TWI384032B - 具有增強的放大率及內部官能度的樹枝狀聚合物 - Google Patents
具有增強的放大率及內部官能度的樹枝狀聚合物 Download PDFInfo
- Publication number
- TWI384032B TWI384032B TW095138387A TW95138387A TWI384032B TW I384032 B TWI384032 B TW I384032B TW 095138387 A TW095138387 A TW 095138387A TW 95138387 A TW95138387 A TW 95138387A TW I384032 B TWI384032 B TW I384032B
- Authority
- TW
- Taiwan
- Prior art keywords
- dendrimer
- core
- amine
- group
- ether
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/002—Dendritic macromolecules
- C08G83/003—Dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/593—Polyesters, e.g. PLGA or polylactide-co-glycolide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/595—Polyamides, e.g. nylon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0002—General or multifunctional contrast agents, e.g. chelated agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/005—Dendritic macromolecules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Genetics & Genomics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Polymers & Plastics (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Polyesters Or Polycarbonates (AREA)
- Medicinal Preparation (AREA)
Description
本發明係根據藉國防部之陸軍研究實驗室契約而授予之DAAL-01-1996-02-044及W911NF-04-2-0030在政府支持下完成。政府對於本發明具有特定權利。
本發明係有關於樹枝狀聚合物之領域,其中樹枝狀高分子為該等較佳聚合物之實例。這些聚合物具有可捕獲分子之空隙,且其表面官能性分子團可進行進一步反應。
製備分支鏈聚合物系統之各種開環反應係已知。彼等之一些製法如下述。
使用開環作用之聚合反應已為吾人所熟知,特別為使用環系醚、醯胺、吖丙登(aziridene)、硫化物、矽氧烷等藉陰離子性、陽離子性或其它機制而進行之開環聚合反應(George Odian,Principles of Polymerization
,pub.John Wiley and Sons,1993,Chapter 7)。然而,在高分支鏈聚合物之合成時使用開環聚合反應卻較不為吾人所熟知。已研究使用開環聚合反應以合成各種高分支鏈聚合物。在大多數情況下,該開環聚合反應典型上可產生具有廣多分散性之無規高分支鏈聚合物[見D.A.Tomalia And J.M.J.Fréchet,
J.Polym.Sci.Part A:Polym.Chem.,40,2719-2718(2002)]。
製備高分支鏈聚合物之開環聚合反應的先前實例之一為Odian及Tomalia之研究成果[P.A.Gunatillake,G.Odian,D.A.Tomalia,Macromolecules,21,1556(1989)],其中高分支鏈材料係自唑啉製成。
開環作用業經使用以產生作為單離子導體之直鏈或梳狀分支鏈聚醚[X.G.Sun,J.B.Kerr,C.L.Reeder,G.Liu,Y.Han,Macromolecules,37(14),5133-5135(2004)]。
已嚐試於鹼性條件使2-羥甲基氧雜環庚烷進行開環聚合反應以獲得高分支鏈聚醚[Y.H.Kim,J.Polym.Sci.,Polym.Chem.,36,1685(1998)]。
D.A.Tomalia在唑啉之開環聚合反應上之研究已獲得高分支鏈PEOX或PEI聚合物(見美國專利US 4,690,985、5,631,329,及5,773,527)。
已使用多分支鏈聚合反應(“MBP”)方法製成於核心具有起始劑之高分支樹枝狀巨分子,該方法包含開環聚合反應,其包括,例如在起始劑存在下使用酮使環系胺基甲酸酯進行經Pd催化之開環聚合反應[M.Suzuki;A.Ii,T.Saegusa,Macromolecules,25,7071-7072(1992),and M.Suzuki,S.Yoshida;K.Shiraga,T.Saegusa,Macromolecules,31,1716-19(1998)]。
藉添加催化量之起始劑,諸如氫氧根離子,而引發環氧化合物之開環反應,其包括AB2
型之單體聚合反應,並進行不同於其它高分支鏈聚合物方法(其包括經酸或鹼催化
之反應)之新穎增長方法[H.T.Chang,J.M.J.Fréchet.J.Am.Chem.Soc.,121,2313-2314(1999)]。藉將陰離子開環聚合反應之多分散性控制在1.5以下而使AB2
單體型之縮水甘油聚合成高分支“聚甘油”[A.Sunder,R.Hanselmann,H.Frey,R.Mulhaupt,Macromolecules,32,4240-4246(1999)]。二去水-D-甘露醇之陽離子環聚合反應係用以製造高分支醣類聚合物[T.Imai,T.Satoh,H.Kaga,N.Kaneko,T.Kakuchi,Macromolecules,36,6359-6363(2003);T.Imai,T.Satoh,H.Kaga,N.Kaneko,T.Kakuchi,Macromolecules,37,3113-3119(2004)]。
可藉合併開環聚合反應及自凝縮乙烯基聚合反應(“SCVP”)之部份特徵而獲得高分支鏈聚合物,己內酯之開環聚合反應可得到具有多分散性約3.2之高分支聚酯[M.Liu,N.Vladimirov,J.M.J.Fréchet,Macromolecules,32,6881-6884(1999)]。
雙(羥甲基)己內酯之開環聚合反應可得到高分支鏈聚酯[M.Trollsas,P.Lowenhielm,V.Y.Lee,M.Moller,R.D.Miller,J.L.Hedrick,Macromolecules,32,9062-9066(1999)]。
乙基羥甲基氧雜環庚烷之陽離子開環聚合反應可產生多分散性在1.33至1.61範圍內之高分支鏈聚醚[Y.Mai,Y.Zhou,D.Yan,H.Lu,Macromolecules,36,9667-9669(2003)]。
3-乙基-3-(羥甲基)氧雜環庚烷之開環作用係用以產生
高分支鏈聚醚[H.Magnusson,E.Malmstrom,A.Hult,Macromolecules,34,5786-5791(2001)]。
可藉N-羧基酸酐之開環聚合反應而獲得樹枝狀多肽。該方法包括N-羧基酸酐開環及末端偶合反應之重覆順列。該方法可產生每分支度具有統計學上可決定之平均鏈長的不具精確長度之聚合區域,並可產生具有典型多分散性為1.2至1.5之聚合物。
形成多硫化物樹枝狀高分子之方法為於鹼性條件下使聚硫醇與環氧氯硫化物(epichlorosulfide)反應以形成聚環氧硫化物(polyepisulfide)(見美國專利4,558,120,及4,587,329)。這些相同專利亦討論使用聚胺基核心與過量環硫乙烷所進行之反應以形成多硫化物,繼而與過量吖丙啶(aziridine)反應以形成另外世代之該等產物。
已討論添加N-甲苯磺酸基吖丙啶作為產生經部份保護之樹枝狀高分子表面之方法(美國專利4,361,337、4,587,327、及4,568,737)且其包括產生吖丙啶衍生物。
已討論開環反應作為添加端基之方法。例如美國專利4,568,737揭示使用環氧乙烷以在一樹枝狀高分子上產生多元醇表面之方法。
已使用許多特定反應以產生多種精確的樹枝狀高分子結構。這些反應典型上可定義核心(“C”)、分支結構型(“BR”)
及端基官能性分子團(“TF”)。已使用業經歸類為“收歛的合成法”及“發散的合成法”之兩種主要方法進行精確樹枝狀高分子的合成[Dendrimers and other Dendritic Polymers
,eds.J.M.J.Fréchet,D.A.Tomalia,pub.John Wiley and Sons,(2001)]。在這些主要的範疇內,就分支小室結構(亦即原位形成及預成型)或樹突結構體(dendron)錨型結構而言,有另外變異体。
分支小室試劑之最早公佈的用途之一包括偶合核心周圍之預成形分支小室以形成低分子量阿伯酚(arborol)結構[G.R.Newkome,Z.-Q.Yao,G.R.Baker,V.K.Gupta,J.Org.Chem.,50,2003(1985)]。使用經保護之預形成分支小室試劑(其主要含季戊四醇核心,Nc=4
,及4-乙醯基硫甲基-2,6,7-三雙環[2.2.2]辛烷,Nb=3
)以合成聚(硫醚)樹枝狀高分子。在該情況下,經保護之分支小室試劑係用以建構該樹枝狀高分子分支結構,其需要化學脫除保護作用以作為快速建構結構的附加步驟。雖然所使用之試劑為多環系型醚(亦即,原酸酯),但是於聚合反應期間該醚環並未變形且並未開環。
立體效應,如在小分子化學性質中所定義,係引因於所有基本小分子“砌塊組份(building block component)”(亦即原子、官能基、烴架構)佔有之次奈米尺度空間體積(亦即0.05至1奈米)及其在臨界反應及組裝項目中彼此之關係。其相對大小對反應性、位移、取代作用、對掌性、締合作用、組裝性、特定產物形成及可獲得結構之影響在學術及商業
領域中始終是具很高重要性的議題。例如可降低反應性之立體效應稱為“立體阻礙(steric hinderance)”[見P.Y.Bruice,Organic Chemistry
,2nd
Ed.(1998),p 362,Prentice Hall]。立體阻礙係起因於在一反應部位阻礙之基團。典型的實例包括“新戊基效應”,其中受阻性漸增之鹵烷對SN2
反應之相對反應性經漸增性地抑制,其程度可致使三級鹵烷(亦即溴新戊烷)的反應太慢以致不能測定。不僅與可進行親核性侵蝕之該碳連接之烷基數可決定反應速率,而且該等烷基之相對大小亦很重要。
格倫氏法則(Cram’s Rule)為小分子立體效應之另一典型實例。雖然不想受限於理論,咸信立體效應可控制能導致對掌性導入之於羰基氧發生的立體選擇性反應性。克倫氏法則陳述親核子可沿著最小取代基排列接近羰基。最大的基團本身與該羰基反向排成一列以使立體效應減至最小,因此該親核子可優先自該小取代基之一側侵蝕[見D.J.Gram,A.Elhafez,J.Am.Chem.Soc.74,5828(1952)]。
若已發現並可界定該奈米尺度層次(亦即1至100奈米)之關鍵構造組份,則上述這些簡略實例不僅意味著此等類似“立體效應”可提供之可能性及其重要性。這些NSIS效應之奈米尺寸法則實際上係未知。NSIS與本發明之關連性係描述在本專利說明書之實施方式中。
合成樹枝狀高分子之方法存在一些困難性。例如聚(醯胺基胺)(“PAMAM”)樹枝狀高分子,其係為這些樹枝狀聚合
物的主要組成族之一,之製法目前係集中在可原位形成分支小室之麥可加成反應(Michael addition chemistry)[Dendrimers and other Dendritic Polymers
,eds.J.M.J.Fréchet,D.A.Tomalia,pub.John Wiley and Sons,(2001),Chapter 25]。該常用方法包括醯胺化步驟,其包含慢化學作用、長反應時間及未分化的二官能性中間物。這事實迫使該方法需要高稀釋液,其特別於較高代下會導致低產量及高成本。此外,PAMAM樹枝狀高分子由於具有特定醯胺結構,所以可使用低能方式以經由逆麥可加成反應及水解反應而降解。
顯然,較佳找到一種可製備精確樹枝狀高分子結構之方法,其比目前使用方法之反應時間更快,較少副產物且更容易分離,及較低製造成本。而且,若該等樹枝狀高分子更安定且更容易按一定比例縮小或放大亦為所欲。
本發明該等樹枝狀聚合物結構具有幾種可顯示令人意外的性質(與一般樹枝狀結構比較)之獨特組份,且可利用獨特開環方法而製成。
這些樹枝狀聚合物之結構如以下式(I)所示:
其中:(C)表示核心;(FF)表示該核心之焦點官能性分子團組份;x獨立為0或1至Nc
-1之整數;(BR)表示分支小室,若其p大於1,則(BR)可相同或可以是不同分子團;p為自以下公式導出之樹枝狀高分子中之分支小室(BR)的總數,且係為自1至2000之整數
其中:G為包圍該核心之同心分支小室殼數(世代);i
為最終代G;Nb
為分支小室之多重數(multiplicity);且Nc
為核心多重數,且其係為自1至1000之整數;(IF)表示內部官能性分子團,若其q大於1,則(IF)可相同或可以是不同分子團;q獨立為0或自1至4000之整數;(EX)表示延長鏈,若其m大於1,則(EX)可相同或可以是不同分子團;m獨立為0或自1至2000之整數;(TF)表示末端官能性分子團,若其z大於1,則(TF)可相同或可以是不同分子團;
z表示特定代(G)之(C)及(BR)的表面基團數,其係為自1至可能之理論數z=Nc
Nb G
;其中:G、Nb
及Nc
係如上文定義;且其限制條件為存在(EX)或(IF)中之至少一種。
本發明一些樹枝狀高分子係由式(II)代表:
其中:核心(C)、(TF)、G、Nc
、Nb
、i
、z及p係如上文式(I)定義且(BR)必須具有一個(IF)分子團或可於原位置產生一個(IF)。
上文式(I)及式(II)之各種名詞[(C)、(FF)、(IF)、(BR)、(EX)、(TF)]在下文【實施方式】中有更詳細解釋。該式(I)化合物較佳具有至少一個(EX),其係為衍生自疊氮化物對乙炔之1,3-環-加成反應之哌或三唑,或可切除分子團,諸如酯。亦較佳為兼具(EX)及(IF)且具有不僅一個(BR)及(IF)之式(I)化合物。
這些式(I)樹枝狀聚合物係藉本專利說明書中稍後所述方法而製成,且係藉下文提供之流程圖I及Ⅱ而闡明。
本發明之一實施例係提供一種製備樹枝狀高分子之方法,其中係使分支小室試劑及容易與該分支小室試劑反應之二胺接觸,並在溶劑(例如醇)存在下,較佳在惰性大氣(例如氮)中使該分支小室試劑與二胺反應,其反應時間(例如0.5至30小時)及溫度(例如20℃至150℃)足以形成一選自由聚(酯-丙烯酸酯)樹枝狀高分子及聚(酯-環氧化物)樹枝狀高分子所組成之群組的樹枝狀高分子。樹突結構體亦藉本方法而製成。該等起始劑核心及分支小室試劑係在醇或極性/非極性溶劑存在下彼此接觸。
一種藉丙烯酸酯-胺反應系統而製備如上文定義之式(I)樹枝狀聚合物的方法包括:A.如下示,使丙烯酸酯官能性核心與胺官能性延長鏈進行反應:(C)+(EX) → (C)(EX)(TF)其中(C)=丙烯酸酯官能性核心,諸如TMPTA;(EX)=胺官能性延長鏈,諸如PIPZ;且(TF)=胺;及B.如下示,使(C)(EX)(TF1)之胺官能性伸鏈核心試劑與丙烯酸酯官能性分支小室試劑(BR)進行反應:(C)(EX)(TF1)+(BR) → (C)(EX)(BR)(TF2)其中(C)=TMPTA;(EX)=PIPZ;(TF1)=胺;(BR)=TMPTA;且(TF2)=丙烯酸酯;且
其中就A及B步驟而言就添加該延長鏈(EX)基團至核心而言,(EX)/(C)莫耳比之定義為延長鏈分子(EX)對該簡單核心、架構核心、超核心或當代結構(亦即Nc
)上之反應性官能基之莫耳比,其中當完全覆蓋為所欲,則使用過量(EX);就添加分支小室(BR)至簡單核心、架構核心、超核心或當代結構而言,(BR)/(C)之定義為分支小室分子(BR)對該簡單核心、架構核心、超核心或當代結構(亦即Nc
)上之反應性官能基之莫耳比,其中當完全覆蓋為所欲,則使用過量(BR);且可藉該附加莫耳比或藉N-SIS而控制分支小室(BR)或延長鏈(EX)對核心、架構核心、超核心或當代產物之添加量。
一種藉開環反應系統而製備如上文定義之式(I)樹枝狀聚合物的方法包括:A.如下示,使環氧基官能性核心與胺官能性延長鏈進行反應:(C)+(EX) → (C)(IF1)(EX)(TF1)其中(C)=環氧基官能性核心,諸如PETGE;(IF1)=內部羥基(OH);(EX)=哌(PIPZ);(TF1)=胺;及B.如下示,使胺官能性伸鏈核心試劑(C)(IF1)(EX)(TF2)與環氧基官能性分支小室試劑進行反應:(C)(IF1)(EX)(TF1)+(BR) → (C)(IF1)(EX)(IF2)(BR)(TF2)
其中(C)=PETGE;(IF1)=如申請專利範圍第1項之定義的內部官能性分子團,諸如OH;(EX)=如申請專利範圍第1項之定義的延長鏈分子團,諸如PIPZ;(TF1)=胺;(BR)=環氧基官能性分支小室試劑,諸如PETGE;而(IF2)=如申請專利範圍第1項之定義的內部官能性分子團,諸如OH;(TF2)=胺;且其中就步驟A及B而言就添加延長鏈(EX)基團至核心而言,(EX)/(C)莫耳比之定義為延長鏈分子(EX)對該簡單核心、架構核心、超核心或當代產物結構(亦即Nc
)上之反應性官能基之莫耳比,其中當完全覆蓋為所欲,則使用過量(EX);就添加分支小室(BR)至簡單核心、架構核心、超核心或當代結構而言,(BR)/(C)之定義為分支小室分子(BR)對該簡單核心、架構核心、超核或或當代結構(亦即Nc
)上之反應性官能基的莫耳比,其中當完全覆蓋為所欲,則使用過量(BR);且可藉該附加莫耳比或藉N-SIS而控制分支小室(BR)或延長鏈(EX)對核心、架構核心、超核心或當代產物之添加量。
這些式(I)樹枝狀聚合物之用途如下述且在本專利說明書中有進一步描述。一般相信,根據這些物質及類似的樹枝狀聚合物之知識,這些樹枝狀聚合物可具有所有這些所述用途及許多其它用途。在許多用途上,有很多論及樹
枝狀聚合物,諸如PAMAM。
由於式(I)樹枝狀聚合物具有如前述之獨特性質,所以咸信其可用於PAMAM及樹枝狀高分子之即使非全部,但仍然是大部份的用途及甚至更多的用途。此等用途之一些實例包括,但不限於以下。在能源及電子產品市場中,這些樹枝狀共聚物可用於燃料電池(例如薄膜、觸媒)、蓄能(氫)、固相照明、器件之熱管理、發光二極體、顯示器、電子墨水、層間絕緣膜、光阻劑、分子電路、電信裝置(波導器)、光電產品、照明材料、量子點、及材料之隱密性強化。可藉摻合這些式(I)樹枝狀聚合物與樹脂粉末,加熱,然後擠製或使用合適表面活化劑將該調色劑樹脂顆粒分散在溶液中而製成調色劑組成物。這些式(I)樹枝狀聚合物可以與染料(諸如陰離子染料)、鹽、表面活化劑、抗氧化劑、溶劑(諸如水)或純溶劑,及其它所欲組份混合以得到可沉積在紙或另一印刷表面上之無沉澱物油墨。該等染料對合成及天然纖維之塗覆或滲透作用的改善使這些樹枝狀聚合物可用在布料、布料的圖案、毛氈,及其它此等項目。可添加水溶性式(I)樹枝狀聚合物至紙面塗覆調配物以增加紙面塗覆機械之生產力並改善紙品質。可藉混合式(I)樹枝狀聚合物與二氧化矽或二氧化鋁而製成可用於分離法或過濾法中之層析載劑。式(I)樹枝狀聚合物可用於牙齒組成物以增加性能、減少收縮,及/或改善黏著性。這些樹枝狀聚合物之低黏度、最佳蝕刻性質,及可調整的玻璃轉化溫度性質使其可用於製造電腦記憶體系統。亦具有其它用途,例如
奈米尺度之樹枝狀分子本身即有功用或可作為金屬離子或金屬之載劑。作為油添加物或潤滑劑,這些式(I)樹枝狀聚合物可具有分散劑及抗氧化劑性質,且可作為SAE-30馬達油之添加劑以減少淤渣、清漆狀沉積物及堵塞。
在環境領域中,這些樹枝狀聚合物可作為化學及生物感測器、電子鼻(以陣列為主之感測器)、程序晶片(lab-on-a-chip)、用於環境追蹤及來源識別之材料的奈米編碼、用於環境感測器、殺生物物質、環境感測、改善、淨水(例如離子交換)、潔淨空氣(例如超吸收劑),及觸媒之放大率技術。
在個人/家用領域中,這些樹枝狀聚合物可作為環境用之燃料、塗料及表面改質劑(諸如可提供抗刮痕性、抗微生物表面、變色性、質地改質劑、防塵性、抗水性)之改善劑、清潔劑及洗劑、化粧品、顏料與染料、紫外線吸收劑、營養物之載劑、甜化劑、人造甜化劑、表面活化劑,及不需要添加色素之官能性添加劑。
在化學品及製造市場中,這些樹枝狀聚合物可作為改良性結合劑、可用於包藏化合物以自溶液或水純化移除重金屬或雜質、可作為化學催化劑、化學分離材料、過濾系統、石化加工劑(奈米觸媒),及毒漏感測劑。這些樹枝狀聚合物亦可作為各種化學應用(其包括製造雜聚合物或均聚合物)之單體,及作為聚合反應改質劑或起始劑(諸如就尼龍(nylon)6而言,可降低其黏性以更容易地進行射出成形,及降低加工壓力)。
式(I)該等樹枝狀聚合物亦可具有各種存在於其內部空隙中之載送物質。這些樹枝狀聚合物在藥學及農業領域中可具有各種作為藥劑的用途。
在人類及動物醫學與健康領域中,這些樹枝狀聚合物可用於活體內診斷成像(例如具有增加明暗對比度之標靶控制)、診斷感測(例如具有同時定標之強波器)、藥物遞送(例如增強之口遞送、靜脈遞送、皮遞送、經皮遞送、鼻遞送等)、藥物發現(例如小型化、生物陣列)、試管內及活體外診斷法及治療法、用於醫用裝置(例如玻管內及活體外)之激素、蛋白、酶、抗蛋白質塗料、用於裝置之抗生物積垢塗料及表面、經皮遞送、用於腫瘤之化療法、遠端及活體內裝置、多價藥學應用、近紅外線吸收劑、生物標記、標靶生物標記、非侵襲性成像及感測法、標靶療法、標靶診斷、含金屬(諸如銅、銀、金)之樹枝狀聚合物、磁生物反應器(例如細胞生長及採集)、釋藥模、表面塗料,及控制性釋劑(例如治療劑、營養物等)。這些樹枝狀聚合物之用途包括以下各物之封包或吸附:藥物、前藥、抗病毒劑、抗細菌劑、抗寄生蟲劑、蛋白質、激素、酶、寡核苷酸、基因物質(例如DNA、RNA斷片、病毒顆粒或斷片或合成基團顆粒)。
因此根據已知先前樹枝狀聚合物及對本發明式(I)樹枝狀聚合物所完成之測試,明顯可知其可作為:可進一步經由所存在之表面基團(TF)的變異體改質之表面共軛或表面締合載劑(諸如可能得自彼等之橢球體、球體、桿狀物、
無規高分支樹枝狀接枝物、核心-殼甲基樹枝狀高分子之形狀變式);適用於接時釋藥遞送之封包載劑(不論該載劑物質是否與經簡單地裹內部締合),其在該樹枝狀聚合物之結構中具有適於接時釋藥及pH或一旦投予時產生之其它所欲變化、該樹枝狀聚合物之內部與表面間之溶度差異、由於代型或形狀,每一樹枝狀聚合物可能的載送物質數量,之可分裂鍵合;及由於其大小的精確性,所以可作為分子大小標準物、校準劑,及細孔形成量具。
在食品及農業市場中,這些樹枝狀聚合物可作為高選擇性控制感測劑、知覺擴大物質(例如味覺、嗅覺、聽覺、視覺,及感覺)、植物內之生化反應路徑研究及分佈、標靶、非毒性之生物可分解的防疫劑、除草劑、按時釋放之肥料及除疫劑、包裝材料(例如抗微生物塑膠)、新鮮度、污染,及/或栓緊感測劑,及將藥物遞送至植物及動物的媒劑。
而且,這些樹枝狀聚合物可攜帶如文中進一步所述之其它所欲物質。
適用於這些用途之這些式(I)樹枝狀聚合物的調配物亦描述在文中。
第1圖係闡明具有以下組份:核心(C)、具有分支小室(BR)、內部官能性分子團(IF)及延長鏈(EX)之內部、及具有末端官能性分子團(TF)之一些表面基團(z),之式(I)樹枝狀高分子之樹枝狀高分子核心-殼結構的立體投影圖。
第2圖係闡明可以由一或多種親電子分子團(E)、親核
分子團(Nu)或其它反應性分子團(O)或這些分子團之組合所組成之各種核心組份(C)。該核心之多重數被定義為Nc
。除了這些分子團之習用分子團外,這三種名詞,(E)、(Nu)、及(O),包括,諸如具有如所闡明之焦點官能性分子團(FF)之樹突結構體之基團。
第3圖係闡明具有分支小室(BR)之式(I)樹枝狀高分子的內部部份,該等分支小室(BR)具有一或多種下述分子團:親電子分子團(E)、親核分子團(Nu)或其它反應性分子團(O)(亦即自由基或1,3-偶極環化加成)或這些分子團之組合。此外,該內部可選擇性地具有可提供內部官能性分子團(IF)之基團,其通常衍生自開環反應,且其可具有一或多種下述分子團:親電子分子團(E)、親核分子團(Nu)或其它反應性分子團(O)或這些分子團之組合。延長鏈分子團(EX)亦可選擇性地存在於該內部中,該等(EX)具有一或多種下述分子團:親電子分子圖(E)、親核分子圖(Nu)或其它反應性分子圖(O)或這些分子團之組合。這些內部分子團可重覆用於各代之該樹枝狀高分子。
第4圖係闡明(A)中Q可以是環氧化物分子團或丙烯酸酯分子團之分支小室或核心。當該環氧化物經開環時,分支小室,(B),表示四縮水甘油醚分支小室試劑之該(BR)分子團、(IF)分子團、(EX)分子團及(TF)分子團;其中如所闡明,形成Nb
=3。類似地,其中如在第1圖上所闡明,Nb
=2。當該丙烯酸酯為Q時,則可經切除之酯經整合。
第5圖係闡明具有末端官能性分子團(TF)之表面基團
(z)。這些(TF)可相同或不同。這些(TF)亦具有一或多種下述特徵:親電子分子團(E)、親核分子團(Nu)、其它反應性分子圖(O)、非反應性端基(例如烴)或這些可能分子團之組合。
第6圖係闡明該樹枝狀聚合物(亦即樹枝狀高分子結構)之自一代至下一代的發散生長。當該樹枝狀聚合物生長時,其係以代為變數,當其以數學性擴大時,可改變奈米尺度分子形狀及分子量。在該圖中計劃包括藉(IF)、(EX)及(BR)。
第7圖係闡明當該(BR)大於或小於該(C)且該N-SIS對於可進行反應之反應性基團數有影響時,可表示各種分子團之反應性的式(I)該等樹枝狀高分子/樹突結構體之該等N-SIS特徵。
第8圖係闡明當該(BR)大於該(C)時,其表示仍可藉較小反應物進一步進行反應,可表示各種分子團之反應性之式(I)該等樹突結構體/樹枝狀高分子的該等N-SIS特性。
第9圖係闡明用於使(BR)、(EX)、(C)、(FF)及(TF)進行反應以形成一代之式(I)該等樹突結構體/樹枝狀高分子之(Nu)、(O),及(E)的組合反應性。可重複這些反應以形成較高代或用於其它正交化學生長方法。
第10圖係闡明經(FF)硫官能基化樹突結構體塗覆之Au奈米顆粒的PAGE結果。進行染色前,經由近褐色之色彩,左平板表示該經塗覆之Au奈米顆粒,而紫色為裝載染料。經庫馬斯藍染色後,經由該藍色,右平板表示在該Au奈米
顆粒核心周圍之樹突結構體殼。第1道含有具過量樹突結構體之粗產物;第2至10道表示得自該Sephadex G-50分離法之溶離份1至9。
第11圖係表示在4種不同濃度之PEHAM樹枝狀高分子中作為模型毒素之吲哚美辛的封包作用之結果。該PEHAM樹枝狀高分子可封包該模型毒素並自溶液將其移除。
第12圖係表示得自FITC與PEHAM樹枝狀高分子接合之表面結合作用的結果。該左平板(A)表示在第7道中之對照物及在第5與6道中該PEHAM樹枝狀高分子係與FITC接合。該右平板(B)表示凝膠之庫馬斯藍染色,其中除無染色譜帶外,顯示螢光之所有譜帶具有PEHAM樹枝狀高分子。
第13圖係表示經已和FITC接合之PEHAM樹枝狀高分子,及PEHAM樹枝狀高分子與FITC之對照物各單獨在HEK 293細胞內培育2、5及24小時後,螢光顯微術產生該等右列平板。螢光在該等細胞內之存在表示該經接合之PEHAM樹枝狀高分子可滲透細胞。該等左列平板表示作為參考點之相對比影像。
第14圖表示在HEK 293細胞及MDCK細胞中測試於不同濃度下,G=1之PEHAM樹枝狀高分子作為siRNA遞送載劑之結果。在HEK 293細胞中,PEHAM樹枝狀高分子濃度之增加的一般趨向表示基因產物表現抑制性(knockdown)之增加,其係示於該圖之左方。該等MDCK細胞,在該圖之右方,表示於所測試之PEHAM的最高劑量下,環費林(Cyclophilin)B表現性之適當降低。
第15圖表示證實得自第14圖之結果的結果,其中係以一式三份測試50、100、200,及400微克/毫升之G=1的PEHAM樹枝狀高分子。如前述,HEK 293細胞表示環費林B之沉默作用隨PEHAM樹枝狀高分子濃度之增加而增加。然而該PEHAM樹枝狀高分子在MDCK細胞中作為轉移感染試劑之有效性低,其表示高可變結果。
第16圖表示在HEK 293細胞及MDCK細胞中測試於不同濃度下,實例82之G=2的PEHAM樹枝狀高分子作為siRNA遞送載劑之結果。在HEK 293細胞及MDCK細胞中,G=2之PEHAM樹枝狀高分子濃度之增加表示基因產物表現抑制性之增加,且這兩種值皆高於使用Lipofectamine 2000所獲得之值。
第17圖表示在HEK 293細胞及MDCK細胞中,測試於不同濃度下,實例84之G=2之PEHAM樹枝狀高分子作為siRNA遞送媒劑的結果。該結果顯示在HEK細胞中在所有濃度範圍內,及在MCK細胞中於低濃度下,環費林B表現之有效沉默性。
第18圖表示與一般PAMAM樹枝狀高分子比較,式(I)樹枝狀高分子之熱安定性增強。在該第18圖中,編號的線係代表這些樹枝狀高分子之資料:1為實例25B,2為實例76,而3為PAMAM(G=3,(C)=DAB,(TF)=胺)。
第19圖表示與具有平均分子量為5000(2)及8000(1)分子量之兩種相關之高分支鏈樹枝狀聚縮水甘油比較的式(I)代表性產物[亦即實例76(4)及77(3)]之尺寸排斥層析法
(SEC)。所示該等譜帶寬度係表示3及4之窄多分散性。
第20圖(A)表示得自CPK模型之直徑大小(奈米),其係闡明聚(醚羥基胺)(PEHAM)樹枝狀高分子[(C)=新戊基;(IF)=OH;(BR)=PETGE;(EX)=PIPZ;(TF)=NH;G=0.5至6.5]之縮小值(由圓形表示)及增加值(由方形表示)。黑色線條曲線(由實線代表)表示理想的增加性質。黑色指數曲線(由實線代表)表示縮小之尺寸。該縮小尺寸與增加尺寸間之差異表示該樹枝狀高分子內部中之可用空隙空間。特別注意封包作用係於約G1開始。然而,如第20圖(B)所示,傳統的聚(醚)樹枝狀高分子並未發現封包性質。於約G=5.5之交岔點係闡明該樹枝狀高分子族之de Gennes緻密堆積點。
第20圖(B)表示得自CPK模型之直徑大小(奈米),其係闡明該傳統聚(醚)(PE)樹枝狀高分子[(C)=新戊基;(BR)=新戊基;(TF)=OH]之縮小值(由圓形代表)及增加值(由方形表示)。實際SEC值(由三角形表示)很符合該等CPK值。該樹枝狀高分子族沒有(EX)也沒有(IF)。特別注意,該增加尺寸及縮小尺寸幾乎可重疊,其表示傳統的聚(醚)樹枝狀高分子實際上無內部空隙空間。此外,如第20圖(B)所示,與G=5.5或PEHAM樹枝狀高分子比較,由於該傳統的聚(醚)樹枝狀高分子中不含(EX),所以可以提前將差約2至3代之該de Gennes緻密堆積交岔點轉移至G=3。
第21圖表示得自CPK模型之直徑尺寸(奈米),其係闡明該傳統聚(醯胺基胺)(PAMAM)樹枝狀高分子[(C)=NH3
];G=1至10之縮小值(由圓形代表)及增加值(由方形代表)。實
際SEC值(由三角形代表)存在於該縮小尺寸值與增加尺寸值之間。該樹枝狀高分子族沒有(EX)也沒有(IF)且de Gennes緻密堆積交岔點位於G=10。特別注意,如第20圖(A)所示,與PEHAM樹枝狀高分子(其封包性質開始於G=1至1.5)比較,直到G=4,封包性質才開始進行。
第22圖係闡明具有彼此接觸之4個相同球形分支小室試劑之模型,其中係插入一球形核心以配合藉這4個球形試劑所形成之四面體之中心的可用空間,其表示該核心及分支小室球狀物之相對體積(直徑),其可確立N-SIS爭議及預測之空間界限。
第23圖係表示闡明用以檢查N-SIS爭議及預測之球形核心及包圍該核心之3個錐形分支小室試劑兩種N-SIS模型圖。在本模型中有3種參數:核心之大小(半徑=R)、圓錐體之高度(h)及圓錐體之基礎半徑(r)。
第24圖係表示闡明用以檢查N-SIS爭議及預測之由4個錐形分支小室試劑所包圍之圓形核心的4種N-SIS模型圖。這4個錐形分支小室試劑之基部係內接在包圍位於四面體中央之該球形核心試劑的該四面體之4個面內。
第25圖係闡明3個聚集在球形核心周圍之錐形分支小室試劑之用途,其中該四面體之一表面並不含錐形分支小室試劑。
用於本專利說明書之以下名詞的定義如下文所述且就這些名詞而言,單數名詞係包括複數名詞。
AEEA係指N-(2-羥乙基)乙二胺
AEP係指1-(2-胺基乙基)哌
AFM係指原子力顯微術
AIBN係指2,2'-偶氮基-雙(異丁腈)
烷基係指任何碳數之所使用該名詞,直鏈或分支鏈,單獨或另一名詞的一部份,諸如經烷基取代的、烷芳基、環烷基、雜環系分子團等等;典型上自C1
至C100
,較佳C1
至C50
且最佳C1
至C25
。以類似方式可廣義地定義烯類及炔類;典型上自C2
至C200
,較佳C2
至C100
。
AMTS係指丙烯醯氧基甲基三甲基矽烷
APS係指過氧化二硫酸銨
Aptamers(適體)係指可以與特定目標分子,諸如蛋白質或代謝產物,結合之特定合成的DNA或RNA寡核苷酸
芳基係指含任何碳數之芳香族分子團且可以自C5
至C100
且可經一或多種烷基(可選擇性經取代)、烯類(可選擇性經取代)、炔類(可選擇性經取代)、鹵素、該環中之雜原子(諸如N、O、S、P、B)、疊氮化物,及,諸如本發明實例中之其它取代基取代,且其在本專利說明書中有教示。
BAA係指雙(烯丙基)胺或二烯丙胺
BGPM係指雙(4-縮水甘油氧基苯基)甲烷
BOC係指第三-丁氧羰基
BPEDS係指雙(2-哌基乙基)二硫化物
BSA係指牛血清白蛋白
Celite係指矽藻土(Fisher Scientific)
CPK係指科雷-保林-科坦(Corey-Pauling-Koltun)分子模式
DAB係指二胺基丁烷
DBA係指二苄胺
DCC係指二環己基碳化二醯亞胺
DCM係指二氯甲烷
DEA係指二乙醇胺
DEIDA係指亞胺基二乙酸乙二酯
DETA係指二乙三胺
DGGA係指N,N'-二縮水甘油基-4-縮水甘油氧基苯胺
DIA係指二亞胺基胺
DI係指去離子水
diglyme係指二乙二醇二甲醚
DMDTB係指二硫丁酸二甲酯
DME係指二甲氧基乙烷
DMF係指二甲基甲醯胺
DMI係指依康酸二甲酯(dimethylitaconate)
DMSO係指二甲基亞碸;得自Acros organics,且在使用前係進一步經蒸餾
DNA或RNA或核酸係指合成或天然、單或雙股DNA或RNA或PNA(磷核酸)或彼等之組合或aptamers,較佳自4至9000個鹼基對或自500D至150k
DO3A係指1,4,7,10-四氮雜環十二烷-1,4,7-三(乙酸)
DOTA係指1,4,7,10-四氮雜環十二烷-1,4,7-四(乙酸)
DTPA係指二乙三胺五乙酸
DTT係指二硫代蘇糖醇
EA係指乙醇胺
EDA係指乙二胺;Aldrich
EDTA係指乙二胺四乙酸
EPC係指N-哌羧酸乙酯
EPI係指環氧氯丙烷;得自Acros organics,且在使用前係進一步經蒸餾
equiv.係指當量
Et係指乙基
EtOH係指乙醇
FBS係指牛之胎兒血清
FITC係指螢光異硫氰酸酯
FT-IR係指傅立葉反式紅外線光譜法
G係指樹枝狀高分子代數,其係由包圍該核心之同心分支小室數表示(通常自該核心連續性地算起)
g係指克數
鹵(halo)係指氟、氯、溴或碘原子、離子或基團
HCl係指鹽酸
HEDA係指(2-羥乙基)乙二胺
HEK Cells係指人類胚腎藏細胞
Hexanes係指異構型己烷之混合物(Fisher Scientific)
HMDA係指己二胺
HPLC係指高壓液相層析法
HSEt係指硫乙醇或巰基乙醇
IDAN係指3,3-亞胺基二乙腈
IMAE係指2-咪唑啶基-1-胺基乙烷
IMPA係指亞胺基(甲基膦酸)
IR係指紅外線光譜測定法
KOH係指氫氧化鉀;其係以85%小粒得自Aldrich,且在使用前呈粉末狀
L係指升數
Lipofectamine係指Lipofectamine 2000(Invitrogen)
mA係指毫安培(群)
MALDI-TOF係指飛行式質譜測定法之基質輔助的雷射脫附游離時間
MBDGA係指4,4'-亞甲基雙(N,N'-二縮水甘油基苯胺)
MBP係指多分支聚合反應
m-CPDA係指間位-氯過氧苯甲酸
MDCK Cells係指馬丁-達比(Madin-Darby)犬腎臟細胞
MEM係指最小必需培育基
MeOH表示甲醇
MES係指2-(4-嗎啉基)乙烷磺酸
mg係指毫克數
MIA係指2-甲基-2-咪唑啉
MIBK係指甲基異丁基酮
mins係指分鐘數
MIPIEP係指甲基異丙基亞胺基乙基哌
mL係指毫升數
NMR係指核磁共振
N-SIS係指奈米尺度立體上受誘發之化學計量
寡核苷酸(Oligonucleotides)係指合成或天然、單或雙股DNA或RNA或PNA(肽核酸)或彼等之組合或aptamers,較佳自4至100個鹼基對
正交化學性質(Orthogonal Chemistry)係指在未與由該
等反應物之其它組份進行交錯反應或受其千擾下,並行或連續在多官能性試劑或基質上進行化學變換
PAGE係指聚(丙烯醯胺)凝膠電泳
PAMAM係指聚(醯胺基胺),其包括具有一級胺端基之直鏈及分支鏈聚合物或樹枝狀高分子
PBS係指磷酸鹽緩衝鹽液
PCR係指聚合酶連鎖反應
PEA係指經甲基異丁基保護之1-(2-胺基乙基)哌
PEHAM係指聚(醚羥基胺);式(I)樹枝狀高分子
PEI係指聚(伸乙基亞胺)
PEOX係指經聚(2-乙基-2-唑啉)-部份及完全水解
除非另有指定,百分率或%表示重量比
PETAE係指季戊四醇四烯丙醚
PETAZ係指季戊四醇四疊氮化物
PETGE係指季戊四醇四縮水甘油醚
PETriAE係指季戊四醇三烯丙醚
PETriGE係指季戊四醇三縮水甘油醚
PGA係指聚(縮水甘油基)苯胺
PGE係指聚(縮水甘油基)醚
PIPZ係指哌或二乙二胺
PPI係指聚(伸丙基亞胺)樹枝狀高分子
Pyrrol係指2-吡咯啶酮
Rf
係指TLC中之相對流量
RT係指環境溫度或室溫,約20至25℃
SCVP係指自縮合乙烯基聚合反應
SDS係指十二烷基硫酸鈉
SEC係指尺寸排斥層析法
SIS係指立體上受誘發之化學計量
TBAB係指溴化四丁基銨
TBE係指三(羥甲基)醯胺基甲烷、硼酸及EDTA二鈉緩衝劑
TBS係指經TRIS緩衝之鹽液
TEA係指三乙胺
TEMED係指N,N,N',N'-四甲基乙二胺
TEPC係指四(環氧基丙基)氰尿酸酯
TES係指四環硫化物或四環硫乙烷
TETA係指三乙四胺
TGA係指熱解重量分析法
TGIC係指三(2,3-環氧基丙基)異氰尿酸酯
THF係指四氫呋喃
TLC係指薄層層析法
TMPTA係指三羥甲基丙烷三乙酸酯
TMPTGE係指三羥甲基丙烷三縮水甘油醚;Aldrich;[首先蒸餾並經在矽膠(200至400網目)上使用己烷、乙酸乙酯及氯仿(1:2:2)作為溶離劑之柱式層析法純化。5克TMPTGE之純化可得到3.2克(64%產率)純(>98%)物質。為小心起見,維持該反應,費時60小時或一夜。在別處‘?]
TMS係指四甲基矽烷
TPEGE係指四羥苯基乙烷縮水甘油醚
TPMTGE係指三苯基甲烷三縮水甘油醚
TREN係指三(2-胺基乙基)胺
TRIS係指三(羥甲基)胺基甲烷
Tween係指聚氧乙烯(20)山梨糖醇酐單油酸酯
UF係指超過濾
UV-vis係指紫外線及可見光光譜學
本發明該等樹枝狀聚合物結構具有可呈現驚人的性質(與一般樹枝狀結構比較)之幾種獨特組份,且其可使用獨特開環方法而製成。這些樹枝狀聚合物之結構如下式(I)所示:
式(I)其中:(C)表示核心;(FF)表示該核心之焦點官能性分子團組份;x獨立為0或自1至Nc
-1之整數;(BR)表示分支小室,若其p大於1,則(BR)可同或可以是不同分子團;p為自以下公式導出之樹枝狀高分子中之分支小室(BR)的總數,且係為自1至2000整數
其中:G為包圍該核心之同心分支小室;殼數(世代);i
為最終代G;Nb
為分支小室之多重數;且Nc
為核心多重數,且其係為自1至1000之整數;(IF)表示內部官能性分子團,若其q大於1,則(IF)可相同或可以是不同分子團;q獨立為0或自1至4000之整數;(EX)表示延長鏈,若其m大於1,則(EX)可相同或可以是不同分子團;
m獨立為0或自1至2000之整數;(TF)表示末端官能性分子團,若其z大於1,則(TF)可相同或可以是不同分子團;z表示特定代(G)之該(C)及(BR)的表面基團數,其係為自1至可能之理論數z=Nc
Nb G
;其中:G、Nb
及Nc
係如上文定義;且其限制條件為存在(EX)或(IF)中之至少一種。
較佳之上述式(I)化合物之Nc
為自1至20之整數;q為0或自1至250之整數;p為自1至250之整數;且m為0或自1至250之整數;且q或m之一必需為至少1;且當q及m皆大於1時,(BR)及(EX)可與其它分子團交替地出現或按順序地與連續出現之多個(BR)或(EX)基團出現。
其它較佳之式(I)樹枝狀聚合物含有一或多種以下分子團:其中(C)為PETriGE、PETAZ、TPEGE或TPMTGE;或其中(BR)為IDAN、IMEA、IMPA、BAA、DETA、PEA、TREN、AEEA或MIA;或其中(TF)為TMS;或其中(EX)為三唑。
上述式(I)中,所使用名詞之進一步解釋如下。
核心包括簡單核心、架構核心,及超核心。這些核心可以具親電子性(E)、親核性(N)或如前文或下文所述之其它(O)分子團。該核心必需可進一步進行反應。若必要,該核心可經酸或鹼切除並產生低核心Nc
值之樹突結構體或樹枝
狀聚合物。另外,一或多個(但小於全部)該等核心官能度Nc
可暫時或永久地經非反應性基團(例如t-BOC、酯、縮醛、縮酮等)覆蓋。
簡單核心在本項技藝中已為吾人所知。簡單核心之一些實例包括,但不限於:聚(縮水甘油醚)[例如雙酚縮水甘油醚、PETGE、TPEGE、TPMTGE、TMPTGE、BGPM、三(2-丙烯醯氧基乙基)異氰尿酸酯、TGIC、MBDGA、二縮水甘油基苯胺、DGGA、山梨糖醇、甘油、新戊基物、寡新戊基二縮水甘油醚、四(環氧基丙基)氰尿酸酯、第三丁基縮水甘油醚、烯丙基縮水甘油醚]、胺基乙醇、氨、聚胺[例如EDA、PAMAM、HMDA、二乙三胺、甲基異丙基啶(methylisopropylidine)、伸烷基雙(2-鹵乙胺)、芳基甲基鹵(例如苄基鹵)、哌、胺基乙基哌、高分支鏈胺(例如聚離胺酸、聚伸乙亞胺、聚(伸丙亞胺)、三-2-(胺基乙胺))]、直鏈聚(伸乙亞胺)、水、硫化氫、伸烷基/伸芳基二硫醇、BPEDS、胱胺酸、4,4'-二硫二丁酸、DMDTB、巰基烷基胺、硫醚烷基胺、異氰尿酸酯、雜環物(例如DO3A、DOTA)、巨環物(例如冠狀醚)、多碳核心(乙烯、丁烷、己烷、十二烷)、甲基丙烯酸聚縮水甘油酯、聚(官能性丙烯酸酯)(例如TMPTA、二烯丙基胺)、二乙胺基二乙酸酯、三(羥甲基)胺基甲烷、膦、卟吩(例如卟晽)、環氧乙烷、環硫乙烷(thiorane)(例如TES)、氧呾(oxetane)、吖丙啶、吖呾(azitidine)、多疊氮基官能基物、矽氧烷、唑啉(例如PEOX)、胺基甲酸酯或己內酯。較佳核心為含二硫化物之結構(例如胱胺酸及具
有二硫化物分子團之其它二胺,諸如二疊氮基二硫化物、二硫化物二異乙炔)、異氰尿酸酯、雜環物、丙炔基PETAE、丙炔基PETriGE、季戊四醇四疊氮化物、PETGE、四羥苯基乙烷縮水甘油醚、三羥苯基甲烷三縮水甘油醚、PETAZ、TMPTGE、TGIC、TMPTA、聚(2-乙基-2-唑啉)、多碳核心(乙烯、丁烷、己烷、十二烷)、膦、直鏈、分支鏈或具有單一或多官能性環氧化物、多官能性烯類、炔類或芳基物、或多疊氮基官能基物(例如衍生自PETGE之四疊氮基加成物)之環系分子團。簡單核心係藉美國專利4,568,77;4,587,329;4,631,337;4,558,120;5,714,166;5,338,532,及藉J.M.J.Fréchet,D.A.Tomalia,pub.John Wiley and Sons,(2001)在Dendrimers and other Dendritic Polymers
,eds.中所述而闡明。實際上,可使用具有至少兩種反應性末端之任何核心,其限制條件為當僅有2種此等反應性末端時,於該樹枝狀聚合物形成期間,一(BR)基團係於某時段進行反應且(IF)或(EX)或兩者亦存在於最終樹枝狀聚合物中。
架構核心為一種其中該簡單核心具有其它分子或或與其連接之實體的核心,且其可作為第一次產生之該樹枝狀聚合物生長的平台。架構核心之實例包括,但不限於:覆蓋物質,諸如經哌覆蓋之三羥甲基丙烷三丙烯酸酯、各經一或多種胺基乙基哌、疊氮化物、丙炔基官能基物、哌、二亞胺基二乙酸覆蓋之PETGE、TMPTGE、TPEGE或TPMTGE、或環氧化合物表面之PEHAMS或彼等之混合物。
超核心為其中樹枝狀高分子可作為該核心官能性分子團,且其它樹枝狀結構可自其表面或零價金屬顆粒(例如Au、Ag、Cu、Pd、Pt)、金奈米顆粒、金奈米桿狀物、膠體、乳膠顆粒、金屬氧化物、膠微粒、小泡,脂質體、巴克球(buckyball)、奈米碳管(單壁及雙壁)、碳纖維、二氧化矽或大塊金屬表面連接或生長,且其它結構係與該核心表面連接或自其生長。超級核心的一些實例為:PAMAM作為具有PEHAM於其上生長或與其表面連接知該核心;PEHAM作為具有PEHAM於其上生長或與其表面連接知該核心;PEHAM作為具有PEHAM及PAMAM於其上生長或與其表面連接之該核心;PAMAM作為具有PEHAM及PAMAM於其上生長或與其表面連接之該核心;PEHAM作為具有PAMAM於其上生長或與其表面連接之該核心;聚離胺酸樹枝狀聚合物作為具有PEHAM於其上生長或與其連接之該核心;PPI作為具有PEHAM於其上生長或與其表面連接之該核心;或多元醇作為具有PEHAM於其上生長或與其表面連接之該核心。這些不同核心具有於其上生長或連接之其它樹枝狀聚合物後,這些核心即為超核心。
核心具有至少一種親核性(Nu)或親電子性(E)分子團,或與至少兩個有序樹枝狀分支物(O)鍵結之多價核心;或一核心原子或分子,其可以是任何單價或單官能性分子團或任何多價或多官能性分子團,較佳為具有其官能基部位可以與樹枝狀分支物鍵結之2至2300個價鍵的多官能性分子團。
親核性核心之實例包括氨、水、硫化氫、膦、聚(伸烷基二胺),諸如EDA、HMDA、十二烷基二胺,聚伸烷基聚胺,諸如DETA、TETA、四乙五胺、五乙六胺、聚(伸丙基亞胺)、直鏈及分支鏈聚(伸乙亞胺)及聚(醯胺基胺)、一級胺,諸如甲胺、羥基乙胺、十八烷基胺,聚(亞甲基二胺)、巨環系/穴狀聚胺、聚(胺基烷基鏈芳烴)、三(胺基烷基)胺、甲基異丙基啶、伸烷基雙(2-鹵乙胺)、芳基甲基鹵(例如苄系鹵)、高分支性物(例如聚離胺酸)、聚(伸丙基亞胺)、三-2-(胺基乙胺)雜環系胺、星形/梳狀-分支鏈聚胺、哌及其衍生物(例如胺烷基哌)及其它各種不同的胺。其它親核性核心為聚乙烯醇、聚乙烯胺、乙二醇、聚伸烷基多元醇、聚伸烷基聚硫醇、硫酚及酚。任何這些核心可作為覆蓋核心[例如第三-丁氧基羰基(BOC)],其中至少一Nc
價未經覆蓋。
親電子性核心之實例包括其中該核心可經布朗斯特(Brönsted)/路易斯(Lewis)酸或烷化劑/醯化劑而轉化成(E)之親電子性核心且該核心為環醚(例如環氧化合物)、環氧乙烷、環系硫化物(環氧氯硫化物)、吖丙啶、氮呾(azetidine)、矽氧烷、氧坦、唑啉、、胺基甲酸酯、己內酯、羧基酸酐、硫代內酯、磺酸內酯、β-內醯胺、α
-β-烯系不飽和羧酸酯,諸如丙烯酸甲酯、丙烯酸乙酯、(C2-C8烷基)甲基丙烯酸酯、丙烯腈、依康酸甲酯、反丁烯二酸二甲酯、順丁烯二酸酐、及醯胺,諸如丙烯醯胺或可作為覆蓋核心之任何這些核心,其中至少一Nc
價未經覆蓋。
就(O)作為(C)而言,亦有多官能性起始劑核心(核心化合物),其係為可產生多價核心或自由基受體基團(例如烯系物)或1,3-二極性環加成分子團(例如聚炔類及聚疊氮化物)之化合物。亦包括星形/梳狀分支鏈聚胺。
自樹枝狀聚合物得悉之核心係描述在美國專利4,507,466、4,558,120,及4,631,337及許多其它文獻與專利援引中。
亦較佳之這些核心分子團為三丙烯酸酯、四丙烯酸酯、三吖丙啶、四吖丙啶、三疊氮化物、四疊氮化物、三環硫乙烷、四環硫乙烷、三唑啉、四唑啉、三環氧化合物、四環氧化合物、二縮水甘油基苯胺、胺基烷醇,諸如胺基乙醇,伸烷基二胺,諸如乙二胺,三苯基甲烷、新戊基醇、三縮水甘油醚、三芳基甲烷、四芳基甲烷、四縮水甘油醚、雙(縮水甘油氧基苯基)烷、亞甲基雙(二縮水甘油基苯胺)、四環氧硫化物、三縮水甘油基異氰尿酸酯、三(2,3-環氧基丙基)異氰尿酸酯。
第2圖係闡明這些核心。
該等焦點官能性(FF)分子團係用以使樹突結構體作為核心,藉此該核心可稍後進一步反應,其包括,但不限於:將2或多個樹突結構體連接在一起或與另一(C)、(BR)或(EX)及(BR)反應。當式(I)為具有完全反應之核心(例如所有Nc
價皆為樹枝狀)時,則(FF)成為該核心之一部份,因此並未各別發現(FF)(因此x=0且形成樹枝狀高分子)。最大的合適
(FF)分子團為Nc
-1。當所有核心反應性實體未經反應,則發現存在(FF)(形成樹突結構體)。x較佳為自1至3個(FF)分子團;且x更佳為1個(FF)分子團。特定完全樹枝狀聚合物(FF)更特佳為該核心之一部份且並未顯著地存在;因此x為0。
較佳之(FF)分子團為氫、硫醇、胺、羧酸、酯、醚、醚(例如冠醚、穴狀化合物)、卟啉、羥基物、順丁烯二酸醯亞胺、烷基物、烯基物、炔基物、鹵烷、鹵芳烷、膦基物、膦、硼烷、醇、醛、丙烯酸酯、環系酸酐、吖丙啶、吡啶、腈、依康酸酯、環系硫代內酯、環硫乙烷、氮呾、環系內酯、巨環系物(例如DOTA、DO3A)、螯合配位體(例如DTPA)、異氰酸酯、異硫氰酸酯、寡核苷酸、胺基酸、肽、環肽、蛋白質、抗體或碎片、適體、咪唑、疊氮化物、巰基胺、矽烷、唑啉、環氧乙烷、氧呾、、亞胺、甲苯磺酸酯、金屬、生物素、鏈黴菌卵蛋白(streptavidin)、抗生物素蛋白(avidin)、保護基團(例如BOC或經酮溶劑保護)、矽氧烷或衍生物、或經取代衍生物或彼等之組合或適於速配接合組合式化學(click chemistry)之基團(例如聚疊氮基或聚炔類官能基)。當存在時,存在於這些分子團中之碳數各為至少1至25個;鹵素表示氯、溴、氟或碘;雜原子表示S、N、O、Si、B或P。較佳為巰基、胺、羧基及羧基酯、唑啉、異硫氰酸酯、異氰酸酯、羥基、環氧基、原酸酯、丙烯酸酯、甲基丙烯酸酯、苯乙烯基、及乙烯基苄基分子團。如稍後所述,可藉N-SIS估計該(FF)基團(群)進一步反應之能力。
第2圖係闡明這些(FF)分子團。
可以與該(C)、延長鏈(EX)、另一分支小室或分支小室試劑(BR)或末端官能基(TF)反應之任何親核性(Nu)、親電子性(E)試劑或其它試劑。另外,該(BR)試劑可原位自(BR)前驅體形成。這些(BR)分子團必須可進行此種反應,且可形成適於下一代G之反應性基團的多重數或放大率之共價顯示。該(BR)係與該(C)、延長鏈(EX)或較低代產物的(BR)鍵結以生長適於下一代之樹枝狀高分子(見美國專利4,737,550)。該(BR)可以與共反應物反應以形成核心加成物,且可進一步與第二共反應物反應。該等共反應物可以是(C)、(FF)、(BR)或(EX)。而且這些(BR)可經選用以便與該核心或先前較低代之樹枝狀高分子的末端官能性(TF)基團反應並形成化學鍵,該先前較低代之樹枝狀高分子現在可進一步反應以生長下一更高代之樹枝狀高分子。因此,任何多官能性(C)亦可作為(BR)。當(BR)以不僅一代產生時,其可以是相同或不同(BR)分子團。
用以與該等親電子性核心鍵結之共反應物實例包括親核性分子團,諸如未經覆蓋及經部份保護之聚胺(分支鏈及直鏈、一級及二級)、DETA、IMAE、DEA、DBA、TETA、四乙五胺、聚(伸乙亞胺)、甲胺、BAA、羥基乙胺、十八烷基胺、DEIDA、聚(亞甲基二胺),諸如HMDA,聚胺基烷基鏈芳烴、三(胺基烷基)胺,諸如TREN、TRIS,直鏈及分支鏈聚(伸乙亞胺)、直鏈及分支鏈聚(醯胺基胺)、雜環系胺,
諸如咪唑啉、哌啶、胺烷基哌、PEA、PETGE,及各種其它胺,諸如羥乙胺基乙胺、HEDA、巰基烷胺、巰基乙胺,亞胺基二炔類、亞胺基二烯類、經取代之哌、聚乙烯苄基氯之胺基衍生物及其它苄系胺,諸如三(1,3,5-胺基甲基)苯。其它合適之親核性反應物包括多元醇,諸如季戊四醇、乙二醇、聚伸烷基多元醇,諸如聚乙二醇、聚丙二醇,1,2-二巰基乙烷及聚伸烷基聚硫醇;硫酚及酚。亦合適之親核性反應物為乙炔系聚環氧化物、羥烷基疊氮化物、烷基疊氮化物、三-及四-吖丙啶、三-及四-唑啉、硫醇烷基物、硫醇(FF)樹突結構體、烯丙基物、丙烯酸酯、甲基丙烯酸酯。任何上述分子團可具有烯烴系官能度或覆蓋分子團。較佳為三丙烯酸酯、四丙烯酸酯、三環氧化物、四環氧化物、二烯丙胺、二乙醇胺、亞胺基二乙酸二乙酯、雙(2-鹵烷基)胺、三(羥基甲胺)、經保護之DETA或可使用(包括原位)丙烯酸甲酯。亦較佳為以下各物之一或多種:環醚(環氧化物)、環氧乙烷、硫化物(環氧氯硫化物)、吖丙啶、氮呾(azetidine)、矽氧烷、氧呾、唑啉、、胺基甲酸酯、己內酯、羧基酸酐、硫代內酯、β-內醯胺或彼等之衍生物。更佳為三丙烯酸酯、四丙烯酸酯、三環氧化物、四環氧化物、三疊氮化物、四疊氮化物、BAA、DEA、DEIDA、PETGE、PETriGE、PETriAE、HEDA、PEA、TREN、TRIS、亞胺基二乙酸二甲酯、經酮系溶劑保護之DETA或包括原位形成之丙烯酸甲酯。
或者,親核性分子團可以與親電子反應物反應以形成
核心加成物,其接著與合適的第二共反應物反應以形成該樹枝狀高分子。
當(BR)為其它(O)分子團時,則一些合適試劑可進行自由基加成反應或沉澱在1,3-環-加成反應中,其係為包括,但不限於:乙炔系聚環氧化物、羥烷基疊氮化物、烷基疊氮化物、三唑、硫醇烷基物、硫(FF)樹突結構體、烯丙基物、丙烯酸酯、甲基丙烯酸酯或烯烴系官能性分子團,之“速配接合組合式(click)”化學性質。
當該(BR)分子團為開環反應之一部份時,此(BR)可以是環醚(環氧化物)、環氧乙烷、硫化物(環氧氯硫化物)、吖丙啶、氮呾、矽氧烷、氧呾、唑啉、、胺基甲酸酯、己內酯、羧基酸酐、硫代內酯,及β-內醯胺。當該反應發生時,除了分支功用外,由於未經反應之基團殘留在(BR)上,所以該(BR)亦可原位形成(IF)。
較佳之(BR)分子團為三丙烯酸酯、四丙烯酸酯、三環氧化合物、四環氧化合物、二烯丙基胺(BAA)、二乙醇胺(DEA)、亞胺基二乙酸二乙酯(DEIDA)、三(羥甲基胺)、PETGE、HEDA、PEA、TREN、TRIA、亞胺基二乙酸二甲酯、及經酮系溶劑保護之DETA。此外,可原位藉添加胺或硫醇而使用丙烯酸甲酯作為親電子試劑以產生(BR)。
第3及4圖係闡明這些(BR)分子團。
該內部官能性分子團(IF)為藉可得到該(BR)(其係世代生長)之合適分支小室試劑之反應而產生的這些樹枝狀高
分子之獨特特徵。該內部反應性部位(亦即羥基、氫硫基、胺、烷基矽烷、矽烷、硼烷、羧基、羧基酯、氯、溴、烯類、炔類、或烷基-或芳基-醯胺等)係得自開環反應。其可得到內部共價化學性質柄狀物,其可進一步反應,同時維持適於與另一基團、螯合作用或包封作用締合之重要內部官能性。(IF)亦可得到適用於調整該樹枝狀聚合物內部之疏水/親水性質或導入聚合起始劑或部位、或連接或締合作為輔藥之治療實體的獨特連接部位。
較佳(IF)分子團為羥基、硫醇、伸烷基酯及胺。
第3圖係闡明這些(IF)分子團。
延長鏈(EX)可存在於該樹枝狀高分子之內部中。其可提供增長該距離,藉以增加該樹枝狀高分子之核心(C)與後續代G間之空間的方法,且較佳必需具有二或多個反應部位,除非該(EX)係在最後G中,其可具有一反應性位置可能有效終止另一G成長或覆蓋用於(TF)之樹枝狀聚合物或僅局部覆蓋。內部空間體積之這些增大可增加該樹枝狀高分子包封下文進一步所述之載體材料(M)之容量。這些(EX)可以在該(BR)分子團之前或後發生,或兼在該(BR)分子團之前及後發生。這些(EX)亦可具有一(IF)分子團。這些(EX)具有至少兩處反應性部位且可選擇性含有(IF)或可原位形成(IF)。可以在任一G中之任何其它反應前連續地使(EX)反應;且在該情況下,(EX)可相同或不同。
較佳延長鏈(EX)為聚(胺基酸),諸如聚離胺酸、其它聚
(胺基酸)、離胺酸、其它胺基酸、寡乙二醇、二乙四胺及高碳胺類似物、以5-員咪唑啶基衍生物經保護之寡伸烷基胺[見Araki等人.,21(7),1995-2001(1988)]、具有二-或更大異質或均質官能性分子團之脂肪酸、不飽和脂肪族及芳香族二官能性或多官能性分子團、EA、嗎啉、二羧酸、EPC、1,2,3-三唑、IMAE、芳基二硫醇、二巰基烷類、DMI、二疊氮化物、二乙炔、吡咯啶酮、吡咯啶酮酯、胺烷基咪唑啉、咪唑啉、聚(伸烷基咪唑啶)、巰基烷胺、羥基烷胺、及異質性不飽和脂肪族及芳香族二官能性或多官能性分子團(例如咪唑啶基分子團)。
亦較佳(EX)為二胺基烷、二酚、二硫苯、芳香族聚(羧酸)、巰基胺、巰基乙醇、烯丙基胺、PEA、哌、聚哌、AEP、EPC、環系吡咯啶衍生物、EDA、DEIDA、及,諸如衍生自聚離胺酸、聚(酯醯胺)、聚(醯胺基胺)、聚(伸乙基亞胺)或聚(伸丙基亞胺)分子團之高分支鏈樹枝狀聚合物。更佳為PEA、DMI、丙烯酸甲酯、EPC、1,2,3-三唑、IMAE、PIPZ、胺烷基哌、聚(伸烷基哌)、具有二胺之二硫化物分子團、MIPIEP、雙(哌基烷基)二硫化物,及哌衍生物。
第3圖係闡明這些(EX)分子團。
適於進行加成或取代反應或開環作用之末端官能基(TF)或可用以將該樹枝狀分支增長至下一代之任何官能活性分子團,其包括但不限於:自由基及1,3-二極性環加成反
應性分子團。部份,但並非所有(TF)分子團可以進行反應以形成該下一代G樹枝狀高分子,且該等(TF)基團可相同或不同。該(TF)可以是聚合物起始基團。當該(TF)分子團為最後的G時,則該(TF)可未具反應性。(z)名詞係指可藉該G而以數學方式定義之表面基團數。
此等端基之一此實例為,其包括但不限於:胺基[其包括一級與二級胺基,其可經覆蓋但具有至少一未經覆蓋之胺基(例如甲胺基、乙胺基、羥基乙胺基、肼基、苄胺基、葡萄糖胺基、胺基酸、巰基乙胺基)、三級胺基(例如二甲胺基、二乙胺基、雙(羥乙基)胺基)、四級胺基、三烷基銨、雙(羥乙基)胺基、雙(2-鹵乙基)胺基、N-烷化、N-芳化、N-醯化衍生物];羥基、巰基、羧基、烯基、烯丙基、芳基、甲烷基、乙烯基、醯胺基、鹵素、尿素、環氧乙烷基、吖丙啶基、唑啉基、氮雜內酯、內醯胺、內酯、咪唑啉基、磺酸基、膦酸基、羥基硼酸基、有機矽烷、異氰酸基,異硫氰酸基、羥基烷基疊氮基及α-鹵醯基。這些烴基之碳數為自1至25。可使用習知程序以其它基團取代端基[見美國專利4,507,466、4,558,120、4,631,337]。
較佳表面基團(TF)為聚乙二醇、吡咯啶酮、吡咯啶酮酯、羧基哌啶、哌啶、哌、經取代之哌、胺烷基哌、己醯胺、醛、疊氮化物、氧呾、染料(例如近紅外線氟鉻,諸如花青衍生物,FITC)、比色劑(例如尼羅紅(Nile red))、三(羥甲基)醯胺基甲烷、光色分子團(例如雪梨酮(sydnone)、卟吩)、醯胺基乙基乙醇胺、甲氧羰基吡咯啶酮、
琥珀醯胺酸、醯胺基乙醇、胺基酸、經保護之胺基、抗體及斷片、蛋白質、肽、環肽、陽離子類固醇、巨環基團、氮雜冠醚、抗生素/抗細菌劑[例如胺基糖苷、安非尼醇(amphenicol)、安沙黴素(ansamycin)、β-內醯胺(諸如青黴素、頭孢菌素、頭孢黴素、奧色芬(oxacephem)、卡巴盤尼(carbapenem))、四環素、大環內酯、林可斯醯胺(lincosamide)、2,4-二胺基嘧啶、硝基呋喃、喹諾酮(quinolone)、磺醯胺、碸]、防止惡性腫瘤劑[例如磺酸烷酯、吖丙啶、環氧化物、伸乙基亞胺及甲基蜜胺、氮芥、硝基脲、嘌呤類似物、雄激素、抗腎上腺物質、抗雄激素物質、抗雌激素物質、雌激素、LH-RH類似物、黃體內泌素類等]、葉酸及類似物、環氧化合物、丙烯酸酯、甲基丙烯酸酯、胺、羧酸酯、陽離子性、陰離子性、中性、芳香族葡萄糖胺或其它胺基糖、生物素、抗生物素蛋白、鏈黴菌卵蛋白、生長因子、激素、適體、DOTA、DTPA、金屬螯合物、磺酸萘酯、磺酸萘酯、磺酸芳酯、目標基團(例如CD19、CD22、適體)、透明質酸、多金屬氧酸酯(polyoxometalate)、有機發色團、多價連接化合物、奈米碳管、富勒烯(fullerene)、奈米複合物、所有金屬奈米顆粒、具有核心及殼之所有變異體的所有半導體奈米顆粒、放射性材料及其螯合類似物、螢光分子(金屬鹽、有機化合物)、導電性分子、光或電磁能吸收或發射分子、(諸如UV、VIS(可見光)、IR及微波)、藥物或診斷劑之放射性類似物、矽烷、矽氧烷、倍半矽氧烷、聚(芳基-烷基)聚(碘化物)、量子點、奈米結晶(例如Au、
Ag、Cu等)、聚氟化分子、表面活化劑、樹突結構體、分化型樹突結構體、樹枝狀高分子、甲氧基乙氧基乙氧基物、聚醯亞胺(例如順丁烯二醯亞胺)、除草劑(例如氟樂靈(trifluralin)、2-膦醯甲胺基乙酸)、聚偶氮化合物、聚磷(polyphosphazine)、聚氟化磺酸酯、雜原子鏈及分支物、脂質、澱粉、單糖(例如甘露糖、右旋糖)、寡核苷酸、複糖、藥物,諸如抗癌劑(例如小紅莓(doxorubicin)、阿美蘇喋呤(methotrexate)等)、乙醯基水楊酸、水楊酸、維生素(例如維生素E、C)、輔因子(例如NADH)或抗氧化劑。(TF)可進一步與能夠和該(TF)實體締合之任何載送物質(M)(且可以自存在於該表面上之一個(M)至最大可能之z,其僅受限於N-SIS)進行反應。另外,一些(TF)可進一步與(BR)或(EX)進行反應以進一步生長該表面。
亦較佳之(TF)基團為哌、及其衍生物、烷基哌、胺烷基哌、1,2,3-三唑、IMEA、丙烯酸酯、甲基丙烯酸酯、丙烯醯胺、炔類、羥基、環氧化合物、唑啉、伸烷基亞胺、內酯、氮雜內酯、聚氧化乙烯、胺基、乙基亞胺、羧酸酯、烷基、吖丙啶、疊氮化物、烷基酯、醇基、烷基硫醇、硫醇、環硫乙烷、嗎啉、胺、肼基、羧基、烯丙基、疊氮基、烯基、炔基、羥烷胺基、經保護之DETA、羧烷基、吡咯啶酮(及其酯)、及琥珀醯亞胺基酯。更特佳為哌啶、胺烷基哌、烷基哌、哌衍生物,及三唑。
第5圖係闡明這些(TF)基團。
當必要時,該等分子團(C)、(BR)、(IF)、(FF)及(EX)
可含有放射同位素原子。例如可使用3
H或14
C以追蹤該樹枝狀高分子或樹突結構體在生化反應路徑中之位置或該樹枝狀聚合物之副產物或代謝產物之位置。
式(I)之該等樹枝狀聚合物較佳在其所欲結構中具有(EX)或(IF)中之至少一種。亦可具有不止一種所含之(EX)及(IF)。
如此製成之式(I)樹枝狀高分子可以與多種化合物反應以產生具有獨特性質之多官能性化合物。例如具有末端胺分子團之樹枝狀高分子可以與不飽和腈反應以產生聚腈,或與α
、β烯系不飽和醯胺反應以形成聚醯胺,與α
、β烯系不飽和酯反應以形成酯末端型樹枝狀高分子,與環氧乙烷反應以形成多元醇,與烯系不飽和硫化物反應以形成硫醇末端型樹枝狀高分子。具有末端羥基分子團之樹枝狀高分子可以與羧酸反應以形成酯末端型樹枝狀高分子,與醇或鹵烷反應以形成醚末端型樹枝狀高分子,與異氰酸酯反應以形成胺基甲酸乙酯末端型樹枝狀高分子,與亞硫醯氯反應以形成氯化物末端型樹枝型高分子,及與甲苯磺酸酯反應以形成甲苯磺醯基末端型樹枝狀高分子。作為實例,較佳之廣義結構如下式(Ⅲ)所示:
其中
:Nc
=核心多重數;Nb
=分支多重數
該方法,其中係生長各代之該樹枝狀高分子,為吾人所熟知。第6圖係闡明在該(z)基團數中之生長及放大率,及所增加之分子量。
本發明一些樹枝狀高分子係由式(II)代表:
其中:核心=(C)、(TF)、G、Nc
、Nb
、i、z及p係如上文式(I)之定義,且(BR)具有(IF)分子團或可原位產生(IF)。
一些較佳之式(I)實施例具有可形成其中x=1之樹突結構體或其中x=0之樹枝狀聚合物之(FF);(C)具有自3至4之多重數Nc
;(IF)=OH、NH或SH;(EX)=PIPZ;(BR)具有2至4之多重數Nb
;且(TF)如上文定義。在另一實施例中,式(I)樹枝狀聚合物為聚(酯-丙烯酸酯)及聚(酯-環氧化物)樹枝狀高分子。
簡言之,NSIS目前可定義為可改變或影響奈米尺度試劑或反應性基質之反應性(亦即原子價/化學計量)的特定奈米尺度立體效應。這些NSIS性質實際上係未知,且至多在該奈米尺度範圍內經不適當地定義。不論什麼時候,奈
米尺度試劑、奈米尺度基質、次奈米尺度試劑或次奈米尺度基質之特定組合或排列集合以形成化學鍵或形成超分子締合或總成時,這些NSIS性質似乎可經証明。而且,微米大小的基質及奈米尺度試劑可提供類似效應。本概念之目前的預備概論認為當特定奈米尺度反應性組份體積之總和接近或超過包圍一反應部位之有效奈米尺度空間時,此等NSIS效應開始產生。例如當特定樹枝狀高分子表面基團體積及新加入的試劑體積接近包圍反應性樹枝狀高分子表面基團(TF)之聚集的有效外部體積時,反應速率顯著地經抑制,且特定基團之反應性實質上受影響。[D.A.Tomalia;A.M.Naylor;W.A.Goddard Ⅲ,Angew.Chem.Int.Ed.Engl.,29,138-175(1990)]。因此應該可使用該NSIS效應以影響合成各種核心、分支小室試劑、樹突結構體、樹枝狀高分子及以用於這些結構之特定奈米尺度及次奈米尺度試劑與基質的相對大小、膨鬆性、電子/親水/疏水性質為主之其它樹枝狀聚合物結構所包含之反應參數。
雖然不想受限於理論,該N-SIS結果之進一步討論及式(I)樹枝狀聚合物之形成的預測提供在下文羅馬數字之比較例後。
上述許多參考資料係有關於可以使超分支聚合物進行聚合反應之開環反應,而非使用高能開環反應以控制對分支小室放大率之試劑加成。該組合之這些參考資料並未教示該組合或如本發明現在所揭示之使用高官能性分支小室
試劑以進行反應性開環反應之用途。這些參考資料皆無教示開環作用或其它高反應性精確的化學性質用於分支小室試劑之逐步控制性加成的用途。
PAMAM樹枝狀高分子之一般製法包括醯胺化步驟,其包含熱力學性驅使之較低反應速率、慢化學作用,及長反應時間,其包括未分化之二官能性中間物(亦即乙二胺及丙烯酸甲酯)。這些方法之特徵為需要高過量試劑及高稀釋,因此特別於較高代下會導致每一反應器體積之低生產力及高成本。
本發明包括使用分支小室試劑,其典型上為比一般發散性PAMAM合成方法所述之較小試劑(亦即乙二胺及丙烯酸甲酯)還大體積之多官能性分子,以建構該樹枝狀高分子分支結構。
文中本發明包括以控制方法使用更快速之動力驅動的反應性開環化學性質(亦即“速配接合組合型”或其它快速反應)及更大體積之多官能性分支小室試劑(BR)以快速並精確地建構世代型樹枝狀高分子結構。本方法可得到具有更理想的化學性質之精確結構,典型上其係為單一產物,本方法需要較低過量之試劑、較低稀釋程度,因此可提供更容易根據商業規格、新材料範圍,及較低成本而調整之更高生產力方法。所製成之該等樹枝狀高分子組成物具有新穎內部官能度、更高安定性,例如熱安定性,及幾乎無逆麥可反應(與一般PAMAM結構不同)。而且,其可以於比一般PAMAM結構還低之世代(因此成本較低)下達到包封表
面密度(亦即獲得奈米容器性質)(見第20A及21圖)。非可預期地,甚至於比一般PAMAM系統通常所需之化學計量還低或過量之情況下具有高官能性化表面之多官能性分支小室試劑(BR)並不會產生膠化性、橋聯性/交聯性系統/材料。
式(I)樹枝狀聚合物之製法可進一步藉自該(C)之反應的下述討論而描述。
所欲產物之製法及分離速度而言,一鍋式(one-pot)反應在商業上較佳。該方法係於自約0°至100℃之溫度下在溶劑中使用反應性(C)及反應性(BR)前驅體(例如亞胺基二乙酸、經一級胺保護之DETA、亞胺基二烷基腈、亞胺基二烷基膦酸、亞胺基二烷基鹵(例如雙(2-氯乙基)胺)、二乙醇胺、二級二胺,諸如二烷胺、二烯丙胺、二芳胺,亞胺基伸烷基胺(例如雙(六亞甲基三胺))或預形成之(BR)試劑(例如TREN、TRIS、乙炔二-或三-環氧基分子團),直到反應完成為止,其可形成不含(EX)分子團之式(I)樹枝狀聚合物。下文之式(Ⅳ)係闡明這些樹枝狀聚合物,其中(C)、(FF)、(IF)、(BR)、(TF)、q、p、x、z,及Nc
係如上文定義。
可藉在該(TF)上使用正交化學性質而使得自上文式(Ⅳ)之一鍋或反應的產物進一步反應以使所製成之第一樹枝狀結構增加另外(BR)分子團。該反應可合成含式(I)樹枝狀聚
合物(其可或可不具有(EX))之高代均/雜組成(BR)。若含(EX),則使用包括正交化學性質之第二步驟導入該等(EX)。下文式(V)顯示所製成之樹枝狀聚合物未具有(EX)且其中(C)、(FF)、(IF)、(BR)、(TF)、q、p、x、z,及Nc
係如上文定義。下標“n”僅用以區分如上述以不同步驟添加在總反應之該等(BR)分子團及區分必需存在以使與多種該第一(BR)試劑反應之足夠的第二(BR)。其係為所有存在量之(BR)進行反應之方法。
一種正交化學方法為使用酮溶劑進行具有二級及/或一級胺之反應性(BR)前驅體或(BR)之保護作用[例如Frédéric Laduron等人,Org.Proc.Res.& Devel.,9,102-104(2005)]。在該方法中,可以在二級胺存在下使一級胺經保護,因此可以使二級胺位置與反應性(C)或反應性(TF)進行反應。當僅一級胺存在於該預形成之(BR)中,一或多種這些一級胺分子團可經酮溶劑保護,且其它未經保護之一級胺可以與合適的(C)或(TF)進行反應。
另一正交化學方法可包括烷胺與丙烯酸烷酯(諸如丙烯酸甲酯)進行親核反應(麥可加成反應)以形成胺基乙酯鍵合物,繼而使該酯與伸烷基胺或(EX)或其它(BR)進行反應。
另一正交化學方法可包括藉與DMI進行反應而使具有
一級胺(TF)基團之(C)或(BR)轉化成吡咯啶酮酯基團。接著使該酯與一級胺或經局部保護之一級聚胺進行反應可以使新(BR)或(TF)分子團得到鍵合。
另一正交化學方法為含預形成(BR)試劑或反應性(BR)前驅體之硫醇對具有烯丙系或烯烴系基團之(C)或(BR)的自由基加成反應。
另一正交化學方法為含有(C)及(BR)之疊氮化物對含有(C)及(BR)之炔類的1,3-二極性環加成反應。該含有(C)之炔類可具有自1至Nc
個炔類分子團,且含有(BR)之炔類可具有自1至Nb
-1個炔類分子團。存在於(C)或(BR)中之其它反應性基團可以是前文揭示之任何(BR)基團。含有(C)與(BR)之疊氮化物係藉環氧基環與環氧化物離子之親核開環反應而製成。使用如藉Michael Malkoch等人在J.Am.Chem.Soc.127,14942-14949(2005)中所述之“速配接合組合式”化學性質,這些反應性基團之後續反應可以使新(BR)或(TF)分子團得到三唑鍵合物。
當該(EX)為所欲,可修飾正交化學方法之任何上述反應以在任一(BR)或(C)之後插入一(EX)。該(EX)之加成係藉文中所述之方法而進行。。
該末端表面基團(TF)可以以各種方式反應。例如當(TF)為胺分子團時,其可以與下述組份反應:與不飽和腈反應以產生腈端基樹枝狀高分子;與α
,β-烯系不飽和醯胺反應以形成醯胺端基樹枝狀高分子;與α
,β-烯系不飽和酯反應以形成酯端基樹枝狀高分子;與環氧乙烷反應以形成羥基
端基樹枝狀高分子;或與烯系不飽和硫化物反應以形成硫醇端基樹枝狀高分子。另外,該樹枝狀高分子端基可以與二官能性或三官能性化合物,諸如二鹵烷或芳香族二異氰酸酯,反應以形成聚(樹枝狀高分子)或具有數個經由該聚鹵化物或聚異氰酸酯之殘基而連接在一起之樹枝狀高分子的橋聯樹枝狀高分子。亦可以藉親電子表面樹枝狀高分子與親核表面樹枝狀高分子,諸如胺端基表面與酯端基表面,進行之反應而形成該等橋聯樹枝狀高分子。當該反應發生時,連接基團可選擇性地存在以隔開該等樹枝狀高分子。因此可製備結合(彼此締合)之樹枝狀高分子薄片或聚集體。
當用於樹枝狀高分子合成時,該麥可加成反應為多官能性親核試劑之動力學性驅動之加成反應實例(亦即胺對不飽和麥可受體之加成)。已知甚至於一般條件下,這些反應其具可逆性,且不會產生側內部官能性分子團。因此如藉熱解重量分析法(TGA)而測知,其可產生缺乏高熱堅固性及安定性之樹枝狀高分子結構連接性(為比較藉本發明而獲得之PEHAMs,見第18圖)。另一方面,使用相同或類似的多官能性試劑進行之小變形開環反應係藉動力性控制之方法而驅動以產生對熱降解及熱重排作用更具抗性之更具熱堅固性樹枝狀結構。使用這些動力控制性開環反應之另一優點為其可產生麥可加成反應不能發生之側內部官能性分子團(IF)。
由於相對大小及相關之尺寸,NSIS似乎可影響(C)與(BR)或焦點官能性化(FF)樹突結構體之反應性。若該(BR)
大於(C),則較少(BR)可物理性找出可進行化學鍵結的空間,因此產生大的可定義NSIS效應。另一方面,若該(C)實質上大於(BR),則產生較小NSIS效應,且更多(BR)可以與該(C)鍵結。為減輕NSIS之效應,本發明使用(EX)。此(EX)可以在該(C)與(BR)之間得到更大的物理空間,因此可減輕該NSIS效應。
第9圖係闡明製備式(I)樹枝狀高分子之各種反應(其係為本發明之一部份)。
NSIS之另一用途為形成分化的樹枝狀聚合物(亦即樹突結構體/樹枝狀高分子)。例如NSIS可用以控制單一、焦點官能性(FF)樹突結構體與多官能性(C)、分支小室(BR)、延長鏈(EX)、樹突結構體或樹枝狀高分子端基(TF)進行之反應以形成正交反應性分化樹枝狀結構。因此,具有(FF)之樹突結構體可以與核心及(EX)(其係與(BR)連接)反應。該(BR)可以進一步反應,且該樹突結構體具有其自己的表面端基(TF)。
可精確地控制發散性樹枝狀生長以至少藉前幾代之生長而形成可遵照數學公式之理想樹枝狀聚合物。然而,由於在理想的發散生長期間,該等樹枝狀高分子之分子的半徑係以代為變數以線型方式增加,但是該等表面小室係根據幾何級數定律而放大,所以理想的樹枝狀生長並不會無限地延伸。有一個關鍵代,於其中該反應樹枝狀表面並未具有可容納所有併入之數學上所需的新單元之足夠空間。偏離理想的樹枝狀生長中之階段稱為de Gennes密堆積階
段。於該階段下,該表面擠滿末端官能基,因此雖然該等端基具化學反應性,但是其在立體上被禁止進一步參與理想的樹枝狀生長。換言之,當該反應性表面基團可用之平均自由體積降低至可延伸該生長至下一代之所欲反應之過渡狀態所需的分子體積以下時,在發散合成法中達到該de Gennes密堆積階段。然而,發散合成法中之該de Gennes密堆積階段的出現並不排除在此階段外之進一步樹枝狀生長。已藉質量攝譜研究證明,在該de Gennes密堆積階段外,該分子量之進一步增加可發生。
得自該密堆積階段外之樹枝狀生長的持續之產物在結構上並“不完美”,因為該前驅體世代中之一些表面基團在立體上被禁止進行進一步反應。已在該de Gennes密堆積階段外生長之樹枝狀高分子上之官能基數與該代之理想的數學上預測值並不符合。該中斷性被解釋為該de Gennes密堆積階段之記號。
在以下反應流程圖中,係簡要地檢討各反應物之性質及反應性。
在以下討論中,粗體數字係指上述流程圖中之結構。
胺試劑(Ⅱ e-Ⅱ g
)與聚(縮水甘油基)醚(Ia
&Ic-d
)(PGE)之反應比與聚(縮水甘油基)苯胺(Ib
)(PGA)之反應更快。甚至於60℃下經3小時後,TRIS(Ⅱ-e
)對縮水甘油基苯胺(Ib
)之加成並未完全,且所發現之產物兼含大量雙-及三-加成物。延長加熱會導致該起始物質之大規模分解。與二乙醇胺(Ⅱ-f
)反應可得到四-及三-加成物;與Ⅱ-g
反應可得到四-加成物,但是延長反應會導致該產物之分解。
雖然不想受限於理論,但是咸信可基於氧及氮之相對負電性而解釋該PGE及PGA之反應性差異。由於氧比氮更具負電性,所以PGE之環氧化合物環上之電子密度小於PGA之環氧化合物環上之電子密度(亦即經由誘導效應),因此與該PGA比較,其可促進該PGE之親核性開環反應。因此該PGE具有較快之反應時間。該資料顯示式(I)樹枝狀高分子具有較快之反應時間。
亦發現分支小室試劑(Ⅱ e-Ⅱ g
)與PGE及PGA之反應性不同。所觀測反應性為Ⅱ f
>Ⅱ g
>Ⅱ e
。可基於彼等之pKa值而解釋這三種分支小室試劑的反應性差異。三(羥甲基)胺基甲烷(TRIS)之pKa值為8.10,而二乙醇胺(DEA)為8.88。該pKa值愈高則該鹼愈強。DEA之鹼性高於TRIS,亦即與DEA之反應更快。可藉實驗証據而支持該理論。因此該(BR)之pKa愈高,則該反應愈快。
具有各種親核性分支小室(BR)試劑之PGE與PGA的反應性不同。在各種溶劑內及溫度下研究該等反應。最初,於室溫下在甲醇內研究與基質I a
三(縮水甘油醚)之反應並發現反應時間慢,需要至高10天。在各種溶劑內及更高溫度下再檢查這些反應。於60℃下以小規模(至高3克)研究添加分支小室試劑(Ⅱ e-g
)(BR)至所有縮水甘油醚之反應。非可預期地,於60℃下在甲醇內所有反應在12至24小時內完成。然而,甚至於60℃下與聚(縮水甘油基苯胺)(I b
)之對照反應卻很慢。因此該(BR)並非決定速率之因素,但是該基質之負電性為決定速率之因素,且PGE之反應最快。
在各種溶劑,亦即甲醇、二氯甲烷(DCM)/甲醇(MeOH)混合物及二甲氧基乙烷(DME),中研究這些反應。於室溫下在DCM及DME及在MeOH中之反應慢。這些結果顯示為促進該快速的親核加成反應,較佳使用親質子性溶劑。
雖然不想受限於理論,但是咸信立體效應可控制導致對掌性導入之羰基的立體選擇反應性。格倫氏法則陳述親核子可沿著最小取代基排列接近羰基。該最大基團本身與該羰基反向排成一列以使立體效應減至最低,因此該親核子可優先自最小取代基之一側侵蝕。[見D.J.Cram,A.Elhafez,J.Am.Chem.Soc.74,5828(1952)]。
本發明包括,但不限於:兩主要反應系統,其包括(1)親核加成反應、(2)親核開環反應、(3)1,3-環加成反應型,其包括疊氮化物與乙炔,及(4)硫醇對烯烴之自由基加成反應。該等加成反應實例包括,但不限於:其中丙烯酸根係與胺反應之麥可加成反應。該等開環反應實例包括,但不限於:其中胺係與環氧基、環硫乙烷、吖丙啶或唑啉官能基反應之開環反應。在所有這些情況下,該等胺、丙烯酸酯、環氧基、環硫乙烷、吖丙啶或唑啉基團可以是該核心(C),其包括簡單核心、架構核心或超核心,延長鏈(EX)、分支小室試劑(BR)或末端官能基(TF)之官能基部份。這兩種反應,加成反應及開環反應,之反應條件可藉文獻中對碳-碳雙鍵加成之所確定條件範圍[見,例如R.T.Morrison,R.N.Boyd,Organic Chemistry
,第6章,pub.Allyn and Bacon,Inc,New York,NY,(1966)或亦於第6章所述之一般開環反應]而描述。一般反應條件範圍經進一步描述。
該丙烯酸酯-胺反應系統之實例為丙烯酸酯官能性核心與胺官能性延長鏈之反應,其係如下示:(C)+(EX) → (C)(EX)(TF) (1)
其中(C)=三羥甲基丙烷三丙烯酸酯(TMPTA);(EX)=哌;(TF)=二級胺;丙烯酸酯-胺反應之另一實例為胺官能基增長之核心試劑(C)(EX)(TF1)與丙烯酸酯官能性分支小室試劑之反應,諸如(C)(EX)(TF1)+(BR) → (C)(EX)(BR)(TF2) (2)
其中(C)=三羥甲基丙烷三丙烯酸酯(TMPTA);(EX)=哌(PIPZ);(TF1)=二級胺;(BR)=三羥甲基丙烷三丙烯酸酯(TMPTA);及(TF2)=丙烯酸酯。
就添加分支小室(BR)、延長鏈(EX)或末端官能基(TF)至簡單核心、架構核心、超核心或當代產物而言,欲添加之該分子對該簡單核心、架構核心、超核心或當代產物上之反應性官能基的莫耳比為重要參數。例如就添加延長鏈至核心而言,(EX)/(C)之莫耳比定義為延長鏈分子(EX)對該簡單核心、架構核心、超核心或當代結構(亦即Nc
)上之反應性官能基的莫耳比。類似地,就添加反應性分支小室至簡單核心、架構核心、超核心或當代結構而言,(BR)/(C)之定義為分支小室分子(BR)對該簡單核心、架構核心、超核心或當代結構(亦即Nc
)上之反應性官能基的莫耳比。根據所欲結構,可藉所附加之莫耳比或藉立體性誘導之化學計量(例如N-SIS)而控制分支小室或延長鏈對核心、架構核心、超核心或當代產物之添加量。若完全表面覆蓋範圍為所欲,則該反應較佳使用過量之欲添加至該簡單核心、架構核心或超核心上之官能基的基團分子,諸如該延長鏈或分支小室試劑。
這些不同基團之添加順序可以是添加該簡單核心、架構核心、超核心或當代產物至該分支小室或延長鏈,或添加該分支小室或延長鏈至該簡單核心、架構核心、超核心或當代產物。較佳步驟為添加該簡單核心、架構核心、超核心或當代產物至該延長鏈或分支小室試劑。
反應時間範圍雖然取決於反應條件、溶劑、溫度、該等試劑之活性及其它因素,但是其通常可藉足以完成對不飽和有機官能基之加成反應的本項技藝中已知之一般反應
條件而分類。反應時間之範圍可以自1分鐘至幾天,就具有更高立體性之大體積基團的反應或對擁擠的表面進行之反應(諸如添加表面基團至較高代樹枝狀高分子)而言,需要較長的反應時間。
反應溫度可以在碳-碳雙鍵加成反應或親核環氧基開環反應習用之範圍內。該溫度範圍受限於該等反應中之試劑的熱安定性及達到該反應所需溫度之時間長度。一般反應溫度如下述。
可使用適於這些加成反應之任何有機溶劑或水,其包括用於對碳-碳雙鍵進行之加成反應、用於對環氧基、吖丙啶或唑啉進行之親核開環反應、用於對乙炔進行之1,3-環加成反應或用於硫醇對烯烴之自由基加成反應的習用溶劑。可使用足以溶解該等試劑至適於進行反應之濃度的任何溶劑混合物。較佳溶劑為極性、親質子性溶劑。亦可使用兼含極性與非極性溶劑、親質子性與非質子性溶劑或彼等之組合之溶劑混合物。溶劑混合物可以主要是具有合適催化量之可催化該反應的親質子性溶劑之非親質子性溶劑。如該文獻[例如B.Helms等人,J.Amer.Chem.Soc.126,15020-15021(2004);P.Wu等人,Angew.Chem.Int.Ed.43,3928-3932(2004)]中所述,就疊氮化物對乙炔之1,3-環-加成反應而言,係使用合適的銅觸媒。其可提供可以使低極性或非極性簡單核心、架構核心、超核心、延長鏈或分支小室試劑進行解離及反應之條件,例如該聚(縮水甘油基)醚及聚(縮水甘油基)苯胺與各種親核性分支小室試劑的反應性
之差異。以各種溶劑及溫度研究反應。首先,於RT下在甲醇中研究與基質I a
三(縮水甘油醚)之反應,並發現反應時間較長,其費時至高10天。使用各種溶劑及較高溫度以再檢查這些反應。於60℃下以小規模(至高3克)研究添加分支小室試劑(Ⅱ e-g
)至所有縮水甘油醚,且有趣的是,於60℃下在甲醇中所有反應在12至24小時內完成。然而,不同的是,甚至於60℃下與聚(縮水甘油基苯胺)(I b
)進行之反應卻很慢。
可添加觸媒以加速該加成反應。合適觸媒包括任何習用於對碳-碳雙鍵進行加成反應之催化作用的觸媒。一般觸媒為自由基起始劑,例如AIBN、金屬鹽、鈦、鎂、鋅、銅及鋁鹽,以及適於有機加成反應、3,4,5員雜環系環之親核開環反應或疊氮化物對乙炔之1,3-環-加成反應以及硫醇對烯烴之自由基加成反應之任何其它觸媒。
就這些及其它反應,其包括胺官能性組份與丙烯酸酯官能性組份之反應,而言,習用反應條件係摘述在下表中:
該開環反應系統之一實例為環氧基官能性核心與胺官能性延長鏈之反應,諸如(C)+(EX) → (C)(IF1)(EX)(TF1) (3)
其中(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=內部羥基(OH);(EX)=哌(PIPZ);(TF1)=二級胺;環氧基-胺反應之另一實例為胺官能性增長的核心試
劑(C)(IF1)(EX)(TF1)與環氧基官能性分支小室試劑之反應,諸如(C)(IF1)(EX)(TF1)+(BR) → (C)(IF1)(EX)(IF2)(BR)(TF2) (4)
其中(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=內部羥基(OH);(EX)=哌(PIPZ);(IF2)=內部羥基(OH);(BR)=季戊四醇四縮水甘油醚(PETGE);及(TF2)=環氧基。
就添加分支小室(BR)、延長鏈(EX)或官能基(TF)至簡單核心、架構核心、超核心或當代產物而言,欲添加之該分子對該簡單核心、架構核心、超核心或當代產物上之反應性官能基的莫耳比為重要參數。例如就添加延長鏈至一核心而言,(EX)/(C)之莫耳比定義為延長鏈分子(EX)對該簡單核心、架構核心、超核心或當代結構(亦即Nc
)上之反應性官能基的莫耳比。類似地,就添加分支小室至簡單核心、架構核心、超核心或當代結構而言,(BR)/(C)之定義為分支
小室分子(BR)對該簡單核心、架構核心、超核心或當代結構(亦即Nc
)上之反應性官能基的莫耳比。根據所欲結構,可藉增加之莫耳比或藉立體誘導性化學計量(N-SIS)而控制分支小室或延長鏈對簡單核心、架構核心、超核心或當代產物之添加程度。若完全的表面覆蓋為所欲,則較佳使用過量之該欲添加的基團分子,諸如添加至該簡單核心、架構核心或超核心之該延長鏈或分支小室試劑。
添加順序可以是添加該簡單核心、架構核心、超核心或當代產物至該分支小室或延長鏈,或添加該分支小室或延長鏈至該簡單核心、架構核心、超核心或當代產物。較佳為添加該簡單核心、架構核心、超核心或當代產物至該延長鏈或分支小室試劑。
反應時間範圍係取決於反應條件、溶劑、溫度、該等試劑之活性及其它因素,但是通常可藉足以使變形的環氧基、吖丙啶或其它環官能基進行親核開環反應之廣泛反應條件而分類。反應時間範圍可自1分鐘至數天,且立體上體積大的基團之反應或對擁擠表面進行反應,諸如添加表面基團至較高代樹枝狀高分子,需要較長的反應時間。
反應溫度可以在用於變形的開環加成反應習用的溫度範圍內。該溫度範圍受限於該等反應中之試劑的安定性及反應時間。一般反應溫度如下述。
適於開環加成反應之任何有機溶劑或水包括供親核開環反應使用之一般溶劑。可使用足以溶解該等試劑至適於進行反應之濃度的任何溶劑混合物。較佳溶劑為極性、親
質子性溶劑。亦較佳為兼含極性與非極性溶劑,及親質子性及非質子性溶劑或彼等之組合的溶劑混合物。溶劑可以是具有充份催化量之可進行反應之親質子性溶劑的非質子性溶劑。該等試劑在該溶劑中之濃度範圍很廣。在某些情況下,用於該反應之該等過量試劑可作為該溶劑。溶劑混合物可以主要是具有充份催化量之可催化該反應之親質子性溶劑的非質子性溶劑。其可提供使低極性或非極性簡單核心、架構核心、超核心、延長鏈或分支小室試劑進行解離或反應之條件。例如聚(縮水甘油)醚與聚(縮水甘油)苯胺及各種親核性分支小室試劑之反應性差異需要各種溶劑及溫度之研究。就需要較高溫度之反應而言,可需要低揮發性溶劑。
在各種溶劑,亦即甲醇、二氯甲烷(DCM)/甲醇混合物及二甲氧基乙烷(DME),中研究這些反應。於室溫下在DCM及DME及在甲醇中反應慢。這些結果表示需要使用親質子性溶劑以促進該親核加成反應。
可添加觸媒以加速該加成反應、1,3-環加成反應或開環反應。合適觸媒包括用於催化開環反應之任何常用觸媒。一般觸媒為路易斯酸及路易斯酸鹽,諸如LiBF4
、BF3
、鋅鹽或在本範疇內之其它觸媒。就1,3-環加成反應而言,亦包括銅鹽及鋅鹽。
就這些及包括胺官能性組份與丙烯酸酯官能性組份之反應的其它反應而言,一般反應條件係摘述如下:親核性胺-開環反應
就這些反應種類而言,離析及純化該等產物之方法包括用於碳-碳雙鍵加成反應及變形開環加成反應之一般離析方法。另外,使用離析一般樹枝狀聚合物分子之已知方法。較佳使用超過濾法、滲析法、利用矽凝膠或Sephadex之柱或分離法、沉澱法、溶劑分離法或蒸餾法。該離析方法可根據產物之大小及代型而不同。當該聚合物顆粒以大小生長時,樹枝狀高分子之最佳分離方法包括超過濾法及滲析法。在某些情況下,可利用經反應與未經反應種類之示差溶度以協助該等產物之分離及離析。例如可在該分離
方法中利用該等完全非極性之環氧化合物與具高極性之經開環多元醇間之溶度差異。
加速該等反應之方法可包括使用微波輔助型或超音波輔助型反應。
早在1968年,Huisgen等人即在[Angew.Chem.,Int.Ed.Engl.7,321-328(1968)]中表示通常可藉Cu+1
鹽而催化有機疊氮化物對炔類之容易的高產率、化學選擇性環-加成反應以形成含有共價1,4-二取代之1,2,3-三唑鍵合之結構。由於這些反應之高化學選擇性,所以這些反應可以在未經干擾下,在多種競爭性或並行反應/官能性分子團之存在下選擇性地進行。就製備本發明之樹枝狀聚合物而言,這些反應具重要性的原因在於其可藉以下步驟而合成式(I)型之樹枝狀高分子/樹突結構體:(a)組合具有內部官能性分子團(IF)(例如羥基及上文所揭示之基團)之聚疊氮化物、末端官能化(TF)核心、樹突結構體或樹枝狀高分子與單炔類(TF)官能化聚環氧基分支小室試劑/樹突結構體;(b)藉直接組合具有內部官能性分子團(IF)之聚疊氮化物、末端官能化(TF)核心、樹突結構體或樹枝狀高分子與少許過量之聚炔類末端官能化(TF)分支小室試劑(亦即其中該炔類當量:疊氮化物當量之比率大於1)。可同時或連續在製程中混合該等疊氮化物及炔類。由於N-SIS效應之優點,所以使用如上述之少許當量過量並不會發生交聯反應或形成凝膠。或
者,可以並行或連續與上文之方法(a)及(b),使用各種〝正交化學〞方法(c)(下文有更詳細討論)以建構這些樹突結構體/樹枝狀高分子。以下圖解3係表示使用這些方法之可能製程步驟系列。
最近,Sharpless[P.Wu等人,Angew.Chem.Int.Ed.,43,3928-3932(2004)]、Frechet[B.Helms等人,J.Am.Chem.Soc.,126,15020-15021(2004)]及Hawker[M.J.Joralemon等人,Macromolecules,38,5436(2005)]已藉添加單-疊氮化物試劑至聚炔基質而製成不含內部官能性分子團(亦即(IF)分子團)之樹枝狀高分子。該合成方法已被稱為“速配接合組合式化學”方法。然而,這些參考資料從未報告上文(a)、(b)
或(c)中所述之該等試劑類型、反應順序或方法之用途。
藉方法(a)合成式(I)樹枝狀結構之步驟包括各種環氧基核心試劑,亦即(C)、(TF),其中Nc
=2至1000,與無機疊氮化物鹽(例如Na
N3
)之開環反應以產生該等對應多官能性有機疊氮化物,其可以由具有(C)、(IF)、(TF)之結構(1
)表示。使該經變換之核心試劑結構與AB3
型乙炔-環氧化物官能化之分支小室(BR)試劑,與一般結構(2
)(其具有(TF1
)、(BR)及(TF2
))進行反應。該反應可以以很高產率進行以製備具有1,2,3-三唑結構(3
)之1,3-環-加成型產物。該結構具有以下組份:亦即(C)、(IF1
)、(EX)、(BR)、(TF),其中該(EX)=1,2,3-三唑環。後續添加疊氮化鈉至該產物可得到具有結構(4)之經開環聚疊氮化物產物;具有以下組份:(C)、(IF1
)、(EX)、(BR)、(IF2
)、(TF)。根據習知樹枝狀高分子之先前已公佈的習知數學式[Dendrimers and other Dendritic Polymers,eds.J.M.J.Fréchet,D.A.Tomalia,pub.John Wiley and Sons,(2001)],這些步驟之重覆可生長並增大這些樹枝狀結構之末端官能性分子團。
藉方法(b)合成式(I)樹枝狀結構之步驟包括聚-乙炔官能化分支小室試劑與多官能性聚疊氮化物進行1,3-環加成反應以製備該等所欲結構,由於高度擁擠的核心及分支小室試劑之N-SIS效應,所以該反應並不會形成凝膠。
可以與上文所述之1,3-偶極環化加成型“速配接合組合式化學”生長/改質步驟並行或其後進行其它正交合成方法,其可包括以下步驟:
(1)藉使用酮溶劑保護試劑(例如甲基異丙基酮),其可藉在二級胺官能性分子團存在下形成希夫鹼型加成物而選擇性保護一級胺,在一級胺分子團存在下使用二級胺分子團進行選擇性開環反應[例如Frédéric Laduron等人,Org.Proc.Res.& Devel.,9,102-104(2005)]。
(2)進一步使用烯烴系二級胺(例如二烯丙胺)進行環氧基開環反應,繼而使單一位置硫醇官能化之試劑、分支小室試劑或樹突結構體進行自由基協助之加成反應。
(3)另一正交方法包括樹突結構體/樹枝狀高分子、一級胺端基(TF)轉化成酯官能化吡咯啶酮,其可選擇性地與延長鏈/分支小室試劑/兼具一級及二級分子團之樹突結構體的該一級胺組份進行反應。
雖然不想受限於理論,但是咸信於任一特定代層次下由於N-SIS可控制能夠與特定大小之核心或樹枝狀高分子架構進行反應的分支小室試劑(BR)、延長鏈(EX)或末端官
能基(TF)數,所以可獲得本發明一些有利結果。這些反應之化學計量似乎可藉該奈米基質(亦即該等核心或各種樹枝狀高分子/樹突結構體世代型表面)之相對尺寸(亦即S1
對S2
)及該反應試劑(亦即分支小室試劑(BR)或焦點(FF)反應性樹突結構體)之立體大小而奈米立體性控制。N-SIS可能與本發明有關,因為用於本發明之該等大體積的分支小室試劑(BR)及其加成產物具有非可預期之性質。最顯著的是,儘管其係為高反應性多官能性實體,但是於反應期間其並不會導致鄰分子團間之交聯。雖然其有異於我們的直覺,但是可能與分支小室試劑反應性(其反應性高於一般PAMAM反應常用之酯的胺丙烯酸酯反應或酯之醯胺化反應)與移動性(較大的分支小室試劑的移動速度比小的胺試劑還慢(亦即,較慢的擴散常數))間之平衡改變有關。本理論之進一步說明可在下文羅馬數字比較例之後找到。
該等式(I)樹枝狀高分子之用途像一般PAMAM樹狀高分子及其它樹枝狀聚合物一樣多。以下用途列示並非包括一切,而僅係作為例示用。由於這些式(I)樹枝狀高分子具有精確奈米尺度大小(亦即尺寸),所以可作為尺寸選擇性膜、高效率質子清除劑,電子顯微術之校準標準物、及具更複雜奈米裝置/結構的結構體之量子化奈米尺度砌塊。這些式(I)樹枝狀高分子可作為油/水乳液之去乳化劑、用於造紙之濕強度劑,及用於改良水性配方(諸如油漆),及其它類似溶液、懸浮液及乳液之黏度的藥劑。
這些式(I)樹枝狀高分子之獨特性質為:其對水解、熱降解具高安定性,且當衍生自親核開環反應時不會進行逆麥可反應;其具有可以進一步反應之(IF)分子團(得自該等開環反應),且可以進一步結合(M)或締合(M);而且其具有窄多分散性範圍且由於簡化的處理程序,所以製造成本較低(例如由於反應時間較快、所需試劑較少及步驟較少)。
除上述該等式(I)樹枝狀高分子之用途外,這些式(I)樹枝狀高分子適用於其中物質(M)之特定遞送為所欲之各種應用。
這些式(I)樹枝狀高分子具有可用以包封物質(M)之內部空隙空間。此等載送物質(M)之實例在美國專利5,338,532中有提供。這些物質可具有農業、藥學、生物或其它活性。
在使分支小室進行反應之充份代數後,該表面基團(Z)可進行de Gennes稠密填塞,且該表面變得擁擠並可包圍該等內部空隙空間,其中該(TF)可作為用以控制該物質(M)擴散入該樹枝狀高分子內部中或自其擴散出來之分子層級閘或孔。這些樹枝狀高分子之增加的官能基密度可以使每一樹枝狀高分子載送更大量之物質。由於可控制該表面(Z)上及內部(IF)中之該等樹枝狀高分子上的官能基數,所以其亦可提供一種用於控制,例如每一樹枝狀高分子欲載送之物質(M)數量及該物質(M)之釋放特性。例如這些樹枝狀高分子可以是能遞送生物活性劑至特定目標部位亦即疾病或癌部位、或特定決定子(受體)或目標生物體(諸如動物、人類、植物、藻類植物、病毒、真菌、霉菌或害蟲)中之位置的生
物活性劑目標性載體。
該等表面基團(TF)可具有能夠經預定方式控制之化學性質,其係藉選擇含有所欲化學官能性質之重覆單位或藉化學性改質所有或部份這些(TF)基團以產生新表面官能性質。這些表面可侵蝕特定部位或抵抗藉特定細胞(例如網狀內皮細胞)而產生之吸收性。該(TF)基團數為z。
此外,當所製成之橋聯樹枝狀高分子含有一或多種式(I)樹枝狀高分子時,這些聚樹枝狀分子團亦適於作為物質(M)之載體。
本發明之樹枝狀高分子的內部具有可能的內部官能性分子團(IF),其中這些內部基團可以與物質反應,且可作為用於載送物質之更強結合性系統。或者,衍生自聚丙烯酸酯-胺加成產物之該等2-胺基乙酯鍵合可在低ph特殊結構部份中,例如內核體特殊結構部份,經選擇性分裂以釋放所欲藥物或其它物質作為自該樹枝狀高分子內部控制性遞送之釋放機制。該物質係與這些樹枝狀高分子之內部、表面或該內部及表面締合,且該等基團可相同或不同。如文中使用,“與…締合”意指該載送物質(群)(M)可在該樹枝狀高分子之內部中經物理性包封或捕獲、部份或完全分散在該樹枝狀高分子之間、或與該樹枝狀高分子或其任何組合連接或鍵結,藉此,該連接或鍵結係經由共價鍵結、氫鍵結、吸附、吸收、金屬鍵結,凡得瓦力(van der Walls force)或離子鍵結或彼等之任何組合。該載送物質(群)及該樹枝狀高分子(群)之締合可選擇性使用連接劑及/或間隔基團或螯合
劑以加速這些共軛物之製法或使用。合適的連接基團為可連接目標指示物(亦即T)與該樹枝狀高分子(亦即D),且不會重大損害存在於該合併樹枝狀高分子及物質(“共軛物”)之該指示物之效力或任何其它載送物質(群)(亦即M)的效力。這些連接基團具可切除性或不可切除性且典型上係用以防止該目標指示物與樹枝狀高分子間之立體阻礙,該等連接基團較佳具安定性(亦即不可切除性),除非該遞送部份具有可切除交聯劑(例如於該室表面或內涵體腔(endosomal compartment)中釋放之酸可切除交聯劑)。由於可嚴密控制這些樹枝狀高分子之大小、形狀及官能基密度,所以有許多可以使該載送物質與樹枝狀高分子締合之方法。例如(a)其可以是該載送物質(群)與位於或接近該樹枝狀高分子表面之實例(典型上為官能基)間之共價、庫侖性(coulombic)、親水性或螯合型締合;(b)其可以是該載送物質(群)與位於該樹枝狀高分子內部中之分子團的共價、庫侖性、疏水性或螯合型締合;(c)可製成具有可在該內部(空隙體積)中物理性捕獲該等載送物質之主要為中空之內部的樹枝狀高分子,其中該載送物質之釋放可選擇性地藉以擴散控制性分子團充塞該樹枝狀高分子表面而控制;(d)若該樹枝狀高分子具有內部官能性分子團(IF),則其可以該載送物質締合,或(e)可使用前述作用之各種組合。
經這些樹枝狀高分子封包或締合之物質(M)可以是具有能符合所欲目的之分子團的很大基團。此等物質包括,但不限於:供作為動物或植物或微生物、病毒及任何有生
命的系統之診斷或治療性處理的活體內或試管內或活體外用途之藥學物質,在不會可感知地破壞該樹枝狀高分子的物理完整性下,該物質可以與這些樹枝狀高分子締合。
在一較佳實施例中,該等載送物質,文中係由“M”代表,為藥學物質。適用於本發明樹枝狀高分子共軛物之此等物質包括供哺乳動物之診斷或治療處理之活體內或試管內用途之任何物質(其可以在不會可感知地破壞該樹枝狀高分子之物理完整性下,與該樹枝狀高分子締合),例如:藥物,諸如抗生素、鎮痛劑、增血壓劑、強心劑、類固醇等,諸如醋胺酚(acetaminaphen)、艾賽可威(acyclovir)、阿可倫(alkeran)、阿米卡辛(amikacin)、胺苄青黴素(ampicillin)、阿斯匹靈(aspirin)、比生群(bisantrene)、布雷黴素(bleomycin)、新強心斯塔汀(neocardiostatin)、苯丁酸氮芥(chloroambucil)、氯黴素(chloramphenicol)、胞嘧啶阿拉伯糖苷(cytarabine)、道諾黴素(daunomycin)、小紅莓、順鉑(cisplatin)、卡鉑(carboplatin)、5-氟尿嘧啶(fluorouracil)、紫杉酚(taxol)、吉西他品(gemcitabine)、健大黴素(gentamycin)、異丁苯丙酸(ibuprofen)、康黴素(Kanamycin)、甲丙胺酯(meprobamate)、阿美蘇喋呤、諾凡川(novantrone)、尼斯塔汀(nystatin)、長春新鹼(oncovin)、苯基巴比妥(phenobarbital)、多黏菌素(polymyxin)、普羅布可(probucol)、普羅卡比(procarbabizine)、利發品(rifampin)、鏈黴素(streptomycin)、狀觀黴素(spectinomycin)、喜美崔(symmetrel)、硫鳥糞嘌呤
(thioguanine)、托布拉黴素(tobramycin)、三甲氧酶二胺嘧啶(trimethoprim),及瓦邦(valbanl);毒素,諸如白喉毒素(diphtheria toxin)、吉羅寧(gelonin)、外毒素A、雞母珠毒蛋白(abrin)、莫地辛(modeccin)、蓖麻毒素(ricin)或彼等之毒性斷片;金屬離子,諸如鹼及鹼土金屬;放射核種,諸如自錒系或鑭系或其它類似的過渡元素或其它元素產生之放射核種,諸如47
Sc、67
Cu、67
Ga、82
Rb、89
Sr、88
Y、90
Y、99m
Tc、105
Rh、109
Pd、111
In、115m
In、125
I、131
I、140
Ba、140
La、149
Pm、153
Sm、159
Gd、166
Ho、175
Yb、177
Lu、186
Re、188
Re、194
Ir,及199
Au,較佳為88
Y、90
Y、99m
Tc、125
I、131
I、153
Sm、166
Ho、177
Lu、186
Re、67
Ga、111
In、115m
In,及140
La;信號產生劑,其包括由於其存在可導致該系統之可偵測及可測量之微擾的任何信號產生劑,諸如螢光實體、磷光實體及輻射;信號反射劑,諸如順磁性實體,例如Fe、Gd或Mn;螯合金屬,諸如上文所予之任何金屬(不論其是否具放射性),其限制條件為必須可以與螯合劑締合;信號吸收劑,諸如近紅外線反襯劑(諸如成像劑及MRI劑)及電子束不透明劑,例如Fe、Gd或Mn;抗體,其包括單株抗體、多株抗體及抗遺傳性型抗體;抗體斷片;適體;激素;生物反應改質劑,諸如介百素、干擾素、病毒及病毒斷片;診斷不透明劑;及螢光分子團。載送藥學物質包括清除劑,諸如螯合劑、抗原、抗體、適體或可選擇性清除治療或診斷劑之任何分子團。
在另一實施例中,該等載送物質,文中由“M”代表,係為農業用物質。適用於這些共軛物之此等物質包括用於活
體內或試管內處理、診斷或施灑至植物或非哺乳動物(其包括微生物)之任何物質,其可以在不會可感知地破壞樹枝狀高分子之物理完整性下與該樹枝狀高分子締合。例如該等載送物質可以是毒素,諸如白喉毒素、吉羅寧、外毒素A、雞母珠毒蛋白、莫地辛或彼等之毒素斷片;金屬離子,諸如鹼及鹼土金屬;放射核種,諸如自錒系或鑭系或其它類似的過渡元素或其它元素產生之放射核種,諸如47
Sc、67
Cu、67
Ga、82
Rb、89
Sr、88
Y、90
Y、99m
Tc、105
Rh、109
Pd、111
In、115m
In、125
I、131
I、140
Ba、140
La、149
Pm、153
Sm、159
Gd、166
Ho、175
Yb、177
Lu、186
Re、188
Re、194
Ir,及199
Au;信號產生器,其包括由於其存在可導致該系統之可偵測及可測量之微擾的任何信號產生劑,諸如螢光實體、磷光實體及輻射;信號反射劑,諸如順磁性實體,例如Fe、Gd或Mn;信號吸收劑,諸如反襯劑及電子束不透明劑,例如Fe、Gd或Mn;激素;生物反應改質劑,諸如介百素、干擾素、病毒及病毒斷片;防疫劑,其包括抗微生物劑、滅藻劑、arithelmetics、殺恙蟲藥、Ⅱ型殺蟲劑、誘蟲劑、驅蟲劑、除草劑及/或殺真菌劑,諸如乙醯甲胺磷(acephate)、阿昔氟芬(acifluorfen)、草不綠(alachlor)、阿卓(atrazine)、免賴得(benomyl)、噻草平(bentazon)、蓋普丹(captan)、力保扶(carbofuran)、氯化苦(chloropicrin)、氯蜱硫磷(chlorpyrifos)、氯硫昂(chlorsulfuron)、草淨津(cyanazine)、環己錫(cyhexatin)、氯氰菊酯(cypermithrin)、2,4-二氯苯氧基乙酸、茅草枯(dalapon)、麥草畏(dicamba)、二氯苯氧基
苯氧丙酸甲酯(diclofop methyl)、二氟脲(diflubenzuron)、甲丙基二硝基酚(dinoseb)、橋氧肽鈉(endothall)、福美鐵(ferbam)、氟甲吡啶氧酚丙酸酯(fluazifop)、鎮草寧(glyphosate)、哈洛昔福(haloxyfop)、馬拉硫磷(malathion)、抑草生(naptalam)、噴地殺靈(pendimethalin)、撲滅司林(permethrin)、毒莠定(picloram)、毒草胺(propachlor)、敵稗(propanil)、稀禾定(sethoxydin)、替美福司(temephos)、特丁磷(terbufos)、三氟靈(trifluralin)、三福靈(triforine)、代森鋅(zineb)等。載送農業用物質包括清除劑,諸如螯合劑、螯合金屬(不管其是否具放射性)或可選擇性清除治療或診斷劑之任何分子團。
在另一實施例中,該載送物質,文中由“M”代表,係為免疫增效劑。適用於這些共軛物之此等物質包括在不會可感知地破壞該等樹枝狀高分子之物理完整性下可提高與樹枝狀高分子締合之免疫反應的任何抗原、半抗原、有機分子團或有機或無機化合物。例如該等載送物質可以是用於製備對抗瘧疾之疫苗(美國專利4,735,799)、對抗霍亂弧菌之疫苗(美國專利4,751,064)及對抗尿道感染之疫苗(美國專利4,740,585)之合成酞,用以製備抗細菌疫苗之細菌多醣類(美國專利4,695,624)及用於製備用以預防疾病(諸如AIDS或肝炎)之抗病毒疫苗的病毒蛋白質或病毒粒子。
使用這些共軛物以作為供免疫增效劑使用之載體可避免產量及用以使該輔助載體得到巨分子結構之與習知或合成聚合物共軛締合之結構的不明確性之缺點。這些樹枝狀
高分子可作為免疫增效劑之載體以控制該共軛物之大小、形狀或表面組成物。這些選擇可以使有機體之抗原表現最佳化,因此可以使抗體具有比使用習知佐劑更大之選擇性及更高之親和力。亦較佳連接多抗原肽或基團與該樹枝狀高分子,諸如連接T-及B-細胞表抗原。此種設計可得到改良的疫苗。
亦較佳結合除疫劑或可誘出免疫反應之污染物質(諸如胺基甲酸酯、三或有機磷酸鹽成份)與樹枝狀高分子。可藉標準程序而純化被製成所欲除疫劑或污染物質之抗體,在合適載體上固定並用於後續偵測環境中或有機體中之該除疫劑或污染物質。
在又另一實施例中,適用於這些共軛物之該等載送物質,文中由“M”代表,包括可以在不會可察知地破壞樹枝狀高分子之物理完整性下與這些樹枝狀高分子締合的非農業用或藥學物質之任何物質,例如:金屬離子,諸如鹼及鹼土金屬;信號產生劑,其包括由於其存在可偵測及測量該系統之微擾的任何物質,諸如螢光實體、磷光實體、紅外線、近紅外線及輻射;信號反射器,諸如順磁性實體,例如Fe、Gd或Mn;信號吸收劑,諸如反襯劑及電子束不透明劑,例如Fe、Gd或Mn;信息素分子團;香味分子團;染料分子團等。載送物質包括清除劑,諸如螯合劑或可選擇性清除各種藥劑之任何分子團。
該等載送物質(M)較佳為生物活性劑。如文中使用,“生物活性”係指可偵測、鑑定、抑制、處理、催化、控制、致
死、增強或改良目標實體,諸如蛋白質、醣蛋白、脂蛋白質、脂質、目標疾病部位或目標細胞、目標器官、目標有機體[例如微生物、植物或動物(其包括哺乳動物,諸如人類)]或其它目標分子團之活性實體,諸如分子、離子及/或其它實體。生物活性劑亦包括可廣泛應用於基因療法、siRNA、診斷學、分析、改質、活化、反應、反意、靜止、特質及序列之診斷等之基因物質。這些共軛物包括導致細胞轉移感染並使含樹枝狀聚合物及基因物質之複合物之基因物質得到生物可用率,並使該複合物可利用於欲轉移感染之細胞。
這些共軛物可用於各種活體內、活體外或試管內診斷或治療應用。其一些實例為疾病,諸如癌、自體免疫疾病、基因缺陷、中樞神經系障礙、感染疾病及心臟病,之治療;診斷用途,諸如放射免疫測定法、電子顯微術、酶標記免疫吸附測定法、核磁共振分光檢定法、對比影像法、免疫閃爍檢查法;及遞送除疫劑,諸如除草劑、殺真菌劑、驅蟲劑、誘蟲劑、抗微生物劑或其它毒素。亦包括非基因物質,諸如介百素、干擾素、腫瘤壞死因子、粒性細胞菌落刺激因子,及其它蛋白質或任何這些物質之斷片、抗病毒劑。
可以使用熟悉本項技藝者已知之結合劑將這些共軛物調製成錠劑。此等劑型描述在Remington’s Pharmaceutical Sciences
,18th
ed.1990,pub.Mack Publishing Company,Easton,PA。合適的錠劑包括壓縮錠劑、糖衣錠劑、膜衣錠
劑、腸衣錠劑、多壓縮錠劑、受控性釋藥錠劑等。安瓿、油膏、凝膠、懸浮液、乳液、注射液(肌內、靜脈、腹膜內、皮下)、經皮配方(例如貼劑或塗敷至皮膚表面、塞劑組成物)、鼻內配方(例如滴劑、噴劑、吸入劑、氣溶膠噴劑、胸按摩劑)、眼施藥(例如無菌滴劑、噴劑、軟膏)或以紗布、擦布、噴劑或其它方式施用於外科切開之位置、接近疤形成之位置或腫瘤生長或移除之部份、亦可作為合適配方。就作為生物標記之生物分析的套組而言,可使用分子探針,其包括併用適於該分析之其它試劑,及其用途之用法說明。習用藥學上可接受鹽、佐劑、結合劑、乾燥劑、稀釋劑及輔藥可用於這些配方中。就農業用途而言,可使用常用之合適媒劑及農業上可接受載劑或稀釋劑(諸如顆粒配方、可乳化濃縮物、溶液,及懸浮液)及一或不只一種活性劑以調製這些共軛物。
就以下實例而言,係使用各種設備與方法來進行各種所述實驗以獲得下述實例中所報告的結果。
使精SephadexTM
(Pharmacia)純化之樹枝狀高分子之甲醇系溶液蒸發並經該SEC實驗中所使用之流動相(1毫克/毫升濃度)重組。製備所有新試樣並立即用於SEC。
藉該SEC系統(Waters 1515)而定性分析樹枝狀高分子,其係藉使用折射率檢測器(Waters 2400及Waters 717 Plus Auto Sampler)以等位模式而操作。於室溫下在兩個連
續排列之TSK凝膠柱(Supelco)(G 3000PW及G 2500PW,粒度10微米,30厘米×7.5毫米)上進行分析。以1毫米/分鐘之流率泵取乙酸鹽緩衝劑(0.5M)之流動相。根據該樹枝狀高分子代型,發現該樹枝狀高分子之溶析體積為11至16毫升。
使用配備折射率及紫外光檢測器與Water Symmetry®
C18
(5微米)柱(4.6毫米直徑,150毫米長)之Perkin Elmer Series 200裝置以進行高壓液相層析法(HPLC)。一般分離方法包含使用0.1%水性乙酸及乙腈(75:25%v/v)作為溶離劑及λ=480奈米之紫外光作為該檢測器。
使用薄層層析法以監測該等化學反應之進展。添加一滴物質,通常為在有機溶劑中0.05M至0.4M溶液,至矽凝膠板上,並將其放入溶劑室內,使其顯像,通常費時10至15分鐘。該溶劑業經溶析後,通常將該TLC板乾燥,然後染色(如下述)。由於該矽凝膠為極性聚合物載體,所以低極性分子會進一步在該板上移動。使用“Rf
”值以鑑定物質已在TLC板移動多遠。改變溶劑條件可接著改變該Rf
值。藉該產物移動之長度對該溶劑移動之長度的比率而測定該Rf
。
材料:所使用TLC板為(1)“薄層層析板-Whatman®
”襯PK 6F矽凝膠玻璃,大小20×20厘米,層厚:200微米或(2)“薄層層析板塑膠薄片-EM Science”襯二氧化鋁,大小20×20厘米,層厚200微米。
染色條件為:(1)寧海俊(Ninhydrin):使用1.5克寧海俊、5毫升乙酸,及500毫升之95%乙醇製成一種溶液。將該板浸在該寧海俊溶液內,乾燥並經熱風器加熱,直到顏色變化為止(粉紅色或紫色斑點表示胺存在)。(2)碘室:將2至3克I2
放在閉合容器內。將該TLC板放在該室內,費時15分鐘,且產物斑點被染成褐色。(3)KMnO4
染色:使用1.5克KMnO4
、10克K2
CO3
、2.5毫升之5% NaOH,及150毫升H2
O製成一種溶液。將該TLC板浸在KMnO4
溶液內,且產物斑色變成黃色。(4)紫外線檢查:使用紫外線(UV)燈以照明產物斑點。短波(254奈米)及長波(365奈米)皆用於產物鑑定。
使用脈動式離子萃取法(Pulsed Ion Extraction)在Bruker Autoflex LRF MALDI-TOF質譜儀上獲得質譜。以使用19kV試樣電壓及20kV反射器電壓之反射器模式獲得在20kDa以下之質量範圍。使用聚氧化乙烯以進行校準。以使用20kV試樣電壓之線型模式獲得更高質量範圍。以牛血清白蛋白校準該等較高之質量範圍。
典型上,藉合併5毫克/毫升該分析物溶液之1微升整份與10微升基質溶液而製成試樣。除非另有指定,該基質溶液為10毫克/毫升之2,5-二羥基苯甲酸在乙腈:水(3:7)中之溶液。將該試樣/基質溶液之2微升整份滴在該目標板上並於室溫下使其風乾。
在一般滲析實驗中,約500毫克產物經由具有合適孔度之滲析膜滲析以保留該產物而非雜質。在兩次更換滲析液下,於水(所使用之其它合適滲析液為丙酮及甲醇)中完成大部份實例之滲透,費時約21小時。使用旋轉蒸發器自留存物蒸發水,並於高真空下乾燥該產物以得到固體。
一般超過濾分離法如下:使產物及非所欲化合物之混合物溶解於適於該混合物之合適體積的溶劑(例如125毫升MeOH)中並於25℃在20psi(137.9千帕)壓力下,在含有3K截止再生纖維素膜之切向流UF裝置上進行超過濾。於UF收集1500毫升滲透液期間(~5小時)將該燒瓶所標記之保存物體積維持於100至125毫升。在旋轉蒸發器上汽提第一升過濾液之揮發物,繼而進行高真空抽出以得到該純化產物。根據特定分離問題,該膜之截止尺寸(例如3K、2K或1K)及過濾液與留存物之體積可不同。
將該產物溶解在最低量溶劑(水、PBS或MeOH)內,並經由SephadexTM
LH-20(Pharmacia)在該溶劑內純化。溶析該柱之空隙體積後,根據有關之個別分離而收集約2至4毫升整份之溶離份。使用TLC(使用如前述之合適溶劑)以鑑定含類似產物混合物之溶離份。合併類似的溶離份並蒸發溶劑以得到固體產物。
試樣製法:添加800至900微氘化溶劑至50至100毫克乾試樣內以使其溶解。使用一般參考標準物,亦即三甲基矽烷。一般溶劑為CDCl3
、CD3
OD、D2
O、DMSO-d6
,及丙酮-d 6
。將該經溶解試樣移至NMR管內達5.5厘米之高度。
設備:(1)使用Automation Triple Resonance Broadband (ATB)探針,H/X(其中X可自15
N轉變成31
P)在300MHz 2-通道Varian Mercury Plus NMR分光計系統上獲得300MHz NMR數據。在具有Solaris 9操作系統之Sun Blade 150電腦上獲得數據集合。所使用軟體為VNMR v6.1C。(2)使用Switchable探針,H/X(X可自15
N轉變成31
P)在500MHz 3-通道Varian Inova 500MHz NMR分光計系統上獲得500MHz NMR數據。在具有Solaris 9操作系統之Sun Blade 150電腦上獲得數據集合。所使用軟體為VNMR v6.1C。
使用多用途大掃描器及MAC模式Tips[第Ⅱ型MAClevers,厚度:3微米,長度:225微米,寬度:28微米,共振頻率:約45KHz,力常數:約2.8N/m(Molecular Imaging,USA)]在去離子水中以輕敲模式(tapping mode)之PicoSPMLE AFM(Molecular Imaging,USA)獲得所有影像。典型上,在以自由狀態之懸臂振盪幅度的設定點為0.90下使用3條線/秒之掃描速度以掃描不同區域。為避免薄空氣隙之流體動態效應,以小探針-試樣距離小心地測定該共振。
與似凝膠固體之PAMAM樹枝狀高分子不同,該等式(I)樹枝狀高分子通常為固體物質。這些樹枝狀高分通常不像PAMAM樹枝狀高分子一樣那麼容易吸收水。目前該等樹枝狀高分子係以固體形式或以在甲醇中之溶液形式貯存。尚未發現這兩種貯存方法之差異。通常,這些樹枝狀高分子比PAMAM樹枝狀高分子更快且更容易溶解在水中。雖然PAMAM樹枝狀高分子全部可溶解在水中,但是由於彼等之似凝膠狀態,所以通常較難溶解。這些式(I)樹枝狀高分子亦可溶於一些有機溶劑中,該等有機溶劑包括,但不限於:MeOH、EtOH、異丙醇、DME、氯仿、二氯甲烷、1,2-二氯乙烷、甲氧基丙醇、MIBK,及DMSO。
使用Universal V3.9A(TA Instrument)獲得熱重量分析數據。在每分鐘10度之遞增速率下,溫度掃描範圍為自20至520℃或在該範圍內。試樣大小典型上為約10毫克固體產物。
於真空下乾燥已貯存於溶劑中之樹枝狀高分子,然後經水溶解或稀釋成在4毫升水中約100毫克的濃度。使用乾冰凍結該水溶液,並使用凍乾器(冷凍乾燥機)(LABCONCOCorp.型號為Free Zone 4.5升,Freeze Dry System 77510)於約-47℃及60×10-3
毫巴下乾燥該試樣。使經冷凍乾燥之樹枝狀高分子(1至2毫克)經水稀釋至1毫克/毫升之濃度。以
10%v/v濃度添加追蹤染料至各樹枝狀高分子試樣中,且該追蹤染料包括(1)用於鹼性化合物之亞甲基藍染料(1%w/v)(2)用於酸性化合物之溴酚藍染料(0.1%w/v)(3)用於中性化合物之具有0.1%SDS的溴酚藍染料(0.1%w/v)。
預注之4至20%梯度凝膠係購自ISC BioExpress。凝膠大小為100毫米(W)×80毫米(H)×1毫米(厚),且具有10個預先編號之試樣井在該芯子內形成。該試樣井之體積為50微升。未得自市售之凝膠係使用30%丙烯醯胺(3.33毫升)4×TBE緩衝劑(2.5毫升)、水(4.17毫升)、10%APS(100微升)、TEMED(3.5微升)所製成之10%均質凝膠。用於凝膠電泳之TBE緩衝劑係在1升水中使用三(羥甲基)胺基甲烷(43.2克)、硼酸(22.08克)、EDTA二鈉(3.68克)以形成pH8.3之溶液而製成。在使用前,該緩衝劑以1:4經稀釋。
使用PowerPac 300 165-5050供電裝置及BIO-RAD Mini Protein 3 Electrophoresis Cells以進行電泳。將所製成之樹枝狀高分子/染料混合物(各5微升)裝入個別試樣井內,並進行電泳實驗。使具有胺表面之樹枝狀高分子經戊二醛溶液固定,費時約一小時,然後經Coomassie Blue R-250(Aldrich)染色,費時約一小時。接著使用冰醋酸溶液將凝膠退色,費時約一小時。使用hp Scanjet 5470C掃描機以記錄影像。
在Nicolet Fourier Transform Infrared Spectrometer,Model G Series Omnic,System 20 D×B上獲得紅外線光譜
數據。使用溴化鉀鹽板(Aldrich)適當地操作試樣。
使用可經由個別試樣而強力吸收之光波長,例如480或320奈米,在Perkin Elmer Lambda2 UV/VIS分光光度計上獲得UV-VIS光譜數據。
在經連續、徑向檢視之Varian Liberty Series Ⅱ ICPOES誘導性耦合之電漿發光分光光度計上測定試樣之Gd(Ⅲ)含量。
使用可變場T1-T2分析儀進行鬆弛分析。該場強度係自1至64 MHz不等。
使用配備適於螢光之NiKon TMD-EF,及可捕獲該等結果之NiKon CoolPix 990數位相機之NiKon Diaphot TMD顯微鏡進行螢光顯微術及相對比顯微術研究。
可藉以下實例(其係有意作為本發明之純粹實例)之考慮而進一步闡明本發明。除實例G及H(亦為本發明之實例)外,印有字母之實例為起始物質之合成法;編號之實例為本發明之實例;而以羅馬字母編號之實例為比較例。
作為起始物質之TMPTGE可得自Aldrich,但是其僅具有約70%低純度。四縮水甘油醚之合成及/或純化係根據在“Synthesis”
(1993),第487頁中所找到之程序,使用環氧
氯丙烷、KOH及DMSO所製成。
[(C)=PETGE;(TF)=環氧基]
添加季戊四醇(4.1克,30.1毫莫耳,120毫莫耳OH)(Aldrich)及30毫升之DMSO(15.85克)與KOH(13.47克,240.0毫莫耳,每一OH 2當量)混合物至含有大攪拌棒之100毫升圓底燒瓶內。於RT下以60至90分鐘一滴滴添加(每10至15秒約1滴)環氧氯丙烷(34克,367.0毫莫耳,每一OH 3當量)(Aldrich)至在水浴中之該快速攪拌混合物內。每10分鐘監測溫度以維持該溫度在35℃以下。再經一小時後,該放熱現象已緩和,並將該混合物加熱至35℃,費時5至6小時。藉TLC(7:3甲苯-丙酮)而監測該反應。自KMnO4
染色使斑點視覺化。添加各整份至該醚-鹽液混合物內以移除DMSO,並使該醚層經Na2
SO4
乾燥。完成添加後,該反應混合物之TLC顯示5個斑點,然後經7小時顯示2個斑點。經由粗玻料漏斗而過濾該混合物,並經60毫升二乙醚(2×60毫升)清洗。使該經過濾之液體與150毫升二乙醚混合,並與該等洗液合併。以80毫升鹽液洗滌該醚層。再以150毫升二乙醚洗滌該鹽液層。以無水硫酸鎂乾燥該等合併醚層,過濾並蒸發以得到粗物質(12克)。使該粗物質溶解在甲苯-丙醇(9:1)之混合物中,並在相同溶劑中於140克矽凝膠(140克,60埃,230至400網目)上經純化。前兩種溶離份為200毫升,其各含有很高Rf
物質(TLC)。接下來的30種溶離份為50毫升,在第7
至10種溶離份中各具純產物。合併該等產物溶離份並排出以得到所欲產物(4.0克,37%產率);且其具有以下光譜:1
H NMR(500MHz,CDCl3
):δ 2.593(dd,J=6.5Hz,4H)、2.773(t,J=6.5Hz)、2.922(m,4H)、3.10(m,4H)、3.37(ddd,J=7.0、3.7、1.5Hz,4H)、3.475(d,J=12Hz,4H)、3.515(d,J=12Hz,4H)、3.70(dd,J=12及7.0Hz,4H);13
C NMR(125MHz,CDCl3
):δ 44.17、45.75、50.822、69.93、72.013、72.036、72.055、72.078;及MALDI-TOF:計算值360.47;實測值360 amu。
[(C)=PETGE;(TF)=環氧基]
根據Mitsuo等人,Synthesis,487(1993)而進行本方法。在1升之3頸圓底燒全內溶解季戊四醇I
(13.6克,400毫莫耳)及100毫升DMSO,然後急速地添加KOH(52.7克,800毫莫耳,每一OH 2當量)。以機械攪拌器激烈地攪拌反應混合物,並使用冰浴將其冷卻至15-20℃。以150分鐘一滴滴添加在均壓漏斗內之環氧氯丙烷Ⅱ
(110.4克或93.55毫升,1.2莫耳,每一OH 3當量)。於環氧氯丙烷添加期間維持該溫度於15至20℃下。該反應混合物之顏色係自無色轉變成淺黃色。完成該添加後,使該反應混合物溫熱至RT並持續攪拌一夜。藉TLC而監測反應之進展。3小時後,TLC顯示季戊四醇四縮水甘油醚(PETGE)Ⅲ
及季戊四醇三縮水甘油醚Ⅳ
之斑點。藉持續反應,預期使三縮水甘油醚Ⅳ
轉
化成產物Ⅲ
;然而卻發現Ⅲ
之部份二聚合反應,其可得到產物V
。
使反應混合物經由布赫納(Büchner)漏斗過濾,並以100毫升DCM清洗固體。使用旋轉蒸發器移除DCM之揮發性餾份。以飽和鹽液(2×100毫升)處理該粗反應混合物並經二乙醚(2×100毫升)萃取。在Na2
SO4
上乾燥合併醚層,並經旋轉蒸發器濃縮以得到暗黃色/淺褐色液體。將粗產物分成兩等份,並在矽凝膠上進行柱式層析法。將矽凝膠(300克)裝在柱(25厘米高×5.5厘米寬)上。溶析500毫升溶劑後,收集40毫升溶離份。先後取出之溶離份為環氧氯丙烷、PETGE(Ⅲ
)(Rf
=0.62)、二聚物(V
)(Rf
=0.44),及縮水甘油醚(Ⅳ
)(Rf
=0.33)。經離析之純PETGE產率為45至60%(少量會經其它副產物污染)。光譜分析與Ⅲ
之報告數據一致,且產物Ⅳ
&V
之分析亦令人滿意。
以下圖解A係闡明該反應。
[(C)=PETGE;(TF)=環氧基]
在1升圓底燒瓶內混合季戊四醇,I
(15.03克,110毫莫耳)(Acros Organics)及250毫升THF。經由粉末漏斗添加KOH(85.93克,1.35莫耳,每一OH 3.0當量),及溴化四丁基銨(TBAB)(0.460克,1.23%莫耳)(Acros Organics),繼而以10分鐘經由125毫升添加漏斗添加溴丙烯,Ⅱ(106.6克,1.35莫耳,每一OH 3.0當量)。然後於70℃下立即將該反應混合物放入油浴中,費時24小時。藉TLC(10:1己烷:乙酸乙酯)監測該反應,其顯示該產物斑點發生於Rf
=0.4,且並無三-、二-或單-烯丙基取代之季戊四醇的斑點。使該反應混合物經由150毫升粗燒結玻璃布赫納(Büchner)漏斗而真空過濾。以二乙醚(2×250毫升)稀釋有機層。以5%K2
CO3
(5×300毫升)清洗該有機層,並在MgSO4
上乾燥。藉旋轉蒸發器(40℃浴溫)而移除揮發物以得到該季戊四醇四烯丙基醚,Ⅲ
(30.07克;92%產率);且其具有以下光譜:IR(淨):νmax
3080、2867、1646、1478、1422、1350、1264、1137、992、922厘米-1
;13
C NMR:(75MHz,CDCl3
):δ 45.33、69.25、72.15、115.95、135.16;及1
H NMR:(300MHz,CDCl3
):δ 3.39(4H,s)、3.84(4H,q,J=2.3Hz)、5.04(2H,q,J=13.8Hz)、5.80(1H,七重峰(septuplet),J=7.78Hz)。
添加PETAE,Ⅲ
(3.29克,11.0毫莫耳)及50毫升氯仿至500毫升配備磁攪拌棒之圓底燒瓶內。然後以10分鐘經由添加漏斗添加m-CPBA,Ⅳ
(70%)(12.51克,51.0毫莫耳,每一烯類1.14當量)(Acros Organics)。在該過酸添加之30分鐘內,該反應燒瓶變熱。於22℃下攪拌該反應,費時72小時,然後經100毫升DCM稀釋,並移至500毫升分液漏斗內。以3%Na2
S2
O5
(3×150毫升)及3%NaHCO3
(3×150毫升)清洗有機層。以Na2
SO4
乾燥該有機層,經過濾,並藉旋轉蒸發器(40℃浴溫)而移除揮發物質。在二氧化矽上進行之TLC(7:3甲苯:丙酮)顯示一斑點發生於Rf
=0.48。於高真空下再乾燥該產物,費時一夜,得到如清澈無色黏性液體之PETGE,V
(3.86克;92%產率);且其具有以下光譜:IR(淨):νmax
3055、2997、2876、1724、1480、1340、1258、1163、1018、908、845、799、760厘米-1
;13
C NMR(75MHz,CDCl3
):δ 43.96、45.54、50.62、69.80、71.90;1
H NMR:(300MHz,CDCl3
):δ 2.55(1H,q,J=2.05Hz)、2.72(1H,t,J=2.33Hz)、3.09(1H,q,J=3.06Hz)、3.32(1H,q,J=4.43Hz)、3.45(2H,d,J=1.65Hz)、3.64(1H,q,J=3.675Hz);及MALDI-TOF:383[M+Na]+
amu。
這些反應係描述在圖解B中:
[(C)=四環硫乙烷;(TF)=環硫乙烷]
將PETGE1
(1.8克,5毫莫耳)及40毫升無水乙腈裝入經烘箱乾燥之100毫升單頸圓底燒瓶內。急速地添加硫脲(3.04克,40毫莫耳)至上述反應混合物內,繼而添加LiBF4
(0.372克)。將回流冷凝器安裝在該燒瓶內,並於60℃下加熱。加熱5小時後,TLC顯示微量PETGE1
及在較高的Rf
下有兩個其它的新斑點。於N2
大氣下持續加熱,費時一夜。然後以50毫升水中止該反應混合物之反應並經CHCl3
(3×50毫升)萃取。以鹽液(2×30毫升)清洗合併萃取物,在Na2
SO4
上乾燥,並利用旋轉蒸發器濃縮以得到液體。經由使用矽凝膠之柱式層析法以己烷:乙酸乙酯:氯仿(1:2:2)純化該粗反應混合物,得到如無色液體之純四(環氧硫化物)(0.610克,29%產率)。其光譜如下:1
H NMR:(300MHz,CDCl3
):δ 2.17(dd,J=1.20 & 5.40Hz,4H)、2.50(d,J=6.00Hz,4H)、3.05(四重峰(quintet),
J=6.00Hz,4H)、3.43至3.50(m,14H)、3.56(四重峰,J=6.00Hz,4H);13
C NMR:(75MHz,CDCl3
):δ 23.90、32.56、45.99、69.67、76.85;及MALDI-TOF:C17
H28
O4
S4
;計算值424;實測值447(M+
Na)amu。
以下圖解C係闡明本反應:
[(C)=PETriGE;(FF)=OH;(TF)=環氧化物]
將PETriAE(2.56克,10.0毫莫耳,30毫莫耳烯烴)(Aldrich)及50毫升氯仿(Fisher Scientific)裝入100毫升圓底燒瓶內。於RT下在機械攪拌下一份一份地添加m-CPBA(8.84克,36.0毫莫耳)(Acros Organics)至該溶液內。攪拌該混合物,費時3天,然後先後經3%水性偏亞硫酸氫鈉(Na2
S2
O5
)溶液(3×100毫升)(Aldrich)及碳酸氫鈉(NaHCO3
)水溶液(3×100毫升)清洗。在硫酸鈉上乾燥有機層,藉旋轉蒸發而濃縮以得到淺黃色液體(2.58克,84.8%產率)。其光譜如下:1
H NMR(300MHz,CDCl3
):δ 2.57(q,J=2.70Hz,3H)、2.76(t,J=4.50Hz,4H)、3.07至3.12(m,3H)、3.33(dd,J=1.50 & 1.20Hz,2H)、3.37(dd,J=1.50 & 1.20Hz,2H)、3.51(q,J=9.00Hz,6H)、3.66(s,1H)、3.69(d,J=2.70Hz,2H)、3.73(d,J=2.40Hz,2H);13
C NMR(75MHz,CDCl3
):δ 44.34、45.51、50.97、65.33、71.61、71.67、71.73、72.18、72.20、72.23;IR(淨):3507、3506、2999、2922、2870、1476、1450、1424、1336、1248、1160、1098、1051、953、901、855、834、751厘米-1
;及MALDI-TOF MS:C14
H24
O7
;計算值304.3;實測值327.05[M+Na]+
amu。
以下圖解D係闡明本反應。
[(C)=季戊四醇三縮水甘油醚(PETriGE);(FF)=炔類;(TF)=環氧化物]
添加PETriGE(由實例E製成)及120毫升無水DMF(Aldrich)至250毫升經烘箱乾燥之圓底燒瓶內。以N2
氣體沖洗反應燒瓶,經隔片閉合並經冰浴冷卻至0℃。在機械攪拌
下,以20分鐘一份一份地添加氫化鈉(1.35克,33.8毫莫耳,在礦物油中60%分散液)(Aldrich)至該溶液內。於0℃下再攪拌40分鐘後,添加溴丙炔(3.73毫升,在甲苯中90%重量%)。持續冷卻90分鐘,然後使該混合物逐漸冷卻至RT。於該溫度下攪拌該混合物,費時一夜。然後使用冰浴將該反應混合物冷卻至10℃,經70毫升水稀釋,經乙酸乙酯(3×70毫升)萃取,並經飽和鹽液(2×50毫升)清洗。在硫酸鈉上乾燥該等合併萃取物並藉旋轉蒸發而濃縮以得到暗褐色液體,在矽凝膠上先使用乙酸乙酯在己烷中之溶液(20:80%v/v),然後逐漸變成乙酸乙酯在己烷中之溶液(40:60%v/v)使該暗褐色液體經柱式層析法純化。合併可以於Rf
=0.31得到TLC(乙酸乙酯:己烷1:1)斑點之溶離份,並發現其係為純丙炔化季戊四醇三縮水甘油醚(3.79克,82%產率)。其光譜如下:1
H NMR(300MHz,CDCl3
):δ 2.43(t,J=2.10Hz,1H)、2.61(q,J=2.70Hz,3H)、2.79(t,J=4.20Hz,3H)、3.13(六重峰,J=3.00Hz,3H)、3.37(d,J=6.00Hz,1H)、3.41(d,J=5.70Hz,1H)、3.51(d,J=3.90Hz,6H)、3.54(s,2H)、3.70(d,J=3.00Hz,2H)、3.74(d,J=2.70Hz,2H)、4.13(dd,J=2.10 & 0.30Hz,2H);13
C NMR(75MHz,CDCl3
):δ 44.44、45.69、51.06、58.84、69.05、70.15、72.24、74.34、80.25;及IR(淨):3267、3057、2991、2924、2878、2755、1480、1434、1367、1337、1260、1168、1096、1014、963、906、840、758、666厘米1
。
以下圖解E係闡明本反應。
[(C)=季戊四醇四疊氮化物(PETAZ);(IF)=OH;(TF)=疊氮化物]
將PETGE(3.6克,10毫莫耳)(由實例C製成)、27毫升DMF及3毫升水裝入50毫升圓底燒瓶內。先後添加疊氮化鈉(7.8克,120毫莫耳,每一環氧化物3當量)及氯化銨(6.36克,3當量)至該溶液內。使該反應燒瓶配備攪拌棒及回流冷凝器,並於50℃下加熱一夜。藉TLC而監測該反應之進展。經該時間後,使該反應混合物冷卻至RT,然後經由布赫納漏斗濾出固體物質,並以乙酸乙酯(3×50毫升)清洗該等固體。以70毫升水稀釋濾出物並經乙酸乙酯(3×50毫升)萃取。以飽和鹽液清洗該等合併有機層,在硫酸鈉上乾燥,並經由矽凝膠床過濾。藉旋轉蒸發而濃縮該濾出物以得到無色液體(5.1克,95%產率)。其光譜如下。
1
H NMR(300MHz,CDCl3
):δ 3.04(bs,4H,OH)、3.33(t,J=5.70Hz,8H)、3.47(s,8H)、3.49(t,J=2.40Hz,8H)、3.93(五重峰(pentate),J=5.10Hz,4H);13
C NMR(75MHz,CDCl3
):δ 45.75、53.52、69.68、71.09、73.12;及
MALDI-TOF MS:C17
H32
N12
O8
;計算值532.5,實測值555.3[M+Na]+
amu。
以下圖解F係闡明本反應。
[(C)=PETGE;(IF1)=OH;(BR1)=IDAN;(TF)=CN]
添加3,3-IDAN(12.0克,97.4毫莫耳,每一環氧化物2.2當量)(Aldrich)及30毫升MeOH至含有攪拌棒之250毫升圓底燒瓶內。添加季戊四醇四縮水甘油醚(4.0克,11.1毫莫耳,44.4毫莫耳環氧化物)在10毫升MeOH中之溶液至該混合物內。使該燒瓶配備回流冷凝器,並於60℃在N2
大氣下,加熱該混合物,並攪拌3天。藉旋轉蒸發而移除揮發性物質以得到16.5克粗重。於200至220℃在高真空下,藉減壓蒸餾(bulb-to-bulb distillation)而移除過量腈以留下罐殘留物(pot residue)(10.3克,9.45克理論產量)。使該粗產物溶解在20毫升MeOH中並使用MeOH作為溶離劑使其通過矽凝膠柱(75.0克,60埃,200至430網目)。藉旋轉蒸發而自該溶離
劑移除揮發性物質以得到所欲產物(8.5克,90%產率)。該混合物之TLC(MeOH)顯示一厚密斑點發生於Rf
=0.85,且最單薄的斑點發生於Rf
=0.7。其光譜如下:13
C NMR(125MHz,CDCl3
):δ 16.96、17.33、44.45、45.45、49.49、50.31、56.27、68.23、71.06、73.46、118.56、119.11。
以下圖解G係闡明該反應。
[(EX)=IMEA]
在攪拌下,以10分鐘一滴滴添加0.85毫升之37%甲醛至DETA(1.037克,0.01毫莫耳)在5毫升DI水中之冰冷水溶液內。攪拌一小時後,藉旋轉蒸發而濃縮該反應混合物。然後在冰冷卻下,小心地添加KOH小粒至該濃縮物內,直到獲得雙相溶液為止。以CHCl3
萃取油性上相,並在Na2
SO4
上乾燥。藉旋轉蒸發而移除揮發性物質,得到如清澈油之所欲IMAE(1.0克,95%產率)。其光譜如下:1
H NMR(CDCl3
,300MHz,ppm)、2H(1.7,s,br)、8H(2.42至3.2,m)、2H(3.42,s)。13
C NMR(CDCl3
,75MHz,ppm)、41.30、45.53、52.49、56.93、71.06 ppm。
以下圖解H係闡明本反應。
該PIPZ表面業經發現有利於封包研究,且因此如稍後之實例所述,可以使低代樹枝狀高分子具有封包性質。以下實例(實例1至3、4B至8、10B,及13A)係闡明PIPZ與具有2、3及4之多重性的各種核心之連接步驟。實例4A、7A、9、13B及14係闡明羧酸根或其酯作為具有各種核心、(IF)及(EX)分子團之該表面。其它表面係闡明在實例12及15中。
使用哌覆蓋該三羥甲基丙烷三丙烯酸酯以產生該三胺官能性核心
[(C)=TMPTA;(EX1)=哌;(TF)=胺]
添加13克無水PIPZ(151毫升,每一丙烯酸酯5當量)(Aldrich)及45克MeOH至含有攪拌棒之250毫升圓底燒瓶內。使該混合物呈均質性並於N2
大氣下冷卻至4℃。使用滴液漏斗以約10分鐘添加3克TMPTA(10.12毫克,30.4毫莫耳丙烯酸酯)(Aldrich)在20克MeOH中之溶液至該攪拌混合物內。於4℃下攪拌該混合物,費時一小時,然後於25℃下攪拌一小時。利用旋轉蒸發器蒸發該混合物之揮發物。將所形成殘留物溶解在氯仿中並經水(4×20毫升)萃取。TLC(在甲醇中5% NH4
OH)顯示完全移除PIPZ。在硫酸鈉上乾燥有
機層,過濾並蒸發揮發物以得到如黏性無色固體之所欲產物(3.2克;60%產率);且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 0.89(qt,3H,CH3
)、1.49(t,2H,CH2
)、2.42(bs,12H,CH2
)、2.52(t,6H,CH2
)、2.66(t,6H,CH2
)、2.86(t,12H,CH2
)、4.05(s,6H,CH2
);13
C NMR(125MHz,CDCl3
):δ 7.49、22.77、32.16、40.91、45.93、54.03、54.93、63.57、63.57、172.04;及MALDI-TOF:計算值554.4;實測值556amu。
上述反應可藉以下圖解1而進一步闡明:
以哌覆蓋該三環氧化物TMPTGE以產生三胺官能性核心:三羥甲基丙烷三(2-羥丙基-3-哌之哌),之反應
[(C)=TMPTGE;(FF)=Et;(IF 1)=OH;(EX 1)=PIPZ;(TF)=二級NH;G=0.5]
添加17克PIPZ(198毫莫耳,每一過氧化合物5當量)(Aldrich)及50克MeOH至含有攪拌棒之250毫升圓底燒瓶
內。使該混合物呈均質性。以約5分鐘添加4.0克TMPTGE(13.2毫莫耳,39.6毫莫耳環氧化合物)在20克MeOH中之溶液至該混合物內。於50℃在N2
大氣下加熱該混合物,費時20小時。該粗混合物(在MeOH中5% NH4
OH)之TLC並經KMnO4
溶液顯像顯示無環氧化物。利用旋轉蒸發器蒸發該混合物之揮發物。使用利用高真空之減壓蒸餾裝置蒸餾所形成殘留物之PIPZ,並於140℃下加熱該混合物,費時30分鐘。該混合物(在MeOH中5% NH4
OH)之TLC顯示該混合物內仍殘留PIPZ。將該殘留物溶解在20克MeOH中,並經60克甲苯混合。使用旋轉蒸發器蒸餾該均質混合物以共沸PIPZ。重覆該程序3次以得到藉TCL証明之無PIPZ產物。於25℃下進行高真空抽氣,費時一夜以得到6.8克(92%產率)所欲產物;且且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 0.84(t,J=7.5Hz,3H)、1.40(qt,J=7.5Hz,2H)、2.3至2.5(bm,12H)、2.7至3.0(bm,12H)、3.3至3.5(m,5H)、3.88(m,6H);13
C NMR(125MHz,CDCl3
):δ 7.71、23.14、43.40、46.03、54.61、61.48、66.35、71.96、73.14;及MALDI-TOF:計算值560.4、560amu。
以下圖解2係闡明上述反應:
[(C)=PETGE;(IF 1)=OH;(EX 1)=PIPZ;(TF)=二級NH;G=0.5]
添加26克PIPZ(310毫莫耳,每一環氧化合物8當量)(Aldrich)及45克MeOH至含有大攪拌棒之500毫升圓底燒瓶內。以5分鐘一滴滴添加3.5克PETGE(9.71毫莫耳,38.8毫莫耳環氧化合物)(由實例A製成)在10克MeOH中之溶液至該均質混合物內。於25℃在N2
大氣下攪拌該混合物,費時24小時。使用旋轉蒸發器移除揮發物以得到白色固體殘留物。於高真空及140℃下使用減壓蒸餾裝置蒸餾該殘留物之PIPZ,費時30至40分鐘。如藉TLC(在MeOH中30% NH4
OH)所測定,所形成罐殘留物含有少量PIPZ。藉3次共沸蒸餾使用30毫升MeOH及90毫升甲苯而移除該殘留PIPZ。於25℃下使用高真空乾燥該產物,費時一夜以得到粗產物(6.7克;97%產率)。該混合物之TLC(在MeOH中30%NH4
OH)顯示少許寡聚物。藉SEC使用SephadexTM
LH-20在MeOH中之溶液
而純化一整份該混合物(700毫克)。獲得該空隙率後,收集48種各8毫升之溶離份。溶離份1至3係空的,溶離份4至7僅含有寡聚物,而溶離份8為產物及寡聚物之混合物。溶離份9至48僅含有所欲產物並經收集,且汽提揮發物以得到400毫克產物。且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.36至2.44(bm,2H)、2.53至2.60(bm,2H)、2.82(m,4H)、3.45(m,4H)、3.88(m,2H);13
C NMR(125MHz,CDCl3
):δ 45.62、46.02、46.02、54.72、61.52、66.18、70.49、74.27及MALDI-TOF:計算值704.5,實測值705 amu。
A.以得自季戊四醇四縮水甘油醚(PETGE)及N-哌羧酸乙酯之經單基保護哌,核心:聚(醚羥基胺)樹枝狀高分子,G=0,覆蓋該四環氧化合物[(C)=PETGE;(IF 1)=OH;(EX 1)=哌羧酸乙酯;(TF)=羧酸酯;G=0.5]
添加EPC(6.32克,40毫莫耳,每一環氧化合物1當量)及40毫升MeOH至100毫升圓底燒瓶內,並使該燒瓶配備攪拌棒。使PETGE(3.6克,10毫莫耳)(由實例B製成)溶解在10毫升MeOH中,並以20分鐘經由滴液漏斗一滴滴地添加至上述攪拌溶液中。攪拌2小時後,TLC顯示PETGE完全消耗,Rf
=0.80(CH2
Cl2
:CH3
OH(3:1)),並使用碘蒸汽以視覺化該等斑點。於RT下持續攪拌,費時一夜,並使用旋轉蒸發器蒸
發溶劑,其可得到無色液體。於180℃下在20分鐘內藉Kugelrohr蒸餾裝置而蒸餾微量EPC,可得如黏性液體之酯表面(G=0)樹枝狀高分子2
(9.47克;95%)。且其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 1.24(t,J=6.90Hz,12H)、2.36至2.55(m,24H)、3.29至3.49(m,36H)、3.89(quintet,J=4.80Hz,4H)、4.10(q,J=7.20Hz,8H);13
C NMR:(75MHz,CD3
OD):δ 13.80、43.50、45.80、53.42、61.31、61.53、67.55、70.15、74.30、155.95;IR(淨):λmax
3446、2975、2863、2801、1695、1536、1456、1424、1378、1352、1244、1116、1034、876、830、758厘米-1
;及MALDI-TOF:C45
H84
N8
O16
計算值993,實測值1017(M+
Na)amu。
以下圖解3係闡明上述反應
B.得自實例4A之經覆蓋四環氧化物核心的脫除保護作用,該酯表面,G=0,樹枝狀高分子與KOH之水解作用[(C)=PETGE;(IF 1)=OH;(EX 1)=PIPZ;(TF)=二級胺;G=0.5]
將樹枝狀高分子2
(9.4克,9.46毫莫耳)(由實例4A製成)
裝入250毫升圓底燒瓶內,並溶解在85毫升MeOH中。使該燒瓶配備攪拌棒,於RT下添加氫氧化鉀溶液(28.2克KOH溶解在56.4毫升水中)至上述攪拌溶液中。將回流冷凝器配置在燒瓶內,並於85至90℃下保持在預熱油浴中。藉TLC監測反應之進展。2小時後,TLC顯示3個斑點,並持續加熱,費時一夜。於Rf
=0.17(在MeOH中之50% NH4
OH)下一旦接觸寧海俊溶液,該產物顯示一個粉紅色斑點。於減壓下使用旋轉蒸發器移除溶劑及水,可得到黏性液體。將該液體移入分液漏斗內並經DCM(3×50毫升)萃取。在Na2
SO4
上乾燥合併DCM層並經由Celite(1厘米高)過濾,然後以DCM徹底清洗Celite。使用旋轉蒸發器移除DCM,得到如無色黏性液體之樹枝狀高分子3
(6.01克,90%產率)。藉於高真空下乾燥2小時可得到吸濕性固體。自其光譜數據可知該物質很純,且不需要進一步純化即可用於後續合成法中。且其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 3.46(s,8H)、3.39(d,J=2.10Hz,8H)、2.84(t,J=4.80Hz,16H)、2.51(bs,16H)、2.41(d,J=3.90Hz,8H)、2.40(s,4H,NH)、2.37(s,4H,OH)、3.89(sextet,J=4.80Hz,4H);13
C NMR:(75MHz,CD3
OD):δ 45.06、45.80、54.33、62.07、67.37、70.14、74.41;IR(淨):λmax
3456、2936、2817、1595、1457、1319、1111、1005、859、732、697厘米-1
;及MALDI-TOF:C33
H68
N8
O8
計算值704,實測值727(M+
Na),743(M+
K)amu。
以下圖解4係闡明上述反應:
[(C)=TPEGE;(IF1)=OH;(EX1)=PIPZ;(TF)=二級NH;G=0.5]
在機械攪拌下,添加TPEGE(Aldrich)(2.0克,3.2毫莫耳,12.9毫莫耳環氧化物)及8毫升DME至含攪拌棒之50毫升圓底燒瓶內。添加EPC(4.5克,28.4毫莫耳,每一環氧化物2.2當量)及4毫升MeOH至該混合物內。於25℃下攪拌該混合物,費時60小時,在N2
大氣下密封。一整份該混合物之MALDI-TOF質譜顯示於622amu下該起始物質完全消失,且於1255amu及1371amu下該等產物信號形成。使用旋轉蒸發器移除該混合物之揮發物以得到7.6克之粗重。使該混合物溶解在125毫升之MeOH中,並於25℃在20psi(137.9千帕(kPa))壓力下,在含有3K截止再生之纖維素膜之切向流UF裝置上經超過濾。於1500毫升過濾液之UF收集期間(~5小時)將該燒瓶內所標記之保留物體積維持於100至125毫
升。在旋轉蒸發器上汽提前一升過濾液之揮發物,繼而於40℃下進行高真空抽空以得到4.3克物質。該物質之MALDI-TOF質譜顯示範圍自300至1200 amu之低分子量物質及一些已經由該薄膜滲透之產物。將最後500毫升過濾液之揮發物蒸發以得到500毫克藉TLC測定僅顯示Rf
=0.75及具有該所欲產物之波峰之質譜的物質。汽提該保留物之揮發物以得到1.9克經TLC(乙酸乙酯-MeOH 1:1)測定Rf
=0.75之物質。該產物之總產率為47%。其光譜如下:MALDI-TOF MS:C67
H96
N8
O16
計算值1252.7;實測值1277[M+Na]+
amu。
添加KOH(3.6克,54.5毫莫耳,每一胺基甲酸酯18當量)、7.5克DI水及12克MeOH至含有攪拌棒並配備冷凝器之50毫升圓底燒瓶內。添加四羥苯基乙烷(羧酸2-羥丙基-3-哌-1-乙酯)醚(1.2克,0.95毫莫耳)(由實例5A製成)在4克MeOH中之溶液至該均質混合物內。於80℃在N2
大氣下加熱該混合物,費時16小時。將該混合物冷卻至RT,並先後使用旋轉蒸發器及高真空移除揮發物以得到黃色固體。以DCM(5×30毫升)萃取該混合物。以無水硫酸鈉乾燥所收集DCM萃取物。汽揮該經過濾溶劑之揮發物以得到1.2克物質。使該物質溶解在熱MeOH中並經由Celite柱過濾。藉高真空而移除該等揮發物以得到800毫克固體,使其溶解在最少量之MeOH中並在MeOH中之Sephadex LH-20柱上純
化,採集各2毫升之30種溶離液。如藉MALDI-TOF質譜法及13
C NMR光譜法証明,溶離液11至20含有所欲產物(440毫克,55%產率)。其光譜如下:13
C NMR(75MHz,D2
O):δ 46.16、54.50、62.95、69.29、72.17、117.29、131.69、140.04、159.16;及MALDI-TOF MS:C54
H78
O8
計算值967.25;實測值968[M]+
,990[M+Na]+
amu。
以下圖解5係闡明上述反應。
[(C)=TPMTGE;(IF1)=OH;(EX1)=PIPZ;(TF)=二級NH;G=0.5]
以10分鐘添加EPC,2
(3.55克,22.5毫莫耳,每一環氧化物1.5當量)溶解在10毫升MeOH中之溶液至TPMTGE,1
(2.3克,5.0毫莫耳)在20毫升DME及10毫升MeOH中之溶液內。以塞子閉合該燒瓶,並於25℃下攪拌該混合物,費時2天。在旋轉蒸發器上移除該溶劑並於165℃下藉Kugelrohr
蒸發法而移除過量EPC以得到如高黏性液體之產物3
(4.56克,97.6%)。蒸發後,TLC(MeOH在5毫升DCM中之溶液15滴,過錳酸鉀色料)顯示3個斑點發生於Rf
=0.28(主要)、0.22及0.11(次要)。其光譜如下:MALDI-TOF MS:C40
H70
N6
O12
計算值935.1100;實測值935.6[M]+
及957.5[M+Na]+
amu。
在機械攪拌下,添加三羥苯基甲烷三(羧酸2-羥丙基-3-哌-1-乙酯)(4.46克,4.77毫莫耳)(由實例6A製成)溶解在40毫升MeOH中之溶液至250毫升圓底燒瓶內。於25℃下一滴滴地添加水性KOH(13.38克之90% KOH係溶解在26.76毫升水中)溶液入上述攪拌反應混合物內。添加完成後,使該圓底燒瓶配備回流冷凝器,並將該燒瓶於入油浴中,然後於85至90℃下加熱。加熱24小時後,於減壓下在旋轉蒸發器上移除該溶劑。以DCM(3×50毫升)萃取所形成粗反應混合物。經由Celite床過濾合併萃取物並在無水硫酸鈉上乾燥。TLC(30% NH4
OH在MeOH中之溶液)顯示兩個斑點發生於Rf
=0.46及0.27(經由寧海俊溶液染色)。在旋轉蒸發器上移除該溶劑並於高真空下乾燥殘留物以得到如無色固體之所欲產物3
(3.37克,98.3%產率)。其光譜如下:MALDI-TOF MS:C40
H58
N6
O6
計算值718.9;實測值719.5[M]+
、741.5[M+Na]+
、757.5[M+K]+
amu。
以下圖解6係闡明本反應。
[(C)=TGIC;(IF1)=OH;(EX1)=PIPZ;(TF)=二級NH;G=0.5]
急速地添加TGIC(0.594克,2毫莫耳),至EPC(1.42克,9毫莫耳)在6毫升MeOH中之攪拌溶液內,繼而添加4毫升DCM。攪拌約3小時後,該異氰尿酸酯完全溶解。於25℃下再攪拌該反應混合物,費時48小時。TLC(1:2:2之己烷:乙酸乙酯:氯仿)顯示異氰尿酸酯完全耗盡,且該粗產物之MALDI-TOF僅顯示該所欲產物之波峰。使用旋轉蒸發器移除溶劑以得到無色透明液體。於170℃下藉Kugelrohr蒸發法而移除過量EPC,費時15分鐘以得到如淺黃色高黏性液體之化合物2
(1.54克,100%產率)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 1.24(t,J=7.20Hz,9H)、2.41至2.54(m,18H)、3.45(bs,12H)、3.90至4.04(m,6H)、4.07至4.16(m,3H)、4.11(q,J=7.20Hz,6H);13
C NMR(75MHz,CD3
OD):δ 13.79、43.52、46.96、53.28、61.54、62.15、65.54、150.11、155.94;IR(淨):λmax
3344、2986、2934、2858、2806、1685、1465、1434、1388、1357、1383、1244、1173、1127、1096、1034、1004、881、835、768厘米-1
;及MALDI-TOF:C33
H57
N9
O12
計算值771;實測值794[M+Na]+
amu。
以下圖解7係闡明該反應:
將該經羧酸酯保護之異氰尿酸酯,2
(由實例7A製成)溶解在14毫升MeOH中之溶液裝入圓底燒瓶內。然後,於25℃在機械攪拌下以5分鐘添加水性KOH(4.5克之KOH溶解在9毫升水中之溶液)至上述溶液內。將該燒瓶放在經預熱之油浴(85至90℃)內並加熱一夜。TLC(3:1之DCM:MeOH)顯示無起始物質(在50% NH4
OH/MeOH中具有Rf
=0.41之正寧海俊試驗)。在旋轉蒸發器上移除MeOH並以DCM(2×30毫升)萃取水性層。在Na2
SO4
上乾燥該等合併萃取物,經由賽力特矽藻土墊過濾,在旋轉蒸發器上濃縮,並於高真空下乾燥以形成透明液體。自分析已知化合物2
不僅失去該等
保護基團而產生所欲產物3
,而且於該水解步驟期間,該核心經由該鹼而開環以產生該降解產物4
。自MALDI-TOF可確認產物4
為具有多重數2之尿素衍生物,其係為主要產物。其光譜如下:13
C NMR(75MHz,CD3
OD):δ 45.13、45.81、54.27、63.02、68.48、160.40;IR(淨):λmax
3272、2929、2847、2811、1659、1567、1454、1367、1321、1270、1132、1065、1009、855、794、702厘米-1
;及MALDI-TOF:C15
H32
N6
O3
計算值344;實測值367[M+Na]+
amu。
以下圖解8係闡明本反應。
[(C)=TMPTGE;(IF 1)=OH;(EX 1)=PIPZ;(TF)=二級NH;G=0.5]
於機械攪拌下添加17克PIPZ(198毫莫耳,每一過氧化合物5當量)(Aldrich)及50克MeOH至250毫升圓底燒瓶內。以約5分鐘添加4.0克TMPTGE(13.2毫莫耳,40毫莫耳環氧化合物)在20克MeOH中之溶液至該混合物內。於50℃在氮大氣下加熱該混合物,費時20小時。該粗混合物(在MeOH中5% NH4
OH,經過錳酸鉀溶液染色)之TLC顯示無環氧化物。藉旋轉蒸發而移除揮發物,並於140℃在高真空下藉Kugelrohr減壓蒸餾而移除過量PIPZ,費時30分鐘。該混合物(在MeOH中5% NH4
OH)之TLC顯示該混合物內仍殘留PIPZ。使用20克MeOH及60克甲苯作為溶劑使該殘留PIPZ以共沸混合物經移除。重覆該程序3次以得到無PIPZ產物。於25℃下進行高真空抽氣,費時一夜以得到所欲產物(6.8克;92%產率);且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 0.84(t,J=7.5Hz,3H)、1.40(qt,J=7.5Hz,2H)、2.3至2.5(bm,12H)、2.7至3.0(bm,12H)、3.3至3.5(m,5H)、3.88(m,6H);13
C NMR(125MHz,CDCl3
):δ 7.71、23.14、43.40、46.03、54.61、61.48、66.35、71.96、73.14;及MALDI-TOF:計算值560.4;實測值560[M]+
amu。
以下圖解9係闡明該反應:
[(C)=四環硫乙烷;(IF1)=SH;(EX1)=EPC;(TF)=羧酸酯;G=0.5]
將EPC(0.91克,5.76毫莫耳,每一環硫化物一當量)及5毫升MeOH裝入配備攪拌棒之50毫升圓底燒瓶內,並冷卻至4℃。以5分鐘一滴滴地添加TES(0.610克,1.44毫莫耳)(由實例D製成)溶解在5毫升氯仿中之溶液(TES並不溶於MeOH)至上述攪拌溶液內。攪拌該反應混合物,費時36小時。在旋轉蒸發器上蒸發該等溶劑並藉柱式層析法在具有3比1之DCM及MeOH之矽凝膠上純化粗反應混合物以得到純四酯2
,其具有以下光譜:1
H NMR:(300MHz,CD3
Cl):δ 1.24(J=6.90Hz,12H)、2.44(m,26H)、2.61(4H,SH)、3.22(四重峰(quintet),J=6.00Hz,4H)、3.44至3.59(m,30H)、4.09(q,J=7.20Hz,8H);13
C NMR:(75MHz,CD3
Cl):δ 13.79、37.53、43.64、53.08、61.54、62.08、69.39、74.42、76.10、155.95;及MALDI-TOF:C45
H84
O12
S4
計算值1057;實測值1079(M+
Na)amu。
以下圖解10係闡明該反應:
[(C)=PETGE;(IF 1)=OH;(EX 1)=PIPZ;(TF)=二級NH;G=0.5]
使EPC(6.32克,40毫莫耳,每一環氧化合物1當量)及40毫升MeOH在100毫升圓底燒瓶內混合,並以機械攪拌該燒瓶。使PETGE(3.6克,10毫莫耳)溶解在10毫升MeOH中,並以20分鐘經由滴液漏斗一滴滴地添加至上述溶液中。再攪拌2小時後,TLC(CH2
Cl2
:CH3
OH(3:1))顯示PETGE(Rf
=0.80,經碘蒸汽染色)完全消耗。於25℃下持續攪拌,費時一夜,並使用旋轉蒸發器蒸發溶劑,其可得到無色液體。於180℃下在20分鐘內藉Kugelrohr蒸餾裝置而移除殘餘微量EPC,可得如黏性液體之所欲單基保護之產物(9.47克,95%)。其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 1.24(t,J=6.90Hz,12H)、2.36至2.55(m,24H)、3.29至3.49(m,36H)、3.89(quintet,J=4.80Hz,4H)、4.10(q,J=7.20Hz,8H);13
C NMR:(75MHz,CD3
OD):δ 13.80、43.50、45.80、
53.42、61.31、61.53、67.55、70.15、74.30、155.95;IR(淨):λmax
3446、2975、2863、2801、1695、1536、1456、1424、1378、1352、1244、1116、1034、876、830、758厘米-1
;及MALDI-TOF:C45
H84
N8
O16
計算值993,實測值1017(M+
Na)amu。
將經單基保護之產物(由實例10A製成)裝入250毫升圓底燒瓶內,並於機械攪拌下溶解在85毫升MeOH中。於25℃下添加KOH溶液(28.2克KOH溶解在56.4毫升水中)至上述攪拌溶液中。將回流冷凝器配置在燒瓶內,並於85至90℃下保持在預熱油浴中。藉TLC監測反應之進展。2小時後,TLC顯示3個斑點,並持續加熱,費時一夜。於Rf
=0.17下(在MeOH中之50% NH4
OH內)一旦接觸寧海俊溶液,該產物顯示一個粉紅色斑點。於減壓下使用旋轉蒸發器移除溶劑及水,可得到黏性液體。將該液體移入分液漏斗內並經DCM(3×50毫升)萃取。在硫酸鈉上乾燥有機層並經由Celite(1厘米高)過濾。使用旋轉蒸發器移除溶劑。於高真空下乾燥剩餘的無色黏性液體,費時2小時以得到如吸濕性固體之所欲樹枝狀高分子2
(6.01克,90%產率)。其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 3.46(s,8H)、3.39(d,J=2.10Hz,8H)、2.84(t,J=4.80Hz,16H)、2.51(bs,16H)、2.41(d,J=3.90Hz,8H)、2.40(s,4H,NH)、2.37(s,4H,OH)、3.89(sextet,J=4.80Hz,4H);且13
C NMR:(75MHz,CD3
OD):δ 45.06、45.80、54.33、62.07、67.37、70.14、74.41;IR(淨):λmax
3456、2936、2817、1595、1457、1319、1111、1005、859、732、697厘米-1
;及MALDI-TOF:C33
H68
N8
O8
計算值704,實測值727(M+
Na),743(M+
K)amu。
以下圖解11係闡明上述反應
[(C)=PETGE;(IF1)=OH;(EX1)=AEP;(TF)=一級NH2
;G=0.5]
於氬大氣下,在配備迪安-斯塔克(Dean-Stark)收集器及冷凝器之250毫升圓底燒瓶內,將AEP(8.08克,0.0625莫耳)(Acros)在4-甲基-2-戊酮(Aldrich)中之混合物加熱至回流。理論量之水(1.12毫升)以共沸液經蒸餾後,使該反應冷卻至RT。將該反應混合物(4毫升)放入25毫升圓底燒瓶內,並添加PETGE(每一環氧化物1.5當量二級胺)(由實例B製成)在4毫升MeOH中之溶液。將該混合物加熱至60℃,費時一夜,
繼而於真空下移除溶劑。以20毫升2-丙醇及3毫升水處理殘留物。然後將該混合物加熱至50℃,費時2.5小時,繼而移除溶劑以得到如黃色油之產物。其光譜如下:MALDI-TOF:實測值877.759(M+
H)、899.752(M+
Na)、748.621(三-取代基產物)amu。
以下圖解12係闡明上述反應:
[(C)=PETGE;(IF1)=OH;(TF)=吖丙啶;G=0.5]添加PETGE(360毫克,1.0毫莫耳)(由實例B製成)在1毫升MeOH中之溶液至2-甲基吖丙啶(913毫克,16毫莫耳)(Aldrieh)在2毫升MeOH中之溶液內。於RT下攪拌一夜。然後移除該溶劑以得到如清澈無色油之產物(550毫克,93%產率)。
MALDI-TOF:計算值588;實測值589.430(M+
H)、
611.422(M+
Na)amu。
以下圖解13係闡明上述反應:
[(C)=DMDTB;(EX1)=AEP;(IF1)=OH;(BR1)=PETGE;(EX2)=EPC;(TF)=羧酸酯;G=0.5]
A.添加AEP(1.0克,7.75毫莫耳,每一酯2當量)及5克MeOH至含有攪拌棒之25毫升圓底燒瓶內。添加DMDTB(500毫克,1.88毫莫耳,3.76毫莫耳酯)至該均質混合物內。於25℃下經24小時後,該混合物之TLC(10% NH4
OH在MeOH中之溶液)顯示殘留大量二酯並形成一些產物。於65℃下加熱該混合物,費時16小時,經TLC顯示該二酯完全轉化成一斑點。濃縮該混合物,並藉矽凝膠使用30% NH4
OH在MeOH中之溶液而層析。汽提含該產物之所收集溶離液的揮發物以得到所欲二(2-醯胺基乙基哌)-4,4'-二硫丁醯胺(840毫克;97%產率);且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.04(t,J=7Hz,4H)、2.32(t,J=7Hz,4H)、2.38至2.52(m,16H)、2.74(t,J=7Hz,4H)、2.89(t,J=7Hz,4H)、3.34(dt,J=7Hz,4H);13
C NMR(125MHz,CDCl3
):δ 24.79、34.60、35.81、37.98、45.97、54.20、57.22、172.06;及MALDI-TOF:計算值461;實測值460 amu。
以下圖解14係闡明上述反應:
B.添加PETGE(660毫克,1.83毫莫耳、每一NH 1.3當量)及2克MeOH至含有攪拌棒之25毫升圓底燒瓶內。以5分鐘一滴滴添加二(2-醯胺基乙基哌)-4,4'-二硫丁醯胺(140毫克,0.3毫莫耳)(由實例13A製成)在2克MeOH中之混合物至該均質混合物內。於25℃下攪拌該混合物,費時24小時,在N2
大氣下密封。一滴滴地添加該混合物至含攪拌棒之25毫升圓底燒瓶內的EPC(1.8克,11.4毫莫耳,每一環氧化物1.6當量)混合物中。於RT下攪拌所形成混合物,24小時,在N2
大氣下密封。在旋轉蒸發器上濃縮該混合物以得到3克粗物質。使一整份該混合物(900毫克)溶解在MeOH中以得到50%w/w溶液,並添加至在MeOH中之Sephadex LH-20柱(其空隙率為525毫升)內。該空隙率被佔滿後,收集37種各4毫升之溶離份。各溶離液之TLC(30% NH4
OH在MeOH中之溶液)顯示溶離份2至10含有純產物。收集這些溶離份並先後經旋轉蒸發器及高真空汽提以得到所欲產物
(172毫克;98%產率);且其光譜如下:13
C NMR(125MHz,CDCl3
):δ 14.66、24.77、34.57、36.01、38.00、43.63、45.59、52.90、53.18、56.61、60.81、60.81、61.34、66.36、66.46、70.56、74.12、74.26、155.42、172.06;及MALDI-TOF:計算值2130;實測值1065(得自二硫化物鍵之分裂)。
以下圖解15係闡明上述反應:
[(C)=PETGE;(IF 1)=乙醯基;(EX 1)=EPC;(TF)=羧酸酯;G=0.5]
添加季戊四醇四(羧酸2-羥基-3-哌-N-乙酯)(800毫克,8.1毫莫耳,3.2毫莫耳OH)(由實例10A製成)、二甲胺基吡啶(23毫克,0.19毫莫耳,以酸酐計3莫耳%)(Acros)及6毫升DCM至含有攪拌棒之10毫升圓底燒瓶內。以2至3分鐘一滴滴地添加乙酸酐(550毫克,5.4毫莫耳,每一OH 1.7當量)至已冷卻至4℃之該均質混合物內。於25℃在經N2
大氣密封下攪拌該混合物,費時16小時。以20毫升二氯甲烷稀釋該混合物並經飽和NaHCO3
(2×3毫升)清洗。以Na2
SO4
清洗該有機層,過濾並汽提揮發物以得到所欲產物(930毫克:99%產率),其具有以下光譜:1
H NMR(500MHz,CDCl3
):δ 1.25(t,J=7Hz,12H)、2.06(s,9H)、2.38至2.43(m,8H)、2.5至2.7(m,16H)、3.5至4.0(m,8H)、4.1至4.5(m,16H)、3.5至3.7(m,8H)、4.127(qt,J=7Hz,8H)、5.12(pt,J=6.5Hz,4H);13
C NMR(125MHz,CDCl3
):δ 14.67、21.23、39.01、43.74、45.77、53.34、58.52、61.29、70.04、71.41、155.45、170.25;及MALDI-TOF:計算值1160,實測值1160 amu。
以下圖解16係闡明上述反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(EX2)=丙烯醯氧基甲基;(TF)=TMS;G=0.5]
添加丙烯醯氧甲基三甲基矽烷(1.6克,10.2毫莫耳,每一NH 1.2當量)及5克MeOH至具有攪拌棒之25毫升圓底燒瓶內。於25℃下添加具有哌表面之PETGE樹枝狀高分子(1.5克,2.1毫莫耳,8.5毫莫耳NH)(由實例4B製成)在4克MeOH中之溶液至該混合物內。於25℃下攪拌該混合物,費時24小時,並於N2
大氣層下密封。使用含有1K再生纖維素膜之切向流超過濾裝置中以在MeOH中呈~5%溶液而純化該反應混合物以得到500毫升過濾液(~8次再循環)。使得自該留存物之揮發性物質經由Whitman第1號濾紙過濾,並先後使用旋轉蒸發器及高真空凝縮所形成濾出物以得到所欲產物(2.7克;95%產率);且其光譜如下:13
C NMR(125MHz,CDCl3
):δ-3.50、33.42、45.17、47.38、55.32、56.14、57.23、60.71、67.37、70.14、74.41、172.61;及MALDI-TOF MS:C6
H116
N8
O12
Si4
計算值1337;實測值1338[M+1]+
amu。
以下圖解17係闡明上述反應:
[(C)=PETGE;(IF1)=OH;(TF)=磺酸;G=0.5]
添加DI水(15.0克)至含有攪拌棒之25毫升圓底燒瓶內。藉使N2
氣體經由該溶液起泡,費時20分鐘而將該混合物除氧。添加偏亞硫酸氫鈉,Na2
S2
O5
(2.6克,13.7毫莫耳,27.4毫莫耳NaHSO3
)至該溶液內,並藉攪拌使所形成混合物呈均質性。以2至3分鐘一滴滴添加PETGE(1.0克,2.7毫莫耳,11毫莫耳環氧化物)在1克MeOH中之溶液至該混合物內。於25℃在N2
大氣下快速攪拌該混合物,費時24小時。藉旋轉蒸發法而移除該均質混合物之揮發物以得到白色固體。進一步於30℃在高真空下抽空該固體,費時3小時以得到該粗產物(3.8克)。於60℃下以100毫升之95%ETOH攪拌該產物,費時30分鐘,然後經由WhitmanTM
第1號濾紙過濾以得到清澈無色溶液。藉旋轉蒸發法而移除揮發性物質,繼而於高真空下乾燥以得到純化產物(300.0毫克;15%產率)。其光譜如下:13
C NMR(125MHz,D2
O):δ 47.58、48.01、54.47、72.58、74.60。
以下圖解18係闡明上述反應:
以(EX)表示之該PIPZ業經發現有利於封包研究,因此如以下實例所述,可以使低世代樹枝狀高分子具有封包性質。藉這些實例及各種樹突結構體(FF)分子團而闡明各種(BR)及(EX)。
[(C)=EDA;(IF1)=OH;(FF)=H;(BR1)=TMPTGE;(TF)=環氧化物;G=1]
以15分鐘一滴滴添加EDA(0.06克;1毫莫耳)在3毫升MeOH中之溶液至TMPTGE(1.81克;6毫莫耳)在12毫升MeOH中之攪拌溶液內。於RT下持續攪拌,費時24小時,且MALDI-TOF質譜測定法顯示樹枝狀高分子Ⅲ-a
及微量樹枝狀高分子Ⅳ-a
。持續攪拌3天。於減壓下在旋轉蒸發器上蒸發該溶劑以得到無色透明液體,於高真空下使其乾燥。使所有反應混合物溶解在15毫升乙酸乙酯中,然後在偶爾搖動下,一滴滴地添加40毫升己烷。於該時間內,發現沉澱物形成。於RT下保持該燒瓶,費時2小時。藉傾析而分離
該溶液,並使用己烷清洗該沉澱物以得到淺黃色固體(0.716克;由於Ⅲ-a
與Ⅳ-a
之比率未知,所以未能計算該%產率)。Ⅲ-a
之光譜如下:13
C NMR(75MHz,CDCl3
):δ 7.92、14.36、22.87、23.07、31.80、43.60、44.32、51.22、71.81、72.19、73.87;及MALDI-TOF:C30
H56
N2
O12
計算值642;實測值666(M+
Na)amu。
以下圖解19係闡明該反應:
[(C)=TMPTGE;(FF)=E;(IF1)=OH;(BR1)=IMPA;(TF)=PO2
Na;G=1.5]
添加IMPA(1.0克,4.9毫莫耳,每一環氧化物2當量)(Aldrich)及15毫升DI水至含有攪拌棒之25毫升圓底燒瓶
內。添加~10%水性NaOH至該異質混合物內以將該溶液之pH調整至8(可藉pH計測知)。於25℃下添加純吖MPTGE(250毫克,0.83毫莫耳,2.5毫莫耳環氧化物)至該均質混合物內。於25℃下攪拌該混合物,費時3天,並於N2
大氣層下密封,然後使用1K滲析膜在DI水中滲析呈~5%溶液之該混合物,並於13、16、19及22小時更換滲析液4次。先後藉旋轉蒸發器及高真空而移除該留存物之揮發物以得到所欲產物(290毫克;33%產率);且其光譜如下:13
C NMR(125MHz,D2
O)δ 9.63、25.05、45.91、47.76、50.22、51.24、54.56、56.97、57.96、61.27、67.25、74.27、74.68、75.95。
以下圖解20係闡明上述反應:
[(C)=TMPTA;(FF)=Et;(EX1)=PIPZ;(BR1)=TMPTA;(TF)=丙烯酸酯;G=1]
添加6.4克TMPTA(21.7毫莫耳,每一NH2當量)(Aldrich)及5克MeOH至含有攪拌棒之25毫升圓底燒瓶內。以約5分鐘添加2.0克哌基表面TMPTA(3.6毫莫耳,10.8毫莫耳NH)(由實例1製成)在2克MeOH中之溶液至經冷卻至4℃之該混合物內。於25℃在黑暗中攪拌該混合物,費時20小時。以己烷(3×30毫升)萃取該混合物,並在旋轉蒸發器上汽提所形成MeOH層之揮發物。經高真空抽空30分鐘以得到4.9克產物。其光譜如下:該產物之(TF)的表面具有6個羧酸酯;且13
C NMR(125MHz,CDCl3
)δ 7.42、7.47、23.11、23.25、32.27、32.32、40.92、50.59、52.76、53.44、64.14、127.97、128.01、131.31、165.79、165.80、171.96、172.04及MALDI-TOF:計算值1442;實測值1443 amu。
以下圖解21係闡明上述反應:
[(C)=TMPTA;(FF)=Et;(EX1)=PIPZ;(BR1)=TMPTA;(EX2)=PIPZ;(TF)=二級NH;G=1.5]
添加PIPZ(8.8克,102毫莫耳,每一丙烯酸酯5當量)(Aldrich)及38克MeOH至含有攪拌棒之250毫升圓底燒瓶內。添加具有丙烯酸酯表面之聚(酯胺)核心(4.9克,3.4毫莫耳,21毫莫耳丙烯酸酯)(由實例19製成)在10克MeOH中之溶液至經冷卻至4℃的該混合物內。於4℃下攪拌該混合物,費時一小時,然後於25℃下攪拌一小時。藉旋轉蒸發器而移除該混合物之揮發物。於高真空下使所形成粗混合物經減壓蒸餾而移除PIPZ以得到該所欲粗物質(5.5克)。在4次更換滲析液下,使一克該物質在MeOH中經1K再生纖維素膜滲析,一旦抽空揮發物可得到純化產物(400毫克)。該物質之PAGE顯示相當於G=1譜帶,三-羥基表面之PAMAM樹枝狀高分子,之密譜帶;且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 0.89(bt,12H)、1.47(bqt,8H)、2.3至2.6(bm,72H)、2.65t吖,J=7 Hz,24H)、2.86(t,J=7 Hz,24H)、4.04(s,24H);及13
C NMR(125MHz,CDCl3
):δ 7.41、7.42、22.54、22.78、32.25、32.33、40.85、40.91、45.92、52.65、52.82、53.45、54.09、54.14、54.19、63.60、64.16、171.99、172.08、172.40、172.50、172.88。
以下反應圖解22係表示上述反應之步驟:
添加TMPTGE(4.4克,14.6毫莫耳,每一NH 3.9當量)(Aldrich)及20毫升MeOH至含有攪拌棒之100毫升圓底燒瓶內。添加三羥甲基丙烷三(2-羥丙基-3-哌)(700毫克,1.25毫莫耳,3.75毫莫耳NH)(由實例2製成)在10毫升MeOH中之溶液至該混合物內。於50℃在N2
大氣下加熱該混合物,費時3夾。藉旋轉蒸發器及高真空而移除揮發物以得到該粗產物(6.3克)。使一整份之600毫克該產物在MeOH中經由Sephadex LH-20純化。收集溶離份並汽提揮發物以得到
純化產物(220毫克;92%產率)。藉13
C及1
H NMR光譜學分析顯示該產物為所欲產物(其環氧化物環系經MeOH開啟)。該物質之PAGE顯示相當於G=1,[EDA核心],TRIS末端性之PAMAM樹枝狀高分子,之密譜帶;且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 0.84(bs,12H)、1.38(bs,8H)、2.3至2.9(m,12H)、3.37(s,18H)、3.4至3.7(bm,48H)、3.93(bs,18H);及13
C NMR(125MHz,CDCl3
):δ 8.13、23.95、44.62、54.12、59.49、61.23、62.28、65.83、68.20、68.94、70.49、71.89、72.68、73.88、75.15、75.40、80.20。
以下反應圖解23係表示上述反應之步驟:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=TMPTGE;(IF3)=OH;(EX2)=PIPZ;(TF)=二級NH;G=1.5]
添加TMPTGE(873毫克,2.9毫莫耳,每一環氧化物3當量)及5克MeOH至含有攪拌棒之25毫升圓底燒瓶內。使該混合物均質化並冷卻至4℃。以5分鐘添加三羥甲基丙烷三(2-羥丙基-3-哌)(180毫克,0.32毫莫耳,0.96毫莫耳NH)(由實例2製成)在3克MeOH中之溶液至該混合物內。於25℃下經一小時後,該反應混合物之吖LC(30%NH4
OH在MeOH中之溶液)顯示一條自基線至Rf
約0.6之條紋及於Rf
=0.9有過量環氧化物。於25℃下經8小時後,該混合物之TLC顯示無殘留起始胺(無基線斑點)及於Rf
=0.9有一個斑點。以10分鐘添加該反應混合物至PIPZ(14.5克,168毫莫耳,每一環氧化物20當量)在28克MeOH中之溶液內。於25℃下攪拌該混合物,費時24小時。在旋轉蒸發器上移除揮發物以得到白色固體。於高真空及160℃下藉減壓蒸餾而移除過量PIPZ,費時30分鐘以得到清澈無色產物(2.2克)。在3次更換4升MeOH下,以24小時使用1K再生纖維素膜在MeOH中以5%w/w溶液滲析該產物,繼而旋轉蒸發揮發物質以得到所欲產物(508毫克;80%產率)。該均質之PAGE顯示相當於G=1,[EDA核心],TRIS末端性之PAMAM樹枝狀高分子,之密譜帶;且其光譜如下:1
H NMR(500MHz,CD3
OD):δ 0.86(t,J=7 Hz,12H)、1.41(q,J=7 Hz,8H)、2.34(m,60H)、2.84(m,12H)、3.34(bs,12H)、3.36(bs,6H)、3.37(bs,6H)、3.89(bs,12H);及13
C NMR(125MHz,CD3
OD):δ 8.04、8.07、23.91、44.59、46.21、49.82、54.61、55.49、62.66、63.28、68.49、68.67、72.68、75.43。
以下圖解24係闡明上述反應:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(BR1)=DEA;(TF)=OH,G=1]
將皆不需要進一步純化之DEAⅡ
(7.82克,74.47毫莫耳)(Aldrich)及120毫升無水MeOH(Aldrich)放入經烘箱乾燥之250毫升單頸圓底燒瓶內。使該燒瓶配備攪拌棒及隔片。使TMPTGEI
(5克,16.55毫莫耳)溶解在40毫升無水MeOH中並於RT下以一小時經由均壓漏斗一滴滴地添加至上述攪拌溶液內。以回流冷凝器更換該漏斗並於60℃在N2
大氣下加熱60小時。於減壓下經由旋轉蒸發器移除溶劑以得到無色透明液體。將所有反應混合物移入100毫升單頸圓底燒瓶內。於180至190℃在減壓下經由Kugelrohr蒸餾法而分離過量DEAⅡ
。回收如透明黏性液體之產物,Ⅲ
(9.76克;95.53%產率)。其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 0.87(t,J=7.50Hz,3H,CH3
)、1.43(q,CH2,J=7.20 Hz,2H)、2.52至2.79(m,18H)、3.32(s,3H,3×OH)、3.50(s,6H)、3.40(d,J=5.10 Hz,6H)、3.54至3.67(m,12H)、3.93(六重峰(sextet),J=5.10 Hz,3H)、4.85(s,6H,6×OH);13
C NMR:(75MHz,CD3
OD):δ 6.93、22.76、43.43、57.42、58.51、59.47、68.32、71.56、73.72;IR(淨):λmax
3354、2939、2817、1454、1408、1367、1321、1280、1111、1081、1070、871、778厘米-1
;及MALDI-TOF MS:C27
H59
N3
O12
計算值617;實測值
641(M+
Na)amu。
以下圖解25係闡明本反應:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=1.5]
將DEIDAⅡ
(14.07克,74.47毫莫耳)(Aldrich)及120毫升無水MeOH放在經烘箱乾燥之250毫升單頸圓底燒瓶內。使該燒瓶配備攪拌棒及隔片。使TMPTGEI
(5.0克,16.55毫莫耳)(Aldrich)溶解在40毫升無水MeOH中,然後於RT下以一小時經由均壓漏斗一滴滴地添加至上述攪拌溶液內。以回流冷凝器更換該漏斗,並於60℃在N2
大氣下加熱該燒瓶,費時60小時。於減壓下在旋轉蒸發器上移除該溶劑,得到無色透明液體。將所有反應混合物移入100毫升單頸圓底燒瓶內。於150至160℃在減壓下,藉Kugelrohr蒸餾法而
移除過量DEIDAⅡ
。回收呈淺黃色黏性液體之未經蒸餾產物Ⅲ
(12.59克;87.5%產率)。於0℃下將化合物Ⅲ
貯存在乙醇中。其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 4.65(sextet,J=4.20Hz,3H)、4.16(m,12H)、3.59(s,12H)、3.36(s,6H)、3.30(s,6H)、3.05(dd,J=3.60Hz,3H)、2.95(dd,J=3.90Hz,2H)、2.81(dt,J=1.80Hz & 9.90Hz,3H)、2.67(dd,J=8.40 & 8.10Hz,2H)、1.37(q,J=7.50Hz,2H)、1.26(t,J=7.20Hz,6H,2×CH3
)、1.25(J=7.20Hz,12H,6×CH3
)、0.85(t,J=7.50Hz,3H,CH3
);13
C NMR:(75MHz,CD3
OD):δ 6.81、13.36、13.40、22.66、43.48、49.85、53.62、55.76、56.21、58.00、60.55、60.68、68.72、71.17、71.33、71.50、73.40、78.43、78.48、168.67、170.25、172.31;IR(淨):λmax
2980、2934、2904、2868、1741、1460、1408、1378、1342、1250、1198、1111、1065、1024、983、927、860、784厘米-1
;及MALDI-TOF MS:C39
H71
N3
O18
計算值869;實測值893(M+
Na)及847、801、779、775 amu。(該質譜表示OC2
H5
基團經脫去之典型碎斷反應圖案)。
以下圖解26係闡明本反應:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(BR1)=DEIDA;(EX1)=EDA;(TF)=一級NH2
;G=1]
添加EDA(180毫升,在MeOH中77%,每一酯200莫耳當量)至500毫升單頸圓底燒瓶內。以N2
氣體沖洗該燒瓶,使其配備攪拌棒、均壓漏斗,並經冰浴冷卻至0℃。以20分鐘添加六乙酯末端性樹枝狀高分子Ⅲ-g
(0.869克,在10毫升MeOH中1毫莫耳)(由實例23B製成)。自該圓底燒瓶移除均壓漏斗並以隔片閉合,繼而於4℃下貯存40小時。使該燒瓶溫熱至RT並在旋轉蒸發器上移除過量EDA及MeOH以得到無色透明液體,六胺基末端性(G=1)樹枝狀高分子V
,使其進一步於高真空下乾燥。使用甲醇及甲苯,藉共沸蒸餾而分離殘留EDA以得到所欲產物(0.95克;>99%產率)。該樹枝狀高分子V
之光譜為:1
H NMR(300MHz,CD3
OD):δ 0.8至0.9(t,J=5.40,3H)、1.30至1.42(q,J=6.6,2H)、1.94(s,3H,3 OH)、2.64至
2.80(m,24H)、3.26至3.40(m,30H)、3.82(m,3H);13
C NMR(75MHz,CD3
OD):δ 6.70、6.95、21.42、40.77、40.81、41.70、41.94、43.41、43.71、59.41、59.59、68.05、71.58、73.79、172.86;IR(淨):νmax
3290、3068、2930、2863、1659、1542、1437、1360、1292、1110、919、603厘米-1
;及MALDI-TOF MS:C39
H83
N15
O12
計算值954;實測值977(M+
Na)amu。
以下圖解27係闡明本反應:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(BR1)=TRIS;(TF)=OH;G=1]
將TMPTGEI
(2.66克,8.8毫莫耳)及50毫升MeOH放在經烘箱乾燥之100毫升圓底燒瓶內。使該燒瓶配備攪拌棒及塞子。於RT下以一份添加TRISⅢ
(4.79克,39.6毫莫耳)(Fisher Scientific)至上述攪拌反應混合物內。使該燒瓶配置回流冷凝器並於60℃在N2
大氣下加熱60小時。加熱約15分鐘後,TRIS完全溶解。將該反應混合物冷卻至RT並移入500毫升錐形瓶(Erlenmeyer flask)內。然後在使用刮勺恆定攪拌下,首先添加120毫升氯仿,繼而緩慢添加300毫升己烷。於己烷添加期間可發現白色沉澱物形成。再一次徹底混合該混合物並於RT下使其靜置一夜。發現該沉澱物以固體薄片黏附在燒瓶之內壁及底部上。溫和溫合該溶液以使該固體自玻璃分離,繼而經由布赫納濾器過濾該混合物以得到所欲產物(1.7克)。甚至在分離該固體後,無色糊狀物仍殘留在燒瓶之底部上。該糊狀物重5.2克(1
H及13
C NMR顯示樹枝狀高分子Ⅲ
及微量TRIS之信號)。使該糊狀物溶解在5毫升MeOH中,繼而以MeOH(2×2毫升)沖洗燒瓶。將該甲醇溶液裝在Sephadex LH-20柱上。溶析600毫升MeOH後,收集各15毫升整份之溶離份。在溶離份18至47中發現所欲樹枝狀高分子;然而在溶離份48至58中發現TRIS。合併溶離份18至47,並於減壓下在旋轉蒸發器上蒸發溶劑以得到吸濕性固體(4.2克;71.82%),(G=1)PEHAM樹枝狀高分子Ⅲ
。自溶離份48至58蒸發溶劑以得到如無色固體之TRISⅢ
(0.592克)。其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 0.86(t,J=7.20Hz,3H)、1.42(q,J=6.90Hz,2H)、2.64(dd,J=7.80 & 8.10Hz,3H)、2.78(dd,J=3.60 & 3.60Hz,3H)、3.34(s,6H)、3.35(s,6H)、3.41(d,5.10Hz,6H)、3.48(s,1H,OH)、3.50(s,1H,OH)、3.53(d,J=3.00Hz,12H)、3.58(s,1H,OH)、3.67(bt,J=3.00Hz,3H,3×NH)、3.79(sextet,J=3.60Hz,3H)、4.81(s,9H,9×OH);13
C NMR:(75MHz,CD3
OD):δ 6.91、22.72、43.41、44.34、59.83、61.49、70.07、71.57、74.27;IR(淨):νmax
3354、2919、2873、1460、1424、1408、1367、1296、1234、1106、1029、866、773厘米-1
;及MALDI-TOF MS:C27
H59
N3
O15
計算值665;實測值689(M+
Na)amu。
以下圖解28係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(TF)=2°-胺;G=1.5]
添加PETGE(2.45克,6.8毫莫耳,每一NH 5.44當量)(由實例A製成)在8毫升MeOH中之溶液至含有攪拌棒之25毫升圓底燒瓶內。以約5分鐘一滴滴添加季戊四醇四(2-羥丙基-3-哌)(200毫克,0.31毫莫耳,1.25毫莫耳NH)(由實例3製成)在3毫升MeOH中之溶液至該混合物內。於25℃在N2
大氣下攪拌該混合物,費時8.5小時。以約5分鐘一滴滴地添加該混合物至含有攪拌棒、PIPZ(35.0克,406毫莫耳,每一環氧化物15當量)及70毫升MeOH之250毫升圓底燒瓶內。於25℃在N2
大氣下攪拌所形成混合物,費時18小時。使用旋轉蒸發器自該混合物移除揮發性物質以得到白色固體殘留物。於高真空及140℃之罐溫下使用Kugelrohr減壓蒸餾法自該反應粗物質移除揮發性物質,直到該罐中之殘留物為燒瓶內側上之清澈均質膜為止。該粗殘留物重5.0克。
使該物質溶解在100毫升MeOH中,並將其放在1K再生纖維素膜中,並在4次更換滲析液下,於2升容器內滲析48小時。TLC(30%NH4
OH在MeOH中之溶液)顯示一些低分子量物質存在於該混合物內。自留存物移除揮發性物質以得到產物(1.3克,理論產量:992毫克)。因此,再滲析該物質,費時24小時。該物質之TLC顯示低分子量殘留物幾乎完全移除。汽提該留存物之揮發物以得到純化產物(900毫克)。
為完全移除所有低分子量雜質,進一步在DI水中滲析該產物,費時24小時以得到純產物(360毫克,36%產率)。該留存物之TLC顯示一個斑點,其表示低分子量殘留物完全移除。該已除去揮發物之水性滲析餘物之TLC顯示大量產物與低分量雜質(520毫克;~45%產率)已經由該膜而遷移;且其光譜如下:1
H NMR(500MHz,CD3
OD):δ 2.3至2.7(m,2H)、2.7至2.8(bt,43H)、3.34(s,H)、3.38(s,1H)、3.45(bt,43H)、3.89(bm,22H);13
C NMR(125MHz,CD3
OD):δ 46.21、46.78、46.92、54.61、55.46、62.58、63.19、68.55、68.65、71.27、75.54;及MALDI-TOF:計算值3180;實測值3143 amu。
以下圖解29係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=哌羧酸酯;(TF)=羧酸酯;G=1.5]
將PETGE1
(5.05克,14.04毫莫耳)(由實例B製成)及35毫升MeOH裝入100毫升圓底燒瓶內,並使該燒瓶配備攪拌棒。使該燒瓶經冰浴冷卻至4℃。使樹枝狀高分子(G=0)(1.65克,2.34毫莫耳)(由實例4B製成)溶解在10毫升MeOH中,並經由滴液漏斗以20分鐘一滴滴地添加入上述攪拌溶液內。移除冰浴,並於RT下攪拌該反應混合物,費時20小時。MALDI-TOF顯示有雙-、三-,及四-加成產物之信號。於RT下攪拌該反應混合物,費時2天。使上述反應混合物進行UF(1K)以移除過量PETGE,同時維持該溫度於25℃下。6次循環(6×120毫升)後,TLC顯示該留存物僅殘留微量PETGE。將該留存物移入250毫升圓底燒瓶內並經EPC(每一環氧化物1.5當量)中止反應。於減壓在最低熱(45℃)下在旋轉蒸發器上將該反應混合物濃縮至50毫升。於RT下攪拌反應混合物。於RT下藉UF(1K)(6×120毫升)移除過量EPC。於減壓下在旋轉蒸發器上自該留存物移除溶劑,且於高真空下乾燥殘留物以得到吸濕性固體(5.2克)。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(TF)=二級NH;G=1.5]
將酯表面樹枝狀高分子(5.2克)(由實例26A製成)裝入250毫升圓底燒瓶內並溶解在47毫升MeOH中。使該燒瓶配備攪拌棒。使KOH(15.6克)溶解在31毫升水中,並於RT下以5分鐘添加入上述攪拌溶液內。將該燒瓶置於經預熱之油浴(85至90℃)中並加熱22小時。TLC顯示於此時並未留下酯表面樹枝狀高分子(G=0)。在旋轉蒸發器上移除過量MeOH並以DCM(3×150毫升)萃取水性相。在Na2
SO4
上乾燥合併濾出物並經由Celite床過濾。以DCM徹底清洗賽力特矽藻土。在旋轉蒸發器上蒸發溶劑以得到吸濕性固體,使其於高真空下乾燥以得到該PIPZ表面樹枝狀高分子4
(1.7克;27%產率)。在第二回操作中,改良上述加工方法,其係藉以6N HCl酸化該反應混合物,繼而進行KCl之過濾,並經由1K再生纖維素膜進行UF,其可使產率增至>90%。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 2.37至2.46(m,H)、2.51(bs,H)、2.59(bs,H)、2.84(t,J=3.90Hz,1H)、3.30(m,H)、3.35(bs,H)、3.45(bs,H)、3.83至3.90(四重峰(quintet),J=5.40Hz,20H);13
C NMR(75MHz,CD3
OD+D2
O(兩滴)):δ 44.97、45.79、53.40、54.29、58.37、61.43、62.06、67.34、67.54、69.20、70.11、72.83、74.16、74.43;IR(淨):λmax
3385、2939、2873、2811、1649、1634、1454、1367、1321、1301、1111、1009、963、860、830、789厘米-1
;及MALDI-TOF:C149
H300
N32
O40
計算值3180;實測值
3202.4(M+
Na)amu。
以下圖解30係闡明上述反應:
[(C)=PETGE;(IF1)=OH;(BR1)=DIA;(TF)=一級NH2
;G=1]
將DETA(6.56克,63.6毫莫耳)(Acros)及125毫升4-甲基-2-戊酮(Aldrich)裝入配備迪安-斯塔克收集器之250毫升圓底燒瓶內,並於氬大氣下加熱至140℃。共沸出理論量之水(2.2毫升)後,將該反應冷卻至RT。該混合物之重量為77.37
克,其含有63.6毫莫耳二級胺。將該混合物(12.16克)移至50毫升圓底燒瓶內。藉旋轉蒸發而移除溶劑以得到油。添加PETGE(360毫克,1.0毫莫耳)(由實例B製成)在5.5毫升無水MeOH中之溶液至該油內。將該反應加熱至75℃,費時23小時。移除溶劑並添加25毫升及3.0毫升水至殘留物內。將該混合物加熱至50℃,費時2小時。使用旋轉蒸發器移除該溶劑。藉Kugelrohr蒸餾法(150℃)而移除過量DETA以得到該淺黃色黏性油之產物,其光譜如下:MALDI-TOF:計算值773;實測值795.784(M+
Na)amu。
以下圖解31係闡明上述反應:
[(C)=PETGE;(IF1)=OH;(BR1)=BAA;(TF)=烯丙基;G=1]
添加PETGE(360毫克,1.0毫莫耳)(由實例B製成)在1毫升MeOH中之溶液至BAA(816毫克,8.40毫莫耳)(Aldrich)在4毫升MeOH中之溶液內。將該混合物加熱至60℃,費時64小時。然後移除溶劑以得到該如清澈無色油之產物(657毫克,89%產率),其具有以下光譜:1
H NMR(500MHz,CDCl3
):δ 2.47(m,8H)、3.06(q,8H)、3.21(q,8H)、3.39(m,20H)、3.83(4H)、5.15(m,16H)、5.81(m,8H);13
C NMR(125MHz,CDCl3
):δ 45.54、55.63、56.86、66.75、70.54、74.11、117.73、135.12;及MALDI-TOF:計算值748;實測值749.588(M+
H)、771.583(M+
Na)amu。
以下圖解32係闡明本反應:
三羥苯基甲烷三縮水甘油醚(TPMTGE)(I-d)與三(羥甲基)甲胺(TRIS)(Ⅱ-e
)之反應
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=TRIS;(TF)=OH;G=1]
將TPMGEI-d
(0.46克,1毫莫耳)(Aldrich)及30毫升MeOH放入100毫升單頸圓底燒瓶內。急速地添加TRIS(0.726克,6毫莫耳)(Aldrich)至上述反應混合物內。起先這兩種起始物質並未完全溶解,但是加熱約10至15分鐘後才溶解。於60℃下持續加熱一夜。TLC顯示於此時,起始縮水甘油醚完全耗盡。在旋轉蒸發器上移除溶劑以得到無色固體。於熱條件(藉加熱槍而加熱)下,使所有反應混合物溶解在溶劑混合物(CHCl3
及CH3
OH,60毫升,3:1 v/v)中,然後冷卻至RT,並添加己烷以形成沉澱物。經由布赫納漏斗而過濾該固體以移除過量TRIS。蒸發濾液以得到羥基末端性(G=1)樹枝狀高分子,Ⅲ-e
(產率,0.815克,99%),其具有以下光譜:1
H NMR(300MHz,DMSO-d 6
):δ 1.28至1.171(t,J=6.00Hz,3H)、1.48(bs,9H)、2.47(s,3H)、3.77至3.84(m,6H)、4.22(m,18H)、4.98(bs,3H)、5.72(s,1H)、6.62至6.88(m,8H)、6.92(m,4H);1
H NMR(75MHz,DMSO-d 6
):δ 44.72、55.59、60.08、61.64、69.86、71.31、114.74、114.87、128.02、130.48、137.17、157.51;及MALDI-TOF:C40
H61
N3
O15
計算值823;實測值847(M+
Na)amu。
圖解33係闡明本反應:
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=DEA;(TF)=OH;G=1]
將TPMTGE,I-d
(0.92克,2毫莫耳)及30毫升MeOH放在100毫升圓底燒瓶內,繼而添加DEA(0.785克,7.5毫莫耳)在10毫升MeOH中之溶液。使該燒瓶配備攪拌棒及回流冷凝器,然後於60℃下加熱。藉TLC監測該反應之進展。3小時後,TLC顯示少量未經反應之三縮水甘油醚。於相同溫度下持續加熱一夜。此時,藉MALDI-TOF質譜測定法而分析顯示樹枝狀高分子Ⅲ-f
之分子離子尖峰。然後於減壓下在旋轉蒸發器上移除溶劑以得到透明液體。在偶爾搖動下使所有反應混合物(1.75克)溶解在10毫升MeOH中,繼而添加50毫升乙酸乙酯。於乙酸乙酯添加期間發現無色沉澱物形成。於RT下靜置燒瓶,費時2小時,發現在燒瓶底部內之油分離。然後藉傾析而分離該混合物,並以乙酸乙酯(2×1毫升)清洗該油。於高真空下藉乾燥而固化該油以得到固體(1.24克)。藉13
C NMR分析顯示已分離過量之DEA,且其光
譜數據與樹枝狀高分子Ⅲ
一致。在旋轉蒸發器上濃縮該溶液得到無色透明液體(0.522克),其係為產物Ⅲ-f
及DEA之混合物。Ⅲ-f
之光譜為:1
H NMR(300MHz,CD3
OD):δ 2.92至2.58(m,6H)、2.60至2.77(m,12H)、3.29至3.31(quintet,J=1.50Hz,3H)、3.46至3.67(m,6H)、3.57至3.67(m,6H)、3.80至4.00(m,10H)、4.84(s,6H)、6.02至6.86(m,6H)、6.90至6.97(m,4H)、7.80至7.20(m,2H);13
C NMR(75MHz,CD3
OD):δ 57.51、58.28、59.64、67.97、68.13、70.23、114.12、130.10、137.27、157.52;及equiv./環氧化物)MALDI-TOF:C40
H61
N3
O12
計算值775;實測值799(M+
Na)amu。
圖解34係闡明本反應:
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=1.5]
將TPMTGEI-d
(0.92克,2毫莫耳)及30毫升MeOH放在100毫升圓底燒瓶內,繼而急速地添加DEIDA(1.42克,7.5毫莫耳)(Aldrich)在10毫升MeOH中之溶液。使該燒瓶配備攪拌棒及回流冷凝器,並於60℃下加熱一夜。MALDI-TOF質譜測定法顯示樹枝狀高分子Ⅲ-g
之尖峰。持續加熱24小時,並於減壓下在旋轉蒸發器上移除溶劑以得到淺黃色液體。藉柱式層析法在矽凝膠(22厘米高×3厘米寬)上純化該反應混合物。首先使用30%乙酸乙酯/己烷以溶析過量DEIDA,繼而使用5%MeOH/CHCl3
以溶析該產物Ⅲ-g
(1.93克;93.9%產率)。Ⅲ-g
之光譜為:1
H NMR(300MHz,CDCl3
):δ 1.26(t,J=6.90Hz,18H)、3.34至3.55(m,12H)、3.61(s,3H)、3.65至3.79(m,6H)、3.88至4.04(m,9H)、4.13至4.22(m,13H)、6.71至6.35(m,6H)、6.89至6.99(m,6H);13
C NMR(75MHz,CDCl3
):δ 14.44、48.91、50.09、50.26、50.36、51.05、52.11、54.38、56.34、57.03、58.28、58.74、61.16、67.44、69.85、77.05、111.45、114.44、120.69、127.79、130.21、130.40、130.48、130.55、157.30、169.61、172.18、172.59;及MALDI-TOF:C52
H73
N3
O15
計算值1027;實測值1050(M+
Na)amu。
以下圖解35係闡明本反應:
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=DEIDA;(EX1)=EDA;(TF)=一級NH2
;G=1]
將EDA(168.3克,2.244莫耳)放在配備攪拌棒並經冰浴冷卻至0℃之經烘箱乾燥的500毫升圓底燒瓶內。使酯末端性(G=1)樹枝狀高分子Ⅲ-g
(1.93克,1.87毫莫耳)(由實例31製成)溶解在10毫升MeOH中,並以15分鐘經由均壓漏斗添加至上述攪拌冷卻溶液內。以N2
氣體沖洗該燒瓶並經隔片閉合。於該溫度下攪拌反應混合物,費時一小時,並貯存於0℃下,費時2天。於RT下攪拌該反應混合物,費時一小時。藉MALDI-TOF質譜測定法分析該試樣,顯示該六胺表面(G=1)樹枝狀高分子,Ⅳ-d
之分子離子波峰。於減壓下在旋轉蒸發器上移除過量EDA以得到淺黃色液體。使該反應混合物溶解在30毫升MeOH中並添加70毫升甲苯以藉形成共沸液而移除殘留EDA。重覆該方法共3次。然後於高真空下乾燥該混合物以得到淺黃色吸濕性固體(2.07克;99%產
率)。分析數據(IR、1
H及13
C)與六胺末端性(G=1)樹枝狀高分子,Ⅳ-d
,一致。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 2.68至2.84(m,12H)、2.84至2.90(m,3H)、3.11至3.18(m,6H,NH)、3.22至3.30(m,18H)、3.31至3.35(m,12H)、3.80至4.14(m,10H)、4.82(s,12H,NH2
)、6.58至6.98(m,12H);13
C NMR(75MHz,CD3
OD):δ 40.74、41.58、51.99、59.20、59.52、67.69、70.30、114.13、127.57、130.14、136.77、137.35、157.43、172.74、172.89;IR(淨):νmax
3303(br)、2933、2863、1652、1543、1508、1451、1242、1176、1109、1033、968、829、757厘米-1
;及MALDI-TOF:C52
H55
N15
O12
計算值1111;實測值1134(M+
Na)amu。
圖解36係闡明本反應:
[(C)=BGPM;(IF1)=OH;(BR1)=TRIS;(TF)=OH;G=1]
將BGPM,I-c
(0.624克,2.0毫莫耳)及20毫升MeOH放入100毫升圓底燒瓶內。急速地添加TRIS(0.605克,5.0毫莫耳)至上述反應中。於50℃下攪拌5至10分鐘後,上述起始物質皆完全溶解。於50℃下持續加熱42小時,其後,TLC顯示BGPMI-c
完全耗盡;然而再持續攪拌6小時。在旋轉蒸發器上移除溶劑以得到無色固體。在經加熱槍加熱下,使所有粗反應混合物溶解在60毫升CHCl3
及15毫升MeOH中,然後使其冷卻至RT。接著添加30毫升己烷,於該己烷添加期間形成沉澱物。將該燒瓶置於台上並過濾固體。濃縮該溶液以得到吸濕性固體,Ⅲ-e
(1.044克,94%產率),其具有以下光譜:MALDI-TOF:C27
H42
N2
O10
計算值554.63;實測值578.608(M+
Na)amu。
圖解37係闡明本反應:
[(C)=BGPM;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=1.5]
將BGPM,I-c
(1.25克,4.0毫莫耳)(Aldrich)及30毫升MeOH放入配備攪拌棒之100毫升圓底燒瓶內。使DEIDA(1.965克,10.4毫莫耳)(Aldrich)溶解在10毫升MeOH中並急速地添加至上述反應混合物內。使該燒瓶配備回流冷凝器並於60℃下加熱36小時。加熱一夜後,MALDI-TOF質譜測定法顯示雙-及單-加成產物之波峰。TLC亦顯示兩個相應斑點。於該溫度下持續加熱,費時36小時,且TLC顯示僅一個斑點。在旋轉蒸發器上移除溶劑以得到透明液體。使該反應混合物在矽凝膠(22厘米高,3厘米寬)上進行柱式層析法。首先,使用40%乙酸乙酯在己烷中之溶液以溶析過量DEIDA(0.447克,98%回收率),繼而使用5%甲醇在氯仿中之溶液以溶析該四酯表面(G=1)樹枝狀高分子Ⅲ-g
(2.57克,93%產率),其具有以下光譜:1
H NMR(300MHz,CD3
Cl):δ 1.20至1.30(m,12H)、2.60至2.74(m,2H)、3.13至3.24(m,2H)、3.34(s,2H)、3.45至3.72(m,8H)、3.80至4.00(m,6H)、4.07至4.22(m,8H)、4.75至4.83(m,2H)、6.76至6.84(m,4H)、7.01至7.09(m,4H);13
C NMR(75MHz,CD3
Cl):δ 14.43、35.59、35.72、40.31、50.36、52.09、54.39、56.36、57.03、58.74、61.15、67.45、67.61、69.77、69.90、77.07、111.35、111.50、114.58、
114.70、120.96、121.49、127.65、127.84、129.76、129.93、130.02、130.09、130.57、131.09、130.57、131.01、134.16、156.50、157.27、166.97、169.61、172.16;及MALDI-TOF:C35
H50
N2
O12
計算值690;實測值714(M+
Na)amu。
以下圖解38係闡明該反應:
[(C)=BGPM;(IF1)=OH;(BR1)=DEIDA;(EX1)=EDA;(TF)=一級NH2
;G=1]
將EDA(111.6克,1.49莫耳)放入經烘箱乾燥之500毫升圓底燒瓶內並冷卻至0℃。使酯末端性(G=1)樹枝狀高分子(Ⅲ-g
)(2.57克,3.72毫莫耳)(由實例34製成)溶解在10毫升MeOH中並以20分鐘經由滴液漏斗一滴滴地添加至上述冷溶液內。以N2
氣體沖洗該燒瓶,於該溫度下攪拌一小時,
並貯存於0℃下,費時2天。使該燒瓶溫熱至RT並攪拌一小時。該試樣之分析顯示六胺表面(G=1)樹枝狀高分子Ⅳ-g
之分子離子波峰。於減壓下在旋轉蒸發器上移除過量EDA以得到淺黃色液體。使所有反應混合物溶解在30毫升MeOH中。然後添加70毫升甲苯至該混合物內以藉形成共沸液而移除殘留EDA。重覆該方法共3次,並於高真空下乾燥該混合物以得到淺黃色吸濕性固體(2.69克,96.8%產率)。分析數據(IR,1
H及13
C)與具有以下光譜之六胺末端性(G=1)樹枝狀高分子,Ⅳ-g
一致。
1
H NMR(75MHz,CD3
OD):δ 40.76、41.66、59.21、59.53、67.55、67.69、70.27、111.32、114.25、114.36、120.65、127.51、129.49、129.61、129.92、130.50、133.87、134.44、156.64、157.22、157.366、172.78、172.85;IR(淨):νmax
3286(br)、3071、2932、2872、1653、1541、1509、1452、1242、1175、1114、966、822、756、602厘米-1
;及MALDI-TOF:C35
H58
N10
O8
計算值746;實測值770(M+
Na)amu。
圖解39係闡明本反應:
[(C)=DGGA;(IF1)=OH;(EX1)=PIPZ;(TF)=二級NH;G=1.5]
添加PIPZ(16.0克,189.0毫莫耳,每一環氧化物5當量)及MBDGA(4.0克,9.5毫莫耳,37.8毫莫耳環氧化物)及MBDGA(4.0克,9.5毫莫耳,37.8毫莫耳環氧化物)(Aldrich)溶解在85克二乙醇二甲醚中之沿液至含有攪拌棒之250毫升圓底燒瓶內。藉添加45克MeOH而使該混合物呈均質性。於60℃在N2
大氣下加熱該混合物,費時65小時。冷卻該混合物並在旋轉蒸發器上移除揮發性物質。在高真空及範圍自140至180℃之溫度下使用Kugelrohr減壓蒸餾自該混合物蒸餾PIPZ。該混合物之TLC(5%NH4
OH在MeOH中之溶液)顯示殘留PIPZ。使殘留之PIPZ與70:30甲苯:MeOH(重量
%)混合物共沸,其係藉使該殘留物溶解在已稱重之MeOH中,添加甲苯並在旋轉蒸發器上蒸餾。於25℃在高真空下抽空該無PIPZ產物,費時一夜以得到所欲產物(6.8克;94%產率)。其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.3至2.6(bm,8H)、2.8至2.9(bs,8H)、3.35(dd,J=7Hz,1H)、3.15(dd,J=7Hz,1H)、3.65(d,J=7Hz,1H)、3.79(m,2H)、4.04(bd,2H)、6.44(d,J=7Hz,1H)、6.74(d,J=7Hz,1H)、7.02(t,J=7Hz,2H);13
C NMR(125MHz,CDCl3
):δ 39.78、46.08、46.13、54.81、54.99、57.20、59.32、62.52、65.33、65.79、111.98、113.34、129.29、129.34、129.44、129.47、129.69、129.75、130.28、130.32、146.18、147.22;及MALDI-TOF:計算值768.6;實測值767 amu。
以下圖解40係闡明本反應:
以約5分鐘添加TMPTA(29.6克,0.10莫耳)(Aldrich)在5毫升已冷卻至約4℃之MeOH中的溶液及EDA(1.2克,0.02莫耳)在5毫升MeOH中之溶液至配備攪拌棒之100毫升圓底燒瓶內。於30℃攪拌該混合物,費時18小時。使該混合物冷卻至20℃並倒入150克攪拌MeOH中。於RT下未經攪拌使該混合物靜置一小時後而分段轉化該產物。傾析上澄清MeOH層並再重覆該方法兩次。於高真空下抽空所形成清澈黏性相,費時3小時,並使用鋁箔纏繞反應容器以保護該反應物料免於光線照射,以得到所欲產物(20克;以三-加成物為主,100%產率;以四-加成物為主,80%產率)。該經離析產物之重量表示大部份該物質為由3個TMPTA添加至一個EDA所組成之六-丙烯酸酯(三-加成物)產物。該產物之MALDI-TOF質譜顯示主波峰發生於950 amu,其相當於具有理論分子量為949之六-丙烯酸酯三-加成物產物。發現小波峰發生於1245 amu,其與八-丙烯酸酯(四-加成物)產物一致。該主波峰之光譜如下:13
C-NMR(500MHz,CDCl3
):δ 7.45、23.00、23.14、32.38、40.77、40.86、49.48、63.88、64.05、128.04、131.26、165.69、172.10。
[(C)=EDA;(FF)=H;(BR1)=TMPTA;(EX1)=巰基乙醇;(TF)=OH;G=1]
添加該EDA核心聚酯胺(19.0克,20.0毫莫耳,120毫莫耳丙烯酸酯在50毫升DME中)(由實例37A製成)及巰基乙醇(10.4克,132毫莫耳,每一丙烯酸酯基團1.1當量)(Aldrich)在20毫升DME中之溶液至具有攪拌棒之250毫升圓底燒瓶內。於RT下攪拌該混合物,費時2天,然後在旋轉蒸發器上移除揮發性物質。使所形成物質與150毫升乙酸乙酯混合並以攪拌棒快速攪拌。使該異質混合物靜置約一小時。傾析清澈乙酸乙酯層。再重覆該方法兩次。在15%交聯均質聚丙烯醯胺凝膠上使用具有EA表面之G=2至6 EDA核心PAMAM樹枝狀高分子作為標準物(G=2至6),該物質之PAGE顯示相當於G=1之PAMAM樹枝狀高分子之清楚的密譜帶。
以下圖解41係闡明上述反應:
[(C)=HMDA;(BR)=TMPTA;(TF)=丙烯酸酯;G=1]
添加TMPTA(29.6克,0.10莫耳)(Aldrich)及10毫升MeOH至配備攪拌棒之100毫升圓底燒瓶內。添加HMDA(2.32克,0.02莫耳)(Aldrich)在20毫升MeOH中之溶液至於已於4℃下經冷卻之該混合物內。於30℃在N2
大氣下加熱該混合物,費時18小時。使該混合物冷卻至約15℃並倒入150毫升攪拌MeOH中。藉使該混合物在未經攪拌下靜置一小時而分段轉化該產物,同時藉使用鋁箔纏繞反應容器而保護該燒瓶免於光線照射。傾析該甲醇層並再重覆該操作兩次以得到清澈、無色黏性液體。於高真空下藉抽空而使該不互
溶相去揮發化,費時3至5小時以得到粗產物(24克;92%產率),其離析重量與八-丙烯酸酯(四-加成物)結構一致。該產物之MALDI-TOF質譜顯示發生於1301 amu之小波峰(其係與該四-加成物一致)及數個低分子量波峰,其被認為衍生自該四-加成物之“原位質譜儀分解作用”。使該產物以溶液型式靜置長時間或於RT下移除溶劑之任何嚐試皆可導致白色不溶性交聯產物之形成。因此,該產物可立即轉化成更安定的麥可加成物,其係藉如下文實例38B所述,使該產物與化學計算量之合適胺或硫醇試劑反應。
[(C)=HMDA;(BR)=TMPTA;(EX)=EA;(TF)=OH;G=1]
添加EA(27.0克,442.0毫莫耳,每一丙烯酸酯3當量)在50毫升DME中之溶液至含有攪拌棒之250毫升圓底燒瓶內。以約10分鐘一滴滴添加己二胺核心聚酯胺,G=1,八-丙烯酸酯(24.0克,18.4毫莫耳,每一樹枝狀高分子8個丙烯酸酯)(由實例38A製成)在50毫升DME中之溶液至該已冷卻至4℃之混合物內。於25℃在N2
大氣下攪拌該混合物,費時2天。然後以旋轉蒸發器移除揮發性物質。將該粗物質倒入快速攪拌之乙酸乙酯內。攪拌數分鐘後,靜置該混合物,費時一小時以使雙相分離,並傾析該乙酸乙酯層。添加相同體積之乙酸乙酯,快速攪拌該混合物,並如前述進行分離。第二次重覆該步驟,共進行3次清洗。於RT在高真空下抽空該清澈無色黏性油,費時一夜以得到所欲產物(29.7
克;90%產率)。在15%交聯性均質聚丙烯醯胺凝膠上使用PAMAM樹枝狀高分子作為標準物(G=2至6)藉PAGE而分析顯示相當於G=1之PAMAM樹枝狀高分子之清楚的密譜帶。
以下圖解42係闡明上述反應:
[(C)=HMDA;(BR1)=TMPTA;(EX1)=嗎啉;(TF)=環醚;G=1]
添加聚酯胺,G=1,HMDA核心(24.0克,18.4毫莫耳,147毫莫耳丙烯酸酯)(由實例38A製成)在50毫升二乙醇二甲醚中之溶液至含有攪拌棒之250毫升圓底燒瓶內。以約5至10分鐘添加嗎啉(14.0克,160.0毫莫耳,每一丙烯酸酯1.1
當量)在50毫升DME中之溶液至該已冷卻至約4℃之混合物內。使該混合物溫熱至RT並攪拌24小時。於38℃在高真空下,在旋轉蒸發器上汽提該混合物之揮發物以得到該產物(34.0克;94%產率)。該物質之MALDI-TOF質譜顯示一相當於1998 amu理論分子量之波峰及數個衍生自該1998 amu波峰之碎斷反應的低波峰。該物質之13
C NMR光譜顯示該產物很純且符合所產物之正確碳數。其光譜如下:13
C NMR(500MHz,CDCl3
):δ 7.42、22.82、27.21、27.54、32.15、40.78、40.89、48.97、53.40、53.94、55.85、59.04、63.56、71.79、171.86、172.16。
所有該等PAGE係在15%交聯性物質凝膠上操作,且顯示很緊密的譜帶,與該等校準梯形物,亦即具有EA表面之DEA核心PAMAM樹枝狀高分子(G=2至6),比較,其係為最具流動性之實體。該流動性表示與該大尺寸之八-單乙醇胺加成物比較,該加成物之尺寸較小。就流動性而言,該等八-嗎啉加成物相當於該等八-單乙醇胺加成物。然而,該嗎啉產物在水中之邊緣溶度呈現模糊的柱形而非更溶於水之該巰基乙醇及該等乙醇胺加成物所發現之密譜帶。
以下圖解43係闡明本反應:
[(C)=EA;(FF)=OH;(IF1)=OH;(BR1)=TMPTGE;(TF1)=環氧化物;G=1]
添加EAⅡ-c
(122.0毫克)在2毫升MeOH中之溶液至TMPTGEI
(1.81克,6.0毫莫耳)在8毫升MeOH中之溶液內。於RT下持續攪拌45小時,並藉TLC而監測該反應之進展。於減壓下在旋轉蒸發器上蒸發溶劑,並於高真空下乾燥所形成反應混合物以得到透明液體。MALDI-TOF質譜測定法顯示該等產物Ⅲ-c
及Ⅳ-c
之質量。藉沉澱法而純化該反應混合物。先後添加己烷及乙酸乙酯至該反應混合物。當搖動該圓底燒瓶時,發現無色沉澱物形成。於RT下保持該燒瓶一段時間,傾析上澄清液,以己烷清洗沉澱物並於高
真空下乾燥以得到Ⅲ-c
&Ⅳ-c
之產物混合物(902毫克;由於混合比率未知,所以%產率不能計算)。
圖解44係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=三唑;(BR1)=PETriGE;(TF)=環氧化物;G=1]
添加丙炔基季戊四醇三縮水甘油醚2
(0.39克,1.14毫莫耳,每一N3
1.05當量;由實例F製成)、季戊四醇四疊氮化物3
(0.144克,0.271毫莫耳;得自實例G)、1.2克第三-丁醇及1.2克水至經烘箱乾燥之50毫升圓底燒瓶內。使該燒瓶配備攪拌棒並經塞子密封。先後添加抗壞血酸鈉(0.026克,0.114毫莫耳,0.10當量)及硫酸銅(Ⅱ)五水合物(CuSO4
.5H2
O)(0.014克,0.057毫莫耳,0.05當量)至該混合物內。藉TLC而監測該反應之進展。於RT下攪拌3天後,發現該反應已完
成。由於該等環氧化物基團之高反應性,所以產物4
不需離析即可用於實例76之反應。
以下圖解45係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=三唑;(TF)=甲酯;G=1.5]
使二甲基乙炔二羧酸酯(411.3毫克,2.894毫莫耳)(Acros Organics)與PETAZ(385.0毫克,0.724毫莫耳)(由實例G製成)混合。先後添加1.5毫升1:1之t-BuOH:H2
O、固體之抗壞血酸鈉(55.0毫克,0.28毫莫耳),及CuSO4
.5H2
O(36.0
毫克,0.14毫莫耳)至該混合物內。於RT下攪拌該反應。MALDI-TOF顯示存在少量三基取代之產物PETAZ。因此,再添加二甲基乙炔二羧酸酯(70.0毫克)至該反應混合物中,並攪拌該反應,費時一夜。藉旋轉蒸發法而移除溶劑,並利用高真空乾燥殘留物,費時一夜。使該殘留物再溶解於DCM中,留下可經過濾而移除之固體物質。藉旋轉蒸發法而移除揮發性物質以得到如淺黃色油之所欲產物(700.0毫克;90%產率)。其光譜如下:MALDI-TOF:C41
H56
N12
O24
;計算值1101.0,實測值1101.6[M+H]+
及1123.6[M+Na]+
amu。
以下圖解46係闡明該反應:
[(C)=PETGE;(IF1)=OH;(EX1)=乙基PIPZ;(BR1)原位置=丙烯酸甲酯;(TF)=甲酯;G=1.5]
使丙烯酸甲酯(861.0毫克,10.0毫莫耳)(Acros)溶解在1毫升MeOH中並冷卻至0℃。然後一滴滴添加先前製成之四胺(489.0毫克,0.56毫莫耳)(由實例11製成)在4毫升MeOH中之溶液。添加後,使該反應溫熱至RT。然後將該混合物加熱至40℃,費時48小時。移除溶劑並得到該如淺黃色油之產物(820毫克,89%產率),其具有以下光譜:
MALDI:計算值1565;實測值1566.67(M+
H)、188.69(M+
Na)amu。
圖解47係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=DETA;(EX1)=吡咯啶酮;(YF)=甲酯;G=1.5]
使DMI(1.0克,6.32毫莫耳)(Acros)溶解在2.5毫升MeOH中並冷卻至0℃。然後添加八胺(由實例27製成)在7毫升MeOH中之溶液至前述溶液中。添加後,使該反應溫熱至RT並攪拌24小時。移除溶劑後,測定其MALDI-TOF,且其光譜如下:MALDI-TOF:計算值1771;實測值1804.246(M+
Na)
圖解48係闡明本反應:
[(C)=TEPC;(IF1)=OH;(BR1)=DIA;(EX1)=吡咯啶酮;(TF)=甲酯;G=1.5]
A.於RT下急速地添加TGIC(0.594克,2毫莫耳)(Aldrich)至1,7-雙(甲基-異亞丙基)二乙三胺(2.15克,9.0毫莫耳)[得自F.Laduron等人在Org.Process Res.& Develop.9,102-104(2005)中所述之程序]在15毫升MeOH中之攪拌溶液內。原先,異氰尿酸酯並不可溶,但是於50℃下加熱約3小時後才溶解。持續加熱2天。TLC(1:2:2之己烷:乙酸乙酯:氯仿)顯示異氰尿酸酯完全耗盡。在旋轉蒸發器上移除溶劑,然後於高真空下乾燥,其可得到黃色液體。MALDI-TOF質譜分析法顯示化合物3
(而非化合物2
)之質量及少量其它化合物。
B.使上述反應混合物溶解在30毫升10:9水:異丙醇(%v/v)之混合物中並於50℃下加熱一天。在旋轉蒸發器上移除水,並藉Kugelrohr蒸餾法而蒸餾殘留物以得到黃色黏性液體(1.83克;1.21克理論產率)。MALDI-TOF顯示化合物3
之質量且其光譜如下:
MALDI-TOF:C24
H54
N12
O6
計算值606;實測值607(M+
H)& 629(M+
Na)amu。
C.以10分鐘一滴滴添加化合物3
(606毫克,1.0毫莫耳;在實例45B中製成)在4毫升MeOH中之溶液至DMI(1.9克,12.0毫莫耳)在冰浴中之4℃冷溶液內。移除該冰浴並於RT下攪拌該混合物。一天後,MALDI-TOF質譜測定法顯示1364及1386 amu之質量。持續攪拌2天。然後在旋轉蒸發器上移除溶劑並使該粗反應混合物在矽凝膠上進行柱式層析法。首先以1:2:2之己烷:乙酸乙酯:氯仿溶析過量DMI,繼而以5:1之DCM:CH3
OH溶析,得到如吸濕性固體之六-吡咯啶酮表面樹枝狀高分子4
,其具有以下光譜:1
H NMR:(300MHz,CD3
OD):δ 2.52至2.60(m,18H)、2.66(d,J=8.70Hz,6H)、2.73(d,J=4.80Hz,6H)、3.47至3.34(m,12H)、3.72(s,18H)、3.76至3.90(m,12H)、9.64至3.70(m,12H)、4.00(Quintet,J=3.30Hz,3H);13
C NMR:(75MHz,CD3
OD):δ 33.90、35.85、40.53、40.58、47.02、49.79、51.79、58.10、66.93、150.20、173.91、174.17;IR(淨):λmax
3374、3052、2952、2842、2822、1735、1686、1495、1461、1363、1271、1203、1072、1024、937、847、766、732、700厘米-1
;及MALDI-TOF:C60
H90
N12
O24
計算值1363;實測值1364(M+
H)& 1386(M+
Na)amu。
圖解49係闡明上述反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=TRIS;(TF)=OH;G=1]
於機械攪拌下添加TPEGE(5.0克,80.0毫莫耳,32毫莫耳環氧化物)及20毫升二乙醇二甲醚至100毫升圓底燒瓶內。添加TRIS(8.0克,66.0毫莫耳,每一環氧化物2當量)及20毫升MeOH至該混合物內。於55℃在N2
大氣下加熱該混合物,費時48小時。然後藉旋轉蒸發法而移除揮發性物質,並使粗殘留物溶解在~1:1之甲醇-水混合物中並於20 psi(137.9千帕)壓力下在切向流UF裝置內使用3K再生纖維素膜純化。以合適體積之MeOH或水調節該留存物以使該混合物維持均質狀。獲得共850毫升滲透液。藉旋轉蒸發法而濃
縮該留存物,繼而利用高真空乾燥該殘留物以得到所欲產物(5.6克,88%產率),且其光譜如下:13
C NMR(125MHz,DMSO-d 6
):δ 68.94、70.59、78.71、80.08、80.23、123.46、138.48、146.60、165.82;及MALDI-TOF MS:C54
H82
N4
O20
計算值1107.2;實測值1130[M+Na]+
amu。
以下圖解50係闡明該反應:
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=TRIS;(TF)=OH;G=1]
於機械攪拌下將TPMTGE,I-d
(0.46克,1.0毫莫耳)(Aldrich)及30毫升MeOH放在100毫升圓底燒瓶內。急速地添加。TRIS(0.726克,6.0毫莫耳)(Aldrich)至上述反應混合物內。原先,這兩種起始物質並未完全溶解,但是在加熱10至15分鐘後即可溶解。於60℃下持續加熱一夜。TLC顯示於此時該起始縮水甘油醚已完全耗盡。在旋轉蒸發器上
移除溶劑以得到無色固體。於加熱下,使該固體溶解在60毫升之3:1氯仿:MeOH(%v/v)中。冷卻至RT後,添加己烷以沉澱過量TRIS,其可經由布赫納漏斗,藉過濾而移除。該濾液之蒸發可得到羥基末端性(G=1)樹枝狀高分子,Ⅲ-e
(產率,0.815克,99%)。其光譜如下:1
H NMR(300MHz,DMSO-d 6
):δ 1.28至1.171(t,J=6.00Hz,3H)、1.48(bs,9H)、2.47(s,3H)、3.77至3.84(m,6H)、4.22(m,18H)、4.98(bs,3H)、5.72(s,1H)、6.62至6.88(m,8H)、6.92(m,4H);13
C NMR(75MHz,DMSO-d 6
):δ 44.72、55.59、60.08、61.64、69.86、71.31、114.74、114.87、128.02、130.48、137.17、157.51;及MALDI-TOF:C40
H61
N3
O15
計算值823;實測值847[M+Na]+
amu。
以下圖解51係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=TRIS;(TF)=OH;G=1]
在250毫升圓底燒瓶內,於機械攪拌下使PETGE(3.16克,8.78毫莫耳)溶解在70毫升MeOH內。將該溶液放入60℃油浴中,並經由粉末漏斗添加TRIS(6.41克,52.8毫莫耳,1.50當量/環氧化物)(Fisher Scientific)。接著使該燒瓶配備回流冷凝器並使其反應48小時。藉TLC(3:1 CH2
Cl2
:MeOH)而監測該反應,經該時間後並未發現PETGE(Rf
=0.80)。以120毫升氯仿稀釋該反應物,然後在攪拌下緩慢添加300毫升己烷。白色沉澱物形成,且靜置該混合物,費時16小時。使該溶液經由布赫納漏斗過濾以於燒瓶之底部得到清澈白色糊狀物。於真空下乾燥該糊狀物以得到6.98克粗產物。使該產物再溶於40毫升MeOH及60毫升氯仿中,並藉結晶反應自300毫升己烷分離殘留吖RIS。過濾該混合物並於高真空下乾燥其餘半固體,費時24小時以得到5.35克產物(72.0%產率,7.43克理論產率)。為進一步純化,將該物質裝在36”×4”(91厘米×10厘米)LH-20 Sephadex柱上。收集575毫升之空隙率後,收集48種各12毫升MeOH之溶離份並藉TLC(7:3 MeOH:NH4
OH)分析。回收2.29克(31%產率)純化產物。其光譜如下:1
H NMR(500MHz,D2
O):δ 2.644(1H,q,J=4.88Hz)、2.76(1H,q,J=3.625)、3.34(2H,s)、3.44(2H,d,J=9.0Hz)、3.54(2H,q,J=6.75Hz)、3.79(1H,s)、4.80(4H,s);13
C NMR(75MHz,D2
O):δ 45.43、46.91、49.85、61.01、62.69、71.14、75.43、79.42;及MALDI-TOF:C33
H72
N4
O20
計算值845;實測值867
[M+Na]+
amu。
以下圖解52係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=1.5]
在機械攪拌下添加TPEGE(5.0克,8.0毫莫耳,32毫莫耳環氧化物)及20克二乙醇二甲醚至100毫升圓底燒瓶內。添加DEIDA(12.0克,63.4毫莫耳,每一環氧化物2當量)及20毫升MeOH至該混合物內。於45℃在N2
大氣層下攪拌該混合物,費時3.5天。冷卻至RT後,藉旋轉蒸發法而移除揮發性物質以得到13.0克粗物質,可以於20 psi(137.9千帕)之壓力下使用含有3K再生纖維素膜之切向流UF裝置純化該粗物質以得到1.2升過濾液。該混合物之TLC(MeOH,Rf
=0.85)顯示DEIDA完全消耗。藉在15毫升丙酮中溶解,並在寬膛徑柱中使用矽凝膠(150克,60埃,200至400網目)及MeOH進行層析而進一步純化該粗物質。溶析1.5升MeOH以移除
雜質。以丙酮溶析該純化產物。採集100毫升溶離份,藉TLC而監測產物及純度。收集溶離份7至12並藉旋轉蒸發法而濃縮以得到所欲產物(2.81克,以市售起始物質之60%純度為基準計43%產率)。其光譜如下:13
C NMR(125MHz,CDCl3
):δ 14.19、29.28、30.90、31.73、50.09、51.81、53.83、54.13、55.91、56.12、56.79、58.44、60.96、67.26、114.24、114.66、129.38、136.87、156.01、166.71、169.34、169.78、171.86、172.28;及MALDI-TOF MS:C71
H99
N4
O24
計算值1378.6;實測值1379[M]+
amu。
以下圖解53係闡明該反應:
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=1.5]
將TPMTGE,I-d
(0.92克,2.0毫莫耳)及30毫升MeOH放入100毫升圓底燒瓶內,繼而添加DEIDA(1.417克,7.5毫
莫耳)(Aldrich)在10毫升MeOH中之溶液。使該燒瓶配備攪拌棒及回流冷凝器並於60℃下加熱36小時。於減壓下在旋轉蒸發器上移除溶劑,留下淺黃色液體。藉柱式層析法在矽凝膠(9’高×1.5’寬)(2.7米×0.45米)上純化該液體。首先,使用30%乙酸乙酯/己烷以溶析過量DEIDA,繼而使用5% MeOH/氯仿以溶析該產物Ⅲ-g
(1.929克,93.91%產率)。其光譜如下:1
H NMR(300MHz,CDCl3
):δ 1.26(t,J=6.90Hz,18H)、3.34至3.55(m,12H)、3.61(s,3H)、3.65至3.79(m,6H)、3.88至4.04(m,9H)、4.13至4.22(m,13H)、6.71至6.35(m,6H)、6.89至6.99(m,6H);13
C NMR(75MHz,CDCl3
):δ 14.44、48.91、50.09、50.26、50.36、51.05、52.11、54.38、56.34、57.03、58.28、58.74、61.16、67.44、69.85、77.05、111.45、114.44、120.69、127.79、130.21、130.40、130.48、130.55、157.30、169.61、172.18、172.59;及MALDI-TOF:C52
H73
N3
O15
計算值1027;實測值1050[M+Na]+
amu。
以下圖解54係闡明本反應:
圖解54
[(C)=PETGE;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=1.5]
以30分鐘經由添加漏斗一滴滴添加PETGE,1
(1.8克,5毫莫耳,20毫莫耳環氧基)在20毫升EtOH(Aldrich)中之溶液至DEIDA,2
(5.67克,30毫莫耳)(Aldrich)在35毫升EtOH(Aldrich)中之溶液內。使該燒瓶配置回流冷凝器、N2
氣體入口管,並於60℃下將該燒瓶放在預熱油浴中。加熱一天後,MALDI-TOF MS分析顯示該完全結構及經3基取代之產物的計算質量。持續加熱36小時,然後在旋轉蒸發器上移除溶劑以得到淺褐色液體。於175℃下藉Kugelrohr蒸餾裝置而蒸餾過量DEIDA以得到黏性液體,其經確認為所欲產物3
(4.99克,89.4%)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 1.24至1.29(24H,t,J=7.20Hz)、3.03至3.09(4H,dd,J=3.60Hz)、2.78至2.85(4H,bt,J=9.0Hz)、3.41(12H,s)、3.45(8H,s)、3.61(8H,d,J=5.40Hz)、4.14至4.21(16H,q,J=6.60Hz)、4.61至4.67(4H,sextet,J=4.20Hz);13
C NMR(75MHz,CD3
OD):δ 13.41、13.45、45.89、49.79、53.65、55.77、56.21、57.97、60.57、60.69、68.71、69.79、69.93、71.31、73.55、78.43、78.46、168.62、170.26、172.30;
IR(淨):νmax
3457、2980、2934、2904、2868、1741、1675、1460、1378、1250、1198、1163、1106、1065、1029、927、860、819、732厘米-1
;及MALDI-TOF MS:C49
H88
N4
O24
計算值1117.2;實測值1117.7[M]+
、1139.7[M+Na]+
amu。
以下圖解55係闡明本反應:
[(C)=TGIC;(IF1)=OH;(BR1)=BAA;(TF)=(=CH2
);G=1]
將BAA(5.82克或7.37毫升,60毫莫耳)(Aldrich)及20毫升MeOH(Fisher Scientific)裝入50毫升圓底燒瓶內。然後在機械攪拌下添加TGIC(2.97克,10毫莫耳,30毫莫耳環氧基)(Aldrich)。使該燒瓶配備回流冷凝器,並加熱該混合物,費時一天。MALDI-TOF分析顯示產物3
之計算質量。在旋轉蒸發器上移除該溶劑及過量BAA,並在高真空下乾燥殘留物以得到如淺黃色黏性液體之所欲產物3
(5.8克,98.6%)。其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.47至2.53(6H,m)、3.06(6H,dd,J=7.00 & 7.00Hz)、3.22(6H,dd,J=6.00 &
6.00Hz)、3.84至3.87(3H,m)、3.99至4.00(3H,m)、4.05至4.10(3H,m)、5.14至5.18(12H,m)、5.76至5.84(6H,m);13
C NMR(125MHz,CDCl3
):δ 47.16、56.84、56.89、56.93、57.17、65.80、111.37、135.13、149.88、149.91;IR(淨):νmax
3421、3083、3006、2975、2924、2806、1695、1644、1460、1413、1357、1311、1255、1157、1065、999、968、917、860、835、763厘米-1
;及MALDI-TOF MS:C30
H48
N6
O6
計算值;實測值589.4[M]+
、611.4[M+Na]+
amu。
以下圖解56係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=BAA;(TF)=(=CH2
);G=1]
在250毫升圓底燒瓶中,於機械攪拌下使BAA(4.68克,48.2毫莫耳,每一PETGE 1.5當量)溶解在30毫升MeOH中。以20分鐘經由添加漏斗添加PETGE(2.87克,7.97毫莫耳)溶解在10毫升MeOH中之溶液。使用另外20毫升MeOH以進行清洗。使該反應經N2
氣體滌洗及覆蓋,然後持續攪拌48小
時。繼而進行TLC(7:3甲苯:丙酮,Rf
=0.12),且一旦PETGE耗盡時停止反應(Rf
=0.60)。藉旋轉蒸發器,繼而於110℃在1.5小時下進行Kugelrohr蒸餾,費時45分鐘而移除MeOH以得到所欲產物(5.44克,91.3%產率;5.96克理論產率)。其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.46(1H,q,J=5.25Hz)、2.55(1H,q,J=4.5Hz)、3.15(4H,d,J=3.5Hz)、3.36(2H,q,J=3.4Hz)、3.44(2H,q,6.0Hz)、3.85(1H,q,J=4.5Hz)、4.83(1H,s)、5.16(4H,m,J=8.6Hz),及5.88(2H,m,5.1Hz);13
C NMR(75MHz,CDCl3
):δ 46.90、51.34、58.52、69.25、71.24、75.435、118.45、136.48;IR(淨):νmax
3429、3075、3006、2976、2875、2812、1642、1450、1419、1329、1260、1106、996、920、869厘米-1
;及MALDI-TOF MS:C41
H72
N4
O8
計算值749;實測值771[M+Na]+
amu。
以下圖解57係闡明本反應:
[(C)=TPMTGE;(FF)=H;(IF1)=OH;(BR1)=DEA;(TF)=OH;G=1]
將TPMTGE,I-d
(0.92克,2.0毫莫耳)及30毫升MeOH放入100毫升圓底燒瓶內,繼而在機械攪拌下添加DEA(0.785克,7.5毫莫耳)在10毫升MeOH中之溶液。使該燒瓶配備回流冷凝器並於60℃下加熱一夜。藉TLC而監測該反應之進展。然後於減壓下在旋轉蒸發器上移除溶劑以得到透明液體。在偶爾搖動下使殘留物(1.746克)溶解在10毫升MeOH中,繼而添加50毫升乙酸乙酯。於乙酸乙酯添加期間發現無色沉澱物形成。保持該燒瓶,費時2小時,同時於燒瓶之底部油分離。藉傾析而分離該混合物,且以乙酸乙酯(2×1毫升)清洗油。於高真空下藉乾燥而固化該油並得到1.242克如固體之所欲產物。在旋轉蒸發器上濃縮該溶液以得到0.522克無色透明液體,其係為產物Ⅲ-f
與二乙醇胺之混合物。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 2.92至2.58(m,6H)、2.60至2.77(m,12H)、3.29至3.31(quintet,J=1.50Hz,3H)、3.46至3.67(m,6H)、3.57至3.67(m,6H)、3.80至4.00(m,10H)、4.84(s,6H)、6.02至6.86(m,6H)、6.90至6.97(m,4H)、7.08至7.20(m,2H);13
C NMR(75MHz,CD3
OD):δ 57.51、58.28、59.64、67.97、68.13、70.23、114.12、130.10、137.27、157.52;及
MALDI-TOF:C40
H61
N3
O12
計算值775;實測值799[M+Na]+
amu。
以下圖解58係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=DETA;(TF)=一級NH2
;G=1]
添加雙(甲基異丁基亞胺基乙基)胺(62毫升,在MIBK中0.63M溶液,10.0克,38毫莫耳,每一環氧化物2當量)及25毫升MeOH至含有攪拌棒之100毫升圓底燒瓶內。添加TPEGE(5.0克,8.0毫莫耳,32毫莫耳環氧化物)(Aldrich)在25毫升二乙醇二甲醚中之溶液至該混合物內。於70℃在N2
大氣下加熱該均質混合物,費時3天。在旋轉蒸發器上移除揮發性溶劑,並於180至220℃在高真空下使用Kugelrohr裝置使所形成殘留物經減壓蒸餾以得到9.0克殘留物。使一整份(830毫克)該物質在MeOH中之Sephadex LH-20柱上純化,採集40種各2毫升之溶離份。TLC(10%NH4
OH在MeOH
中之溶液)顯示溶離份1至20含有該產物。收集這些溶離份並在旋轉蒸發器上經濃縮以得到481毫克(62%產率)產物。其光譜如下:13
C NMR:(125MHz,CD3
OD)δ 40.08、58.36、58.87、69.20、71.40、79.57、115.14、130.54、138.30、158.14;及MALDI-TOF MS:C54
H90
N12
O8
計算值1035.4;實測值1036[M]+
、1058[M+Na]+
amu。
以下圖解59係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=DETA;(EX1)=DMI;(TF)=甲酯;G=1.5]
在250毫升圓底燒瓶內,於機械攪拌下使DMI(2.19克,13.86毫莫耳,每一胺1.24當量)(Acros Organics)溶解在10毫
升MeOH中,並使該溶液冷卻至4℃。然後使G=1樹枝狀高分子F1
(1.45克,1.40毫莫耳;得自實例55)溶解在15毫升MeOH中並以30分鐘一滴滴添加至該攪拌溶液內。以5毫升MeOH清洗該添加漏斗並使其溫熱至22℃,費時一夜。藉在TLC平板上進行寧海俊染色而監測該反應進展。24小時後,一旦該一級胺完全消耗時,將該反應注入兩滲析袋(24毫米直徑,長5厘米,1,000 Dalton Spectra/Por®
;Spectrum Laboratories)內並放入1,000毫升MeOH中。每一次經90分鐘滲析後,兩次更換整體MeOH。然後將該產物移至500毫升圓底燒瓶內,藉旋轉蒸發器移除溶劑,並將殘留物置於高真空下,費時24小時以得到具有吡咯啶酮表面之該G=1樹枝狀高分子(1.80克,2.8%產率,2.87克理論產率)。其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.63(1H,s)、2.76(1H,s)、3.22(2H,s)、3.42(2H,s)、3.68(4H,d,J=3.17)、3.85(2H,m)、6.61(1H,m)、6.96(1H,m);13
C NMR(75MHz,CDCl3
):δ 33.97、35.74、37.38、40.65、51.82、52.32、67.00、70.01、114.03、128.47、129.18、133.55、136.39、156.43、172.73、173.35;FT-IR(淨):νmax
3364、2952、1736、1687、1608、1509、1437、1323、1248、1207、1178、1148、1021、937、836、751cm-1
;及MALDI-TOF:C102
H136
N12
O32
計算值2044.3;實測值2067[M+Na]+
amu。
以下圖解60係闡明本反應:
[(C)=PETGE;(IF1)=乙醯基;(EX1)=PIPZ;(IF2)=乙醯基;(BR1)=TMPTGE;(IF3)=乙醯基;(EX2)=EPC;(YF)=羧酸根;G=1.5]
添加TMPTGE(7.2克,23.8毫莫耳,每一NH 6當量)及30克MeOH至含有攪拌棒之50毫升圓底燒瓶內。於25℃下以~5分鐘一滴滴添加季戊四醇四(2-羥丙基-3-哌)醚(690.0毫克,0.98毫莫耳,3.9毫莫耳NH)在3克MeOH中之溶液至該混合物內。於25℃下攪拌該混合物,費時36小時,在N2
大氣層下密封。藉TLC(使用寧海俊色料之MeOH)分析該混合物顯示對未經反應之PIPZ-NH基團之存在無正試驗。使用含有1K再生纖維素膜之切向流超過濾裝置,維持該溫度
於25至26℃下去除該混合物之過量環氧化物以得到800毫升過濾液(~7次循環)。該留存物之TLC(MeOH)顯示過量環氧化物已完全移除。藉旋轉蒸發及高真空而移除揮發性物質以得到具有下述光譜之所欲產物(2.4克;93%產率):13
C NMR(125MHz,CD3
OD)δ 8.08、14.98、23.95、44.61、54.58、62.53、62.69、68.74、70.46、71.31、72.64、73.32、74.01、75.37、157.12。
以下圖解61係闡明本反應:
添加PEHAM樹枝狀高分子,G=1,Nc
=4,Nb
=2,乙氧羰基表面(500.0毫克,0.155毫莫耳,1.8毫莫耳OH)(由實例57A製成)、二甲胺基吡啶(23.0毫克,0.19毫莫耳)(Acros)及15毫升DCM至含有攪拌棒之25毫升圓底燒瓶內。添加500毫克乙酸酐之於4℃下經冷卻之該均質溶液內。於25℃下攪拌該混合物,費時24小時,在N2
大氣下密封。以25毫升DCM稀釋該混合物並經飽和NaHCO3
溶液(2×5毫升)清洗。以無水Na2
SO4
乾燥有機層,過濾並藉旋轉蒸發法移除揮發物以
得到該粗產物(260毫克)。使用3:1 DCM:MeOH(%v/v)在矽凝膠上使該物質經層析。前兩種溶離份含有該產物。移除揮發性物質以得到具有以下光譜之純化產物(570毫克;95%產率):13
C NMR(125MHz,CDCl3
):δ 7.71、14.69、21.25、22.96、39.39、43.46、43.75、53.34、53.66、58.48、59.26、61.29、69.74、70.08、70.24、71.24、71.36、71.64、155.49、169.75、170.41。
以下圖解62係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=TREN;(TF)=一級NH2
;G=1]
在250毫升圓底燒瓶內,使TREN(10.35克,77.23毫莫耳,9.0當量)(Dow Chemical)溶解在20毫升MeOH及10毫升DME中。使TPEGE(EPON 1031)(2.0克,1.93毫莫耳)(EPON)溶解在25毫升DME及10毫升MeOH中並移入60毫升添加漏斗內。以30分鐘一滴滴添加該TPEGE溶液。一旦完成時,以DME(2×7.5毫升)清洗該添加漏斗並於22℃下使該反應混合物進行反應,費時48小時。TLC(7:3 CH3
OH:NH4
OH)顯示該TPEGE已完全消耗(Rf
=0.55)。移除一整份55.22克(49.7%)該反應混合物,使用旋轉蒸發器藉蒸發而濃縮,並於210℃下藉Kugelrohr蒸餾法而純化,費時1.5小時。該蒸餾法可回收4.49克TREN及1.68克粗產物。然後使該產物溶解在8克MeOH中並添加至LH-20 Sephadex尺寸排斥柱。達到空隙體積(575毫升)後、收集50種各13毫升之溶離份。TLC(7:3 CH3
OH:NH4
OH)分析顯示產物在溶離份5至17中。合併這些溶離份,並藉旋轉蒸發器而移除MeOH。將其餘產物放在高真空下,費時24小時(0.7克,20.0%產率,3.61克理論質量平衡)。其光譜如下:1
H NMR(500MHz,CD3
OD):δ 2.54(4H,m)、3.811(2H,m)、4.81(2H,s)、6.87(2H,m);13
C NMR(75MHz,CD3
OD):δ 40.16、53.15、54.21、55.74、57.88、69.55、72.99、115.15、130.53、158.06;及MALDI-TOF:C62
H110
N16
O8
計算值1207.64;實測值1208[M]+
amu。
以下圖解63係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=TREN;(TF)=一級NH2
;G=1]
添加三(2-胺基乙基)胺(16.0克,109毫莫耳,每一環氧化物10當量)及4毫升MeOH至含有攪拌棒之50毫升圓底燒瓶內,並冷卻至~25℃。一滴滴添加PETGE(1.0克,2.78毫莫耳,11.1毫莫耳環氧化物)在2毫升MeOH中之溶液至該攪拌混合物內。於25℃在N2
大氣下攪拌該混合物,費時24小時。藉旋轉蒸發法而蒸餾揮發性物質以得到粗產物,於200至230℃在高真空下使用Kugelrohr裝置使其經減壓蒸餾以得到2.4克殘留物。該物質之MALDI-TOF質譜顯示於967amu[M+Na]+
之質量下可得到該所欲4:1加成物之清楚的光譜及於799amu[M+Na]+
下該3:1加成物之較小信號。TLC(50%NH4
OH在MeOH中之溶液)顯示無TREN。13
C NMR光譜顯示純產物(2.4克,92%產率)之預測波峰。其光譜如
下:13
C NMR:(125MHz,CDCl3
)δ 39.63、35.36、47.30、52.64、54.01、57.24、68.10、70.33、74.64;及MALDI-TOF MS:C42
H101
N16
O8
:計算值944.3、實測值967[M+Na]+
amu。
以下圖解64係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=PEA;(TF)=一級NH2
;G=1]
添加PEA在MIBK中之0.84M溶液(50.0毫升,42.0毫莫耳,每一環氧化物2.2當量)及25毫升MeOH至含有攪拌棒之250毫升圓底燒瓶內。添加TPEGE(5.0克,8.0毫莫耳,32毫莫耳環氧化物)溶解在25克二乙醇二甲醚內之溶液至該混合物內。於70℃在N2
大氣下加熱該混合物,費時65小時。
然後添加25毫升DI水並於55℃下加熱該混合物,費時24小時。藉旋轉蒸發器而移除揮發性物質以得到粗殘留物,其於140至190℃在高真空下使用Kugelrohr裝置經減壓蒸餾以得到8.58克殘留物。使一部份(600毫克)該物質在MeOH中藉Sephadex LH 20柱而純化。如藉TLC(30% NH4
OH在MeOH中之溶液)測定,溶離份1至9含有純產物,其可得到250毫克物料(以60%純度該起始物質為基準計70%產率)。其光譜如下:13
C NMR:(125MHz,CDCl3
)δ 38.59、60.83、53.19、60.64、65.63、70.27、114.14、129.25、136.46、156.56;及MALDI-TOF MS:C62
H98
N12
O8
:計算值1139.5、實測值1140[M+H]+
amu。
以下圖解65係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PEA;(TF)=二級胺;G=1.5]
將AEP(2.06克,16.0毫莫耳)(Acros Organics)裝入100毫升圓底燒瓶內,並溶解在20毫升EtOH(Aldrich)中。然後於RT下在機械攪拌下添加酯C5
(2.23克,2.0毫莫耳,16毫莫耳酯;得自實例51)在20毫升EtOH中之溶液。使該燒瓶配備回流冷凝器並於70至75℃下加熱。一天後,MALDI-TOF MS分析顯示該所欲產物及少許副產物化合物之預測質量。藉IR監測該反應之進展顯示於1660厘米-1
下醯胺振動(C=0)比於1742厘米-1
下之酯振動(C=0)更強烈。持續加熱36小時,並使所形成反應混合物冷卻至RT。使該混合物經MeOH稀釋以得到5%溶液並於20至22 psi(約137.9千帕)壓力下使其進行使用1K尺寸排斥膜之UF。收集480毫升過濾液後,自UF取出留存物,並藉旋轉蒸發而移除溶劑。於高真空下乾燥其餘之淺褐色固體以得到所欲PEHAM樹枝狀高分子(G=1)5
(3.53克,99%產率)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 2.48至2.51(64H,t,J=3.90Hz)、2.83至2.85(32H,t,J=2.70Hz)、3.30至3.37(24H,m)、3.38(32H,bs)、3.78至3.81(4H,m);13
C NMR(75MHz,CD3
OD):δ 35.76、45.02、45.81、53.66、57.73、59.49、59.76、68.12、70.20、74.22、172.38;
IR(淨):νmax
3288、3078、2939、2817、1654、1536、1454、1444、1352、1321、1301、1265、1132、1029、999、912、845、758、666 cm-1
;及MALDI-TOF MS:C81
H160
N28
O16
;計算值1782.3;實測值1803.9[M+Na]+
amu。
以下圖解66係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=DBA;(TF)=苄基;G=1]
於機械攪拌下,在250毫升圓底燒瓶內,使DBA(7.23克,36.6毫莫耳,每一環氧化物1.3當量)溶解在25毫升MeOH中。使PETGE(2.52克,7.0毫莫耳)溶解在5毫升MeOH中,並於22℃在攪拌及N2
大氣下,一滴滴地添加入該反應混合物內。藉TLC(2:1己烷:乙酸乙酯)而監測該反應,首先於Rf
=0.15(DBA)及Rf
=0.26(產物)得到兩個斑點。24小時後,使該燒瓶配備回流冷凝器並將該混合物放入45℃油浴
內以使該反應完成。再經24小時後,藉旋轉蒸發而移除MeOH並使其餘的物質(9.52克)溶解在50毫升DCM中;繼而以75毫升1.5%碳酸鉀清洗3次。在硫酸鈉上乾燥有機層,並藉旋轉蒸發而移除DCM以得到如黃色清澈黏性液體之所欲產物(7.99克,99.0%產率,8.07克理論質量)。其光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.46(1H,q,J=5.25Hz)、3.27(1H,q,J=2.75Hz)、3.56(1H,d,J=6.75Hz)、3.74(1H,d,J=7.0Hz)、3.865(2H,s)、7.35(12H,m,J=5.8Hz);13
C NMR(75MHz,CDCl3
):δ 45.32、53.03、58.59、67.03、70.32、73.90、126.88、128.09、128.27、128.32、128.90、138.79、140.14;及MALDI-TOF:C73
H88
O8
;計算值1149、實測值1172[M+Na]+
amu。
以下圖解67係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=AEEA;(TF)=一級NH2
及OH;G=1]
使100毫升經烘箱乾燥之圓底燒瓶配備攪拌棒,經N2
氣體沖洗並經隔片閉合。經由注射器添加經MIBK保護之AEEA(30.1毫升,56.0毫莫耳,在MIBK中1.86M溶液,每一環氧化物2當量)於其中,繼而添加20毫升無水MeOH。於RT下添加PETGE(2.52克,7.0毫莫耳,28毫莫耳環氧基)在10毫升無水MeOH中之溶液至該反應混合物內。攪拌30分鐘後,使該燒瓶配備回流冷凝器並置於油浴中,於50℃在N2
大氣下加熱24小時。藉MALDI-TOF質譜測定法監測該反應之進展。藉旋轉蒸發而移除溶劑並添加40毫升2-丙醇及4毫升水。然後於55℃下加熱該混合物,費時一夜。藉旋轉蒸發而移除該溶劑並於170至195℃下使所形成反應混合物進行Kugelrohr蒸餾以得到淺褐色黏性液體(6.85克,5.43克理論產量)。1
H及13
C NMR光譜顯示該等保護基團未完全移除。因此使該反應混合物再溶解於40毫升MeOH及4毫升水中,並於55℃下加熱3天。如前述,移除該溶劑並於170至195℃下進行Kugelrohr蒸餾以得到淺褐色黏性液體,其具有化合物4
之預測分析數據(5.58克,5.43克理論產量)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 2.46至2.62(12H,m)、2.64至2.81(12H,m)、3.36至3.41(8H,d,J=4.50Hz)、3.46(8H,s)、3.53至3.66(8H,m)、3.81(4H,bs);13
C NMR(75MHz,CD3
OD):δ 39.04、45.80、57.40、
57.50、58.45、59.66、68.48、70.19、73.99;IR(淨):νmax
3354、2945、2863、1572、1552、1541、1454、1367、1306、1101、876、825、773 cm-1
;及MALDI-TOF MS:C33
H78
N8
O12
;計算值777.0、實測值777.7[M]+
、799.6[M+Na]+
amu。
以下圖解68係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=MIA;(TF)=咪唑啉;G=1]
將MIA(2.69克,32.0毫莫耳)(Aldrich)及6毫升無水MeOH(Aldrich)裝入50毫升經烘箱烘乾之圓底燒瓶內。添加
PETGE在1毫升MeOH中之溶液至其中,並於RT下攪拌該混合物,費時3天。在MeOH中將該反應混合物稀釋成2.5至5%溶液w/w並於20至22 psi(137.9千帕)壓力下進行使用1K尺寸排斥濾器之UF。收集一升過濾液後,自UF取出留存物,並以MeOH(3×50毫升)清洗該UF。藉旋轉蒸發而自該留存物移除溶劑以得到黏性液體,使其進一步於高真空下乾燥以得到淺色固體(0.61克,87.64%產率)。該試樣之13
C NMR顯示其具有<5%該3臂副產物。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 1.90(12H,s)、3.23(8H,s)、3.41至3.42(8H,d,4.50Hz)、3.30至3.62(16H,m)、3.57至3.60(8H,d,J=9.30Hz)、3.86(4H,m);13
C NMR(75MHz,CD3
OD):δ 45.73、48.90、49.54、50.40、50.59、68.36、70.20、73.29、165.87;IR(淨):νmax
3308、2924、2868、1608、1490、1429、1372、1265、1178、1101、1014、983、942 cm-1
;及MALDI-TOF MS:C33
H60
N8
O8
;計算值696.9、實測值697.6[M]+
amu。
以下圖解69係闡明本反應:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(EX1)=嗎啉;(TF)=環醚;G=1]
於RT下急速地添加0.604克TMPTGEI
(2毫莫耳)在2毫升無水MeOH中之溶液至1.044克嗎啉Ⅱ-d
(12毫莫耳)在8毫升無水MeOH中之攪拌溶液內。藉TLC而監測該反應之進展。攪拌3小時後,TLC顯示TMPTGE完全消耗。於RT下持續攪拌一夜。於減壓下在旋轉蒸發器上移除溶劑並於高真空下乾燥而移除過量嗎啉以得到無色透明液體。經由矽凝膠柱式層析法(8.5”高×1.25”寬)(21.25厘米×3.18厘米),藉增加甲醇在氯仿中之含量(5至10%MeOH在CHCl3
中之溶液)而純化該粗反應混合物。Ⅲ d
+Ⅳ d
之產率為25%及800毫克,其亦含有產物Ⅲ d
及Ⅳ d
與少量未經鑑定之物質(71%產率)。總產率為96%。Ⅲ d
+Ⅳ d
(兩種化合物之混合物)=221毫克,Ⅲ-d
(純溶離份)=66毫克。
Ⅲ d
之光譜為:1
H NMR(500MHz,CDCl3
):δ 0.81(T,J=7.50Hz,3H)、1.36(q,J=7.50Hz,2H)、2.32至2.43(m,12H)、2.52至2.59(quintet,J=4.50Hz,6H)、3.28至3.47(m,12H)、3.52(s,3H,OH)、3.64至3.71(m,12H)、3.87(quintet,J=4.50Hz,3H);13
C NMR(125MHz,CDCl3
):δ 7.91、23.39、43.61、54.10、61.54、66.41、67.09、72.22、74.02;及MALDI-TOF:C27
H53
N3
O9
之計算值563、實測值587(M +
Na)amu。
Ⅳ-d
之光譜為:MALDI-TOF:C23
H44
N2
O8
之計算值476、實測值500(M +
Na)amu(溶離份-Ⅱ)。
圖解70係闡明本反應:
[(C)=MBDGA;(IF1)=OH;(BR1)=TRIS;(TF1)=OH;(TF2)=環氧化物;G=1]
在50毫升單頸圓底燒瓶內稱出四縮水甘油基苯胺,I-b
(0.422克,1毫莫耳)之重量,並添加15毫升MeOH及5毫升DCM。添加TRIS(0.121克,1毫莫耳)至上述反應混合物內。使燒瓶配備回流冷凝器,並於40℃下加熱3天。在旋轉蒸發器上蒸發溶劑,其可得到無色蠟狀固體,使其進一步於高真空下乾燥。於熱條件下使用熱風器使該反應混合物溶解在溶劑之混合物(CHCl3
+CH3
OH;50毫升,3:1)內。使該燒瓶溫熱至RT並添加30毫升己烷。發現沉澱物形成,同時
添加己烷。3小時後,經由布赫納漏斗過濾固體,並在旋轉蒸發器上蒸發溶劑以得到黏性液體,使其在矽凝膠上進行柱式層析法。首先,使用40%乙酸乙酯/己烷以溶析微量四縮水甘油基苯胺,繼而使用5% MeOH/CHCl3
以溶析化合物-Ⅲ
。蒸發純溶離份(藉吖LC測定),其可得到37毫克吸濕性固體。分析數據、MALDI-TOF、1
H及13
C NMR顯示其係為化合物-Ⅲ
。亦使用2當量TRIS/環氧化物在MeOH及DCM混合物中之溶液以研究本反應,且可得到良好產率之化合物-Ⅲ
。該反應並未在DME中進行,且於60℃下使用2當量TRIS在MeOH中之溶液,費時一夜以得到雙-及三-加成產物。於60℃下與2當量TRIS進行反應,費時3天,亦可得到具有微量四加成產物之雙-及三-加成產物。Ⅲ-e
之光譜如下:1
H NMR(500MHz,CDCl3
):δ 2.50(q,J=2.40Hz,2H)、2.70(q,J=4.50Hz,2H)、2.82(bs,1H)、3.07(s,4H)、3.24至3.37(m,7H)、3.58至3.66(m,9H)、3.95(s,2H)、4.59(s,6H)、6.65(d,J=8.40Hz,4H)、6.98(d,J=8.10Hz,4H);13
C NMR(125MHz,CDCl3
):δ 39.98、45.58、45.71、50.92、51.03、53.35、55.08、57.84、63.40、71.03、112.85、112.93、129.84、131.02、146.76、148.08;及MALDI-TOF:C29
H41
N3
O7
之計算值543;實測值567(M +
Na)amu。
圖解71係闡明本反應:
[(C)=DGGA;(IF1)=OH;(EX1)=PIPZ;(TF1)=二級NH;G=1.5]
於RT下以每一環氧化物0.33當量EPC(Aldrich)研究DGGA1
(Aldrich)之反應。一天後,MALDI-TOF質譜測定法顯示作為主要產物之單加成產物2
及少量雙加成產物2a
之波峰(自1
H NMR可知其比率為11:1)。於RT下以每一環氧化物1.1當量EPC進行研究可以使所有3種環氧化物進行反應以得到優異產率(92%)之產物3
。化合物3
之鹼性水解可得到89%離析產率之化合物4
。
A.添加EPC(0.79克,5毫莫耳)在5毫升MeOH中之溶液至DGGA1
(1.38克,5毫莫耳)在5毫升MeOH中之攪拌溶液內,並於RT下攪拌一天。然而,在矽凝膠上藉柱式層析法進行該產物之離析可得到具有以下光譜之開環產物2
:MALDI-TOF:C22
H33
N3
O6
計算值435,實測值436(M+
H)及458(M+
Na)amu。
B.添加EPC(5.21克,33毫莫耳)至DGGA1
(2.77克,10毫莫耳)在15毫升MeOH中之攪拌溶液內並於RT下攪拌2天。該起始物質已完全消耗。於減壓下在旋轉蒸發器上移除溶劑。藉Kugelrohr蒸餾而移除過量EPC,其可得到具有以下光譜之純化合物3
(6.91克,92%產率):MALDI-TOF:C36
H61
N7
O10
計算值751,實測值774(M +
Na)amu。
C.將化合物3
(6.91克,9.2毫莫耳)裝入圓底燒瓶(250毫升,單頸)內,並溶解在42毫升MeOH中。於RT下以5分鐘添加水性KOH(45%)(使20.73克之90%KOH溶解在42毫升水中)至上述攪拌溶液中。使該燒瓶配備回流冷凝器並置於預熱之油浴(85至90℃)中,加熱一夜。藉吖LC監測該反應之進展。在旋轉蒸發器上移除甲醇,並以DCM(3×50毫升)萃取水性層。在Na2
SO4
上乾燥合併萃取物,經由Celite過濾,並在旋轉蒸發器上濃縮,然後在高真空下乾燥,其可得到具有以下光譜之如固體的淺黃色哌表面,樹枝狀高分子4
(4.86克,89%產率):MALDI-TOF:C27
H49
N7
O4
計算值535,實測值536(M+
H)、558(M+
Na)amu。
圖解72係闡明本反應:
以下實例係闡明G=2、2.5及3之PEHAM樹枝狀高分子
[(C)=TMPTA;(FF)=ET;(EX1)=PIPZ;(BR1)=TMPTA;(EX2)=PIPZ;(BR2)=TMPTA;(TF)=丙烯酸酯;G=2]
添加TMPTA(3.64克,12.3毫莫耳,每一NH 4當量)(Aldrich)及8毫升MeOH至經鋁箔纏繞之具有攪拌棒的50毫
升圓底燒瓶內。以約5分鐘添加聚(酯胺)樹枝狀高分子,G=1,TMPTA核心,PIPZ表面(1.0克,0.51毫莫耳,3.1毫莫耳NH)(由實例20製成)在6毫升MeOH中之溶液至該攪拌混合物內。於25℃下攪拌該混合物,費時24小時。以己烷(3×30毫升)萃取該混合物。以10分鐘添加該甲醇層至PIPZ(3.0克,34.8毫莫耳,每一丙烯酸酯約6當量)在10克MeOH中之混合物內,於4℃下冷卻。於25℃下攪拌所形成混合物,費時約2小時。以MeOH將該混合物稀釋至約5%w/w固體並在甲醇中使用1K再生纖維素膜在5次更換滲析液下滲析36小時。自留存物移除揮發物以得到所欲產物(900毫克,47%產率)。該物質之TLC(10%NH4
OH在MeOH中之溶液)顯示僅一個斑點;且其光譜如下:1
H NMR(500MHz,CDCl3
):δ 0.82至0.94(m,30H)、1.34(q,2H)、1.38(q,6H)、1.49(bq,12H)、2.42(m,84H)、2.51(t,J=7Hz,60H)、2.65(t,J=7Hz,60H)、2.86(bs,84H)、4.05(bs,60H);及13
C NMR(125MHz,CDCl3
):δ 7.36、7.44、22.40、22.71、31.97、32.11、32.18、32.30、32.38、40.81、40.87、40.92、45.73、45.84、52.63、52.70、52.74、53.40、54.05、54.10、63.50、64.06、64.47、171.88、171.95、172.03。
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(EX1)=PIPZ;
(TF2)=OH;(BR1)=TMPTGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=TMPTGE;(IF5)=OH;(EX3)=PIPZ;(TF)=二級NH;G=2.5]
添加TMPTGE(2.3克,7.6毫莫耳,每一NH 10當量)及12克MeOH至具有攪拌棒之25毫升圓底燒瓶內。以5分鐘添加PIPZ末端性PEHAM樹枝狀高分子,G=1(250毫克,0.126毫莫耳,0.75毫莫耳)(由實例22製成)在3克MeOH中之溶液至該已冷卻4℃之攪拌混合物內。於25℃在N2
大氣下在密封容器中攪拌該混合物,費時24小時。以10分鐘添加該混合物至PIPZ(10.0克,116.0毫莫耳,每一環氧化物5當量)在30克MeOH中之混合物內。於25℃下攪拌該混合物,費時18小時。藉旋轉蒸發器而移除該混合物之揮發物以得到白色固體。於高真空及140℃下使用Kugelrohr減壓蒸餾移除PIPZ,費時一小時以得到清澈無色黏性物質(6.0克)。使該物質溶解在100克MeOH中並以24小時在2次更換滲析液下在4升MeOH中之K再生纖維素膜內滲析,費時24小時以得到該產物(1.4克)。吖LC(NH4
OH在MeOH中之溶液)顯示存在少量低分子量物質。在相同條件下再滲析24小時,得到該純化產物(360毫克;59%產率)。TLC顯示無低分子量雜質。其光譜如下:1
H NMR(500MHz,CD3
OD):δ 0.86(t,J=7.0Hz,12H)、1.41(q,J=7.0Hz,8H)、2.32至2.45(m,H)、2.5(bs,H)、2.60(bs,H)、2.84(t,J=7.0Hz,H)、3.33至3.35(bs,H)、3.64(bs,H)、3.37(bs,H)、3.89(m,H);及13
C NMR(125MHz,CD3
OD):δ 8.04、8.07、23.91、44.59、46.21、54.61、55.49、62.66、63.28、68.49、68.67、72.68、75.43。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(TF)=二級NH;G=2.5]
添加2.8克PETGE(7.8毫莫耳,每一NH 10當量)(由實例3製成)及8克MeOH至含有攪拌棒之25毫升圓底燒瓶內。以約5分鐘添加200毫克聚(胺基醇醚)樹枝狀高分子,季戊四醇核心,G=1,哌表面(6.3×10-5
莫耳,7.6×10-4
莫耳NH)(由實例25製成)在3克MeOH中之溶液至該攪拌混合物內。於25℃在N2
大氣下攪拌該混合物,費時24小時。於25℃下以約5分鐘一滴滴地添加該混合物至40克哌(464毫莫耳,每一環氧化物15當量)溶解在80毫升MeOH中之攪拌混合物內。攪拌該混合物,費時24小時。在旋轉蒸發器上移除所形成混合物之揮發物以得到白色固體殘留物。於140℃在高真空下使用減壓蒸餾裝置自該粗殘留物移除哌,直到該鍋殘留物為清澈黏性物質為止。使重5.65克之該粗殘留物溶解在20克MeOH中並添加至在MeOH中之Sephadex LH-20柱內。取出500毫升及3×25毫升之空隙體積的溶離份。如藉TLC(30% NH4
OH在MeOH中之溶液)觀測,在最後兩種空隙
體積之溶離份中的產物並不含可見的低分子量物質。在達到該空隙體積後,取出共49種各15毫升之溶離份。在溶離份1至7中可發現純產物,使其與這兩種空隙體積組合並汽提揮發物以得到390毫克產物。使低分子量物質與溶離份8-21中之該產物混合。合併這些產物,汽提揮發物並在3次更換滲析液(各2升)下,在1K再生纖維素膜內滲析。汽提該留存物之揮發物以得到200毫克產物。溶離份22至49不含產物且僅含低分子量物質。汽提這些溶離份之揮發物以得到4.5克。該產物之總重達590毫克(88%產率)。在具有0.1%SDS之15%均質凝膠上進行該產物之PAGE顯示其譜帶相當於得自PAMAM樹枝狀高分子梯形物G=2至6及G=1之二聚物的G=4,EDA核心,TRIS PAMAM樹枝狀高分子(MW=18000)(Dendritic Nanotechnologies,Inc.)。發現另一譜帶在該凝膠中移至一斑點,其相當於該梯形物上介於G=5與6間之中心。該譜帶可能是G=2之二聚物。於該道之頂部發現未移動之更多物質。其光譜如下:13
C NMR(125MHz,CDCl3
):δ 46.28、46.98、54.69、55.58、62.66、63.28、68.52、68.72、71.32、75.30、75.61。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;
(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=二級NH;G=3.5]
添加5.2克PETGE(由實例C製成)在15毫升MeOH中之溶液至含有攪拌棒之50毫升圓底燒瓶內。以約5分鐘一滴滴地添加200毫克聚(胺基醇醚)樹枝狀高分子,G=2,哌表面(1.88×10-5
莫耳,6.7×10-4
莫耳NH)(由實例70製成)在3克MeOH中之溶液至該攪拌混合物內。於25℃在N2
大氣下攪拌該混合物,費時24小時。於25℃下以約10分鐘一滴滴添加所形成混合物至73克哌(847毫莫耳,每一環氧化物15當量)在140毫升MeOH中之混合物內。24小時後,使用旋轉蒸發器移除甲醇以得到固體殘留物。於高真空及140℃下使用減壓蒸餾移除該哌,費時一小時或直到該鍋殘留物清澈且呈黏性為止。該物質之重量達10.2克。使該物質溶解在30克MeOH中並添加至在MeOH中之Sephadex LH-20柱內。達該空隙體積後,如藉TLC(30%NH4
OH在MeOH中之溶液)所測定,發現前9種溶離份含有未經低分子量物質污染之產物。汽提這些收集溶離份以得到820毫克(80%產率)產物。溶離份10至22含有經低分子量物質污染之產物。其光譜如下:13
C NMR(125MHz,CDCl3
):δ 46.29、46.89、47.00、54.70、55.59、62.67、63.29、68.53、68.73、70.41、71.34、74.06、75.45、75.62。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=二級胺;G=2.5]
添加5.7克PETGE(15.8毫莫耳,每一NH 16當量)(由實例C製成)及20克MeOH至含有攪拌棒之50毫升圓底燒瓶內。以5分鐘一滴滴地添加260毫克聚(胺基醇醚)樹枝狀高分子,G=1,哌表面(8.2×10-5
莫耳,9.8×10-4
毫莫耳NH)(由實例25製成)在5克MeOH中之溶液至該攪拌混合物內。於25℃下攪拌該混合物,費時24小時。使用MeOH將該混合物稀釋至約100毫升以得到5%固體溶液,將其放在再生纖維素膜,1K,中並在2次更換滲析液下,在2升MeOH中滲析24小時。添加該留存物至75克PIPZ(848毫莫耳,每一過氧化物341當量)在140克MeOH中之溶液內。於RT下攪拌所形成混合物,費時18小時。藉旋轉蒸發器而移除揮發物以得到白色固體。於140℃在高真空下藉減壓蒸餾法而移除PIPZ,費時一小時以得到不透明黏性物質,其MeOH中之溶解性不很高。在MeOH中攪拌該混合物,費時16小時,繼而過濾並自該濾液蒸發揮發物以得到360毫克(理論產量1.2克)所欲物質。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=二級NH;G=2.5]
添加4.9克PETGE(13.6毫莫耳,每一環氧化物10當量)(由實例C製成)及20克MeOH至含有攪拌棒之50毫升圓底燒瓶內。以約5分鐘添加360毫克聚(胺基醇醚)樹枝狀高分子,G=1,哌表面(1.13×10-4
莫耳,1.36毫莫耳NH)(由實例25製成)在3克MeOH中之溶液至該快速攪拌之混合物內。在N2
大氣下密封該混合物並於25℃下攪拌6小時。以約10分鐘添加該混合物至250克哌(2.9莫耳,每一環氧化物50當量)在250克MeOH中之溶液內。於25℃在N2
大氣下攪拌該混合物,費時18小時。藉旋轉蒸發器而移除揮發物以得到白色固體。於140℃在高真空下使用減壓蒸餾移除哌以得到清澈黏性物質。使該物質溶解在30克MeOH中,並在MeOH中之Sephadex LH-20柱上純化。如藉TLC(30% NH4
OH在MeOH中之溶液)所測定,發現溶離份1至9含有純產物,而溶離份10至19為混合產物及低分子量物質。以旋轉蒸發器及高真空汽提所收集溶離份1至9之揮發物以得到950毫克(80%產率)清澈黏性物質。汽提該收集之溶離份10至19的揮發物以得到1.6克物質。使用1K再生纖維素膜在甲醇中滲析該物質,直到移除低分子量物質以得到150毫克純產物為
止。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PTTGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=二級NH;G=2.5]
添加4.2克PETGE(11.6毫莫耳,每一NH 16當量)(由實例C製成)及15克MeOH至含有攪拌棒之50毫升圓底燒瓶內。以約5分鐘一滴滴地添加200毫克聚(胺基醇醚)樹枝狀高分子,季戊四醇核心,G=1,哌表面(6.29×10-5
莫耳,7.55×10-4
莫耳NH)(由實例25製成)在3克MeOH中之溶液至該均質混合物內。於25℃下攪拌該混合物,費時4小時。使用100毫升MeOH將該混合物稀釋以得到5%w/w溶液,並在於35℃之溫度安定化下於20 psi(137.9千帕)下在MeOH中之不銹鋼切向流UF裝置內進行超過濾。就1.4次循環而言,收集過濾液,費時2.75小時、得到225毫升體積。然後以10分鐘一滴滴地添加該混合物至75克哌(871毫莫耳)在140克MeOH中之溶液內。於25℃下攪拌該混合物,費時18小時。在旋轉蒸發器上移除揮發物以得到白色固體殘留物。於140℃在高真空下藉減壓蒸餾而移除哌,費時一小時以得到清澈黏性殘留物(6克)。經攪拌數分鐘後,該殘留物並非清
澈黏性液體,而係為不溶於MeOH之多孔固體。於25℃下在100毫升MeOH中攪拌該混合物,費時20小時。傾析該清澈液體並蒸發揮發物以得到360毫克物質。使用Sephadex LH-20在MeOH中純化該物質,並使用TLC(30% NH4
OH在MeOH中之溶液)監測各8毫升之溶離份。如藉PAGE所測定,溶離份1至9含有該所欲產物,其含量為260毫克,且具有大量寡聚物材料存在於該PAGE之基線上。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=二級NH;G=2.5]
添加3.80克PETGE(10.5毫莫耳,每一NH 15當量)(由實例C製成)及12克MeOH至含有攪拌棒之50毫升圓底燒瓶內。添加180毫克聚(胺基醇醚)樹枝狀高分子,G=1,季戊四醇核心(5.66×10-5
莫耳,6.8×10-4
莫耳NH)(由實例25製成)在3克MeOH中之溶液至該均質之快速攪拌混合物內。於25℃在N2
大氣下,在密封容器中攪拌該混合物,費時4小時。添加該混合物至含有1K再生纖維素膜在MeOH中之切向流UF裝置內,維持該留存物之體積於80毫升,約5%w/w,並維持該溫度在25至27℃之間就3.4次循環而言,獲得共280毫升過濾水,費時4.5小時。汽提該過濾水之揮發物以得到
1.9克(50%回收率)物質。移除該留存物並以MeOH(3×80毫升)清洗該UF裝置。以15分鐘一滴滴地添加該合併溶液至75克PIPZ(871毫莫耳)在140克MeOH中之混合物內。於25℃下攪拌所形成混合物,費時18小時。自該混合物移除揮發物以得到白色固體。於140℃及高真空下使用減壓蒸餾自該混合物移除哌,費時一小時以得到4克清澈黏性殘留物。使該混合物溶解在9克MeOH中,在MeOH中之Sephadex LH-20尺寸排斥柱上純化。得到575毫升空隙體積後,收集48種各8毫升之溶離份。在溶離份1至12中發現純產物,並汽提揮發物以得到540毫克(90%產率)產物。收集產物之混合溶離份及溶離份13至22中之季戊四醇四(2-羥丙基-3-哌)醚,並使用再生纖維素膜在MeOH中滲析以得到40毫克(6%)物質。收集溶離份23至32中之本質上純的季戊四醇四(2-羥丙基-3-哌)醚以進行循環。
[(C)=PETGE;(IF1)=OH;(EX1)=三唑;(BR1)=PETriGE;(IF2)=OH;(BR2)=DEA;(TF)=OH;G=2]
以DEA(1.07克,10.26毫莫耳,每一環氧化物3當量)(Aldrich)在3毫升第三-丁醇中之溶液中止粗產物4
之反應。於RT下攪拌該反應混合物,費時一天,然後於45℃下加熱3天。冷卻至RT後,以300毫升MeOH稀釋該反應混合物,並
過濾少量未經溶解之無機固體。使該濾液藉UF經由1K尺寸排斥膜而進一步純化。收集900毫升過濾液後,自該UF取出留存物並以MeOH(3×50毫升)清洗該UF。藉旋轉蒸發而移除溶劑以得到黃褐色液體,於高真空下使其乾燥以得到似發泡體固體之該所欲G=2樹枝狀高分子5
(850毫克,99%產率)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 2.49至2.80(m,H)、3.40至3.50(m,H)、3.52至3.70(m,H)、3.81(bs,H)、4.10至4.20(m,H)、4.38至4.50(m,H)、4.588(bs,H)、7.99(s,4H);及13
C NMR(75MHz,CD3
OD):δ 29.99、45.51、45.68、53.39、57.47、58.46、59.63、64.32、68.44、69.03、69.35、70.12、72.85、73.84、125.04、144.82。
以下圖解73係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=DETA;(BR2)原位=丙烯酸甲酯;(TF)=甲酯;G=2.5]
於0℃下一滴滴添加八胺(由實例27製成)在MeOH中之溶液至丙烯酸甲酯(Acros)在MeOH中之溶液內(每一NH 1.5當量)。添加後,使該反應溫熱至RT。然後將該混合物加熱至40℃,費時24小時。接著移除溶劑以得到如黃色油之該產物,其具有以下光譜:MALDI-TOF:計算值2146;實測值2169.662(M+
Na)amu。
以下圖解74係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(TF)=二級NH;G=2.5]
使PETGE(4.40克,12.24毫莫耳)(由實例C製成)溶解在20毫升MeOH中,並在冰浴中使該燒瓶冷卻至4℃。使G=1之樹枝狀高分子(0.54克,0.17毫莫耳,2.04毫莫耳NH)(由實例26B製成)溶解在10毫升MeOH中,並以15分鐘一滴滴地添加至上述攪拌溶液中。移除該冰浴並於RT下攪拌該混合物,費時20小時。使該反應混合物在MeOH中成為5%溶液並進行UF(1K截止)。5次循環(5×120毫升)後,自UF取出留存物。以MeOH(2×20毫升)清洗該UF濾液並經EPC(3.38克,21.44毫莫耳,每一環氧化物3.5當量)中止反應,然後於減壓在最少熱下,在旋轉蒸發器上濃縮成15毫升。
於RT下攪拌該反應混合物,費時16小時。經由UF(1K截止)分離過量EPC(自該過濾液回收2.33克EPC)。在旋轉蒸發器上移除該溶劑並在高真空下乾燥以得到2.3克酯表面樹枝狀高分子。
使酯表面G=2之樹枝狀高分子(2.3克)溶解在21毫升MeOH中。以5分鐘一滴滴地添加水性KOH(6.9克,90%溶解在14毫升水中)溶液至上述攪拌溶液內。使該燒瓶配備回流冷凝器並置於預熱油浴(85至90℃)內,加熱20小時。在旋轉蒸發器上移除MeOH,並以20毫升水進一步稀釋所形成水性反應混合物,以冰浴冷卻至10℃,並在恆定混合下經6N HCl中和。將pH調整至9,在旋轉蒸發器上濃縮,其可得到固體。在溫和加熱(藉熱風機)下再使該固體溶解在120毫升MeOH中,並於RT下靜置。經由布赫納漏斗過濾該等固體,並經MeOH清洗。在旋轉蒸發器上濃縮該濾液以得到固體物
質(3克)。使該物質進行UF(1K截止)(5×120毫升)以移除微量KCl。自該留存物蒸發該溶劑以得到具有以下光譜之如淺黃色固體的PIPZ表面,G=2樹枝狀高分子(1.66克,91.76%產率):1
H NMR:(300MHz,CD3
OD):δ 2.37至2.42(m,144H)、2.51(bs,144H)、2.58(bs,136H)、2.83(bs,128H)、3.30(bs,68H,-OH)、3.34(s,36H,-NH)、2.37(d,J=4.50Hz,136H)、3.42至3.45(bs,136H)、3.90(bs,68H);13
C NMR:(75MHz,CD3
OD):δ 45.09、45.80、53.50、54.40、61.47、62.10、67.35、67.55、69.24、70.12、72.85、74.20、74.42;IR(淨):λmax
3385、2929、2924、2817、1649、1557、1454、1362、1321、1367、1106、1029、1004、860、825、784cm-1
;及MALDI-TOF:C497
H996
N104
O136
計算值10605;實測值4000-10000 amu;且自AFM測定之多分散性為1.091。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=二級NH;G=0.5、1.5、2.5、3.5]
將PETGE(15.55克,43.2毫莫耳)(由實例C製成)及35毫升MeOH裝入單頸100毫升圓底燒瓶內。使用冰浴將該燒瓶冷卻至10℃。使樹枝狀高分子,G=2.5(1.06克,0.1毫莫耳,3.6毫莫耳NH)(由實例78製成)溶解在15毫升MeOH中並以20分鐘經由添加漏斗添加至上述攪拌溶液中。移除該冰浴並於RT下攪拌42小時。以320毫升MeOH稀釋該反應混合物以得到5%甲醇系溶液,並進行UF(1K截止)。5次循環(5×120毫升)後,TLC顯示僅微量具有留存物之PE吖GE(自該過濾液回收11.78克PETGE)。
自該超濾器取出留存物;並以甲醇(2×20毫升)清洗該超濾器。該留存物之總含量為150毫升,以EPC(23克,145.56毫莫耳,每一環氧化物13.47當量)中止其反應,並於RT下攪拌4天。使該反應混合物經MeOH稀釋以得到5%甲醇系溶液,並藉UF(1K截止)分離過量EPC(14×120毫升)(自該過濾液回收19.15克EPC)。自該留存物蒸發溶劑以得到5.57克如發泡性固體之酯表面G=3.5樹枝狀高分子。
將酯表面G=3.5之樹枝狀高分子(5.38克)裝入250毫升圓底燒瓶內並溶解在48毫升MeOH中。以5分鐘添加水性KOH(45%)(使16.14克之90%KOH溶解在32毫升水中)至上述攪拌溶液中。使該燒瓶配備回流冷凝器並置於預熱(85至90℃)油浴中,加熱36小時。TLC顯示無剩留G=0酯,其預期可以呈副產物形成。將該反應混合物冷卻至RT並在旋轉蒸發器上濃縮。以冰浴將該水性反應混合物冷卻至10℃。在偶爾搖動下,添加6N HCl。添加40毫升後,藉pH試紙發
現pH自鹼性變成酸性。再添加6毫升HCl以將pH調整至5。然後於減壓(浴溫為70℃)下在旋轉蒸發器上濃縮該溶液。蒸發一半該溶液後,可發現固體在燒瓶內形成。完全移除水而乾燥。自旋轉蒸發器移除該燒瓶,並在使用熱風器溫和加熱下使殘留物溶解在150毫升MeOH中。使該燒瓶在工作台上靜置數分鐘。使固體物質經由布赫納漏斗過濾,經100毫升MeOH澈底清洗。固體並不完全溶於MeOH,且發現UF之速率很慢。經由1K膜6次循環後,在旋轉蒸發器上濃縮該留存物以得到具有5.36克淺黃色發泡狀固體(理論產率為3.206克)之PIPZ表面。
在CD3
OD中之1
H NMR顯示得自表面PIPZ之所有部份以0.55ppm移至低磁場方向。該物質並未溶解在MeOH中。此可能係由於在該等空穴/內部內截獲客分子所致。其亦自最終產率>100%而明顯可知。
使上述試樣在水中經由1K膜而滲析,並在兩次更換滲析液下滲析21小時。自旋轉蒸發器上之留存物蒸發水並於高真空下乾燥以得到2.34克(71%產率)如淺黃色固體之G=3樹枝狀高分子。第一次之滲析液之結晶反應可得到固體。
對滲析液集行MALDI-TOF分析顯示客分子為G=0.5樹枝狀高分子、微量G=0酯及少量其它未鑑定之化合物。
記錄得自該留存物之化合物的1
H NMR,且發現得自表面PIPZ之質子以0.55ppm移至高磁場方向。
其光譜如下:1
H NMR:(300MHz,CD3
OD):δ 2.53(bs,H)、2.81(bs,
H)、3.23(bs,H)、3.30(bs,H)、3.45(bs,H)、3.90(bs,H)、4.07(bs,H);13
C NMR:(75MHz,CD3
OD+3滴D2
O):δ 43.53、45.77、50.22、51.46、58.47、59.74、60.62、66.16、67.45、69.18、70.17、72.83、74.09;及MALDI-TOF:C1541
H3084
N320
O424
計算值32882;實測值49617 amu;且自AFM所測定之多分散性為1.117。
[(C)=MBDGA;(IF1)=OH;(BR1)=DEA;(TF)=OH;G=2]
將縮水甘油基苯胺,I-b
(0.844克,2毫莫耳)及30毫升MeOH放入100毫升配備攪拌棒之單頸圓底燒瓶內。使DEA(1.68克,16毫莫耳)溶解在10毫升MeOH中並於RT下添加至上述攪拌溶液中。使該燒瓶配備回流冷凝器並於60℃在N2
大氣下加熱2天。2天後,TLC顯示起始物質I-b
完全消耗,
且MALDI-TOF MS顯示八羥基末端性(G=1)樹枝狀高分子Ⅲ-f
及六羥基末端性產物之分子離子波峰。在旋轉蒸發器上移除溶劑以得到透明液體。Ⅲ-f
之光譜如下:MALDI-TOF:C41
H74
N6
O12
計算值843;就三加成產物而言,實測值866(M+
Na)及761(M+
Na)amu。
以下圖解75係闡明本反應:
[(C)=MBDGA;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯;G=2.5]
將DEIDA(1.512克,8毫莫耳)裝入單頸100毫升圓底燒瓶內並添加12毫升MeOH。使MBDGAI-b
(0.422克,1毫莫耳)溶解在溶劑混合物(3毫升DCM及5毫升MeOH)內並以30分鐘添加至上述反應混合物內。於RT下攪拌該反應混合物,費時2天後,MALDI-TOF質譜測定法顯示單-及雙-加成產物之離子波峰。使該燒瓶配備回流冷凝器並於40℃下加
熱3天。在旋轉蒸發器上移除溶劑。其可得到淺黃色固體液體。使該反應混合物在矽凝膠(7”×1.5”)(17.8厘米×3.8厘米)上進行柱式層析法。首先,使用40%乙酸乙酯/己烷以溶析過量DEIDA,繼而使用5%甲醇/氯仿以溶析該八酯末端性(G=1)樹枝狀高分子Ⅲ-g
,0.92克(78%產率),其具有以下光譜:1
H NMR(300MHz,CDCl3
):δ 2.40至3.80(m,H)、3.90至4.3(m,16H)、4.7(m,4H)、6.60至6.76(m,4H)、6.90至7.10(m,4H);13
C NMR(75MHz,CDCl3
):δ 14.43、21.29、39.90、45.57、45.71、45.91、50.64、50.79、50.88、51.18、51.97、52.06、53.22、53.03、53.54、53.97、54.23、54.62、55.00、55.88、56.07、56.48、56.59、56.92、58.68、58.98、59.28、59.63、60.63、60.99、61.11、66.60、66.92、67.13、67.62、112.33、112.76、112.98、113.12、113.33、129.67、129.79、129.91、167.37、169.66、171.92、171.97、172.02(所發現之碳數表示反式-酯化反應之產物);及MALDI-TOF:C57
H90
N6
O20
計算值1178;實測值1201(M +
Na)amu。
圖解76係闡明本反應:
[(C)=MBDGA;(IF1)=OH;(BR1)=DEIDA;(EX1)=EDA;(TF)=一級NH2
;G=2]
將EDA(66克,200莫耳當量)放入經烘箱乾燥之500毫升單頸圓底燒瓶內,並使該燒瓶配備攪拌棒且經橡膠隔片閉合並經冰浴冷卻至0℃。使酯表面樹枝狀高分子Ⅲ-g
(0.65克,0.55毫莫耳)(得自實例81)溶解在10毫升MeOH中並經由均壓漏斗以20分鐘添加至上述溶液內。移除該漏斗並以N2
氣體沖洗該燒瓶,然後經橡膠隔片閉合並於0℃下貯存在冰箱內,費時2天。2天後,使該反應混合物溫熱至RT。於減壓下在旋轉蒸發器上移除過量EDA,其可得到蠟狀無色化合物。使該反應混合物溶解在30毫升MeOH中並添加70毫升甲苯,然後在旋轉蒸發器上蒸發。重複該製程3次以移除殘
留量之EDA,其可得到具有以下光譜之淺黃色固體,胺表面樹枝狀高分子Ⅳ
(0.825克,98%產率):13
C NMR(125MHz,DMSO-d6):δ 41.97、42.53、49.27、52.96、54.09、56.76、57.56、59.90、60.44、66.76、112.57、112.71、129.71、171.16;IR(淨):νmax
3291(br)、2933、1653、1545、1517、1440、1358、1232、1189、1000、962、799、7322 cm-1
;及MALDI-TOF:C57
H106
N22
O12
計算值1290;實測值1313(M +
Na)amu。
圖解77係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=BAA;(BR2)=PAMAM型分支小室;(IF2)=烯丙基;(TF)=吡咯啶酮;G=2.5]
使具有吡咯啶酮表面(571毫克,0.5129毫莫耳)(Dendritic Nanotechnologies,Inc.)之零代(G=0),胱胺酸核心PAMAM樹枝狀高分子溶解在1.5毫升無水MeOH(Acros)中。然後添加DTT(71毫克,0.462毫莫耳,0.9當量之二硫化物鍵)。於RT在氬氣下攪拌該還原反應,費時一夜。添加該八烯丙基產物(57毫克,0.0761毫莫耳)(由實例28製成)及AIBN(17毫克,0.104毫莫耳)(Aldrich)至另一燒瓶中之3毫升無水THF(Acros)內。於氬下添加該還原樹突結構體溶液至該溶液內。然後將該反應混合物加熱至65℃,費時一夜。接著移除溶劑以得到具有以下光譜之如發泡體固體之粗產物(631毫克,>100%,因為使用過量樹突結構體):MALDI-TOF:計算值3002.68(M +
Na);實測值3003.43(M +
Na)amu。
圖解78係闡明本反應:
[(C)=TMPTTGE;(FF)=Et;(IF1)=OH;(BR1)=DEIDA;(BR2)=TREN;(TF)=一級NH2
;G=2]
將TREN2
(17.05克,116.82毫莫耳,每一酯60當量NH2
)及40毫升MeOH(Fisher Scientific)裝入100毫升圓底燒瓶內,並使其配備攪拌棒。該放熱混合反應(費時20分鐘)已停止後,於RT下以一小時一滴滴地添加G=1酯C4
(0.846克,0.97毫莫耳,5.84毫莫耳酯;得自實例23B)在10毫升MeOH中之溶液。然後將該混合物置於油浴內並於50℃下加熱3天。藉IR光譜法監測該反應之進展,亦即於1740厘米-1
該酯振動之消失及於1567厘米-1
該醯胺振動之出現。MALDI-TOF MS分析顯示於1348[M+Na]+
及1201[M+Na]+
(一及二環圈)下,附有環圈化合物之該所欲G=2.0產物的質量。使該反應混合物經700毫升MeOH稀釋並使用1K尺寸排斥膜進行UF。收集1.8升過濾液後,自該UF取出留存物且藉旋轉蒸發而移除該溶劑以得到淺黃色黏性液體,使其在高真空下進一步乾燥以得到該所欲G=2之樹枝狀高分子子(1.41克,98.94%產率)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 0.86(3H,bt)、1.38(2H,bs)、2.32至2.60(H,m)、2.67至2.76(H,m)、3.29至3.34(H,
m)、3.82(3H,bs);13
C NMR(125MHz,CD3
OD):δ 8.14、24.06、38.57、38.63、39.98、40.16、44.59、54.00、55.09、55.28、57.21、58.02、60.19、63.05、63.28、69.38、69.94、72.52、72.96、75.00、173.76、173.86、174.03;IR(淨):νmax
3298、2934、2842、1659、1572、1536、1470、1388、1357、1311、1116、973、819 cm-1
;及MALDI-TOF MS:C63
H143
N27
O12
計算值1470.9843;實測值1494.2270[M+Na]+
、1348.022[M+Na]+
(一環圈)、1201.0970[M+Na]+
(二環圈)amu。
以下圖解79係闡明本反應:
[(C)=TMPTGE;(FF)=Et;(IF1)=OH;(BR1)=DEIDA;(BR2)=TREN;(EX1)=DMI;(TF)=甲酯;G=2.5]
以30分鐘一滴滴地添加G=2樹枝狀高分子3
(0.7435克,0.5毫莫耳,6毫莫耳NH2
;得自實例84)在5毫升MeOH中之溶液至DMI(2.84克,18.0毫莫耳,每一NH2
3當量)(Arcos Organics)之冷(10℃)溶液內。添加完成後,以隔片閉合燒瓶並溫熱至RT,然後在機械攪拌下維持60小時。MALDI-TOF MS分析顯示該所欲產物之預測質量及具有1、2、3環圈吡咯啶酮表面化合物之副產物的質量波峰。再添加1.42克DMI並攪拌36小時。在MeOH中將該反應混合物稀釋至2.5至5%w/w並於20至22 psi(137.9千帕)下使用1K尺寸排斥膜進行UF。收集800毫升過濾液後,自該超過濾裝置取出留存物並經MeOH(3×50毫升)清洗。藉旋轉蒸發自該留存物移除溶劑以得到液體,使其於高真空下進一步乾燥以得到如吸濕性固體之該吡咯啶酮表面G=2.5樹枝狀高分子4
(1.166克,74.8%產率)。其光譜如下:1
H NMR(300MHz,CD3
OD):δ 0.83(3H,bt)、1.37(2H,bq)、2.65(H,bs)、3.30至3.35(H,t,J=5.10Hz)、3.65(H,s)、3.68至3.73(H,bs)、3.84至3.96(H,bs);13
C NMR(75MHz,CD3
OD):δ 8.17、24.05、34.97、35.06、38.16、38.39、41.65、41.96、44.61、50.96、51.98、52.55、54.05、54.68、60.25、62.50、69.34、72.86、75.01、173.69、174.99、175.19;IR(淨):νmax
3308、2955、2883、2842、1736、1675、1541、1495、1439、1362、1275、1203、1173、1106、1024、932、855、753、697 cm-1
;及
MALDI-TOF:C135
H215
N27
O48
;計算值2984.3,實測值3007.3[M+Na]+
amu。
以下圖解80係闡明本反應:
[(C)=PETGE;(IF1)=OH;(BR1)=DEIDA;(BR2)=TREN;(TF)=一級NH2
;G=2]
將TREN2
(52.26克,358.0毫莫耳,每一酯120當量NH2
)、50毫升OF MeOH(Fisher Scientific)及攪拌棒裝入250毫升圓底燒瓶內。該放熱混合反應(費時30分鐘)已停止後,於RT下以一小時一滴滴添加G=1酯C5
(1.25克,1.12毫莫耳,8.95毫莫耳酯;得自實例51)在10毫升MeOH中之溶液,
並攪拌該混合物,費時一夜。MALDI-TOF分析顯示該所欲產物之預測質量波峰以及具有1及2個環圈之副產物的質量波峰。記錄IR光譜並顯示於1575厘米-1
下存在該醯胺振動及於1740厘米-1
下不存在於該酯振動。再持續攪拌36小時。然後在MeOH中將該反應混合物稀釋成5%w/w溶液並使用K尺寸排斥膜進行UF。收集3.5升過濾水後,自該UF取出留存物,藉旋轉蒸發而移除溶劑,並於高真空下乾燥剩下之產物以得到淺黃色發泡狀固體3(2.02克,94%產率)。其光譜如下:1
H NMR(500MHz,CD3
OD):δ 2.49至2.59(H,m)、2.62(H,bt)、2.66(H,s)、2.68(H,s)、2.69(H,s)、2.70(H,s)、2.73至2.82(H,m)、3.29至3.47(H,m)、3.82(H,bs);13
C NMR(125MHz,CD3
OD):δ 38.64、40.19、48.48、49.85、53.94、55.10、55.29、57.66、58.10、60.23、63.06、69.33、71.41、75.11、173.70、173.80、173.97;IR(淨):νmax
3313、3078、2934、2868、1649、1557、1541、1475、1449、1362、1306、1163、1101、978、818 cm-1
;及MALDI-TOF MS:C81
H184
N36
O16
;計算值1918.6,實測值1941.8[M+Na]+
amu。
以下圖解81係闡明本反應:
以30分鐘一滴滴地添加G=2樹枝狀高分子3
(0.959克,0.5毫莫耳,8毫莫耳NH2
,得自實例86)在15毫升MeOH中之溶液至DMI(3.792克,24.0毫莫耳)(Acros Organics)在15毫升MeOH(Fisher Scientific)中之冷(10℃)溶液內。完成添加後,使該反應混合物逐漸溫熱至RT並攪拌2天。藉MALDI-TOF MS光譜法分析顯示該所欲產物及一些環圈化合物之預測質量。再添加1.896克(12.0毫莫耳)DMI在2.0毫升MeOH中之溶液並攪拌24小時。在MeOH中將該反應混合物稀釋成2.5至5%w/w溶液並於20至22 psi(137.9千帕)壓力下使用1K尺寸排斥膜進行UF。收集1升過濾液後,自該UF裝置取出留存物並以MeOH(3×50毫升)清洗該UF裝置。藉旋轉蒸發而自該留存物移除溶劑以得到黏性液體,使其於高
真空下進一步乾燥以得到如吸濕性固體4
之吡咯啶酮表面G=2.5樹枝狀高分子(1.56克,79.27%產率)。其光譜如下:1
H NMR(500MHz,CD3
OD):δ 2.65(H,bs)、3.30至3.47(H,bs)、3.65至3.68(H,m)、3.72至3.74(H,m)、3.88(H,m);13
C NMR(125MHz,CD3
OD):δ 34.96、35.06、38.16、38.40、41.65、41.96、42.18、46.95、49.85、50.95、51.98、52.24、52.84、52.94、54.05、54.69、60.22、69.35、71.43、75.11、173.65、175.01、175.15;IR(淨):νmax
3308、2950、2878、2817、1736、1675、1536、1495、1434、1362、1265、1203、1168、1106、1019、937、855、753、702 cm-1
;及MALDI-TOF:C177
H280
N36
O64
;計算值3936.3,實測值3957.7[M+Na]+
amu。
以下圖解82係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=DETA;(EX1)=DMI;(BR2)=TREN;(TF)=一級NH2
;G=2]
於機械攪拌下,在250毫升圓底燒瓶內,使TREN(11.42克,78.22毫莫耳,每一酯51.0當量)(Dow Chemical)溶解在10毫升MeOH中並冷卻至0℃。經由60毫升添加漏斗以25分鐘添加在MeOH中呈7.5%溶液之樹枝狀高分子Ⅲ
(0.392克,0.192毫莫耳;得自實例56)。再添加15毫升MeOH以作為洗液。經由於1736厘米-1
下,該甲酯振動之消耗,藉FT-IR監測該反應。自該反應移除一整份(30.06克)並置於1000毫升MeOH中之1,000道爾頓(Dalton)滲析膜(38毫米直徑,4厘米長,Spectra/Por®
,Spectrum Laboratories)。經5小時、16小時及再經8小時後更換整批MeOH。將該產物移至1000毫升圓底燒瓶內並藉旋轉蒸發而移除溶劑。將該殘留物置於高真空下,費時24小時以得到暗黃色、非晶形、吸濕性產物Ⅲ
(0.230克,88%產率,0.261克理論產率)。其光譜如下:1
H NMR(500MHz,CD3
OD):δ 2.52(8H,s)、2.72(8H,s)、3.14(2H,s)、3.53(2H,s)、4.89(16H,s)、6.68(1H,s)、7.15(1H,s);13
C NMR(75MHz,CD3
OD):δ 35.94、38.07、38.93、40.75、41.92、69.25、115.17、149.32、156.29、162.48、
168.36、157.09、175.49;及MALDI-TOF:C142
H250
N44
O24
;計算值2957.8,實測值2981.4[M+Na]+
amu。
以下圖解83係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=DETA;(EX1)=DMI;(BR2)=TRIS;(TF)=OH;G=2]
在100毫升圓底燒瓶中,使TRIS(0.722克,5.97毫莫耳,每一酯3.22當量)溶解在25毫升DMSO(Acros Organics)內。經由粉末漏斗添加樹枝狀高分子Ⅱ
(0.472克,0.231毫莫耳;得自實例56)至該攪拌反應混合物內,再以10毫升DMSO清洗該漏斗。然後經由粉末漏斗添加碳酸鉀(0.011克,0.104毫莫耳)(Acros Organics)並以10毫升DMSO清洗殘留粉末。藉FT-IR而監測該反應。於1736厘米-1
下一旦該酯
振動完全消耗時,以水將該反應稀釋至1000毫升並使用3K尺寸排斥膜進行UF。一旦該UF完成時,將留存物移入500毫升圓底燒瓶內並藉旋轉蒸發而移除溶劑。於高真空下乾燥其餘黃色糊狀物,費時24小時以得到該所欲產物Ⅳ
(0.520克,78.5%產率,0.662克理論產率)。其光譜如下:1
H NMR:(500MHz,D2
O):δ 2.46(1H,s)、2.53(1H,s)、2.66(1H,s)、2.84(1H,s)、3.06(1H,s)、3.16(1H,s)、3.52(2H,J=3.0Hz)、4.77(10H,s)、7.05(1H,s)、7.41(1H,s);13
C NMR:(75MHz
,D2
O):δ 33.64、35.07、37.55、39.57、43.28、51.49、53.42、59.07、63.23、64.86、117.28、132.05、177.92、181.75;及MALDI-TOF:C134
H210
N20
O48
;計算值2757.0,實測值2781.3[M+Na]+
amu。h
以下圖解84係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=TREN;(EX1)=丙烯酸甲酯;(TF)=甲酯;G=2.5]
添加丙烯酸甲酯(4.0克,46.0毫莫耳,每一NH2當量)在6毫升MeOH中之溶液至50毫升圓底燒瓶內。在機械攪拌下以3分鐘一滴滴添加四羥苯基乙烷四(2-羥丙基)-3-(雙-胺基乙基)胺G1
(1.6克,1.5毫莫耳,12.4毫莫耳NH2
;得自實例58)在10毫升MeOH中之混合物至已於4℃冷卻之該混合物內。使該混合物溫熱並於25℃下攪拌48小時,並在N2
大氣層下密封。藉旋轉蒸發而移除揮發性物質,使該殘留物再溶解於50毫升MeOH中並再進行旋轉蒸發。再重複再溶解及蒸發共3次。於25℃在高真空下乾燥所形成殘留物,費時5小時以得到所欲產物Ⅱ
(2.4克,67%產率)。其光譜如下:13
C NMR(125MHz,CDCl3
):δ 49.80、51.01、52.08、52.67、53.88、58.04、68.19、70.25、114.55、129.73、136.90、157.13、173.36;及MALDI-TOF MS:C118
H186
N12
O40
;計算值2411.3,實測值2413[M]+
amu。
以下圖解85係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=TREN;(EX1)=丙烯酸甲酯;(TF)=COONa;G=2.5]
在機械攪拌下添加羧酸鈉(700毫克;6.53毫莫耳,每一酯1.9當量)及20毫升DI水至50毫升圓底燒瓶內。添加該G=2甲酯表面樹枝狀高分子Ⅱ
(518毫克,21.0毫莫耳,3.44毫莫耳酯;得自實例90)在20毫升MeOH中之溶液至該均質溶液內。於25℃在N2
大氣層下攪拌該混合物,費時3天(原先呈混濁狀,經攪拌2.5小時後該混合物變得清澈)。然後以150毫升DI水稀釋該混合物並於20 psi(137.9千帕)下使用含有1K再生纖維素膜之切向流UF裝置進行超過濾處理以得到共1升過濾液。使用旋轉蒸發器移除揮發性物質。使殘留物溶解在MeOH中並在旋轉蒸發器上移除揮發物共兩次,繼而於高真空下乾燥以得到所欲產物Ⅲ
(540毫克,98%產率)。其光譜如下:13
C NMR(125MHz,D2
O):δ 34.38、47.16、52.68、58.15、70.21、72.02、117.44、132.12、140.60、158.88、181.51;及MALDI-TOF MS:C102
H138
N12Na16
O40
;計算值2540.1,實測值2352[M-2丙烯酸鈉]+
amu。
以下圖解86係闡明本反應:
[(C)=TPEGE;(IF1)=OH;(BR1)=TREN;(EX1)=丙烯酸甲酯;(BR2)=TRIS;(TF)=OH;G=3]
於N2
氣流下火焰乾燥含有攪拌棒並配備隔片之100毫升圓底燒瓶。一旦冷卻至25℃時,經由注射器添加該G=2甲酯表面樹枝狀高分子Ⅱ
(2.4克,1.0毫莫耳,16毫莫耳酯;得自實例90)在30毫升無水DMSO中之溶液。先後添加TRIS(3.2克,26.4毫莫耳,2當量)及無水碳酸鉀(4.0克,28.9毫莫
耳,每一酯1.1當量)至該混合物內。於N2
大氣下快速攪拌所形成混合物,費時24小時。該粗混合物之IR顯示在該時間後於1736厘米-1
下之該羰基振動消失。使用DI水將該反應混合物稀釋成3%w/w混合物,然後過濾以得到900毫升過濾液。另外600毫升過濾液經超過濾(6次循環)後,藉旋轉蒸而濃縮留存物以得到淺黃色固體。使該固體溶解在50毫升MeOH中並在該旋轉蒸發器上再濃縮3次以得到絨毛狀粉末。使該粉末於高真空下進一步乾燥以得到所欲Ⅳ
(3.54克,93%產率)。其光譜如下:13
C NMR(125MHz):δ 35.51、51.78、52.45、54.45、63.31、64.83、70.21、117.23、131.99、140.05、159.50、177.84;及MALDI-TOF MS:C166
H298
N28
O72
;計算值3838.1,實測值3855[M+Na]+
amu。
以下圖解87係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(TF)=二級NH;G=1.5]
於機械攪拌下,添加G=0之PEHAM樹枝狀高分子A5
(5.88克,8.34毫莫耳,每一PETGE 6當量;得自實例10B)及57.0克水與碳酸鉀(1.27克,9.19毫莫耳,每一NH 1.1當量)(Acros Organics)至500毫升圓底燒瓶內。經由吸管以10分鐘一滴滴添加PETGE(0.499克,1.34毫莫耳)溶解在8.0克水中之溶液至該溶液內。於22℃在N2
大氣下攪拌該反應,然後再加熱至45℃,費時24小時。48小時後,使該反應冷卻至22℃並以水稀釋至1000毫升。使該產物進行3K UF,收集14升過濾液。藉旋轉蒸發而移除水並於高真空下乾燥殘留物,費時24小時以得到G=1之樹枝狀高分子I
(1.51克,64.5%產率,2.34克理論產量)。其光譜如下:1
H NMR:(300MHz,D2
O):δ 2.36(m,8H)、2.74(s,2H)、3.374(m,6H)、3.92(s,1H)、4.68(dd,J=5.85Hz,5H);13
C NMR:(75MHz,D2
O):δ 44.03、45.57、50.83、52.52、53.26、60.69、61.25、67.25、70.15、74.47、78.96;及MALDI-TOF:C149
H300
O32
;計算值3180,實測值3181[M]+
amu。
以下圖解88係闡明本反應:
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(BR2)=縮水甘油;(TF)=OH;G=2]
在100毫升圓底燒瓶內,使縮水甘油(237毫克,3.2毫莫耳,每一NH 2.12當量)(Aldrich)溶解在8毫升水中。使該G=1之PEHAM樹枝狀高分子I
(400毫克,0.126毫莫耳,1.51毫
莫耳NH;得自實例93)溶解在12毫升水中,繼而添加碳酸鉀(220毫克,1.59毫莫耳,每一NH 1.06當量)(Acros Organics)。於機械攪拌下,經由吸管一滴滴添加樹枝狀高分子與鹼之清澈溶液至該縮水甘油溶液內。72小時後,MALDI-TOF顯示該縮水甘油已之消耗並與樹枝狀高分子I
進行反應。使該混合物進行3K UF,並收集8升過濾液。收集留存物並藉旋轉蒸發而移除水。使該殘留物在高真空下進一步乾燥,費時一夜以得到所欲樹枝狀高分子Ⅱ
(760毫克,100%產率)。其光譜如下:1
H NMR(500MHz,D2
O):δ 2.48(3H,s)、2.58(2H,s)、2.87(2H,s)、3.49(2H,s)、3.90(1H,s)、4.03(2H,s)、4.80(4H,s,J=7.8Hz);13
C NMR(75MHz,D2
O):δ 46.52、48.10、55.01、55.65、61.81、63.21、63.73、65.27、67.22、69.76、71.32、72.67、73.11、74.79、76.58、76.99;及MALDI-TOF:C183
H368
N32
O64
;計算值4041.1,實測值4080.5[M+K]+
amu。
以下圖解89係闡明本反應
[(C)或(BR)=單一位置反應性樹突結構體;G=0.5]使代型=0,胱胺酸核心,胺表面樹枝狀高分子2.315克(3.80毫莫耳)溶解在5毫升MeOH中。然後添加1.847克(18.25毫莫耳)TEA至該溶液內。使用冰浴使該混合物冷卻至0℃。然後一滴滴添加1.725毫升(18.25毫莫耳)乙酸酐。使該反應溫熱至RT並攪拌一夜。TLC顯示所有起始物質已消耗。然後移除溶劑並對該殘留物施加高真空以得到如褐色固體之粗產物(3.47克)。使用CHCl3
:MeOH:NH4
OH(6:1:0.02)之溶劑藉SiO2
層析而純化該粗產物(1.27克)以得到593.3毫克如白色固體之產物,熔點141.0至142.0℃;且其光譜如下:1
H NMR(300MHz,D2
O):δ 1.82(s,12H)、2.25(m,8H)、2.64(m,16H)、3.19(t,16H)、4.67(s,8H);及13
C NMR:δ 21.92、32.52、34.39、38.60、38.66、48.77、
51.43、174.14、175.01。
1.[胱胺酸];Gen=0;樹枝狀-PAMAM;(乙醯胺)4
樹枝狀高分子,之還原反應:使148.8毫克(0.1915毫莫耳)樹枝狀高分子溶解在2毫升MeOH中。使用前,以氮滌洗MeOH,費時15分鐘。然然添加28毫克(0.182、0.95當量樹枝狀高分子)DTT至該溶液內。於RT在N2
大氣下攪拌該反應混合物,費時2天。TLC顯示所有DTT已消耗,且該斑點對TLC板上之埃門試劑(Ellman’s reagent)呈陽性。不需要進一步純化,該產物可用於下一反應。
2.焦點,硫醇官能化PAMAM樹突結構體與丙烯酸甲酯之反應:添加117毫克(1.36毫莫耳)丙烯酸甲酯至步驟2之該反應溶液內。然後將該反應加熱至40℃,費時2小時。TLC顯示殘留起始物質。然後再添加117毫克丙烯酸甲酯。TLC顯示4小時後該反應完成。藉旋轉蒸發器而移除溶劑。藉矽凝膠層析法而純化殘留物以得到104毫克如淺白色固體之產物:熔點128.0至129.5℃。
1
H NMR(300MHz,CDCl3
):δ 1.93(s,6H)、2.32(m,8H)、2.65(m,12H)、3.29(m,4H)、3.65(s,3H);及13
C NMR(75MHz,CDCl3
):δ 23.10、27.13、29.80、33.69、34.58、39.22、39.78、49.86、51.84、53.03、171.27、172.33、173.00。
3.焦點,硫醇官能化PAMAM樹突結構體與2-異丙烯基唑啉之反應:添加15.4毫克(0.136毫莫耳)異丙烯唑啉至步驟2之該反應溶液內。然後將該反應加熱至40℃,費時2.5小時。TLC顯示殘留起始物質。然後再添加3.0毫克異丙烯基唑啉。TLC顯示4小時後該反應完成。藉旋轉蒸發器而移除溶劑。藉矽凝膠層析法而純化殘留物以得到58毫克如蠟狀白色固體之產物(85%);熔點92.0至95.0;其具有以下光譜:1
H NMR(300MHz,CDCl3
):δ 1.17(d,J=6.6Hz,3H)、1.89(s,6H)、2.27(t,J=6.0Hz,6H)、2.47至2.78(m,17H)、3.74(t,J=9.6Hz,2H)、4.14(t,J=9.6Hz)、7.32(s,2H)、7.87(s,2H);及13
C NMR(75MHz,CDCl3
):δ 17.17、23.07、29.98、33.70、34.08、36.11、39.12、39.77、49.91、52.92、53.97、67.37、170.29、171.19、172.99。
以下圖解90係闡明上述反應:
[(C)=BPEDS;(IF1)=OH;(BR1)=PETGE;(EX1)=PEA;(TF)=二級NH;G=1]
添加哌(5.8克,67.0毫莫耳)在40毫升苯中之溶液至含有攪拌棒並配備添加漏斗、冷凝器及玻璃塞子之100毫升3頸圓底燒瓶內。於N2
氣體下將該混合物加熱至溫和回流,然後以30分鐘一滴滴添加環硫乙烯(1.0克,1.0毫升,16.8毫莫耳)(Aldrich)在20毫升苯中之溶液。於N2
氣體下使所形成混合物進一步溫和地回流2小時。藉旋轉蒸發而移除揮發性物質以得到粗殘留物(7.0克)。使用含濃銨、甲醇及氯仿(5:25:75)作為溶離劑,藉矽凝膠層析法而純化該殘留物得到該純化產物(1.76克,72%產率)。TLC(5:25:75,濃銨、甲醇及氯仿)分析顯示兩種化合物(就過量環硫乙烯而言,Rf
=0.3及就所欲產物而言,Rf
=0.5)之混合物。13
C NMR光譜法顯示大約1:1這兩種化合物之混合物。因此,使該混合物進一步在回流苯中加熱7小時,繼而經空氣起泡2小時。該物質之13
C NMR光譜法顯示~90%該所欲產物。其光譜如下:13
C NMR(75MHz,丙酮-d6
):δ 36.93、46.70、55.21、59.04;及MALDI-TOF MS:C12
H26
N4
S2
;計算值290.2,實測值291[M]+
amu。
以下圖解91係闡明本反應:
添加PETGE(8.5克,23.6毫莫耳,每一NH 6當量)及25毫升MeOH至含有攪拌棒之50毫升圓底燒瓶內。於25℃在機械攪拌下以5分鐘添加BPEDS(550毫克,1.89毫莫耳,3.8毫莫耳NH)在2.0毫升MeOH中之溶液至該混合物內。於N2
大氣下進一步攪拌所形成混合物,費時18小時。使用含有1K再生纖維素膜作為125毫升留存物溶液之切向流UF裝置,在MeOH中以UF處理一半該混合物而移除過量PETGE以得到600毫升過濾液(5次循環)。MALDI-TOF質譜顯示該所欲產物(~960毫克,0.95毫莫耳產率)。其光譜如下:MALDI-TOF MS:C46
H82
N4
O16
S2
;計算值1010.5,實測值1011[M]+
amu。
以下圖解92係闡明本反應:
在100毫升圓底燒瓶內,於機械攪拌下混合MIPIEP(6.5克,33.0毫莫耳)及250毫升得自B部份之留存物溶液(960毫克,0.95毫莫耳),並於50℃下加熱24小時。藉旋轉蒸發而移除溶劑並使用含有1K再生纖維素膜之切向流UF裝置,在MeOH中藉UF而進一步純化該粗產物以移除過量MIPIEP。如下藉MALDI-TOF質譜測定法而鑑定該所欲產物:MALDI-TOF MS:C82
H172
N22
O16
S2
;計算值1786,實測值1785[M]+
amu。
以下圖解93係闡明本反應:
[(C)=PEI;(BR1)=PETGE;(IF1)=OH;(EX1)=PIPZ;(TF)=二級NH;G=1.5]
添加PETGE(14.5克,40.3毫莫耳,每一NH 6.9當量)及39毫升MeOH至含有攪拌棒之250毫升圓底燒瓶內。添加PEI(250.0毫克,5.8毫莫耳NH,DP=21,藉MALDI-TOF質譜測定法表示之波峰信號)在4毫升MeOH中之溶液至已冷卻至4℃之該攪拌混合物中。使該混合物溫熱至25℃並在N2
大氣層下攪拌24小時。該反應混合物之MALDI-TOF質譜顯示4591 amu之尖峰質量(理論:8482 amu),其表示該縮水甘油醚在該聚合物主鏈上之接枝率為54%。添加EPC(39.0克,246.0毫莫耳,每一環氧化物1.5當量)在39毫升MeOH中之溶
液至該混合物內。於40℃下攪拌該混合物,費時24小時。然後藉旋轉蒸發而移除揮發性物質。於高真空下並加熱至170-200℃,使用Kugelrohr減壓蒸餾移除該粗產物之過量哌以得到37.0克殘留物。該殘留物之MALDI-TOF分析顯示一波峰出現於6245 amu,其表示60%接枝率。使該殘留物溶解在40毫升MeOH中並放在含矽凝膠(150克,60埃,200至430網目)在MeOH中之柱上。藉使用15100毫升MeOH溶離份溶析而移除四縮水甘油醚及單基保護之哌之該未接枝產物。使用20%氫氧化銨在MeOH中之溶液及8100毫升溶離份溶析該產物。藉旋轉蒸發而濃縮這些溶離份以得到該所欲產物(1.55克,以3克理論產物為基準計60%回收率)。其光譜如下:13
C NMR(125MHz,CD3
OD):δ 14.95、15.06、44.72、46.99、54.62、62.47、62.71、68.74、71.36、75.48、75.58、157.10(最終產物與1-哌羧酸乙酯反應);及MALDI-TOF MS:C399
H693
N21
O168
;計算值8482(100%接枝率),實測值6245(~60%接枝率)amu(環氧化物中間物)。
添加KOH(4.7克,71.0毫莫耳,每一胺基甲酸酯16當量)及10毫升DI水至含有攪拌棒之50毫升圓底燒瓶內。一滴滴地添加該聚(伸乙基亞胺)桿狀物(1.47克,14毫莫耳,1.6毫莫耳胺基甲酸酯)(由實例97A製成)在14毫升MeOH中之溶液至該均質溶液內。於75℃在N2
大氣下加熱該混合物,費
時16小時。使該混合物冷卻至RT並經12N HCl酸化至pH 3,然後經氫氧化鉀鹼化至pH 10.5。藉旋轉蒸發而移除揮發性物質,繼而於50℃在高真空下乾燥。於25℃下在100毫升MeOH中攪拌其餘固體,費時3小時。使未溶解之鹽沉降並傾析該甲醇溶液。再重複該程序共2次。然後藉旋轉蒸發而濃縮該等合併甲醇洗液,繼而於高真空下乾燥殘留物以得到1.2克淺褐色固體。將該物質放在MeOH中之Sephadex LH-20柱上並溶析,收集302毫升溶離份。合併溶離份1至7,並藉旋轉蒸發而濃縮以得到該所欲產物(540毫克)。其光譜如下:13
C NMR(125MHz,CD3
OD):δ 46.29、47.04、55.57、63.30、68.53、71.39、75.68;及MALDI-TOF:C609
H1218
N126
O168
;計算值13908(100%接枝率),實測值6245(~45%總接枝率)amu。
以下圖解94係闡明本反應:
[(C)=寡(新戊基二縮水甘油醚);(IF1)=OH;(BR1)=DETA;(TF)=胺]
添加雙(甲基異丁基亞胺基乙基)胺在MIBK中之0.633M溶液(10毫升)至25毫升圓底燒瓶內。於高真空及加熱下藉抽空而移除揮發性物質。以1至2分鐘一滴滴添加殘留物(1.7克,6.3毫莫耳)至含有新戊基二縮水甘油醚(Aldrich)(8.2克,38毫莫耳,6當量)及20毫升MeOH之具有攪拌棒的50毫升燒瓶內。於25℃在N2大氣下攪拌該混合物,費時18小時。該反應混合物之MALDI-TOF質譜顯示該所欲產物之於319 amu下的波峰。TLC(30%NH4
OH-MeOH)顯示一大斑點出現於Rf
=0.85及一小斑點出現於Rf
=0.2。藉旋轉蒸發而濃縮該混合物。使用Kugelrohr裝置於160至190℃下使所形成殘留物之過量二環氧化物經減壓蒸餾以使鍋
得到所欲單體(3.4克,理論產量3.1克)。使該單體溶解在MIBK中並於貯存期間在N2大氣下密封。使500毫克該單體試樣在MeOH中之Sephadex LH-20柱上純化。濃縮所收集之溶離份15至23以得到250毫克該單體,其表示MALDI-TOF質譜為319 amu,具已移除大部份高分子量雜質。該物質之TLC(30%NH4
OH在MeOH中之溶液)顯示一斑點出現於Rf
=0.85。其光譜如下:13
C NMR(CDCl3
,500MHz,):δ 17.59、22.05、22.1、26.09、36.44、44.08、44.18、50.02、50.92、51.58、68.51、70.71、71.13、73.80、71.91、78.03、170.73;及MALDI-TOF:C15
H33
N3
O4
;計算值319.44,實測值319[M+
]amu。
以下圖解95係闡明本反應:
添加一整份該單體(得自實例98A)在MIBK中之溶液至含有攪拌棒之25毫升圓底燒瓶內。藉高真空而移除揮發物
(1.0克,3.2毫莫耳)。添加25毫升MeOH及120毫克水至該燒瓶內。於55℃下加熱該混合物,並於N2
大氣下攪拌48小時。該反應混合物之TLC(50%NH4
OH在MeOH中之溶液)表示單體濃度(Rf
=0.85)緩慢降低及該基線上之斑點增加,其相當於高分子量物質。該粗聚合物混合物之MALDI-TOF質譜顯出寡聚物之波峰至高~4000 amu。其光譜如下:MALDI-TOF:實測寡聚物波峰(319 amu之多重峰)至高4000 amu。
[(C)=PEOX;(IF1)=OH;(BR1)=PEHAM樹枝狀高分子G=0;(EX1)=PIPZ;(TF)=胺]
添加對-甲苯磺酸甲酯(1.85克,9.93毫莫耳)及125毫升甲苯至含有大攪拌棒之250毫升圓底燒瓶內。使該燒瓶配備迪安斯塔克收集器及與N2
氣體傳輸管之冷凝器,及起泡器。使該混合物回流~30分鐘,蒸餾約25%該甲苯積體,使其進入該收集器內以徹底乾燥該裝置,然後冷卻至90℃,並以隔片更換該收集器以排除水份。於真空下自氫化鈣粉末新蒸餾乙基唑啉(19.5克,196.7毫莫耳),使其進入分液燒瓶內,該燒瓶配備隔片以排除水份。經由火焰乾燥之18口徑針以5至8分鐘將該燒瓶之內容物移入該甲苯/對-甲
苯磺酸甲酯溶液內。使所形成混合物經回流冷凝器處理並於N2
大氣下加熱至溫和回流(~110℃),費時16小時。該物質之MALDI-TOF質譜顯示聚合度(DP)為20。其光譜如下:MALDI-TOF:實例多波峰在900至3700 amu之間,最大波峰出現於2100 amu(相當於DP=20)。
急速地添加該PEHAM(G=0)核心、季戊四醇四(2-羥丙基-3-哌)醚(483毫克,0.686毫莫耳,2.7毫莫耳NH)在2.0毫升MeOH中之溶液至已冷卻至~90℃之上述混合物內。於N2
大氣下使所形成混合物回流24小時。然後以嗎啉(2.0克,23.0毫莫耳,每一活性聚合物末端~2當量)中止其餘未接枝聚(2-乙基-2-唑啉)之反應,並再使該混合物回流24小時。將該混合物冷卻至25℃並藉旋轉蒸發而移除揮發性物質,繼而於高真空下進一步乾燥以得到粗樹枝狀接枝產物(25克)。使殘留物溶解在50毫升MeOH中並在MeOH中之Sephadex LH-20柱上純化3克整份(相當於~1克粗產物),取出共40種各2毫升之溶離份。收集溶離份1至7並藉旋轉蒸發而移除溶劑以得到該純化產物(300毫克)。該產率顯示以質量平衡為基準計,4:1加成物(亦即每一PEHAM G=0樹枝狀高分子4個PEOX單位)之接枝產率為90至100%。然而,該純化物質之MALDI-TOF質譜顯示平均為1:1加成物。可藉合併溶離份1至7之碳NMR光譜而証實該結論。該樹枝狀接枝物之PEHAM樹枝狀高分子G=0部份的特性信號清楚地存在於74.30、70.61、60.63及53.35 ppm處。
於53.35 ppm之該信號很寬且係表示當第二氮經取代時通常可變寬之該哌官能基。其光譜如下:13
C NMR(125MHz,CDCl3
)δ 9.35、25.96、43.56、45.54、53.35、59.14、60.63、70.61、74.30、173.92、174.41、174.52;及MALDI-TOF MS:於2240 amu下具有最高波峰之實例多波峰。
以下圖解96係闡明本反應:
核心:G=4 PAMAM
殼:G=1 PEHAM[(C)=TMPTGE;(IF1)=OH;(BR1)=DEIDA;(TF)=乙酯]
添加作為該殼單位之具有乙酯表面之G=1 PEHAM樹枝狀高分子(2.17克,2.5毫莫耳,每一G=4 PAMAM核心50莫耳當量;得自實例23B)在11.0毫升MeOH中之溶液至加壓管內。急速地添加氯化鋰(0.21克,5.0毫莫耳,每一G=1酯2莫耳當量)(Acros)至該溶液內,並使該加壓管配備攪拌棒及塞子。於RT下攪拌10分鐘後,添加具有EDA核心及一級胺表面基團之G=4 STARBURST®
PAMAM樹枝狀高分子溶液(0.71克,0.5毫莫耳,在MeOH中12.3%w/w溶液)作為該核心單位,並以塞子閉合該加壓管,然後於45℃下加熱一夜。藉MALDI-TOF MS分析一整份該反應混合物,且其顯示質量波峰出現於26.809 amu(相當於作為該殼之約14個G=1 PEHAM樹枝狀高分子)及54.142 amu(相當於作為該殼之約46個G=1 PEHAM樹枝狀高分子)。於80,175及106,191 amu下之低強度的波峰顯示存在少量交聯副產物。持續加熱3天。並藉MALDI-TOF MS分析該反應之進展顯示相同之波峰強度比率。6天後,使該反應混合物冷卻至RT並移入100毫升單頸圓底燒瓶內。然後添加AEP(2.42克,18.75毫莫耳;每一起始G=1之酯基團1.25當量)(Acros)在10.0毫升MeOH中之溶液,並將該混合物加熱至80℃。22小時後,藉IR分析該反應之進展,其顯示於1740厘米-1
下無該酯振動及於1645厘米-1
下有強醯胺振動譜帶。該MALDI-TOF質譜分析係與所有酯基團轉化成醯胺官能性分子團之作用相當一致。使該反應混合物冷卻至RT,在MeOH中稀釋成2.5至5%w/w溶液,並於15至20 psi(約135至137.9千帕)下使用5K
尺寸排斥膜進行UF而純化。其光譜如下:MALDI-TOF(具有酯殼表面之PAMAM-PEHAM甲基樹枝狀高分子):26,809 amu(具有附加14個G=1之PEHAM表面樹枝狀高分子之PAMAM核心)及54,142 amu(具有附加46個G=1之PEHAM表面樹枝狀高分子之PAMAM核心);及MALDI-TOF(具有哌殼表面之PAMAM-PEHAM甲基樹枝狀高分子):37,329 amu(具有附加14個G=1之PEHAM表面樹枝狀高分子之PAMAM核心)及71,904 amu(具有附加46個G=1之PEHAM表面樹枝狀高分子之PAMAM核心)。
以下圖解97係闡明本反應:
核心:G=2之PEHAM[(C)=TMPTGE;(IF1)=OH;(BR1)=DEIDA;(BR2)=TREN;(TF)=胺]
殼:G=1之PEHAM[(C)=TMPTGE;(IF1)=OH;(BR1)=DCEA;(TF)=乙酯]
添加作為該核心單元之具有一級胺表面(390毫克;0.265毫莫耳;得自實例84)溶解在4毫升無水MeOH(Aldrich)
中的溶液之G=2 PEHAM樹枝狀高分子至經烘箱乾燥之100毫升圓底燒瓶內。使該燒瓶配備攪拌棒。然後添加具有乙酯表面(4.6克,5.3毫莫耳,每一G=2共20莫耳當量;得自實例23B)溶解在11.0毫升MeOH中之溶液的G=1 PEHAM作為該殼單元。於RT下攪拌2小時後,急速地添加氯化鋰(0.42克,10毫莫耳)(Acros)。使該反應燒瓶配備回流冷凝器並於45℃在N2
大氣下加熱一夜。藉MALDI-TOF MS而分析一整份該試樣顯示在漸減順序之波峰密度下,1、2、3、4及5個與該核心連接之G=1 PEHAM殼單元的質量波峰。持續加熱6天,接著使該反應混合物冷卻至RT。添加AEP(5.13克,39.75毫莫耳;每一起始G=1酯1.25當量)(Acros)在20毫升MeOH中之溶液,將該混合物加熱至75-80℃,費時22小時。藉IR而監測該反應之進展顯示在該時期後,於1740厘米-1
下無該酯振動,及於1649厘米-1
下有強醯胺振動。MALDI-TOF質譜測定法證實酯鍵完成轉化成醯胺官能性。使該反應混合物在MeOH中經稀釋成2.5至5%w/w溶液並於20至25 psi(約137.9千帕)之壓力下使用3K尺寸排斥膜進行UF而純化。
MALDI-TOF MS(具有酯殼表面之PEHAM-PEHAM甲基樹枝狀高分子):2349.3、3232.1、4011.8及4816.8 amu(具有1至4個附加的G=1殼單元之核心單元);及MALDIT-TOF MS(具有PIPZ殼表面之PEHAM-PEHAM甲基樹枝狀高分子):2609.4、3739.7、4682.3及5968.2 amu(具有1至4個附加的G=1殼單元之核心單元)。
以下圖解98係闡明本反應:
以下實例係代表性地闡明PEHAM樹枝狀高分子之生命科學應用,並揭示其在以下領域之用途:樹枝狀高分子之藥物封包、解毒、前藥形成、表面共軛作用、膜滲透、核酸(特別為siRNA)運載,及抗細菌作用。
通用方法:於個別PEHAM樹枝狀高分子(~0.2%w/v)在5.0毫升DI水中之溶液的存在下,檢查吲哚美辛之封包效率。添加過量(~15毫克)吲哚美辛(Alfa Aesar,批號第c7517A號)至含有該等水性樹枝狀高分子溶液之小玻瓶內。使這些懸浮液短暫地接受超音波處理,然後於37℃及100 rpm下在搖動水浴內培育一夜,並於RT下使其平衡。使該等樹枝狀高分子-吲哚美辛懸浮液經由0.2微米、直徑為13毫米之尼龍注射濾器而過濾以移除過量藥物。使用Perkin Elmer Lambda 2 UV/VIS分光光度計於320奈米之光波長下,藉UV光譜法而分析該等試樣之經樹枝狀高分子封包的吲哚美
辛。結果係摘述在下表Ⅱ中。該等結果表示吲哚美辛對於樹枝狀高分子大小(代)、該核心之疏水性,及該等樹枝狀高分子分支及表面之官能性分子團之封包依存性。
使具有吡咯啶酮表面(15.0毫克,0.0038毫莫耳;得自實例87)之PEHAM樹枝狀高分子代G=2.5溶解在3.81毫升之DI水中以作為樹枝狀高分子儲備溶液。使乙酸銅(Ⅱ)(9.0毫
克,0.0734毫莫耳)(Aldrich)溶解在4.52毫升DI水中。使還原劑,肼單水合物(0.1毫升,99%)(Aldrich),與0.1毫升水混合。同時製備含DI水但不含樹枝狀高分子之對照物溶液。接著使1.0毫升樹枝狀高分子儲備溶液與0.5毫升乙酸銅(Ⅱ)溶液混合。於RT下攪拌該混合物,費時20分鐘。該樹枝狀高分子-銅(Ⅱ)溶液之顏色變成鮮藍色,而該水-銅(Ⅱ)對照物為很淺藍之顏色。然後使用20微升注射器(Hamilton),緩慢添加5.0微升肼溶液至這兩種混合物內。該樹枝狀高分子-銅(Ⅱ)溶液之顏色變得很淺,其表示銅(0)奈米顆粒在該等樹枝狀高分子內形成,而該水-銅(Ⅱ)對照物溶液立刻轉變成黃色,且形成銅(0)顆粒並沉澱。於RT下,在空氣及光存在下費時至少6小時,該樹枝狀高分子-銅(0)複合物具穩定性。記錄該無銅樹枝狀高分子、樹枝狀高分子-銅(Ⅱ)溶液,及樹枝狀高分子-銅(0)溶液之UV-Vis光譜。該樹枝狀高分子溶液於280奈米下顯示最大吸收率,而該樹枝狀高分子-銅(Ⅱ)溶液之最大吸收率出現在432奈米下。經肼單水合物還原後,該最大吸收率移至432奈米,其表示安定化之銅(0)奈米顆粒在該等PEHAM樹枝狀高分子之內部形成。
在DI水中製成生理鹽液(0.9%w/v)。然後在5.0毫升鹽液中製成PEHAM溶液(0.2%w/v)。添加過量吲哚美辛(15.0毫
克)(Alfa Aesar)至含有該等PEHAM溶液之小玻瓶內,並以超音波短暫地處理所形成懸浮液,然後於37℃及100 rpm下在搖動水浴中培育。冷卻至RT後,使該等懸浮液經由0.2微米、直徑13毫米之尼龍注射濾器而過濾以移除過量藥物。在Perkin Elmer Lambda 2 UV/VIS分光光度計上,於320奈米下藉UV光譜法而分析該等試樣之經樹枝狀高分子封包的吲哚美辛。結果示於下表Ⅲ中。所有配方具有似水之稠度且可使用標準24-口徑注射器針施加。
在機械搖動下,添加G=3之PEHAM樹枝狀高分子(61.5毫克,0.024毫莫耳濃度(mM);得自實例92)至圓底燒瓶內之60.0毫升DI水中。添加該抗癌藥物,順鉑(226.0毫克,0.75mM)(Strem Chemicals)至該水性樹枝狀高分子溶液內,繼而進行超音波處理,費時5分鐘,並於50℃下加熱20分鐘。冷卻至RT後,攪拌該反應混合物,費時20小時。於4
℃下在500毫升DI水中藉滲析(MWCO-1000)而移除非封包順鉑,費時30分鐘。藉凍乾法而乾燥該滲析袋內容物,且藉誘導性耦合之電漿光譜法(ICP)(Anderson Analytical,Texas)而測定該順鉑含量。發現該順鉑含量為44.9±1.89%(w/w)(N=2),其表示具有羧酸酯表面之PEHAM樹枝狀高分子可使用在該藥物遞送應用中。
進行兩種反應以將二乙三胺五乙酸、釔(Ⅲ)(DTPA-Gd(Ⅲ),Magnevist®
)(Aldrich)封包在PEHAM樹枝狀高分子內。在第1種反應中,係添加G=1 PEHAM樹枝狀高分子(200毫克,0.0495毫莫耳;得自實例93)在水中之溶液至10毫升圓底燒瓶內。在機械攪拌下,添加DTPA-Gd(Ⅲ)(867.2毫克,1.584毫莫耳,每一樹枝狀高分子32當量)至該溶液內,直到清澈溶液形成為止。在第2種反應中,添加G=1 PEHAM樹枝狀高分子(200毫克,0.0495毫莫耳;得自實例93)在水中之溶液至10毫升圓底燒瓶內。然後在機械攪拌下,添加DTPA-Gd(Ⅲ)(433.4毫克,0.791毫莫耳,每一樹枝狀高分子16當量),直到清澈溶液形成為止。於RT下攪拌這兩種混合物,費時4½天。然後將各混合物移入單獨的滲析袋(1K截止再生纖維素滲析管,Spectrum Laboratories Inc.)內。以DI水(3×1.0毫升)沖洗該等燒瓶,並添加該沖洗溶液至個別滲析袋內,將該等滲析管放入含900毫升DI水之1升
燒杯內,並以適當速度攪拌。進行滲析,費時2½小時。於0.5、1.0、1.5及2.0小時結束時更換水。經2.5小時後,將該等反應混合物移入預稱重之100毫升圓底燒瓶內。使用DI水(3×1.0毫升)沖洗滲析管,亦添加DI水至該圓底燒瓶內。藉旋轉蒸發而移除水,並於高真空下乾燥其餘殘留物,費時4至6小時以移除殘留之微量水。所形成產物為燒瓶之內壁上之乳白色固體。每一試樣之重量為761毫克(第1種反應)及537毫克(第2種反應)。移除數整份以進行分析,並將主要產物移至小玻瓶內,然後貯存於-12℃下。
在相繼的徑向觀看之Varian Liberty Series Ⅱ ICPOES誘導性耦合電漿發光分光光度計(Anderson Analytical,TX)上測定該等溶液之Gd(Ⅲ)含量。使用可變場T1-T2分析儀(University of Pittsburgh)進行鬆弛率分析。該場強度自1至64 MHz不等。得自這些物質之分析的數據係示於表Ⅳ中。用以封包更高數量之DTPA-Gd(Ⅲ)分子之第1種反應的確顯示較高Gd(Ⅲ)含量;然而,DTPA-Gd(Ⅲ)之增加並不會導致鬆弛率之增加。經DTPA-Gd(Ⅲ)封包之樹枝狀高分子的鬆弛率值與無DTPA-Gd(Ⅲ)之值類似。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR2)=PETGE;(IF3)=OH;(EX2)=PIPZ;(TF)=一級NH2
;(M)=DTPA-Gd;G=1.5]
使G=1之樹枝狀高分子(50毫克,0.0157毫莫耳)(由實例26B製成)溶解在7毫升DI中。然後添加DTPA-Gd(275毫克,0.503毫莫耳)(Aldrich)。於RT下攪拌該反應混合物,費時2天。過濾微量未溶解之固體。然後使用1K截止膜,在數次更換水下以DI水為對象滲析該混合物,費時5小時。藉旋轉蒸發器而移除水以得到如淺黃色固體之產物(164毫克,增重114毫克,樹枝狀高分子:DTPA-Gd=1:13.2,莫耳比)。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PTETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(TF)=一級NH2
;(M)=DTPA-Gd;G=2.5]
使G=2之樹枝狀高分子(100毫克,0.00943毫莫耳)(由實例78製成)溶解在7毫升DI中。然後添加DTPA-Gd(537毫克,0.981毫莫耳)(Aldrich)。於RT下攪拌該反應混合物,費時2天。過濾微量未溶解之固體。然後使用1K截止膜,在數次更換水下以DI水為對象滲析該混合物,費時5小時。藉旋轉蒸發器而移除水以得到如淺黃色固體之產物(318毫克,增重218毫克,樹枝狀高分子:DTPA-Gd=1:42,莫耳比)。
[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ;(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=PIPZ;(IF4)=OH;(BR2)=PETGE;(IF5)=OH;(EX3)=PIPZ;(IF6)=OH;(BR3)=PETGE;(IF7)=OH;(EX4)=PIPZ;(TF)=一級NH2
;(M)=DTPA-Gd;G=3.5]
使G=3之樹枝狀高分子(120毫克,0.00366毫莫耳)(由實例79製成)溶解在7毫升DI中。然後添加DTPA-Gd(313毫克,0.5703毫莫耳)(Aldrich)。於RT下攪拌該反應混合物,費時2天。過濾微量未溶解之固體。然後使用1K截止膜,在數次更換水下以DI水為對象滲析該混合物,費時5小時。藉旋轉蒸發器而移除水以得到如淺黃色固體之產物(294毫克,增重174毫克,樹枝狀高分子:DTPA-Gd=1:86,莫耳比)。
於機械攪拌下及在N2大氣下,添加染料,IR-806(112.0毫克,0.1523毫莫耳)(Aldrich)及2.0毫升無水DMF(Acros Organics)至10毫升圓底燒瓶內。然後經由25微升注射器而
添加3-巰基丙酸(14.7微升,0.168毫莫耳,1.10當量)(Acros Organics),繼而經由100微升注射器而添加TEA(24.7微升,0.176毫莫耳,1.15當量)(Acros Organics)。以氬氣滌洗該反應混合物,並於22℃下攪拌一夜。藉旋轉蒸發而移除揮發性物質並使用0.1%乙酸與乙腈(75:25%v/v)之混合物作為溶離劑及λ=480奈米之UV光作為檢測器,藉HPLC而分析該粗產物。該起始物質,IR-806,具有7:05分鐘之滯留時間,而於5:20分鐘發現該產物,GyTE-807。自5.0毫升第三-丁基甲醚(Fisher Scientific)再晶化使該粗產物,GyTE-807進一步純化,繼而經由30毫升細玻料釉過濾並經第三-丁基甲醚(3×5毫升)清洗以得到所欲產物CyTE-807(111.5毫克,93.5%產率,119.3毫克理論質量平衡)。其光譜如下:1
H NMR(500MHz,DMSO-d6):δ 1.18(2H,t,J=2.5Hz)、1.65至1.83(10H,m)、2.51至2.56(4H,m)、2.72(2H,s)、2.94(4H,s)、3.03(3H,m)、4.17(2H,s)、6.19(1H,d,J=7.0Hz)、7.23(1H,t,J=4.83Hz)、7.42(2H,s,J=8.67Hz)、7.58(1H,d,J=3.5Hz)、8.03(1H,d,J=6.5Hz);13
C NMR(75MHz,DMSO-d6):δ 8.50、22.49、26.07、27.48、30.78、35.10、35.80、43.60、45.43、48.68、50.70、102.57、111.28、124.69、128.57、136.96、142.30、162.35、170.22、172.27;及MALDI-TOF:C40
H51
N2
O8
S3
;Calc.783.3,實測值783.6[M]+
及805.6[M+Na]+
amu。
以下圖解99係闡明本反應:
添加PEHAM G=1之樹枝狀高分子(1.08克,含0.045毫克,0.0142毫莫耳樹枝狀高分子之4.189%水溶液;得自實例93)至配備磁攪拌棒之10毫升圓底燒瓶內。添加粉末狀之過量染料IR-806至該溶液內以導致很暗綠色溶液之形成,將其置於N2
大氣下並攪拌24小時。以60毫升水稀釋該反應並放入1000毫升水中之2K滲析膜(38毫米直徑,4厘米長,Spectra/Por®
,Spectrum Laboratories)內。藉旋轉蒸發而移除揮發性物質以得到如暗紅色固體之所欲產物(114毫克)。使用0.1%乙酸及乙腈(75:25%v/v)之混合物作為溶離劑,藉HPLC而純化該產物,並藉其於λmax
=806奈米下之UV活性而鑑定。該PEHAM樹枝狀高分子具UV不活性,且該UV活性係得自與該樹枝狀高分子締合之染料。
添加染料CyTE-807(20.0毫克,0.0265毫莫耳,每一樹枝狀高分子1.5當量)溶解在2.0毫升水中之溶液至配備攪拌棒之100毫升圓底燒瓶內。添加PEHAM G=1之樹枝狀高分子(1.36克,含56.8毫克,0.017毫莫耳樹枝狀高分子之4.18%水溶液)至該溶液內。攪拌該反應,費時96小時,然後經35
毫升水稀釋,並放入具有1000升水作為本體溶劑之2K滲析膜(38毫米直徑,4厘米長,Spectra/Por®
,Spectrum Laboratories)內。24小時後,更換該本體溶液。一旦滲析完成時,將內容物移至250毫升圓底燒瓶內並藉旋轉蒸發而移除揮發性物質以得到暗藍色固體(59毫克)。使用0.1%乙酸及乙腈(75:25%v/v)作為溶離劑進行HPLC分析顯示不含游離染料,預期經5:20分鐘後溶析。該UV-VIS光譜顯示於λ=672奈米可得到最大值,該游離染料之最大值自λ=807奈米向下移動,其歸因於藉該PEHAM樹枝狀高分子而產生之微環境。
[(C)=金;(EX1)=PIPZ;(IF1)=OH;(BR1)=PETGE;(IF2)=OH;(EX2)=PEA;(EX3)=DMI;(TF)=甲酯]
使得自實例96C之具有二硫化物核心之PEHAM樹枝狀高分子G=1經DMI覆蓋以製備吡咯啶酮表面。使該樹枝狀高分子(108毫克)溶解在0.70毫升DI水中。然後在機械攪拌下添加DTT在DI水之中溶液(0.128毫升,自23毫克DTT在0.5毫升DI水中所製成之溶液)。使用前,以氬氣滌洗用於本實例之DI水,費時10至15分鐘。於RT下攪拌該混合物,費時一夜。使用以下程序製成5奈米之金奈米顆粒。第一,製備4%氯金酸在DI水中之溶液。第二,在激烈攪拌下添加375微升該氯金酸溶液及500微升水性碳酸鉀(0.2M)至100毫升DI水中,並在冰上冷卻至4℃。第三,在5毫升DI水中新製成硼氫化納(0.5毫克/毫升)。第四,在快速攪拌下,添加5
整份各1毫升之該硼氫化鈉溶液至該氯金酸/碳酸鹽懸浮液內。於混合期間,該混合物之顏色自帶藍色之紫色變成帶紅色之橘色。最後,在完全添加硼氫化鈉後,在冰上攪拌該最終混合物,費時5分鐘。於0℃在激烈攪拌下添加具有SH焦點官能性分子團之減少的樹突結構體溶液至該預製成之金奈米顆粒溶液內。添加後,再於0℃下攪拌該反應混合物,費時10分鐘,然後溫熱至RT。於RT在黑暗中攪拌該混合物,費時一夜。藉旋轉蒸發法而移除水,直到剩下約1毫升溶液為止。使用Sephadex G-50柱(直徑1.6厘米,長22厘米),以水作為溶離劑以純化三分之一該粗產物。自該柱溶析清晰的譜帶。以每一溶離份2滴之形式收集27種溶離份。藉PAGE(4%丙烯醯胺凝膠,0.1% SDS)檢查前9種溶離份,其顯示形成經硫-樹突結構體塗覆之金奈米顆粒。
第10圖係闡明這些經硫-樹突結構體塗覆之金奈米顆粒的形成。進行經PEHAM樹突結構體塗覆之金奈米顆粒的PAGE。染色(左圖)前,近褐色之色彩代表該等經塗覆之金奈米顆粒(紫色為裝載染料)。經庫馬斯藍(Coomassie blue)染色(右圖)後,該藍色表示樹突結構體殼圍繞該金。第1道含有該具過量樹突結構體之粗產物,而第2至10道含有得自Sephadex G-50分離法之溶離份1至9。
以下圖解100係闡明該樹突結構體之反應:
圖解100
於PEHAM樹枝狀高分子(得自實例93)在DI水中之溶液的存在下,研究吲哚美辛之模擬解毒作用。藉添加個別整份之樹枝狀高分子至5毫升DI水中而製成4種不同濃度(0.033、0.070、0.200、0.335%w/v)之PEHAM樹枝狀高分子(一式兩份)。添加等量之10毫克吲哚美辛(Alfa Aesar)至含有水性樹枝狀高分子溶液之各小玻瓶內。以超音波短暫地處理所形成懸浮液,然後於37℃及100 rpm下在搖動水浴中培育一夜,並於RT下使其平衡。使該等懸浮液經0.2微米,直徑13毫米之尼龍注射濾器過濾以移除過量非封包藥物。使得自該過濾材料及混合小玻瓶之過量未溶解的吲哚美辛溶解在MeOH中。使用Perkin Elmer Lambda 2 UV/VIS分光光度計於320奈米之光波長下藉UV光譜法而分析每一試樣已封包入PEHAM樹枝狀高分子及該過量藥物內之吲哚美辛的含量。示於第11圖之結果顯示經封包之及未經封包之吲哚美辛的含量,其清楚表示該模型毒素已自溶液移除。
使PEHAM樹枝狀高分子(50毫克,0.016毫莫耳;得自實例93)及三(乙二醇)甲基醚碳酸對-硝基苯酯(250毫克,0.064毫莫耳,4當量)在3毫升MeOH中混合,並攪拌4天。將該反應混合物移入滲析袋(道爾頓滲析膜,18毫米直徑,10厘米長,Spectra/Por®
,Spectrum Laboratories)內並在水中進行滲析。藉冷凍乾燥法而離析該純化產物以得到黃色固體(41毫克,36%產率)。其光譜如下:1
H NMR(CDCl3
):δ 4.30至4.15(18H,br)、4.00至3.80(31H,br)、3.70至3.20(267H,br)、2.75至2.20(152H,br);13
C NMR(125MHz,CDCl3
):δ 156.2、155.4、152.4、145.2、125.4、122.5、73.4、72.1、70.8、69.8、66.8、66.6、66.5、64.8、61.0、60.9、59.3、53.4、45.8、44.9、44.3、44.0;及MALDI-TOF:C245
H468
N32
O100
;Calc.5459,實測值5471[M]+
amu(寬信號)。
使該經三乙二醇保護之PEHAM樹枝狀高分子(80.0毫克,0.015毫莫耳)及吲哚美辛(95.0毫克,0.27毫莫耳,18當量)溶解5毫升二氯甲烷中,然後在機械攪拌下添加DCC(60.0毫克,0.3毫莫耳,20當量)。24小時後,移除沿劑,使
其餘固體殘留物懸浮在少量丙酮中,藉離心法而分離該懸浮液。傾析黃色溶液並藉旋轉蒸法而移除該溶劑。使該黃色殘留物溶解在MeOH及DMF(9:1)中,並首先在含5% DMF之MeOH中滲析以改良溶度,繼而在純MeOH(1,000道爾頓滲析膜,18毫米直徑,長10厘米,Spectra/Por®
,Spectrum Laboratories)中滲析。該滲析袋內容物之蒸發得到如黃色固體之所欲產物(98毫克,86%產率)。其光譜如下:1
H NMR(CDCl3
):δ 8.01、7.67至7.63(m)、7.48至7.44(m)、7.00至6.59(m)、6.83至6.79(m)、6.66至6.62(m)、5.20至5.12(br)、4.30至4.15(m)、4.10至3.10(m)、2.75至2.10(m)。
在機械攪拌下使該PEHAM-吲哚美辛前藥(98毫克,0.013毫莫耳)溶解在10毫升MeOH及0.5毫升濃HCl中。3小時後,以水性碳酸氫鈉中止該反應並在水中滲析(1,000道爾頓滲析膜,38毫米直徑,5厘米長,Spectra/Por®
,Spectrum Laboratories)。過濾該滲析袋之內容物,並使該固體殘留物在氣流中乾燥以得到黃色固體(17毫克,溶離份A)。藉旋轉蒸發而濃縮濾液,傾析並藉離心法而移除固體部份。藉旋轉蒸發而乾燥上澄清黃色溶液以得到黃色固體(57毫克,溶離份C)。使得自該燒全之不可溶產物溶解在丙酮中並藉旋轉蒸發而乾燥以得到黃色固體(21毫克,溶離份B)。藉1
H NMR光譜法及MALDI-TOF MS而分析溶離份A至C。藉於m/z 5464[M]+
下在MALDI-TOF MS中之波峰及藉其1
H
NMR光譜(其實質上與該起始物質相同)可確認溶離份C含有該所欲產物,亦即未連接吲哚美辛之PEHAM樹枝狀高分子。溶離份C之重量與該PEHAM樹枝狀高分子之83%回收率一致。藉1
H NMR光譜法確認作為吲哚美辛之溶離份A已經過少量有機雜質污染。溶離份A之重量與吲哚美辛之58%回收率一致。藉MALDI-TOF MS而確認溶離份B為溶離份A及C之混合物,溶離份A及C之光譜如下:溶離份A(經回收之吲哚美辛):1
H NMR(CDCl3
):δ 7.67至7.63(m)、7.48至7.45(m)、6.97至6.95(m)、6.83至6.80(m)、4.05至3.95(m,雜質)、3.82、3.70至3.60(m)、2.38、2.00至1.00(雜質)。
溶離份C(經回收之PEHAM樹枝狀高分子):1
H NMR(CDCl3
):δ 4.25至4.18(br)、4.00至3.20(br)、2.70至2.20(br);及MALDI-TOF:C245
H468
N32
O100
;計算值5459,實測值5464[M]+
amu(寬信號)。
以下圖解101係闡明本反應:
藉用吸管將PEHAM樹枝狀高分子G=1(239微升,10.0毫克,3.145×10-3
毫莫耳;得自實例93)滴入1.5毫升微離心管內而進行該等莫耳反應。藉使187毫克FITC溶解在50微升DMSO(Aldrich)內而製成FITC(Molecular Probes)溶液。添加3.27微升該溶液(1.22毫克,3.145×10-3
毫莫耳)至該
PEHAM溶液內並藉Vortex混合機混合10秒。該反應變成微混濁狀及橘色。添加10N水性氫氧化鈉溶液(2.5微升)使該溶液變成清澈之橘色,並於RT下在黑暗中利用搖動混合機混合,費時一夜。
藉用吸管將PEHAM樹枝狀高分子G=1(239微升,10.0毫克,3.145×10-3
毫莫耳;得自實例94)滴入1.5毫升微離心管。添加FITC(39.27微升,14.6毫克,3.773×10-2
毫莫耳,比PEHAM高12倍莫耳以接合理論之12個表面胺)至該溶液內並藉Vortex混合機混合10秒。該溶液變成混濁狀橘色,且立即形成大片橘色沉澱物。添加10N水性氫氧化鈉溶液(5.0微升)使該溶液變成清澈橘色,但是仍殘留該大片之暗橘色沉澱物。於RT下在黑暗中利用搖動混合機混合該反應,費時一夜。
藉SDS-PAGE進行反應A及B之溶離份分析。操作兩個STARBURST(Dendritic Nanotechnologies,Inc.)凝膠對照階段物,其中之一含有具有TRIS表面PAMAM樹枝狀高分子(5.0微升)而另一個含有具有胺表面之PAMAM樹枝狀高分子G=0.6(2.5微升,其係與相同體積之SDS裝載染料混合),以作為對照試樣。藉使用1.0微升各溶液,與4.0微升水及5.0微升SDS染料(僅該可溶性部份用於該飽和反應)而製備第三對照物,未改變之PEHAM樹枝狀高分子,及該等
接合反應物。藉混合0.2微升FITC與4.8微升水及5.0微升SDS裝載染料而製成該FITC對照試樣。自左至右(道數):(2)NH2
表面梯形物、(3)Tris表面梯形物、(4)PEHAM樹枝狀高分子G=1、(5)飽和FITC反應物、(6)等莫耳FITC反應物,及(7)FITC對照物,裝載試樣。於恆定150V下自負至正操作該10%凝膠(30:1丙烯醯胺:雙-丙烯醯胺)在[50.0 mM TRIS,50mM 2-(4-嗎啉基)-乙烷磺酸(MES),0.1%SDS]緩衝劑中之溶液,直到該溴苯基藍裝載染料已往該凝膠方向向下移動~3/4距離為止。接著在經庫馬斯藍染料染色後以紫外線觀察該凝膠。這些結果示於第12圖中。
於紫外線下(第12圖之左圖),可以在第5至7道中之背景螢光上端發現不同的螢光譜帶。除在這兩種反應(第5及第6道)中游離FITC之譜帶(其移動方式如同該對照物FITC(第7道))外,可發現樹枝狀高分子-FITC接合物之一些不同譜帶。第12圖中,該凝膠之庫馬斯藍染色(右圖)顯示除藉游離染料導致之譜帶外,PEHAM樹枝狀高分子係存在於可呈現螢光之所有譜帶中。得自該等莫耳反應(第6道)之樹枝狀高分子顯示未經接合之PEHAM樹枝狀高分子的類似圖案,其表示單一或低數量之FITC接合。該飽和反應(第5道)所發現之不同圖案表示與FITC接合後該等樹枝狀高分子之尺寸大變化及/或淨電荷的較高接合程度。
以40%融合率將HEK 293細胞接種在96井平皿含有10% FBS(ISC BioExpress)之MEM(Fisher)內。24小時後,添加1.0微升經FITC接合之G=1 PEHAM樹枝狀高分子(0.128mM儲備溶液;得自實例114)至該等細胞內。對照物井包括等當量濃度之G=1 PEHAM樹枝狀高分子及僅FITC染料。藉螢光光譜法於2、5,及24小時下測監下,以該接合物培育該等井。在顯微鏡檢視前,以PBS沖洗欲分析之該等井共兩次。使用配備適於螢光之Nikon TMD-EF之Nikon Diaphot-TMD顯微鏡以進行該研究,僅使用Nikon CoolPix 990數位相機以捕獲結果。該顯微鏡結果顯示該等經FITC接合之PEHAM樹枝狀高分子可滲透該等293細胞膜。2小時後可看到一些螢光細胞(第13圖中之右圖),且經5至24小時後,該作明顯著增加,其清楚地表示PEHAM接合物可用於膜滲透應用中。該PEHAM及FITC對照物顯示無細胞內螢光。已包括相對比影像(第13圖中之左圖)作為參考點。
於37℃在5%CO2
下,使HEK 293細胞及MDCK細胞在100毫米盤中之具有青黴素及鏈黴素抗生素、丙酮酸鈉及10% FBS(完全培養基)之MEM中生長。當融合時,以1:3或1:4分裂培養物以維持活性生長。轉移感染前,就各1035毫米盤而言,於轉移感染時,使100毫米之細胞盤分裂以達成~85%融合率。為進行轉移感染,使經凍乾樹枝狀高分子在完全培養基內之體積達250微升。在個別的Eppendorf管內,使環費林B siRNA(人類PPIB;siGENOME雙股)(Dharmacon,Inc.)在完全培養基內達250微升以使最終濃度為150 nM。於RT下使這兩種管培育15分鐘,然後混合在一起,繼而再培育20分鐘。培育後,再添加500微升培養基至各管內,使總體積達1.0毫升。然後添加該混合物至85%融合率HEK 293及MDCK細胞,該培養基業經完全吸氣。使該等細胞經PEHAM樹枝狀高分子-siRNA複合物培育6小時,然後經新培育基取代。稍後餵該等細胞,費時48小時,然後經72小時後採集以進行蛋白質分析。以PBS沖洗該等組織培育皿,然後在150微升西方溶胞緩衝劑(Western Lysis Buffer)(15 mM Tris-HCl,pH7.4-8.0,150 mM NaCl,1% Triton X-100,及1 mM NaVO4
)中刮痕並移至Eppendorf管內。然後使用Vortex混合機混合該等試樣,並於-20℃下凍結,直到進行蛋白質分析為止。根據如HEK 293細胞之轉移感染所進行之製造者規定進行對照物Lipofectamine 2000(Invitrogen)轉移感染。基本上,進行如上述之相同程序,然而於複合
物形成期間,該培養基不含FBS及抗生素。使用2微克/毫升之Lipofectamine 2000以形成複合物。
將蛋白質試樣解凍並旋轉,然後以12,000 rpm進行離心處理。使用BioRad Protein Assay(BioRad),根據製造者規定以分析試樣之蛋白質含量。基本上,添加2微升試樣至96井微平皿內,繼而添加200微升經稀釋之BioRad試劑。在Multiskan MCC/340微平皿閱讀器(ThermoLabsystems)上於570奈米波長下讀取該平皿。使用BSA作為標準物。對所得之數據進行計算以測定該等試樣之蛋白質含量。就西方墨點法而言,在15%/5% SDS PAGE上操作25微克蛋白質試樣。以每一凝膠30mA操作該等凝膠。電泳後,將該等凝膠裝在凝膠轉移裝置內,並於200mA下移至硝基纖維素膜在2.2克/升碳酸氫鈉中之溶液內,費時2小時。然後移除該膜,經龐修紅(Ponceau Red)探測以監測轉移效率,經TBS沖洗,並在5%牛奶溶液中阻隔,費時一小時。阻隔後,於RT下以抗-環費林B抗體(1:3000稀釋)培育該膜,費時2小時(Abcam,Inc.),繼而經TBS+0.05% Tween沖洗25分鐘。然後以該膜培育經鹼性磷酸酯接合之抗兔第二抗體(1:5000稀釋),費時一小時,繼而經TBS+0.05% Tween沖洗35分鐘。然後使用得自Pierce之1-Step NBT/BCIP溶液使該膜顯像。就裝載對照物而言,以抗-β肌動蛋白抗體(1:3000稀釋)培育該膜,費時一小時(Abcam,Inc.)。根據上述抗兔,使用經鹼性磷酸酶接合之抗鼠(1:5000稀釋)作為第二抗體。亦如
上述進行清洗。以數位相機捕獲影像並使用ImageJ軟體(NIH)分析譜帶密度。
為測定G=1之PEHAM樹枝狀高分子(得自實例94)能有效作為siRNA遞送媒劑之濃度,使用在HEK 293細胞中自1微克/毫升至300微克/毫升之濃度及在MDCK細胞中20微克/毫升至250微克/毫升之濃度以進成複合物。該HEK 293細胞及MDCK細胞之數據係示於第14圖中。在HEK 293細胞中,一般的趨勢為該PEHAM樹枝狀高分子濃度之增加表示基團產物表現抑制性增加。於使用在本分析中之最高劑量的PEHAM下,該等MDCK細胞顯示環費林B表現之適度減少。在HEK 293細胞及MDCK細胞中,當使用200微克/毫升PEHAM樹枝狀高分子以遞送siRNA至細胞時,可發現藉siRNA遞送之環費林B表現抑制性的最高百分比。雖然在MDCK細胞中所發現之表現抑制性適中(8.5%),但是在HEK 293細胞中之該表現抑制性很高(60.2%),其優於該對照物,Lipofectamine 2000所發現之作用(49.2%)。該觀察結果清楚地表示於該等測試濃度下,PEHAM樹枝狀高分子能有效轉移感染至少部份細胞株。許多轉移感染劑在不同細胞株之作用不同。據此,可使用該大範圍濃度以進行本實驗。就MDCK細胞而言,藉PEHAM樹枝狀高分子有效遞送siRNA之濃度可超出所測試範圍,或需要最佳化其它尚未測試之參數,諸如細胞密度、血清之存在。
為證實第一實驗之研究結果,以一式三份使用50、
100、200,及400微克/毫升之G=1 PEHAM樹枝狀高分子,使HEK 293細胞及MDCK細胞經siRNA-目標之環費林B轉移感染。得自該實驗之結果示於第15圖中。誤差長條圖表示該等PEHAM試樣之3次實驗的標準偏差,及Lipofectamine 2000之兩種凝膠間之偏差。而且,該等HEK 293細胞顯示環費林B之沉默作用隨作為遞送劑之PEHAM樹枝狀高分子的濃度之增加而增加。然而,在本實驗中,表現抑制性百分比持續增加超過200微克/毫升濃度,其表示使用400微克/毫升可得到最大67.4%表現抑制率。而且該轉移感染力及後續目標表現抑制性優於該對照物轉移感染劑,Lipofectamine 2000。反之,在MDCK細胞中,該PEHAM樹枝狀高分子及Lipofectamine 2000為無效之轉移感染試劑。雖然在一些單一分析中,PEHAM樹枝狀高分子顯示少許可遞送siRNA以抑制環費林B表現之作用,但是如同藉該高標準偏差所發現,該作用具高可變異性。其表示不能遞送siRNA以誘發顯著的基因表現抑制性。在單一試樣中任何所發現之少量表現抑制性可能是試樣間之天然基因表現的差異。然而,如所有細胞轉移感染劑所發現,就特殊細胞株而言,於特定濃度下PEHAM樹枝狀高分子能作為siRNA之有效遞送媒劑。因此,在一細胞株內發現成功的遞送,係表示PEHAM樹枝狀高分子可作為轉移感染劑,且認為就個別細胞株而言,需要修飾其它條件以找出適於各細胞株之條件。
就各細胞株而言,自融合之10厘米培養皿至96井平板之22個井以1:3000分裂MDCK及HEK 293細胞。為測定具有3臂核心及一級胺表面之PEHAM樹枝狀高分子G=2(得自實例84)及具有4臂核心及一級胺表面之PEHAM樹枝狀高分子G=2(得自實例86)之效力,使用自1微克/毫升至500微克/毫升之濃度範圍以在這兩種細胞株內進行siRNA轉移感染。就轉移感染而言,使經凍乾之樹枝狀高分子在完全培養基中達至高50微升。在個別Eppendorf試管中,就150 nM之最終濃度而言,使環費林B siRNA(Human PPIB;siGENOME雙股)(Dharmacon,Inc.)在完全培養基中達至高50微升。於RT下培育這兩種試管,費時15分鐘,然後混合在一起,繼而再培育20分鐘。然後添加該混合物至85%融合HEK 293及MDCK細胞內,其培養基業經完全吸氣。在經新培養基取代前,使該等細胞經該等PEHAM樹枝狀高分子-siRNA複合物培育11小時。48小時後,採集細胞並使用分支鏈DNA(bDNA)分析,Quantigene®
Explore Kit(得自Genospectra),遵照製造者之規定定量特定基因表現抑制性之RNA表現。簡言之,添加50微升溶胞混合物(專利配方,Genospectra)至各井中之100微升培養基內並於37℃下培育15分鐘。利用顯微鏡目視檢查該等細胞可証實細胞之溶泡作用。於-20℃下凍結細胞溶解產物,直到進行定量分析為止。
製備該等分析探針組合前。藉添加52微升探針入280微升TE中而將探針組合化合物(CE、LE,及BL)在TE(10 mM TRIS,1 mM乙二胺四乙酸二鈉)中稀釋至1×濃度以製備適用於肌動蛋白(HUMAN ACTB,5×濃度)(Genospectra)及環費林(HUMAN PPIB,5×濃度)(Genospectra)之探針組合。藉混合3.7毫升溶胞混合物及37微升各1×濃度探針組合組份而製成適於肌動蛋白及環費林之溶胞作用試劑。將剩下的1×探針組合組份貯存於-20℃下。就該定量分析而言,於RT下將細胞萃取物解凍並以吸管將各20微升吸入捕獲平板(具有與該表面接合之專利DNA序列的白色96井平板)(Genospectra)之兩個井內。添加具有該等肌動蛋白探針之80微升溶胞作用試劑至一井中,並添加具有該等環費林探針之80微升溶胞作用試劑入該第二井內。以鋁板密封物(Costar)將該平板密封並於50℃下在拉鏈鎖鋁袋(Genospectra)內培育一夜,該鋁袋內含有可以使蒸發減至最低之濕紙中。遵照Quantigene®
Explore Kit(Genospectra)說明書,於隔晨製備加工溶液。藉使用180毫升水將20毫升10×清洗緩衝劑(10×SSC(1.5M NaCl及0.15M檸檬酸鈉,pH7.0),1%月桂基硫酸鋰)(Genospectra)稀釋至1×。藉分別添加9微升Amplifier(專利的分支鏈DNA序列)(Genospectra)及9微升標記探針(與蟲螢光素酶偶合之專利DNA序列)(Genospectra)至9毫升Amplifier/標記Probe Diluent(專利溶液)(Genospectra)而製成放大率加工溶液及標記探針加
工溶液。藉添加27微升之10%月桂基硫酸鋰至9毫升基質(專利混合物)(Genospectra)而製成基質加工試劑。
添加250微升清洗緩衝劑至各井內,並倒掉所以平板內容物。以350微升清洗緩衝劑清洗各井3次,且在最後一次清洗後,藉在紙巾上倒置並敲擊而乾燥該平板。添加100毫升放大率加工溶液至各井內。再密封該平板並於50℃下培育一小時。倒掉該放大率加工溶液並如前述清洗各井3次。添加100毫升標記探針加工溶液至各井內。再密封該平板並於50℃下培育一小時。倒掉該標記探針加工溶液並如前述清洗各井3次。添加100毫升基質加工溶液至各井內。再密封該平板並於50℃下培育15分鐘,然後冷卻至RT,費時15分鐘。自該平板移除密封箔並使用GloRunner亮度測定機(Turner Biosystems)測定各井之相對光單位。
在HEK 293細胞及MDCK細胞內,具有3臂核心及一級胺表面之PEHAM樹枝狀高分子G=2(實例84)顯示於低濃度(1微克/毫升至10微克/毫升)及於高濃度(200微克/毫升至500微克/毫升)下之有效沉默性,於50微克/毫升至100微克/毫升下,效力降低。於200微克/毫升下發現在HEK 293細胞內,環費林B沉默性之最高百分比為86%。就MDCK細胞而言,發現於1微克/毫升下,環費林B沉默性百分比最高(39%)。這兩種值皆高於使用Lipofectamine 2000所發現之值(49% HEK 293,26%MDCK),其表示在多細胞株中具有3臂核心及一級胺表面之PEHAM樹枝狀高分子
G=2(實例84)可作為siRNA遞送之有效媒劑(見第16圖)。具有4臂核心及一級胺表面之PEHAM樹枝狀高分子G=2(實例86)顯示在HEK細胞中試驗之所有濃度範圍及在MDCK細胞中試驗之低濃度下,環費林B之有效沉默性。就兩種細胞株而言,最高沉默性發生於5微克/毫升之濃度,其中HEK 293細胞顯示89%表現抑制性而MDCK細胞具有35%表現抑制性。這兩種值皆高於使用Lipofectamine 2000所得之值(49%HEK 293,26%MDCK),其証明在多細胞株中,具有4臂核心及一級胺表面之PEHAM樹枝狀高分子G=2(實例86)亦可作為siRNA之有效轉移感染劑(見第17圖)
為測定PEHAM樹枝狀高分子之抗細菌活性,使用自Paul Goldenheim’s 1993 Postgraduate Medical Journal[Goldenhein P.,Postgrad Med.Journal,S62-S-65(1993)]修飾之方法。以10微升大腸桿菌(E.coli)(得自Central Michigan University,Department of Biology之Schisa試驗室)接種在L-Broth(LB)培養基(TEKnova)之5毫升培養物上並在以225 rpm搖動下,於37℃下生長一夜。添加10微升該隔夜培養物至新LB培養基內,並在搖動下於37℃下生長2小時以得到對數生長期之細菌、製備在水中濃度為3.35%、0.0335%(1:100),及0.00335%(1:1000)之G=1 PEHAM樹枝狀高分子試樣(得自實例93)。添加十分之一體積之該活性生長的大腸桿菌至各試驗試樣內,並經一分鐘後採集10微升試樣。將這些試樣接種在5毫升LB培養基內。使用相同濃度之抗細菌
劑,聚乙烯吡咯酮(Povidone)-碘(得自Triadine之PVP-碘)作為正對照物。在搖動下於37℃下使該等培養物生長一夜。使用PerkinElmer Lambda 2 UV/Vis分光光度計讀取於600奈米之吸光度以測定培養物密度,然後以1.4×108
以計算每毫升之細胞數。測定該抗細菌效力之每毫升之細胞數的計算值係示於表V中。
該實驗之結果顯示最高濃度(亦即3.35%)之該PEHAM樹枝狀高分子可殺死大腸桿菌細菌,其效力如同該對照物試樣,為進一步調查PEHAM樹枝狀高分子之抗細菌活性,研究衍生自TREN表之兩種另外化合物。使用5%濃度之這些G=2 PEHAM樹枝狀高分子、得自實例84之3臂樹枝狀高分子,及得自實例86之4臂樹枝狀高分子。如表V所示,該4臂PEHAM樹枝狀高分子可殺死細菌,而該3臂樹枝狀高分
子在該等實驗條件下並無效。該性質可歸因於該分子表面上之低總胺數。然而,這些研究表示PEHAM樹枝狀高分子可用於抗細菌應用。
式(I)樹枝狀高分子與PAMAM樹枝狀高分子之比較
如藉TGA所測定,本發明式(I)樹枝狀高分子比PAMAM樹枝狀高分子具有明顯較高之熱安定性(約高100℃)。該資料係示於第18圖中。第18圖中之曲線3表示在一般PAMAM[聚(醯胺基胺),G=3樹枝狀高分子],二胺基丁烷核心胺表面聚合物(Dendritic Nanotechnologies,Inc.)之氮中該熱降解分佈。相較之下,第18圖中之曲線1及2係分別表示實例26B及78之產物的熱降解分佈。如自該資料可知,得自實例26B及78之產物顯示類似的熱分佈且証明其熱安定性明顯優於類似代型之PAMAM聚合物。這些實例之聚合物顯示熱降解開始發生之溫度高很多,且其殘留質量高於先前已知之比較聚合物。
該資料表示本發明之式(I)樹枝狀高分子比PAMAM樹枝狀高分子的熱安定性還高。
這些上述結果表示該等式(I)樹枝狀高分子之熱安定性明顯高於PAMAM。
該等式(I)樹枝狀高分子比PAMAM樹枝狀高分子更容易製成之原因為:˙由於中間物之較高官能度,所以製程步驟較少˙由於開環或加成反應,所以反應副產物較少˙試劑之成本較低,及
˙由於較低的試劑過量,所以製程能力較高。
式(I)樹枝狀高分子之具有Nc
=4及Nb
=3之環氧化物開環的哌樹枝狀高分子對具有原位形成之分支小室的一般PAMAM樹枝狀高分子之式量及表面基團數的比較係示於下表Ⅶ中。
該表Ⅶ表示為向本發明可快速建構表面官能度、快速增加分子量及連接de Gennes表面填料,因此可以以比PAMAM還少之世代獲得容器性質之原因。由於單元操作增加所以各代加成可增加相當大的成本,以較少步驟連接高分子量及表面官能度表示相當大的成本降低可能性。
式(I)樹枝狀高分子與高分支鏈樹枝狀高分子之比較
當藉低控制性無規開環作用(Less Controlled Random Ring Opening)與高分支鏈聚合物比較時,可發現該等式(I)樹枝狀高分子具有較窄多分散性。
該AFM數據可分別得到實例78及71之很窄多分散性數值,1.091及1.117。這些數值很小,且表示該等顆粒具高單分散性且不會聚集。高分支鏈聚合物之典型多分散性從未低於1.3至1.5,且典型上比約3至8寬很多。
第19圖表示與具有5000及8000分子量之兩種類似的平均分子量之高分支鏈樹枝狀聚縮水甘油之數據比較,實例26B及78之產物的SEC。該SEC曲線數1及2係表示相當於高分支鏈物質之典型寬多分散性,實例26B及78之未最佳化的產物之較低多分散性。所計算之多分散性數值係示於下表Ⅷ中。
式(I)樹枝狀高分子與高分支鏈樹枝狀高分子之比較
第20圖表示得自可顯示減少的及伸鏈的PEHAM樹枝狀高分子[(C)=PETGE;(IF)=OH;(EX)=PIPZ;(BR)=PETGE;(TF)=PIPZ;G=0.5、1.5、2.5、3.5、4.5、5.5、6.5]之CPK模型的尺寸。該等交岔點顯示該de Gennes緻密堆積
的必要性。該模型之減少的與伸鏈的PEHAM樹枝狀高分子間之空間表示可用於封包之有效的內部空隙體積。在水中之SEC體積可在這兩種邊界之間產生一條線。
第21圖係比較得自CPK模型之先前聚醚樹枝狀高分子[(C)=新戊基;(BR)=新戊基;(TF)=OH]尺寸。就未具有延長鏈或內部官能性分子團之這些先前樹枝狀高分子而言,並沒有內部空隙體積。
雖然不想受限於理論,但是提供以下討論以幫助瞭解可能的位阻因素及其對PEHAM樹枝狀高分子反應與形成之影響的原因。建構兩種數學模型以估計可配合核心試劑(C)之分支試劑(BR)的最大數值。第一種模型係將所有試劑當作理想球狀物,而第二種模型則將分支試劑(BR)視為圓錐形且將該等核心試劑視為球狀物。並未考慮所有其它化學參數,諸如鍵角、實際分子形狀、溶劑等。以這些模型測試幾種核心試劑及分支試劑,且結果顯示當與得自實際反應之結果比較時,該等模型很準確。
有一些可調整合成沒有缺陷之完美樹枝狀高分子結構之方法的參數。其中,位阻誘導性化學計量法(SIS)扮演最重要的角色之一。例如de Gennes預測就欲佔有之表面基團的數學計算數值而言,由於可用之表面空間變得太有限,所以於特定世代下,不可能發生理想的分支[P.G.de Gennes and Hervet,H.J.J.Physique-Lett.(Paris),44
,351(1983)]。Ingrid van Baal等人在[Ingrid van Baal等人.Angew.Chem.
Int.Ed.44
,2(2005)]中表示當他們嘗試以肽表面修飾G3樹枝狀高分子時,發現具有該完全結構之次飽和取代的分子。Tomalia等人以數學方法計算出可放置在核心樹枝狀高分子(r2
)周圍以建構核心-殼甲基(樹枝狀高分子)之殼樹枝狀高分子(r1
)之飽和數[M.L.Mansfield;L.Rakesh;and D.A.Tomalia,J.Chem.Phy.,105
,3245(1996)]。使用Mansfield,-Tomalia-Rakesh方程式[M.L.Mansfield;L.Rakesh;and D.A.Tomalia,J.Chem.Phys.,105
,3245(1996)],該核心半徑及分支半徑之比率可決定理論上可連接在該核心周圍之分支試劑的最大數值。在合成核心-殼甲基(樹枝狀高分子)時,藉MALDI-TOF及PAGE所分析之這些經S.Uppulur;等人在[Adv.Mater.,12
,796(2000)]中証明且實驗性說明之理論計算值可証明該計算值很接近實際[D.A.Tomalia,等人,Pure Appl.Chem.,72
,2343(2000)及D.A.等人,Proc.Natl.Acad.Sci.,99(8),5081-5087(2002)]。
於藉發散性重複方法合成PEHAM樹枝狀高分子的過程中,已發現有缺陷的結構。一般相信這些有缺陷的結構係歸因於藉該等奈米尺度之核心(C)及該等奈米尺度之分支小室試劑(BR)的相互作用而顯示之N-SIS效應。就分支試劑為簡單幾何形狀而言,以下模型係嘗試解釋且預測可共價鍵結在核心周圍之分支試劑的最大允許數。該分析忽視氫鍵結及溶劑效應。可考慮兩種分支試劑(BR)形狀,亦即球形及錐形。
所有試劑被視為理想的球。於該階段下,為簡化計算,並不使用其它形狀,諸如圓錐體、圓柱體及楔形。核心試劑(例如PETGE)之拴鏈點被視為規則四面體形狀。藉一種名稱為3D Shop Shareware(由C4W提供)之程式進行3D圖示。第22圖中,紅色球代表核心試劑,而其它顏色球代表分支試劑。僅基於美觀理由而使用不同顏色。
首先,使4個較大球(亦即分支試劑)接觸彼此的表面。藉連接彼等之4個中心,可定義規則四面體(第22圖)。在該規則四面體之內部中所界定之空間可說明一合適核心試劑之可用體積。在以下方程式中,該分支試劑之半徑為r,而該核心之半徑為R。該四面體之邊長應該是2r。可以自以下方程式1算出該內部核心空間之最大半徑。
只要r4.45R,則有足夠的空間使4種具有半徑r之分支試劑取代基包圍該具有半徑R之核心,當r>4.45R時,則開始發生N-SIS效應,因此包圍核心(C)之取代基數可減至低
於4之值。
使3種具有半徑r之球形分支試劑(BR)聚集在一個具有半徑R之核心試劑(C)周圍。若忽視鍵角,可排列這4個球之中心,使其位於相同平面,則所定義該規則四面體之邊長為2r。可使用方程式3計算可嵌入藉該接觸分支試劑(BR)所定義之中心空間的該(C)的最大半徑R。
在本模型中有3種參數。其係為球形核心(R)之半徑、圓錐體(h)之高度及圓錐體(r)之底半徑。見第23圖。
如第24圖中之一錐形底所示,這4種錐形分支試劑之底係嵌入四面體的4個面內。該核心試劑(C)係位於該四面體之中心。
R=核心之半徑
H=錐形分支試劑之高度
R=錐形分支試劑底之半徑
r'=R+h
a=四面體之邊長
若r (h
+R
),則4種分支試劑可排列在該核心(C)周圍,(N最大值
=4)。
當3種圓錐體係排列在球形核心(C)之周圍,且鍵角不
被視為參數,則如以下方程式所述,這4種實物之中心可位於相同平面(第25圖)。
r 2
+(h
+R
)2
=4(h
+R
)2
方程式8
根據這些數學結果,可以如表X中所摘述而計算在球形核心(C)周圍之錐形分支試劑的最大數值。
在能量最小化作用(MM2)後,自Chem 3D(CambridgeSoft)估計所有試劑之尺寸,且未經其它方法証明。可使用分享軟體(3D Shop Shareware by C4W)以產生被證明為可支持該討論之各該圓的立體圖示。所以試劑被視為簡單幾何形狀。如下測定小分子之尺寸:已在ChemDraw中劃出化學結構。已在ChemDraw中使用清除(clean-up)功能校正鍵長及鍵角。已在Chem 3D內複製這些結構,再清除並進行MM2能量最小化作用。最後,獲得所測定之尺寸。見以下
化學結構。
核心試劑之尺寸:
自這些考慮因素製成下表,X I,X Ⅱ及X Ⅲ。
雖然本發明已參考其較佳實施例而說明,但是一般技術者藉閱讀並瞭解本揭示內容,可知只要不違背如上述或下文申請專利之本發明範圍及精神,可以有變化及修飾。
第1圖係闡明具有以下組份:核心(C)、具有分支小室(BR)、內部官能性分子團(IF)及延長鏈(EX)之內部、及具有末基官能性分子團(TF)之一些表面基團(z),之式(I)樹枝狀高分子之樹枝狀高分子核心-殼結構的立體投影圖。
第2圖係闡明可以由一或多種親電子分子團(E)、親核分子團(Nu)或其它反應性分子團(O)或這些分子團之組合所組成之各種核心組份(C)。該核心之多重數被定義為Nc
。除了這些分子團之習用分子團外,這三種名詞,(E)、(Nu)、及(O),包括,諸如具有如所闡明之焦點官能性分子團(FF)之樹突結構體之基團。
第3圖係闡明具有分支小室(BR)之式(I)樹枝狀高分子的內部部份,該等分支小室(BR)具有一或多種下述分子團:親電子分子團(E)、親核分子團(Nu)或其它反應性分子團(O)(亦即自由基或1,3-偶極環化加成)或這些分子團之組合。此外,該內部可選擇性地具有可提供內部官能性(IF)之基團,其通常衍生自開環反應,且其可具有一或多種下述分子團:親電子分子團(E)、親核分子團(Nu)或其它反應性分子團(O)或這些分子團之組合。延長鏈分子團(EX)亦可選擇性地存在於該內部中,該等(EX)具有一或多種下述分子團:親電子分子圖(E)、親核分子圖(Nu)或其它反應性分
子圖(O)或這些分子團之組合。這些內部分子團可重覆用於各代之該樹枝狀高分子。
第4圖係闡明(A)中Q可以是環氧化物分子團或丙烯酸酯分子團之分支小室或核心。當該環氧化物經開環時,分支小室,(B),表示四縮水甘油醚分支小室試劑之該(BR)分子團、(IF)分子團、(EX)分子團及(TF)分子團;其中如所闡明,形成Nb
=3。類似地,其中如在第1圖上所闡明,Nb
=2。當該丙烯酸酯為Q時,則可經切除之酯經整合。
第5圖係闡明具有末端官能性分子團(TF)之表面基團(z)。這些(TF)可相同或不同。這些(TF)亦具有一或多種下述特徵:親電子分子團(E)、親核分子團(Nu)、其它反應性分子圖(O)、非反應性端基(例如烴)或這些可能分子團之組合。
第6圖係闡明該樹枝狀聚合物(亦即樹枝狀高分子結構)之自一代至下一代的發散生長。當該樹枝狀聚合物生長時,其係以代為變數,當其以數學性擴大時,可改變奈米尺度分子形狀及分子量。在該圖中計劃包括藉(IF)、(EX)及(BR)。
第7圖係闡明當該(BR)大於或小於該(C)且該N-SIS對於可進行反應之反應性基團數有影響時,可表示各種分子團之反應性的式(I)該等樹枝狀高分子/樹突結構體之該等N-SIS特徵。
第8圖係闡明當該(BR)大於該(C)時,其表示仍可藉較小反應物進一步進行反應,可表示各種分子團之反應性之
式(I)該等樹突結構體/樹枝狀高分子的該等N-SIS特性。
第9圖係闡明用於使(BR)、(EX)、(C)、(FF)及(TF)進行反應以形成一代之式(I)該等樹突結構體/樹枝狀高分子之(Nu)、(O),及(E)的組合反應性。可重複這些反應以形成較高代或用於其它正交化學生長方法。
第10圖係闡明經(FF)硫官能基化樹突結構體塗覆之Au奈米顆粒的PAGE結果。進行染色前,經由近褐色之色彩,左平板表示該經塗覆之Au奈米顆粒,而紫色為裝載染料。經庫馬斯藍染色後,經由該藍色,右平板表示在該Au奈米顆粒核心周圍之樹突結構體殼。第1道含有具過量樹突結構體之粗產物;第2至10道表示得自該SephadexTM
G-50分離法之溶離份1至9。
第11圖係表示在4種不同濃度之PEHAM樹枝狀高分子中作為模型毒素之吲哚美辛的封包作用之結果。該PEHAM樹枝狀高分子可封包該模型毒素並自溶液將其移除。
第12圖係表示得自FITC與PEHAM樹枝狀高分子接合之表面結合作用的結果。該左平板(A)表示在第7道中之對照物及在第5與6道中該PEHAM樹枝狀高分子係與FITC接合。該右平板(B)表示凝膠之庫馬斯藍染色,其中除無染色譜帶外,顯示螢光之所有譜帶具有PEHAM樹枝狀高分子。
第13圖係表示經已和FITC接合之PEHAM樹枝狀高分子,及PEHAM樹枝狀高分子與FITC之對照物各單獨在HEK 293細胞內培育2、5及24小時後,螢光顯微術產生該等右列平板。螢光在該等細胞內之存在表示該經接合之PEHAM樹
枝狀高分子可滲透細胞。該等左列平板表示作為參考點之相對比影像。
第14圖表示在HEK 293細胞及MDCK細胞中測試於不同濃度下,G=1之PEHAM樹枝狀高分子作為siRNA遞送載劑之結果。在HEK 293細胞中,PEHAM樹枝狀高分子濃度之增加的一般趨向表示基因產物表現抑制性(knockdown)之增加,其係示於該圖之左方。該等MDCK細胞,在該圖之右方,表示於所測試之PEHAM的最高劑量下,環費林(Cyclophilin)B表現性之適當降低。
第15圖表示證實得自第14圖之結果的結果,其中係以一式三份測試50、100、200,及400微克/毫升之G=1的PEHAM樹枝狀高分子。如前述,HEK 293細胞表示環費林B之沉默作用隨PEHAM樹枝狀高分子濃度之增加而增加。然而該PEHAM樹枝狀高分子在MDCK細胞中作為轉移感染試劑之有效性低,其表示高可變結果。
第16圖表示在HEK 293細胞及MDCK細胞中測試於不同濃度下,實例82之G=2的PEHAM樹枝狀高分子作為siRNA遞送載劑之結果。在HEK 293細胞及MDCK細胞中,G=2之PEHAM樹枝狀高分子濃度之增加表示基因產物表現抑制性之增加,且這兩種值皆高於使用Lipofectamine 2000所獲得之值。
第17圖表示在HEK 293細胞及MDCK細胞中,測試於不同濃度下,實例84之G=2之PEHAM樹枝狀高分子作為siRNA遞送媒劑的結果。該結果顯示在HEK細胞中在所有濃
度範圍內,及在MCK細胞中於低濃度下,環費林B表現之有效沉默性。
第18圖表示與一般PAMAM樹枝狀高分子比較,式(I)樹枝狀高分子之熱安定性增強。在該第18圖中,編號的線係代表這些樹枝狀高分子之資料:1為實例25B,2為實例76,而3為PAMAM(G=3,(C)=DAB,(TF)=胺)。
第19圖表示與具有平均分子量為5000(2)及8000(1)分子量之兩種相關之高分支鏈樹枝狀聚縮水甘油比較的式(I)代表性產物[亦即實例76(4)及77(3)]之尺寸排斥層析法(SEC)。所示該等譜帶寬度係表示3及4之窄多分散性。
第20圖(A)表示得自CPK模型之直徑大小(奈米),其係闡明聚(醚羥基胺)(PEHAM)樹枝狀高分子[(C)=新戊基;(IF)=OH;(BR)=PETGE;(EX)=PIPZ;(TF)=NH;G=0.5至6.5]之縮小值(由圓形表示)及增加值(由方形表示)。黑色線條曲線(由實線代表)表示理想的增加性質。黑色指數曲線(由實線代表)表示縮小之尺寸。該縮小尺寸與增加尺寸間之差異表示該樹枝狀高分子內部中之可用空隙空間。特別注意封包作用係於約G1開始。然而,如第20圖(B)所示,傳統的聚(醚)樹枝狀高分子並未發現封包性質。於約G=5.5之交岔點係闡明該樹枝狀高分子族之de Gennes緻密堆積點。
第20圖(B)表示得自CPK模型之直徑大小(奈米),其係闡明該傳統聚(醚)(PE)樹枝狀高分子[(C)=新戊基;(BR)=新戊基;(TF)=OH]之縮小值(由圓形代表)及增加值(由方形表示)。實際SEC值(由三角形表示)很符合該等CPK值。該樹枝
狀高分子族沒有(EX)也沒有(IF)。特別注意,該增加尺寸及縮小尺寸幾乎可重疊,其表示傳統的聚(醚)樹枝狀高分子實際上無內部空隙空間。此外,如第20圖(B)所示,與G=5.5或PEHAM樹枝狀高分子比較,由於該傳統的聚(醚)樹枝狀高分子中不含(EX),所以可以提前將差約2至3代之該de Gennes緻密堆積交岔點轉移至G=3。
第21圖表示得自CPK模型之直徑尺寸(奈米),其係闡明該傳統聚(醯胺基胺)(PAMAM)樹枝狀高分子[(C)=NH3
];G=1至10之縮小值(由圓形代表)及增加值(由方形代表)。實際SEC值(由三角形代表)存在於該縮小尺寸值與增加尺寸值之間。該樹枝狀高分子族沒有(EX)也沒有(IF)且de Gennes緻密堆積交岔點位於G=10。特別注意,如第20圖(A)所示,與PEHAM樹枝狀高分子(其封包性質開始於G=1至1.5)比較,直到G=4,封包性質才開始進行。
第22圖係闡明具有彼此接觸之4個相同球形分支小室試劑之模型,其中係插入一球形核心以配合藉這4個球形試劑所形成之四面體之中心的可用空間,其表示該核心及分支小室球狀物之相對體積(直徑),其可確立N-SIS爭議及預測之空間界限。
第23圖係表示闡明用以檢查N-SIS爭議及預測之球形核心及包圍該核心之3個錐形分支小室試劑兩種N-SIS模型圖。在本模型中有3種參數:核心之大小(半徑=R)、圓錐體之高度(h)及圓錐體之基礎半徑(r)。
第24圖係表示闡明用以檢查N-SIS爭議及預測之由4個
錐形分支小室試劑所包圍之圓形核心的4種N-SIS模型圖。這4個錐形分支小室試劑之基部係內接在包圍位於四面體中央之該球形核心試劑的該四面體之4個面內。
第25圖係闡明3個聚集在球形核心周圍之錐形分支小室試劑之用途,其中該四面體之一表面並不含錐形分支小室試劑。
Claims (84)
- 一種式(I)樹枝狀聚合物:
- 如申請專利範圍第1項之樹枝狀聚合物,其中:Nc 為自1至20之整數;q為0或自1至250之整數;p為自1至250之整數;且m為0或自1至250之整數;而q或m之一必須至少為1;且當q及m皆大於1時,(BR)及(EX)可交替地與其它分子團出現或相繼地與連續出現之多種(BR)或(EX)基團出現。
- 如申請專利範圍第1項之樹枝狀聚合物,其包含一式(Ⅱ)之樹枝狀聚合物:
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(C)為簡單核心。
- 如申請專利範圍第4項之樹枝狀聚合物,其中該簡單核心為聚(縮水甘油醚)、四(環氧基丙基)氰尿酸酯(TEPC)、三(2,3-環氧基丙基)異氰尿酸酯(TGIC)、三[2-(丙烯醯氧基)乙基]異氰尿酸酯、4,4'-亞甲基雙(N,N'-二縮水甘油基苯胺)(MBDGA)、二縮水甘油基苯胺、N,N’-二縮水甘油基-4-縮水甘油氧基苯胺(DGGA)、山梨糖醇、甘油、新戊基、寡新戊基二縮水甘油醚、第三-丁基縮水甘油醚、烯丙基縮水甘油醚、季戊四醇三縮水 甘油醚(PETriGE)、季戊四醇三烯丙醚(PETriAE)、季戊四醇四疊氮化物(PETAZ)、新戊基四丙炔基醚、單烷基新戊基三丙炔基醚、三疊氮化物、四疊氮化物、胺基乙醇、氨、聚胺離胺酸、直鏈聚(伸乙基亞胺)、水、硫化氫、伸烷基/伸芳基二硫醇、雙(2-哌基乙基)二硫化物(BPEDS)、胱胺酸、4,4'-二硫二丁酸、二硫丁酸二甲酯(DMDTB)、巰基烷胺、硫酸烷胺、異氰尿酸酯、雜環、1,4,7,10-四氮雜環十二烷-1,4,7-三(乙酸)(DO3A)、1,4,7,10-四氮雜環十二烷-1,4,7,10-四(乙酸)(DOTA)、巨環、多碳核心、聚縮水甘油基、甲基丙烯酸酯、聚(官能性丙烯酸酯)、亞胺基二乙酸二乙酯、三(羥甲基)胺基甲烷、膦、卟吩、環氧乙烷、環硫乙烷、氧呾、吖丙啶、氮呾、多疊氮基官能性、矽氧烷、唑啉、胺基甲酸酯或己內酯。
- 如申請專利範圍第5項之樹枝狀聚合物,其中該簡單核心為胱胺酸、二胺二硫化物、二疊氮基二硫化物、二硫化二乙炔、丙炔基季戊四醇三烯丙醚、丙炔基季戊四醇三縮水甘油醚、季戊四醇四疊氮化物、季戊四醇四縮水甘油醚、四羥苯基乙烷縮水甘油醚、三羥苯基甲烷三縮水甘油醚、三羥甲基丙烷三縮水甘油醚、三(2,3-環氧基丙基)異氰尿酸酯、三羥甲基丙烷三丙烯酸酯、異氰尿酸酯、雜環、聚(2-乙基-2-唑啉)、多碳核心(乙烯、丁烷、己烷及十二烷)、膦或具有單一或多官能性環氧化物之直鏈、分支鏈或環系分子團、多官能性烯類、炔類 或芳基或多疊氮基官能性。
- 如申請專利範圍第5項之樹枝狀聚合物,其中該聚(縮水甘油醚)係雙酚縮水甘油醚、季戊四醇四縮水甘油醚(PETGE)、四羥苯基乙烷縮水甘油醚(TPEGE)、三羥苯基甲烷三縮水甘油醚(TPMTGE)、三羥甲基丙烷三縮水甘油醚(TMPTGE)、或雙(4-縮水甘油氧基苯基)甲烷(BGPM)。
- 如申請專利範圍第5項之樹枝狀聚合物,其中該聚胺係乙二胺(EDA)、PAMAM、己二胺(HMDA)、二乙三胺、甲基異丙基啶、伸烷基雙(2-鹵乙胺)、芳基甲基鹵(例如苄基系鹵)、哌、胺基乙基哌、聚離胺酸、聚(伸乙基亞胺)、聚(伸丙基亞胺)、或三-2(胺基乙胺)。
- 如申請專利範圍第5項之樹枝狀聚合物,其中該聚(官能性丙烯酸酯)係三羥甲基丙烷三丙烯酸酯(TMPTA)或二烯丙胺。
- 如申請專利範圍第5項之樹枝狀聚合物,其中該多疊氮基官能性係衍生自PETGE之四疊氮基加成物。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(C)為架構核心。
- 如申請專利範圍第11項之樹枝狀聚合物,其中該架構核心為經覆蓋物質,選自三羥甲基丙烷三丙烯酸酯、季戊四醇四縮水甘油醚(PETGE)、三羥甲基丙烷三縮水甘油醚(TMPTGE)、四羥苯基乙烷縮水甘油醚(TPEGE)或三羥苯基甲烷三縮水甘油醚(TPMTGE),其各經胺基乙基 哌、疊氮化物、丙炔基官能性、哌、二-亞胺基二乙酸或環氧化物表面PEHAMS或彼等之混合物中之一或多種覆蓋。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(C)為超核心。
- 如申請專利範圍第13項之樹枝狀聚合物,其中該超核心為作為該核心官能性分子團之樹枝狀高分子或零價金屬顆粒(選自Au、Ag、Cu、Pd或Pt)、金奈米顆粒、金奈米桿狀物、膠體、乳膠顆粒、金屬氧化物、奈米結晶、量子點、膠微粒、小泡、脂質體、巴克球、單一或多壁奈米碳管、碳纖維、二氧化矽或大塊金屬表面,且其它結構與該核心表面連接或自其生長。
- 如申請專利範圍第13項之樹枝狀聚合物,其中(C)為包含以下組份之超核心,其中:PAMAM為該核心並具有PEHAM於其上生長或與其表面連接;PEHAM為該核心並具有PEHAM於其上生長或與其表面連接;PEHAM為該核心且具有PEHAM及PAMAM於其上生長或與其表面連接;PAMAM為該核心並具有PEHAM及PAMAM於其上生長或與其表面連接;PEHAM為該核心並具有PAMAM於其上生長或與其表面連接;聚離胺酸樹枝狀聚合物為該核心並具有PEHAM於其上生長或與其連接;PPI為該核心並具有PEHAM於其上生長或與其表面連接;或多元醇為該核心並具有PEHAM於其上生長或與其表面連接。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(C)為至少一親核性(Nu)、一親電子性(E)或一其它(O)分子團;或一與至少兩有序樹枝狀分支物鍵結之多價核心;或一可以是任何單價或單官能性分子團或任何多價或多官能性分子團,較佳為具有可以與樹枝狀分支物鍵結之官能性部位之2至25000個價鍵的多官能性分子團,之核心原子或分子。
- 如申請專利範圍第16項之樹枝狀聚合物,其中(C)為親核性(Nu)且其係為親核性核心之實例包括氨、水、硫化氫、膦、聚(伸烷基二胺)、聚伸烷基多胺、一級胺、聚(亞甲基二胺)、巨環系/穴狀聚胺、聚(胺基烷基鏈芳烴)、三(胺基烷基)胺、甲基異丙基啶、二乙三胺、伸烷基雙(2-鹵乙胺)、芳基甲基鹵、高分支性聚合物、聚離胺酸、聚(伸丙基亞胺)、三-2-(胺基乙胺)、雜環系胺、星形/梳狀-分支鏈聚胺、哌、胺烷基哌、乙二醇、聚伸烷基多元醇、聚伸烷基聚硫醇、硫酚及酚,或任何前述核心以作為覆蓋核心,其中至少一Nc 價為未經覆蓋。
- 如申請專利範圍第16項之樹枝狀聚合物,其中(C)為親電子性(E)或可經布朗斯特/路易斯酸或烷化劑/醯化劑而轉化成(E)之親電子性核心且該核心為環醚、環氧乙烷、環系硫化物、吖丙啶、氮呾、矽氧烷、氧坦、唑啉、、胺基甲酸酯、己內酯、羧基酸酐、硫代內酯、磺酸內酯、β-內醯胺、α -β-烯系不飽和羧酸酯、 丙烯腈、依康酸甲酯、反丁烯二酸二甲酯、順丁烯二酸酐、或醯胺或任何前述核心以作為覆蓋核心,其中至少一Nc 價未經覆蓋。
- 如申請專利範圍第16項之樹枝狀聚合物,其中(C)為一其它(O)分子團,且為多官能性起始劑核心,該多官能性起始劑核心為可產生多價核心或自由基受體基團、或1,3-偶極環化加成分子團的化合物。
- 如申請專利範圍第19項之樹枝狀聚合物,其中該自由基受體基團係烯望類,且該1,3-偶極環化加成分子團係聚炔或聚疊氮化物。
- 如申請專利範圍第16項之樹枝狀聚合物,其中(C)為三丙烯酸酯、四丙烯酸酯、三吖丙啶、四吖丙啶、三疊氮化物、四疊氮化物、三環硫乙烷、四環硫乙烷、三唑啉、四唑啉、三環氧化物、四環氧化物、二縮水甘油基苯胺、新戊基醇、胺基烷基醇、伸烷基二胺、四芳基甲烷、三芳基甲烷、三縮水甘油醚、四芳基甲烷、四縮水甘油醚、雙(縮水甘油氧基苯基)烷類、四環氧硫化物、三縮水甘油基異氰尿酸酯、三(2,3-環氧基丙基)異氰尿酸酯、亞甲基雙(二縮水甘油基苯胺)或四環氧硫化物。
- 如申請專利範圍第12項之樹枝狀聚合物,其中(C)為胱胺酸、異氰尿酸酯、雜環、多碳核心、膦或具有單一或多官能性環氧化物之直鏈、分支鏈或環系分子團。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中(FF)為 任何分子團,其可以使樹突結構體作為核心,可以將2或多種樹突結構體連接在一起或可以與(C)、(BR)或(EX)及(BR)進行反應。
- 如申請專利範圍第23項之樹枝狀聚合物,其中(FF)為氫、硫醇、胺、羧酸、酯、醚、環醚、卟啉、羥基物、順丁烯二酸醯亞胺、烷基物、烯基物、炔基物、鹵烷、鹵芳烷、膦基物、膦、硼烷、醇、醛、丙烯酸酯、環系酸酐、吖丙啶、吡啶、腈、依康酸酯、環系硫代內酯、環硫乙烷、氮呾、環系內酯、巨環系物、螯合配位體、異氰酸酯、異硫氰酸酯、寡核苷酸、胺基酸、肽、環肽、蛋白質、抗體或碎片、適體、咪唑、疊氮化物、巰基胺、矽烷、唑啉、環氧乙烷、氧呾、、亞胺、甲苯磺酸酯、金屬、生物素、鏈黴菌卵蛋白、抗生物素蛋白、保護基團、矽氧烷或衍生物、或經取代衍生物或彼等之組合或具有聚疊氮基或聚炔類官能基並適於速配接合組合式化學之基團。
- 如申請專利範圍第23項之樹枝狀聚合物,其中(FF)為巰基、胺基、羧基及羧基酯、唑啉、異硫氰酸酯、異氰酸酯、羥基、環氧基、原酸酯、丙烯酸酯、甲基丙烯酸酯、苯乙烯基或乙烯基苄基系分子團。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(BR)為任何親核性(Nu)、親電子性(E)或其它(O)試劑或可原位自(BR)之前驅體形成,該(BR)可以與(C)、延長鏈(EX)反應,與另一分支小室或分支小室試劑(BR)或末端官能 基(TF)反應而致使適於該式(I)樹枝狀聚合物之下一代G之反應性基團多樣化或擴大,且當(BR)出現在不只一代時,其可以是相同或不同(BR)分子團,且其中(BR)為一未經覆蓋或經部份覆蓋之分支鏈或直鏈、一級或二級聚胺、二乙三胺(DETA)、2-咪唑啶基-1-胺基乙烷(IMAE)、二乙醇胺(DEA)、二苄胺(DBA)、三乙四胺(TETA)、四乙五胺、聚(伸乙亞胺)、甲胺、雙(烯丙基)胺或二烯丙胺(BAA)、羥基乙胺、十八烷基胺、亞胺基二乙酸乙二酯(DEIDA)、聚(亞甲基二胺)、聚胺基烷基鏈芳烴、三(2-胺基乙基)胺(TREN)、三(羥甲基)胺基甲烷(TRIS),直鏈及分支鏈聚(伸乙亞胺)、直鏈及分支鏈聚(醯胺基胺)、雜環系胺、咪唑啉、哌啶(PIPZ)、胺烷基哌、經甲基異丁基保護之1-(2-胺基乙基)哌(PEA)、季戊四醇四縮水甘油醚(PETGE)、羥乙胺基乙胺、(2-羥乙基)乙二胺(HEDA)、巰基烷胺、巰基乙胺,亞胺基二炔類、亞胺基二烯類、經取代之哌、聚乙烯苄基氯之胺基衍生物、三(1,3,5-胺基甲基)苯、季戊四醇、乙二醇、聚乙二醇、聚丙二醇,1,2-二巰基乙烷、聚伸烷基聚硫醇、硫酚及酚、乙炔系聚環氧化物、羥烷基疊氮化物、烷基疊氮化物、三-及四-吖丙啶、三-及四-唑啉、硫醇烷基物、硫醇(FF)樹突結構體、烯丙基物、丙烯酸酯、甲基丙烯酸酯或烯烴系官能性分子團或上述任一種之覆蓋分子團。
- 如申請專利範圍第26項之樹枝狀聚合物,其中(BR)為三 丙烯酸酯、四丙烯酸酯、三環氧化物、四環氧化物、二烯丙胺、二乙醇胺、亞胺基二乙酸二乙酯、雙(2-鹵烷基)胺、三(羥基甲胺)、經保護之二乙三胺(DETA)或可使用,包括原位形成之丙烯酸甲酯。
- 如申請專利範圍第26項之樹枝狀聚合物,其中(BR)係與共反應劑併用以形成核心加成物,然後進一步與第二共反應劑進行反應。
- 如申請專利範圍第21項之樹枝狀聚合物,其中該(BR)為三丙烯酸酯、四丙烯酸酯、三環氧化物、四環氧化物、三疊氮化物、四疊氮化物、二烯丙胺(BAA)、二乙醇胺(DEA)、N-(2-羥乙基)乙二胺(AEEA)、亞胺基雙(甲基膦酸)(IMPA)、亞胺基二乙酸二乙酯(DEIDA)、三(羥甲胺)、季戊四醇四縮水甘油醚(PETGE)、季戊四醇三縮水甘油醚(PETriGE)、季戊四醇三烯丙醚(PETriAE)、(2-羥乙基)乙二胺(HEDA)、經甲基異丁基保護之1-(2-胺基乙基)哌(PEA)、2-甲基-2-咪唑啉(MIA)、3,3-亞胺基二乙腈(IDAN)、三(2-胺基乙基)胺(TREN)、三(羥甲基)胺基甲烷(TRIS)、亞胺基二乙酸二甲酯、經保護之二乙三胺(DETA)(與酮系溶劑)或丙烯酸甲酯,包含於原位生成者。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中(IF)為自可產生內部反應性位置之開環反應所形成之任何活性分子團。
- 如申請專利範圍第30項之樹枝狀聚合物,其中(IF)為羥 基、硫醇、胺、膦、烷基矽烷、矽烷、硼烷、羧基、羧基酯、氯、溴、烯類、炔類、或烷基-或芳基-醯胺。
- 如申請專利範圍第30項之樹枝狀聚合物,其中(IF)為羥基、硫醇、伸烷基酯或胺。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中(EX)為在下一G生長前可增長該樹枝狀聚合物之內部的分子團,該(EX)可以出現在該樹枝狀聚合物之(BR)分子團之前或後或兼在(BR)之前及後,且此第二(EX)可以與該第一(EX)相同或不同,可具有一(IF)分子團,且必需具有至少兩反應性位置。
- 如申請專利範圍第33項之樹枝狀聚合物,其中(EX)為胺基酸,諸如離胺酸,聚(胺基酸),諸如聚離胺酸、寡乙二醇、二乙四胺及高碳胺類似物、經保護為5-員咪唑啶基衍生物之寡伸烷基胺、具有二-或更大異質或均質官能度之脂肪酸、不飽和脂肪族及芳香族二官能性或多官能性分子團、乙醇胺(EA)、嗎啉、二羧酸、N-哌羧酸乙酯(EPC)、2-咪唑啶基-1-胺基乙烷(IMAE)、芳基二硫醇、二巰基烷類、三唑、依康酸二甲酯(DMI)、二疊氮化物、二乙炔、吡咯啶酮、吡咯啶酮酯、胺烷基咪唑啉、咪唑啉、聚(伸烷基咪唑啶)、巰基烷胺、羥基烷胺或異質性不飽和脂肪族及芳香族二官能性或多官能性分子團。
- 如申請專利範圍第33項之樹枝狀聚合物,其中(EX)為二胺基烷、二酚、二硫苯、芳香族聚(羧酸)、巰基胺、巰 基乙醇、烯丙基胺、經甲基異丁基保護之1-(2-胺基乙基)哌(PEA)、哌(PIPZ)、聚哌、1-(2-胺基乙基)哌(AEP)、N-哌羧酸乙酯(EPC)、環系吡咯啶衍生物、二乙醇胺(EDA)、亞胺基二乙酸二乙酯(DEIDA)、或高分支鏈樹枝狀聚合物,諸如聚離胺酸、聚(酯醯胺)、聚(醯胺基胺)、聚(伸乙基亞胺)或聚(伸丙基亞胺)分子團。
- 如申請專利範圍第33項之樹枝狀聚合物,其中(EX)為經甲基異丁基保護之1-(2-胺基乙基)哌(PEA)、衣康酸二甲酯(DMI)、丙烯酸甲酯、N-哌羧酸乙酯(EPC)、1,2,3-三唑、2-咪唑啶基-1-胺基乙烷(IMAE)、哌、胺烷基哌、聚(伸烷基哌)、甲基異丙基亞胺基乙基哌(MIPIEP)、具有二胺之二硫化物分子團、雙(哌基烷基)二硫化物或哌衍生物。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(TF)為任何官能活性分子團或適於進行1,3-二極性加成反應且具足夠活性以進行加成或取代反應或開環反應之分子團、聚合物起始基團或可用以使下一代G增長該樹枝狀分支之任何官能活性分子團,其中一些,但非全部,(TF)分子團可以進行反應以形成下一代G樹枝狀高分子,該等(TF)基團可相同或不同,且當該(TF)分子團為最後之G時,則該(TF)可不具反應性。
- 如申請專利範圍第37項之樹枝狀聚合物,其中(TF)為一級或二級胺基(其可經覆蓋但具有至少一未經覆蓋之胺基)、三級胺基、四級胺基、三烷基銨、雙(羥乙基)胺基、 雙(2-鹵乙基)胺基、N-烷化、N-芳化、N-醯化衍生物;羥基、環氧基、巰基、羧基、羧酯類、烯基、烯丙基、芳基、甲烷基、乙烯基、醯胺基、鹵素、尿素、環氧乙烷基、吖丙啶基、唑啉基、氮代內酯、內醯胺、內酯、咪唑啉基、磺酸基、膦酸基、羥基硼酸基、有機矽烷、四甲基矽烷(TMS)、異氰酸基,異硫氰酸基、α-鹵醯基、或羥基烷基疊氮基哌。
- 如申請專利範圍第38項的樹枝狀聚合物,其中該一級、二級或三級胺基係甲胺基、乙胺基、羥基乙胺基、肼基、苄胺基、葡萄糖胺基、胺基酸、巰基乙胺基、二甲胺基、二乙胺基、或雙(羥乙基)胺基。
- 如申請專利範圍第37項之樹枝狀聚合物,其中(TF)或(M)存在且為聚乙二醇、吡咯啶酮、吡咯啶酮酯、羧基哌啶、哌啶、哌、經取代之哌、胺烷基哌、己醯胺、醛、疊氮化物、氧呾、染料、三(羥甲基)醯胺基甲烷、光色分子團、醯胺基乙基乙醇胺、甲氧羰基吡咯啶酮、琥珀醯胺酸、醯胺基乙醇、胺基酸、經保護之胺基、抗體及斷片、蛋白質、肽、環肽、陽離子類固醇、巨環基團、氮雜冠醚、抗生素/抗細菌劑、防止惡性腫瘤劑、葉酸及類似物、環氧化合物、丙烯酸酯、甲基丙烯酸酯、胺、羧酸酯、陽離子性、陰離子性、中性、芳香族葡萄糖胺或其它胺基糖、生物素、抗生物素蛋白、鏈黴菌卵蛋白、生長因子、激素、適體、1,4,7,10-四氮雜環十二烷-1,4,7,10-四(乙酸)(DOTA)、二乙三胺五乙酸(DTPA)、 金屬螯合物、磺酸萘酯、磺酸萘酯、磺酸芳酯、目標基團、透明質酸、多金屬氧酸酯、有機發色團、多價連接化合物、奈米碳管、富勒烯、奈米複合物、所有金屬奈米顆粒、具有核心及殼之所有變異體的所有半導體奈米顆粒、放射性材料及其螯合類似物、螢光分子、導電性分子、光或電磁能吸收或發射分子、藥物或診斷劑之放射性類似物、矽烷、矽氧烷、倍半矽氧烷、聚(芳基-烷基)聚(碘化物)、量子點、奈米結晶、聚氟化分子、表面活化劑、樹突結構體、分化型樹突結構體、樹枝狀高分子、甲氧基乙氧基乙氧基物、聚醯亞胺、除草劑、聚偶氮化合物、聚磷、聚氟化磺酸酯、雜原子鏈及分支物、脂質、澱粉、單糖、寡核苷酸、複糖、藥物,抗癌劑、乙醯基水楊酸、水楊酸、維生素、輔因子或抗氧化劑。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(TF)及/或(IF)可以與任何載送物質(M)締合,其可以自一個(M)至:就(TF)而言,存在於該表面上之z的最大可能數,或就(IF)而言,存在於該內部中之(IF)的最大空隙體積及q。
- 如申請專利範圍第37項之樹枝狀聚合物,其中部份或全部(TF)可進一步與(BR)或(EX)進行反應以進一步生長該樹枝狀高分子或樹突結構體表面。
- 如申請專利範圍第37項之樹枝狀聚合物,其中(TF)為哌、及其衍生物、烷基哌、胺烷基哌、1,2,3-三唑、2-咪唑啶基-1-胺基乙烷(IMEA)、丙烯酸酯、甲基丙烯 酸酯、丙烯醯胺、羥基、環氧化合物、唑啉、伸烷基亞胺、內酯、氮雜內酯、聚氧化乙烯、胺基乙基亞胺、羧酸酯、烷基、吖丙啶、疊氮化物、乙基亞胺、烷基酯、醇基、烷基硫醇、硫醇、環硫乙烷、嗎啉、胺、肼基、羧基、烯丙基、疊氮基、烯基、炔基、羥烷胺基、經保護之二乙三胺(DETA)、羧烷基、吡咯啶酮(及其酯)或琥珀醯亞胺基酯。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中(FF)可進一步反應以得到:醯胺;酯;烷基-、烯基-、炔基-或芳基-醚,其可選擇性地經一或多種鹵素取代;環醚;卟啉;硫醚;硫酯;二硫化物;順丁烯二醯亞胺;膦;硼烷;羧酸及其酯與鹽;醯肼;醇;醛;丙烯酸酯;環系酸酐;吖丙啶;吡啶;腈;炔類;咪唑;疊氮化物;巰基胺;矽烷;唑啉;環氧乙烷;氧呾;;亞胺;甲苯磺酸酯;吡咯啶酮;環系硫內酯;環硫乙烷;氮呾;內酯;氮雜內酯;巨環系物;螯合劑;異氰酸酯;異硫氰酸酯;寡核苷酸;適體;胺基酸;蛋白質、肽、環肽、抗體及抗體斷片;核苷酸;核苷;金屬;生物素;鏈黴菌卵蛋白;抗生物素蛋白質;覆蓋基團;矽氧烷或衍生物;上述各物之經取代衍生物或彼等之組合;或具有聚疊氮基或聚伸烷基官能性並適於進行速配接合組合或化學作用(click chemistry)之基團。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中該樹枝狀聚合物具有如藉CPK模型、電子顯微術或溶液特性化 作用測定之以下物理形狀:球狀體、桿狀物、無規高分支鏈樹枝狀接枝或核心-殼(甲基)樹枝狀高分子或樹突結構體。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中該(TF)可以使該表面得到正性總電荷。
- 如申請專利範圍第46項之樹枝狀聚合物,其中Nc =4,(TF)=哌,且G=1。
- 如申請專利範圍第46項之樹枝狀聚合物,其中(BR)=三(2-胺基乙基)胺(TREN),Nc =4,且G=2。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中:(C)為季戊四醇三縮水甘油醚(PETriGE)、季戊四醇四疊氮化物(PETAZ)、四羥苯基乙烷縮水甘油醚(TPEGE)或三羥苯基甲烷三縮水甘油醚(TPMTGE);或(BR)為3,3-亞胺基乙腈(IDAN)、亞胺基雙(甲基膦酸)(IMPA)、雙(烯丙基)胺(BAA)、二乙三胺(DETA)、經甲基異丁基保護之1-(2-胺基乙基)哌(PEA)、三(2-安基乙基)胺(TREN)、N-(2-羥乙基)乙二胺(AEEA)或2-甲基-2-咪唑啉(MIA);或(TF)為四甲基矽烷(TMS);或(EX)為三唑。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中(EX)=哌(PIPZ)或其衍生物,或三唑或其衍生物且G=0、1、2、3或4。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中當Nc =3 或4,則(BR)=亞胺基二乙酸二乙酯(DEIDA)、雙(烯丙基)胺(BAA)、二乙醇胺(DEA)、二乙三胺(DETA)、經甲基異丙基保護之1-(2-胺基乙基)哌(PEA)、N-(2-羥乙基)乙二胺(AEEA)、三(羥甲基)胺基甲烷(TRIS)或三(2-胺基乙基)胺(TREN)。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中該核心為脂肪族分子團,其中(C)=季戊四醇四縮水甘油醚(PETGE)、季戊四醇三縮水甘油醚(PETriGE)、季戊四醇三烯丙醚(PETriAE)、三羥甲基丙烷三縮水甘油醚(TMPTGE)、季戊四醇四疊氮化物(PETAZ)、四(環氧基丙基)氰尿酸酯(TEPC)或三(2,3-環氧基丙基)異氰尿酸酯(TGIC)。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中該核心為芳香族分子團,其中(C)=四羥苯基乙烷縮水甘油醚(TPEGE)或三羥苯基甲烷三縮水甘油醚(TPMTGE)。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中該聚合物為以下任一種:(1)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(EX1)=哌(PIPZ);(TF)=NH;G=0.5];(2)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=哌(PIPZ);(TF)=NH;G=0.5];(3)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=哌(PIPZ);(EX2)=丙烯醯氧基甲基;(TF)=四甲基矽烷(TMS);G=0.5]; (4)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=三唑;(BR1)=季戊四醇三縮水甘油醚(PETriGE);(IF2)=OH;(BR2)=二乙醇胺(DEA);(TF)=OH;G=2];(5)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=哌(PIPZ);(IF2)=OH;(BR1)=季戊四醇四縮水甘油醚(PETGE);(IF3)=OH;(EX2)=哌(PIPZ);(TF)=NH;G=1.5];(6)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(TF)=磺酸;G=0.5];(7)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=季戊四醇三縮水甘油醚(PETriGE);(EX1)=三唑;(TF)=環氧化物;G=1];(8)[(C)=季戊四醇四縮水甘油醚(PTETGE);(IF)=OH;(BR)=三唑;(TF)=CO2 Me;G=1.5];(9)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=亞胺基二乙酸二乙酯(DEIDA);(TF)=CO2Et;G=1.5];(10)[(C)=三(2,3-環氧基丙基)異氰尿酸酯(TGIC);(IF1)=OH;(BR1)=雙(烯丙基)胺(BAA);(TF)=(=CH2 );G=1];(11)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=雙(烯丙基)胺(BAA);(TF)=(=CH2 );G=1];(12)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE); (IF1)=OH;(BR1)=二乙三胺(DETA);(EX1)=依康酸二甲酯(DMI);(TF)=CO2 Me;G=1.5];(13)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=三(2-胺基乙基)胺(TREN);(TF)=NH2 ;G=1];(14)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=經甲基異丁基保護之1-(2-胺基乙基)哌(PEA);(TF)=NH2 ;G=1];(15)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=二苄胺(DBA);(TE)=苄基;G=1];(16)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=N-(2-羥乙基)乙二胺(AEEA);(TF)=NH2 及OH;G=1];(17)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=2-甲基-2-咪唑啉(MIA);(TF)=咪唑;G=1];(18)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=二乙三胺(DETA);(BR2)=三(2-胺基乙基)胺(TREN);(EX1)=依康酸二甲酯(DMI);(TF)=NH2 ;G=2];(19)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=二乙三胺(DETA);(BR2)=三(羥甲基)胺基甲烷(TRIS);(EX1)=依康酸二甲酯(DMI);(TF)=OH;G=2];(20)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)= OH;(BR1)=三(2-胺基乙基)胺(TREN);(EX1)=丙烯酸甲酯;(TF)=CO2 Na;G=2.5];(21)[(C)=雙(2-哌基乙基)二硫化物(BPEDS);(IF1)=OH;(BR1)=季戊四醇四縮水甘油醚(PETGE);(EX1)=經甲基異丁基保護之1-(2-胺基乙基)哌(PEA);(TF)=NH;G=1];(22)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=三(羥甲基)胺基甲烷(TRIS);(TF)=OH;G=1];(23)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=亞胺基二乙酸二乙酯(DEIDA);BR(2)=三(2-胺基乙基)胺(TREN);(EX1)=依康酸二甲酯(DMI);(TF)=CO2 Me;G=2.5];(24)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=二乙三胺(DETA);(TF)=NH2 ;G=1];(25)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=亞胺基二乙酸二乙酯(DEIDA);(BR2)=三(2-胺基乙基)胺(TREN);(TF)=NH2 ;G=2];(26)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=三(2-胺基乙基)胺(TREN);(BR2)=三(羥甲基)胺基甲烷(TRIS);(EX1)=丙烯酸甲酯;(TF)=OH;G=3];(27)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF)=OH;(BR)=三(2-胺基乙基)胺(TREN);(EX)=丙烯酸甲酯; (TF)=CO2 Me;G=2.5];(28)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=哌(PIPZ);(IF2)=OH;(BR1)=季戊四醇四縮水甘油醚(PETGE);(IF3)=OH;(BR2)=縮水甘油;(EX2)=哌(PIPZ);(TF)=OH;G=2];(29)[(C)=BPEDS;(IF1)=OH;(BR1)=季戊四醇四縮水甘油基醚(PETGE);(EX1)=經甲基異丁基保護之1-(2-胺基乙基)哌(PEA);(TF)=環氧基;G=1];(30)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=經甲基異丁基保護之1-(2-胺基乙基)哌(PEA);(TF)=NH;G=1.5];(31)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF1)=OH;(BR1)=三(2-胺基乙基)胺(TREN);(TF)=NH2 ;G=1];(32)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=亞胺基二乙酸二乙酯(DEIDA);(TF)=CO2 Et;G=1.5];(33)[(C)=四羥苯基乙烷縮水甘油醚(TPEGE);(IF)=OH;(BR)=三(羥甲基)胺基甲烷(TRIS);(TF)=OH;G=1];(34)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF)=OH;(BR)=季戊四醇四縮水甘油醚(PETGE);(EX)=哌(PIPZ);(TF)=NH;G=0.5,1.5,2.5 or 3.5];(35)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF)=OH;(BR)=雙(烯丙基)胺(BAA);(TF)=烯丙基;G=1];(36)[(C)=三(2,3-環氧基丙基)異氰尿酸酯(TGIC);(IF1) =OH;(EX1)=PIPZ;(TF)=NH;G=0.5];(37)[(C)=四環硫化物(TES);(IF1)=SH;(EX1)=EPC;(TF)=CO2 Et;G=0.5];(38)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=1-(2-胺基乙基)哌(AEP);(TF)=NH2 ;G=0.5];(39)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(TF)=吖丙啶;G=0.5];(40)[(C)=二硫丁酸二甲酯(DMDTB);(EX1)=1-(2-胺基乙基)哌(AEP);(IF1)=OH;(BR1)=季戊四醇四縮水甘油醚(PETGE);(EX2)=N-哌羧酸乙酯(EPC);(TF)=CO2 Et;G=0.5];(41)[(C)=季戊四醇四縮水甘油醚PETGE;(IF)=乙醯基;(EX1)=N-哌羧酸乙酯(EPC);(TF)=CO2 Et;G=0.5];(42)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=哌(PIPZ);(IF2)=OH;(BR1)=PETGE;(IF3)=OH;(EX2)=哌羧酸酯;(TF)=CO2 H;G=1.5];(43)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=二亞胺基胺(DIA);(TF)=NH2 ;G=1];(44)[(C)=雙(4-縮水甘油氧基苯基)甲烷(BGPM);(IF1)=OH;(BR1)=三(羥甲基)胺基甲烷(TRIS);(TF)=OH;G=1]; (45)[(C)=雙(4-縮水甘油氧基苯基)甲烷(BGPM);(IF1)=OH;(BR1)=二乙基亞胺基二乙酸酯(DEIDA);(TF)=CO2 Et;G=1.5];(46)[(C)=雙(4-縮水甘油氧基苯基)甲烷(BGPM);(IF1)=OH;(BR1)=二乙基亞胺基二乙酸酯(DEIDA);(EX1)=乙二胺(EDA);(TF)=NH2 ;G=1];(47)[(C)=N,N'-二縮水甘油基-4-縮水甘油氧基苯胺(DGGA);(IF1)=OH;(EX1)=哌(PIPZ);(TF)=NH;G=1.5];(48)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(EX1)=Et-PIPZ;(BR1)原位=丙烯酸甲酯;(TF)=CO2 Me;G=1.5];(49)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=二乙三胺(DETA);(EX1)=吡咯啶酮;(TF)=CO2 Me;G=1.5];(50)[(C)=四(環氧基丙基)氰尿酸酯(TEPC);(IF1)=OH;(BR1)=二亞胺基胺(DIA);(EX1)=吡咯啶酮;(TF)=CO2 Me;G=1.5];(51)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=乙醯基;(EX1)=哌(PIPZ);(IF2)=乙醯基;(BR1)=三羥甲基丙烷三縮水甘油醚(TMPTGE);(IF3)=乙醯基;(EX2)=N-哌羧酸乙酯(EPC);(TF)=CO2 Et;G=1.5];(52)[(C)=4,4'-亞甲基雙(N,N'-二縮水甘油基苯胺) (MBDGA);(IF1)=OH;(BR1)=三(羥甲基)胺基甲烷(TRIS);(EX1)=依康酸二甲酯(DMI);(TF)=OH &環氧化物;G=1];(53)[(C)=N,N'-二縮水甘油基-4-縮水甘油氧基苯胺(DGGA);(IF1)=OH;(EX1)=哌(PIPZ);(TF)=NH;G=1.5];(54)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=二乙三胺(DETA);(BR2)原位=丙烯酸甲酯;(TF)=CO2 Me;G=2.5];(55)[(C)=4,4'-亞甲基雙(N,N'-二縮水甘油基苯胺)(MBDGA);(IF1)=OH;(BR1)=二乙醇胺(DEA);(TF)=OH;G=2];(56)[(C)=4,4'-亞甲基雙(N,N'-二縮水甘油基苯胺)(MBDGA);(IF1)=OH;(BR1)=二伸乙基亞胺二乙酸酯(DEIDA);(TF)=CO2 Et;G=2.5];(57)[(C)=4,4'-亞甲基雙(N,N'-二縮水甘油基苯胺)(MBDGA);(IF1)=OH;(BR1)=二伸乙基亞胺二乙酸酯(DEIDA);(EX1)=乙二胺(EDA);(TF)=NH2;G=2];(58)[(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=OH;(BR1)=雙(烯丙基)胺(BAA);(BR2)=PAMAM;(IF2)=烯丙基;(TF)=吡咯啶酮;G=2.5];(59)[(C)=(S-Et-NH2 )2 ;(IF1)=NH;(EX1)=AcO2 ;(TF)=CO2 Me;G=0.5]; (60)[(C)=PETGE;(IF1)=OH;(EX1)=PIPZ-CO2 Et;(TF)=CO2 Et;G=0.5];(61)[(C)=TGIC;(IF1)=OH;(EX1)=PIPZ;(TF)=CO2 Et;G=0.5];(62)[(C)=PETGE;(IF1)=OH;(EX1)=AEP;(TF)=NH2 ;G=0.5];(63)[(C)=HMDA;(BR)=TMPTA;(TF)=丙烯酸酯;G=1];(64)[(C)=HMDA;(BR)=TMPTA;(EX)=EA;(TF)=OH;G=1];以及(65)[(C)=HMDA;(BR1)=TMPTA;(EX1)=嗎啉;(TF)=環醚;G=1]。
- 如申請專利範圍第1或2項之樹枝狀聚合物,其中該聚合物具有增強的熱安定性、改良的化學安定性,及/或窄多分散性範圍。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中載送物質(M)係與該樹枝狀聚合物之內部或其表面或兩者締合。
- 如申請專利範圍第56項之樹枝狀聚合物,其中該載送物質(M)係與該樹枝狀聚合物之內部(IF)分子團締合。
- 如申請專利範圍第56項之樹枝狀聚合物,其中該載送物質為藥學活性劑或前藥。
- 一種配方,其包含具有至少一藥學上可接受稀釋劑或載劑之如申請專利範圍第58項之樹枝狀聚合物。
- 如申請專利範圍第56項之樹枝狀聚合物,其中該載送物質為農業活性劑。
- 一種配方,其包含具有至少一農業上可接受稀釋劑或載劑之如申請專利範圍第60項之樹枝狀聚合物。
- 如申請專利範圍第1、2或3項之樹枝狀聚合物,其中(FF)具有x=Nc-1且可形成樹突結構體。
- 如申請專利範圍第56項之式(I)樹枝狀聚合物,其係適於以下任一者:A)適用於能源及電子應用,用於燃料電池、貯能、微波吸收劑、紅外線吸收劑、固態照明、器件之熱管理、發光二極體、顯示器、電子油墨、層間介電質、光阻劑及奈米光阻圖案、奈米微影蝕刻、電晶體、分子電子學、電信裝置、光子學、光電轉化器、照相物質、量子點,及物質之隱密強化;B)適於與溶劑或無水配方作為調色劑組成物;C)適於併用陰離子染料、光致變色染料、熱致變色染料、其它染料、液晶、鹽、抗靜電劑、表面活化劑、抗氧化劑、溶劑或單獨使用;且可併用其它所欲組份以得到可沉積在紙或另一印刷表面上之無沉澱物油墨;以塗覆或滲透合成及天然纖維其適用於布料、布料中之圖案、毛氊,及其它此等項目之許多應用;D)適於作為塗料、填隙料及填料配方而用於紙、乳膠、顏料、聚合物、光纖材料、玻璃、金屬表面、玻璃纖維、陶瓷、橡膠、木材、混凝土、石材、纖維,及布料; E)適於作為供容器、移植模、醫學裝置、導管、植入物、微陣列載玻片、細胞培養盤、電極及感測器使用之塗料;F)適於作為適用於分離法或過濾法或尺寸校準之載體;G)適於作為供以下各物使用之組成物:齒用複合物、光硬化材料、流變改質劑、聚合物黏著劑、聚合物添加劑、電磁輻射吸收劑、抗仿冒介質、孔隙改質劑、消毒劑、抗細菌劑、調味劑、除臭劑、抗澱粉樣變性劑、增加性能、減少收縮,及/或改良黏著性;H)適用於製備電腦記憶體系統、磁貯系統,及電子與光子電晶體;I)適於作為供以下各物使用之載劑:金屬離子、金屬顆粒、磁性及順磁性顆粒、合金、觸媒、可重覆使用之觸媒、金屬細孔發泡體、奈米反應器、半導體顆粒,及量子點;J)適於作為試管內、活體外或活體內應用中之生物標記、分子探針、轉移感染劑或環境分析劑;或K)適於作為個人保健、化妝品或營養藥物載劑或添加劑。
- 如申請專利範圍第58至59項中任一項之式(I)樹枝狀聚合物,其適於作為供以下各物使用之載劑:前藥、小的有機藥物、聚合物藥物、生物巨分子藥物、抗再狹窄劑、心血管劑、血管生長抑素、史塔亭(statin)、抗細菌劑、抗病毒劑、殺微生物劑、胺基酸、肽、蛋白質、寡核苷酸、核苷、其他藥物實體、疫苗、診斷劑、影像劑、 生物標記劑、抗腫瘤劑、眼用藥劑、非類固醇抗發炎劑、抗原、維生素、α -羥基酸、解毒劑,及免疫抑制劑。
- 一種使用一樹枝狀聚合物在製備用於治療動物疾病之藥劑的用途,該樹枝狀聚合物係如申請專利範圍第56項之式(I)樹枝狀聚合物或由其所形成之醫藥可接受性鹽類。
- 一種以含如申請專利範圍第1、2或3項之式(I)樹枝狀聚合物之溶液塗覆固體基片之方法,其包括浸漬、噴淋、旋塗、塗抹或施加該樹枝狀聚合物之溶液至該基片之外表面及已曝光之內表面,自與該溶液接觸之處移除該基片,並使過量溶液蒸發在空氣中或經熱乾燥。
- 如申請專利範圍第66項之方法,其中該溶液含有一溶劑、表面活化劑、乳化劑,及/或清潔劑的混合物以助於該塗覆方法,且該樹枝狀聚合物在該溶液內之重量為自約0.0001重量%至約50重量%。
- 一種藉由電穿孔法或施加一溶液於細胞表面以體外轉染真核細胞之方法,該溶液包含(a)如申請專利範圍第56或59項之式(I)樹枝狀聚合物,其中在濃度為約一微微克至100毫克/毫升之狀態下,(TF)足以具有陽離子樹枝狀表面,及(b)所欲寡核苷酸或聚核酸;並使該等細胞與該溶液接觸足夠之時間以完成轉染。
- 一種體外使用基因槍將基因物質遞送至植物及動物之真核狀態的細胞之方法,該基因槍包含(a)如申請專利範圍第56或59項之式(I)樹枝狀聚合物,其中(TF)足以具 有陽離子樹枝狀表面且可接合Au、Ag、Cu、Mg或Ca顆粒、金溶膠、金原子、含金之複合物或分子,及彼等之蔟集物或混合物以形成聚合物-金屬接合物,其中該接合物之最大尺寸如同(M)或(C),為自約1奈米至約1000奈米;及(b)可形成基因轉移感染顆粒之該所欲基因物質、寡核苷酸或聚核酸;並以可導致該基因轉移感染顆粒滲透並進入該細胞內之合適推動力加速該基因轉移感染顆粒朝向植物或動物細胞移動。
- 一種使用如申請專利範圍第56項之式(I)樹枝狀聚合物在製備動物治療用之藥劑的用途,該藥劑包含一有效量之治療劑及/或診斷劑作為投予藥物,而於一醫藥可接受性之賦形劑、載劑或稀釋劑中。
- 如申請專利第70項之用途,其中該有效量之投予藥物為已知之藥物,且所投予之劑量與先前已知可自該藥物獲得相同藥效之劑量相同或較少。
- 如申請專利範圍第71項之用途,其中該藥物及樹枝狀聚合物係藉以下方式投予:口服、安瓿、靜脈注射、肌內注射、經皮施加、鼻內施加、膓膜內投藥、皮下注射、眼施加、作為適用於外科切開、接近疤形成位置或腫瘤生長或移除位置或接近腫瘤或於腫瘤內之擦拭物、噴劑、紗布或其它裝置。
- 一種聚合物之流變改質法,其包括藉已知方法在聚合物熔體或溶劑內摻合該聚合物(單獨或在溶劑中)與如申請專利範圍第1、2或3項之式(I)樹枝狀聚合物而改質 藉呈熔態、固態、經溶解或乾燥相之該第一聚合物的流變性質,且其中(M),若存在時,係為阻燃劑、染料、UV吸收劑、抗微生物劑、聚合物起始劑、抗靜電劑及/或抗氧化劑,且其中該溶液或乾燥混合物之樹枝狀聚合物重量為自約0.0001重量%至約50重量%。
- 一種化妝品組成物,其包括與一化妝品配方混合的如申請專利範圍第56或59項之式(I)樹枝狀聚合物而作為化妝水、乳劑、調色劑、化妝用粉或溶劑,其中該配方之樹枝狀聚合物的重量為自約0.0001重量%至約50重量%。
- 一種校準基片之方法,其包括製備含有如申請專利範圍第1、2或3項之式(I)樹枝狀聚合物的溶液(約1微微克/毫升至約100毫克/毫升),施加該溶液至奈米基片以作為尺寸比較標準,並藉光學、力或電子顯微術而使該基片顯形以參考相對於該樹枝狀聚合物之該未知基片的大小及/或藉測定何種細孔大小得以讓該樹枝狀聚合物通過該基片或濾器。
- 一種施加消毒劑至表面之方法,該表面係非動物表面,其包括在用於(M)之其它添加劑(選自染料、芳香劑、抗細菌劑、表面活化劑及/或去乳化劑)的存在或不存在下,將如申請專利範圍第1、2或3項之式(I)樹枝狀聚合物以溶液或在溶劑中之形式噴淋、塗抹或施加至該表面上。
- 一種套組,其包含適用於分析中以作為生物標記試劑、 分子探針、轉移感染試劑或環境分析試劑之如申請專利範圍第56項的式(I)樹枝狀聚合物,及個別容器內或個別獲得之此分析所需的任何其它組份,與用法之說明書。
- 如申請專利範圍第1或2項之式(I)樹枝狀聚合物,其中該核心(C)為球形物,且其係4種具有(EX)或(BR)或兼具(EX)及(BR)的球形試劑進行反應,藉此以下數量之試劑可進行反應:
- 如申請專利範圍第1或2項之式(I)樹枝狀聚合物,其中該核心(C)為球形物,且其係與4種具有(EX)或(BR)或兼具(EX)及(BR)之錐形試劑進行反應,藉此以下數量之試劑可進行反應:在以下方程式中: R=核心半徑h=圓錐體(殼試劑)之高度r=圓錐體(殼試劑)基劑之半徑=四面體基劑之內半徑r'=四面體的內半徑=R+h a=四面體之邊長
- 一種製備如申請專利範圍第1項之式(I)樹枝狀聚合物之方法,其包括:A.於自約0°至100℃之溫度下,在溶劑中以一鍋式反應,使(C)與反應性(BR)前驅體(選自亞胺基二乙酸,經一級胺保護之二乙三胺(DETA)、亞胺基二烷基腈、亞胺基二烷基膦酸、亞胺基二烷基鹵、二乙 醇胺、二烷基胺、二烯丙胺、二芳基胺,亞胺基二炔類、或亞胺基伸烷基胺)、或預形成之(BR)試劑[選自三(2-胺基乙基)胺(TREN)、三(羥甲基)胺基甲烷(TRIS)、或乙炔二-或三-環氧基分子團]、或羥基、巰基或胺基(FF)樹突結構體進行反應,直到該反應完成以得到其中m=0且q=1至4000之式(I)樹枝狀聚合物;B.使步驟A所製成之該樹枝狀聚合物進行反應,其係藉在該(TF)上使用正交化學方法而增加額外(BR)分子團以得到更高代之含均/雜組成性(BR)的式(I)樹枝狀聚合物,其中m=0或1至2000且q=1至4000;C.藉酮溶劑保護作用而保護(BR)前驅體或具有二級及/或一級胺之(BR),僅使二級胺位置與反應性(C)或反應性(TF)進行反應或當僅一級胺存在於該預形成之(BR)中,一或多種這些一級胺分子團可經酮溶劑保護,而可以使其它未經保護之一級胺與合適的(C)或(TF)進行反應以得到其中m=0或1至2000且q=1至4000之式(I)樹枝狀聚合物;D.使步驟A所製成之該樹枝狀聚合物進行反應,其藉烷基胺與丙烯酸烷酯進行親核性反應(麥可加成反應)而形成胺基烷基酯鍵合物,繼而使該酯與伸烷基胺或式(I)之(EX)或其它(BR)進行反應以得到其中m=0或1至2000且q=1至4000之式(I)樹枝狀聚合 物;E.使步驟A所製成之該樹枝狀聚合物進行反應,其係藉與依康酸二甲酯(DMI)反應而使具有一級胺(TF)基團之(C)或(BR)轉化成吡咯啶酮酯基;繼而使該酯與一級胺或經局部保護之一級聚胺進行反應以使式(I)之(BR)或TF)分子團產生鍵結,以產生其中m=0或1至2000且q=1至4000之式(I)樹枝狀聚合物;F.使步驟A所製成之該樹枝狀聚合物進行反應,其係藉含有硫醇之預形成(BR)試劑或反應性(BR)前驅體的自由基加成反應而提供具有式(I)之烯丙基系或烯烴系基團之(C)或(BR)以得到其中m=0或1至2000且q=1至4000之式(I)樹枝狀聚合物;G.藉連續或同時加成反應、使含有自1至Nc 個疊氮化物或炔類之(C)與含有自1至Nb -1個疊氮化物或炔類之(BR)進行1,3-偶極環化加成反應,其中該(C)及(BR)之每一(C)或(BR)僅含有疊氮化物或炔類之一且必需兼具有疊氮化物及炔類於其間,且含有該疊氮化物之(C)及(BR)係藉環氧基環與疊氮化物離子之親核性開環反應而製成,繼而使這些反應性基團進行反應以使式(I)之新(BR)或(TF)分子團產生鍵合物以得到其中m=1至2000且q=0或1至4000之式(I)樹枝狀聚合物;及H.作為步驟B至G之一部份,使(EX)進行反應而將(EX) 插入於任一(BR)或(C)之後以得到其中m=1至2000之式(I)樹枝狀聚合物。
- 一種藉丙烯酸酯-胺反應系統而製備如申請專利範圍第1或2項之式(I)樹枝狀聚合物的方法,其包括:A.如下示,使丙烯酸酯官能性核心與胺官能性延長鏈進行反應:(C)+(EX) → (C)(EX)(TF)其中(C)=丙烯酸酯官能性核心;(EX)=胺官能性鏈增加劑;且(TF)=胺;及B.如下示,使(C)(EX)(TF1)之胺官能性伸鏈核心試劑與丙烯酸酯官能性分支小室試劑(BR)進行反應:(C)(EX)(TF1)+(BR) → (C)(EX)(BR)(TF2)其中(C)=三羥甲基丙烷三丙烯酸酯(TMPTA);(EX)=哌(PIPZ);(TF1)=胺;(BR)=三羥甲基丙烷三丙烯酸酯(TMPTA);且(TF2)=丙烯酸酯;且其中就步驟A及B而言:就添加延長鏈(EX)基團至核心而言,(EX)/(C)之莫耳比的定義為延長鏈分子(EX)對該簡單核心、架構核心、超核心或當代結構(亦即Nc )上之反應性官能基的莫耳比,其中當完全覆蓋範圍為所欲,則使用過量(EX);就添加分支小室(BR)至簡單核心、架構核心、超核心或當代結構而言,(BR)/(C)之定義為分支小室分子 (BR)對該簡單核心、架構核心、超核心或當代結構(亦即Nc )上之反應性官能基的莫耳比,其中若完全覆蓋範圍為所欲,則使用過量(BR);且可藉所附加之莫耳比或藉N-SIS而控制分支小室(BR)或延長鏈(EX)對核心、架構核心、超核心或當代產物之添加量。
- 一種藉開環反應系統而製備如申請專利範圍第1或2項之式(I)樹枝狀聚合物的方法,其包括:A.如下示,使環氧基官能性核心與胺官能性延長鏈進行反應:(C)+(EX) → (C)(IF1)(EX)(TF1)其中(C)=環氧基官能性核心;(IF1)=內部羥基(OH);(EX)=哌(PIPZ);(TF1)=胺;及B.如下示,使胺官能性伸鏈核心試劑(C)(IF1)(EX)(TF1)與環氧基官能性分支小室試劑進行反應:(C)(IF1)(EX)(TF1)+(BR) → (C)(IF1)(EX)(IF2)(BR)(TF2)其中(C)=季戊四醇四縮水甘油醚(PETGE);(IF1)=如申請專利範圍第1項之內部官能性分子團;(EX)=如申請專利範圍第1項之延長鏈;(TF1)=胺;(BR)=環氧基官能性分支小室試劑;且(IF2)=如申請專利範圍第1項之內部官能性分子團;(TF2)=胺;且其中就步驟A及B而言:就添加延長鏈(EX)基團至核心而言,(EX)/(C)之 莫耳比的定義為延長鏈分子(EX)對該簡單核心、架構核心、超核心或當代結構(亦即Nc )上之反應性官能基的莫耳比,其中當完全覆蓋範圍為所欲,則使用過量(EX);就添加分支小室(BR)至簡單核心、架構核心、超核心或當代結構而言,(BR)/(C)之定義為分支小室分子(BR)對該簡單核心、架構核心、超核心或當代結構(亦即Nc )上之反應性官能基的莫耳比,其中若完全覆蓋範圍為所欲,則使用過量(BR);且可藉所附加之莫耳比或藉N-SIS而控制分支小室(BR)或延長鏈(EX)對核心、架構核心、超核心或當代產物之添加量。
- 一種製備如申請專利範圍第77項之式(I)樹枝狀聚合物的方法,其中:Nc =1至20;q=1至250;p=1至250;且m=1至250;且若存在超過1種q、p或m,則該(IF)、(BR),及(EX)可相同或不同;且(BR)或(EX)可交替地與另一種分子團出現或相繼地與連續出現之(BR)或(EX)的多種基團出現。
- 一種式(I)樹枝狀聚合物:
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2005/047635 WO2006115547A2 (en) | 2005-04-20 | 2005-12-21 | Dendritic polymers with enhanced amplification and interior functionality |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200728406A TW200728406A (en) | 2007-08-01 |
TWI384032B true TWI384032B (zh) | 2013-02-01 |
Family
ID=38375679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095138387A TWI384032B (zh) | 2005-12-21 | 2006-10-18 | 具有增強的放大率及內部官能度的樹枝狀聚合物 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100954677B1 (zh) |
TW (1) | TWI384032B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9067393B2 (en) | 2012-10-29 | 2015-06-30 | Industrial Technology Research Institute | Method of transferring carbon conductive film |
US10954346B2 (en) | 2018-12-27 | 2021-03-23 | Industrial Technology Research Institute | Resin and ink |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI401215B (zh) * | 2009-11-20 | 2013-07-11 | Nat Univ Kaohsiung | Separation and recovery of metal ions |
KR101722395B1 (ko) | 2014-09-23 | 2017-04-04 | 한국과학기술연구원 | 폴리머캡토계 실세스퀴옥산 및 이를 이용한 기능성 폴리실세스퀴옥산의 제조방법 |
KR20180026302A (ko) * | 2016-09-02 | 2018-03-12 | 장원범 | 전자파 차폐 및 흡수체의 제조방법, 그로부터 제조된 전자파 차폐 및 흡수체, 및 이를 포함하는 전자파 차폐 및 흡수 복합시트 |
KR102498792B1 (ko) * | 2018-05-30 | 2023-02-13 | 주식회사 제우스 | 다기능 리간드를 가지는 양자점 비드, 및 이를 이용한 타겟 항원 검출 방법 및 바이오 진단 장치 |
CN115894942B (zh) * | 2022-11-07 | 2024-01-12 | 同济大学 | 聚己内酯修饰的超支化梳型聚赖氨酸及应用 |
-
2006
- 2006-10-18 TW TW095138387A patent/TWI384032B/zh not_active IP Right Cessation
- 2006-12-20 KR KR1020060131202A patent/KR100954677B1/ko active IP Right Grant
Non-Patent Citations (2)
Title |
---|
Dongmei Xu, "Fast Growing Dendritic Poly(ester-amines) from alternate reaction of EDA and TMPTA", Tetrahedron Letters, January 2005, Vol. 46, No. 14, page 2503 - 2505 * |
Li-Ming TANG, "Structure, Solution Aggregation and UV Curing of Hyperbranched Poly(ester-amine)s with Terminal Acrylate Groups", Polymer Journal, April 2005, Vol. 37, No. 4, page 255 - 261 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9067393B2 (en) | 2012-10-29 | 2015-06-30 | Industrial Technology Research Institute | Method of transferring carbon conductive film |
US10954346B2 (en) | 2018-12-27 | 2021-03-23 | Industrial Technology Research Institute | Resin and ink |
Also Published As
Publication number | Publication date |
---|---|
KR20070066902A (ko) | 2007-06-27 |
TW200728406A (en) | 2007-08-01 |
KR100954677B1 (ko) | 2010-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2598430C (en) | Dendritic polymers with enhanced amplification and interior functionality | |
US7985424B2 (en) | Dendritic polymers with enhanced amplification and interior functionality | |
JP2013231034A (ja) | 強化された拡大性と内部官能基性をもった樹枝状ポリマー | |
TWI384032B (zh) | 具有增強的放大率及內部官能度的樹枝狀聚合物 | |
US5919442A (en) | Hyper comb-branched polymer conjugates | |
EP1503802B1 (en) | Controllably degradable polymeric biomolecule or drug carrier and method of synthesizing said carrier | |
RU2127125C1 (ru) | Биологически активные и/или целевые дендримерные конъюгаты | |
Zhang et al. | Linear polycations by ring-opening polymerization as non-viral gene delivery vectors | |
JP2008545621A5 (zh) | ||
US20090012033A1 (en) | Delivery of Biologically Active Materials Using Core-Shell Tecto(Dendritic Polymers) | |
WO1997006833A9 (en) | Hyper comb-branched polymer conjugates | |
AU2005331023B2 (en) | Dendritic polymers with enhanced amplification and interior functionality | |
IL179510A (en) | Dendritic polymers with improved amplification and internal functionality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |