TWI389456B - Input data recovery circuit for asynchronous serial data transmission - Google Patents

Input data recovery circuit for asynchronous serial data transmission Download PDF

Info

Publication number
TWI389456B
TWI389456B TW98128272A TW98128272A TWI389456B TW I389456 B TWI389456 B TW I389456B TW 98128272 A TW98128272 A TW 98128272A TW 98128272 A TW98128272 A TW 98128272A TW I389456 B TWI389456 B TW I389456B
Authority
TW
Taiwan
Prior art keywords
input
output
pass
signal
switch group
Prior art date
Application number
TW98128272A
Other languages
Chinese (zh)
Other versions
TW201108613A (en
Inventor
Chin Cheng Huang
Original Assignee
Chin Cheng Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chin Cheng Huang filed Critical Chin Cheng Huang
Priority to TW98128272A priority Critical patent/TWI389456B/en
Publication of TW201108613A publication Critical patent/TW201108613A/en
Application granted granted Critical
Publication of TWI389456B publication Critical patent/TWI389456B/en

Links

Landscapes

  • Electronic Switches (AREA)

Description

應用於非同步串列式資料傳輸之輸入資料回復電路Input data recovery circuit applied to asynchronous serial data transmission

本發明係有關於一種輸入資料回復電路,尤指一種應用在接收端積體電路中非同步串列式的輸入資料回復電路。The invention relates to an input data recovery circuit, in particular to an asynchronous data serial input data recovery circuit applied in a receiving end integrated circuit.

使用非同步串列式匯流排來傳輸資料時,最大的問題即為考慮傳輸與接收雙方之頻率誤差。因傳輸端與接收端並沒有像並列式同步式匯流排一樣,具有一相同之時脈訊號,若是傳輸接收雙方間存在頻率少許誤差,此誤差有可能無止盡地一直累積,而造成錯誤。When using non-synchronous serial bus to transmit data, the biggest problem is to consider the frequency error between the transmitting and receiving sides. Since the transmitting end and the receiving end are not like the parallel synchronous bus, they have the same clock signal. If there is a slight error in the frequency between the transmitting and receiving sides, the error may accumulate indefinitely and cause an error.

第一圖為本發明之一相關技術之簡化電路圖,該相關技術係已於民國97年8月29日由與本案相同之發明人提出台灣專利申請,申請案號為097133073。該相關技術主要係透過一脈衝產生器120接收一輸入資料訊號Dr後,依序產生第一~第n脈衝訊號(Vp1~Vpn)至一開關組130。接著藉由該輸入資料訊號Dr之切換狀態及脈衝訊號之下緣觸發,控制該開關組130之導通,藉以,輸出一最終之脈衝訊號Vp。The first figure is a simplified circuit diagram of a related art of the present invention. The related art has been filed on August 29, 1997 by the same inventor of the present invention, and the application number is 097133073. The related art mainly generates an input data signal Dr through a pulse generator 120, and sequentially generates first to nth pulse signals (Vp1 to Vpn) to a switch group 130. Then, the switching state of the switch group 130 is controlled by the switching state of the input data signal Dr and the triggering of the lower edge of the pulse signal, thereby outputting a final pulse signal Vp.

第一圖中之該開關組130的開關控制切換流程如第二圖所示,第二圖中之流程會確保所控制的該開關組130在同一時間只有一個開關導通而其他開關皆關閉,主要係藉由判別該輸入資料訊號Dr的切換與否,和該最終之脈衝訊號Vp的下降緣觸發,決定輪到哪個開關導通。The switching control switching process of the switch group 130 in the first figure is as shown in the second figure. The flow in the second figure ensures that only one switch of the controlled switch group 130 is turned on and the other switches are turned off at the same time, mainly By determining whether the input data signal Dr is switched or not, and the falling edge of the final pulse signal Vp is triggered, it is determined which switch is turned on.

第三圖(a)是第一圖中的資料切換偵測器電路圖;第三圖(b)是互斥或閘(XOR)的真值表(True table);第三圖(c)是資料切換偵測器的輸出入波形示意圖。其中,該輸入資料訊號Dr經過一半週期延遲緩衝器111延遲半週期後產生一內部訊號Va,該輸入資料訊號Dr與內部訊號Va分別輸入一互斥或閘112之二輸入端後,輸出一輸出訊號Vdsd。也就是當該輸入資料訊號Dr在“0”與“1”狀態間切換後,會產生半個週期為“1”的該輸出訊號Vdsd,表示偵測到該輸入資料訊號Dr的切換。The third figure (a) is the data switching detector circuit diagram in the first figure; the third picture (b) is the mutual exclusion or gate (XOR) truth table (True table); the third picture (c) is the data Switch the detector's input and output waveforms. The input data signal Dr generates an internal signal Va after being delayed by a half cycle by the half cycle delay buffer 111. The input data signal Dr and the internal signal Va are respectively input into a mutual input or the input terminal of the gate 112, and an output is output. Signal Vdsd. That is, when the input data signal Dr is switched between the "0" state and the "1" state, the output signal Vdsd with a half period of "1" is generated, indicating that the switching of the input data signal Dr is detected.

第四圖(a)是第一圖中的脈衝產生器的第一組邏輯電路的電路圖;第四圖(b)是第一組邏輯電路的輸出入波形示意圖。和前段敘述的該資料切換偵測器110電路運作方式類似,該輸入資料訊號Dr經過一半週期延遲緩衝器121延遲半週期後產生一內部訊號V1b,該內部訊號V1b再經由另一半週期延遲緩衝器122延遲半週期後產生一內部訊號V1c,該二內部訊號V1b與V1c輸入一互斥或閘123後輸出一第一脈衝訊號Vp1。也就是當該輸入資料訊號Dr在“0”與“1”狀態間切換後,經過半週期時間後會產生半個週期為“1”的該第一脈衝訊號Vp1。The fourth diagram (a) is a circuit diagram of the first group of logic circuits of the pulse generator in the first figure; and the fourth diagram (b) is a schematic diagram of the input and output waveforms of the first group of logic circuits. Similar to the operation of the data switching detector 110 described in the preceding paragraph, the input data signal Dr generates an internal signal V1b after a half cycle delay of the half cycle delay buffer 121, and the internal signal V1b is further buffered via another half cycle. After the delay period of 122, an internal signal V1c is generated, and the two internal signals V1b and V1c are input with a mutual exclusion gate 123 and then output a first pulse signal Vp1. That is, after the input data signal Dr is switched between the "0" state and the "1" state, the first pulse signal Vp1 having a half period of "1" is generated after a half cycle time.

依上述該第一脈衝訊號Vp1之推導方式,以該另一半週期延遲緩衝器122輸出之該內部訊號V1c,輸入該脈衝產生器的下一組邏輯電路之一半週期延遲緩衝器,即可以此類推,推導出第二脈衝訊號Vp2至第n脈衝訊號Vpn。According to the derivation manner of the first pulse signal Vp1, the internal signal V1c outputted by the buffer 122 is input to the half cycle delay buffer of the next logic circuit of the pulse generator, and so on. The second pulse signal Vp2 to the nth pulse signal Vpn are derived.

第五圖係以該第一脈衝訊號Vp1至第四脈衝訊號Vp4為例來說明。這些脈衝訊號(Vp1~Vp4)係彼此延遲一個週期,再配合第二圖的開關控制切換流程圖來控制該開關組130中之複數開關SW1~SWn(第五圖中僅以SW1~SW4為例,且斜線部份代表為“1”,開關導通),可得到最後成為觸發一正反器140的該最終之脈衝訊號Vp,該最終之脈衝訊號Vp再去觸發輸入該正反器140的該輸入資料訊號Dr,就得到第五圖中所示的一輸出(儲存)訊號Dout,這也是資料回復電路最終所要的輸出結果。The fifth figure is illustrated by taking the first pulse signal Vp1 to the fourth pulse signal Vp4 as an example. The pulse signals (Vp1 to Vp4) are delayed by one cycle from each other, and the switching control flow chart of the second figure is used to control the plurality of switches SW1 to SWn in the switch group 130 (in the fifth figure, only SW1 to SW4 are taken as an example). And the slash portion represents "1", the switch is turned on), and the final pulse signal Vp that finally becomes the flip-flop 140 is obtained, and the final pulse signal Vp is used to trigger the input of the flip-flop 140. Entering the data signal Dr, an output (storage) signal Dout shown in the fifth figure is obtained, which is also the final output of the data recovery circuit.

第六圖是將第五圖中開關導通狀態與脈衝訊號的波形整合示意圖。斜線部份代表開關導通,而該複數脈衝訊號(Vp1~Vp4),即代表開關(SW1~SW4)輸入端的輸入脈衝訊號。以SW1(&Vp1)之波形為例,波形中“↑”代表位子中間有該第一脈衝訊號Vp1的上升緣,數字代表是由該輸入資料訊號Dr產生的第幾個脈衝訊號。以此類推,SW2(&Vp2)~SW4(&Vp4)中的Vp2~Vp4各代表由該輸入資料訊號Dr產生的第二~第四脈衝訊號。The sixth figure is a schematic diagram of integrating the on-state of the switch and the waveform of the pulse signal in the fifth figure. The shaded portion represents the switch being turned on, and the complex pulse signal (Vp1 to Vp4) represents the input pulse signal at the input of the switch (SW1 to SW4). Taking the waveform of SW1 (&Vp1) as an example, "↑" in the waveform represents the rising edge of the first pulse signal Vp1 in the middle of the position, and the number represents the first pulse signal generated by the input data signal Dr. Similarly, Vp2 to Vp4 in SW2 (&Vp2) to SW4 (&Vp4) each represent the second to fourth pulse signals generated by the input data signal Dr.

要正確抓取資料,該最終之脈衝訊號Vp的上升緣必須落在該輸入資料訊號Dr中,假設最大資料連續不變更的位元數是n個:In order to correctly capture the data, the rising edge of the final pulse signal Vp must fall in the input data signal Dr, assuming that the maximum number of bits that the data does not change continuously is n:

則(n-1)‧T<(n-1/2)‧(2‧Td05)<n‧T→(n-1)‧T<(n-1/2)‧(T+ΔT)<n‧T→(-1/2)‧T/(n-1/2)<ΔT<(1/2)‧T/(n-1/2)Then (n-1)‧T<(n-1/2)‧(2‧Td05)<n‧T→(n-1)‧T<(n-1/2)‧(T+ΔT)<n ‧T→(-1/2)‧T/(n-1/2)<ΔT<(1/2)‧T/(n-1/2)

(其中ΔT=2‧Td05-T,Td05是半週期延遲緩衝器的延遲時間,T是輸入資料週期)(where ΔT=2‧Td05-T, Td05 is the delay time of the half-cycle delay buffer, and T is the input data period)

這條件限制住ΔT(二倍半週期延遲緩衝器延遲時間與輸入資料位元時間的誤差)不可過大,以避免脈衝抓取錯誤的該輸入資料訊號Dr位元而造成錯誤。此ΔT也是後段所要描述該相關技術限制因素裡的一個值。This condition limits ΔT (the error of the double half-cycle delay buffer delay time and the input data bit time) not to be too large, so as to avoid the pulse from erroneously capturing the input data signal Dr bit and causing an error. This ΔT is also a value in the related art limiting factor to be described in the following paragraph.

除了上述ΔT這是眾多作法所必須控制的因素之外,該相關技術還有一個限制因素,就是脈衝下降緣至開關導通(關閉)時間Tf2s(The delay time of pulse falling-edge to switch turn-on/turn-off)。若是ΔT>0且Tf2s太短,則會如第七圖所示,該輸入資料訊號Dr為“0”的期間的該第一脈衝訊號Vp1下降緣之後,由之前的第一開關SW1導通變成第二開關SW2導通,而該第二開關SW2導通會造成抓取到前一個資料(該輸入資料訊號Dr為“1”時)產生的第二脈衝訊號Vp2之尾端,這樣會多產生一個抓取資料的脈衝,而導致資料抓取錯誤。所以在該相關技術應用上會有Tf2s必須大於ΔT的限制。In addition to the above-mentioned ΔT, which is a factor that must be controlled by many methods, the related art has a limiting factor, that is, the pulse falling edge to the switch turn-on (off) time Tf2s (The delay time of pulse falling-edge to switch turn-on /turn-off). If ΔT>0 and Tf2s is too short, as shown in FIG. 7 , after the first pulse signal Vp1 falls within the period in which the input data signal Dr is “0”, the previous first switch SW1 turns on. The second switch SW2 is turned on, and the second switch SW2 is turned on to cause the tail end of the second pulse signal Vp2 generated when the previous data (the input data signal Dr is "1") is captured, so that a more grab is generated. A pulse of data that causes data to be crawled incorrectly. Therefore, there should be a limit of Tf2s greater than ΔT in this related technology application.

本發明之主要目的,在於提供一種應用於非同步串列式資料傳輸之資料回復電路,是藉由雙層式開關之導通,迴避掉開關切換時誤抓前一筆資料所產生之脈衝訊號尾端所造成的錯誤。The main purpose of the present invention is to provide a data recovery circuit for asynchronous serial data transmission, which is to turn off the pulse signal tail generated by the previous data when the switch is switched by the conduction of the double-layer switch. The error caused.

為達上述目的,本發明主要係於脈衝產生器後設置二個次開關組及一主開關組,並透過輸入資料訊號之狀態切換及脈衝訊號之觸發來分別控制此二種開關組之導通,藉以更加正確地輸出脈衝產生器所產生之脈衝訊號。In order to achieve the above object, the present invention mainly provides two secondary switch groups and one main switch group after the pulse generator, and controls the conduction of the two switch groups by state switching of the input data signals and triggering of the pulse signals, respectively. In order to more accurately output the pulse signal generated by the pulse generator.

本發明對照相關技術所能得到之功效,在於突破相關技術中的脈衝下降緣至開關導通(關閉)時間必須大於ΔT的限制,使得脈衝下降緣至開關導通(關閉)時間只要大於零即可,而由於實際電路延遲時間沒有負的,所以脈衝下降緣至開關導通(關閉)時間只要大於零的效果,使得本發明之電路在相同運作條件下,不會因為設計上的疏失而產生多一個脈衝訊號。The effect obtained by the present invention in comparison with the related art is that the time from the pulse falling edge to the switch conduction (off) time in the related art must be greater than the limit of ΔT, so that the pulse falling edge to the switch conduction (off) time is only greater than zero. Since the actual circuit delay time is not negative, the pulse falling edge to the switch conduction (off) time is greater than zero, so that the circuit of the present invention does not generate one more pulse due to design negligence under the same operating conditions. Signal.

第八圖為本發明之輸入資料回復電路之電路圖。如圖所示,本發明之輸入資料回復電路係具有二輸入端及一輸出端,該二輸入端分別接收一輸入資料訊號Dr及一延遲控制訊號,而該輸出端輸出一資料輸出(儲存)訊號Dout。該電路主要係由一資料切換偵測器810、一脈衝產生器820、一高通次開關組831、一低通次開關組832、一主開關組840、一正反器850及一開關控制電路860所組成。係透過該脈衝產生器820的二個輸入端,接收該輸入資料訊號Dr及該延遲控制訊號後,由該脈衝產生器820的多個輸出端,依序產生複數高脈衝訊號(Vp1H~VpnH)及複數低脈衝訊號(Vp1L~VpnL),輸出至該二個次開關組831、832中相對應之複數高通次開關(SW1H~SWnH)及複數低通次開關(SW1L~SWnL)之輸入端。接著以一資料切換偵測器810偵測該輸入資料訊號Dr之狀態切換,透過該開關控制電路860及脈衝訊號之觸發,控制該二個次開關組831、832之導通。The eighth figure is a circuit diagram of the input data recovery circuit of the present invention. As shown in the figure, the input data recovery circuit of the present invention has two input terminals and an output terminal. The two input terminals respectively receive an input data signal Dr and a delay control signal, and the output terminal outputs a data output (storage). Signal Dout. The circuit is mainly composed of a data switching detector 810, a pulse generator 820, a high-pass switch group 831, a low-pass switch group 832, a main switch group 840, a flip-flop 850 and a switch control circuit. 860 composition. After receiving the input data signal Dr and the delay control signal through the two input ends of the pulse generator 820, the plurality of output terminals of the pulse generator 820 sequentially generate a plurality of high pulse signals (Vp1H to VpnH). And the plurality of low pulse signals (Vp1L to VpnL) are output to the input ends of the corresponding plurality of high pass switches (SW1H to SWnH) and the plurality of low pass switches (SW1L to SWnL) of the two secondary switch groups 831 and 832. Then, a data switching detector 810 detects the state switching of the input data signal Dr, and controls the conduction of the two secondary switch groups 831, 832 through the triggering of the switch control circuit 860 and the pulse signal.

其中該高通次開關組831,係將所有該高通次開關(SW1H~SWnH)之輸出端共同集結成一高通輸出端,連接至該主開關組840中之一高通主開關SWH之高通輸入端;而該低通次開關組832,係將所有該低通次開關(SW1L~SWnL)之輸出端集結成一低通輸出端,連接至該主開關組840中之一低通主開關SHL之低通輸入端。該二個次開關組831、832依序導通後,輸出由該脈衝產生器820所產生之該複數脈衝訊號(Vp1H~VpnH、Vp1L~VpnL)至該主開關組840,藉以作為輸入該主開關組840之一輸入高脈衝訊號VpH及一輸入低脈衝訊號VpL。最後,再藉由該主開關組840之導通,輸出一最終之脈衝訊號Vp。The high-pass switch group 831 is configured to collectively integrate the output ends of all the high-pass switches (SW1H-SWnH) into a high-pass output terminal, and is connected to the high-pass input terminal of one of the main switch groups 840; The low-pass switch group 832 integrates the output ends of all the low-pass switches (SW1L-SWnL) into a low-pass output connected to a low-pass main switch SHL of the main switch group 840. Through the input. After the two secondary switch groups 831 and 832 are sequentially turned on, the complex pulse signals (Vp1H to VpnH, Vp1L to VpnL) generated by the pulse generator 820 are outputted to the main switch group 840, thereby inputting the main switch. One of the groups 840 inputs a high pulse signal VpH and an input low pulse signal VpL. Finally, a final pulse signal Vp is output by the conduction of the main switch group 840.

上述該主開關組840導通後所產生之該最終之脈衝訊號Vp,係用以輸入該正反器850之一時脈輸入端,觸發輸入該正反器850之一資料輸入端之該輸入資料訊號Dr,並藉以正確地產生該輸出(儲存)訊號Dout。同時,該最終之脈衝訊號Vp亦連接至該開關控制電路之輸入端,藉以觸發控制該二個次開關組831、832之導通。The final pulse signal Vp generated after the main switch group 840 is turned on is used to input a clock input end of the flip-flop 850, and trigger input of the input data signal of one of the data input ends of the flip-flop 850. Dr, and thereby correctly generate the output (storage) signal Dout. At the same time, the final pulse signal Vp is also connected to the input end of the switch control circuit, thereby triggering the conduction of the two secondary switch groups 831, 832.

第八圖中的該二個次開關組831、832與該主開關組840,係透過第九圖(a)的次開關組的開關控制切換流程圖,及第九圖(b)的主開關組的開關控制切換流程圖中所示之流程,控制其導通與關閉。如第九圖(a)所示,該二個次開關組831、832之切換流程和第二圖中的類似,不同的是一次同時導通與關閉該高通次開關組831與該低通次開關組832中之次開關。當該輸入資料訊號Dr切換時(0切換成1或1切換成0),不需該最終之脈衝訊號Vp之觸發,即回到第一個次開關(SW1H、SW1L)導通。而若該輸入資料訊號Dr維持相同狀態,即,沒有切換動作時,即透過該最終之脈衝訊號Vp之下降緣觸發,依序切換由第二個次開關(SW2H、SW2L)至第n個次開關(SWnH、SWnL)導通。The two secondary switch groups 831, 832 and the main switch group 840 in the eighth figure are the switch control switching flowchart of the secondary switch group of the ninth diagram (a), and the main switch of the ninth diagram (b) The group's switch controls the flow shown in the flow chart to control its turn-on and turn-off. As shown in FIG. 9( a ), the switching process of the two secondary switch groups 831 and 832 is similar to that in the second figure, except that the high-pass switch group 831 and the low-pass switch are simultaneously turned on and off at the same time. The secondary switch in group 832. When the input data signal Dr is switched (0 is switched to 1 or 1 to 0), the trigger of the final pulse signal Vp is not required, that is, the first secondary switch (SW1H, SW1L) is turned on. And if the input data signal Dr maintains the same state, that is, when there is no switching action, that is, triggered by the falling edge of the final pulse signal Vp, the second secondary switch (SW2H, SW2L) is sequentially switched to the nth time. The switches (SWnH, SWnL) are turned on.

第九圖(b)為主開關組的開關控制切換流程圖,該主開關組840同一時間一定只會有一個開關(該高通主開關SWH或該低通主開關SWL)導通,當該輸入資料訊號Dr為“1”時,該高通主開關SWH導通;而當該輸入資料訊號Dr為“0”時,則該低通主開關SWL導通。如此可看出,該主開關組840係直接受該輸入資料訊號Dr之狀態所控制。The ninth figure (b) is a switch control switching flowchart of the main switch group, and the main switch group 840 must have only one switch (the high-pass main switch SWH or the low-pass main switch SWL) turned on at the same time, when the input data When the signal Dr is "1", the high-pass main switch SWH is turned on; and when the input data signal Dr is "0", the low-pass main switch SWL is turned on. It can be seen that the main switch group 840 is directly controlled by the state of the input data signal Dr.

第八圖中的該資料切換偵測器之電路圖、真值表及輸出入波形示意圖,係與第三圖(a)到第三圖(c)相同。該資料切換偵測器810係由一半週期延遲緩衝器811及一互斥或閘812所共同組成。該半週期延遲緩衝器811之二輸入端分別接收該輸入資料訊號Dr及該延遲控制訊號,延遲半週期後,產生一內部訊號。該輸入資料訊號Dr與該內部訊號分別輸入該互斥或閘812之二輸入端後,產生一輸出訊號Vdsd。也就是當該輸入資料訊號Dr在“0”與“1”狀態間切換後,會產生半個週期為“1”的該輸出訊號Vdsd,表示偵測到該輸入資料訊號Dr的狀態切換。最後,輸出該輸出訊號Vdsd至該開關控制電路860,再經由該開關控制電路860連接至該二個次開關組831、832多個控制端,藉以控制開關組831及832之導通或關閉。The circuit diagram, the truth table and the waveform of the input and output waveforms of the data switching detector in the eighth figure are the same as those in the third figure (a) to the third figure (c). The data switching detector 810 is composed of a half cycle delay buffer 811 and a mutually exclusive or gate 812. The input terminals of the half-cycle delay buffer 811 receive the input data signal Dr and the delay control signal respectively, and generate an internal signal after a delay of half a cycle. The input data signal Dr and the internal signal are respectively input to the input terminals of the mutex or gate 812, and an output signal Vdsd is generated. That is, when the input data signal Dr is switched between the "0" state and the "1" state, the output signal Vdsd with a half period of "1" is generated, indicating that the state switching of the input data signal Dr is detected. Finally, the output signal Vdsd is outputted to the switch control circuit 860, and then connected to the plurality of control terminals of the two secondary switch groups 831, 832 via the switch control circuit 860, thereby controlling the turn-on or turn-off of the switch groups 831 and 832.

第十圖(a)是該脈衝產生器中第一組邏輯電路的電路圖,該脈衝產生器820主要由複數組邏輯電路所組成,藉以於接收該輸入資料訊號Dr後,依狀態依序產生第一脈衝訊號(Vp1H、Vp1L)到第n脈衝訊號(VpnH、VpnL)。該第一組邏輯電路主要用以產生一第一高脈衝訊號Vp1H與一第一低脈衝訊號Vp1L,並傳送至對應之該高通次開關組831中的第一個高通次開關SW1H,及該低通次開關組832中的第一個低通次開關SW1L。該第一高脈衝訊號Vp1H指的是當該輸入資料訊號Dr從“0”變“1”時,經過半週期時間後會產生半個週期為“1”的脈衝(如第十圖(c)所示),因為產生該第一高脈衝訊號Vp1H上升緣的時間點是在該輸入資料訊號Dr切換為高電位(Dr=1)後的第一個週期時間內,所以在此稱之為第一高脈衝訊號Vp1H。同理,產生該第一低脈衝訊號Vp1L上升緣的時間點是在該輸入資料訊號Dr切換為低電位(Dr=0)後的第一個週期時間內,所以在此稱之為第一低脈衝訊號Vp1L。Figure 10 (a) is a circuit diagram of a first set of logic circuits in the pulse generator. The pulse generator 820 is mainly composed of a complex array logic circuit, so as to receive the input data signal Dr, sequentially generate the first A pulse signal (Vp1H, Vp1L) to the nth pulse signal (VpnH, VpnL). The first set of logic circuits are mainly used to generate a first high pulse signal Vp1H and a first low pulse signal Vp1L, and are transmitted to the corresponding first high pass switch SW1H of the high pass switch group 831, and the low The first low pass switch SW1L in the switch group 832 is passed. The first high pulse signal Vp1H means that when the input data signal Dr changes from "0" to "1", a pulse with a period of "1" is generated after a half cycle time (for example, the tenth figure (c) The time point at which the rising edge of the first high pulse signal Vp1H is generated is in the first cycle time after the input data signal Dr is switched to the high potential (Dr=1), so it is referred to herein as A high pulse signal Vp1H. Similarly, the time point at which the rising edge of the first low pulse signal Vp1L is generated is in the first cycle time after the input data signal Dr is switched to the low potential (Dr=0), so it is referred to herein as the first low. Pulse signal Vp1L.

該脈衝產生器820中的每一組邏輯電路,主要皆由二個半週期延遲緩衝器821、822,及二個具有一正相輸入端、一反相輸入端之及閘823、824所共同組成。該第一個半週期延遲緩衝器821係連接至該第一個及閘823之正相輸入端,及該第二個及閘824之反相輸入端;而該第二個半週期延遲緩衝器822係連接至該第二個及閘824之正相輸入端,及該第一個及閘823之反相輸入端。而如圖所示,該第一組邏輯電路的該第一個半週期緩衝器821之一輸入端係接收該輸入資料訊號Dr,該第二個半週期緩衝器822之一輸入端連接該第一個半週期延遲緩衝器821之輸出端,而該二半週期延遲緩衝器821、822之另一輸入端接收該延遲控制訊號。Each set of logic circuits in the pulse generator 820 is mainly composed of two half-cycle delay buffers 821, 822, and two gates 823 and 824 having a positive phase input terminal, an inverting input terminal, and an inverting input terminal. composition. The first half cycle delay buffer 821 is coupled to the positive phase input of the first AND gate 823 and the inverting input of the second AND gate 824; and the second half cycle delay buffer 822 is coupled to the non-inverting input of the second AND gate 824 and to the inverting input of the first AND gate 823. As shown in the figure, one input end of the first half-cycle buffer 821 of the first group of logic circuits receives the input data signal Dr, and one input end of the second half-cycle buffer 822 is connected to the first One half cycle delays the output of the buffer 821, and the other input of the two half cycle delay buffers 821, 822 receives the delay control signal.

第十圖(b)是第十圖(a)中之第一組邏輯電路之真值表,而第十圖(c)為第十圖(a)中之第一組邏輯電路之輸出入波形示意圖。第十圖(c)中該輸入資料訊號Dr經過該第一個半週期延遲緩衝器821延遲半週期後產生一內部訊號V1d,該內部訊號V1d再經由該第二個半週期延遲緩衝器822延遲半週期後產生另一內部訊號V1e。該二內部訊號V1d、V1e輸入具有第十圖(b)所示之真值表特性的該二及閘823、824後,產生第十圖(c)中所示之該第一高脈衝訊號Vp1H和該第一低脈衝訊號Vp1L輸出。從第十圖(c)中可以看出來只有當該輸入資料訊號Dr從“0”變“1”,且經過半週期時間後才會產生半個週期為“1”的該第一高脈衝訊號Vp1H;而只有當該輸入資料訊號Dr從“1”變“0”,且經過半週期時間後才會產生半個週期為“1”的該第一低脈衝訊號Vp1L。Figure 10 (b) is the truth table of the first set of logic circuits in the tenth figure (a), and the tenth figure (c) is the input and output waveform of the first group of logic circuits in the tenth figure (a) schematic diagram. In the figure (c), the input data signal Dr is delayed by a half cycle after the first half cycle delay buffer 821 to generate an internal signal V1d, and the internal signal V1d is further delayed by the second half cycle delay buffer 822. Another internal signal V1e is generated after a half cycle. After the two internal signals V1d and V1e are input to the two gates 823 and 824 having the truth table characteristic shown in the figure (b), the first high pulse signal Vp1H shown in the tenth figure (c) is generated. And outputting the first low pulse signal Vp1L. It can be seen from the tenth figure (c) that the first high pulse signal with a half period of "1" is generated only after the input data signal Dr changes from "0" to "1" and after a half cycle time. Vp1H; and only when the input data signal Dr changes from "1" to "0", and the half cycle time elapses, the first low pulse signal Vp1L with a half period of "1" is generated.

而從第二組邏輯電路開始,則係將該第一個半週期延遲緩衝器之一輸入端,連接至上一組邏輯電路的第二個半週期延遲緩衝器之輸出端,藉以接收由上一組邏輯電路的第二個半週期延遲緩衝器所輸出之該內部訊號。接著,透過另二個半週期延遲緩衝器及二及閘之連接,輸出一第二高脈衝訊號Vp2H及一第二低脈衝訊號Vp2L。最後,可以此類推,輸出所有高脈衝訊號(Vp1H~VpnH)及低脈衝訊號(Vp1L~VpnL)。Starting from the second set of logic circuits, the input of one of the first half-cycle delay buffers is connected to the output of the second half-cycle delay buffer of the previous set of logic circuits, thereby receiving the previous one. The second half cycle of the group logic circuit delays the internal signal output by the buffer. Then, through the connection of the other two half cycle delay buffers and the two gates, a second high pulse signal Vp2H and a second low pulse signal Vp2L are output. Finally, it is possible to output all high pulse signals (Vp1H to VpnH) and low pulse signals (Vp1L to VpnL).

第十一圖為脈衝訊號與開關切換之波形整合示意圖,由圖可推導出所有脈衝訊號(Vp1H~VpnH、Vp1L~VpnL、VpH、VpL和Vp)的時間點,與所有開關(SW1H~SWnH、SW1L~SWnL、SWH和SWL)配合第九圖(a)、(b)之開關控制切換流程圖的相對關係。而第十一圖中係以各四組為例(SW1H~SW4H、SW1L~SW4L、Vp1H~Vp4H、Vp1L~Vp4L),方便說明,但並不以此為限。The eleventh figure shows the waveform integration of pulse signal and switch switching. The time point of all pulse signals (Vp1H~VpnH, Vp1L~VpnL, VpH, VpL and Vp) can be derived from the figure, and all switches (SW1H~SWnH, SW1L to SWnL, SWH, and SWL) cooperate with the relative relationship of the switch control switching flowcharts of the ninth diagrams (a) and (b). In the eleventh figure, each of the four groups is taken as an example (SW1H to SW4H, SW1L to SW4L, Vp1H to Vp4H, and Vp1L to Vp4L), which is convenient for explanation, but is not limited thereto.

以波形SW1H(&Vp1H)來舉例說明:波形斜線部份代表第一個高通次開關SW1H導通,而Vp1H就是該第一高通次開關SW1H的輸入端輸入脈衝訊號;波形中“↑”代表位子中間有該第一高脈衝訊號Vp1H的上升緣;數字代表是由該輸入資料訊號Dr產生的第幾個脈衝,而“H”則表示是為高脈衝訊號。再以波形SWH(&VpH)為例:波形斜線部份代表該高通主開關SWH導通,而VpH就是輸入該高通主開關SWH輸入端的該輸入高脈衝訊號。The waveform SW1H(&Vp1H) is used as an example: the diagonal portion of the waveform represents that the first high-pass switch SW1H is turned on, and Vp1H is the input pulse signal of the input of the first high-pass switch SW1H; in the waveform, "↑" represents the middle of the position. The rising edge of the first high pulse signal Vp1H; the number represents the first pulse generated by the input data signal Dr, and the "H" indicates that it is a high pulse signal. Taking the waveform SWH (&VpH) as an example: the diagonal portion of the waveform represents that the high-pass main switch SWH is turned on, and the VpH is the input high-pulse signal input to the input of the high-pass main switch SWH.

接下來以第十一圖所示者來分析本發明之脈衝訊號與該二個次開關組831、832以及該主開關組840間的配合關係。如圖所示,該輸入資料訊號Dr一開始連續四個位元時間為“1”,其依序會產生第一~第四高脈衝訊號(Vp1H~Vp4H),該些高脈衝訊號(Vp1H~Vp4H)依序分別通過第一~第四個該高通次開關(SW1H~SW4H),變成該高通主開關SWH輸入端的一輸入高脈衝訊號VpH。所以該輸入高脈衝訊號VpH在這四個位元時間中會有連續四個脈衝,而該輸入高脈衝訊號VpH再通過該高通主開關SWH,變成最後觸發該正反器850之該時脈輸入端的該最終之脈衝訊號Vp。也就是說,該最終之脈衝訊號Vp在這四個位元時間中會有連續四個脈衝。最後再藉由這四個脈衝,將這四個位元時間中輸入該正反器850之該資料輸入端的該輸入資料訊號Dr,依序觸發暫存(輸出)至該正反器850之輸出端,產生該正反器850的輸出(儲存)訊號Dout,而該輸出(儲存)訊號Dout也是本發明之資料回復電路最終所要的輸出結果。Next, the relationship between the pulse signal of the present invention and the two secondary switch groups 831, 832 and the main switch group 840 is analyzed as shown in FIG. As shown in the figure, the input data signal Dr starts with four consecutive bit times of "1", which sequentially generates first to fourth high pulse signals (Vp1H to Vp4H), and the high pulse signals (Vp1H~) Vp4H) sequentially passes through the first to fourth high-pass switches (SW1H to SW4H) to become an input high-pulse signal VpH at the input end of the high-pass main switch SWH. Therefore, the input high pulse signal VpH has four consecutive pulses in the four bit times, and the input high pulse signal VpH passes through the high pass main switch SWH to become the last pulse input of the flip flop 850. The final pulse signal Vp at the end. That is to say, the final pulse signal Vp has four consecutive pulses in the four bit times. Finally, by using the four pulses, the input data signal Dr of the data input end of the flip-flop 850 is input to the four bit times, and the temporary storage (output) is sequentially triggered to the output of the flip-flop 850. At the end, the output (storage) signal Dout of the flip-flop 850 is generated, and the output (storage) signal Dout is also the final output result of the data recovery circuit of the present invention.

以此類推,當該輸入資料訊號Dr切換成連續四個位元時間為“0”時,會依序產生該第一~第四低脈衝訊號(Vp1L~Vp4L),該些低脈衝訊號(Vp1L~Vp4L)依序分別通過第一~第四個該低通次開關(SW1L~SW4L),變成該低通主開關SWL輸入端的一輸入低脈衝訊號VpL,所以該輸入低脈衝訊號VpL在這四個位元時間中會有連續四個脈衝,而該輸入低脈衝訊號VpL再通過該低通主開關SWL變成最後觸發該正反器850之該時脈輸入端的該最終之脈衝訊號Vp。最後,再藉由該四個最終之脈衝訊號Vp,將這四個位元時間中輸入該正反器850之該資料輸入端的該輸入資料訊號Dr,依序觸發暫存(輸出)至該正反器850之輸出端,產生該正反器之該輸出(儲存)訊號Dout。Similarly, when the input data signal Dr is switched to a continuous four bit time of “0”, the first to fourth low pulse signals (Vp1L to Vp4L) are sequentially generated, and the low pulse signals (Vp1L) are sequentially generated. ~Vp4L) sequentially passes through the first to fourth low-pass switches (SW1L to SW4L) to become an input low-pulse signal VpL at the input end of the low-pass main switch SWL, so the input low-pulse signal VpL is in the fourth There will be four consecutive pulses in the bit time, and the input low pulse signal VpL will pass through the low pass main switch SWL to become the final pulse signal Vp which finally triggers the clock input of the flip flop 850. Finally, the input data signal Dr of the data input end of the flip-flop 850 is input to the four-bit pulse signal Vp, and the temporary storage (output) is sequentially triggered to the positive The output of the counter 850 generates the output (storage) signal Dout of the flip-flop.

第十二圖顯示本發明之電路發生如第七圖中所示之狀況時,並不會因為ΔT>0且該脈衝下降緣至開關導通(關閉)時間Tf2s太短而產生不該有的脈衝。如圖所示,主要係因圖中該最終之脈衝訊號Vp(或該第一低脈衝訊號Vp1L)的脈衝下降緣觸發,將原本的該第一個次開關SW1H/SW1L導通切換成該第二個次開關SW2H/SW2L導通,但是對應的這段時間是該低通主開關SWL導通(而該高通主開關SWH關閉),所以上一筆資料(該輸入資料訊號Dr為1時)所產生之該第二高脈衝訊號Vp2H的脈衝尾端雖然會通過該第二個高通次開關SW2H,但是不會通過該高通主開關SWH,因此,本發明並不會產生不該有的脈衝而造成資料的錯誤。The twelfth figure shows that when the circuit of the present invention occurs as shown in the seventh figure, it does not generate a pulse that is not due to ΔT > 0 and the pulse falling edge to the switch on (off) time Tf2s is too short. . As shown in the figure, the first primary switch SW1H/SW1L is switched on to the second due to the pulse falling edge of the final pulse signal Vp (or the first low pulse signal Vp1L). The secondary switches SW2H/SW2L are turned on, but the corresponding period is when the low-pass main switch SWL is turned on (and the high-pass main switch SWH is turned off), so the last data (when the input data signal Dr is 1) is generated. Although the pulse tail of the second high pulse signal Vp2H passes through the second high pass switch SW2H, but does not pass the high pass main switch SWH, the present invention does not generate a pulse that may not cause a data error. .

本發明之電路中,主要是使用該最終之脈衝訊號Vp的下降緣來觸發該二個次開關組831、832導通狀態的改變,而從該最終之脈衝訊號Vp的上升緣觸發該輸入資料訊號Dr到下降緣觸發該二個次開關組831、832,停頓了半個週期的時間。唯,如上所述,本發明之電路不會因為ΔT>0且該Tf2s太短而產生不該有的脈衝,因此,本發明中如第九圖所示之開關切換流程圖,可以更進一步改成第十三圖(a),為本發明之另一具體實施例之開關切換流程圖。也就是將該二個次開關組831、832導通狀態改變的觸發時間提前半個週期,在使用該最終之脈衝訊號Vp上升緣觸發該輸入資料訊號Dr時,就同時用上升緣來觸發該二個次開關組831、832導通狀態的改變。如此一來,即可將該“脈衝下降緣至開關導通(關閉)時間”Tf2s變成“脈衝上升緣至開關導通(關閉)時間”Tr2s(The delay time of pulse rising-edge to switch turn-on/turn-off)。而經研究後發現,若是該Tr2s大於T/2,則該最終之脈衝訊號Vp寬度(脈衝為“1”的時間)等於T/2;若是該Tr2s小於T/2,則該最終之脈衝訊號Vp寬度等於該Tr2s。只要該最終之脈衝訊號Vp的寬度(T/2或Tr2s)夠寬,足以將輸入該正反器850的該輸入資料訊號Dr觸發到該正反器850的該輸出端,這樣的脈衝在使用上就不會有問題。In the circuit of the present invention, the falling edge of the final pulse signal Vp is used to trigger the change of the conduction state of the two secondary switch groups 831, 832, and the input data signal is triggered from the rising edge of the final pulse signal Vp. Dr to the falling edge triggers the two secondary switch groups 831, 832, and pauses for a half cycle time. However, as described above, the circuit of the present invention does not generate a pulse that is not necessary because ΔT>0 and the Tf2s is too short. Therefore, the switching diagram of the switch shown in FIG. 9 in the present invention can be further changed. Figure 13 (a) is a flow chart of switching of another embodiment of the present invention. That is, the trigger time for changing the on-state of the two secondary switch groups 831, 832 is advanced by half a cycle. When the input data signal Dr is triggered by using the rising edge of the final pulse signal Vp, the rising edge is used to trigger the second The secondary switch groups 831, 832 change in the on state. In this way, the "pulse falling edge to switch conduction (off) time" Tf2s can be changed to "pulse rising edge to switch conduction (off) time" Tr2s (The delay time of pulse rising-edge to switch turn-on/ Turn-off). And after research, it is found that if the Tr2s is greater than T/2, the final pulse signal Vp width (time when the pulse is "1") is equal to T/2; if the Tr2s is less than T/2, the final pulse signal is The Vp width is equal to the Tr2s. As long as the width (T/2 or Tr2s) of the final pulse signal Vp is wide enough to trigger the input data signal Dr input to the flip-flop 850 to the output of the flip-flop 850, such a pulse is used. There will be no problems on it.

第十三圖(a)所示之流程,可將該二個次開關組831、832導通狀態改變的觸發提前半個週期,這樣的方式令本發明之資料回復電路更能使用在該輸入資料訊號Dr更高速的應用上。而第十三圖(b)則為本發明之另一具體實施例之主開關組的開關控制切換流程圖,由圖可看出該主開關組840仍受該輸入資料訊號Dr之切換狀態直接控制。In the flow shown in FIG. 13(a), the triggering of the change of the on-state state of the two secondary switch groups 831, 832 can be advanced by half a cycle, in such a manner that the data recovery circuit of the present invention can be more used in the input data. Signal Dr is a faster application. The thirteenth figure (b) is a switch control switching flowchart of the main switch group according to another embodiment of the present invention. It can be seen from the figure that the main switch group 840 is still directly switched by the input data signal Dr. control.

上述僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。即凡依本發明申請專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。The above are only the preferred embodiments of the present invention and are not intended to limit the scope of the present invention. That is, the equivalent changes and modifications made by the scope of the patent application of the present invention are covered by the scope of the invention.

<相關技術><Related technology>

110...資料切換偵測器110. . . Data switching detector

120...脈衝產生器120. . . Pulse generator

121...半週期延遲緩衝器121. . . Half cycle delay buffer

123...互斥或閘(XOR)123. . . Mutual exclusion or gate (XOR)

130...開關組130. . . Switch group

140...正反器140. . . Positive and negative

150...開關控制電路150. . . Switch control circuit

Dr...輸入資料訊號Dr. . . Input data signal

Dout...正反器輸出(儲存)訊號Dout. . . Positive and negative output (storage) signal

SW1~SWn...第一~第n開關SW1~SWn. . . First to nth switch

Tf2s...脈衝下降緣至開關導通(關閉)時間Tf2s. . . Pulse falling edge to switch turn-on (off) time

V1a~V1c...內部訊號V1a~V1c. . . Internal signal

Vp1~Vpn...第一~第n脈衝訊號Vp1~Vpn. . . First to nth pulse signals

Vdsd...資料切換偵測器輸出訊號Vdsd. . . Data switching detector output signal

Vp...最終之脈衝訊號Vp. . . Final pulse signal

<本發明><present invention>

810...資料切換偵測器810. . . Data switching detector

820...脈衝產生器820. . . Pulse generator

811...半週期延遲緩衝器811. . . Half cycle delay buffer

812...互斥或閘812. . . Mutual exclusion or gate

823...具有一反相輸入端之及閘823. . . With an inverting input and gate

831...高通次開關組831. . . Qualcomm secondary switch group

832...低通次開關組832. . . Low pass switch group

840...主開關組840. . . Main switch group

850...正反器850. . . Positive and negative

860...開關控制電路860. . . Switch control circuit

Dr...輸入資料訊號Dr. . . Input data signal

Dout...正反器輸出(儲存)訊號Dout. . . Positive and negative output (storage) signal

SW1H~SWnH...第一~第n高通次開關SW1H~SWnH. . . First to nth high pass switches

SW1L~SWnL...第一~第n低通次開關SW1L~SWnL. . . First to nth low pass switches

SWH...高通主開關SWH. . . Qualcomm main switch

SWL...低通主開關SWL. . . Low pass main switch

Tf2s...脈衝下降緣至開關導通(關閉)時間Tf2s. . . Pulse falling edge to switch turn-on (off) time

Tr2s...脈衝上升緣至開關導通(關閉)時間Tr2s. . . Pulse rising edge to switch conduction (off) time

V1d、V1e...內部訊號V1d, V1e. . . Internal signal

Vdsd...資料切換偵測器的輸出訊號Vdsd. . . Data switching detector output signal

Vp1H~VpnH...第一~第n高脈衝訊號Vp1H~VpnH. . . First to nth high pulse signals

Vp1L~VpnL...第一~第n低脈衝訊號Vp1L~VpnL. . . First to nth low pulse signals

VpH...高通主開關的輸入高脈衝訊號VpH. . . Qualcomm main switch input high pulse signal

VpL...低通主開關的輸入低脈衝訊號VpL. . . Low-pass main switch input low pulse signal

Vp...最終之脈衝訊號Vp. . . Final pulse signal

第一圖是本發明之一相關技術之簡化電路圖。The first figure is a simplified circuit diagram of a related art of the present invention.

第二圖是第一圖中之開關組的開關控制切換流程圖。The second figure is a flowchart of switching control switching of the switch group in the first figure.

第三圖(a)是第一圖中的資料切換偵測器電路圖。The third figure (a) is a circuit diagram of the data switching detector in the first figure.

第三圖(b)是互斥或閘的真值表。The third figure (b) is the truth table of the exclusive or gate.

第三圖(c)是資料切換偵測器的輸出入波形示意圖。The third figure (c) is a schematic diagram of the input and output waveforms of the data switching detector.

第四圖(a)是第一圖中的脈衝產生器的第一組邏輯電路的電路圖。The fourth diagram (a) is a circuit diagram of the first set of logic circuits of the pulse generator in the first figure.

第四圖(b)是第一組邏輯電路的輸出入波形示意圖。The fourth figure (b) is a schematic diagram of the input and output waveforms of the first group of logic circuits.

第五圖是輸入資料訊號配合各脈衝節點與各開關導通狀態與資料輸出的波形示意圖。The fifth figure is a waveform diagram of the input data signal matched with each pulse node and each switch conduction state and data output.

第六圖是第五圖中的開關導通狀態與脈衝訊號的波形整合示意圖。The sixth figure is a schematic diagram of the waveform integration of the switch on state and the pulse signal in the fifth figure.

第七圖是ΔT>0且Tf2s太短造成最終之脈衝訊號Vp多一脈衝之示意圖。The seventh figure is a schematic diagram of ΔT>0 and Tf2s being too short to cause a pulse of the final pulse signal Vp.

第八圖是本發明之輸入資料回復電路之電路圖。The eighth figure is a circuit diagram of the input data recovery circuit of the present invention.

第九圖(a)是次開關組的開關控制切換流程圖。The ninth diagram (a) is a flowchart of switching control switching of the secondary switch group.

第九圖(b)是主開關組的開關控制切換流程圖。The ninth diagram (b) is a flowchart of switching control switching of the main switch group.

第十圖(a)是脈衝產生器中第一組邏輯電路的電路圖。Figure 10 (a) is a circuit diagram of the first set of logic circuits in the pulse generator.

第十圖(b)是第十圖(a)中之第一組邏輯電路的真值表。The tenth figure (b) is the truth table of the first group of logic circuits in the tenth figure (a).

第十圖(c)是第十圖(a)中之第一組邏輯電路的輸出入波形示意圖。The tenth figure (c) is a schematic diagram of the input and output waveforms of the first group of logic circuits in the tenth figure (a).

第十一圖是脈衝訊號與開關切換之波形整合示意圖。The eleventh figure is a schematic diagram of the waveform integration of the pulse signal and the switch switching.

第十二圖是在ΔT>0且Tf2s太短條件下,不會造成最終之脈衝訊號Vp多一脈衝之示意圖。The twelfth figure is a schematic diagram of the fact that ΔT>0 and Tf2s are too short, and the final pulse signal Vp is not pulsed.

第十三圖(a)是本發明之另一具體實施例之次開關組的開關控制切換流程圖。Figure 13 (a) is a flow chart showing the switching control of the secondary switch group of another embodiment of the present invention.

第十三圖(b)是本發明之另一具體實施例之主開關組的開關控制切換流程圖。Figure 13 (b) is a flow chart showing the switching control of the main switch group of another embodiment of the present invention.

Dr...輸入資料訊號Dr. . . Input data signal

Dout...正反器輸出(儲存)訊號Dout. . . Positive and negative output (storage) signal

810...資料切換偵測器810. . . Data switching detector

820...脈衝產生器820. . . Pulse generator

811、821、822...半週期延遲緩衝器811, 821, 822. . . Half cycle delay buffer

812...互斥或閘812. . . Mutual exclusion or gate

823、824...具有一反相輸入端之及閘823, 824. . . With an inverting input and gate

831...高通次開關組831. . . Qualcomm secondary switch group

832...低通次開關組832. . . Low pass switch group

840...主開關組840. . . Main switch group

850...正反器850. . . Positive and negative

860...開關控制電路860. . . Switch control circuit

Claims (7)

一種應用於非同步串列式資料傳輸之輸入資料回復電路,具有二輸入端及一輸出端,該二輸入端分別接收一輸入資料訊號及一延遲控制訊號,該輸出端輸出一資料輸出(儲存)訊號,該輸入資料回復電路包括:一資料切換偵測器,具有二輸入端及一輸出端,該二輸入端分別接收該輸入資料訊號與該延遲控制訊號;一脈衝產生器,具有二輸入端及多個輸出端,該二輸入端分別接收該輸入資料訊號與該延遲控制訊號,並藉由該多個輸出端依序輸出脈衝訊號,其中該脈衝訊號包括高脈衝訊號及低脈衝訊號;一高通次開關組,具有多個輸入端、一高通輸出端及多個控制端,該多個輸入端分別連接至對應的該脈衝產生器之多個輸出端,藉以接收該脈衝產生器輸出之該高脈衝訊號;一低通次開關組,具有多個輸入端、一低通輸出端及多個控制端,該多個輸入端分別連接至對應的該脈衝產生器之該些多個輸出端,藉以接收該脈衝產生器輸出之該低脈衝訊號;一主開關組,由一高通主開關及一低通主開關所組成,具有一高通輸入端、一低通輸入端、一輸出端及二控制端,該高通輸入端連接該高通次開關組之該高通輸出端,接收由該高通次開關組導通後輸出之一輸入高脈衝訊號,該低通輸入端連接該低通次開關組之該低通輸出端, 接收由該低通次開關組導通後輸出之一輸入低脈衝訊號,並透過該主開關組之該輸出端輸出一最終之脈衝訊號;一開關控制電路,具有一第一輸入端、一第二輸入端、一第三輸入端及多個輸出端,該第一輸入端係連接至該資料切換偵測器的該輸出端,該第二輸入端接收該輸入資料訊號,該第三輸入端連接該主開關組之該輸出端,接收由該主開關組導通輸出之該最終之脈衝訊號,而該多個輸出端分別連接至該主開關組與該二次開關組的所有控制端;及一正反器,具有一資料輸入端及一時脈輸入端,該資料輸入端接收該輸入資料訊號,該時脈輸入端連接至該主開關組的該輸出端,接收由該主開關組導通輸出之該最終之脈衝訊號,藉以觸發輸入的該輸入資料訊號,並透過該正反器之一輸出端輸出該資料輸出(儲存)訊號。 An input data recovery circuit for asynchronous serial data transmission has two input ends and one output end, the two input ends respectively receive an input data signal and a delay control signal, and the output end outputs a data output (storage The signal input circuit includes: a data switching detector having two input ends and an output end, the two input terminals respectively receiving the input data signal and the delay control signal; and a pulse generator having two inputs And the plurality of output terminals, the two input terminals respectively receive the input data signal and the delay control signal, and sequentially output the pulse signal by the plurality of output terminals, wherein the pulse signal comprises a high pulse signal and a low pulse signal; a high-pass switch group having a plurality of input terminals, a high-pass output terminal, and a plurality of control terminals respectively connected to the plurality of output terminals of the corresponding pulse generator, thereby receiving the pulse generator output The high pulse signal; a low pass switch group having a plurality of inputs, a low pass output, and a plurality of control terminals, the plurality of input terminals Connected to the plurality of output terminals of the corresponding pulse generator to receive the low pulse signal output by the pulse generator; a main switch group consisting of a high pass main switch and a low pass main switch, having one a high-pass input terminal, a low-pass input terminal, an output terminal and two control terminals, wherein the high-pass input terminal is connected to the high-pass output terminal of the high-pass switch group, and receives a high-input pulse signal outputted by the high-pass switch group The low-pass input is connected to the low-pass output of the low-pass switch group. Receiving one of the output low pulse signals after being turned on by the low pass switch group, and outputting a final pulse signal through the output end of the main switch group; a switch control circuit having a first input end and a second An input end, a third input end and a plurality of output ends, the first input end is connected to the output end of the data switching detector, the second input end receives the input data signal, and the third input end is connected The output end of the main switch group receives the final pulse signal outputted by the main switch group, and the plurality of output terminals are respectively connected to the main switch group and all control terminals of the second switch group; The flip-flop has a data input end and a clock input end, and the data input end receives the input data signal, and the clock input end is connected to the output end of the main switch group, and receives the output of the main switch group. The final pulse signal is used to trigger the input of the input data signal, and output the data output (storage) signal through one of the output terminals of the flip-flop. 如申請專利範圍第1項之輸入資料回復電路,其中該資料切換偵測器係包括:一半週期延遲緩衝器,具有二輸入端及一輸出端,該二輸入端分別接收該輸入資料訊號及該延遲控制訊號;及一互斥或閘,具有一第一輸入端、一第二輸入端及一輸出端,該第一輸入端接收該輸入資料訊號,該第二輸入端連接該半週期延遲緩衝器之該輸出端,而該輸出端連接至該開關控制電路的該第一輸入端。 For example, the input data recovery circuit of the first application of the patent scope includes: a half cycle delay buffer having two input ends and an output terminal, the two input terminals respectively receiving the input data signal and the a delay control signal; and a mutual exclusion gate having a first input terminal, a second input terminal and an output terminal, the first input terminal receiving the input data signal, and the second input terminal connecting the half cycle delay buffer The output of the device is coupled to the first input of the switch control circuit. 如申請專利範圍第1項之輸入資料回復電路,其中該脈衝產生器係由複數組邏輯電路所組成,每一組該邏輯 電路皆包括:一第一半週期延遲緩衝器及一第二半週期延遲緩衝器,彼此串接且分別具有一第一輸入端、一第二輸入端及一輸出端,該第二半週期延遲緩衝器之該第一輸入端連接至該第一半週期延遲緩衝器之該輸出端,而該第二半週期延遲緩衝器之該第二輸入端係接收該延遲控制訊號;及一第一及閘及一第二及閘,分別具有一正相輸入端及一反相輸入端之及閘,該第一及閘的該正相輸入端連接至該第一延遲緩衝器的該輸出端,該第一及閘的該反相輸入端連接至該第二延遲緩衝器的該輸出端,該第一及閘的該輸出端輸出該高脈衝訊號,而該第二及閘的該反相輸入端連接至該第一延遲緩衝器的該輸出端,該第二及閘的該正相輸入端連接至該第二延遲緩衝器的該輸出端,該第二及閘的該輸出端輸出該低脈衝訊號;其中,第一組該邏輯電路的該第一半週期延遲緩衝器之該第一輸入端係接收該輸入資料訊號,而其餘每組該邏輯電路的該第一半週期延遲緩衝器之該第一輸入端,係連接至上一組該邏輯電路的該第二半週期延遲緩衝器的該輸出端。 For example, the input data recovery circuit of claim 1 of the patent scope, wherein the pulse generator is composed of a complex array logic circuit, each set of the logic The circuit includes: a first half cycle delay buffer and a second half cycle delay buffer connected in series with each other and having a first input terminal, a second input terminal and an output terminal, the second half cycle delay The first input end of the buffer is connected to the output end of the first half cycle delay buffer, and the second input end of the second half cycle delay buffer receives the delay control signal; a gate and a second gate respectively having a positive phase input terminal and an inverting input terminal, wherein the positive phase input terminal of the first gate is connected to the output terminal of the first delay buffer, The inverting input terminal of the first AND gate is connected to the output end of the second delay buffer, the output end of the first AND gate outputs the high pulse signal, and the inverting input terminal of the second AND gate Connected to the output of the first delay buffer, the non-inverting input of the second AND gate is connected to the output of the second delay buffer, and the output of the second AND gate outputs the low pulse a signal; wherein the first half of the first set of the logic circuit The first input end of the delay buffer receives the input data signal, and the first input end of the first half cycle delay buffer of each of the other logic circuits is connected to the first set of the logic circuit The output of the two half cycle delay buffer. 如申請專利範圍第1項之輸入資料回復電路,其中該高通次開關組係包含:多個高通次開關,每一個該高通次開關皆具有一輸入端、一控制端及一輸出端,該輸入端連接至相對應之該脈衝產生器之輸出端,藉以接收該脈衝產生器所輸出之該高脈衝訊號,該控制端輸入對應的該開 關控制電路的輸出控制訊號,而所有該高通次開關之輸出端共同集結成該高通輸出端,連接至該主開關組之該高通輸入端,藉以輸出該輸入高脈衝訊號。 For example, in the input data recovery circuit of claim 1, wherein the high-pass switch group includes: a plurality of high-pass switches, each of the high-pass switches having an input terminal, a control terminal, and an output terminal, the input The terminal is connected to the output end of the corresponding pulse generator, so as to receive the high pulse signal output by the pulse generator, and the control terminal inputs the corresponding open The output control signal of the control circuit is turned off, and the outputs of all the high-pass switches are collectively formed into the high-pass output terminal, and connected to the high-pass input terminal of the main switch group, thereby outputting the input high-pulse signal. 如申請專利範圍第4項之輸入資料回復電路,其中該低通次開關組係包含:多個低通次開關,每一個該低通次開關皆具有一輸入端、一控制端及一輸出端,該輸入端連接至相對應之該脈衝產生器之該輸出端,藉以接收該脈衝產生器所輸出之該低脈衝訊號,該控制端輸入對應的該開關控制電路的該輸出控制訊號,而所有該低通次開關之輸出端共同集結成該低通輸出端,連接至該主開關組之該低通輸入端,藉以輸出該輸入低脈衝訊號。 For example, the input data recovery circuit of claim 4, wherein the low-pass switch group includes: a plurality of low-pass switches, each of the low-pass switches having an input terminal, a control terminal, and an output terminal The input terminal is connected to the output end of the corresponding pulse generator to receive the low pulse signal output by the pulse generator, and the control terminal inputs the corresponding output control signal of the switch control circuit, and all The output terminals of the low-pass switch are collectively assembled into the low-pass output terminal, and are connected to the low-pass input terminal of the main switch group, thereby outputting the input low-pulse signal. 如申請專利範圍第1項之輸入資料回復電路,其中該開關控制電路係依該最終之脈衝訊號之脈波下降緣觸發及該資料切換偵測器輸出之控制,令該高通次開關組、該低通次開關組及該主開關組導通或關閉。 For example, in the input data recovery circuit of the first aspect of the patent application, wherein the switch control circuit is configured according to the pulse wave falling edge trigger of the final pulse signal and the data switching detector output control, so that the high pass switch group, the The low pass switch group and the main switch group are turned on or off. 如申請專利範圍第1項之輸入資料回復電路,其中該開關控制電路係依該最終之脈衝訊號之脈波上升緣觸發及該資料切換偵測器輸出之控制,令該高通次開關組、該低通次開關組及該主開關組導通或關閉。 For example, in the input data recovery circuit of claim 1, wherein the switch control circuit is triggered by the pulse rising edge of the final pulse signal and the output of the data switching detector, so that the high-pass switch group The low pass switch group and the main switch group are turned on or off.
TW98128272A 2009-08-21 2009-08-21 Input data recovery circuit for asynchronous serial data transmission TWI389456B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98128272A TWI389456B (en) 2009-08-21 2009-08-21 Input data recovery circuit for asynchronous serial data transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98128272A TWI389456B (en) 2009-08-21 2009-08-21 Input data recovery circuit for asynchronous serial data transmission

Publications (2)

Publication Number Publication Date
TW201108613A TW201108613A (en) 2011-03-01
TWI389456B true TWI389456B (en) 2013-03-11

Family

ID=44835658

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98128272A TWI389456B (en) 2009-08-21 2009-08-21 Input data recovery circuit for asynchronous serial data transmission

Country Status (1)

Country Link
TW (1) TWI389456B (en)

Also Published As

Publication number Publication date
TW201108613A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
US8686773B1 (en) In-system margin measurement circuit
JP6461089B2 (en) Multi-wire open drain link with data symbol transition based clock synchronization
TWI580196B (en) Sample and hold circuit and operating method thereof
US8199849B2 (en) Data transmitting device, data receiving device, data transmitting system, and data transmitting method
TWI474701B (en) A clock recovery circuit and a parallel output circuit
US9824731B2 (en) Data reading circuit
JPWO2010013385A1 (en) Time measuring circuit, time measuring method, time digital converter using them, and test apparatus
US10476707B2 (en) Hybrid half/quarter-rate DFE
TWI613889B (en) Configurable time delays for equalizing pulse width modulation timing
WO2019184395A1 (en) Flip-flop and integrated circuit
JP4419067B2 (en) Semiconductor device, memory device and memory module having digital interface
TW201014179A (en) Asynchronous ping-pong counter
US20060149989A1 (en) Method and apparatus for generating a second signal having a clock based on a second clock from a first signal having a first clock
RU2517295C1 (en) Pulse selector
TWI389456B (en) Input data recovery circuit for asynchronous serial data transmission
JP5491454B2 (en) Parallel-serial conversion circuit
US7213090B2 (en) Data transfer apparatus for serial data transfer in system LSI
KR20090054821A (en) Apparatus recoverying data and method thereof
CN111211774A (en) Bounce removing circuit
US20110140749A1 (en) Input data recovery circuit for asynchronous serial data transmission
TWI594580B (en) Analog to digital converter and data conversion method
JP4945616B2 (en) Semiconductor device having digital interface
TWI481201B (en) Apparatus and method for parallel type sar adc
US11483510B2 (en) Digital serial read-out architecture
WO2022037216A1 (en) Detection circuit and detection method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees