TW201105570A - Production method of copper indium gallium selenium nanoparticles - Google Patents

Production method of copper indium gallium selenium nanoparticles Download PDF

Info

Publication number
TW201105570A
TW201105570A TW98126183A TW98126183A TW201105570A TW 201105570 A TW201105570 A TW 201105570A TW 98126183 A TW98126183 A TW 98126183A TW 98126183 A TW98126183 A TW 98126183A TW 201105570 A TW201105570 A TW 201105570A
Authority
TW
Taiwan
Prior art keywords
grinding
treatment
individual
primary
advanced
Prior art date
Application number
TW98126183A
Other languages
Chinese (zh)
Other versions
TWI386364B (en
Inventor
Yi-Lang Yang
Original Assignee
Jenn Feng New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenn Feng New Energy Co Ltd filed Critical Jenn Feng New Energy Co Ltd
Priority to TW98126183A priority Critical patent/TWI386364B/en
Publication of TW201105570A publication Critical patent/TW201105570A/en
Application granted granted Critical
Publication of TWI386364B publication Critical patent/TWI386364B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed is a production method of Cu-In-Ga-Se nanoparticles, which mainly uses wet type sand grinding method and includes individual grinding treatment, homogeneously mixing treatment, primary grinding treatment, and advanced grinding treatment. The individual grinding treatment is to grind Cu, In, Ga and/or Se individual particles or compounds into individual ground products with each particle size being 500 to 600 nm. In the homogeneously mixing treatment, all individual ground products are mixed to become a homogeneous mixture. In the primary grinding treatment, the homogeneous mixture is further ground to form primary ground powders with particle size of 100 to 200 nm. The primary ground powders are then subjected to advanced grinding treatment by grinding the powders into advanced ground powders in less than 50 nm, which are acted as Cu-In-Ga-Se nanoparticles for manufacturing the absorbing layers in Cu-In-Ga-Se solar cells.

Description

201105570 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種銅銦鎵硒奈米顆粒製作方法,尤其 是使用锆珠的濕式珠磨法。 ^ 【先前技術】 奈米微粒一般係指小於100nm的微小顆粒,具有不同 於一般尺寸之原材料的特殊物理化學特性,比如特殊的光學 性質、熱學性質、磁學性質以及力學性質。 當育金被細分到小於光波波長的尺寸時,即失去了原 有的富貴光澤而呈黑色,因而表現出特殊的光學性質。比 如,原銀白色的鉑在奈米尺寸下會變成黑色的鉑黑,原為金 黃色的金屬鉻在奈米尺寸下會變成黑色的鉻黑。事實上,所 有的金屬在奈米微顆粒狀態都呈現為黑色,且尺寸越小,顏 色越黑。因此’奈米微粒具有較低的反射率以及較高的吸光 率。 在全球風行的節能減碳的綠能環保意識下 ’銅姻錄砸 薄膜太陽能電池由於沒有如矽晶太陽電池過度依賴矽晶圓 而發生原材料短缺的問題’同時沒有如染料敏化太陽能電 池需要光敏化染料的高成本材料問題,此外,銅銦鎵砸太 陽能電池的光電轉換效率可達20〜30%,且軟性塑膠基板的 光電轉換率也已達14%,所以是目前相當具有發展潛力的太 陽能電池。 201105570 鋼鋼鎵牺太陽能電池一般包括當作p型層的吸收層以 及當作η型層的硫化鋅層,其中吸收層為銅銦鎵二硒層, 而及收層的吸光效率直接影響銅銦鎵牺太陽能電池的光電 轉換效率。 近年來已不斷有許多銅銦鎵硒奈米顆粒製作方法被提 出’用以製造高吸光率的吸收層,包括触製備方法與化學 製備方法,其中物理製備方法包括氣相冷凝法、機械球磨 法、物理粉碎法、熱分解法、超臨界流體法,而化學製備方 法包括化學氣相沈積法、溶膠凝縣、微乳液法、聚合物接 枝法、化學沈澱法、水熱合成法、電弧電漿法、聲化學方法。 機械球磨糾於具财麵轉效益,㈣非f具有發展潛 力’尤其是濕式球磨法,利職體當作研縣與被研磨材料 之間的媒介物,用以提高研磨效率。 習用技術的缺點是,濕式球磨法屬於高能量、高精密 性的奈米研雜置’受限於初始雕尺寸與_研磨物特 性的限制’無法—次精確控制銅銦鎵醉米顆粒的粒徑大 小範圍與均勾性’也會絲較麵能源。因此,需要一種 具多階段研磨處理的方法,先對個別的材料進行個別研磨 二產生特定尺寸的_研磨物,並鱗個贿磨物既有的 理特性與表面狀態’再將不同的侧研磨物進行混合與 均質’接者利用二階段研磨逐步減少研磨球的大小,以縮 小銅銦鎵栖奈米顆粒的粒徑大小至所需範圍,以解決上述 習用技術的缺點。 ' 201105570 【發明内容】201105570 VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing copper indium gallium selenide particles, in particular, a wet bead milling method using zirconium beads. ^ [Prior Art] Nanoparticles generally refer to small particles of less than 100 nm, with special physicochemical properties of raw materials of different sizes, such as special optical properties, thermal properties, magnetic properties, and mechanical properties. When the gold is subdivided into a size smaller than the wavelength of the light wave, it loses the original rich luster and is black, thus exhibiting special optical properties. For example, the original silver-white platinum will turn black in black at the nanometer size, and the original metallic chromium will turn into black chrome black at the nanometer size. In fact, all metals appear black in the state of nano-particles, and the smaller the size, the darker the color. Therefore, 'nanoparticles have lower reflectance and higher absorbance. Under the global awareness of energy-saving and carbon-reducing green energy, the copper-breasted solar cell has no shortage of raw materials due to the excessive dependence of silicon solar cells on silicon wafers. At the same time, there is no need for photosensitive sensitized solar cells. The high cost material problem of dyes, in addition, the photoelectric conversion efficiency of copper indium gallium germanium solar cells can reach 20~30%, and the photoelectric conversion rate of soft plastic substrates has reached 14%, so it is a solar energy with considerable development potential. battery. 201105570 Steel gallium solar cells generally include an absorption layer as a p-type layer and a zinc sulfide layer as an n-type layer, wherein the absorption layer is a copper indium gallium diselenide layer, and the light absorption efficiency of the layer directly affects the copper indium Gallium sacrifices the photoelectric conversion efficiency of solar cells. In recent years, there have been many methods for fabricating copper indium gallium selenide nanoparticles, which are proposed to produce high absorbance absorption layers, including touch preparation methods and chemical preparation methods, wherein the physical preparation methods include gas phase condensation method and mechanical ball milling method. , physical pulverization method, thermal decomposition method, supercritical fluid method, and chemical preparation methods including chemical vapor deposition, sol-geling, microemulsion method, polymer grafting method, chemical precipitation method, hydrothermal synthesis method, arc electric Pulp method, sonochemical method. Mechanical ball milling is correct for profitability, and (4) non-f has development potential', especially the wet ball milling method. The profitable body is used as a medium between the researching county and the material to be ground to improve the grinding efficiency. The disadvantage of the conventional technology is that the wet ball milling method is a high-energy, high-precision nano-disintegration 'limited by the initial engraving size and the limitation of the characteristics of the abrasives' cannot be - precisely controlled the copper indium gallium The size range and the uniformity of the particle size will also be comparable to the energy source. Therefore, there is a need for a multi-stage grinding process in which individual materials are individually ground to produce a specific size of _abrasives, and the slabs of the briquets have both the same physical properties and surface states. The mixing and homogenization of the material utilizes two-stage grinding to gradually reduce the size of the grinding ball to reduce the particle size of the copper indium gallium nanoparticles to a desired range to solve the disadvantages of the above conventional techniques. '201105570 【Summary content】

本發明之主要目的在提供一種銅銦鎵硒奈米顆粒製作 方法,主要係利用濕式砂磨法’包括個別研磨處理、混合 均質處理、初級研磨處理以及進階研磨處理,其中個別研 磨處理將含有銅、銦、鎵及/或础的個別顆粒或化合物顆粒 研磨成500至600奈米的個別研磨物,混合均質處理將所 有個別研磨物混合成混合均質物,初級研磨處理將混合均 質物研磨成100至200奈米的初級研磨物,進階研磨處理 將初級研磨物研磨成5〇奈米以下的進階研磨物,當作用以 製作銅銦鎵硒太陽能電池的吸收層的銅銦鎵硒奈米顆粒。 【實施方式】 以下配合圖式及元件符號對本發明之實施方式做更 詳細的說明,俾錢習制技藝者在研讀本說明^後能 據以實施。 曰 本發明的銅銦鎵硒奈米顆粒製作方法主要利用濕式 研磨法,以形成銅銦鎵砸奈米顆粒。參閱第一圖,本發 明銅銦鎵硒奈米顆粒製作方法的流程圖。如第一圖所 示,本發明的銅銦鎵硒奈米顆粒製作方法係由步:幻〇 開始,在步驟S10巾進行個別研磨處理,利用研磨機, 使用第-研顧介以及第-__,分卿複數健 研磨物進行研磨,研磨時間為4至6小時,形成複數個 個別研磨物,其中第-研磨媒介可為錘珠,當作研磨球, 尤其是錯珠為直徑1· 〇至2· G咖的球體,第—研磨溶劑 201105570 可為水、醇類、輯類以及_的至少其中之―,而被研 磨物包括含有銅、銦、鎵或/及_個別顆粒或化合物’ 比如魏銅、碼化銦或砸化鎵。第一研磨媒介、第一研 磨溶劑以及個被研磨物被安置在研磨機内,第一研磨媒 的谷虽為50至95%,個別研磨物的容量為5至。 研磨躺购裝置’―般域轉方式,㈣第-研磨媒 介發生碰撞、旋轉或相對運動,產生高能量密度的碰撞力、 磨擦力與胸力,藉以將第—研磨媒介之間且包含於第一研 磨溶劑的被研磨物研磨成顆粒大小為_至_奈米(nffi) 的較小顆粒。 接著進入步驟S2G,進行混合均質處理。混合均質處理 係利用均質機並使用混合均質溶劑包含黏結劑與介面活性 劑,將上述的所有_研磨物進行混合與均f,混合均質時 間1至4小時’以形成混合均質物。均質機可為三維混合機, 混合均質溶射為水、麵、賴以細類的至少其中之一。 接著進入步驟S30,在步驟S3〇中進行初級研磨處理。 初級研磨處理_上述的研磨機,以及使用第二研磨媒介、 第-研磨麵丨加±分制,對混合均質物進行研磨,研磨時 間為1至12小時,以形成顆粒大小為100至20〇nm的初級研 磨物。第二研磨媒介可為直徑〇·4至1.0 mm的錯珠,第二研 磨二劑可為水、醇類、g旨類以細類的至少其中之一,分散 劑區分為高分子分散_及非離子型分散劑,可為炫基苯續 201105570 酸鹽、硫酸鹽、續化甘油磷_、氨基酸鹽、彻貞脂、牛續 酸鹽、猶鹽、烧基硫酸醋、脂肪酸、聚環氧乙烧㈣)硫醇、 山孤油、季鋪至少其巾之__。第二研磨齡的容量為 至95% ’混合均質物的容量為5至8⑽。 接著進入步驟S4G,麵驟S4G巾進行猶研磨處理。 進階研磨處理係_上述的研磨機,使用第三研磨媒介、第 三研磨溶劑以及上述的分散劑’對初級研磨物進行進一步研 磨,研磨時間為1至12小時,以形成顆粒大小為5Gnm以下 的進階研磨物,該進階研磨物即為該鋼銦鎵袖奈米顆粒。 第三研磨媒介可為直徑〇. 05至〇. 4麵的錯珠,第三研 磨溶劑可為水、醇類、酯類以及酮類的至少其中之一。第三 研磨媒介的容量為50至95% ’且初級研磨物的容量為5至 80%。 上述研磨溶劑中的水可為純水、去離子水或其混合物, 醇類可為甲醇、乙醇、乙二醇、正丙醇、異丙醇、丙二醇、 丁醇或其混合物’酯類可為乙K酸、乙郎醋、 乙酸丁醋、乙織丙酿、乙酸戊酯、二氣乙酸甲酉旨、丁婦酸甲 酯或其混合物,酮類可為丙酮、丁酮、環己酮、2_戊酮、3_ 戊酮或其混合物。 本發明銅銦鎵硒奈米顆粒製作方法所產生的銅銦鎵硒 奈米顆粒,可用以製作銅銦鎵硒太陽能電池的吸收層,以提 高銅銦鎵硒太陽能電池的光電轉換效率,並降低製作成本。 201105570The main object of the present invention is to provide a method for preparing copper indium gallium selenide nanoparticles, mainly by wet sanding method, including individual grinding treatment, mixed homogenization treatment, primary grinding treatment and advanced grinding treatment, wherein individual grinding treatments will Individual particles or compound particles containing copper, indium, gallium and/or base are ground to individual abrasives of 500 to 600 nm, mixed and homogenized to mix all individual abrasives into a mixed homogenate, and the primary grinding process grinds the mixed homogenate A primary abrasive of 100 to 200 nm, advanced grinding to grind the primary abrasive to an advanced abrasive below 5 nanometers, as a copper indium gallium selenide used to make an absorber layer of a copper indium gallium selenide solar cell Nano particles. [Embodiment] Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings and the reference numerals, and the skilled artisan can implement the present invention after studying the description.制作 The method for producing copper indium gallium selenide nanoparticles of the present invention mainly utilizes a wet grinding method to form copper indium gallium nitride nano particles. Referring to the first figure, a flow chart of a method for producing copper indium gallium selenide particles of the present invention. As shown in the first figure, the method for preparing the copper indium gallium selenide particles of the present invention starts from step: illusion, and in the step S10, the individual polishing treatment is performed, and the grinding machine is used, and the first research and the first -__ are used. Grinding, the grinding time is 4 to 6 hours, forming a plurality of individual abrasives, wherein the first grinding medium can be a hammer bead, as a grinding ball, especially the wrong bead is 1·〇 2·G coffee sphere, the first grinding solvent 201105570 can be at least one of water, alcohol, series and _, and the object to be polished includes copper, indium, gallium or/and _ individual particles or compounds' Wei copper, indium indium or gallium antimonide. The first grinding medium, the first grinding solvent, and the object to be ground are placed in the grinder, the grain of the first grinding medium is 50 to 95%, and the volume of the individual grinding material is 5 to. Grinding and arranging device '---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The ground material of a grinding solvent is ground into smaller particles having a particle size of _ to n nanometer (nffi). Next, the process proceeds to step S2G to perform a mixing and homogenization process. The mixed homogenization treatment uses a homogenizer and a mixed homogeneous solvent containing a binder and an interfacial agent, and all of the above-mentioned abrasives are mixed and homogenized, and the homogenization time is mixed for 1 to 4 hours to form a mixed homogeneous substance. The homogenizer can be a three-dimensional mixer, and the mixed homogeneous spray is at least one of water, surface, and fine. Next, the process proceeds to step S30, and the primary grinding process is performed in step S3. Primary grinding treatment _ the above-mentioned grinding machine, and grinding the mixed homogeneous material using a second grinding medium, a first-grinding surface ±, and a grinding time of 1 to 12 hours to form a particle size of 100 to 20 〇. Primary abrasive of nm. The second grinding medium may be a wrong bead having a diameter of 〇·4 to 1.0 mm, and the second polishing agent may be at least one of water, an alcohol, and a g-type, and the dispersing agent is classified into a polymer dispersion_ Non-ionic dispersant, which can be styrene benzene continued 201105570 acid salt, sulfate, continuous glycerol phosphorus _, amino acid salt, ruthenium, bovine salt, yoghurt, sulphuric acid sulphuric acid, fatty acid, polyepoxy Ethylene (4)) thiol, mountain oil, season shop at least __. The capacity of the second grinding age is from 95 to 5%. The capacity of the mixed homogenate is from 5 to 8 (10). Next, the process proceeds to step S4G, and the surface of the S4G towel is subjected to a rubbing treatment. The advanced polishing treatment system _ the above-mentioned grinding machine further polishes the primary abrasive using a third polishing medium, a third polishing solvent, and the above-described dispersant, and the polishing time is 1 to 12 hours to form a particle size of 5 Gnm or less. The advanced abrasive, the advanced abrasive is the steel indium gallium sleeve nanoparticle. The third grinding medium may be a diameter of 〇. 05 to 〇. 4 sides of the wrong beads, and the third grinding solvent may be at least one of water, alcohols, esters and ketones. The third abrasive medium has a capacity of 50 to 95% ' and the primary abrasive has a capacity of 5 to 80%. The water in the above grinding solvent may be pure water, deionized water or a mixture thereof, and the alcohol may be methanol, ethanol, ethylene glycol, n-propanol, isopropanol, propylene glycol, butanol or a mixture thereof. Ethyl K acid, Ethyl vinegar, butyl acetate, Ethyl acetate, Amyl acetate, Dimethyl acetate, Methyl butyrate or mixtures thereof, ketones may be acetone, methyl ethyl ketone, cyclohexanone, 2 _pentanone, 3-pentanone or a mixture thereof. The copper indium gallium selenide nanoparticle produced by the method for preparing the copper indium gallium selenide nanoparticle of the invention can be used for fabricating the absorption layer of the copper indium gallium selenide solar cell to improve the photoelectric conversion efficiency of the copper indium gallium selenide solar cell and reduce production cost. 201105570

非企圖編轉树卿術施例,並 ,止圖據以對本發明做任何形式上H ί 有關本發明之任^ 仍應匕括在本發明意圖保護之範蜂。4變 【圖式簡單說明】 程圖 第圖為本發明銅銦鎵碼奈米顆粒製作方法的流 【主ί元件符號說明】 sio個別研磨處理 S20混合均質處理 S3 0初級研磨處理 S40進階研磨處理The invention is not intended to be used in any way, and the invention is intended to be in any form. 4Change [Simple description of the diagram] The diagram of the diagram is the flow of the method for manufacturing the copper indium gallium code nanoparticle of the invention. [Serial component symbol description] sio individual grinding treatment S20 mixed homogenization treatment S3 0 primary grinding treatment S40 advanced grinding deal with

Claims (1)

201105570 七、申請專利範圍: 1.-種編_絲雛製作方法,肖_翻 粒,該方法包括·· 了個別研磨處理,_—研賴,並使用-第-研磨媒介 以及一第H轉,分卿魏健研磨麵行研磨, 形成複數個_研磨物,該等被研磨物包括銅、鋼、錄 /及砸的_顆粒或化合物,化合物包括靴銅、砸化铜201105570 VII, the scope of application for patents: 1.- kinds of knitting _ silk laying method, Xiao _ granules, the method includes · · individual grinding treatment, _ - research, and use - the first - grinding media and a H turn , Weiqing Wei Jian grinding surface grinding, forming a plurality of _ abrasives, such as copper, steel, recorded / and 砸 _ particles or compounds, compounds including boots copper, copper 以及砸化鎵’且該等個別研磨物的顆粒大小為咖至咖 奈米(nm); -混合均質處理’彻―均質機’使用—混合均質溶劑包 含黏結継介面雜劑,職等侧研雜断混合與均 質,以形成一混合均質物; 、 一初級研磨處理,利用該研磨機,並使用一第二研磨媒 介、一第二研磨溶劑以及一分散劑,對該混合均質物進行 研磨’形成一初級研磨物,該初級研磨物的顆粒大小為⑽ 至200nm ;以及 鲁一進階研磨處理,利用該研磨機,並使用一第三研磨媒 、一第二研磨溶劑以及該分散劑,對該初級研磨物進行 研磨,形成一進階研磨物,該進階研磨物的顆粒大小為 50nm以下’該進階研磨物為該銅銦鎵砸奈米顆粒。 2,依據申請專利範圍第1項所述之方法,其中 該個別研磨處理的第一研磨媒介為直徑L 〇至2. 〇麵的錯 珠,且具有50至95%的谷莖,該個別研磨處理的研磨時間 為4至6小時。 201105570 3:2,第1項所述之方法,其中該個別研磨處理 夕一 〆合劑包括水、醇類、醋類以及酮類的至少其中 -— 〇 4·ΖΙ請專利範圍第1項所述之方法,其中該個別研磨處理 的個別研磨物具有5至臟的容量。 ===1項,方法’其中該_質處理 、合^^括水、醇類、酯類以及酮類的至少盆中 該混合均質處理的混合均f時間1至4小時/、 •的第-^利範圍第1項所述之方法’其中該初級研磨處理 研磨媒介為直徑0. 4幻.〇咖的錯珠,且具有50 7 ίΓΓ容量’該個別研磨處理的研磨時間為1至U小時。 7·=!:請專利範圍第1項所述之方法,其愧初級研磨處理 的/Μ:ίσ均質物具有5至80%的容量。 8· =利範圍第1項所述之方法,其中該初級研磨處理 研磨溶劑包括水、醇類、酿類以及酮類的至少其中 9. 2申請專利範圍第i項所述之方法,其中該進階研磨處理 的第三研磨媒介為直徑〇· i至〇. 4咖的錯珠,且具有 至95%的容量,該個卿磨處理的研磨時間為i至12 $康第H利範圍第1項所述之方法,其中該進階研磨處 中f括水、_、_糊類的至少其 Π·依據申請專利範圍第i項所述之方法,其中該進階研磨處 理的初級研磨物具有5至80%的容量。 12·依射請專利細第丨項所述之方法,其t該分散劑區分 為雨分子分散劑以及非離子型分散劑,係為炫基笨續酸 201105570 鹽、硫酸鹽、磺化甘油磷酸酯、氨基酸鹽、磷類脂、牛磺 酸鹽、磷酸鹽、烷基硫酸酯、脂肪酸、聚環氧乙烷(ΡΕ0)硫 醇、山梨酸油、季敍的至少其中之一。And gallium arsenide' and the particle size of the individual abrasives is from coffee to kanai (nm); - mixed homogenization treatment 'to-homogeneous machine' use - mixed homogeneous solvent containing bonded 継 interface impurity, grade side research Miscible mixing and homogenization to form a mixed homogeneous material; a primary grinding treatment, using the grinding machine, and using a second grinding medium, a second grinding solvent, and a dispersing agent to grind the mixed homogeneous material Forming a primary abrasive having a particle size of (10) to 200 nm; and a first-stage grinding treatment using the same, using a third grinding medium, a second grinding solvent, and the dispersing agent, The primary abrasive is ground to form an advanced abrasive having a particle size of 50 nm or less. The advanced abrasive is the copper indium gallium nanoparticle. 2. The method according to claim 1, wherein the first grinding medium of the individual grinding treatment is a wrong diameter of a diameter L 〇 to 2., and has 50 to 95% of the stem, the individual grinding The grinding time of the treatment is 4 to 6 hours. The method of claim 1, wherein the individual grinding treatment comprises at least one of water, alcohols, vinegars, and ketones - 〇4. The method wherein the individual abrasives of the individual grinding process have a capacity of 5 to dirty. ===1, the method 'where the _ quality treatment, combined with water, alcohols, esters and ketones in at least the pots of the mixture of homogenization treatments are f time 1 to 4 hours /, • The method of the first aspect of the invention, wherein the primary grinding treatment medium is a diameter of 0. 4 illus. The wrong beads of the coffee, and having a capacity of 50 7 ΓΓ ' 'The grinding time of the individual grinding treatment is 1 to U hour. 7·=!: Please refer to the method described in the first paragraph of the patent, which has a capacity of 5 to 80% of the primary grinding treatment. The method of claim 1, wherein the method of the primary grinding treatment of the grinding solvent comprises at least 9.2 of the water, the alcohol, the brewing, and the ketone, wherein the method of claim ii, wherein The third grinding medium of the advanced grinding treatment is a wrong bead of diameter 〇·i to 〇. 4 coffee, and has a capacity of 95%, and the grinding time of the grinding treatment is i to 12 $Kangli range The method of claim 1, wherein the advanced grinding portion includes at least the water, _, _ paste, according to the method of claim i, wherein the advanced grinding treatment of the primary abrasive It has a capacity of 5 to 80%. 12. According to the method described in the patent detailing item, the dispersing agent is divided into a rain molecular dispersing agent and a non-ionic dispersing agent, which is a dazzling base acid 201105570 salt, sulfate, sulfonated glycerol phosphate At least one of an ester, an amino acid salt, a phosphorus lipid, a taurate, a phosphate, an alkyl sulfate, a fatty acid, a polyethylene oxide (ΡΕ0) thiol, a sorbic acid oil, and a season. 1111
TW98126183A 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles TWI386364B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98126183A TWI386364B (en) 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98126183A TWI386364B (en) 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles

Publications (2)

Publication Number Publication Date
TW201105570A true TW201105570A (en) 2011-02-16
TWI386364B TWI386364B (en) 2013-02-21

Family

ID=44814072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98126183A TWI386364B (en) 2009-08-04 2009-08-04 Preparation of copper indium gallium - selenium nanoparticles

Country Status (1)

Country Link
TW (1) TWI386364B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767898B (en) * 2016-01-27 2022-06-21 德商克洛諾斯國際有限公司 Production of titanium dioxide pigment, titanium dioxide pigment and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421722A (en) * 1980-03-06 1983-12-20 Cng Research Company Adiabatic expansion orifice assembly for passing a slurry from a high pressure region to a low pressure region
JP3368117B2 (en) * 1995-09-29 2003-01-20 幸彦 唐澤 Method and apparatus for crushing solid particles
JPH10192670A (en) * 1996-12-27 1998-07-28 Inoue Seisakusho:Kk Dispersion and dispersing apparatus utilizing supercritical state
US6051694A (en) * 1998-09-17 2000-04-18 Castor; Trevor Percival Method for size reduction of proteins
KR20050085229A (en) * 2002-12-02 2005-08-29 알베마를 네덜란드 비.브이. Process for conversion and size reduction of solid particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767898B (en) * 2016-01-27 2022-06-21 德商克洛諾斯國際有限公司 Production of titanium dioxide pigment, titanium dioxide pigment and application thereof

Also Published As

Publication number Publication date
TWI386364B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
Ou et al. Hot-injection synthesis of monodispersed Cu 2 ZnSn (S x Se 1− x) 4 nanocrystals: tunable composition and optical properties
CN1323124C (en) Cerium oxide abrasive material and grinding method of base plate
Chen et al. Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives
CN101970347A (en) Doped ceria abrasives with controlled morphology and preparation thereof
KR101889125B1 (en) Colloidal silica polishing composition and method for manufacturing synthetic quartz glass substrates using the same
Wang et al. Development of carbon sphere/ceria (CS/CeO2) heterostructured particles and their applications to functional abrasives toward photochemical mechanical polishing
US7997514B2 (en) Method for fabricating CIGS nanoparticles
CN101475791A (en) Preparation and use of cerium oxide / silicon oxide compound abrasive
Xu et al. Preparation of flower-shaped silica abrasives by double system template method and its effect on polishing performance of sapphire wafers
CA2625273A1 (en) Abrasive particulate material, and method of planarizing a workpiece using the abrasive particulate material
CN110240125B (en) Hollow zinc selenide nanocrystal and preparation method and application thereof
Fan et al. Preparation of lanthanide-doped polystyrene/CeO2 abrasives and investigation of slurry stability and photochemical mechanical polishing performance
Meng et al. Design of composite abrasives and substrate materials for chemical mechanical polishing applications
Ma et al. Enhancing the polishing efficiency of CeO2 abrasives on the SiO2 substrates by improving the Ce3+ concentration on their surface
TW200913287A (en) Solar cell and manufacturing method thereof
Wang et al. Composite particles with dendritic mesoporous-silica cores and nano-sized CeO2 shells and their application to abrasives in chemical mechanical polishing
WO2016069244A1 (en) Nanoparticle based cerium oxide slurries
Chen et al. Highly dispersed Gd-CeO2 nanocrystals supported on mesoporous silica composite particles towards photochemical (photo-assisted chemical) mechanical polishing
Cao et al. Fabrication and application of CeO2 nanostructure with different morphologies: a review
Chen et al. Dependency of structural change and polishing efficiency of meso-silica/ceria core/shell composite abrasives on calcination temperatures
Wang et al. Double-layered core–shell heterostructures of mSiO2@ CdS@ CeO2 abrasive systems toward photochemical mechanical polishing (PCMP) applications
Lu et al. Fabrication of a resin-bonded ultra-fine diamond abrasive polishing tool by electrophoretic co-deposition for SiC processing
CN114045153B (en) Method for preparing cerium dioxide suspension, cerium dioxide suspension and polishing solution
Kou et al. Trivalent lanthanum and ytterbium doped meso-silica/ceria abrasive systems toward chemical mechanical polishing (CMP) and ultraviolet irradiation-assisted photochemical mechanical polishing (PCMP)
TW201105570A (en) Production method of copper indium gallium selenium nanoparticles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees