TWI388977B - Microprocessors, intergarated circuits and methods for selectively biasing substrates - Google Patents

Microprocessors, intergarated circuits and methods for selectively biasing substrates Download PDF

Info

Publication number
TWI388977B
TWI388977B TW98132273A TW98132273A TWI388977B TW I388977 B TWI388977 B TW I388977B TW 98132273 A TW98132273 A TW 98132273A TW 98132273 A TW98132273 A TW 98132273A TW I388977 B TWI388977 B TW I388977B
Authority
TW
Taiwan
Prior art keywords
substrate
coupled
voltage
circuit
substrate bias
Prior art date
Application number
TW98132273A
Other languages
Chinese (zh)
Other versions
TW201013391A (en
Inventor
Raymond A Bertram
Mark J Brazell
Vanessa S Canac
Darius D Gaskins
James R Lundberg
Matthew Russell Nixon
Original Assignee
Via Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/237,483 external-priority patent/US7978001B2/en
Priority claimed from US12/237,463 external-priority patent/US7920019B2/en
Application filed by Via Tech Inc filed Critical Via Tech Inc
Publication of TW201013391A publication Critical patent/TW201013391A/en
Application granted granted Critical
Publication of TWI388977B publication Critical patent/TWI388977B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Dram (AREA)
  • Logic Circuits (AREA)

Description

微處理器、積體電路以及選擇性基底偏壓方法Microprocessor, integrated circuit and selective substrate bias method

本發明主要關於一種於微處理器晶粒(die)提供基底偏壓(substrate biasing)以減低次臨界漏電流(sub-threshold leakage),特別係有關於一種選擇性提供基底偏壓至微處理器上之功能區塊之裝置與方法,以減低電力消耗(power consumption)及最小化功能區塊內之裝置基底之雜訊。The present invention relates generally to providing substrate biasing to a microprocessor die to reduce sub-threshold leakage, and more particularly to selectively providing a substrate bias to a microprocessor. The device and method of the functional block are used to reduce power consumption and minimize noise of the device base in the functional block.

因互補式金氧半導體(Complementary Metal-Oxide Semiconductor,以下簡稱CMOS)電路比其他類型的積體電路(integrated circuit,以下簡稱IC)較為密集(dense)且其消耗的電力較少,所以CMOS技術已成為於積體電路中之數位電路設計的主流(dominant style)。CMOS電路係由N型通道金氧半導體(n-channel metal-oxide-semiconductor,以下簡稱NMOS)與P型通道金氧半導體p-channel metal-oxide-semiconductor,以下簡稱PMOS)共同組成,根據設計、比例(scale)、材質(material)及製程(process)之不同,NMOS與PMOS分別具有一臨界電壓(此指閘極對源極之電壓)。由於積體電路設計及製造技術不斷發展,操作電壓及裝置尺寸也隨之降低。65微米(nanometer,nm)製程為應用於大量CMOS半導體製程之先進光蝕刻技術(lithographic process)且更有益於超大型積體電路(very large scale integrated circuit,以下簡稱VLSI) 之製造,如微處理器等。隨著裝置尺寸與電壓位準的減少,每個裝置的通道長度與氧化層厚度(oxide thickness)也跟著減少。製造業者已改用具有較低臨界電壓之閘極材質以增加次臨界漏電流(sub-threshold leakage current)。當閘極對源極之電壓低於CMOS裝置之臨界電壓時,次臨界漏電流流經汲極(drain)與源極(source)之間。許多傳統電路之每個CMOS的基底介面(或為井區或基底接點(bulk tie/connection))係耦接於對應之一電力線(例如PMOS基底接點耦接於核心電壓VDD,NMOS基底接點耦接於參考電壓VSS)。在此類傳統結構,次臨界漏電流在動態環境(如正常操作期間)下可佔總耗電力的約30%或是以上之比例。Complementary Metal-Oxide Semiconductor (hereinafter referred to as CMOS) circuit is denser than other types of integrated circuits (hereinafter referred to as IC) and consumes less power. Therefore, CMOS technology has been used. It becomes the dominant style of digital circuit design in integrated circuits. The CMOS circuit is composed of an n-channel metal-oxide-semiconductor (hereinafter referred to as NMOS) and a p-channel metal-oxide-semiconductor (hereinafter referred to as PMOS). Between MOSFET and PMOS, there is a threshold voltage (this refers to the voltage of the gate to the source), depending on the scale, material, and process. Due to the continuous development of integrated circuit design and manufacturing technology, the operating voltage and device size are also reduced. The 65 micrometer (nm) process is an advanced lithographic process for a large number of CMOS semiconductor processes and is more beneficial for very large scale integrated circuits (VLSI). Manufacturing, such as microprocessors. As device size and voltage levels decrease, the channel length and oxide thickness of each device also decreases. Manufacturers have switched to gate materials with lower threshold voltages to increase sub-threshold leakage current. When the gate-to-source voltage is lower than the threshold voltage of the CMOS device, the sub-critical leakage current flows between the drain and the source. A substrate interface of each CMOS of a plurality of conventional circuits (or a well region or a bulk tie/connection) is coupled to a corresponding one of the power lines (eg, the PMOS substrate contacts are coupled to the core voltage VDD, and the NMOS substrate is connected The point is coupled to the reference voltage VSS). In such conventional structures, the subcritical leakage current can account for about 30% or more of the total power consumption in a dynamic environment (e.g., during normal operation).

通常需要積體電路操作於低電力模式(low power mode)(如睡眠模式或冬眠(hibernation)模式)與儘可能地減少電力消耗。於低電力模式期間,偏壓產生器(bias generator)或電荷幫浦(charge pump)以與供應電力不同之電壓位準來偏壓裝置之基底。偏壓產生器可提供於晶片上或晶片外(off chip)。另一種情況,偏壓產生器將PMOS的基底接點之電壓提升至高於電壓VDD之電壓並將NMOS的基底接點的電壓降低至低於參考電壓VSS之電壓。這樣的基底偏壓明顯減少於低電力模式下之次臨界電壓漏電流,藉以保存電力總量。然而,在大型積體裝置(如微處理器)並不經常要求整個裝置操作於低電力模式。當微處理器的部分元件未使用時,需要降低此部分元件之次臨界漏電 流,這是現有技術急需解決的問題。It is often desirable for integrated circuits to operate in a low power mode (such as sleep mode or hibernation mode) and to minimize power consumption. During the low power mode, a bias generator or charge pump biases the substrate of the device at a different voltage level than the supplied power. The bias generator can be provided on the wafer or off chip. In another case, the bias generator boosts the voltage of the PMOS base contact to a voltage higher than the voltage VDD and lowers the voltage of the NMOS base contact to a voltage lower than the reference voltage VSS. Such a substrate bias is significantly reduced by the sub-critical voltage leakage current in the low power mode, thereby preserving the total amount of power. However, large integrated devices, such as microprocessors, do not often require the entire device to operate in a low power mode. When some components of the microprocessor are not in use, it is necessary to reduce the subcritical leakage of this component. Flow, this is an urgent problem to be solved in the prior art.

有鑑於此,根據一實施例之一種微處理器,包括:第一電源供應節點、功能區塊、第一基底偏壓導線、第一充電節點、第一選擇電路及基底偏壓電路。第一電源供應節點,提供第一核心電壓。功能區塊具有複數電力模式,包括一或多個半導體裝置與繞線於功能區塊之第一基底偏壓導線以及第一基底偏壓導線耦接至少一半導體裝置之基底接點。第一選擇電路,於功能區塊於低電力模式時耦接第一基底偏壓導線至第一充電節點以及於功能區塊為全電力模式時箝制第一基底偏壓導線至第一電源供應節點。基底偏壓電路,於功能區塊於低電力模式時充電第一充電節點至相對於第一核心電壓之第一偏移電壓之第一基底偏壓。In view of this, a microprocessor according to an embodiment includes: a first power supply node, a functional block, a first substrate bias wire, a first charging node, a first selection circuit, and a substrate bias circuit. The first power supply node provides a first core voltage. The functional block has a plurality of power modes including one or more semiconductor devices coupled to the first substrate bias wires wound from the functional blocks and the first substrate bias wires coupled to the substrate contacts of the at least one semiconductor device. a first selection circuit, configured to couple the first substrate bias wire to the first charging node when the functional block is in the low power mode, and clamp the first base bias wire to the first power supply node when the functional block is in the full power mode . The substrate biasing circuit charges the first charging node to a first substrate bias voltage relative to a first offset voltage of the first core voltage when the functional block is in the low power mode.

第一選擇電路可包括耦接於第一電源供應節點及第一基底偏壓導線之間之半導體裝置或是第一選擇電路選擇性地致能於第一基底偏壓導線與第一充電節點之間之半導體裝置。基底偏壓電路之控制裝置可控制第一選擇電路。第一選擇電路可包括用以控制半導體裝置之位準移位電路,可確保每個半導體裝置為不導通。功能區塊可包括用以箝制第一基底偏壓導線之額外的箝位裝置。位準移位電路與緩衝器可控制箝位裝置。功能區塊可包括第二基底偏壓導線,其中微處理器可包括第二充電節點與第二選擇電路。基底偏壓電路可包括偏壓產生器,偏壓產生器將第 一充電節點充電,以使得第一充電節點相對於第一核心電壓具有一正電壓偏移,以及當功能區塊於低電力模式,偏壓產生器將第二充電節點充電,以使得第二充電節點相對於第二核心電壓具有一負電壓偏移。The first selection circuit may include a semiconductor device coupled between the first power supply node and the first substrate bias wire or the first selection circuit selectively enabling the first substrate bias wire and the first charging node Semiconductor device. The control device of the substrate bias circuit can control the first selection circuit. The first selection circuit can include a level shifting circuit for controlling the semiconductor device to ensure that each semiconductor device is non-conductive. The functional block can include additional clamping means for clamping the first substrate biasing wire. The level shifting circuit and the buffer can control the clamping device. The functional block can include a second substrate biasing wire, wherein the microprocessor can include a second charging node and a second selection circuit. The substrate bias circuit can include a bias generator, and the bias generator will A charging node is charged such that the first charging node has a positive voltage offset relative to the first core voltage, and when the functional block is in the low power mode, the bias generator charges the second charging node to cause the second charging The node has a negative voltage offset with respect to the second core voltage.

根據本發明之一實施例所述之一種積體電路包括基底、功能區塊、第一基底偏壓導線與第二基底偏壓導線、供應半導體提供核心電壓與參考電壓以及基底偏壓電路。An integrated circuit according to an embodiment of the present invention includes a substrate, a functional block, a first substrate bias wire and a second substrate bias wire, a supply semiconductor supply core voltage and a reference voltage, and a substrate bias circuit.

根據一實施例所述之一種微處理晶片之功能區塊之半導體裝置之選擇基底偏壓之方法,上述微處理器晶片包括繞線於功能區塊之基底偏壓導線,用於減少半導體裝置之至少一次臨界漏電流。上述方法包括當功能區塊於第一電力狀態,箝制基底偏壓導線之電壓至核心電壓以及當功能區塊於第二電力狀態,將不箝制基底偏壓導線以及驅動基底偏壓導線至基底偏壓。A method of selecting a substrate bias voltage for a semiconductor device of a functional block of a microchip according to an embodiment, wherein the microprocessor chip includes a substrate bias wire wound around a functional block for reducing a semiconductor device At least one critical leakage current. The method includes: when the functional block is in the first power state, clamping the voltage of the substrate bias wire to the core voltage, and when the functional block is in the second power state, the base bias wire is not clamped and the substrate bias wire is driven to the substrate bias Pressure.

上述方法包括致能耦接於基底偏壓導線與第一核心電壓間之箝位裝置。上述方法可包括驅動半導體裝置之閘極至第二核心電壓與基底偏壓之一者。上述方法可包括移位一致能信號之位準,以切換於基底偏壓與第二核心電壓之間,以及提供位準移位致能信號至半導體之閘極。驅動上述基底偏壓導線之步驟包括將充電節點充電至相對於第一核心電壓之一偏移電壓,以及將基底偏壓導線耦接至充電節點。The method includes enabling a clamping device coupled between the substrate biasing wire and the first core voltage. The above method can include driving the gate of the semiconductor device to one of a second core voltage and a substrate bias. The above method can include shifting the level of the coincidence signal to switch between the substrate bias and the second core voltage, and providing a level shift enable signal to the gate of the semiconductor. The step of driving the substrate biasing conductor includes charging the charging node to an offset voltage relative to one of the first core voltages, and coupling the substrate biasing conductor to the charging node.

為使本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下:The above objects, features and advantages of the present invention will become more apparent and obvious. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment will be described below in detail with reference to the accompanying drawings.

實施例:Example:

熟悉此技藝之人士皆可由以下描述,視其實際應用與需要,創造及使用本發明。然而,熟悉此技藝之人士皆可變動為較佳之實施例,以應用於其他實施例。因此,本發明的目的不只限於所顯示之實施例,也應揭露於包括與其原則一致之廣泛範圍及新的特點。Those skilled in the art can create and use the present invention from the following description, depending on its actual application and needs. However, those skilled in the art can change the preferred embodiment to apply to other embodiments. Therefore, the objectives of the present invention are not limited to the embodiments shown, but are also intended to cover the broad scope and novel features

發明人考量在功能區塊停止運作(shut down)或位於低電力模式時,減少於微處理器的功能區塊之次臨界漏電流的需求,因而發展具有選擇基底偏壓(substrate bias)之微處理器,以於功能區塊中減少次臨界漏電流,並描述於以下之第1圖至第6圖。The inventors considered the need to reduce the sub-critical leakage current of the functional blocks of the microprocessor when the functional block was shut down or in the low power mode, thus developing a micro with a selected substrate bias. The processor reduces the sub-critical leakage current in the functional block and is described in Figures 1 through 6 below.

第1圖係顯示包括整合於P型基底101上之CMOS裝置之一積體電路100之一實施例以及根據一實施例所述之整合於積體電路100上之基底偏壓電路102之示意圖。雖然所顯示之特定結構為雙層井(twin well)製程,但依然可考慮使用其他類型的製程(如N型井(N-well)、P型井((P-well)及三層井(triple well)等)。N型井區103、105與107形成於P型基底101內,並且第二N型井區105為深N型井區(deep N-well region)。隔離的P型井(isolated P-well)區109形成於深N型井區105內。第一N型井區103用以製造P型通道裝置111,而隔離的P型井區109用以製造N型通道裝置113。熟悉此技藝人士皆瞭解第三 N型井區107可應用於其他裝置。雖然第1圖僅顯示二個裝置111與113,熟悉此技藝人士皆瞭解任何數量之額外裝置皆可應用於P型基底101上。1 is a schematic diagram showing an embodiment of an integrated circuit 100 including a CMOS device integrated on a P-type substrate 101 and a substrate bias circuit 102 integrated on the integrated circuit 100 according to an embodiment. . Although the specific structure shown is a twin well process, other types of processes (such as N-well, P-well, and 3-story wells) can still be considered ( Triple well), etc. N-type well regions 103, 105 and 107 are formed in P-type substrate 101, and second N-type well region 105 is deep N-well region. Isolated P-type well An isolated P-well region 109 is formed in the deep N-well region 105. The first N-type well region 103 is used to fabricate the P-type channel device 111, and the isolated P-type well region 109 is used to fabricate the N-type channel device 113. Those familiar with this art know the third The N-type well region 107 can be applied to other devices. Although FIG. 1 shows only two devices 111 and 113, those skilled in the art will appreciate that any number of additional devices can be applied to the P-type substrate 101.

成對的P型擴散區(diffusion region)(P+)115與117以及N型擴散區(N+)119形成P型通道裝置111於N型井區103內。P型通道裝置111更包括將閘極絕緣層(gate insulator layer)121覆蓋(overlapping)於P型擴散區115及117之N型井區103上。P型擴散區(P+)115形成為汲極端,標註為“D”;P型擴散區(P+)117形成為源極端,標註為“S”;以及閘極絕緣層121形成為閘極端,標註為“G”。根據裝置的特別功能,P型通道裝置111的閘極端G與汲極端D耦接於積體電路100的對應信號(未繪示)。P型通道裝置111的源極端S耦接於一核心電壓(core voltage)VDD。在一實施例中,上述核心電壓VDD由一第一電源供應節點提供。N型擴散區119形成為一井區或基底接點(bulk connection),標註為“B”。基底偏壓導線(substrate bias rail)104耦接於N型擴散區119,以提供基底偏壓VBNA於P型通道裝置111。對於N型通道裝置113,成對的N型擴散區(N+)123及125以及P型擴散區(P+)127形成於N型通道裝置113之隔離之P型井區109內。閘極絕緣層129形成在覆蓋於N型擴散區123及125之P型井區109上。N型擴散區125形成為汲極端D;N型擴散區123形成為源極端S;以及閘極絕緣層129形成為閘極端G。N型通道裝置113的閘極端G與汲極端D, 根據裝置的特別功能耦接於積體電路100上的對應信號(未繪示)。N型通道裝置113的源極端S耦接於另一核心電壓VSS,為了與上述核心電壓VDD區別,因此稱為參考電壓(core reference voltage)VSS。上述參考電壓VSS於實施例中為一接地信號。在一實施例中,上述參考電壓VSS由一第二電源供應節點提供。P型擴散區127形成為一井區或基底接點B。基底偏壓導線106耦接於P型擴散區127,以提供基底偏壓VBPA於N型通道裝置113。Pairs of P-type diffusion regions (P+) 115 and 117 and N-type diffusion regions (N+) 119 form a P-type channel device 111 in the N-type well region 103. The P-type channel device 111 further includes an over-type of the gate insulator layer 121 over the N-type well region 103 of the P-type diffusion regions 115 and 117. The P-type diffusion region (P+) 115 is formed as a 汲 extreme, labeled "D"; the P-type diffusion region (P+) 117 is formed as a source terminal, labeled "S"; and the gate insulating layer 121 is formed as a gate terminal, labeled It is "G". The gate terminal G and the drain terminal D of the P-channel device 111 are coupled to corresponding signals (not shown) of the integrated circuit 100 according to the special function of the device. The source terminal S of the P-channel device 111 is coupled to a core voltage VDD. In an embodiment, the core voltage VDD is provided by a first power supply node. The N-type diffusion region 119 is formed as a well region or a bulk connection, labeled "B." A substrate bias rail 104 is coupled to the N-type diffusion region 119 to provide a substrate bias voltage VBNA to the P-channel device 111. For the N-type channel device 113, pairs of N-type diffusion regions (N+) 123 and 125 and a P-type diffusion region (P+) 127 are formed in the isolated P-type well region 109 of the N-channel device 113. A gate insulating layer 129 is formed on the P-type well region 109 covering the N-type diffusion regions 123 and 125. The N-type diffusion region 125 is formed as the 汲 terminal D; the N-type diffusion region 123 is formed as the source terminal S; and the gate insulating layer 129 is formed as the gate terminal G. The gate terminal G of the N-type channel device 113 and the 汲 terminal D, A corresponding signal (not shown) coupled to the integrated circuit 100 is coupled according to a particular function of the device. The source terminal S of the N-channel device 113 is coupled to another core voltage VSS, and is referred to as a core reference voltage VSS in order to be distinguished from the core voltage VDD described above. The above reference voltage VSS is a ground signal in the embodiment. In an embodiment, the reference voltage VSS is provided by a second power supply node. The P-type diffusion region 127 is formed as a well region or a substrate contact B. The substrate bias wire 106 is coupled to the P-type diffusion region 127 to provide a substrate bias voltage VBPA to the N-channel device 113.

核心電壓VDD與參考電壓VSS可透過導體或是導電線路等(例如熟悉此技藝人士皆瞭解之導電穿孔、導電節點、導電導線、導電匯流排與匯流排信號等)提供於整個積體電路或是晶片。基底偏壓導線104與106也可透過導體或導電線路等實施。The core voltage VDD and the reference voltage VSS can be supplied to the entire integrated circuit through a conductor or a conductive line or the like (for example, a conductive via, a conductive node, a conductive wire, a conductive bus bar and a bus bar signal known to those skilled in the art) or Wafer. The substrate biasing wires 104 and 106 can also be implemented through a conductor or a conductive line or the like.

基底偏壓電路102包括偏壓產生器112,上述偏壓產生器112分別輸出基底偏壓VBNA與基底偏壓VBPA於基底偏壓導線104與106。雖然於實施例中偏壓產生器112係以位於積體電路100之電荷幫浦實施,但依然可考慮以其他類型的電壓產生器實施。偏壓產生器112由控制裝置114所提供之控制信號BCTL控制。控制裝置114有一輸出端,提供箝位致能信號ENP至P型位準移位電路(P-type level shifter,LSP)116之輸入端,而上述P型位準移位電路116有一輸出端提供對應的箝制移位致能信號PEN至P型通道箝位裝置PC1的閘極。P型通道箝位裝置PC1的源極耦接核心電壓VDD且其汲極與基底耦接至基底偏壓導 線104。控制裝置114有另一輸出端,提供另一箝位致能信號ENN至N型位準移位(N-type level shifter,LSN)電路118之輸入端,上述N型位準移位電路118有一輸出端,提供對應的箝制移位致能信號NEN至N型通道箝位裝置NC1的閘極。N型通道箝位裝置NC1的源極耦接至參考電壓VSS且其汲極與基底耦接至基底偏壓導線106。控制裝置114切換箝位致能信號ENP與ENN於積體電路100之參考電壓VSS與核心電壓VDD之間。P型位準移位電路116位移箝制移位致能信號PEN之電壓範圍,以操作於參考電壓VSS與基底偏壓VBNA之間以及N型位準移位電路118位移箝制移位致能信號NEN之電壓範圍,以操作於基底偏壓VBPA與核心電壓VDD之間。通常當控制裝置114設置(assert)箝位致能信號ENP為低位準時,則P型位準移位電路116將設置箝制移位致能信號PEN為低位準以導通P型通道箝位裝置PC1以箝制基底偏壓導線104至核心電壓VDD。當控制裝置114設置箝位致能信號ENP信號為高位準時,則P型位準移位電路116將設置箝制移位致能信號PEN為高位準,使P型通道箝位裝置PC1將不導通。然而,當控制裝置114設置箝位致能信號ENN為高位準時,則N型位準移位電路118將設置箝制移位致能信號NEN為高位準以導通,使N型通道箝位裝置NC1將導通,以箝制基底偏壓導線106至參考電壓VSS。當控制裝置114設置箝位致能信號ENN為低位準時,則N型通道箝位裝置NC1將不導通。The substrate bias circuit 102 includes a bias generator 112 that outputs a substrate bias voltage VBNA and a substrate bias voltage VBPA to the substrate bias wires 104 and 106, respectively. Although the bias generator 112 is implemented with a charge pump located in the integrated circuit 100 in the embodiment, it is still contemplated to be implemented with other types of voltage generators. The bias generator 112 is controlled by a control signal BCTL provided by the control device 114. The control device 114 has an output terminal for providing a clamp enable signal ENP to an input of a P-type level shifter (LSP) 116, and the P-type level shift circuit 116 has an output provided. Corresponding clamp displacement enable signal PEN to the gate of the P-channel clamp device PC1. The source of the P-channel clamp device PC1 is coupled to the core voltage VDD and its drain is coupled to the substrate to the substrate bias Line 104. The control device 114 has another output terminal, and provides an input terminal of another clamp enable signal ENN to an N-type level shifter (LSN) circuit 118. The N-type level shift circuit 118 has a The output terminal provides a corresponding clamp displacement enable signal NEN to the gate of the N-channel clamp device NC1. The source of the N-channel clamp device NC1 is coupled to the reference voltage VSS and its drain is coupled to the substrate to the substrate biasing conductor 106. The control device 114 switches the clamp enable signals ENP and ENN between the reference voltage VSS of the integrated circuit 100 and the core voltage VDD. The P-type level shifting circuit 116 shifts the voltage range of the clamped shift enable signal PEN to operate between the reference voltage VSS and the substrate bias voltage VBNA and the N-type level shifting circuit 118 shifts the clamped shift enable signal NEN The voltage range is operated between the substrate bias voltage VBPA and the core voltage VDD. Generally, when the control device 114 asserts the clamp enable signal ENP to a low level, the P-type level shift circuit 116 sets the clamp shift enable signal PEN to a low level to turn on the P-channel clamp device PC1. The substrate biases the wire 104 to the core voltage VDD. When the control device 114 sets the clamp enable signal ENP signal to a high level, the P-type level shift circuit 116 sets the clamp shift enable signal PEN to a high level, so that the P-channel clamp device PC1 will not conduct. However, when the control device 114 sets the clamp enable signal ENN to a high level, the N-type level shift circuit 118 sets the clamp shift enable signal NEN to a high level to be turned on, so that the N-channel clamp device NC1 will Turning on to clamp the substrate bias wire 106 to the reference voltage VSS. When the control device 114 sets the clamp enable signal ENN to a low level, the N-channel clamp device NC1 will not conduct.

當需要將積體電路100切換至正常操作模式以正常運作時,控制裝置114將控制偏壓產生器112,以驅動基底偏壓VBNA至於核心電壓VDD之電壓位準,以及驅動基底偏壓VBPA至參考電壓VSS之電壓位準。因此,於正常操作模式期間,偏壓產生器112將驅動P型通道裝置111之基底B為核心電壓VDD及驅動N型通道裝置113的基底B為參考電壓VSS。同時,由於操作於正常操作模式,控制裝置114設置箝位致能信號ENP為低位準(所以對應之箝制移位致能信號PEN也為低位準),將使P型通道箝位裝置PC1導通,以箝制基底偏壓導線104至核心電壓VDD以及控制裝置114設置箝位致能信號ENN為高位準(所以對應之箝制移位致能信號NEN也為高位準),將使N型通道箝位裝置NC1導通,以箝制基底偏壓導線106至參考電壓VSS。雖然僅顯示用於基底偏壓導線104之一P型通道箝位裝置PC1以及顯示用於基底偏壓導線106之一N型通道箝位裝置NC1,但可使用任何數量之箝位裝置分別沿著基底偏壓導線104與106之長度而分佈。When the integrated circuit 100 needs to be switched to the normal operating mode for normal operation, the control device 114 will control the bias generator 112 to drive the substrate bias voltage VBNA to the voltage level of the core voltage VDD, and drive the substrate bias voltage VBPA to The voltage level of the reference voltage VSS. Therefore, during the normal operation mode, the bias generator 112 drives the substrate B of the P-channel device 111 to be the core voltage VDD and the substrate B driving the N-channel device 113 to be the reference voltage VSS. At the same time, since the control device 114 sets the clamp enable signal ENP to a low level (so the corresponding clamp shift enable signal PEN is also a low level) due to operation in the normal operation mode, the P-channel clamp device PC1 is turned on. Setting the clamp biasing wire 104 to the core voltage VDD and the control device 114 to set the clamp enable signal ENN to a high level (so the corresponding clamped shift enable signal NEN is also at a high level) will cause the N-channel clamp device NC1 is turned on to clamp the substrate bias wire 106 to the reference voltage VSS. Although only the P-channel clamp device PC1 for the substrate biasing conductor 104 and the N-channel clamping device NC1 for the substrate biasing conductor 106 are shown, any number of clamping devices can be used along each other. The base bias wires are distributed along the length of the wires 104 and 106.

於正常操作模式下,基底偏壓導線104與106繞線(routed)於整合於P型基底101之每個裝置(包括N型通道裝置113與P型通道裝置111),基底偏壓VBNA與VBPA需要分別與基底偏壓導線104及基底偏壓導線106保持一致。通常較大尺寸之P型基底101與較大之積體電路(integrated devices)具有較長的基底偏壓導線104與106。基底偏壓導線104與106可為實體導體(physical conductor),其阻抗導致沿著遠離偏壓產生器112之導線長度而漸增之電壓降。若N型通道裝置113與P型通道裝置111之一者位於距離偏壓產生器112之相對較遠者,其基底偏壓VBNA與基底偏壓VBPA之電壓位準將分別與核心電壓VDD與參考電壓VSS有明顯之差異,並導致對操作機制之執行有負面的影響。再者,基底偏壓導線104與106容易傳送由電容耦合(capacitive coupling)或類似之效應所產生之雜訊,更影響操作並降低效能。In the normal mode of operation, substrate bias wires 104 and 106 are routed to each device integrated into P-type substrate 101 (including N-channel device 113 and P-channel device 111), substrate bias VBNA and VBPA It is necessary to maintain the same with the substrate bias wire 104 and the substrate bias wire 106, respectively. Generally, the larger size P-type substrate 101 has larger substrate biasing wires 104 and 106 than the larger integrated devices. The substrate bias wires 104 and 106 can be solid conductors (physical) The impedance of the conductor causes a voltage drop that increases along the length of the wire away from the bias generator 112. If one of the N-channel device 113 and the P-channel device 111 is located relatively far from the bias generator 112, the voltage levels of the substrate bias voltage VBNA and the substrate bias voltage VBPA will be respectively related to the core voltage VDD and the reference voltage. There are significant differences in VSS and have a negative impact on the execution of operational mechanisms. Moreover, the substrate biasing wires 104 and 106 easily transmit noise generated by capacitive coupling or the like, which affects operation and reduces performance.

在一實施例之正常操作模式期間,箝位裝置之數量與位置係根據箝制各基底偏壓導線相對於對應之核心電壓VDD與參考電壓VSS之既定最小電壓位準而定。在此方式下,當箝位裝置致能時,基底偏壓導線104之電壓箝制為具有既定最小電壓位準之核心電壓VDD,而基底偏壓導線106之電壓箝制為具有既定最小電壓位準之參考電壓VSS。上述之箝制機制可減少電容耦合效應所產生之雜訊,並最小化沿著基底偏壓導線104與106之電壓變動。在一實施例中,當基底偏壓導線104與106箝制為核心電壓VDD與參考電壓VSS之後,若要求雜訊更少與維持電力,可將偏壓產生器112停止運作(shut down)或是切換為低電力模式。During the normal mode of operation of an embodiment, the number and position of the clamping devices are based on the predetermined minimum voltage level of the respective substrate bias wires relative to the corresponding core voltage VDD and reference voltage VSS. In this manner, when the clamping device is enabled, the voltage of the substrate biasing conductor 104 is clamped to a core voltage VDD having a predetermined minimum voltage level, and the voltage of the substrate biasing conductor 106 is clamped to have a predetermined minimum voltage level. Reference voltage VSS. The clamping mechanism described above reduces noise generated by capacitive coupling effects and minimizes voltage variations across the substrate biasing wires 104 and 106. In one embodiment, after the substrate bias wires 104 and 106 are clamped to the core voltage VDD and the reference voltage VSS, if less noise is required and power is maintained, the bias generator 112 can be shut down or Switch to low power mode.

當要求積體電路100操作於低電力模式,控制裝置114將設置箝位致能信號ENP為高位準與箝位致能信號ENN為低位準,以不導通箝位裝置PC1與NC1。需注意的是積體電路100可能具有多個操作狀態或操作模式,上述多個 操作狀態或操作模式包括一或多個低電力模式或低電力狀態。上述低電力模式是積體電路100之至少一部分區域位於低電力狀態(condition)或者是關閉。於低電力模式,控制裝置114也控制偏壓產生器112,並利用第一基底偏移電壓(substrate bias offset voltage)驅動基底偏壓VBNA以高於核心電壓VDD,並以一第二基底偏移電壓驅動基底偏壓VBPA以低於參考電壓VSS。根據實際的結構,第一基底偏移電壓與第二基底偏移電壓可為相同或者是不同的電壓。亦即,於低電力模式時,基底偏壓VBNA相對於核心電壓VDD具有一正電壓偏移,基底偏壓VBPA相對於參考電壓VSS具有一負電壓偏移。因此,於低電力模式,將P型通道裝置111之基底電壓驅動為高於核心電壓VDD之電壓,並將N型通道裝置113的基底電壓驅動為低於參考電壓VSS之電壓,以使上述二者之裝置之次臨界漏電流最小化。When the integrated circuit 100 is required to operate in the low power mode, the control device 114 sets the clamp enable signal ENP to a high level and the clamp enable signal ENN to a low level to not turn on the clamp devices PC1 and NC1. It should be noted that the integrated circuit 100 may have multiple operating states or operating modes, the above multiple The operational state or mode of operation includes one or more low power modes or low power states. The low power mode described above is that at least a portion of the integrated circuit 100 is in a low power condition or is off. In the low power mode, the control device 114 also controls the bias generator 112 and drives the substrate bias voltage VBNA above the core voltage VDD with a first substrate bias offset voltage and is offset by a second substrate. The voltage drives the substrate bias voltage VBPA to be lower than the reference voltage VSS. According to the actual structure, the first substrate offset voltage and the second substrate offset voltage may be the same or different voltages. That is, in the low power mode, the substrate bias voltage VBNA has a positive voltage offset with respect to the core voltage VDD, and the substrate bias voltage VBPA has a negative voltage offset with respect to the reference voltage VSS. Therefore, in the low power mode, the substrate voltage of the P-channel device 111 is driven to a voltage higher than the core voltage VDD, and the substrate voltage of the N-channel device 113 is driven to a voltage lower than the reference voltage VSS, so that the above two The subcritical leakage current of the device is minimized.

以下將對當箝位致能信號ENP設置為核心電壓VDD時,P型位準移位電路116位移箝制移位致能信號PEN之電壓至基底偏壓VBNA之操作機制做更進一步描述。於此機制之低電力模式期間,箝位致能信號ENP將切換於參考電壓VSS與核心電壓VDD之間,而箝制移位致能信號PEN切換於參考電壓VSS與基底偏壓VBNA之間,將驅動上述基底偏壓VBNA高於核心電壓VDD。當偏壓產生器112驅動基底偏壓VBNA高於核心電壓VDD之電壓,P型位準移位電路116將確保P型通道箝位裝置PC1於低 電力模式下,完全不導通。更具體的說,當偏壓產生器112驅動基底偏壓VBNA高於核心電壓VDD時,控制裝置114將設置箝位致能信號ENP之位準高至核心電壓VDD,並使P型通道箝位裝置PC1不導通。若箝位致能信號ENP直接提供給P型通道箝位裝置PC1之閘極,則上述P型通道箝位裝置之閘極電位將僅位於核心電壓VDD而其汲極之電位將高於核心電壓VDD,可能使得P型通道箝位裝置PC1部分導通。但是,經P型位準移位電路116驅動箝制移位致能信號PEN至基底偏壓VBNA的電壓位準,所以P型通道箝位裝置PC1的閘極與汲極都位於高於核心電壓VDD之基底偏壓VBNA的電壓位準,以確保P型通道箝位裝置PC1完全不導通。The operation mechanism of the P-type level shifting circuit 116 shifting the voltage of the clamped shift enable signal PEN to the substrate bias voltage VBNA will be further described below when the clamp enable signal ENP is set to the core voltage VDD. During the low power mode of the mechanism, the clamp enable signal ENP will be switched between the reference voltage VSS and the core voltage VDD, and the clamp shift enable signal PEN is switched between the reference voltage VSS and the substrate bias voltage VBNA. The substrate bias voltage VBNA is driven above the core voltage VDD. When the bias generator 112 drives the substrate bias voltage VBNA higher than the core voltage VDD, the P-type level shifting circuit 116 will ensure that the P-channel clamp device PC1 is low. In power mode, it is not conductive at all. More specifically, when the bias generator 112 drives the substrate bias voltage VBNA higher than the core voltage VDD, the control device 114 sets the clamp enable signal ENP to the core voltage VDD and clamps the P-channel. Device PC1 is not conducting. If the clamp enable signal ENP is directly supplied to the gate of the P-channel clamp device PC1, the gate potential of the P-channel clamp device will be only at the core voltage VDD and the potential of the drain will be higher than the core voltage. VDD may cause the P-channel clamp PC1 to be partially turned on. However, the P-type level shifting circuit 116 drives the voltage level of the clamp shift enable signal PEN to the base bias voltage VBNA, so the gate and the drain of the P-channel clamp device PC1 are both higher than the core voltage VDD. The substrate biases the voltage level of VBNA to ensure that the P-channel clamp PC1 is completely non-conducting.

與上述近似之方法,當箝位致能信號ENN設置為參考電壓VSS,N型位準移位電路118將移動箝制移位致能信號NEN之電壓至基底偏壓VBPA。因此於低電力模式下,箝位致能信號ENN切換於參考電壓VSS與核心電壓VDD之間而箝制移位致能信號PEN切換於基底偏壓VBPA與核心電壓VDD間,將驅動上述基底偏壓VBPA低於參考電壓VSS。當偏壓產生器112驅動基底偏壓VBPA低於參考電壓VSS,N型位準移位電路118將確保N型通道箝位裝置NC1於低電力模式下,完全不導通。更具體的說,當偏壓產生器112驅動基底偏壓VBNA低於參考電壓VSS,控制裝置114將設置箝位致能信號ENN之位準至參考電壓VSS以不導通N型通道箝位裝置NC1。 若箝位致能信號ENN直接提供給N型通道箝位裝置NC1之閘極,上述N型通道箝位裝置NC1之閘極之電位將僅位於參考電壓VSS與其汲極之電位將低於參考電壓VSS,可能使得N型通道箝位裝置NC1部分導通。但是,經N型位準移位電路118驅動箝制移位致能信號NEN至基底偏壓VBPA之電壓位準,所以N型位準移位電路118的閘極與汲極之電位都低於參考電壓VSS之基底偏壓VBPA的電壓位準,以確保N型通道箝位裝置NC1不導通。In a similar manner to the above, when the clamp enable signal ENN is set to the reference voltage VSS, the N-type level shifting circuit 118 will shift the voltage of the shift enable signal NEN to the substrate bias voltage VBPA. Therefore, in the low power mode, the clamp enable signal ENN is switched between the reference voltage VSS and the core voltage VDD, and the clamp shift enable signal PEN is switched between the substrate bias voltage VBPA and the core voltage VDD to drive the substrate bias. VBPA is lower than the reference voltage VSS. When the bias generator 112 drives the substrate bias voltage VBPA below the reference voltage VSS, the N-type level shifting circuit 118 will ensure that the N-channel clamp device NC1 is completely non-conducting in the low power mode. More specifically, when the bias voltage generator 112 drives the substrate bias voltage VBNA to be lower than the reference voltage VSS, the control device 114 sets the level of the clamp enable signal ENN to the reference voltage VSS to not turn on the N-channel clamp device NC1. . If the clamp enable signal ENN is directly supplied to the gate of the N-channel clamp device NC1, the potential of the gate of the N-channel clamp device NC1 will be only at the reference voltage VSS and the potential of the drain will be lower than the reference voltage. VSS may cause the N-channel clamp device NC1 to be partially turned on. However, the voltage level of the clamp shift enable signal NEN to the substrate bias voltage VBPA is driven by the N-type level shift circuit 118, so the potentials of the gate and the drain of the N-type level shift circuit 118 are lower than the reference. The voltage of the substrate of the voltage VSS is biased to the voltage level of VBPA to ensure that the N-channel clamp device NC1 is not conducting.

當要求由低電力模式切換回正常操作模式,控制裝置114將控制偏壓產生器112以驅動基底偏壓VBNA降回至核心電壓VDD,以及驅動基底偏壓VBPA拉升回至參考電壓VSS。接下來,控制裝置114驅動箝位致能信號ENP為低位準以及箝位致能信號ENN為高位準,以將P型通道箝位裝置PC1與N型通道箝位裝置NC1導通。When switching from the low power mode to the normal operating mode is required, the control device 114 drops the control bias generator 112 to drive the substrate bias voltage VBNA back to the core voltage VDD, and pulls the drive substrate bias voltage VBPA back to the reference voltage VSS. Next, the control device 114 drives the clamp enable signal ENP to a low level and the clamp enable signal ENN to a high level to turn on the P-channel clamp device PC1 and the N-channel clamp device NC1.

第2圖係顯示根據一實施例之基底偏壓電路202以及整合於微處理器200之晶粒以最小化於微處理器200上功能區塊208內之次臨界漏電流之方塊圖。基底偏壓電路202之裝置與組成之操作方式都近似於基底偏壓電路102。偏壓產生器112可由近似功能的偏壓產生器212所取代,該偏壓產生器212有一輸出端,提供充電電壓位準NCHG與充電電壓位準PCHG,分別置於導電信號線203與205。導電信號線203與205將由基底偏壓電路202繞線(routed)於微處理器200之功能區塊208。以下將對當功 能區塊208為低電力模式,將選擇性地運用充電電壓位準NCHG與充電電壓位準PCHG之電壓以分別驅動基底偏壓VBNA與基底偏壓VBPA於基底偏壓導線204與206上之情況做更進一步描述。繞線於功能區塊208中之基底偏壓導線204與206將提供基底偏壓VBNA與基底偏壓VBPA至整合於功能區塊的微處理器中之P型通道裝置及N型通道裝置。於功能區塊208中所顯示之傳統P型通道裝置P1,具有基底接點耦接基底偏壓導線204,其近似於P型通道裝置111。同樣地,功能區塊208中所顯示之N型通道裝置N1,具有基底接點耦接於基底偏壓導線206,其近似於N型通道裝置113。雖僅有顯示一P型通道裝置P1與一N型通道裝置N1,但於上述相近的方法,此分佈功能區塊208中的任何數目之裝置(P型通道裝置與N型通道裝置),都具有對應基底接點接至可應用的基底偏壓導線204與206。2 is a block diagram showing a substrate bias circuit 202 and a die integrated into the microprocessor 200 to minimize sub-critical leakage currents in the functional block 208 on the microprocessor 200, in accordance with an embodiment. The device and composition of the substrate biasing circuit 202 operate in a manner similar to the substrate biasing circuit 102. The bias generator 112 can be replaced by an approximately functional bias generator 212 having an output that provides a charging voltage level NCHG and a charging voltage level PCHG, respectively, placed on the conductive signal lines 203 and 205. Conductive signal lines 203 and 205 will be routed by substrate bias circuit 202 to functional block 208 of microprocessor 200. The following will be The energy block 208 is in a low power mode, and the voltages of the charging voltage level NCHG and the charging voltage level PCHG are selectively applied to drive the substrate bias voltage VBNA and the substrate bias voltage VBPA on the substrate bias wires 204 and 206, respectively. Do further description. The substrate bias wires 204 and 206 wound in the functional block 208 will provide a substrate bias voltage VBNA and a substrate bias voltage VBPA to the P-channel device and the N-channel device integrated into the microprocessor of the functional block. The conventional P-channel device P1 shown in functional block 208 has a substrate contact coupled to a substrate biasing conductor 204 that approximates the P-channel device 111. Similarly, the N-type channel device N1 shown in the functional block 208 has a substrate contact coupled to the substrate biasing conductor 206, which approximates the N-channel device 113. Although only one P-type channel device P1 and one N-type channel device N1 are shown, in the above similar method, any number of devices (P-channel device and N-channel device) in the distribution function block 208 are There are corresponding substrate contacts connected to applicable substrate bias wires 204 and 206.

與控制裝置114近似之控制裝置214取代控制裝置114,上述控制裝置214提供與控制裝置114近似的箝位致能信號ENP與ENN與控制信號BCTL。其操作之機制近似於之前所顯示的積體電路100之控制裝置114。箝位致能信號ENN與ENP利用對應之導電信號線由基底偏壓電路202傳送至功能區塊208。控制信號BCTL用以控制偏壓產生器212。由充電電壓位準NCHG與充電電壓位準PCHG之電壓應用於驅動基底偏壓VBNA與基底偏壓VBPA,偏壓產生器送出充電電壓位準NCHG與充電電壓 位準PCHG電壓之方法近似於之前顯示的積體電路100之偏壓產生器112送出基底偏壓VBNA與基底偏壓VBPA之方法。Control device 214, similar to control device 114, replaces control device 114, which provides clamp enable signals ENP and ENN and control signal BCTL that are similar to control device 114. The mechanism of operation is similar to that of the control device 114 of the integrated circuit 100 previously shown. The clamp enable signals ENN and ENP are transmitted from the substrate bias circuit 202 to the functional block 208 using corresponding conductive signal lines. Control signal BCTL is used to control bias generator 212. The voltage from the charging voltage level NCHG and the charging voltage level PCHG is applied to the driving substrate bias voltage VBNA and the substrate bias voltage VBPA, and the bias generator sends the charging voltage level NCHG and the charging voltage. The method of leveling the PCHG voltage approximates the method in which the bias generator 112 of the integrated circuit 100 previously shown sends the substrate bias voltage VBNA and the substrate bias voltage VBPA.

如前述之積體電路100之近似方法,微處理器200有多個操作狀態或操作模式。上述操作模式包括一或多個低電力模式或低電力狀態,而上述低電力模式係指選擇性使微處理器200之至少一部分位於低電力狀態或是不工作,上述之機制近似於先前積體電路100所顯示之方式。於實施例所示,功能區塊208將利用控制裝置214或其他電路(未繪示),可為完全導通狀態(全電力狀態或是全電力模式)及選擇性處於低電力模式之一者。當功能區塊208為全電力模式,控制裝置214將使偏壓產生器212不導通或位於低電力狀態,或者是控制偏壓產生器212,以驅動充電電壓位準NCHG及充電電壓位準PCHG之電壓分別至核心電壓VDD與參考電壓VSS之電壓位準。於功能區塊208之全電力模式期間,控制裝置214設置箝位致能信號ENP為低位準,並將功能區塊208之P型通道箝位裝置導通,以箝制基底偏壓導線204為核心電壓VDD。同樣地,於全電力模式(full power mode)之控制裝置214將設置箝位致能信號ENN為高位準,並將功能區塊208的N型通道箝位裝置導通,以箝制基底偏壓導線206為參考電壓VSS。當功能區塊208位於低電力模式,控制裝置214將控制偏壓電路產生器或是將其導通,以驅動充電電壓位準NCHG高於核心電壓VDD與驅動充電電壓位準PCHG低於參考 電壓VSS。控制裝置214設置箝位致能信號ENP為高位準,並將P型通道箝位裝置不導通以及驅動於基底偏壓導線204之基底偏壓VBNA至充電電壓位準NCHG之電壓位準。同樣地,於低電力模式之控制裝置214設置箝位致能信號ENN為低位準,以將N型通道箝位裝置不導通以及驅動於基底偏壓導線206之基底偏壓VBPA至充電電壓位準PCHG之電壓位準。The microprocessor 200 has a plurality of operational states or modes of operation, as described above for the integrated circuit 100. The above mode of operation includes one or more low power modes or low power states, and the low power mode refers to selectively causing at least a portion of the microprocessor 200 to be in a low power state or not operating, the mechanism described above being similar to the previous integrated body. The manner in which circuit 100 is shown. As shown in the embodiment, the functional block 208 will utilize the control device 214 or other circuitry (not shown), either in a fully conductive state (full power state or full power mode) and selectively in one of the low power modes. When the functional block 208 is in the full power mode, the control device 214 will disable the bias generator 212 or be in a low power state, or control the bias generator 212 to drive the charging voltage level NCHG and the charging voltage level PCHG. The voltage is respectively applied to the voltage level of the core voltage VDD and the reference voltage VSS. During the full power mode of the function block 208, the control device 214 sets the clamp enable signal ENP to a low level, and turns on the P-channel clamp device of the function block 208 to clamp the base bias wire 204 as a core voltage. VDD. Similarly, the control device 214 in the full power mode sets the clamp enable signal ENN to a high level and turns on the N-channel clamp of the functional block 208 to clamp the base bias wire 206. It is the reference voltage VSS. When the function block 208 is in the low power mode, the control device 214 will control the bias circuit generator or turn it on to drive the charging voltage level NCHG higher than the core voltage VDD and the driving charging voltage level PCHG lower than the reference. Voltage VSS. The control device 214 sets the clamp enable signal ENP to a high level and disables the P-channel clamp device and drives the substrate bias voltage VBNA of the substrate bias conductor 204 to the voltage level of the charge voltage level NCHG. Similarly, the control device 214 in the low power mode sets the clamp enable signal ENN to a low level to disable the N-channel clamp device and drive the substrate bias voltage VBPA to the base bias conductor 206 to a charge voltage level. The voltage level of PCHG.

功能區塊208包括P型通道選擇電路216與N型通道選擇電路218。分別利用箝位致能信號ENP與ENN控制P型通道選擇電路216與N型通道選擇電路218,用以選擇性驅動基底偏壓導線204與206為充電電壓位準NCHG與充電電壓位準PCHG之電壓位準。P型通道選擇電路216包括P型位準移位電路221,上述P型位準移位電路221有一輸入端以接收箝位致能信號ENP及有一輸出端,以提供致能信號PENCH至P型通道箝位裝置PA的閘極與反向器217的輸入端。P型通道箝位裝置PA具有源極耦接核心電壓VDD以及其汲極與基底耦接基底偏壓導線204。反向器217的輸出端耦接另一P型通道箝位裝置PB的閘極。上述P型通道箝位裝置PB具有接收充電電壓位準NCHG之電壓之源極以及其汲極與基底耦接基底偏壓導線204。如圖所示,反向器217具有電力導線耦接於參考電壓VSS與充電電壓位準NCHG之間。因此,其輸出端可切換於核心電壓VSS與充電電壓位準NCHG之電壓位準之間。N型通道選擇電路218包括N型位準移位電路 233。上述N型位準移位電路233有一輸入端,以接收箝位致能信號ENN及有一輸出端,可提供致能信號NENCH至N型通道箝位裝置NB的閘極與反向器219的輸出端。N型通道箝位裝置NB具有源極耦接參考電壓VSS以及其汲極及基底耦接基底偏壓導線206。反向器219的輸出端耦接另一N型通道箝位裝置NA的閘極。上述N型通道箝位裝置NA具有源極接收充電電壓位準PCHG之電壓以及其汲極與基底耦接基底偏壓導線206。如圖所示,反向器219有電力導線耦接於核心電壓VDD與充電電壓位準PCHG之電壓。因此其輸出端可切換於核心電壓VDD與充電電壓位準PCHG之電壓位準之間。The functional block 208 includes a P-type channel selection circuit 216 and an N-type channel selection circuit 218. The P-type channel selection circuit 216 and the N-type channel selection circuit 218 are controlled by the clamp enable signals ENP and ENN, respectively, for selectively driving the substrate bias wires 204 and 206 to be the charging voltage level NCHG and the charging voltage level PCHG. Voltage level. The P-type channel selection circuit 216 includes a P-type level shifting circuit 221 having an input terminal for receiving the clamp enable signal ENP and an output terminal for providing an enable signal PENCH to P-type. The gate of the channel clamp device PA and the input of the inverter 217. The P-channel clamp device PA has a source coupled to the core voltage VDD and a drain coupled to the substrate biasing conductor 204. The output of the inverter 217 is coupled to the gate of another P-channel clamp device PB. The P-channel clamp device PB has a source that receives the voltage of the charging voltage level NCHG and a drain-base coupled to the substrate biasing conductor 204. As shown, the inverter 217 has a power line coupled between the reference voltage VSS and the charging voltage level NCHG. Therefore, its output can be switched between the core voltage VSS and the voltage level of the charging voltage level NCHG. N-type channel selection circuit 218 includes an N-type level shift circuit 233. The N-type level shifting circuit 233 has an input terminal for receiving the clamp enable signal ENN and an output terminal for providing an output of the enable signal NENCH to the gate of the N-channel clamp device NB and the output of the inverter 219. end. The N-channel clamp device NB has a source coupled with a reference voltage VSS and its drain and substrate coupled to the substrate biasing conductor 206. The output of the inverter 219 is coupled to the gate of another N-channel clamp device NA. The N-channel clamp device NA has a voltage at which the source receives the charging voltage level PCHG and its drain is coupled to the substrate biasing conductor 206. As shown, the inverter 219 has a power line coupled to the voltage of the core voltage VDD and the charging voltage level PCHG. Therefore, its output can be switched between the core voltage VDD and the voltage level of the charging voltage level PCHG.

P型通道選擇電路216根據箝位致能信號ENP可透過P型通道箝位裝置PA,以箝制基底偏壓VBNA至核心電壓VDD,或者是,透過P型通道箝位裝置PB以驅動基底偏壓VBNA之電壓至充電電壓位準NCHG之電壓。P型位準移位電路221之操作方法近似於P型位準移位電路116。於功能區塊208之全電力模式期間,當設置箝位致能信號ENP至參考電壓VSS時,將使P型通道箝位裝置PA導通,以箝制基底偏壓VBNA至核心電壓VDD之電位。反相器217設置其輸出為充電電壓位準NCHG,將驅動P型通道箝位裝置PB的閘極為高位準,以使P型通道箝位裝置PB不導通。當於低電力模式下,設置箝位致能信號ENP為核心電壓VDD,則上述P型位準移位電路221將設置致能信號PENCH為充電電壓位準NCHG,以使P 型通道箝位裝置PA不導通以及反相器217設置其輸出端為參考電壓VSS,則將P型通道箝位裝置PB導通。當P型通道箝位裝置PB導通,將設置於基底偏壓導線204之基底偏壓VBNA為偏壓產生器212之充電電壓位準NCHG。於近似前述方式,N型通道選擇電路218根據箝位致能信號ENN可透過N型通道箝位裝置NB轉為箝位基底偏壓VBPA至參考電壓VSS,或者是,透過N型通道裝置NA,推動基底偏壓VBPA之電壓至充電電壓位準PCHG之電壓。N型位準移位電路223之操作方式近似於N型位準移位電路118。當於功能區塊208之全電力模式期間,設置箝位致能信號ENN之位準為核心電壓VDD,N型位準移位電路223將設置致能信號NENCH為核心電壓VDD,使N型通道箝位裝置NB導通,以箝制基底偏壓VBPA至參考電壓VSS。反相器219設置其輸出為充電電壓位準PCHG,以推動N型通道裝置NA的閘極為低位準,並使其不導通。當於低電力模式,將設置箝位致能信號ENN為參考電壓VSS,N型位準移位電路223將設置致能信號NENCH為充電電壓位準PCHG,並使N型通道箝位裝置NB不導通與反相器219設置其輸出為核心電壓VDD,將使N型通道箝位裝置NA導通。當N型通道箝位裝置NA導通,將設置於基底偏壓導線206之基底偏壓VBPA為偏壓產生器212之充電電壓位準PCHG之電壓。The P-type channel selection circuit 216 can pass through the P-channel clamp device PA to clamp the substrate bias voltage VBNA to the core voltage VDD according to the clamp enable signal ENP, or to drive the substrate bias through the P-channel clamp device PB. The voltage of the VBNA to the voltage of the charging voltage level NCHG. The operation method of the P-type level shift circuit 221 approximates the P-type level shift circuit 116. During the full power mode of the functional block 208, when the clamp enable signal ENP is set to the reference voltage VSS, the P-channel clamp device PA will be turned on to clamp the potential of the substrate bias voltage VBNA to the core voltage VDD. The inverter 217 sets its output to the charging voltage level NCHG, which will drive the gate of the P-channel clamp device PB to a very high level so that the P-channel clamp device PB is not turned on. When the clamp enable signal ENP is set to the core voltage VDD in the low power mode, the P-type level shift circuit 221 sets the enable signal PENCH to the charging voltage level NCHG, so that P The type channel clamp device PA is not turned on and the inverter 217 sets its output terminal to the reference voltage VSS to turn on the P-type channel clamp device PB. When the P-channel clamp device PB is turned on, the substrate bias voltage VBNA disposed on the substrate bias wire 204 is the charge voltage level NCHG of the bias generator 212. In an approximate manner, the N-type channel selection circuit 218 can be converted to the clamp base bias voltage VBPA to the reference voltage VSS through the N-channel clamp device NB according to the clamp enable signal ENN, or through the N-channel device NA. The voltage of the substrate bias voltage VBPA is pushed to the voltage of the charging voltage level PCHG. The mode of operation of the N-type level shifting circuit 223 approximates the N-type level shifting circuit 118. During the full power mode of the function block 208, the level of the clamp enable signal ENN is set to the core voltage VDD, and the N-type level shift circuit 223 sets the enable signal NENCH to the core voltage VDD to make the N-type channel. The clamping device NB is turned on to clamp the substrate bias voltage VBPA to the reference voltage VSS. The inverter 219 sets its output to the charging voltage level PCHG to push the gate of the N-channel device NA to a very low level and make it non-conductive. When in the low power mode, the clamp enable signal ENN is set to the reference voltage VSS, and the N type level shift circuit 223 sets the enable signal NENCH to the charging voltage level PCHG, and causes the N-channel clamp device NB not to Turning on and the inverter 219 sets its output to the core voltage VDD, which will turn on the N-channel clamp NA. When the N-channel clamp device NA is turned on, the substrate bias voltage VBPA disposed on the substrate bias wire 206 is the voltage of the charge voltage level PCHG of the bias generator 212.

於功能區塊208之全電力模式期間,P型通道箝位裝置PA與N型通道箝位裝置NB將分別箝制基底偏壓導線 204之基底偏壓VBNA與基底偏壓導線206之基底偏壓VBPA之電壓位準,並分別將基底偏壓VBNA與基底偏壓VBNA之電壓箝制為核心電壓VDD與參考電壓VSS。功能區塊208可包括額外的P型通道箝位裝置與N型通道箝位裝置。如圖所示,功能區塊208包括P型通道箝位裝置PC1耦接基底偏壓導線204與N型通道箝位裝置NC1耦接基底偏壓導線206。P型通道箝位裝置PC1的源極耦接核心電壓VDD,且其汲極與基底共同耦接於基底偏壓導線204。N型通道箝位裝置NC1的源極耦接核心電壓VSS與其源極與基底共同耦接於基底偏壓導線206。箝位致能信號ENP提供於P型位準移位電路220。上述P型位準移位電路220提供相應之箝制移位致能信號PEN,且推動上述箝制移位致能信號PEN至P型通道箝位裝置PC1的閘極。P型位準移位電路220操作方式與P型位準移位電路116相同,所以當箝位致能信號ENP切換於參考電壓VSS與核心電壓VDD之間,則箝制移位致能信號PEN切換於參考電壓VSS與基底偏壓VBNA之間。箝位致能信號ENN提供於N型位準移位電路222的輸入端,上述N型位準移位電路222提供對應之箝制移位致能信號NEN,且驅動上述箝制移位致能信號NEN至N型通道箝位裝置NC1的閘極。N型通道位準移位電路222操作方式與N型通道位準移位電路118相同,所以當箝位致能信號ENN切換於參考電壓VSS與核心電壓VDD之間,則箝制移位致能信號NEN切換於基底偏壓VBPA與核心電壓VDD之間。於 功能區塊208的全電力模式,控制裝置214將設置箝位致能信號ENP為參考電壓VSS,所以箝制移位致能信號PEN也設置為參考電壓VSS,使P型通道箝位裝置PC1導通,以箝制基底偏壓導線204至核心電壓VDD。同樣地於全電力模式,控制裝置214將設置箝位致能信號ENN為核心電壓VDD,所以箝制移位致能信號NEN也設置為核心電壓VDD,使N型通道箝位裝置NC1導通,以箝制基底偏壓導線206為參考電壓VSS。於功能區塊208的低電力模式,當基底偏壓VBNA設置為高於核心電壓VDD之充電電壓位準NCHG之電壓,箝位致能信號ENP設置為核心電壓VDD,所以箝制移位致能信號PEN設置為基底偏壓VBNA的電壓位準,以保持P型通道箝位裝置PC1完全不導通。同樣地,於低電力模式下,當基底偏壓VBPA設置為低於參考電壓VSS之充電電壓位準PCHG之電壓,箝位致能信號ENN將設置為參考電壓VSS,所以箝制移位致能信號NEN設置為基底偏壓VBPA的電壓位準以保持N型通道箝位裝置NC1完全不導通。During the full power mode of the functional block 208, the P-channel clamp device PA and the N-channel clamp device NB clamp the base bias wires respectively. The substrate bias voltage VBNA of 204 is at the voltage level of the substrate bias voltage VBPA of the substrate bias wire 206, and the voltages of the substrate bias voltage VBNA and the substrate bias voltage VBNA are respectively clamped to the core voltage VDD and the reference voltage VSS. Functional block 208 can include additional P-channel clamps and N-channel clamps. As shown, the functional block 208 includes a P-channel clamp device PC1 coupled to the substrate biasing conductor 204 and an N-channel clamp device NC1 coupled to the substrate biasing conductor 206. The source of the P-channel clamp device PC1 is coupled to the core voltage VDD, and the drain of the P-channel clamp device PC1 is coupled to the substrate biasing conductor 204. The source-coupled core voltage VSS of the N-channel clamp device NC1 is coupled to the substrate biasing conductor 206 by its source and substrate. The clamp enable signal ENP is provided to the P-type level shift circuit 220. The P-type level shifting circuit 220 provides a corresponding clamped shift enable signal PEN and pushes the clamped shift enable signal PEN to the gate of the P-channel clamp device PC1. The P-type level shift circuit 220 operates in the same manner as the P-type level shift circuit 116, so when the clamp enable signal ENP is switched between the reference voltage VSS and the core voltage VDD, the clamp shift enable signal PEN is switched. Between the reference voltage VSS and the substrate bias voltage VBNA. The clamp enable signal ENN is provided at an input end of the N-type level shift circuit 222, the N-type level shift circuit 222 provides a corresponding clamp shift enable signal NEN, and drives the clamp shift enable signal NEN To the gate of the N-channel clamp IC1. The N-type channel level shifting circuit 222 operates in the same manner as the N-channel level shifting circuit 118, so when the clamp enable signal ENN is switched between the reference voltage VSS and the core voltage VDD, the shift enable signal is clamped. NEN is switched between the substrate bias voltage VBPA and the core voltage VDD. to In the full power mode of the function block 208, the control device 214 sets the clamp enable signal ENP to the reference voltage VSS, so the clamp shift enable signal PEN is also set to the reference voltage VSS, so that the P-channel clamp device PC1 is turned on. The wire 204 is biased to the core voltage VDD by clamping the substrate. Similarly, in the full power mode, the control device 214 sets the clamp enable signal ENN to the core voltage VDD, so the clamp shift enable signal NEN is also set to the core voltage VDD, and the N-channel clamp device NC1 is turned on to clamp The substrate bias wire 206 is a reference voltage VSS. In the low power mode of the function block 208, when the substrate bias voltage VBNA is set to be higher than the voltage of the charging voltage level NCHG of the core voltage VDD, the clamp enable signal ENP is set to the core voltage VDD, so the shift enable signal is clamped. PEN is set to the voltage level of the substrate bias voltage VBNA to keep the P-channel clamp device PC1 completely non-conductive. Similarly, in the low power mode, when the substrate bias voltage VBPA is set to be lower than the voltage of the charging voltage level PCHG of the reference voltage VSS, the clamp enable signal ENN will be set to the reference voltage VSS, so the shift enable signal is clamped. NEN is set to the voltage level of the substrate bias voltage VBPA to keep the N-channel clamp device NC1 completely non-conductive.

於一實施例,於功能區塊208的全電力模式期間,功能區塊208之電位相對小且箝位裝置PC1與NC1之電位足夠大至使得基底偏壓導線204與206分別被箝制為核心電壓VDD與參考電壓VSS。例如,利用既定偏壓位準,箝位裝置PC1與NC1本身就足以確保沿著基底偏壓導線204與206之電壓由核心電壓以及參考電壓變動的範圍不會超過一既定最小電壓位準。在另一實施例,如較大的功 能區塊208或當大數目的P型與N型通道裝置耦接基底偏壓導線,至少一額外裝置分別耦接於功能區塊208中之每個基底偏壓導線204與206(如圖所示之額外箝位裝置PC1與NC1)。於不同實施例,任何額外裝置數目皆可提供於功能區塊208,以使基底偏壓導線204箝制於核心電壓VDD以及使基底偏壓導線206箝制於參考電壓VSS,用以將電壓變動最小化。如圖所示,於功能區塊208之另一P型通道箝位裝置PCN耦接基底偏壓導線204。於前述近似的方法,P型通道箝位裝置PCN的汲極與基底耦接於基底偏壓導線204與其源極耦接核心電壓VDD。P型通道箝位裝置PCN可為任何額外的P型通道箝位裝置之數量,用以箝制基底偏壓204至核心電壓VDD。同樣地,於功能區塊208之另一N型通道箝位裝置NCN耦接基底偏壓導線206。前述近似方法,N型通道箝位裝置NCN的源極與基底耦接基底偏壓導線206以及源極耦接參考電壓VSS。N型通道箝位裝置NCN可為任何額外的N型通道箝位裝置之數量,用以箝制基底偏壓導線206至參考電壓VSS。In one embodiment, during the full power mode of functional block 208, the potential of functional block 208 is relatively small and the potentials of clamps PC1 and NC1 are sufficiently large that base bias wires 204 and 206 are clamped to core voltage, respectively. VDD and reference voltage VSS. For example, with a given bias level, the clamping devices PC1 and NC1 are themselves sufficient to ensure that the voltage across the substrate biasing conductors 204 and 206 varies from the core voltage and the reference voltage by a predetermined minimum voltage level. In another embodiment, such as a larger work The energy block 208 or when a large number of P-type and N-channel devices are coupled to the substrate bias wires, at least one additional device is coupled to each of the substrate bias wires 204 and 206 in the functional block 208 (as shown in the figure). Additional clamping devices PC1 and NC1) are shown. In various embodiments, any additional number of devices may be provided in functional block 208 to clamp substrate biasing conductor 204 to core voltage VDD and to clamp substrate biasing conductor 206 to reference voltage VSS for minimizing voltage variations. . As shown, another P-type channel clamp device PCN at function block 208 is coupled to the substrate biasing conductor 204. In the method of the foregoing approximation, the drain of the P-channel clamp device PCN and the substrate are coupled to the substrate biasing conductor 204 and its source is coupled to the core voltage VDD. The P-channel clamp PCN can be any additional number of P-channel clamps used to clamp the substrate bias 204 to the core voltage VDD. Similarly, another N-type channel clamping device NCN at function block 208 is coupled to the substrate biasing conductor 206. In the foregoing approximation, the source and the substrate of the N-channel clamp device NCN are coupled to the substrate bias wire 206 and the source is coupled to the reference voltage VSS. The N-channel clamp NCN can be any number of additional N-channel clamps used to clamp the substrate bias wire 206 to the reference voltage VSS.

由P型通道箝位裝置PCN與N型通道箝位裝置NCN分別耦接至基底偏壓導線204與206,並且要求箝制移位致能信號(level-shifed signal)PEN與NEN分別驅動P型通道箝位裝置PCN與N型通道箝位裝置NCN,以確保上述箝位裝置在低電力模式完全不導通。若箝制移位致能信號PEN與NEN無法提供足夠的電力以驅動額外的箝位裝置,則將啟用電壓移位緩衝(buffer)電路。於一實施例所 示,箝制移位致能信號PEN提供至P型緩衝器(p-type buffer,PBUF)224之輸入端,使P型緩衝器224的輸出推動箝位裝置PCN的閘極,箝制移位致能信號NEN提供N型緩衝器(n-type buffer,NBUF)226之輸入,使N型緩衝器226的輸出推動箝位裝置NCN的閘極。在任何類型之實施例,要求沿著基底偏壓導線204與206之電壓變動為最小化,並將考慮所包含之任何數目之緩衝器與箝位裝置。The P-channel clamp device PCN and the N-channel clamp device NCN are coupled to the substrate bias wires 204 and 206, respectively, and require a level-shifed signal PEN and NEN to drive the P-channel, respectively. The clamping device PCN and the N-channel clamping device NCN ensure that the clamping device is completely non-conducting in the low power mode. If the clamp shift enable signals PEN and NEN fail to provide sufficient power to drive an additional clamp, the voltage shift buffer circuit will be enabled. In an embodiment The clamp shift enable signal PEN is provided to the input of a p-type buffer (PBUF) 224 such that the output of the P-type buffer 224 pushes the gate of the clamp device PCN, and the clamp shift enables Signal NEN provides an input to an n-type buffer (NBUF) 226 such that the output of N-type buffer 226 pushes the gate of clamp device NCN. In any type of embodiment, voltage variations along the substrate biasing wires 204 and 206 are required to be minimized and any number of buffers and clamping devices included will be considered.

當功能區塊208位於低電力模式,將致能控制裝置214或是控制偏壓產生器212以利用第一基底偏移電壓驅動充電電壓位準NCHG的電壓高於核心電壓VDD之上及利用第二基底偏移電壓驅動充電電壓位準PCHG的電壓低於參考電壓VSS之下。第一基底偏移電壓及第二基底偏移電壓可為相同或不同的電壓位準。控制裝置214設置箝位致能信號ENP為高位準及箝位致能信號ENN信號為低位準,所以設置充電電壓位準NCHG之電壓為於基底偏壓導線204上之基底偏壓VBNA之電壓,且設置充電電壓位準PCHG之電壓為於基底偏壓導線206上之基底偏壓VBPA的電壓。於此方式,在低電力模式期間,將偏壓於功能區塊208之P型通道裝置P1與其他P型通道裝置之基底以及N型通道裝置與其他N型通道裝置之基底,以減少或最小化於低電力模式之功能區塊208中的次臨界漏電流。將於功能區塊208中之箝位裝置PA與NB以及任一額外箝位裝置(如PC1、PCN、NC1、NCN)不導通。When the functional block 208 is in the low power mode, the control device 214 or the control bias generator 212 is used to drive the charging voltage level NCHG with the first substrate offset voltage higher than the core voltage VDD and utilize the first The voltage of the two substrate offset voltage driving charging voltage level PCHG is lower than the reference voltage VSS. The first substrate offset voltage and the second substrate offset voltage may be the same or different voltage levels. The control device 214 sets the clamp enable signal ENP to the high level and the clamp enable signal ENN signal to the low level, so the voltage of the charging voltage level NCHG is set to the voltage of the substrate bias voltage VBNA on the substrate biasing conductor 204. And the voltage of the charging voltage level PCHG is set to be the voltage of the substrate bias voltage VBPA on the substrate biasing wire 206. In this manner, during the low power mode, the P-type channel device P1 biased to the functional block 208 and the base of the other P-type channel device and the base of the N-channel device and the other N-channel device are reduced or minimized. The sub-critical leakage current in the functional block 208 of the low power mode. The clamping devices PA and NB in function block 208 and any additional clamping devices (e.g., PC1, PCN, NC1, NCN) will not conduct.

將功能區塊208由低電力模式帶回正常操作模式,控制裝置214將先控制偏壓產生器212以驅動於基底偏壓導線204與206之充電電壓位準NCHG與基底偏壓VBNA以及充電電壓位準PCHG與基底偏壓VBPA電壓,分別返回至核心電壓VDD與參考電壓VSS之電壓位準。接下來,控制裝置214將設置箝位致能信號ENP為低位準與箝位致能信號ENN為高位準,使箝位裝置導通以及不耦接基底偏壓導線204與206至充電電壓位準NCHG與充電電壓位準PCHG。於不同類型的實施例中,在功能區塊208操作於正常模式期間,控制裝置214更可將偏壓產生器212不導通或者是使其位於低電力模式,或者是待機模式(standby)以保留電力。The functional block 208 is brought back to the normal operating mode by the low power mode, and the control device 214 will first control the bias generator 212 to drive the charging voltage level NCHG and the substrate bias voltage VBNA and the charging voltage of the substrate bias wires 204 and 206. The level PCHG and the substrate bias VBPA voltage are returned to the voltage levels of the core voltage VDD and the reference voltage VSS, respectively. Next, the control device 214 sets the clamp enable signal ENP to a low level and the clamp enable signal ENN to a high level, so that the clamp device is turned on and the base bias wires 204 and 206 are not coupled to the charging voltage level NCHG. With the charging voltage level PCHG. In various types of embodiments, during operation of the functional block 208 in the normal mode, the control device 214 may further disable the bias generator 212 or cause it to be in a low power mode, or a standby mode to retain electric power.

於一實施例之正常操作模式期間,箝位裝置沿著基底偏壓導線放置以確保當箝位裝置致能時,每一基底偏壓導線之電壓由核心電壓以及參考電壓變動的範圍不會超過一既定最小電壓位準。於一實施例中,該既定最小電壓位準近似於10毫伏(mV)。若P型通道箝位裝置PA與NB無法滿足維持於既定最小電壓位準之電壓變動,額外箝位裝置(如PC1、PCN、NC1、NCN等)將沿著基底偏壓導線分佈。於一實施例中,於基底偏壓導線204與206上之箝位裝置的實際位置將取決於數學模型分析或動態模擬等以維持電壓及雜訊最小化,以達到微處理器200的最佳化執行性能。During the normal mode of operation of an embodiment, the clamping device is placed along the substrate biasing conductor to ensure that when the clamping device is enabled, the voltage of each of the substrate biasing conductors does not vary from the core voltage to the reference voltage. An established minimum voltage level. In one embodiment, the predetermined minimum voltage level is approximately 10 millivolts (mV). If the P-channel clamps PA and NB are unable to meet the voltage variation maintained at a given minimum voltage level, additional clamping devices (such as PC1, PCN, NC1, NCN, etc.) will be distributed along the substrate bias wires. In one embodiment, the actual position of the clamping device on the substrate biasing conductors 204 and 206 will depend on mathematical model analysis or dynamic simulation to maintain voltage and noise minimization to achieve optimal microprocessor 200. Performance performance.

功能區塊208於微處理器中可為任何尺寸或類型的功 能單元,上述微處理器於任何情況下(如節省電力(conserve power)或減少熱度等)可選擇性要求功能單元或功能區塊的電力切斷(power down)。例如,功能區塊208可為資料單元、資料快取(data catch)單元、整數單元(integer unit)及浮點單元(floating point unit,FPU)等之一者。當功能區塊208的電力切斷時,基底偏壓導線204與206將分別充電至相對於核心電壓位準VDD與參考電壓位準VSS之一偏移偏壓,以偏壓於功能區塊208中的P型或N型裝置之基底,用以減少次臨界漏電流。當功能區塊208正常運作時,箝位裝置箝制基底偏壓導線204與206至核心電壓位準與參考電壓位準,將電壓變動(voltage variation)與雜訊最小化以及改善電路的執行與操作。Functional block 208 can be any size or type of work in the microprocessor The power unit, the microprocessor can selectively require power down of the functional unit or the functional block in any case (such as conserve power or heat reduction). For example, the function block 208 can be one of a data unit, a data catch unit, an integer unit, and a floating point unit (FPU). When the power of the functional block 208 is turned off, the substrate bias wires 204 and 206 will be respectively charged to offset bias with respect to one of the core voltage level VDD and the reference voltage level VSS to bias the functional block 208. The base of the P-type or N-type device is used to reduce the sub-critical leakage current. When the functional block 208 is operating normally, the clamping device clamps the base bias wires 204 and 206 to the core voltage level and the reference voltage level, minimizes voltage variation and noise, and improves circuit execution and operation. .

第3圖係顯示根據本發明一實施例所述之一P型位準移位電路300,上述實施例亦可運用於P型位準移位電路116與220。P型位準移位電路300包括反相器302、四個P型通道裝置P1、P2、P3與P4、以及N型通道裝置N1、N2、N3與N4。P型通道裝置P1、P2、P3與P4分別具有耦接至用以提供基底偏壓VBNA之基底偏壓導線304之源極與內部(internal)基底,上述基底偏壓導線304代表提供基底偏壓VBNA之電壓之一基底偏壓導線(如104或204)。N型通道裝置N1、N2、N3與N4分別具有耦接至參考電壓VSS之源極與內部基底。箝位致能信號ENP可提供給P型通道裝置P1的閘極與反相器302的輸入端。P型通道裝置P1的汲極耦接N型通道裝置N1的汲極與閘 極,以及N型通道裝置N2的閘極。反相器302的輸出端耦接P型通道裝置P2的閘極,上述P型通道裝置P2的汲極耦接N型通道裝置N2的汲極以及P型通道裝置P3與N型通道裝置N3的閘極。P型通道裝置P3的汲極耦接N型通道裝置N3的汲極以及P型通道裝置P4與N型通道裝置N4的閘極。P型通道裝置P4的汲極與N型通道裝置N4的汲極耦接在一起以輸出箝制移位致能信號PEN。在操作機制中,輸入之箝位致能信號ENP將設置於參考電壓VSS與核心電壓VDD之間。而輸出之箝制移位致能信號PEN將設置於參考電壓VSS與基底偏壓VBNA之間。當箝位致能信號ENP設置為參考電壓VSS,將P型通道裝置P1導通且P型通道裝置P2不導通(反相器302的輸出為核心電壓VDD)。P型通道裝置P1推動N型通道裝置N2的閘極之位準上升至基底偏壓VBNA,因此N型通道裝置N2將導通。N型通道裝置N2推動P型通道裝置P3及N型通道裝置N3的閘極至參考電壓VSS,因此將導通P型通道裝置P3而不導通N型通道裝置N3。P型通道裝置P3推動P型通道裝置P4與N型通道裝置N4的閘極至基底偏壓VBNA,將導通N型通道裝置N4與不導通P型通道裝置P4。因此,當箝位致能信號ENP設置為參考電壓VSS,透過N型通道裝置N4將使箝制移位致能信號PEN為參考電壓VSS。當箝位致能信號ENP設置為核心電壓VDD,P型通道裝置P1不導通而P型通道裝置P2導通。由於P型通道裝置P1為不導通,N型通道裝置N1將推動 N型通道裝置N2的閘極為低位準,所以N型通道裝置N2將不導通。P型通道裝置P2推動P型通道裝置P3與N型通道裝置N3的閘極至基底偏壓VBNA,則P型通道裝置P3不導通而N型通道裝置N3導通。N型通道裝置N3推動P型通道裝置P4與N型通道裝置N4的閘極至參考電壓VSS,將導通P型通道裝置P4而不導通N型通道裝置N4。因此,當箝位致能信號ENP設置為核心電壓VDD,P型通道裝置P4推動箝制移位致能信號PEN至基底偏壓VBNA。在這種方式下,箝位致能信號ENP切換於參考電壓VSS與核心電壓VDD之間,且輸出箝制移位致能信號PEN切換於參考電壓VSS與基底偏壓VBNA之間。3 shows a P-type level shifting circuit 300 according to an embodiment of the invention. The above embodiment can also be applied to P-type level shifting circuits 116 and 220. The P-type level shifting circuit 300 includes an inverter 302, four P-type channel devices P1, P2, P3, and P4, and N-type channel devices N1, N2, N3, and N4. P-channel devices P1, P2, P3, and P4, respectively, have a source and an internal substrate coupled to a substrate biasing conductor 304 for providing a substrate bias voltage VBNA, said substrate biasing conductor 304 representing a substrate bias One of the voltages of the VBNA is a substrate biased conductor (such as 104 or 204). The N-type channel devices N1, N2, N3, and N4 have a source and an internal substrate coupled to the reference voltage VSS, respectively. The clamp enable signal ENP can be provided to the gate of the P-type channel device P1 and the input of the inverter 302. The drain of the P-type channel device P1 is coupled to the drain and gate of the N-channel device N1 The pole, and the gate of the N-channel device N2. The output end of the inverter 302 is coupled to the gate of the P-type channel device P2, and the drain of the P-type channel device P2 is coupled to the drain of the N-type channel device N2 and the P-channel device P3 and the N-channel device N3. Gate. The drain of the P-type channel device P3 is coupled to the drain of the N-channel device N3 and the gates of the P-channel device P4 and the N-channel device N4. The drain of the P-type channel device P4 is coupled to the drain of the N-channel device N4 to output a clamped shift enable signal PEN. In the operating mechanism, the input clamp enable signal ENP will be set between the reference voltage VSS and the core voltage VDD. The output clamp shift enable signal PEN will be set between the reference voltage VSS and the substrate bias voltage VBNA. When the clamp enable signal ENP is set to the reference voltage VSS, the P-type channel device P1 is turned on and the P-type channel device P2 is turned off (the output of the inverter 302 is the core voltage VDD). The P-type channel device P1 pushes the level of the gate of the N-type channel device N2 to rise to the substrate bias voltage VBNA, so the N-type channel device N2 will be turned on. The N-type channel device N2 pushes the gates of the P-type channel device P3 and the N-type channel device N3 to the reference voltage VSS, so that the P-type channel device P3 will be turned on without turning on the N-type channel device N3. The P-type channel device P3 pushes the gate-to-substrate bias VBNA of the P-channel device P4 and the N-channel device N4, and turns on the N-channel device N4 and the non-conducting P-channel device P4. Therefore, when the clamp enable signal ENP is set to the reference voltage VSS, the clamp shift enable signal PEN is made to be the reference voltage VSS through the N-channel device N4. When the clamp enable signal ENP is set to the core voltage VDD, the P-type channel device P1 is not turned on and the P-type channel device P2 is turned on. Since the P-channel device P1 is non-conducting, the N-channel device N1 will push The gate of the N-channel device N2 is extremely low, so the N-channel device N2 will not conduct. The P-type channel device P2 pushes the gate of the P-channel device P3 and the N-channel device N3 to the substrate bias voltage VBNA, and the P-channel device P3 is not turned on and the N-channel device N3 is turned on. The N-type channel device N3 pushes the gates of the P-type channel device P4 and the N-type channel device N4 to the reference voltage VSS, and turns on the P-type channel device P4 without conducting the N-type channel device N4. Therefore, when the clamp enable signal ENP is set to the core voltage VDD, the P-type channel device P4 pushes the clamp shift enable signal PEN to the substrate bias voltage VBNA. In this manner, the clamp enable signal ENP is switched between the reference voltage VSS and the core voltage VDD, and the output clamp shift enable signal PEN is switched between the reference voltage VSS and the substrate bias voltage VBNA.

第4圖係顯示根據本發明之一實施例所述之一N型位準移位電路400,其中上述實施例亦可應用於N型位準移位電路118與222。LSN電路400包括一反相器402,四個P型通道裝置P1、P2、P3與P4以及四個N型通道裝置N1、N2、N3與N4。P型通道裝置P1、P2、P3與P4分別具有耦接至核心電壓VDD之源極與內部基底。N型通道裝置N1、N2、N3與N4分別具有耦接至提供基底偏壓VBPA之基底偏壓導線404之源極與內部基底,上述基底偏壓導線404可為提供基底偏壓VBPA之電壓之一基底偏壓導線(如106或206)。箝位致能信號ENN可提供給N型通道裝置N1的閘極與反相器402的輸入端。P型通道裝置P1的汲極與閘極耦接N型通道裝置N1的汲極與P型通道裝置P2的閘極。反相器402的輸出端耦接N型通 道裝置N2的閘極,上述N型通道裝置N2的汲極耦接P型通道裝置P2的汲極與P型通道裝置P3與N型通道裝置N3的閘極。P型通道裝置P3的汲極耦接N型通道裝置N3的汲極以及P型通道裝置P4與N型通道裝置N4的閘極。P型通道裝置P4與N型通道裝置N4的汲極耦接在一起,並且輸出箝制移位致能信號NEN信號。在操作機制中,輸入之箝位致能信號ENN設置為參考電壓VSS與核心電壓VDD之間。輸出箝制移位致能信號NEN設置於核心電壓VDD與基底偏壓VBPA之間。當箝位致能信號ENN設置為核心電壓VDD,將導通N型通道裝置N1與不導通N型通道裝置N2(反相器402的輸出為參考電壓VSS)。N型通道裝置N1推動P型通道裝置P2的閘極至基底偏壓VBPA,因此P型通道裝置P2導通。P型通道裝置P2推動P型通道裝置P3及N型通道裝置N3的閘極至核心電壓VDD,因此P型通道裝置P3不導通而N型通道裝置N3導通。N型通道裝置N3推動P型通道裝置P4與N型通道裝置N4的閘極至基底偏壓VBPA,因此N型通道裝置N4不導通且P型通道裝置P4導通。因此,當箝位致能信號ENN設置為核心電壓VDD,透過P型通道裝置P4推動的箝制移位致能信號NEN為核心電壓VDD。當箝位致能信號ENN設置為參考電壓VSS,將不導通N型通道裝置N1而導通N型通道裝置N2。由於N型通道裝置N1為不導通,P型通道裝置P1推動P型通道裝置P2的閘極為高位準,所以P型通道裝置P2不導通。N型通道裝置 N2推動P型通道裝置P3與N型通道裝置N3的閘極至基底偏壓VBPA,將導通P型通道裝置P3而不導通N型通道裝置N3。P型通道裝置P3推動P型通道裝置P4與N型通道裝置N4的閘極至核心電壓VDD,將不導通P型通道裝置P4而導通N型通道裝置N4。因此,當箝位致能信號ENN設置為參考電壓VSS,N型通道裝置N4推動箝制移位致能信號NEN為基底偏壓VBPA。在這種方式下,箝位致能信號ENN切換於參考電壓VSS與核心電壓VDD之間,且箝制移位致能信號NEN切換於基底偏壓VBPA與核心電壓VDD之間。Figure 4 is a diagram showing an N-type level shifting circuit 400 in accordance with an embodiment of the present invention, wherein the above-described embodiments are also applicable to N-type level shifting circuits 118 and 222. The LSN circuit 400 includes an inverter 402, four P-channel devices P1, P2, P3 and P4 and four N-channel devices N1, N2, N3 and N4. The P-type channel devices P1, P2, P3, and P4 have a source and an internal substrate coupled to the core voltage VDD, respectively. The N-type channel devices N1, N2, N3, and N4 respectively have a source and an internal substrate coupled to a substrate biasing wire 404 that provides a substrate bias voltage VBPA, and the substrate biasing wire 404 can be a voltage that provides a substrate bias voltage VBPA. A substrate biased wire (such as 106 or 206). The clamp enable signal ENN is provided to the gate of the N-type channel device N1 and the input of the inverter 402. The drain and the gate of the P-type channel device P1 are coupled to the drain of the N-channel device N1 and the gate of the P-channel device P2. The output of the inverter 402 is coupled to the N-type The gate of the N-channel device N2 is coupled to the drain of the P-channel device P2 and the gate of the P-channel device P3 and the N-channel device N3. The drain of the P-type channel device P3 is coupled to the drain of the N-channel device N3 and the gates of the P-channel device P4 and the N-channel device N4. The P-type channel device P4 is coupled to the drain of the N-type channel device N4 and outputs a clamped shift enable signal NEN signal. In the operating mechanism, the input clamp enable signal ENN is set between the reference voltage VSS and the core voltage VDD. The output clamp shift enable signal NEN is set between the core voltage VDD and the substrate bias voltage VBPA. When the clamp enable signal ENN is set to the core voltage VDD, the N-channel device N1 and the non-conducting N-channel device N2 are turned on (the output of the inverter 402 is the reference voltage VSS). The N-type channel device N1 pushes the gate of the P-type channel device P2 to the substrate bias voltage VBPA, so that the P-type channel device P2 is turned on. The P-type channel device P2 pushes the gates of the P-channel device P3 and the N-channel device N3 to the core voltage VDD, so the P-channel device P3 is not turned on and the N-channel device N3 is turned on. The N-type channel device N3 pushes the gate of the P-channel device P4 and the N-channel device N4 to the substrate bias voltage VBPA, so that the N-channel device N4 is not turned on and the P-channel device P4 is turned on. Therefore, when the clamp enable signal ENN is set to the core voltage VDD, the clamp shift enable signal NEN pushed through the P-type channel device P4 is the core voltage VDD. When the clamp enable signal ENN is set to the reference voltage VSS, the N-channel device N1 will not be turned on and the N-channel device N2 will be turned on. Since the N-type channel device N1 is non-conducting, the P-type channel device P1 pushes the gate of the P-type channel device P2 to a very high level, so the P-type channel device P2 is not turned on. N-channel device N2 pushes the gate-to-substrate bias voltage VBPA of the P-type channel device P3 and the N-type channel device N3, and turns on the P-type channel device P3 without conducting the N-type channel device N3. The P-type channel device P3 pushes the gates of the P-channel device P4 and the N-channel device N4 to the core voltage VDD, and will not turn on the P-channel device P4 to turn on the N-channel device N4. Therefore, when the clamp enable signal ENN is set to the reference voltage VSS, the N-type channel device N4 pushes the clamp shift enable signal NEN to the substrate bias voltage VBPA. In this manner, the clamp enable signal ENN is switched between the reference voltage VSS and the core voltage VDD, and the clamp shift enable signal NEN is switched between the substrate bias voltage VBPA and the core voltage VDD.

第5圖係顯示根據本發明之一實施例所述之一P型緩衝器224。箝制移位致能信號PEN提供給P型通道裝置P1與N型通道裝置N1的閘極。P型通道裝置P1的源極與基底耦接基底偏壓導線204(提供基底偏壓VBNA)以及P型通道裝置P1的汲極耦接N型通道裝置N1的汲極。P型通道裝置P1與N型通道裝置N1的汲極耦接P型通道裝置P2與N型通道裝置N2的閘極。P型通道裝置P2源極與基底耦接基底偏壓導線204。P型通道裝置P2的汲極耦接N型通道裝置N2的汲極。N型通道裝置N1與N2的源極耦接核心電壓VSS以及P型通道裝置P2與N型通道裝置N2的汲極輸出緩衝箝制移位致能信號BPEN。N型通道裝置N1與N2都有基底(內部)耦接至參考電壓VSS。在操作機制下,當驅動箝制移位致能信號PEN為參考電壓VSS時,P型通道裝置P1與N型通道裝置N2都 將導通;當P型通道裝置P2與N型通道裝置N1不導通,緩衝箝制移位致能信號BPEN將驅動為參考電壓VSS。當箝制移位致能信號PEN為基底偏壓VBNA時,P型通道裝置P1與N型通道裝置N2都不導通;當P型通道裝置P2與N型通道裝置N1都為導通,將推動緩衝箝制移位致能信號BPEN至基底偏壓VBNA。在此方式下,緩衝箝制移位致能信號BPEN與箝制移位致能信號PEN設置為相同邏輯狀態並切換緩衝箝制移位致能信號BPEN於參考電壓VSS與基底偏壓VBNA之位準移位電壓區之間。Figure 5 is a diagram showing a P-type buffer 224 in accordance with an embodiment of the present invention. The clamp shift enable signal PEN is supplied to the gates of the P-channel device P1 and the N-channel device N1. The source of the P-channel device P1 is coupled to the substrate biasing conductor 204 (providing the substrate bias voltage VBNA) and the drain of the P-channel device P1 is coupled to the drain of the N-channel device N1. The P-channel device P1 and the N-channel device N1 are coupled to the gates of the P-channel device P2 and the N-channel device N2. The P-type channel device P2 is coupled to the substrate biasing conductor 204 at the source and the substrate. The drain of the P-type channel device P2 is coupled to the drain of the N-channel device N2. The source of the N-type channel devices N1 and N2 is coupled to the core voltage VSS and the drain output buffer clamp enable signal BPEN of the P-channel device P2 and the N-channel device N2. The N-type channel devices N1 and N2 have a substrate (internal) coupled to the reference voltage VSS. Under the operating mechanism, when the driving clamp shift enable signal PEN is the reference voltage VSS, both the P-channel device P1 and the N-channel device N2 It will be turned on; when the P-type channel device P2 and the N-type channel device N1 are not turned on, the buffer clamp shift enable signal BPEN will be driven to the reference voltage VSS. When the clamp displacement enable signal PEN is the substrate bias voltage VBNA, neither the P-channel device P1 nor the N-channel device N2 is turned on; when the P-channel device P2 and the N-channel device N1 are both turned on, the buffer clamp is pushed. The shift enable signal BPEN is applied to the substrate bias voltage VBNA. In this manner, the buffer clamp shift enable signal BPEN and the clamp shift enable signal PEN are set to the same logic state and the buffer clamp shift enable signal BPEN is switched to the level of the reference voltage VSS and the substrate bias VBNA. Between voltage zones.

第6圖係顯示根據本發明之一實施例所述之一N型緩衝器226。箝制移位致能信號NEN提供給P型通道裝置P1與N型通道裝置N1的閘極。P型通道裝置P1的源極耦接核心電壓VDD與P型通道裝置P1的汲極耦接N型通道裝置N1的汲極。N型通道裝置N1的源極與基底耦接基底偏壓導線206(提供給基底偏壓VBPA)。P型通道裝置P1與N型通道裝置N1的汲極耦接P型通道裝置P2與N型通道裝置N2的閘極。P型通道裝置P2的源極耦接核心電壓VDD與P型通道裝置P2的汲極耦接N型通道裝置N2的汲極。N型通道裝置N2的源極與基底耦接基底偏壓導線206以及P型通道裝置P2的汲極與N型通道裝置N2的汲極輸出緩衝箝制移位致能信號BNEN。P型通道裝置P1與P2都有基底(內部)耦接至核心電壓VDD。在操作機制下,當推動箝制移位致能信號NEN為基底偏壓VBPA時,P型通道裝置P1與N型通道裝置N2都將導通,同時 P型通道裝置P2與N型通道裝置N1不導通,所以驅動緩衝箝制移位致能信號BNEN至基底偏壓VBPA。當箝制移位致能信號NEN為核心電壓VDD時,P型通道裝置P1與N型通道裝置N2都不導通;同時P型通道裝置P2與N型通道裝置N1都為導通,以推動緩衝箝制移位致能信號BNEN至核心電壓VDD。在此方式下,緩衝箝制移位致能信號BNEN與箝制移位致能信號NEN設置為相同邏輯狀態以及緩衝箝制移位致能信號BNEN切換於核心電壓VDD與基底偏壓VBPA之位準移位電壓區之間。Figure 6 shows an N-type buffer 226 in accordance with an embodiment of the present invention. The clamp shift enable signal NEN is supplied to the gates of the P-channel device P1 and the N-channel device N1. The source of the P-type channel device P1 is coupled to the core voltage VDD and the drain of the P-type channel device P1 is coupled to the drain of the N-channel device N1. The source of the N-type channel device N1 is coupled to the substrate with a substrate biasing conductor 206 (provided to the substrate bias voltage VBPA). The P-channel device P1 and the N-channel device N1 are coupled to the gates of the P-channel device P2 and the N-channel device N2. The source of the P-type channel device P2 is coupled to the core voltage VDD and the drain of the P-type channel device P2 is coupled to the drain of the N-channel device N2. The source and base of the N-type channel device N2 are coupled to the base biasing conductor 206 and the drain of the P-channel device P2 and the drain output buffering displacement enable signal BNEN of the N-channel device N2. Both P-channel devices P1 and P2 have a substrate (internal) coupled to the core voltage VDD. Under the operating mechanism, when the clamp shift enable signal NEN is pushed to the substrate bias voltage VBPA, both the P-channel device P1 and the N-channel device N2 will be turned on, and at the same time The P-type channel device P2 and the N-type channel device N1 are not turned on, so the buffer clamps the shift enable signal BNEN to the substrate bias voltage VBPA. When the clamp shift enable signal NEN is the core voltage VDD, the P-channel device P1 and the N-channel device N2 are not turned on; at the same time, the P-channel device P2 and the N-channel device N1 are both turned on to push the buffer clamp The bit enables the signal BNEN to the core voltage VDD. In this manner, the buffer clamp shift enable signal BNEN and the clamp shift enable signal NEN are set to the same logic state and the buffer clamp shift enable signal BNEN is switched to the level shift of the core voltage VDD and the substrate bias voltage VBPA. Between voltage zones.

第7圖係顯示根據本發明之一實施例所述之一P型位準移位電路221。P型位準移位電路221近似於P型位準移位電路300。P型位準移位電路221用以提供充電電壓位準NCHG之電壓之導電信號線(conductive signal line)203取代提供基底偏壓VBNA之基底偏壓導線304。在此方式下,箝位致能信號ENP設置於參考電壓VSS與核心電壓VDD之間,其中致能信號PENCH設置於參考電壓VSS與充電電壓位準NCHG之間。然而,P型位準移位電路221與P型位準移位電路300之操作方式完全相同的。Figure 7 is a diagram showing a P-type level shift circuit 221 according to an embodiment of the present invention. The P-type level shift circuit 221 is similar to the P-type level shift circuit 300. The P-type level shifting circuit 221 is used to provide a conductive signal line 203 for the voltage of the charging voltage level NCHG instead of the substrate biasing line 304 for providing the substrate bias voltage VBNA. In this manner, the clamp enable signal ENP is set between the reference voltage VSS and the core voltage VDD, wherein the enable signal PENCH is set between the reference voltage VSS and the charge voltage level NCHG. However, the P-type level shift circuit 221 operates in exactly the same manner as the P-type level shift circuit 300.

第8圖係顯示根據本發明之一實施例所述之一N型位準移位電路223。N型位準移位電路223近似於N型位準移位電路400。N型位準移位電路223用以提供充電電壓位準PCHG之電壓之導電信號線205取代提供基底偏壓VBPA之基底偏壓導線404。在此方式下,箝位致能信號ENN設置於參考電壓VSS與核心電壓VDD之間,其中致 能信號NENCH設置於核心電壓VDD與充電電壓位準PCHG之間。然而,N型位準移位電路223與N型位準移位電路400之操作方式完全相同。Figure 8 shows an N-type level shifting circuit 223 in accordance with an embodiment of the present invention. The N-type level shift circuit 223 is similar to the N-type level shift circuit 400. The N-type level shifting circuit 223 is used to provide a conductive signal line 205 for the voltage of the charging voltage level PCHG instead of the substrate biasing line 404 for providing the substrate bias voltage VBPA. In this manner, the clamp enable signal ENN is set between the reference voltage VSS and the core voltage VDD, wherein The energy signal NENCH is set between the core voltage VDD and the charging voltage level PCHG. However, the N-type level shifting circuit 223 operates in exactly the same manner as the N-type level shifting circuit 400.

許多的可能的變動因素仍需要考慮。例如,第9圖係顯示一實施例之第2圖所述之一微處理器200。用前述近似方法,提供基底偏壓電路202與功能區塊208於微處理器200之晶片上,P型通道選擇電路216與N型通道選擇電路218在此是位於功能區塊208的外部。在此方案中,充電電壓位準NCHG與充電電壓位準PCHG將分別由對應之導電信號線203與205傳送至P型通道選擇電路216與N型通道選擇電路218。上述P型通道選擇電路216與N型通道選擇電路218分別提供基底偏壓VBNA與基底偏壓VBPA於對應之基底偏壓導線204與206。而由P型通道選擇電路216與N型通道選擇電路218之上述基底偏壓導線204與206,分別送上述基底偏壓VBNA與基底偏壓VBPA至功能區塊208。此方案之操作方法是與第2圖之微處理器200之操作方法是相同的。第10圖係顯示微處理器200之另一對應之實施例之示意圖,P型通道選擇電路216與N型通道選擇電路218位於基底偏壓電路202內。其中,基底偏壓VBNA與基底偏壓VBPA直接提供於基底偏壓導線204與206上至功能區塊208。此外,操作方法是與微處理器200之操作方法是相同的。Many of the possible variables are still to be considered. For example, Fig. 9 shows a microprocessor 200 as shown in Fig. 2 of an embodiment. The substrate biasing circuit 202 and the functional block 208 are provided on the wafer of the microprocessor 200 by the aforementioned approximation, and the P-channel selection circuit 216 and the N-channel selection circuit 218 are located outside the functional block 208. In this scheme, the charging voltage level NCHG and the charging voltage level PCHG will be transmitted from the corresponding conductive signal lines 203 and 205 to the P-type channel selection circuit 216 and the N-type channel selection circuit 218, respectively. The P-type channel selection circuit 216 and the N-type channel selection circuit 218 respectively provide the substrate bias wires 204 and 206 corresponding to the substrate bias voltage VBNA and the substrate bias voltage VBPA. The base biasing wires 204 and 206 of the P-type channel selecting circuit 216 and the N-type channel selecting circuit 218 respectively send the substrate bias voltage VBNA and the substrate bias voltage VBPA to the functional block 208. The method of operation of this scheme is the same as that of the microprocessor 200 of FIG. FIG. 10 is a schematic diagram showing another embodiment of a microprocessor 200 in which a P-type channel selection circuit 216 and an N-type channel selection circuit 218 are located. The substrate bias voltage VBNA and the substrate bias voltage VBPA are directly provided on the substrate bias wires 204 and 206 to the functional block 208. Moreover, the method of operation is the same as that of the microprocessor 200.

前述之任一實施例皆可應用於更多類型之架構,參考電壓(如VSS)可近似於0伏特(Volts,V)與核心電壓(如 VDD)可近似於1V。在一實施例中,偏壓產生器驅動一800毫伏(mill volts,mV)之偏移電壓(offset voltage)分別至對應之核心電壓位準以及參考電壓位準。於一實施例中,於低電力模式期間,當核心電壓VDD為1V,將充電基底偏壓VBNA近似於1.8V以及當參考電壓VSS為0V,將推降基底偏壓VBPA近似於-800毫伏。根據裝置的操作模式,可變化實際的核心電壓。例如,於實際架構模式或實際狀態之下,核心電壓VDD可變動在近似於500mV至1.4V之間。在一實施例中,基底偏壓VBNA之偏移電壓可不同於基底偏壓VBNA之偏移電壓。例如,偏移電壓分別為300mV與500mV。然而,雖然偏壓產生器(如112或212等)顯示於晶片上,但為充電於基底偏壓導線,偏壓產生器或電荷幫浦可提供於晶片外。若提供於晶片外,外接控制之操作方法於前述方法相同,但控制裝置(如114或214)於晶片外則無法提供控制信號BCTL或在晶片外部提供其他控制信號BCTL。於任何事件中,利用偏壓產生器或電荷幫浦分別驅動基底偏壓VBNA與VBPA之基底偏壓導線104/204與106/206一偏移電壓其相對於對應的核心電壓與參考電壓。Any of the foregoing embodiments can be applied to more types of architectures, and the reference voltage (such as VSS) can be approximated to 0 volts (Volts, V) and the core voltage (eg, VDD) can be approximated to 1V. In one embodiment, the bias generator drives an offset voltage of 800 millivolts (mV) to a corresponding core voltage level and a reference voltage level, respectively. In one embodiment, during the low power mode, when the core voltage VDD is 1V, the charge substrate bias voltage VBNA is approximately 1.8V, and when the reference voltage VSS is 0V, the push-down substrate bias voltage VBPA is approximately -800 millivolts. . The actual core voltage can be varied depending on the mode of operation of the device. For example, under actual architectural mode or actual state, the core voltage VDD can vary between approximately 500 mV and 1.4 V. In an embodiment, the offset voltage of the substrate bias voltage VBNA may be different from the offset voltage of the substrate bias voltage VBNA. For example, the offset voltages are 300 mV and 500 mV, respectively. However, although a bias generator (such as 112 or 212, etc.) is shown on the wafer, a bias generator or charge pump can be provided outside the wafer to charge the substrate bias wires. If it is provided outside the wafer, the operation method of the external control is the same as the foregoing method, but the control device (such as 114 or 214) cannot provide the control signal BCTL outside the wafer or provide other control signals BCTL outside the wafer. In any event, the bias voltage generator or charge pump is used to drive the substrate bias voltages VBNA and VBPA substrate bias wires 104/204 and 106/206, respectively, with an offset voltage relative to the corresponding core voltage and reference voltage.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的區域,任何熟習此項技藝者,在不脫離本發明之精神和區內,當可做些許的更動與潤飾,因此本發明之保護區當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention, and those skilled in the art can make some modifications and retouchings without departing from the spirit and scope of the present invention. The protected area of the present invention is subject to the definition of the scope of the patent application.

100‧‧‧積體電路100‧‧‧ integrated circuit

101‧‧‧P型基底101‧‧‧P type substrate

102、202‧‧‧基底偏壓電路102, 202‧‧‧Base bias circuit

109‧‧‧P型井109‧‧‧P type well

103、105、107‧‧‧N型井103, 105, 107‧‧‧N well

111‧‧‧P型通道裝置111‧‧‧P type channel device

113‧‧‧N型通道裝置113‧‧‧N type channel device

104、106、204、206、304、404‧‧‧基底偏壓導線104, 106, 204, 206, 304, 404‧‧‧ base bias wire

112、212‧‧‧偏壓產生器112, 212‧‧‧ bias generator

114、214‧‧‧控制裝置114, 214‧‧‧ control device

118、222、223‧‧‧N型位準移位電路118, 222, 223‧‧‧N type level shift circuit

116、220、221‧‧‧P型位準移位電路116, 220, 221‧‧‧P type level shift circuit

115、117、127‧‧‧P型擴散區115, 117, 127‧‧‧P type diffusion zone

119、123、125‧‧‧N型擴散區119, 123, 125‧‧‧N type diffusion zone

121、129‧‧‧閘極絕緣層121, 129‧‧ ‧ gate insulation

203、205‧‧‧導電信號線203, 205‧‧‧ conductive signal lines

200‧‧‧微處理器200‧‧‧Microprocessor

208‧‧‧功能區塊208‧‧‧ functional block

217、219、302、402‧‧‧反相器217, 219, 302, 402‧‧‧ Inverters

224‧‧‧P型緩衝器224‧‧‧P type buffer

226‧‧‧N型緩衝器226‧‧‧N type buffer

ENP、ENN‧‧‧箝位致能信號ENP, ENN‧‧‧ clamp enable signal

PEN、NEN‧‧‧箝制移位致能信號PEN, NEN‧‧ ‧ clamp displacement enable signal

BPEN、BNEN‧‧‧緩衝箝制移位致能信號BPEN, BNEN‧‧‧ buffer clamp displacement enable signal

VBNA、VBPA‧‧‧基底偏壓VBNA, VBPA‧‧‧ substrate bias

BCTL‧‧‧控制信號BCTL‧‧‧ control signal

PC1、PA、PB、PCN‧‧‧P型通道箝位裝置PC1, PA, PB, PCN‧‧‧P type channel clamp

NC1、NA、NB、NCN‧‧‧N型通道箝位裝置NC1, NA, NB, NCN‧‧‧N type channel clamp

NCHG、PCHG‧‧‧充電電壓位準NCHG, PCHG‧‧‧ charging voltage level

P1、P2、P3、P4‧‧‧P型通道裝置P1, P2, P3, P4‧‧‧P type channel device

N1、N2、N3、N4‧‧‧N型通道裝置N1, N2, N3, N4‧‧‧N type channel devices

第1圖係顯示根據本發明一實施例之一基底偏壓電路,上述基底偏壓電路包括整合於P型基底上之傳統CMOS裝置以及更顯示根據一實施例之整合於積體電路之基底偏壓電路之示意圖。1 is a diagram showing a substrate biasing circuit including a conventional CMOS device integrated on a P-type substrate and more integrated in an integrated circuit according to an embodiment of the present invention. A schematic diagram of a substrate bias circuit.

第2圖係顯示根據本發明一實施例之基底偏壓電路之一方塊圖以及微處理器之整合晶片,用以最小化於微處理器之功能區塊之次臨界漏電流。2 is a block diagram of a substrate biasing circuit and an integrated wafer of microprocessors for minimizing subcritical leakage currents of functional blocks of a microprocessor, in accordance with an embodiment of the present invention.

第3圖係顯示根據本發明一實施例所述之P型位準移位電路之示意圖,上述P型位準移位電路可作為第1圖及第2圖之P型位準移位電路。3 is a schematic diagram showing a P-type level shifting circuit according to an embodiment of the present invention. The P-type level shifting circuit can be used as a P-type level shifting circuit of FIGS. 1 and 2.

第4圖係顯示根據本發明一實施例所述之N型位準移位電路之示意圖,上述N型位準移位電路可作為第1圖及第2圖之N型位準移位電路。4 is a schematic diagram showing an N-type level shifting circuit according to an embodiment of the present invention. The N-type level shifting circuit can be used as an N-type level shifting circuit of FIGS. 1 and 2.

第5及6圖係顯示根據本發明一實施例所述之P型緩衝器與N型緩衝器之示意圖。5 and 6 are schematic views showing a P-type buffer and an N-type buffer according to an embodiment of the present invention.

第7圖係顯示根據本發明一實施例所述之第2圖之P型位準移位電路之示意圖。Fig. 7 is a view showing a P-type level shift circuit of Fig. 2 according to an embodiment of the present invention.

第8圖係顯示根據本發明一實施例所述之第2圖之N型位準移位電路之示意圖。Fig. 8 is a view showing an N-type level shift circuit of Fig. 2 according to an embodiment of the present invention.

第9及10圖係顯示第2圖之微處理器之對應之實施例。Figures 9 and 10 show corresponding embodiments of the microprocessor of Figure 2.

200‧‧‧微處理器200‧‧‧Microprocessor

202‧‧‧基底偏壓電路202‧‧‧Base bias circuit

208‧‧‧功能區塊208‧‧‧ functional block

212‧‧‧偏壓產生器212‧‧‧ bias generator

214‧‧‧控制裝置214‧‧‧Control device

BCTL‧‧‧控制信號BCTL‧‧‧ control signal

220、221‧‧‧P型位準移位電路220, 221‧‧‧P type level shift circuit

222、223‧‧‧N型位準移位電路222, 223‧‧‧N type level shift circuit

224‧‧‧P型緩衝器224‧‧‧P type buffer

226‧‧‧N型緩衝器226‧‧‧N type buffer

ENP、ENN‧‧‧箝位致能信號ENP, ENN‧‧‧ clamp enable signal

PEN、NEN‧‧‧箝制移位致能信號PEN, NEN‧‧ ‧ clamp displacement enable signal

VBNA、VBPA‧‧‧基底偏壓VBNA, VBPA‧‧‧ substrate bias

PC1、PA、PB、PCN‧‧‧P型通道箝位裝置PC1, PA, PB, PCN‧‧‧P type channel clamp

NC1、NA、NB、NCN‧‧‧N型通道箝位裝置NC1, NA, NB, NCN‧‧‧N type channel clamp

NCHG、PCHG‧‧‧充電電壓位準NCHG, PCHG‧‧‧ charging voltage level

Claims (18)

一種微處理器裝置,包括:一第一電源供應節點,提供一第一核心電壓;一功能區塊,具有複數電力模式,包括:複數半導體裝置,分別具有一基底接點;以及一第一基底偏壓導線,設置於上述功能區塊及耦接至少一上述半導體裝置之上述基底接點;一第一充電節點;一第一選擇電路,當上述功能區塊於低電力模式時耦接上述第一基底偏壓導線至上述第一充電節點,並於上述功能區塊為全電力模式時箝制上述第一基底偏壓導線至上述第一電源供應節點;以及一基底偏壓電路,當上述功能區塊於上述低電力模式時,將上述第一充電節點充電至相對於上述第一核心電壓之一第一偏移電壓之一第一基底偏壓,其中上述基底偏壓電路包括一偏壓產生器,當上述功能區塊於上述低電力模式時,將上述第一充電節點充電及當上述功能區塊轉換為上述全電力模式,驅動上述第一充電節點至上述第一核心電壓。 A microprocessor device comprising: a first power supply node providing a first core voltage; a functional block having a plurality of power modes, comprising: a plurality of semiconductor devices each having a base contact; and a first substrate a biasing wire disposed on the functional block and the base contact coupled to the at least one of the semiconductor devices; a first charging node; a first selection circuit coupled to the functional block when the functional block is in a low power mode a substrate biasing wire to the first charging node, and clamping the first substrate bias wire to the first power supply node when the functional block is in a full power mode; and a substrate bias circuit when the function When the block is in the low power mode, charging the first charging node to a first substrate bias relative to one of the first offset voltages of the first core voltage, wherein the substrate bias circuit comprises a bias a generator, when the functional block is in the low power mode, charging the first charging node and converting the functional block into the full power mode Driving the first node to the charging voltage of the first core. 如申請專利範圍第1項所述之微處理器,其中上述第一選擇電路包括:一第一半導體裝置耦接於上述第一電源供應節點及上述第一基底偏壓導線之間;一第二半導體裝置耦接於上述第一基底偏壓導線及 上述第一充電節點之間;以及其中上述第一選擇電路於上述全電力模式致能上述第一半導體裝置及於上述低電力模式致能上述第二半導體裝置。 The microprocessor of claim 1, wherein the first selection circuit comprises: a first semiconductor device coupled between the first power supply node and the first substrate bias wire; a second The semiconductor device is coupled to the first substrate bias wire and Between the first charging nodes; and wherein the first selection circuit enables the first semiconductor device in the full power mode and the second semiconductor device in the low power mode. 如申請專利範圍第2項所述之微處理器,其中:上述基底偏壓電路更包括提供一控制信號之一控制裝置,上述控制信號在上述功能區塊操作於上述全電力模式時具有一第一狀態,並於上述功能區塊操作於上述低電力模式時具有一第二狀態;以及其中上述第一選擇電路更包括用以接收上述控制信號之一控制輸入端以及其中上述第一選擇電路於上述控制信號於上述第一狀態時致能上述第一半導體裝置,並於上述控制信號於上述第二狀態時致能上述第二半導體裝置。 The microprocessor of claim 2, wherein: the substrate biasing circuit further comprises a control device for providing a control signal, wherein the control signal has a function when the functional block operates in the full power mode a first state, and having a second state when the functional block operates in the low power mode; and wherein the first selection circuit further includes a control input for receiving the control signal and the first selection circuit The first semiconductor device is enabled when the control signal is in the first state, and the second semiconductor device is enabled when the control signal is in the second state. 如申請專利範圍第1項所述之微處理器,更包括:一第二電源供應節點,提供一第二核心電壓;以及其中上述第一選擇電路,包括:一控制輸入端,接收一控制信號,上述控制信號切換於上述第一核心電壓與上述第二核心電壓之間,以指示上述功能區塊的電力模式;一位準移位電路,具有接收上述控制信號之一輸入端與提供一位準移位控制信號之一輸出端,其中上述位準移位控制信號切換於上述第一基底偏壓與上述第二核心電壓之間; 一反相器,具有接收上述位準移位控制信號之一輸入端及一輸出端,其中上述反相器之輸出端切換於上述第一基底偏壓及上述第二核心電壓之間;一第一半導體裝置,包括接收上述位準移位控制信號之一閘極、耦接上述第一電源供應節點之一源極以及耦接上述第一基底偏壓導線之一汲極與一基底;以及一第二半導體裝置包括耦接上述反相器之輸出端之一閘極,耦接上述第一充電節點之一源極以及耦接上述第一基底偏壓導線之一汲極與一基底。 The microprocessor of claim 1, further comprising: a second power supply node providing a second core voltage; and wherein the first selection circuit comprises: a control input receiving a control signal And the control signal is switched between the first core voltage and the second core voltage to indicate a power mode of the functional block; and the one-bit shift circuit has an input end for receiving the control signal and providing a bit An output terminal of the quasi-shift control signal, wherein the level shift control signal is switched between the first substrate bias voltage and the second core voltage; An inverter having an input end for receiving the level shift control signal and an output end, wherein an output end of the inverter is switched between the first substrate bias and the second core voltage; a semiconductor device comprising: receiving a gate of the level shift control signal, coupling a source of the first power supply node, and coupling one of the first substrate bias wires to a substrate; and a substrate; The second semiconductor device includes a gate coupled to the output of the inverter, a source coupled to one of the first charging nodes, and a drain coupled to one of the first substrate bias wires and a substrate. 如申請專利範圍第1項所述之微處理器,更包括:一第一箝位裝置,耦接於上述第一電源供應節點與上述第一基底偏壓導線之間,上述第一箝位裝置具有一控制輸入端,其中當上述控制輸入端致能時,上述第一箝位裝置箝制上述第一基底偏壓導線至上述第一電源供應節點;以及一位準移位電路,具有接收一控制信號之一輸入端以及耦接於上述第一箝位裝置之上述控制輸入端之一輸出端,其中當功能區塊為上述低電力模式,上述位準移位電路驅動上述輸出端至上述第一基底偏壓,以使上述第一箝位裝置不導通。 The microprocessor of claim 1, further comprising: a first clamping device coupled between the first power supply node and the first substrate biasing wire, the first clamping device Having a control input, wherein when the control input is enabled, the first clamping device clamps the first substrate biasing wire to the first power supply node; and a quasi-shift circuit has a receiving control An input end of the signal and an output end of the control input end coupled to the first clamping device, wherein when the functional block is in the low power mode, the level shifting circuit drives the output end to the first The substrate is biased such that the first clamping device is non-conducting. 如申請專利範圍第5項所述之微處理器,更包括:一第二箝位裝置,耦接於上述第一電源供應節點與上述第一基底偏壓導線之間,並具有一控制輸入端,其中當 上述控制輸入端致能,上述第二箝位裝置箝制上述第一基底偏壓導線至上述第一電源供應節點;以及一緩衝器,具有耦接上述位準移位電路之一輸入端與一輸出端耦接上述第二箝位裝置之上述閘極;其中當上述功能區塊於上述低電力模式,上述緩衝器驅動其輸出端跟隨上述位準移位電路之上述輸出端,以將上述第二箝位裝置不導通。 The microprocessor of claim 5, further comprising: a second clamping device coupled between the first power supply node and the first substrate biasing wire and having a control input Where The control input terminal is enabled, the second clamping device clamps the first substrate bias wire to the first power supply node; and a buffer has an input coupled to the output of the level shift circuit and an output The terminal is coupled to the gate of the second clamping device; wherein when the functional block is in the low power mode, the buffer driving its output end follows the output end of the level shifting circuit to The clamp device does not conduct. 如申請專利範圍第1項所述之微處理器,更包括:一第二電源供應節點,提供一第二核心電壓;其中上述功能區塊更包括繞線於上述功能區塊中之一第二基底偏壓導線及其耦接與耦接至上述第一基底偏壓導線之至少一半導體裝置不同之至少一上述半導體裝置之上述基底接點;一第二充電節點;一第二選擇電路,當上述功能區塊於上述低電力模式,耦接上述第二基底偏壓導線至上述第二充電節點及當上述功能區塊為上述全電力模式,上述第二選擇電路箝制上述第二基底偏壓導線至上述第二電源供應節點;以及其中當上述功能區塊於上述低電力模式時,上述基底偏壓電路將上述第二充電節點充電至對應於上述第二核心電壓之一第二偏移電壓之一第二基底偏壓。 The microprocessor of claim 1, further comprising: a second power supply node, providing a second core voltage; wherein the functional block further comprises winding one of the functional blocks. a substrate biasing wire and the base contact of the at least one of the semiconductor devices different from the at least one semiconductor device coupled to the first substrate bias wire; a second charging node; a second selection circuit The function block is coupled to the second base bias wire to the second charging node and when the functional block is in the full power mode, and the second selection circuit clamps the second base bias wire And the second power supply node; and wherein the base bias circuit charges the second charging node to a second offset voltage corresponding to one of the second core voltages when the functional block is in the low power mode One of the second substrate biases. 如申請專利範圍第7項所述之微處理器,其中上述基底偏壓電路包括一偏壓產生器,當上述功能區塊於上述低電力模式,上述偏壓產生器將上述第一充電節點充電, 以使得上述第一充電節點相對於上述第一核心電壓具有一正電壓偏移,以及當上述功能區塊於上述低電力模式,上述偏壓產生器將上述第二充電節點充電,以使得上述第二充電節點相對於上述第二核心電壓具有一負電壓偏移。 The microprocessor of claim 7, wherein the substrate bias circuit comprises a bias generator, wherein the bias generator generates the first charging node when the functional block is in the low power mode Charging, The first charging node has a positive voltage offset with respect to the first core voltage, and when the functional block is in the low power mode, the bias generator charges the second charging node to cause the foregoing The two charging nodes have a negative voltage offset with respect to the second core voltage. 如申請專利範圍第8項所述之微處理器,其中:上述第一選擇電路,包括:一第一P型通道裝置,具有一源極與一汲極耦接於上述第一電源供應節點及上述第一基底偏壓導線之間;以及一第二P型通道裝置,具有一源極及一汲極耦接於上述第一充電節點及上述第一基底偏壓導線之間;以及上述第二選擇電路,包括:一第一N型通道裝置,具有一源極及一汲極耦接於上述第二電源供應節點與上述第二基底偏壓導線之間;以及一第二N型通道裝置,具有一源極及一汲極耦接於上述第二充電節點與上述第二基底偏壓之間。 The microprocessor of claim 8, wherein: the first selection circuit comprises: a first P-type channel device having a source and a drain coupled to the first power supply node and Between the first substrate biasing wires; and a second P-channel device having a source and a drain coupled between the first charging node and the first substrate biasing wire; and the second The selection circuit includes: a first N-type channel device having a source and a drain coupled between the second power supply node and the second substrate bias wire; and a second N-channel device, A source and a drain are coupled between the second charging node and the second substrate bias. 如申請專利範圍第9項所述之微處理器,其中:上述基底偏壓電路更包括控制裝置,上述控制裝置設置一P型控制信號與一N型控制信號,其中上述P型控制信號與上述N型控制信號分別切換於上述第一核心電壓與上述第二核心電壓之間,用以指示上述功能區塊之電力模式; 其中上述第一選擇電路,更包括:一P型位準移位電路,具有接收上述P型控制信號之一輸入端與提供一第一位準移位控制信號之一輸出端,上述控制信號切換於上述第二核心電壓與上述第一基底偏壓之間;一第一反相器,具有接收上述第一位準移位控制信號之一輸入端與具有切換於上述第二核心電壓及上述第一基底偏壓之間之一輸出端;其中上述第一P型通道裝置具有耦接於上述第一基底偏壓導線之一基底與接收上述第一位準移位控制信號之一閘極;以及其中上述第二P型通道裝置具有耦接於上述第一基底偏壓導線之一基底與耦接上述第一反相器之上述輸出端之一閘極;以及其中上述第二選擇電路,更包括:一N型位準移位電路,具有接收上述N型控制信號之一輸入端與提供一第二位準移位控制信號之一輸出端,上述控制信號切換於上述第一核心電壓與上述第二基底偏壓之間;一第二反相器,具有接收上述第二位準移位控制信號之一輸入端與切換於上述第一核心電壓及上述第二基底偏壓之間之一輸出端;其中上述第一N型通道裝置具有耦接於上述第二基底偏壓導線之一基底與接收上述第二位準移位控制 信號之一閘極;以及其中上述第二N型通道裝置具有耦接於上述第二基底偏壓導線之一基底與耦接上述第二反相器之上述輸出端之一閘極。 The microprocessor of claim 9, wherein: the substrate biasing circuit further comprises a control device, wherein the control device is provided with a P-type control signal and an N-type control signal, wherein the P-type control signal is The N-type control signals are respectively switched between the first core voltage and the second core voltage to indicate a power mode of the functional block; The first selection circuit further includes: a P-type level shift circuit having an input end for receiving one of the P-type control signals and an output terminal for providing a first level shift control signal, wherein the control signal is switched Between the second core voltage and the first substrate bias; a first inverter having an input terminal for receiving the first level shift control signal and having a switching to the second core voltage and the An output terminal between the substrate biases; wherein the first P-type channel device has a base coupled to one of the first substrate bias wires and a gate receiving the first level shift control signal; The second P-channel device has a base coupled to one of the first substrate bias wires and a gate coupled to the output of the first inverter; and wherein the second selection circuit further includes An N-type level shifting circuit having an input end for receiving one of the N-type control signals and an output terminal for providing a second level shift control signal, wherein the control signal is switched to the first core voltage and Between the second substrate biases; a second inverter having one of receiving the input of the second level shift control signal and switching between the first core voltage and the second substrate bias An output end; wherein the first N-type channel device has a base coupled to the second substrate biasing wire and receives the second level shift control a gate of the signal; and wherein the second N-channel device has a base coupled to one of the second substrate bias wires and one of the outputs coupled to the second inverter. 如申請專利範圍第1項所述之微處理器,其中於上述功能區塊中提供上述第一充電節點及上述第一選擇電路。 The microprocessor of claim 1, wherein the first charging node and the first selection circuit are provided in the functional block. 一種積體電路,包括:一基底;一功能區塊包含整合於上述基底之複數P型通道裝置與複數N型通道裝置,上述P型通道裝置與上述N型通道裝置個別包含一基底接點,其中上述功能區塊具有一全電力狀態與一低電力狀態;一第一基底偏壓導線,提供於上述功能區塊之上述基底,並耦接於上述P型通道裝置之至少一上述基底接點;一第二基底偏壓導線,提供於上述功能區塊之上述基底以及耦接上述N通道裝置之至少一上述基底接點;一第一供應導體,提供於上述基底與提供一核心電壓對應於一第二供應導體提供於上述基底之一參考電壓;一基底偏壓電路,提供於上述功能區塊之上述基底,上述基底偏壓電路具有一第一輸出端與一第二輸出端,上述第一輸出端用於充電上述第一基底偏壓導線及上述第二輸出端用於充電上述第二基底偏壓導線,其中當上述功能區塊由上述低電力狀態轉換至上述全電力狀態,上述基 底偏壓電路充電上述第一基底偏壓導線至上述核心電壓以及充電上述第二基底偏壓導線至上述參考電壓,以及其中當上述功能區塊於低電力狀態,上述基底偏壓電路充電上述第一基底偏壓導線至一第一基底偏壓其高於上述核心電壓及充電上述第二基底偏壓導線至一第二基底偏壓其低於上述參考電壓,其中上述基底偏壓電路包括一控制裝置,上述控制裝置具有一第一輸出以及一第二輸出,上述第一輸出以及上述第二輸出代表上述全電力狀態以及上述低電力狀態;以及一箝位電路,當於上述全電力狀態時,用以箝制上述第一基底偏壓導線至上述第一供應導體以及箝制上述第二基底偏壓導線至上述第二供應導體,包括:一第一箝位裝置耦接於上述第一供應導體及上述第一基底偏壓導線之間以及具有一控制輸入端;一第二箝位裝置耦接於上述第二供應導體及上述二基底偏壓導線之間以及具有一控制輸入端;一第一位準移位電路,具有一輸入端耦接上述控制裝置之上述第一輸出端以及一輸出端耦接上述第一箝位裝置之上述控制輸入端,其中上述第一位準移位電路切換上述輸出端於上述參考電壓與上述第一基底偏壓之間;一第二位準移位電路,具有一輸入端耦接上述控制裝置之上述第二輸出端與一輸出端耦接上述第二箝位裝置之上述控制輸入端,其中上述第二位準移位電 路切換上述輸出端於上述核心電壓與上述第二基底偏壓之間;一第三箝位裝置,耦接於上述第一供應導體與上述第一基底偏壓導線之間,並具有一控制輸入端;一第四箝位裝置耦接於上述第二供應導體與上述第二基底偏壓導線之間,並具有一控制輸入端;一第一緩衝器,具有一輸入端耦接於上述第一位準移位電路之上述輸出端與一輸出端耦接上述第三箝位裝置之上述控制輸入端,其中上述第一緩衝器驅動上述輸出端跟隨上述第一位準移位電路之上述輸出端;以及一第二緩衝器,具有一輸入端耦接於上述第二位準移位電路之上述輸出端及一輸出端耦接上述第四箝位裝置之上述控制輸入端,其中上述第二緩衝器驅動上述輸出端跟隨上述第二位準移位電路之上述輸出端。 An integrated circuit comprising: a substrate; a functional block comprising a plurality of P-channel devices integrated into the substrate and a plurality of N-channel devices, wherein the P-channel device and the N-channel device individually comprise a base contact The functional block has a full power state and a low power state; a first substrate biasing wire is provided on the substrate of the functional block and coupled to at least one of the base contacts of the P-channel device a second substrate biasing wire provided on the substrate of the functional block and at least one of the substrate contacts coupled to the N-channel device; a first supply conductor provided on the substrate and providing a core voltage corresponding to a second supply conductor is provided at a reference voltage of the substrate; a substrate biasing circuit is provided on the substrate of the functional block, the substrate biasing circuit has a first output end and a second output end, The first output end is configured to charge the first substrate bias wire and the second output end for charging the second substrate bias wire, wherein the function is Block is converted by the low-power state to the full power state, the group a bottom bias circuit charging the first substrate bias wire to the core voltage and charging the second substrate bias wire to the reference voltage, and wherein the substrate bias circuit is charged when the functional block is in a low power state The first substrate biasing wire is biased to a first substrate higher than the core voltage and the second substrate biasing wire is charged to a second substrate biased lower than the reference voltage, wherein the substrate biasing circuit Included in the control device, the control device has a first output and a second output, the first output and the second output represent the full power state and the low power state; and a clamp circuit is used for the full power In the state, the clamping of the first substrate biasing wire to the first supply conductor and the clamping of the second substrate biasing wire to the second supply conductor include: a first clamping device coupled to the first supply Between the conductor and the first substrate biasing wire and having a control input; a second clamping device coupled to the second supply conductor Between the two substrate biasing wires and having a control input terminal; a first level shifting circuit having an input end coupled to the first output end of the control device and an output end coupled to the first clamping block The control input of the device, wherein the first level shifting circuit switches the output end between the reference voltage and the first substrate bias; and a second level shifting circuit has an input coupled to the The second output end of the control device and an output end are coupled to the control input end of the second clamping device, wherein the second level shifting power The circuit is switched between the core voltage and the second substrate bias; a third clamping device is coupled between the first supply conductor and the first substrate bias wire and has a control input a fourth clamping device is coupled between the second supply conductor and the second substrate biasing wire and has a control input; a first buffer having an input coupled to the first The output end of the level shifting circuit is coupled to an output end of the control input end of the third clamping device, wherein the first buffer drives the output end to follow the output end of the first level shifting circuit And a second buffer having an input coupled to the output end of the second level shifting circuit and an output coupled to the control input of the fourth clamping device, wherein the second buffer The output terminal is driven by the output terminal of the second level shifting circuit. 如申請專利範圍第12項所述之積體電路,其中上述基底偏壓電路更包括:一第一選擇電路具有一控制輸入端,上述第一選擇電路包括:一第五箝位裝置,耦接於上述第一供應導體與上述第一基底偏壓導線之間;一第一切換裝置,耦接於上述第一基底偏壓導線與上述基底偏壓電路之上述第一輸出端之間;其中上述第一選擇電路根據上述第一選擇電路之 上述控制輸入端,選擇性致能上述第一箝位裝置與上述第一切換裝置之一者;一第二選擇電路具有一控制輸入端,上述第二選擇電路,包括:一第六箝位裝置耦接於上述第二供應導體與上述第二基底偏壓導線之間;一第二切換裝置耦接於上述第二基底偏壓導線與上述基底偏壓電路之上述第二輸出端之間;以及其中根據上述第二選擇電路之上述控制輸出端,選擇性致能上述第六箝位裝置及上述第二切換裝置之一者;以及其中上述控制裝置之上述第一輸出端耦接於上述第一選擇電路之上述控制輸入端及其中上述控制裝置之上述第二輸出端耦接於上述第二選擇電路之上述控制輸入端,其中當上述功能區塊於上述全電力狀態,上述控制裝置控制上述第一選擇電路與上述第二選擇電路,以箝制上述第一基底偏壓導線至上述核心電壓及箝制上述第二基底偏壓導線至上述參考電壓,以及當上述功能區塊於低電力模式,驅動上述第一基底偏壓導線至上述第一基底偏壓與上述第二基底偏壓導線至上述第二基底偏壓。 The integrated circuit of claim 12, wherein the substrate biasing circuit further comprises: a first selection circuit having a control input, the first selection circuit comprising: a fifth clamping device, coupled Connected between the first supply conductor and the first substrate biasing wire; a first switching device coupled between the first substrate biasing wire and the first output end of the substrate biasing circuit; The first selection circuit is configured according to the first selection circuit The control input terminal selectively enables one of the first clamping device and the first switching device; a second selection circuit has a control input, and the second selection circuit includes: a sixth clamping device The second switching device is coupled between the second substrate biasing wire and the second output end of the substrate biasing circuit; And the one of the sixth clamping device and the second switching device is selectively enabled according to the control output end of the second selection circuit; and wherein the first output end of the control device is coupled to the first The control input end of a selection circuit and the second output end of the control device are coupled to the control input end of the second selection circuit, wherein the control device controls the above when the functional block is in the full power state a first selection circuit and the second selection circuit to clamp the first substrate bias wire to the core voltage and clamp the second substrate bias To said reference voltage, and when said functional block in the low-power mode, driving the first substrate bias voltage to the first conductor and the second substrate bias voltage to a substrate bias voltage to the second conductor substrate bias. 如申請專利範圍第13項所述之積體電路,其中:上述第一選擇電路更包括:一P型位準移位電路,具有一輸入端耦接上述控 制裝置之上述第一輸出端與提供一第一位準移位電壓於上述參考電壓與上述第一基底偏壓之間之一輸出端;一第一反相器,具有接收上述第一位準移位電壓之一輸入端與切換於上述參考電壓與上述第一基底偏壓之間之一輸出端;上述第五箝位裝置包括一第一P型通道裝置,上述P型通道裝置具有耦接上述第一供應導體之一源極、耦接於上述第一基底偏壓導線之一汲極與一基底以及接收上述第一位準移位電壓之一閘極;以及上述第一切換裝置包括一第二P型通道裝置,上述P型通道裝置具有一源極耦接上述基底偏壓電路之上述第一輸出端、耦接上述第一基底偏壓導線之一汲極與一基底以及一閘極耦接上述第一反相器之上述輸出端;以及其中上述第二選擇電路更包括:一N型位準移位電路,具有一輸入端耦接上述控制裝置之上述第二輸出端與提供一第二位準移位電壓於上述核心電壓及上述第二基底偏壓之間之一輸出端;一第二反相器,具有接收上述第二位準移位電壓之一輸入端與切換於上述核心電壓與上述第二基底偏壓之間之一輸出端;上述第六箝位裝置包括一第一N型通道裝置,上述N型通道裝置具有耦接上述第二供應導體之一源極、耦接於 上述第二基底偏壓導線之一汲極與一基底以及接收上述第二位準移位電壓之一閘極;以及上述第二切換裝置包括一第二N型通道裝置,上述N型通道裝置具有一源極耦接上述基底偏壓電路之上述第二輸出端,耦接上述第二基底偏壓導線之一汲極與一基底以及一閘極耦接上述第二反相器之上述輸出端。 The integrated circuit of claim 13, wherein the first selection circuit further comprises: a P-type level shift circuit having an input coupled to the control The first output end of the device and an output terminal for providing a first level shift voltage between the reference voltage and the first substrate bias; a first inverter having the first level received One of the input terminals of the shift voltage is coupled to one of the output terminals between the reference voltage and the first substrate bias; the fifth clamping device includes a first P-channel device, and the P-channel device has a coupling One of the first supply conductors is coupled to one of the first base biasing wires and one of the first base biasing wires and the first receiving substrate, and the first switching device includes a first switching device a P-channel device having a source coupled to the first output end of the substrate bias circuit, a drain coupled to the first substrate biasing lead and a substrate, and a gate The second output terminal is coupled to the output terminal of the first inverter; and the second selection circuit further includes: an N-type level shifting circuit having an input end coupled to the second output end of the control device a second level a bit voltage between the core voltage and the second substrate bias; the second inverter has an input terminal for receiving the second level shift voltage and switching to the core voltage and the An output terminal between the two substrate biases; the sixth clamping device includes a first N-channel device, the N-channel device having a source coupled to the second supply conductor, coupled to One of the second substrate biasing wires and one of the base and the gate receiving the second level shifting voltage; and the second switching device comprises a second N-channel device, the N-channel device having a source is coupled to the second output end of the substrate biasing circuit, and one of the second base biasing wires is coupled to a base and a gate is coupled to the output end of the second inverter . 一種微處理器晶片之一功能區塊之複數半導體裝置之選擇基底偏壓之方法,上述微處理器晶片包括繞線於功能區塊中之一基底偏壓導線,用於減少上述半導體裝置之至少一次臨界漏電流,上述方法包括:當上述功能區塊為一第一電力狀態,將箝制基底偏壓導線至一第一核心電壓;當上述功能區塊為一第二電力狀態,將不箝制基底偏壓導線以及驅動上述基底偏壓導線至一基底偏壓,其中上述箝制步驟包括致能耦接於上述基底偏壓導線與上述第一核心電壓之間之一箝位裝置,其中上述箝位裝置包括一半導體裝置,具有一閘極、耦接於上述第一基底偏壓導線之一汲極與一基底以及耦接於上述第一核心電壓之一源極,其中上述箝制步驟包括驅動上述半導體裝置之上述閘極至一第二核心電壓,以及其中上述不箝制步驟包括驅動上述半導體裝置之上述閘極至上述基底偏壓。 A method of selecting a substrate bias voltage for a plurality of semiconductor devices of a functional block of a microprocessor chip, the microprocessor die including a substrate biasing wire wound in a functional block for reducing at least the semiconductor device a critical leakage current, the method comprising: when the functional block is in a first power state, clamping the substrate bias wire to a first core voltage; when the functional block is in a second power state, the substrate is not clamped a biasing wire and driving the substrate biasing wire to a substrate bias, wherein the clamping step includes a clamping device capable of coupling between the substrate biasing wire and the first core voltage, wherein the clamping device The device includes a gate, a gate coupled to one of the first substrate bias wires and a substrate, and a source coupled to one of the first core voltages, wherein the clamping step includes driving the semiconductor device The gate to a second core voltage, and wherein the step of not clamping comprises driving the gate to the semiconductor device Substrate bias. 如申請專利範圍第15項所述之方法,更包括:移位一致能信號之位準至一位準移位致能信號,上述 致能信號切換於上述第一核心電壓及上述第二核心電壓之間以及上述位準移位致能信號切換於上述基底偏壓及上述第二核心電壓之間;以及提供上述位準移位致能信號至上述半導體裝置之上述閘極。 The method of claim 15, further comprising: shifting the level of the consistent energy signal to a quasi-shift enable signal, The enable signal is switched between the first core voltage and the second core voltage, and the level shift enable signal is switched between the base bias voltage and the second core voltage; and the level shift is caused The signal can be applied to the gate of the semiconductor device. 如申請專利範圍第15項所述之方法,其中驅動上述基底偏壓導線之步驟包括:充電一充電節點至對應於上述第一核心電壓之一偏移電壓;以及將上述基底偏壓導線耦接至上述充電節點。 The method of claim 15, wherein the step of driving the substrate bias wire comprises: charging a charging node to an offset voltage corresponding to one of the first core voltages; and coupling the substrate bias wire To the above charging node. 如申請專利範圍第17項所述之方法,其中上述將基底偏壓導線耦接至上述充電節點之步驟包括致能耦接於上述基底偏壓導線及上述充電節點之間之一半導體裝置。 The method of claim 17, wherein the step of coupling the substrate bias wire to the charging node comprises enabling a semiconductor device coupled between the substrate bias wire and the charging node.
TW98132273A 2008-09-25 2009-09-24 Microprocessors, intergarated circuits and methods for selectively biasing substrates TWI388977B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/237,483 US7978001B2 (en) 2008-09-25 2008-09-25 Microprocessor with selective substrate biasing for clock-gated functional blocks
US12/237,463 US7920019B2 (en) 2008-09-25 2008-09-25 Microprocessor with substrate bias clamps

Publications (2)

Publication Number Publication Date
TW201013391A TW201013391A (en) 2010-04-01
TWI388977B true TWI388977B (en) 2013-03-11

Family

ID=42049054

Family Applications (2)

Application Number Title Priority Date Filing Date
TW98132273A TWI388977B (en) 2008-09-25 2009-09-24 Microprocessors, intergarated circuits and methods for selectively biasing substrates
TW98132275A TWI405297B (en) 2008-09-25 2009-09-24 Microprocessors﹑intergarated circuits and methods for reducing noises thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW98132275A TWI405297B (en) 2008-09-25 2009-09-24 Microprocessors﹑intergarated circuits and methods for reducing noises thereof

Country Status (2)

Country Link
CN (4) CN101686050A (en)
TW (2) TWI388977B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924456B (en) * 2010-08-04 2012-11-07 钰创科技股份有限公司 Buffering drive circuit, buffer and performance improvement method thereof
TW201250449A (en) * 2010-12-12 2012-12-16 Via Tech Inc An apparatus and a method for dynamically varying a bias voltage applied to a substrate of an integrated circuit
CN103178830B (en) * 2011-12-23 2016-03-23 联芯科技有限公司 substrate selection circuit
TWI569126B (en) * 2015-08-31 2017-02-01 威盛電子股份有限公司 Output buffer apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0169157B1 (en) * 1993-11-29 1999-02-01 기다오까 다까시 Semiconductor circuit and mos-dram
JP3633061B2 (en) * 1995-10-19 2005-03-30 三菱電機株式会社 Semiconductor integrated circuit device
KR100568075B1 (en) * 1996-11-26 2006-10-24 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor integrated circuit device
AU7970898A (en) * 1997-06-20 1999-01-04 Intel Corporation Forward body bias transistor circuits
US6218895B1 (en) * 1997-06-20 2001-04-17 Intel Corporation Multiple well transistor circuits having forward body bias
TW453032B (en) * 1998-09-09 2001-09-01 Hitachi Ltd Semiconductor integrated circuit apparatus
JP2002064150A (en) * 2000-06-05 2002-02-28 Mitsubishi Electric Corp Semiconductor device
WO2007026670A1 (en) * 2005-09-02 2007-03-08 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit
CN1992269A (en) * 2005-12-28 2007-07-04 松下电器产业株式会社 Semiconductor integrated circuit device
US7355437B2 (en) * 2006-03-06 2008-04-08 Altera Corporation Latch-up prevention circuitry for integrated circuits with transistor body biasing
JP2008182004A (en) * 2007-01-24 2008-08-07 Renesas Technology Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
CN101686050A (en) 2010-03-31
CN101686049A (en) 2010-03-31
TW201013836A (en) 2010-04-01
CN102647175A (en) 2012-08-22
CN105099428B (en) 2020-06-12
TWI405297B (en) 2013-08-11
CN102647175B (en) 2016-04-13
CN101686049B (en) 2012-05-23
CN105099428A (en) 2015-11-25
TW201013391A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US6864539B2 (en) Semiconductor integrated circuit device having body biasing circuit for generating forward well bias voltage of suitable level by using simple circuitry
US7908499B2 (en) Semiconductor integrated circuit comprising master-slave flip-flop and combinational circuit with pseudo-power supply lines
JP2007150761A (en) Semiconductor integrated circuit, and method for reducing leakage current
WO2007036020A1 (en) Semiconductor integrated circuit having current leakage reduction scheme
JPH09326688A (en) Semiconductor integrated circuit device
US7425845B2 (en) Semiconductor integrated circuit
CA2201853A1 (en) High voltage level shifter for switching high voltage in non-volatile memory integrated circuits
JP2009147933A (en) Charge recycling of power gated cmos circuit and super cutoff cmos circuit
JP2000013215A (en) Semiconductor integrated circuit
US8575962B2 (en) Integrated circuit having critical path voltage scaling and method therefor
US7978001B2 (en) Microprocessor with selective substrate biasing for clock-gated functional blocks
TWI388977B (en) Microprocessors, intergarated circuits and methods for selectively biasing substrates
US7812662B2 (en) System and method for adjusting supply voltage levels to reduce sub-threshold leakage
US7514960B2 (en) Level shifter circuit
JPH07220484A (en) Voltage converter
US7920019B2 (en) Microprocessor with substrate bias clamps
CN109801653A (en) The block decoder and level shifter of nonvolatile memory
JP3730963B2 (en) Semiconductor integrated circuit
US20070236253A1 (en) Semiconductor integrated circuit
JP2003188706A (en) Input/output buffer circuit
US7917776B2 (en) System-on-chip including deepstop mode to reduce total leakage current and method thereof
US6288586B1 (en) Circuit for standby current reduction
US9264040B2 (en) Low leakage CMOS cell with low voltage swing
JP2004289107A (en) Semiconductor integrated circuit device
JPH10303723A (en) Semiconductor integrated circuit