201105570 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種銅銦鎵硒奈米顆粒製作方法,尤其 是使用锆珠的濕式珠磨法。 ^ 【先前技術】 奈米微粒一般係指小於100nm的微小顆粒,具有不同 於一般尺寸之原材料的特殊物理化學特性,比如特殊的光學 性質、熱學性質、磁學性質以及力學性質。 當育金被細分到小於光波波長的尺寸時,即失去了原 有的富貴光澤而呈黑色,因而表現出特殊的光學性質。比 如,原銀白色的鉑在奈米尺寸下會變成黑色的鉑黑,原為金 黃色的金屬鉻在奈米尺寸下會變成黑色的鉻黑。事實上,所 有的金屬在奈米微顆粒狀態都呈現為黑色,且尺寸越小,顏 色越黑。因此’奈米微粒具有較低的反射率以及較高的吸光 率。 在全球風行的節能減碳的綠能環保意識下 ’銅姻錄砸 薄膜太陽能電池由於沒有如矽晶太陽電池過度依賴矽晶圓 而發生原材料短缺的問題’同時沒有如染料敏化太陽能電 池需要光敏化染料的高成本材料問題,此外,銅銦鎵砸太 陽能電池的光電轉換效率可達20〜30%,且軟性塑膠基板的 光電轉換率也已達14%,所以是目前相當具有發展潛力的太 陽能電池。 201105570 鋼鋼鎵牺太陽能電池一般包括當作p型層的吸收層以 及當作η型層的硫化鋅層,其中吸收層為銅銦鎵二硒層, 而及收層的吸光效率直接影響銅銦鎵牺太陽能電池的光電 轉換效率。 近年來已不斷有許多銅銦鎵硒奈米顆粒製作方法被提 出’用以製造高吸光率的吸收層,包括触製備方法與化學 製備方法,其中物理製備方法包括氣相冷凝法、機械球磨 法、物理粉碎法、熱分解法、超臨界流體法,而化學製備方 法包括化學氣相沈積法、溶膠凝縣、微乳液法、聚合物接 枝法、化學沈澱法、水熱合成法、電弧電漿法、聲化學方法。 機械球磨糾於具财麵轉效益,㈣非f具有發展潛 力’尤其是濕式球磨法,利職體當作研縣與被研磨材料 之間的媒介物,用以提高研磨效率。 習用技術的缺點是,濕式球磨法屬於高能量、高精密 性的奈米研雜置’受限於初始雕尺寸與_研磨物特 性的限制’無法—次精確控制銅銦鎵醉米顆粒的粒徑大 小範圍與均勾性’也會絲較麵能源。因此,需要一種 具多階段研磨處理的方法,先對個別的材料進行個別研磨 二產生特定尺寸的_研磨物,並鱗個贿磨物既有的 理特性與表面狀態’再將不同的侧研磨物進行混合與 均質’接者利用二階段研磨逐步減少研磨球的大小,以縮 小銅銦鎵栖奈米顆粒的粒徑大小至所需範圍,以解決上述 習用技術的缺點。 ' 201105570 【發明内容】201105570 VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing copper indium gallium selenide particles, in particular, a wet bead milling method using zirconium beads. ^ [Prior Art] Nanoparticles generally refer to small particles of less than 100 nm, with special physicochemical properties of raw materials of different sizes, such as special optical properties, thermal properties, magnetic properties, and mechanical properties. When the gold is subdivided into a size smaller than the wavelength of the light wave, it loses the original rich luster and is black, thus exhibiting special optical properties. For example, the original silver-white platinum will turn black in black at the nanometer size, and the original metallic chromium will turn into black chrome black at the nanometer size. In fact, all metals appear black in the state of nano-particles, and the smaller the size, the darker the color. Therefore, 'nanoparticles have lower reflectance and higher absorbance. Under the global awareness of energy-saving and carbon-reducing green energy, the copper-breasted solar cell has no shortage of raw materials due to the excessive dependence of silicon solar cells on silicon wafers. At the same time, there is no need for photosensitive sensitized solar cells. The high cost material problem of dyes, in addition, the photoelectric conversion efficiency of copper indium gallium germanium solar cells can reach 20~30%, and the photoelectric conversion rate of soft plastic substrates has reached 14%, so it is a solar energy with considerable development potential. battery. 201105570 Steel gallium solar cells generally include an absorption layer as a p-type layer and a zinc sulfide layer as an n-type layer, wherein the absorption layer is a copper indium gallium diselenide layer, and the light absorption efficiency of the layer directly affects the copper indium Gallium sacrifices the photoelectric conversion efficiency of solar cells. In recent years, there have been many methods for fabricating copper indium gallium selenide nanoparticles, which are proposed to produce high absorbance absorption layers, including touch preparation methods and chemical preparation methods, wherein the physical preparation methods include gas phase condensation method and mechanical ball milling method. , physical pulverization method, thermal decomposition method, supercritical fluid method, and chemical preparation methods including chemical vapor deposition, sol-geling, microemulsion method, polymer grafting method, chemical precipitation method, hydrothermal synthesis method, arc electric Pulp method, sonochemical method. Mechanical ball milling is correct for profitability, and (4) non-f has development potential', especially the wet ball milling method. The profitable body is used as a medium between the researching county and the material to be ground to improve the grinding efficiency. The disadvantage of the conventional technology is that the wet ball milling method is a high-energy, high-precision nano-disintegration 'limited by the initial engraving size and the limitation of the characteristics of the abrasives' cannot be - precisely controlled the copper indium gallium The size range and the uniformity of the particle size will also be comparable to the energy source. Therefore, there is a need for a multi-stage grinding process in which individual materials are individually ground to produce a specific size of _abrasives, and the slabs of the briquets have both the same physical properties and surface states. The mixing and homogenization of the material utilizes two-stage grinding to gradually reduce the size of the grinding ball to reduce the particle size of the copper indium gallium nanoparticles to a desired range to solve the disadvantages of the above conventional techniques. '201105570 【Summary content】
本發明之主要目的在提供一種銅銦鎵硒奈米顆粒製作 方法,主要係利用濕式砂磨法’包括個別研磨處理、混合 均質處理、初級研磨處理以及進階研磨處理,其中個別研 磨處理將含有銅、銦、鎵及/或础的個別顆粒或化合物顆粒 研磨成500至600奈米的個別研磨物,混合均質處理將所 有個別研磨物混合成混合均質物,初級研磨處理將混合均 質物研磨成100至200奈米的初級研磨物,進階研磨處理 將初級研磨物研磨成5〇奈米以下的進階研磨物,當作用以 製作銅銦鎵硒太陽能電池的吸收層的銅銦鎵硒奈米顆粒。 【實施方式】 以下配合圖式及元件符號對本發明之實施方式做更 詳細的說明,俾錢習制技藝者在研讀本說明^後能 據以實施。 曰 本發明的銅銦鎵硒奈米顆粒製作方法主要利用濕式 研磨法,以形成銅銦鎵砸奈米顆粒。參閱第一圖,本發 明銅銦鎵硒奈米顆粒製作方法的流程圖。如第一圖所 示,本發明的銅銦鎵硒奈米顆粒製作方法係由步:幻〇 開始,在步驟S10巾進行個別研磨處理,利用研磨機, 使用第-研顧介以及第-__,分卿複數健 研磨物進行研磨,研磨時間為4至6小時,形成複數個 個別研磨物,其中第-研磨媒介可為錘珠,當作研磨球, 尤其是錯珠為直徑1· 〇至2· G咖的球體,第—研磨溶劑 201105570 可為水、醇類、輯類以及_的至少其中之―,而被研 磨物包括含有銅、銦、鎵或/及_個別顆粒或化合物’ 比如魏銅、碼化銦或砸化鎵。第一研磨媒介、第一研 磨溶劑以及個被研磨物被安置在研磨機内,第一研磨媒 的谷虽為50至95%,個別研磨物的容量為5至。 研磨躺购裝置’―般域轉方式,㈣第-研磨媒 介發生碰撞、旋轉或相對運動,產生高能量密度的碰撞力、 磨擦力與胸力,藉以將第—研磨媒介之間且包含於第一研 磨溶劑的被研磨物研磨成顆粒大小為_至_奈米(nffi) 的較小顆粒。 接著進入步驟S2G,進行混合均質處理。混合均質處理 係利用均質機並使用混合均質溶劑包含黏結劑與介面活性 劑,將上述的所有_研磨物進行混合與均f,混合均質時 間1至4小時’以形成混合均質物。均質機可為三維混合機, 混合均質溶射為水、麵、賴以細類的至少其中之一。 接著進入步驟S30,在步驟S3〇中進行初級研磨處理。 初級研磨處理_上述的研磨機,以及使用第二研磨媒介、 第-研磨麵丨加±分制,對混合均質物進行研磨,研磨時 間為1至12小時,以形成顆粒大小為100至20〇nm的初級研 磨物。第二研磨媒介可為直徑〇·4至1.0 mm的錯珠,第二研 磨二劑可為水、醇類、g旨類以細類的至少其中之一,分散 劑區分為高分子分散_及非離子型分散劑,可為炫基苯續 201105570 酸鹽、硫酸鹽、續化甘油磷_、氨基酸鹽、彻貞脂、牛續 酸鹽、猶鹽、烧基硫酸醋、脂肪酸、聚環氧乙烧㈣)硫醇、 山孤油、季鋪至少其巾之__。第二研磨齡的容量為 至95% ’混合均質物的容量為5至8⑽。 接著進入步驟S4G,麵驟S4G巾進行猶研磨處理。 進階研磨處理係_上述的研磨機,使用第三研磨媒介、第 三研磨溶劑以及上述的分散劑’對初級研磨物進行進一步研 磨,研磨時間為1至12小時,以形成顆粒大小為5Gnm以下 的進階研磨物,該進階研磨物即為該鋼銦鎵袖奈米顆粒。 第三研磨媒介可為直徑〇. 05至〇. 4麵的錯珠,第三研 磨溶劑可為水、醇類、酯類以及酮類的至少其中之一。第三 研磨媒介的容量為50至95% ’且初級研磨物的容量為5至 80%。 上述研磨溶劑中的水可為純水、去離子水或其混合物, 醇類可為甲醇、乙醇、乙二醇、正丙醇、異丙醇、丙二醇、 丁醇或其混合物’酯類可為乙K酸、乙郎醋、 乙酸丁醋、乙織丙酿、乙酸戊酯、二氣乙酸甲酉旨、丁婦酸甲 酯或其混合物,酮類可為丙酮、丁酮、環己酮、2_戊酮、3_ 戊酮或其混合物。 本發明銅銦鎵硒奈米顆粒製作方法所產生的銅銦鎵硒 奈米顆粒,可用以製作銅銦鎵硒太陽能電池的吸收層,以提 高銅銦鎵硒太陽能電池的光電轉換效率,並降低製作成本。 201105570The main object of the present invention is to provide a method for preparing copper indium gallium selenide nanoparticles, mainly by wet sanding method, including individual grinding treatment, mixed homogenization treatment, primary grinding treatment and advanced grinding treatment, wherein individual grinding treatments will Individual particles or compound particles containing copper, indium, gallium and/or base are ground to individual abrasives of 500 to 600 nm, mixed and homogenized to mix all individual abrasives into a mixed homogenate, and the primary grinding process grinds the mixed homogenate A primary abrasive of 100 to 200 nm, advanced grinding to grind the primary abrasive to an advanced abrasive below 5 nanometers, as a copper indium gallium selenide used to make an absorber layer of a copper indium gallium selenide solar cell Nano particles. [Embodiment] Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings and the reference numerals, and the skilled artisan can implement the present invention after studying the description.制作 The method for producing copper indium gallium selenide nanoparticles of the present invention mainly utilizes a wet grinding method to form copper indium gallium nitride nano particles. Referring to the first figure, a flow chart of a method for producing copper indium gallium selenide particles of the present invention. As shown in the first figure, the method for preparing the copper indium gallium selenide particles of the present invention starts from step: illusion, and in the step S10, the individual polishing treatment is performed, and the grinding machine is used, and the first research and the first -__ are used. Grinding, the grinding time is 4 to 6 hours, forming a plurality of individual abrasives, wherein the first grinding medium can be a hammer bead, as a grinding ball, especially the wrong bead is 1·〇 2·G coffee sphere, the first grinding solvent 201105570 can be at least one of water, alcohol, series and _, and the object to be polished includes copper, indium, gallium or/and _ individual particles or compounds' Wei copper, indium indium or gallium antimonide. The first grinding medium, the first grinding solvent, and the object to be ground are placed in the grinder, the grain of the first grinding medium is 50 to 95%, and the volume of the individual grinding material is 5 to. Grinding and arranging device '---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The ground material of a grinding solvent is ground into smaller particles having a particle size of _ to n nanometer (nffi). Next, the process proceeds to step S2G to perform a mixing and homogenization process. The mixed homogenization treatment uses a homogenizer and a mixed homogeneous solvent containing a binder and an interfacial agent, and all of the above-mentioned abrasives are mixed and homogenized, and the homogenization time is mixed for 1 to 4 hours to form a mixed homogeneous substance. The homogenizer can be a three-dimensional mixer, and the mixed homogeneous spray is at least one of water, surface, and fine. Next, the process proceeds to step S30, and the primary grinding process is performed in step S3. Primary grinding treatment _ the above-mentioned grinding machine, and grinding the mixed homogeneous material using a second grinding medium, a first-grinding surface ±, and a grinding time of 1 to 12 hours to form a particle size of 100 to 20 〇. Primary abrasive of nm. The second grinding medium may be a wrong bead having a diameter of 〇·4 to 1.0 mm, and the second polishing agent may be at least one of water, an alcohol, and a g-type, and the dispersing agent is classified into a polymer dispersion_ Non-ionic dispersant, which can be styrene benzene continued 201105570 acid salt, sulfate, continuous glycerol phosphorus _, amino acid salt, ruthenium, bovine salt, yoghurt, sulphuric acid sulphuric acid, fatty acid, polyepoxy Ethylene (4)) thiol, mountain oil, season shop at least __. The capacity of the second grinding age is from 95 to 5%. The capacity of the mixed homogenate is from 5 to 8 (10). Next, the process proceeds to step S4G, and the surface of the S4G towel is subjected to a rubbing treatment. The advanced polishing treatment system _ the above-mentioned grinding machine further polishes the primary abrasive using a third polishing medium, a third polishing solvent, and the above-described dispersant, and the polishing time is 1 to 12 hours to form a particle size of 5 Gnm or less. The advanced abrasive, the advanced abrasive is the steel indium gallium sleeve nanoparticle. The third grinding medium may be a diameter of 〇. 05 to 〇. 4 sides of the wrong beads, and the third grinding solvent may be at least one of water, alcohols, esters and ketones. The third abrasive medium has a capacity of 50 to 95% ' and the primary abrasive has a capacity of 5 to 80%. The water in the above grinding solvent may be pure water, deionized water or a mixture thereof, and the alcohol may be methanol, ethanol, ethylene glycol, n-propanol, isopropanol, propylene glycol, butanol or a mixture thereof. Ethyl K acid, Ethyl vinegar, butyl acetate, Ethyl acetate, Amyl acetate, Dimethyl acetate, Methyl butyrate or mixtures thereof, ketones may be acetone, methyl ethyl ketone, cyclohexanone, 2 _pentanone, 3-pentanone or a mixture thereof. The copper indium gallium selenide nanoparticle produced by the method for preparing the copper indium gallium selenide nanoparticle of the invention can be used for fabricating the absorption layer of the copper indium gallium selenide solar cell to improve the photoelectric conversion efficiency of the copper indium gallium selenide solar cell and reduce production cost. 201105570
非企圖編轉树卿術施例,並 ,止圖據以對本發明做任何形式上H ί 有關本發明之任^ 仍應匕括在本發明意圖保護之範蜂。4變 【圖式簡單說明】 程圖 第圖為本發明銅銦鎵碼奈米顆粒製作方法的流 【主ί元件符號說明】 sio個別研磨處理 S20混合均質處理 S3 0初級研磨處理 S40進階研磨處理The invention is not intended to be used in any way, and the invention is intended to be in any form. 4Change [Simple description of the diagram] The diagram of the diagram is the flow of the method for manufacturing the copper indium gallium code nanoparticle of the invention. [Serial component symbol description] sio individual grinding treatment S20 mixed homogenization treatment S3 0 primary grinding treatment S40 advanced grinding deal with