold (Au). It should be noted that the actual average surface roughness of the zinc oxide active layer 130 is 3 to 25 nm and the carrier mobility is between 30 and 150 cm 2 /VS. In a preferred embodiment of the present invention, the transparent electrode 140 has a carrier concentration of between 8×10 18 and 6×10 20 cm −3 , a light transmittance of 80 to 90%, and a resistivity of 2×. Between 10 -3 and 2 × 10 -4 Ωcm. The transparent photodetector 100 of the MSM structure can be applied substantially in the ultraviolet light band having a wavelength of about 370 nm.

請參照第2圖,其所示為為金屬-絕緣體-半導體(metal-insulator-metal,MIS)結構之光檢測器200。該MIS結構之光檢測器200包含一玻璃基板110、一氧化鋅緩衝層120、一氧化鋅主動層130、一二氧化矽絕緣層210以及一透明電極140。該玻璃基板110之厚度約為200μm。該氧化鋅緩衝層120以濺鍍法沈積在該玻璃基板110上,其厚度為2~10nm且以5nm為最佳。該氧化鋅主動層130以濺鍍法沈積在該氧化鋅緩衝層120上,其厚度為800~1200nm且以950nm為最佳。該氧化鋅主動層130之能隙值係約為3.3且為無摻雜任何雜質之半導體材料。該二氧化矽絕緣層210係以電漿輔助化學氣相沈積法形成在該氧化鋅主動層130上,其厚度為3~8nm且以5nm為最佳。該透明電極140以濺鍍法沈積在該二氧化矽絕緣層210上,其厚度為80~120nm且以100nm為最佳。該氧化鋅緩衝層120用以提高吸收效率,並且阻止電子-電洞對向下擴散移動與阻擋來自該玻璃基板110的載子。該氧化鋅主動層130用以在照光後產生光致電流效應。該二氧化矽絕緣層210用以減少該氧化鋅薄膜之表面能階、降低低頻內部增益現象、降低該MIS結構光檢測器200之暗電流與防止該氧化鋅主動層130材料內部之擴散效應。該透明電極140用以作為接收該氧化鋅主動層130電子-電洞對之傳導媒介。另外,該透明電極140係為矩形指插式電極且係由氧化鋅摻雜金(Au)所構成之薄膜。以本發明之最佳實施例而言,其該該氧化鋅主動層130之載子遷移率係在30~150cm2 /V-S與平均粗糙度在3~25nm;該透明電極140之載子濃度在8×1018 ~6×1020 cm-3 之間、透光率在80~90%、電阻率在2×10-3 ~2×10-4 Ωcm之間。該MIS結構之透明光檢測器200可實質應用在光波長約為370nm之紫外光波段。Referring to FIG. 2, a photodetector 200 of a metal-insulator-metal (MIS) structure is shown. The MIS structure photodetector 200 includes a glass substrate 110, a zinc oxide buffer layer 120, a zinc oxide active layer 130, a germanium dioxide insulating layer 210, and a transparent electrode 140. The glass substrate 110 has a thickness of about 200 μm. The zinc oxide buffer layer 120 is deposited on the glass substrate 110 by sputtering, and has a thickness of 2 to 10 nm and preferably 5 nm. The zinc oxide active layer 130 is deposited on the zinc oxide buffer layer 120 by sputtering, and has a thickness of 800 to 1200 nm and preferably 950 nm. The zinc oxide active layer 130 has a band gap value of about 3.3 and is a semiconductor material that is free of any impurities. The ceria insulating layer 210 is formed on the zinc oxide active layer 130 by plasma-assisted chemical vapor deposition, and has a thickness of 3 to 8 nm and preferably 5 nm. The transparent electrode 140 is deposited on the ceria insulating layer 210 by sputtering, and has a thickness of 80 to 120 nm and preferably 100 nm. The zinc oxide buffer layer 120 serves to increase absorption efficiency and prevent electron-hole diffusion from moving downward and blocking carriers from the glass substrate 110. The zinc oxide active layer 130 is used to generate a photocurrent effect after illumination. The ceria insulating layer 210 is used to reduce the surface energy level of the zinc oxide film, reduce the low frequency internal gain phenomenon, reduce the dark current of the MIS structure photodetector 200, and prevent the diffusion effect inside the zinc oxide active layer 130 material. The transparent electrode 140 serves as a conductive medium for receiving the electron-hole pair of the zinc oxide active layer 130. Further, the transparent electrode 140 is a rectangular finger-inserted electrode and is a film made of zinc oxide doped with gold (Au). In a preferred embodiment of the present invention, the zirconium oxide active layer 130 has a carrier mobility of 30 to 150 cm 2 /VS and an average roughness of 3 to 25 nm; the carrier concentration of the transparent electrode 140 is Between 8 × 10 18 and 6 × 10 20 cm -3 , the light transmittance is 80 to 90%, and the specific resistance is between 2 × 10 -3 and 2 × 10 -4 Ωcm. The transparent light detector 200 of the MIS structure can be applied substantially in the ultraviolet light band having a light wavelength of about 370 nm.

在製作方法上,本發明之製程步驟為:In the manufacturing method, the process steps of the present invention are:

A.首先提供一玻璃基板110。該玻璃基板110係使用Corning Eagle 2000系列玻璃,其尺寸為2000μm×2000μm×200μm(長寬高)。其玻璃基板110之清洗步驟為:浸於Pirana溶液中沸騰1小時,待降回至室溫後再將玻璃基板110取出以去離子水沖洗數次;再浸於二次去離子水中以超音波震盪15分鐘後以氮氣槍吹乾。其中,Pirana溶液配置方式:取濃硫酸(H2 SO4 )加入過氧化氫(H2 O2 )中,體積比為H2 SO4 :H2 O2 =3:1。A. First, a glass substrate 110 is provided. The glass substrate 110 was a Corning Eagle 2000 series glass having a size of 2000 μm × 2000 μm × 200 μm (length, width and height). The cleaning step of the glass substrate 110 is: immersing in the Pirana solution for boiling for 1 hour, and then returning to the room temperature, then taking out the glass substrate 110 and washing it with deionized water several times; then immersing in the secondary deionized water to supersonicize After shaking for 15 minutes, it was blown dry with a nitrogen gun. Among them, the Pirana solution is configured by adding concentrated sulfuric acid (H 2 SO 4 ) to hydrogen peroxide (H 2 O 2 ) in a volume ratio of H 2 SO 4 :H 2 O 2 =3:1.

B.形成一氧化鋅緩衝層120於該玻璃基板110上,係利用濺鍍法在功率為350W~700W、氧氣流量為1.5sccm~3.0sccm、腔體壓力為10-2 ~10-3 torr與腔體溫度為100~300℃之條件下形成厚度為2~10nm之薄膜。其中,以功率為350W、氧氣流量為2sccm、腔體壓力為10-3 torr與腔體溫度為200℃之條件為最佳。B. forming a zinc oxide buffer layer 120 on the glass substrate 110 by using a sputtering method with a power of 350 W to 700 W, an oxygen flow rate of 1.5 sccm to 3.0 sccm, and a chamber pressure of 10 -2 to 10 -3 torr and A film having a thickness of 2 to 10 nm is formed under the conditions of a cavity temperature of 100 to 300 °C. Among them, the condition is that the power is 350 W, the oxygen flow rate is 2 sccm, the chamber pressure is 10 -3 torr, and the chamber temperature is 200 °C.

C.形成一氧化鋅主動層130於該氧化鋅緩衝層120上,係利用濺鍍法在功率為350W~700W、氧氣流量為1.5sccm~3.0sccm、腔體壓力為10-2 ~10-3 torr與腔體溫度為100~300℃之條件下形成厚度為800~1200nm之薄膜。其中,以功率為350W、氧氣流量為2sccm、腔體壓力為10-3 torr與腔體溫度為200℃之條件為最佳。C. forming a zinc oxide active layer 130 on the zinc oxide buffer layer 120, using a sputtering method at a power of 350 W to 700 W, an oxygen flow rate of 1.5 sccm to 3.0 sccm, and a chamber pressure of 10 -2 to 10 -3 A film having a thickness of 800 to 1200 nm is formed under the conditions of a reactor temperature of 100 to 300 ° C. Among them, the condition is that the power is 350 W, the oxygen flow rate is 2 sccm, the chamber pressure is 10 -3 torr, and the chamber temperature is 200 °C.

D.形成一透明電極140於該氧化鋅主動層130上,係利用濺鍍法在功率為300W~700W、氧氣流量為1sccm~3.0sccm、腔體壓力為10-2 ~10-3 torr與腔體溫度為150~250℃之條件下,形成氧化鋅摻雜金(ZnO:Au)且厚度為80~120nm之薄膜。其中,以功率為400W、氧氣流量為1.5sccm、腔體壓力為10-3 torr與腔體溫度為250℃之條件為最佳。D. forming a transparent electrode 140 on the zinc oxide active layer 130, using a sputtering method at a power of 300 W to 700 W, an oxygen flow rate of 1 sccm to 3.0 sccm, a cavity pressure of 10 -2 to 10 -3 torr and a cavity A film having a zinc oxide doped gold (ZnO: Au) and having a thickness of 80 to 120 nm is formed at a body temperature of 150 to 250 °C. Among them, the power is 400W, the oxygen flow rate is 1.5sccm, the chamber pressure is 10 -3 torr and the chamber temperature is 250 °C.

以上之製程步驟,係以MSM結構光檢測器100為主。若是MIS結構光檢測器200,其需形成一二氧化矽絕緣層210於該氧化鋅主動層130上,係利用電漿輔助化學氣相沉積(PECVD)沉積法在功率為100W、氧氣流量為70sccm、腔體壓力為10-5 torr與腔體溫度為500℃之條件下,形成厚度為5nm之薄膜。再以濺鍍法將該透明電極140製作在該二氧化矽絕緣層210上,以形成MIS結構光檢測器200。需注意的是,本發明係使用13.56MHz之射頻磁控濺鍍技術。該透明電極140之電阻率在2×10-3 ~2×10-4 Ωcm之間、載子濃度在8×1018 ~6×1020 cm-3 之間、載子遷移率係在20~55cm2 /V-S之間以及透光率在80~90%。本發明之MSM結構光檢測器100之光電流在4×10-5 ~6×10-2 之間,其直流偏壓在0~10V的範圍中;MIS結構光檢測器200之光電流在4×10-8 ~6×10-4 之間,其直流偏壓在0~10V的範圍中。The above process steps are based on the MSM structured photodetector 100. In the case of the MIS structured photodetector 200, a cerium oxide insulating layer 210 is formed on the zinc oxide active layer 130 by a plasma assisted chemical vapor deposition (PECVD) deposition method at a power of 100 W and an oxygen flow rate of 70 sccm. A film having a thickness of 5 nm was formed under the conditions of a cavity pressure of 10 -5 torr and a cavity temperature of 500 °C. The transparent electrode 140 is formed on the ceria insulating layer 210 by sputtering to form the MIS structured photodetector 200. It should be noted that the present invention uses a 13.56 MHz RF magnetron sputtering technique. The resistivity of the transparent electrode 140 is between 2×10 -3 and 2×10 -4 Ωcm, the carrier concentration is between 8×10 18 and 6×10 20 cm -3 , and the carrier mobility is 20~. The distance between 55cm 2 /VS and the light transmittance is 80-90%. The photocurrent of the MSM structured photodetector 100 of the present invention is between 4×10 -5 and 6×10 -2 , and the DC bias voltage is in the range of 0 to 10 V; the photocurrent of the MIS structured photodetector 200 is 4 Between ×10 -8 and 6×10 -4 , the DC bias voltage is in the range of 0 to 10V.

請參照第3圖,其所示為該透明電極140之上視圖。虛線部分為主動區150,意即接收入射光子之區域。該透明電極140係為矩形指插式電極,其該氧化鋅主動層130之面積為200×200μm2 、指寬(W)為10μm與指隙(S)為10μm。Please refer to FIG. 3, which shows a top view of the transparent electrode 140. The dotted line is the active area 150, which means the area where the incident photons are received. The transparent electrode 140 is a rectangular finger-inserted electrode having an area of the silicon oxide active layer 130 of 200 × 200 μm 2 , a finger width (W) of 10 μm, and a finger gap (S) of 10 μm.

綜上所述,本發明提供一種MSM與MIS結構透明光檢測器100、200及其製造方法。其主動層130係使用氧化鋅薄膜且電極係使用透明導電膜(ZnO:Au)並製作在玻璃基板110上,以得到具全透光性之光檢測器100、200。本發明之透明光檢測器100、200提供足夠之驅動電流供給電致變色片,將可大幅應用在汽車擋風玻璃與天窗上,減少外加電源所造成的成本與環境污染。In summary, the present invention provides an MSM and MIS structure transparent photodetector 100, 200 and a method of fabricating the same. The active layer 130 is made of a zinc oxide thin film and the electrode is made of a transparent conductive film (ZnO: Au) and formed on the glass substrate 110 to obtain photodetectors 100 and 200 having full light transmittance. The transparent photodetector 100, 200 of the present invention provides sufficient driving current to supply the electrochromic sheet, which can be widely applied to the windshield and the sunroof of the automobile, thereby reducing the cost and environmental pollution caused by the external power source.

雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, it is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. As explained above, various modifications and variations can be made without departing from the spirit of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100...透明光檢測器(MSM結構)100. . . Transparent light detector (MSM structure)

110...玻璃基板110. . . glass substrate

120...緩衝層120. . . The buffer layer

130...主動層130. . . Active layer

140...透明電極140. . . Transparent electrode

150...主動區150. . . Active zone

200...透明光檢測器(MIS結構)200. . . Transparent light detector (MIS structure)

210...絕緣層210. . . Insulation

第1圖所示為MSM結構之透明光檢測器。Figure 1 shows the transparent photodetector of the MSM structure.

第2圖所示為MIS結構之透明光檢測器。Figure 2 shows the transparent light detector of the MIS structure.

第3圖所示為透明電極之上視圖。Figure 3 shows a top view of the transparent electrode.

100...透明光檢測器(MSM結構)100. . . Transparent light detector (MSM structure)

110...玻璃基板110. . . glass substrate

120...緩衝層120. . . The buffer layer

130...主動層130. . . Active layer

140...透明電極140. . . Transparent electrode

Claims (10)

一種透明光檢測器,其包含:一玻璃基板;一氧化鋅緩衝層,係以濺鍍法沈積在該玻璃基板上;一氧化鋅主動層,係以濺鍍法沈積在該氧化鋅緩衝層上;以及一透明電極,係以濺鍍法沈積在該氧化鋅主動層上;其中,該透明電極係為矩形指插式電極,且係由氧化鋅摻雜金(Au)、鉑(Pt)、銅(Cu)與銀(Ag)之族群中之一種金屬材料所構成之薄膜。A transparent photodetector comprising: a glass substrate; a zinc oxide buffer layer deposited on the glass substrate by sputtering; and a zinc oxide active layer deposited on the zinc oxide buffer layer by sputtering And a transparent electrode deposited on the active layer of zinc oxide by sputtering; wherein the transparent electrode is a rectangular finger-inserted electrode, and is doped with zinc oxide (Au), platinum (Pt), A thin film of a metal material of a group of copper (Cu) and silver (Ag). 如申請專利範圍第1項所述之透明光檢測器,更包含:一二氧化矽絕緣層,係沈積在該氧化鋅主動層與該透明電極之間。The transparent photodetector of claim 1, further comprising: a germanium dioxide insulating layer deposited between the active layer of the zinc oxide and the transparent electrode. 如申請專利範圍第1項所述之透明光檢測器,其中該氧化鋅緩衝層之厚度為2~10nm、該氧化鋅主動層之厚度為800~1200nm以及該透明電極之厚度為80~120nm。The transparent photodetector according to claim 1, wherein the zinc oxide buffer layer has a thickness of 2 to 10 nm, the zinc oxide active layer has a thickness of 800 to 1200 nm, and the transparent electrode has a thickness of 80 to 120 nm. 如申請專利範圍第1項所述之透明光檢測器,其中該透明電極係為氧化鋅摻雜金(ZnO:Au)所構成之薄膜。The transparent photodetector according to claim 1, wherein the transparent electrode is a film made of zinc oxide doped gold (ZnO: Au). 如申請專利範圍第1項所述之透明光檢測器,其中該透明電極之電阻率在2×10-3 ~2×10-4 Ωcm之間。The transparent photodetector according to claim 1, wherein the transparent electrode has a resistivity of between 2 × 10 -3 and 2 × 10 -4 Ωcm. 一種透明光檢測器之製造方法,其包含以下步驟:A.提供一玻璃基板;B.形成一氧化鋅緩衝層於該玻璃基板上;C.形成一氧化鋅主動層於該氧化鋅緩衝層上;以及D.形成一透明電極於該氧化鋅主動層上。A method for manufacturing a transparent photodetector, comprising the steps of: A. providing a glass substrate; B. forming a zinc oxide buffer layer on the glass substrate; C. forming a zinc oxide active layer on the zinc oxide buffer layer And D. form a transparent electrode on the active layer of zinc oxide. 如申請專利範圍第6項所述之製造方法,其中該步驟(B)係利用濺鍍法在功率為350W~700W、氧氣流量為1.5sccm~3.0sccm、腔體壓力為10-2 ~10-3 torr與腔體溫度為100~300℃之條件下形成厚度為2~10nm之薄膜。The manufacturing method according to claim 6, wherein the step (B) is performed by a sputtering method at a power of 350 W to 700 W, an oxygen flow rate of 1.5 sccm to 3.0 sccm, and a chamber pressure of 10 -2 to 10 - A film having a thickness of 2 to 10 nm is formed under conditions of 3 torr and a cavity temperature of 100 to 300 °C. 如申請專利範圍第6項所述之製造方法,其中該步驟(C)係利用濺鍍法在功率為350W~700W、氧氣流量為1.5sccm~3.0sccm、腔體壓力為10-2 ~10-3 torr與腔體溫度為100~300℃之條件下形成厚度為800~1200nm之薄膜。The manufacturing method according to claim 6, wherein the step (C) is performed by a sputtering method at a power of 350 W to 700 W, an oxygen flow rate of 1.5 sccm to 3.0 sccm, and a chamber pressure of 10 -2 to 10 - A film having a thickness of 800 to 1200 nm is formed under conditions of 3 torr and a cavity temperature of 100 to 300 °C. 如申請專利範圍第6項所述之製造方法,其中該步驟(D)係利用濺鍍法在功率為300W~700W、氧氣流量為1sccm~3.0sccm、腔體壓力為10-2 ~10-3 torr與腔體溫度為150~250℃之條件下,形成氧化鋅摻雜金(ZnO:Au)且厚度為80~120nm之薄膜。The manufacturing method according to claim 6, wherein the step (D) is performed by a sputtering method at a power of 300 W to 700 W, an oxygen flow rate of 1 sccm to 3.0 sccm, and a chamber pressure of 10 -2 to 10 -3 . A thin film of zinc oxide doped with gold (ZnO: Au) and having a thickness of 80 to 120 nm is formed under the conditions of a reactor temperature of 150 to 250 ° C. 如申請專利範圍第6項所述之製造方法,其中該透明電極係為矩形指插式電極,其該氧化鋅主動層之面積為200×200μm2 、指寬為10μm與指隙為10μm。The manufacturing method according to claim 6, wherein the transparent electrode is a rectangular finger-inserted electrode, wherein the zinc oxide active layer has an area of 200 × 200 μm 2 , a finger width of 10 μm and a finger gap of 10 μm.
TW099102168A 2010-01-26 2010-01-26 Transparent photodetector and method for manufacture the same TWI390749B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099102168A TWI390749B (en) 2010-01-26 2010-01-26 Transparent photodetector and method for manufacture the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099102168A TWI390749B (en) 2010-01-26 2010-01-26 Transparent photodetector and method for manufacture the same

Publications (2)

Publication Number Publication Date
TW201126737A TW201126737A (en) 2011-08-01
TWI390749B true TWI390749B (en) 2013-03-21

Family

ID=45024619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099102168A TWI390749B (en) 2010-01-26 2010-01-26 Transparent photodetector and method for manufacture the same

Country Status (1)

Country Link
TW (1) TWI390749B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI392857B (en) * 2010-04-19 2013-04-11 Univ Kun Shan Transparent photodetector with multilayer structure
TWI691095B (en) * 2019-01-02 2020-04-11 逢甲大學 Dual band photodetector and manufacturing method thereof

Also Published As

Publication number Publication date
TW201126737A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
TWI375333B (en)
Chen et al. The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector
CN108376716A (en) A kind of novel oxidized gallium base PIN structural UV photodetector and preparation method thereof
Lin et al. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell
CN104157720B (en) A kind of silica-based avalanche photodetector of Graphene and preparation method of mixed structure
RU2013148840A (en) METHOD AND DEVICE FOR INTEGRATING INFRARED (IR) PHOTOELECTRIC ELEMENT ON THIN-FILMED PHOTOELECTRIC ELEMENT
WO2021249344A1 (en) Photoelectric detector and preparation method therefor
Shao et al. High Responsivity, Bandpass Near-UV Photodetector Fabricated From PVA-$\hbox {In} _ {2}\hbox {O} _ {3} $ Nanoparticles on a GaN Substrate
Nguyen et al. Recent advances in self‐powered and flexible UVC photodetectors
CN113299789A (en) Solar blind ultraviolet photoelectric detector and application thereof
CN108630782A (en) A kind of width detecting band dual plasma work photodetector and preparation method thereof
JP2004172167A (en) Solar cell composed of transition metal oxide
TWI390749B (en) Transparent photodetector and method for manufacture the same
Hwang et al. Hybrid visible-blind ultraviolet photodetector based on NiO thin-film phototransistor and p-NiO/n-Si heterojunction diode
Hwang et al. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes
Hwang et al. Using MgO capping layer to enhance the performance of ZnO based metal-semiconductor-metal photodetectors
Ghosh et al. High performance broad-band ultraviolet-B to visible photodetection based on planar Al-Zn2SnO4-Al structure
Chen et al. Amorphous MgInO ultraviolet solar-blind photodetectors
CN110491966B (en) Platinum telluride/methyl ammonia lead bromine perovskite single crystal heterojunction photoelectric detector and manufacturing method thereof
US9142790B2 (en) PhotoSensor and photodiode therefor
Fan et al. P‐1.17: Ultraviolet Light Response of Amorphous Oxide Thin‐Film Transistors with Double‐Stacked Channel Layers
Lian et al. High Deep-Ultraviolet Quantum Efficiency GaN P—I—N Photodetectors with Thin P-GaN Contact Layer
CN108281496A (en) A kind of silicon substrate PiN ultraviolet photodiodes and preparation method thereof
CN114709279A (en) Ultraviolet detector chip with inverted structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees