TWI386364B - Preparation of copper indium gallium - selenium nanoparticles - Google Patents

Preparation of copper indium gallium - selenium nanoparticles Download PDF

Info

Publication number
TWI386364B
TWI386364B TW98126183A TW98126183A TWI386364B TW I386364 B TWI386364 B TW I386364B TW 98126183 A TW98126183 A TW 98126183A TW 98126183 A TW98126183 A TW 98126183A TW I386364 B TWI386364 B TW I386364B
Authority
TW
Taiwan
Prior art keywords
grinding
treatment
individual
solvent
advanced
Prior art date
Application number
TW98126183A
Other languages
Chinese (zh)
Other versions
TW201105570A (en
Inventor
yi lang Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW98126183A priority Critical patent/TWI386364B/en
Publication of TW201105570A publication Critical patent/TW201105570A/en
Application granted granted Critical
Publication of TWI386364B publication Critical patent/TWI386364B/en

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Photovoltaic Devices (AREA)

Description

銅銦鎵硒奈米顆粒製作方法Method for preparing copper indium gallium selenide nano particle

本發明係有關一種銅銦鎵硒奈米顆粒製作方法,尤其是使用鋯珠的濕式珠磨法。The invention relates to a method for preparing copper indium gallium selenide nanoparticles, in particular to a wet bead milling method using zirconium beads.

奈米微粒一般係指小於100nm的微小顆粒,具有不同於一般尺寸之原材料的特殊物理化學特性,比如特殊的光學性質、熱學性質、磁學性質以及力學性質。Nanoparticles generally refer to small particles of less than 100 nm, with special physicochemical properties different from those of general-sized materials, such as special optical properties, thermal properties, magnetic properties, and mechanical properties.

當黃金被細分到小於光波波長的尺寸時,即失去了原有的富貴光澤而呈黑色,因而表現出特殊的光學性質。比如,原銀白色的鉑在奈米尺寸下會變成黑色的鉑黑,原為金黃色的金屬鉻在奈米尺寸下會變成黑色的鉻黑。事實上,所有的金屬在奈米微顆粒狀態都呈現為黑色,且尺寸越小,顏色越黑。因此,奈米微粒具有較低的反射率以及較高的吸光率。When gold is subdivided into a size smaller than the wavelength of the light wave, it loses its original rich luster and is black, thus exhibiting special optical properties. For example, the original silver-white platinum will turn into black platinum black at the nanometer size, and the original gold-colored metal chrome will turn black chrome black at the nanometer size. In fact, all metals appear black in the nanoparticle state, and the smaller the size, the darker the color. Therefore, the nanoparticle has a lower reflectance and a higher absorbance.

在全球風行的節能減碳的綠能環保意識下,銅銦鎵硒薄膜太陽能電池由於沒有如矽晶太陽電池過度依賴矽晶圓而發生原材料短缺的問題,同時沒有如染料敏化太陽能電池需要光敏化染料的高成本材料問題,此外,銅銦鎵硒太陽能電池的光電轉換效率可達20~30%,且軟性塑膠基板的光電轉換率也已達14%,所以是目前相當具有發展潛力的太陽能電池。Under the global awareness of energy-saving and carbon-reducing green energy, copper-indium-gallium-selenide thin-film solar cells have no shortage of raw materials due to excessive dependence on silicon wafers, and there is no need for photosensitive sensitized solar cells. The high cost material problem of dyes, in addition, the photoelectric conversion efficiency of copper indium gallium selenide solar cells can reach 20~30%, and the photoelectric conversion rate of soft plastic substrates has reached 14%, so it is a solar energy with considerable development potential. battery.

銅銦鎵硒太陽能電池一般包括當作P型層的吸收層以及當作n型層的硫化鋅層,其中吸收層為銅銦鎵二硒層,而吸收層的吸光效率直接影響銅銦鎵硒太陽能電池的光電轉換效率。The copper indium gallium selenide solar cell generally comprises an absorption layer as a P-type layer and a zinc sulfide layer as an n-type layer, wherein the absorption layer is a copper indium gallium diselenide layer, and the light absorption efficiency of the absorption layer directly affects the copper indium gallium selenide layer. Photoelectric conversion efficiency of solar cells.

近年來已不斷有許多銅銦鎵硒奈米顆粒製作方法被提出,用以製造高吸光率的吸收層,包括物理製備方法與化學製備方法,其中物理製備方法包括氣相冷凝法、機械球磨法、物理粉碎法、熱分解法、超臨界流體法,而化學製備方法包括化學氣相沈積法、溶膠凝膠法、微乳液法、聚合物接枝法、化學沈澱法、水熱合成法、電弧電漿法、聲化學方法。機械球磨法由於具較有佳的經濟效益,因此非常具有發展潛力,尤其是濕式球磨法,利用液體當作研磨球與被研磨材料之間的媒介物,用以提高研磨效率。In recent years, many methods for fabricating copper indium gallium selenide nanoparticles have been proposed for the production of high absorbance absorption layers, including physical preparation methods and chemical preparation methods, wherein physical preparation methods include gas phase condensation method and mechanical ball milling method. , physical pulverization method, thermal decomposition method, supercritical fluid method, and chemical preparation methods include chemical vapor deposition, sol-gel method, micro-emulsion method, polymer grafting method, chemical precipitation method, hydrothermal synthesis method, arc Plasma method, sonochemical method. The mechanical ball milling method has great development potential because of its excellent economic benefits, especially the wet ball milling method, which uses liquid as a medium between the grinding ball and the material to be ground to improve the grinding efficiency.

習用技術的缺點是,濕式球磨法屬於高能量、高精密性的奈米研磨裝置,受限於初始顆粒尺寸與個別研磨物特性的限制,無法一次精確控制銅銦鎵硒奈米顆粒的粒徑大小範圍與均勻性,也會消耗較多的能源。因此,需要一種具多階段研磨處理的方法,先對個別的材料進行個別研磨以產生特定尺寸的個別研磨物,並保持個別研磨物既有的物理特性與表面狀態,再將不同的個別研磨物進行混合與均質,接著利用二階段研磨逐步減少研磨球的大小,以縮小銅銦鎵硒奈米顆粒的粒徑大小至所需範圍,以解決上述習用技術的缺點。The disadvantage of the conventional technology is that the wet ball milling method is a high-energy, high-precision nano-grinding device, which is limited by the initial particle size and the characteristics of individual abrasives, and cannot precisely control the particles of the copper indium gallium selenide particles at one time. The size and uniformity of the diameter will also consume more energy. Therefore, there is a need for a multi-stage grinding process in which individual materials are individually ground to produce individual abrasives of a particular size, and the physical properties and surface conditions of the individual abrasives are maintained, and the individual individual abrasives are then held. Mixing and homogenization are carried out, and then the size of the grinding balls is gradually reduced by two-stage grinding to reduce the particle size of the copper indium gallium selenide nanoparticles to a desired range to solve the disadvantages of the above conventional techniques.

本發明之主要目的在提供一種銅銦鎵硒奈米顆粒製作方法,主要係利用濕式砂磨法,包括個別研磨處理、混合均質處理、初級研磨處理以及進階研磨處理,其中個別研磨處理將含有銅、銦、鎵及/或硒的個別顆粒或化合物顆粒研磨成500至600奈米的個別研磨物,混合均質處理將所有個別研磨物混合成混合均質物,初級研磨處理將混合均質物研磨成100至200奈米的初級研磨物,進階研磨處理將初級研磨物研磨成50奈米以下的進階研磨物,當作用以製作銅銦鎵硒太陽能電池的吸收層的銅銦鎵硒奈米顆粒。The main object of the present invention is to provide a method for preparing copper indium gallium selenide nanoparticles, mainly by wet sanding, including individual grinding treatment, mixed homogenization treatment, primary grinding treatment and advanced grinding treatment, wherein individual grinding treatments will Individual particles or compound particles containing copper, indium, gallium, and/or selenium are ground into individual abrasives of 500 to 600 nanometers, mixed and homogenized to mix all individual abrasives into a mixed homogenate, and the primary grinding process grinds the mixed homogenate A primary abrasive of 100 to 200 nm, advanced grinding treatment to grind the primary abrasive to an advanced abrasive of 50 nm or less, as a copper indium gallium selenide for the formation of an absorption layer of a copper indium gallium selenide solar cell Rice granules.

以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

本發明的銅銦鎵硒奈米顆粒製作方法主要利用濕式研磨法,以形成銅銦鎵硒奈米顆粒。參閱第一圖,本發明銅銦鎵硒奈米顆粒製作方法的流程圖。如第一圖所示,本發明的銅銦鎵硒奈米顆粒製作方法係由步驟S10開始,在步驟S10中進行個別研磨處理,利用研磨機,使用第一研磨媒介以及第一研磨溶劑,分別對複數個被研磨物進行研磨,研磨時間為4至6小時,形成複數個個別研磨物,其中第一研磨媒介可為鋯珠,當作研磨球,尤其是鋯珠為直徑1.0至2.0mm的球體,第一研磨溶劑可為水、醇類、酯類以及酮類的至少其中之一,而被研磨物包括含有銅、銦、鎵或/及硒的個別顆粒或化合物,比如硒化銅、硒化銦或硒化鎵。第一研磨媒介、第一研磨溶劑以及個被研磨物被安置在研磨機內,第一研磨媒介的容量為50至95%,個別研磨物的容量為5至80%。The method for producing copper indium gallium selenide nanoparticles of the present invention mainly utilizes a wet milling method to form copper indium gallium selenide nanoparticles. Referring to the first figure, a flow chart of a method for producing copper indium gallium selenide particles of the present invention. As shown in the first figure, the method for producing copper indium gallium selenide particles of the present invention is started in step S10, and in step S10, an individual grinding process is performed, using a first grinding medium and a first grinding solvent, respectively. Grinding a plurality of objects to be ground for a period of 4 to 6 hours to form a plurality of individual abrasives, wherein the first grinding medium may be a zirconium bead, as a grinding ball, especially a zirconium bead having a diameter of 1.0 to 2.0 mm The sphere, the first grinding solvent may be at least one of water, alcohols, esters, and ketones, and the object to be polished includes individual particles or compounds containing copper, indium, gallium or/and selenium, such as copper selenide, Indium selenide or gallium selenide. The first grinding medium, the first grinding solvent, and the object to be ground are disposed in the grinder, the first grinding medium having a capacity of 50 to 95%, and the individual grinding materials having a capacity of 5 to 80%.

研磨機的驅動裝置,一般為旋轉方式,帶動第一研磨媒介發生碰撞、旋轉或相對運動,產生高能量密度的碰撞力、磨擦力與剪切力,藉以將第一研磨媒介之間且包含於第一研磨溶劑的被研磨物研磨成顆粒大小為500至600奈米(nm)的較小顆粒。The driving device of the grinder, generally in a rotating manner, drives the first grinding medium to collide, rotate or move relatively, and generates high energy density collision force, friction force and shear force, thereby interposing between the first grinding medium and The object to be ground of the first grinding solvent is ground into smaller particles having a particle size of 500 to 600 nanometers (nm).

接著進入步驟S20,進行混合均質處理。混合均質處理係利用均質機並使用混合均質溶劑包含黏結劑與介面活性劑,將上述的所有個別研磨物進行混合與均質,混合均質時間1至4小時,以形成混合均質物。均質機可為三維混合機,混合均質溶劑可為水、醇類、酯類以及酮類的至少其中之一。Next, proceeding to step S20, a mixing and homogenization process is performed. The mixed homogenization treatment uses a homogenizer and a mixed homogeneous solvent containing a binder and an interfacing agent, and mixes and homogenizes all of the above individual abrasives, and mixes the homogenization time for 1 to 4 hours to form a mixed homogenate. The homogenizer may be a three-dimensional mixer, and the mixed homogeneous solvent may be at least one of water, alcohols, esters and ketones.

接著進入步驟S30,在步驟S30中進行初級研磨處理。初級研磨處理利用上述的研磨機,以及使用第二研磨媒介、第二研磨溶劑加上分散劑,對混合均質物進行研磨,研磨時間為1至12小時,以形成顆粒大小為100至200nm的初級研磨物。第二研磨媒介可為直徑0.4至1.0mm的鋯珠,第二研磨溶劑可為水、醇類、酯類以及酮類的至少其中之一,分散劑區分為高分子分散劑以及非離子型分散劑,可為烷基苯磺酸鹽、硫酸鹽、磺化甘油磷酸酯、氨基酸鹽、磷類脂、牛磺酸鹽、磷酸鹽、烷基硫酸酯、脂肪酸、聚環氧乙烷(PEO)硫醇、山梨酸油、季銨的至少其中之一。第二研磨媒介的容量為50至95%,混合均質物的容量為5至80%。Next, the process proceeds to step S30, where the primary grinding process is performed. The primary grinding treatment utilizes the above-described grinding machine, and the mixed homogeneous substance is ground using a second grinding medium, a second grinding solvent plus a dispersing agent, and the grinding time is 1 to 12 hours to form a primary particle having a particle size of 100 to 200 nm. Abrasive. The second grinding medium may be zirconium beads having a diameter of 0.4 to 1.0 mm, and the second grinding solvent may be at least one of water, alcohols, esters and ketones, and the dispersing agent is divided into a polymer dispersing agent and a nonionic dispersion. The agent may be an alkylbenzenesulfonate, a sulfate, a sulfonated glycerophosphate, an amino acid salt, a phosphorus lipid, a taurate, a phosphate, an alkyl sulfate, a fatty acid, a polyethylene oxide (PEO) At least one of a mercaptan, a sorbic acid oil, and a quaternary ammonium. The second grinding medium has a capacity of 50 to 95% and the mixed homogeneous material has a capacity of 5 to 80%.

接著進入步驟S40,在步驟S40中進行進階研磨處理。進階研磨處理係利用上述的研磨機,使用第三研磨媒介、第三研磨溶劑以及上述的分散劑,對初級研磨物進行進一步研磨,研磨時間為1至12小時,以形成顆粒大小為50nm以下的進階研磨物,該進階研磨物即為該銅銦鎵硒奈米顆粒。Next, the process proceeds to step S40, where the advanced grinding process is performed. The advanced polishing treatment uses the above-mentioned grinder to further grind the primary abrasive using a third polishing medium, a third polishing solvent, and the above dispersing agent, and the polishing time is 1 to 12 hours to form a particle size of 50 nm or less. The advanced abrasive, the advanced abrasive is the copper indium gallium selenide particles.

第三研磨媒介可為直徑0.05至0.4mm的鋯珠,第三研磨溶劑可為水、醇類、酯類以及酮類的至少其中之一。第三研磨媒介的容量為50至95%,且初級研磨物的容量為5至80%。The third grinding medium may be zirconium beads having a diameter of 0.05 to 0.4 mm, and the third grinding solvent may be at least one of water, alcohols, esters, and ketones. The third grinding media has a capacity of 50 to 95% and the primary abrasive has a capacity of 5 to 80%.

上述研磨溶劑中的水可為純水、去離子水或其混合物,醇類可為甲醇、乙醇、乙二醇、正丙醇、異丙醇、丙二醇、丁醇或其混合物,酯類可為乙酯、乙酸乙烯酯、乙酸乙酯、乙酸丁酯、乙酸丙酯、乙酸戊酯、二氯乙酸甲酯、丁烯酸甲酯或其混合物,酮類可為丙酮、丁酮、環己酮、2-戊酮、3-戊酮或其混合物。The water in the above grinding solvent may be pure water, deionized water or a mixture thereof, and the alcohol may be methanol, ethanol, ethylene glycol, n-propanol, isopropanol, propylene glycol, butanol or a mixture thereof, and the ester may be Ethyl ester, vinyl acetate, ethyl acetate, butyl acetate, propyl acetate, amyl acetate, methyl dichloroacetate, methyl crotonate or a mixture thereof, the ketone may be acetone, methyl ethyl ketone or cyclohexanone , 2-pentanone, 3-pentanone or a mixture thereof.

本發明銅銦鎵硒奈米顆粒製作方法所產生的銅銦鎵硒奈米顆粒,可用以製作銅銦鎵硒太陽能電池的吸收層,以提高銅銦鎵硒太陽能電池的光電轉換效率,並降低製作成本。The copper indium gallium selenide nanoparticle produced by the method for preparing the copper indium gallium selenide nanoparticle of the invention can be used for fabricating the absorption layer of the copper indium gallium selenide solar cell to improve the photoelectric conversion efficiency of the copper indium gallium selenide solar cell and reduce production cost.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, and any modifications or alterations to the present invention made in the spirit of the same invention. All should still be included in the scope of the intention of the present invention.

S10...個別研磨處理S10. . . Individual grinding

S20...混合均質處理S20. . . Hybrid homogenization

S30...初級研磨處理S30. . . Primary grinding

S40...進階研磨處理S40. . . Advanced grinding

第一圖為本發明銅銦鎵硒奈米顆粒製作方法的流程圖。The first figure is a flow chart of a method for preparing copper indium gallium selenide particles according to the present invention.

S10...個別研磨處理S10. . . Individual grinding

S20...混合均質處理S20. . . Hybrid homogenization

S30...初級研磨處理S30. . . Primary grinding

S40...進階研磨處理S40. . . Advanced grinding

Claims (12)

一種銅銦鎵硒奈米顆粒製作方法,用以形成銅銦鎵硒奈米顆粒,該方法包括:一個別研磨處理,利用一研磨機,並使用一第一研磨媒介以及一第一研磨溶劑,分別對複數個被研磨物進行研磨,形成複數個個別研磨物,該等被研磨物包括銅、銦、鎵或/及硒的個別顆粒或化合物,化合物包括硒化銅、硒化銦以及硒化鎵,且該等個別研磨物的顆粒大小為500至600奈米(nm);一混合均質處理,利用一均質機,使用一混合均質溶劑包含黏結劑與介面活性劑,對該等個別研磨物進行混合與均質,以形成一混合均質物;一初級研磨處理,利用該研磨機,並使用一第二研磨媒介、一第二研磨溶劑以及一分散劑,對該混合均質物進行研磨,形成一初級研磨物,該初級研磨物的顆粒大小為100至200nm;以及一進階研磨處理,利用該研磨機,並使用一第三研磨媒介、一第三研磨溶劑以及該分散劑,對該初級研磨物進行研磨,形成一進階研磨物,該進階研磨物的顆粒大小為50nm以下,該進階研磨物為該銅銦鎵硒奈米顆粒。A method for preparing copper indium gallium selenide nanoparticles for forming copper indium gallium selenide nanoparticles, the method comprising: a grinding treatment, using a grinder, using a first grinding medium and a first grinding solvent, Separating a plurality of objects to be polished to form a plurality of individual abrasives, including individual particles or compounds of copper, indium, gallium or/and selenium, the compounds including copper selenide, indium selenide, and selenization Gallium, and the individual abrasives have a particle size of 500 to 600 nanometers (nm); a homogenizing treatment, using a homogenizer, using a mixed homogeneous solvent comprising a binder and an interfacing agent, the individual abrasives Mixing and homogenizing to form a mixed homogenate; a primary grinding treatment, using the grinder, and using a second grinding medium, a second grinding solvent, and a dispersing agent, grinding the mixed homogeneous material to form a a primary abrasive having a particle size of 100 to 200 nm; and an advanced grinding process using the same, and using a third polishing medium, a third polishing The solvent and the dispersing agent are ground to form an advanced abrasive having a particle size of 50 nm or less, and the advanced abrasive is the copper indium gallium selenide particles. 依據申請專利範圍第1項所述之方法,其中該個別研磨處理的第一研磨媒介為直徑1.0至2.0mm的鋯珠,且具有50至95%的容量,該個別研磨處理的研磨時間為4至6小時。The method of claim 1, wherein the first grinding medium is a zirconium bead having a diameter of 1.0 to 2.0 mm and has a capacity of 50 to 95%, and the grinding time of the individual grinding treatment is 4 Up to 6 hours. 依據申請專利範圍第1項所述之方法,其中該個別研磨處理的第一研磨溶劑包括水、醇類、酯類以及酮類的至少其中之一。The method of claim 1, wherein the individual grinding treatment of the first grinding solvent comprises at least one of water, alcohols, esters, and ketones. 依據申請專利範圍第1項所述之方法,其中該個別研磨處理的個別研磨物具有5至80%的容量。The method of claim 1, wherein the individual milled individual abrasives have a capacity of from 5 to 80%. 依據申請專利範圍第1項所述之方法,其中該混合均質處理的混合均質溶劑包括水、醇類、酯類以及酮類的至少其中之一,該混合均質處理的混合均質時間1至4小時。According to the method of claim 1, wherein the mixed homogeneous treatment of the mixed homogeneous solvent comprises at least one of water, alcohols, esters and ketones, and the mixing homogenization treatment has a homogenization time of 1 to 4 hours. . 依據申請專利範圍第1項所述之方法,其中該初級研磨處理的第二研磨媒介為直徑0.4至1.0mm的鋯珠,且具有50至95%的容量,該個別研磨處理的研磨時間為1至12小時。The method according to claim 1, wherein the second grinding medium of the primary grinding treatment is zirconium beads having a diameter of 0.4 to 1.0 mm and having a capacity of 50 to 95%, and the grinding time of the individual grinding treatment is 1 Up to 12 hours. 依據申請專利範圍第1項所述之方法,其中該初級研磨處理的混合均質物具有5至80%的容量。The method of claim 1, wherein the primary ground treated mixed homogeneous material has a capacity of from 5 to 80%. 依據申請專利範圍第1項所述之方法,其中該初級研磨處理的第二研磨溶劑包括水、醇類、酯類以及酮類的至少其中之一。The method of claim 1, wherein the primary grinding solvent comprises at least one of water, alcohols, esters, and ketones. 依據申請專利範圍第1項所述之方法,其中該進階研磨處理的第三研磨媒介為直徑0.1至0.4mm的鋯珠,且具有50至95%的容量,該個別研磨處理的研磨時間為1至12小時。The method of claim 1, wherein the third grinding medium of the advanced grinding treatment is zirconium beads having a diameter of 0.1 to 0.4 mm and having a capacity of 50 to 95%, and the grinding time of the individual grinding treatment is 1 to 12 hours. 依據申請專利範圍第1項所述之方法,其中該進階研磨處理的第三研磨溶劑包括水、醇類、酯類以及酮類的至少其中之一。The method of claim 1, wherein the third grinding solvent of the advanced grinding treatment comprises at least one of water, alcohols, esters, and ketones. 依據申請專利範圍第1項所述之方法,其中該進階研磨處理的初級研磨物具有5至80%的容量。The method of claim 1, wherein the advanced ground treatment primary abrasive has a capacity of 5 to 80%. 依據申請專利範圍第1項所述之方法,其中該分散劑區分為高分子分散劑以及非離子型分散劑,係為烷基苯磺酸鹽、硫酸鹽、磺化甘油磷酸酯、氨基酸鹽、磷類脂、牛磺酸鹽、磷酸鹽、烷基硫酸酯、脂肪酸、聚環氧乙烷(PEO)硫醇、山梨酸油、季銨的至少其中之一。According to the method of claim 1, wherein the dispersing agent is classified into a polymer dispersing agent and a nonionic dispersing agent, and is an alkylbenzenesulfonate, a sulfate, a sulfonated glycerophosphate, an amino acid salt, At least one of a phosphorus lipid, a taurinate, a phosphate, an alkyl sulfate, a fatty acid, a polyethylene oxide (PEO) thiol, a sorbic acid oil, and a quaternary ammonium.
TW98126183A 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles TWI386364B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98126183A TWI386364B (en) 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98126183A TWI386364B (en) 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles

Publications (2)

Publication Number Publication Date
TW201105570A TW201105570A (en) 2011-02-16
TWI386364B true TWI386364B (en) 2013-02-21

Family

ID=44814072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98126183A TWI386364B (en) 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles

Country Status (1)

Country Link
TW (1) TWI386364B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199595A1 (en) * 2016-01-27 2017-08-02 Kronos International, Inc. Production of titanium dioxide pigment using the sulfate process with narrow particle size distribution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421722A (en) * 1980-03-06 1983-12-20 Cng Research Company Adiabatic expansion orifice assembly for passing a slurry from a high pressure region to a low pressure region
US5810267A (en) * 1995-09-29 1998-09-22 Karasawa; Yukihiko Method and apparatus for pulverizing solid particles
US5921478A (en) * 1996-12-27 1999-07-13 Inoue Mfg., Inc. Dispersion method and dispersing apparatus using supercritical state
US6051694A (en) * 1998-09-17 2000-04-18 Castor; Trevor Percival Method for size reduction of proteins
US7448561B2 (en) * 2002-12-02 2008-11-11 Albemarle Netherlands B.V. Process for conversion and size reduction of solid particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421722A (en) * 1980-03-06 1983-12-20 Cng Research Company Adiabatic expansion orifice assembly for passing a slurry from a high pressure region to a low pressure region
US5810267A (en) * 1995-09-29 1998-09-22 Karasawa; Yukihiko Method and apparatus for pulverizing solid particles
US5921478A (en) * 1996-12-27 1999-07-13 Inoue Mfg., Inc. Dispersion method and dispersing apparatus using supercritical state
US6051694A (en) * 1998-09-17 2000-04-18 Castor; Trevor Percival Method for size reduction of proteins
US7448561B2 (en) * 2002-12-02 2008-11-11 Albemarle Netherlands B.V. Process for conversion and size reduction of solid particles

Also Published As

Publication number Publication date
TW201105570A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US7997514B2 (en) Method for fabricating CIGS nanoparticles
Chen et al. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight
CA2756075C (en) Production of titania nanoparticle colloidal suspensions with maintained crystallinity by using a bead mill with micrometer sized beads
CN102617045B (en) SiO2 antireflection thin film and preparation method thereof
CN104261404B (en) The preparation of the super-dispersed nano diamond water-sol
CN101970347A (en) Doped ceria abrasives with controlled morphology and preparation thereof
KR101889125B1 (en) Colloidal silica polishing composition and method for manufacturing synthetic quartz glass substrates using the same
CN108975380A (en) A kind of fast preparation method of nano ceric oxide dispersion liquid
CN109734132A (en) A method of controlling synthesis of carbon/molybdenum disulfide particle in mixed solvent system
CN105733507B (en) A kind of preparation method of shell core cladded type cerium oxide-silicon oxide Compostie abrasive particles
Xu et al. Preparation of flower-shaped silica abrasives by double system template method and its effect on polishing performance of sapphire wafers
CN104789218A (en) Tungsten oxide quantum dot material and preparation method thereof
CN110240125B (en) Hollow zinc selenide nanocrystal and preparation method and application thereof
CN105694362A (en) Light-shield polymer nanocomposite
Wu et al. Novel raspberry-like hollow SiO2@ TiO2 nanocomposites with improved photocatalytic self-cleaning properties: Towards antireflective coatings
TWI386364B (en) Preparation of copper indium gallium - selenium nanoparticles
Meng et al. Design of composite abrasives and substrate materials for chemical mechanical polishing applications
Wang et al. Composite particles with dendritic mesoporous-silica cores and nano-sized CeO2 shells and their application to abrasives in chemical mechanical polishing
CN102070121A (en) Method for preparing copper-indium-gallium-selenium nanoparticles
CN1830778A (en) Preparation method of large grain size nanometer grade silicon dioxide colloid
Wang et al. Synthesis of CeO2 nanoparticles derived by urea condensation for chemical mechanical polishing
Hu et al. Ultrasound-assisted synthesis of hexagonal cone-like Cu2O architectures with enhanced photocatalytic activity
KR102553348B1 (en) Infrared absorbing fine particles, dispersion using the same, dispersion, laminated transparent substrate, film, glass, and manufacturing method thereof
Wei et al. The orderly nano array of truncated octahedra Cu2O nanocrystals with the enhancement of visible light photocatalytic activity
CN116675248A (en) Nanometer titanium dioxide with surface coated with silicon dioxide and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees