TWI383509B - A method of stacking solar cells - Google Patents

A method of stacking solar cells Download PDF

Info

Publication number
TWI383509B
TWI383509B TW96100522A TW96100522A TWI383509B TW I383509 B TWI383509 B TW I383509B TW 96100522 A TW96100522 A TW 96100522A TW 96100522 A TW96100522 A TW 96100522A TW I383509 B TWI383509 B TW I383509B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
light
absorbing
wavelength
junction semiconductor
Prior art date
Application number
TW96100522A
Other languages
Chinese (zh)
Other versions
TW200717836A (en
Inventor
Liann Be Chang
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW96100522A priority Critical patent/TWI383509B/en
Publication of TW200717836A publication Critical patent/TW200717836A/en
Application granted granted Critical
Publication of TWI383509B publication Critical patent/TWI383509B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Description

覆晶堆疊太陽能電池之方法Method for flip chip stacking solar cells

本發明係提供一種覆晶堆疊太陽能電池之方法之技術領域,尤指一種製造簡單與效率較高的太陽能電池。The invention provides a technical field of a method for crystallizing stacked solar cells, in particular, a solar cell with simple manufacturing and high efficiency.

按,近年來由於世界各國對於環保的日趨重視,許多國家推出新能源政策,以補助獎勵環保能源的開發及應用,因此太陽能電池的市場近年來快速成長,具相關研究統計,每年至少16%以上,1997年甚至成長了40%,目前太陽能電池的遠景看好,預期未來需求可達1997年需求量的10倍以上,可見全球太陽電能市場成長相當快速。In recent years, due to the increasing emphasis on environmental protection in many countries around the world, many countries have introduced new energy policies to subsidize the development and application of environmentally friendly energy. Therefore, the market for solar cells has grown rapidly in recent years, with relevant research statistics, at least 16% per year. In 1997, it even grew by 40%. At present, the prospect of solar cells is promising. It is expected that the demand in the future will reach 10 times of the demand in 1997. It can be seen that the global solar power market is growing quite fast.

人類發展太陽能電池的最終目標,就是希望能取代目前傳統的能源,太陽的能量是取之不盡用之不竭的,若我們能夠有效的運用此資源,則不僅能解決消耗性能源的問題,連環保問題也可一併獲得解決。The ultimate goal of human development of solar cells is to replace the current traditional energy sources. The energy of the sun is inexhaustible. If we can effectively use this resource, we can not only solve the problem of consumable energy. Even environmental issues can be solved together.

太陽光的光譜可分為長波長(如遠紅外光)、短波長(如紫外光)及中波長(如可見光)三種光譜;而太陽能電池則是吸收太陽光的光能轉換成電能而達到發電之目的。The spectrum of sunlight can be divided into three wavelengths: long wavelength (such as far infrared light), short wavelength (such as ultraviolet light) and medium wavelength (such as visible light); while solar cells convert sunlight into solar energy to generate electricity. The purpose.

目前太陽能電池發展的瓶頸主要有兩項因素:At present, there are two main factors in the bottleneck of solar cell development:

一、效率:First, efficiency:

在光-電轉換過程中,並非所有的入射光譜都能被太陽能電池所吸收,並完全轉換成電流,有一半左右的光譜因能量太小(小於半導體之能隙),對電池的輸出沒有貢 獻。而再另一半的光譜雖然被太陽能電池吸收,但是除了產生電池-電洞對所需的能量之前,又有一半左右的能量已熱的形式釋放掉;所以單一電池的最高效率約在25%左右,目前實驗室所發出來的效率,幾乎可以達到理論值的最高水準,如欲提高效率,勢必要在照光方向上,串聯多個不同種類與不同材料之太陽能電池。In the photo-electric conversion process, not all incident spectra can be absorbed by the solar cell and completely converted into current. About half of the spectrum energy is too small (less than the energy gap of the semiconductor), and there is no contribution to the output of the battery. offer. While the other half of the spectrum is absorbed by the solar cell, about half of the energy is released before the energy required by the battery-hole pair is released; so the maximum efficiency of a single battery is about 25%. At present, the efficiency of the laboratory can reach the highest level of theoretical value. If you want to improve efficiency, it is necessary to connect a plurality of solar cells of different kinds and materials in the direction of illumination.

二、價格Second, the price

在太陽能電池種類繁多,若依材料種類來區分,可分為單晶矽、多晶矽、非晶矽、Ⅲ-V族、Ⅱ-Ⅵ族等,而太陽電池轉換效率與材料的能隙,光吸收係數、及載子傳輸特性有關,許多因素限制了太陽能電池的效能,例如矽系列太陽能電池,先天上就屬於非直接能隙材料(INDIRECT BANDGAP),在將光轉換成電時,卻以熱的方式損耗大多數的能量,因此效率不高。化合物半導體,先天上就屬於直接能隙材料(DIRECT BANDGAP),在將光轉換成電時,大多以產生電子電動對的方式轉換大多數的能量,因此效率較高。但是由於化合物磊晶成本高,製造過程複雜量產不易,因此終端價格普遍偏高,不符合經濟效益。There are many kinds of solar cells, and depending on the type of materials, they can be divided into single crystal germanium, polycrystalline germanium, amorphous germanium, III-V group, II-VI group, etc., while solar cell conversion efficiency and material energy gap, light absorption Coefficients, and carrier transfer characteristics, many factors limit the performance of solar cells, such as 矽 series of solar cells, innately belong to the non-direct energy gap material (INDIRECT BANDGAP), when converting light into electricity, it is hot The way to lose most of the energy, so the efficiency is not high. Compound semiconductors, innately belong to the direct energy gap material (DIRECT BANDGAP), convert most of the energy in the way of generating an electronic electric pair when converting light into electricity, so the efficiency is high. However, due to the high cost of compound epitaxy, the complex mass production of the manufacturing process is not easy, so the terminal price is generally high and does not meet economic benefits.

現今的太陽能電池包括有矽太陽能電池,其係於矽中摻入擁有5個價電子的原子,例如磷原子,而形成N型半導體;同樣地,在矽中摻入3價的原子,例如硼原子,形成P型半導體;當P型及N型半導體互相接觸時,N型半導體內的電子會湧入P型半導體中,以填補其內的電洞;在P-N接合面附近,因電子-電洞的結合形成一個載 子空乏區,而P型及N型半導體中也因而分別帶有負、正電荷,因此形成一個內建電場。Today's solar cells include tantalum solar cells that incorporate an atom having five valence electrons, such as a phosphorus atom, to form an N-type semiconductor in the crucible; likewise, doping a trivalent atom, such as boron, in the crucible Atom forms a P-type semiconductor; when P-type and N-type semiconductors are in contact with each other, electrons in the N-type semiconductor will flood into the P-type semiconductor to fill the holes therein; near the PN junction, due to electron-electricity The combination of holes forms a load Sub-depletion regions, and thus P-type and N-type semiconductors, respectively, have negative and positive charges, thus forming a built-in electric field.

當太陽光照射到這P-N結構時,P型和N型半導體因吸收太陽光而產生電子-電洞對;由於空乏區所提供的內建電場,可以讓空乏區內所產生的電子-電洞對在半導體內流動,再經由電極把電流引出,即形成一太陽能電池。When sunlight illuminates the PN structure, P-type and N-type semiconductors generate electron-hole pairs due to absorption of sunlight; due to the built-in electric field provided by the depletion zone, electron-holes generated in the depletion zone can be generated. A solar cell is formed by flowing in a semiconductor and then drawing current through an electrode.

然而,由於矽太陽能電池僅能吸收一部分太陽光之波長,吸收波長的效應僅15-17%。However, since the tantalum solar cell can only absorb a part of the wavelength of sunlight, the effect of absorbing the wavelength is only 15-17%.

因此,便有了多接面化合物太陽能電池的產生,其係於基板上形成化合物半導體,來吸收太陽光光譜,由於直接能隙關係,效率較高,但吸收波長的效應亦僅達25%左右;其中請參閱第四A圖至第四C圖所示;如第四A圖所示,該太陽能電池係包括有一矽、鍺或矽/鍺之基板(60),該基板(60)上成長可吸收長波長(如紅外線光)之P-N接合半導體層(61),例如矽(Si)/矽鍺(SiGe)。Therefore, there is a multi-junction compound solar cell, which is formed on a substrate to form a compound semiconductor to absorb the solar spectrum. Due to the direct energy gap relationship, the efficiency is high, but the absorption wavelength effect is only about 25%. Referring to FIG. 4A to FIG. 4C; as shown in FIG. 4A, the solar cell system includes a substrate (60) having a 矽, 锗 or 矽/锗, and the substrate (60) is grown. A PN junction semiconductor layer (61) capable of absorbing long wavelengths (such as infrared light), such as germanium (Si) / germanium (SiGe).

如第四B圖所示,該太陽能電池係包括有一砷化鎵或砷、磷化鎵之基板(70),該基板(70)上成長可吸收中波長(如可見光)之P-N接合半導體層(71),例如砷化鎵(GaAs)/砷化鋁鎵(AlGaAs)。As shown in FIG. 4B, the solar cell system includes a substrate (70) having gallium arsenide or arsenic or gallium phosphide, and the substrate (70) is grown with a PN junction semiconductor layer capable of absorbing intermediate wavelengths (such as visible light) ( 71), such as gallium arsenide (GaAs) / aluminum gallium arsenide (AlGaAs).

如第四C圖所示,該太陽能電池係包括有一Al2 O3 藍寶石、碳化矽或ZnO之基板(80),該基板(80)上成長可吸收短波長(如紫外線光)之P-N接合半導體層(8 1),例如氮化鎵(GaN)/氮化鋁鎵(AlGaN)。As shown in FIG. 4C, the solar cell system includes a substrate (80) having Al 2 O 3 sapphire, tantalum carbide or ZnO, and the substrate (80) is grown with a PN junction semiconductor capable of absorbing short wavelengths (such as ultraviolet light). Layer (8 1), such as gallium nitride (GaN) / aluminum gallium nitride (AlGaN).

然而,由於上述之化合物太陽能電池,僅能分別吸收長波長之光能(如第四A圖所示)、吸收中波長之光能(如第四B圖所示),或吸收短波長之光能(如第四C圖所示)。However, due to the above-mentioned compound solar cell, it is only possible to separately absorb long-wavelength light energy (as shown in FIG. 4A), absorb medium-wavelength light energy (as shown in FIG. 4B), or absorb short-wavelength light. Can (as shown in Figure C).

因此便有了多重接合面太陽能電池(tandem cell)的產生,其係將不同能帶間隙的材料磊晶生長於電池中;如第五A圖所示,該太陽能電池係包括有一矽、鍺或矽/鍺基板(60),基板(60)上堆疊有一可吸收長波長之P-N接合半導體層(61),例如矽(Si)/矽鍺(SiGe),而可吸收長波長之光線,再於上成長一導電穿璲層(10),該導電穿璲層(10)上再堆疊一可吸收中波長之P-N接合半導體層(71),例如砷化鎵(GaAs),再於上成長一導電穿璲層(10),該導電穿璲層(10)上再堆疊一可吸收中波長之P-N接合半導體層(72),例如砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)。Therefore, there is a multi-joined tandem cell which is epitaxially grown in a battery with different energy gaps; as shown in FIG. 5A, the solar cell includes a crucible, a crucible or The 矽/锗 substrate (60) is stacked on the substrate (60) with a PN junction semiconductor layer (61) capable of absorbing long wavelengths, such as 矽(Si)/矽锗(SiGe), which can absorb long wavelength light, and then A conductive via layer (10) is grown thereon, and the conductive via layer (10) is further stacked with a PN junction semiconductor layer (71) capable of absorbing a medium wavelength, such as gallium arsenide (GaAs), and then grown to be electrically conductive. A pass-through layer (10) is further disposed on the conductive via layer (10) with a PN-bonded semiconductor layer (72) capable of absorbing a medium wavelength, such as aluminum gallium arsenide (AlGaAs) or indium gallium phosphide (InGaP).

同樣如第五B圖所示,該太陽能電池係包括有一砷化鎵或砷、磷化鎵之基板(70),基板(70)上堆疊有一可吸收中波長之P-N接合半導體層(71),例如砷化鎵(GaAs),再於上成長一導電穿璲層(10),該導電穿璲層(10)上再堆疊一可吸收中波長之P-N接合半導體層(72),例如砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)。Similarly, as shown in FIG. 5B, the solar cell system includes a substrate (70) of gallium arsenide or arsenic or gallium phosphide, and a PN junction semiconductor layer (71) capable of absorbing a medium wavelength is stacked on the substrate (70). For example, gallium arsenide (GaAs) is further grown on a conductive via layer (10), and the conductive via layer (10) is further stacked with a PN junction semiconductor layer (72) capable of absorbing a medium wavelength, such as aluminum arsenide. Gallium (AlGaAs), indium gallium phosphide (InGaP).

然而,由於上述半導體,矽(Si)/矽鍺(SiGe)、氮化鎵(GaN)/氮化鋁鎵(AlGaN)、砷化鎵(GaAs)/砷化鋁鎵(AlGaAs)等系列材料大不相同,因此半導體磊晶堆疊 成長時,容易產生交互污染,且晶格的匹配也不同;造成生產良率之下降與效率之低下等問題。However, due to the above semiconductors, bismuth (Si) / germanium (SiGe), gallium nitride (GaN) / aluminum gallium nitride (AlGaN), gallium arsenide (GaAs) / aluminum gallium arsenide (AlGaAs) and other materials are large. Not the same, so semiconductor epitaxial stacking When growing up, it is easy to produce cross-contamination, and the lattice matching is also different; causing problems such as a decline in production yield and low efficiency.

緣此,本發明人針對上述習知太陽能電池所存在之問題點,藉由多年從事相關領域之研究與製造開發,經詳加設計與審慎評估後,終於創造出一種可改進上述缺點,且更具理想實用性之覆晶堆疊太陽能電池之方法。Accordingly, the present inventors have solved the problems of the above-mentioned conventional solar cells, and after years of research and manufacturing development in related fields, after detailed design and careful evaluation, finally created a kind of improvement of the above disadvantages, and more A method for flip chip stacked solar cells with ideal utility.

習知多接面太陽能電池,需把 不同材料層直接磊晶生長來逮住所有能量的光子,不過會涉及晶體格子差異太大,張力會損及結晶體,因此目前最具多效能的多重接合面電池僅有兩層或三層,且可靠度低下。Conventional multi-junction solar cells, need to put Different material layers directly epitaxially grow to capture all energy photons, but the crystal lattice difference is too large, and the tension will damage the crystal. Therefore, the most multi-functional multi-junction battery is only two or three layers, and Low reliability.

本發明係提供一種覆晶堆疊太 陽能電池之方法,其步驟包括:步驟一(S1),係成長數平板型P-N接合半導體層,並使各P-N接合半導體層可分別吸收各種波長光線之材料;步驟二(S2),各平板型P-N接合半導體層為不同系列材料時,可於各P-N接合半導體層間可成長一穿隧導電層,藉以增加各P-N接合半導體層間之導電性;步驟三(S3),利用覆晶技術堆疊步驟一(S1)之各P-N接合半導體層,並使各P-N接合半導體層可由長波長至短波長依序堆疊。The invention provides a flip chip stack too The method of the cation battery includes the steps of: (1), growing a plurality of flat-plate type PN junction semiconductor layers, and allowing each PN junction semiconductor layer to respectively absorb materials of various wavelengths of light; and step 2 (S2), each plate When the PN junction semiconductor layer is a different series of materials, a tunneling conductive layer can be grown between the PN junction semiconductor layers to increase the conductivity between the PN junction semiconductor layers; Step 3 (S3), using the flip chip technology stacking step 1 Each of the PNs of (S1) is bonded to the semiconductor layer, and each of the PN junction semiconductor layers may be sequentially stacked from a long wavelength to a short wavelength.

藉此,本發明利用覆晶技術堆疊太陽能電池,可增加 太陽能電池之電性效率,使電池匹配容易,改良習知電池不同匹配較為困難之缺點。Thereby, the present invention uses the flip chip technology to stack solar cells, which can be increased. The electrical efficiency of the solar cell makes the battery easy to match, and the disadvantages of the conventional battery being difficult to match are improved.

提供一種覆晶堆疊太陽能電池 之方法,由於覆晶技術係利用凸塊接合方便,藉以達到製造簡單與成本較低的太陽能電池,改良習知電池匹配較為困難之缺點,且由於覆晶技術係利用凸塊接合,在熱循環測試中有較高之良率。Providing a flip chip stacked solar cell The method of flip chip bonding is convenient for bump bonding, thereby achieving solar cells with simple manufacturing and low cost, and improving the difficulty of matching conventional batteries, and since the flip chip technology utilizes bump bonding, in thermal cycling. There is a higher yield in the test.

有關本發明所採用之技術、手段及其功效,茲舉一較佳實施例並配合圖式詳細說明於後,相信本發明上述之目的、構造及特徵,當可由之得一深入而具體的瞭解。The above-mentioned objects, structures and features of the present invention will be described in detail with reference to the preferred embodiments of the present invention. .

首先,請參閱第一圖所示,本發明一種覆晶堆疊太陽能電池之方法,其主要係用覆晶技術在覆晶基板上,堆疊太陽能電池,其步驟包括:步驟一(S1),係成長數平板型P-N接合半導體層,並使各P-N接合半導體層可分別各種波長光線之材料;步驟二(S2),各平板型P-N接合半導體層為不同系列材料時,可於各P-N接合半導體層間可成長一穿隧導電層,藉以增加各P-N接合半導體層間之導電性;步驟三(S3),利用覆晶技術堆疊步驟一(S1)之各P-N接合半導體層,並使各P-N接合半導體層可由長波長至短波長依序堆疊。First, referring to the first figure, a method for flip-chip stacked solar cells according to the present invention mainly uses flip chip technology to stack solar cells on a flip chip substrate, and the steps thereof include: step one (S1), growth The plurality of flat-plate type PN-bonded semiconductor layers, and each of the PN-bonded semiconductor layers can respectively be made of materials of various wavelengths of light; in step 2 (S2), when each of the flat-plate type PN-bonded semiconductor layers is a different series of materials, the PN-bonded semiconductor layers can be interposed between the layers. Growing a tunneling conductive layer to increase the conductivity between the PN junction semiconductor layers; in step 3 (S3), stacking the PN junction semiconductor layers of step one (S1) by flip chip technology, and making each PN junction semiconductor layer long Wavelength to short wavelength are sequentially stacked.

藉由上述之設計,本發明提供第二A圖至第二D圖所示,係本發明之各實施例圖; 如第二A圖所示,其係包括:成長一平板型可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61)以及其矽、鍺或矽/鍺之基板(60);成長一平板型可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72)以及其砷化鎵或砷、磷化鎵之基板(70);利用覆晶技術在可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61)上堆疊可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72),其中該可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72)係位於砷化鎵或砷、磷化鎵之基板(70)上;由於可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61),及可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72)為不同系列材料,因此可於兩平板型P-N接合半導體層間成長一凸塊(20),利用覆晶的形式將兩種不同系列材料的P-N接合半導體層接合。With the above design, the present invention provides a second A diagram to a second D diagram, which are diagrams of various embodiments of the present invention; As shown in FIG. 2A, the method includes: growing a flat type of absorbing long-wavelength light (such as infrared light), 锗PN bonding semiconductor layer (61), and a substrate of 矽, 锗 or 矽/锗 (60) a flat plate type arsenic, gallium, phosphorus PN junction semiconductor layer (71), (72) and a gallium arsenide or arsenide or gallium phosphide substrate (70) capable of absorbing medium-wavelength light (such as visible light); The flip chip technology stacks an arsenic, gallium, phosphorus PN junction semiconductor layer (71) capable of absorbing medium-wavelength light (such as visible light) on a 锗 PN junction semiconductor layer (61) capable of absorbing long-wavelength light (such as infrared light), (72), wherein the arsenic, gallium, and phosphorus PN junction semiconductor layers (71) and (72) capable of absorbing medium-wavelength light (such as visible light) are on a substrate (70) of gallium arsenide or arsenic or gallium phosphide; Because it can absorb long-wavelength light (such as infrared light), 锗 PN junction semiconductor layer (61), and arsenic, gallium, phosphorus PN junction semiconductor layer (71), (72) that can absorb medium-wavelength light (such as visible light) For different series of materials, a bump (20) can be grown between the two flat-type PN junction semiconductor layers, and two different series can be used in the form of flip chip. The P-N bonding semiconductor layer of the material is bonded.

另外,如第二B圖所示,其係包括:成長一平板型可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61)以及其矽、鍺或矽/鍺之基板(60);成長一平板型可吸收短波長光線(如紫外線光)之含 氮P-N接合半導體層(80)以及其Al2 O3 藍寶石、碳化矽或ZnO之透明基板(81);利用覆晶技術在可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61)上堆疊可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80),其中該Al2 O3 藍寶石、碳化矽或ZnO之透明基板(81)係位於可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80)上;由於可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61),及可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80)為不同系列材料,因此可於兩P-N接合半導體層間成長一凸塊(20),利用覆晶的形式將兩種不同系列材料的P-N接合半導體層接合,且此實施例不需於兩P-N接合半導體層間成長穿隧導電層。In addition, as shown in FIG. 2B, the method includes: growing a flat type absorbing 长 long-wavelength light (such as infrared light), 锗PN bonding semiconductor layer (61), and a substrate of 矽, 锗 or 矽/锗(60); growing a flat type nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light) and a transparent substrate (81) of Al 2 O 3 sapphire, tantalum carbide or ZnO; using flip chip The technique stacks a nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light) on a 锗 PN junction semiconductor layer (61) capable of absorbing long-wavelength light (such as infrared light), wherein the Al 2 The transparent substrate (81) of O 3 sapphire, tantalum carbide or ZnO is located on the nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light); since it can absorb long-wavelength light (such as infrared light) The 矽, 锗 PN junction semiconductor layer (61), and the nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light) are different series materials, so that a bump can be grown between the two PN junction semiconductor layers ( 20), using a flip chip form to connect PN junction semiconductors of two different series of materials In this embodiment, it is not necessary to grow the tunneling conductive layer between the two PN junction semiconductor layers.

另外,如第二C圖所示,其係包括:成長一平板型可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72)以及其砷化鎵或砷、磷化鎵之基板(70);成長一平板型可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80)以及其Al2 O3 藍寶石、碳化矽或ZnO之透明基板(81);利用覆晶技術在可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72)上堆疊可吸收短波長光線(如紫外線光)之P-N接合半導體層(8 0),其中該Al2 O3 藍寶石、碳化矽或ZnO之透明基板(81)係位於可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80)上;由於可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72),及可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80)為不同系列材料,因此可於兩P-N接合半導體層間成長一凸塊(20),利用覆晶的形式將兩種不同系列材料的P-N接合半導體層接合。In addition, as shown in FIG. 2C, the method includes: growing a flat type of arsenic, gallium, phosphorus PN junction semiconductor layer (71), (72) and gallium arsenide or the like to absorb medium wavelength light (such as visible light) a substrate of arsenic or gallium phosphide (70); a flat-type nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light) and a transparent substrate of Al 2 O 3 sapphire, tantalum carbide or ZnO (81); using a flip chip technique to stack PN junctions capable of absorbing short-wavelength light (such as ultraviolet light) on arsenic, gallium, and phosphorus PN junction semiconductor layers (71), (72) capable of absorbing medium-wavelength light (such as visible light). a semiconductor layer (80), wherein the transparent substrate (81) of Al 2 O 3 sapphire, tantalum carbide or ZnO is located on the nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light); Arsenic, gallium, phosphorus PN junction semiconductor layers (71), (72) capable of absorbing medium-wavelength light (such as visible light), and nitrogen-containing PN junction semiconductor layers (80) capable of absorbing short-wavelength light (such as ultraviolet light) are different A series of materials, so that a bump (20) can be grown between the two PN junction semiconductor layers, and two different systems can be used in the form of flip chip. PN junction semiconductor material layer is bonded.

又如第二D圖所示,其係包括:一矽、鍺或矽/鍺基板(60),基板(60)上成長有一平板型可吸收長波長之P-N接合半導體層(61),例如矽(Si)/矽鍺(SiGe),而可吸收長波長之光線,再於上成長一導電穿璲層(10),該導電穿璲層(10)上再堆疊一可吸收中波長之P-N接合半導體層(71),例如砷化鎵(GaAs),再於上成長一導電穿璲層(10),該導電穿璲層(10)上再堆疊一可吸收中波長之P-N接合半導體層(72),例如砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)。Further, as shown in FIG. 2D, the method includes: a germanium, germanium or germanium/tellurium substrate (60) having a flat type PN junction semiconductor layer (61) capable of absorbing long wavelengths, such as germanium. (Si)/矽锗(SiGe), which absorbs long-wavelength light, and then grows a conductive via layer (10), and the conductive via layer (10) is further stacked with an absorbing medium wavelength PN junction. A semiconductor layer (71), such as gallium arsenide (GaAs), is further grown on a conductive via layer (10), and the conductive via layer (10) is further stacked with a PN junction semiconductor layer capable of absorbing intermediate wavelengths (72). For example, aluminum gallium arsenide (AlGaAs) or indium gallium phosphide (InGaP).

另外,成長一平板型可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80)以及其Al2 O3 藍寶石、碳化矽或ZnO之透明基板(81);利用覆晶技術將可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80),堆疊於可吸收中波長之P-N接合半導體層(72)上; 由於可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80),及可吸收中波長之P-N接合半導體層(72)為不同系列材料,因此可於兩P-N接合半導體層間成長一凸塊(20),利用覆晶的形式將兩種不同系列材料的P-N接合半導體層接合。In addition, a flat-type nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light) and a transparent substrate (81) of Al 2 O 3 sapphire, tantalum carbide or ZnO are grown; A nitrogen-containing PN junction semiconductor layer (80) capable of absorbing short-wavelength light (e.g., ultraviolet light), stacked on a PN junction semiconductor layer (72) capable of absorbing medium wavelengths; capable of absorbing short-wavelength light (e.g., ultraviolet light) The nitrogen PN junction semiconductor layer (80) and the absorbing junction medium PN junction semiconductor layer (72) are of different series materials, so that a bump (20) can be grown between the two PN junction semiconductor layers, and the two layers can be used in the form of flip chip. A PN junction semiconductor layer of different series of materials is bonded.

另外,本發明再提供一最佳實施例中(如第三圖所示),其係包括:成長一平板型可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61),例如矽(si)/矽鍺(SiGe);成長一平板型可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72),例如砷化鎵(GaAs)/砷化鋁鎵(AlGaAs);及,一平板型可吸收短波長光線(如紫外線光)之P-N接合半導體層(80),例如氮化鎵(GaN)/氮化鋁鎵(AlGaN);利用覆晶技術在可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61)上依序堆疊、可吸收中波長光線(如可見光)之P-N接合半導體層(71)、(72)及,可吸收短波長光線(如紫外線光)之P-N接合半導體層(80);由於可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61)、可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71)、(72)及,可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80) 為不同系列材料,因此可於兩P-N接合半導體層間成長一凸塊(20),利用覆晶的形式將兩種不同系列材料的P-N接合半導體層接合。In addition, the present invention further provides a preferred embodiment (as shown in the third figure), which comprises: growing a flat type of absorbing long wavelength light (such as infrared light), and 锗PN bonding semiconductor layer (61) For example, bismuth (si)/germanium (SiGe); growing a flat-plate arsenic, gallium, phosphorus PN junction semiconductor layer (71), (72) capable of absorbing medium-wavelength light (such as visible light), such as gallium arsenide (GaAs) / aluminum gallium arsenide (AlGaAs); and, a flat type PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light), such as gallium nitride (GaN) / aluminum gallium nitride (AlGaN); A PN junction semiconductor layer (71) capable of absorbing a long-wavelength light (such as infrared light), a 锗PN junction semiconductor layer (61), and a medium-wavelength light (such as visible light) by a flip chip technique (71), 72) and, a PN junction semiconductor layer (80) capable of absorbing short-wavelength light (such as ultraviolet light); 可 接合 junction semiconductor layer (61), absorbable medium wavelength due to absorption of long-wavelength light (such as infrared light) Light, such as visible light, arsenic, gallium, phosphorus PN junction semiconductor layers (71), (72) and nitrogen-absorbing short-wavelength light (such as ultraviolet light) P-N bonded semiconductor layer (80) For different series of materials, a bump (20) can be grown between the two P-N bonded semiconductor layers, and the P-N bonded semiconductor layers of two different series of materials can be bonded by flip chip.

由上述第二A圖至第二D圖及第三圖所示,由於覆晶技術係利用凸塊(20)接合晶片,相較於習知太陽能電池利用銲線的方式於平面上串接,於垂直方向較方便接合晶片且導電亦較容易,因此,可吸收長波長(如紅外線)之材料、中波長(如可見光)之材料上及可吸收短波長(如紫外線)光之材料,電性較佳(效率較佳),電池配對較為容易,並讓本發明之製造簡單,及成本較低。As shown in the above second A to second D and third figures, since the flip chip technique uses the bumps (20) to bond the wafers, the conventional solar cells are connected in series on the plane by means of bonding wires. It is convenient to bond the wafer in the vertical direction and is easy to conduct. Therefore, it can absorb materials of long wavelength (such as infrared), medium wavelength (such as visible light), and materials that can absorb short wavelength (such as ultraviolet light), electrical properties. Preferably (better efficiency), battery pairing is easier, and the invention is simple to manufacture and less costly.

另外,本發明可在太陽能電池上裝設一透鏡(圖中未視),藉以使該透鏡可集中光束,使太陽光更容易吸收,而讓透鏡底下之基板面積可縮小,而使本發明之太陽能電池可降低成本。In addition, the present invention can install a lens (not shown in the figure) on the solar cell, so that the lens can concentrate the light beam, so that the sunlight can be absorbed more easily, and the substrate area under the lens can be reduced, so that the invention can be Solar cells can reduce costs.

歸納上述所說,本發明同時具有上述眾多效能與實用價值,並可有效提升整體的經濟效益,因此本發明確實為一創意極佳的發明,且在相同技術領域中未見相同或近似之產品公開使用,應已符合發明專利之要件,乃依法提出申請,並請賜予本發明專利。In summary, the present invention has the above-mentioned numerous performances and practical values, and can effectively improve the overall economic benefit, so the present invention is indeed an innovative invention, and the same or similar products are not seen in the same technical field. The public use shall have met the requirements of the invention patent, and the application shall be made according to law, and the invention patent shall be given.

(S1)‧‧‧步驟一(S1)‧‧‧Step one

(S2)‧‧‧步驟二(S2)‧‧‧Step 2

(S3)‧‧‧步驟三(S3) ‧ ‧ Step 3

(10)‧‧‧穿隧導電層(10) ‧ ‧ tunneling conductive layer

(20)‧‧‧凸塊(20)‧‧‧Bumps

(60)‧‧‧矽、鍺或矽/鍺之基板(60) ‧ ‧ 矽, 锗 or 矽 / 锗 substrate

(61)‧‧‧平板型可吸收長波長光線(如紅外線光)之矽、鍺P-N接合半導體層(61) ‧‧‧Plate type can absorb long-wavelength light (such as infrared light), 锗P-N bonded semiconductor layer

(70)‧‧‧砷化鎵或砷、磷化鎵之基板(70) ‧‧‧ Substrate of gallium arsenide or arsenic or gallium phosphide

(71)、(72)‧‧‧平板型可吸收中波長光線(如可見光)之砷、鎵、磷P-N接合半導體層(71), (72) ‧‧‧ flat-type arsenic, gallium, phosphorus P-N bonded semiconductor layers capable of absorbing medium-wavelength light (such as visible light)

(80)‧‧‧平板型可吸收短波長光線(如紫外線光)之含氮P-N接合半導體層(80) ‧‧‧Plate-type nitrogen-containing P-N bonded semiconductor layer capable of absorbing short-wavelength light (such as ultraviolet light)

(81)‧‧‧Al2 O3 藍寶石、碳化矽或ZnO之透明基板(81) ‧‧‧Al 2 O 3 sapphire, tantalum carbide or ZnO transparent substrate

第一圖係本發明方法之流程圖。The first figure is a flow chart of the method of the invention.

第二A圖至第二D圖係本發明之實施例示意圖。2A through 2D are schematic views of embodiments of the present invention.

第三圖係本創作最佳實施例之示意圖。The third figure is a schematic diagram of a preferred embodiment of the present creation.

第四A圖至第四C圖係習用之實施例示意圖。4A to 4C are schematic views of an embodiment of the conventional use.

第五A圖至第五B圖係習用之另一實施例示意圖。5A to 5B are schematic views of another embodiment of the conventional use.

(S1)‧‧‧步驟一(S1)‧‧‧Step one

(S2)‧‧‧步驟二(S2)‧‧‧Step 2

(S3)‧‧‧步驟三(S3) ‧ ‧ Step 3

Claims (1)

一種覆晶堆疊太陽能電池之方法,其係包括:成長一可吸收波長較長光線含矽鍺或是砷磷之平板型P-N接合半導體層;成長一可吸收波長較短光線含砷磷或是含氮之平板型P-N接合半導體層;個別成長含矽鍺或是含砷磷P-N接合半導體層之際,可成長一穿隧導電層,藉以增加導電性;最後,在可吸收波長較長光線之含矽鍺或是含砷磷之P-N接合半導體層上方,至少堆疊一可吸收波長較短光線之砷磷或含氮之平板型P-N接合半導體層,且不需於兩P-N接合半導體層間成長穿隧導電層。 A method for flip-chip stacking a solar cell, comprising: growing a flat-plate type PN junction semiconductor layer capable of absorbing light having a long wavelength of light or arsenic and phosphorus; growing a light having a shorter wavelength and containing arsenic and phosphorus or containing a flat-plate type PN-bonded semiconductor layer of nitrogen; when growing a germanium-containing or arsenic-phosphorus-containing PN-bonded semiconductor layer, a tunneling conductive layer can be grown to increase conductivity; and finally, it can absorb light having a longer wavelength.矽锗 or a PN-bonded semiconductor layer containing arsenic-phosphorus, at least one arsenic-phosphorus or nitrogen-containing flat-type PN junction semiconductor layer capable of absorbing a shorter wavelength of light, and no need to grow tunneling between the two PN junction semiconductor layers Floor.
TW96100522A 2007-01-05 2007-01-05 A method of stacking solar cells TWI383509B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96100522A TWI383509B (en) 2007-01-05 2007-01-05 A method of stacking solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96100522A TWI383509B (en) 2007-01-05 2007-01-05 A method of stacking solar cells

Publications (2)

Publication Number Publication Date
TW200717836A TW200717836A (en) 2007-05-01
TWI383509B true TWI383509B (en) 2013-01-21

Family

ID=50023236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96100522A TWI383509B (en) 2007-01-05 2007-01-05 A method of stacking solar cells

Country Status (1)

Country Link
TW (1) TWI383509B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI234292B (en) * 2004-03-12 2005-06-11 Kyosemi Corp The product of layer type solar cell
TWI236744B (en) * 2004-06-25 2005-07-21 Advanced Semiconductor Eng Method for manufacturing stacked multi-chip package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI234292B (en) * 2004-03-12 2005-06-11 Kyosemi Corp The product of layer type solar cell
TWI236744B (en) * 2004-06-25 2005-07-21 Advanced Semiconductor Eng Method for manufacturing stacked multi-chip package

Also Published As

Publication number Publication date
TW200717836A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Multi-junction solar cells paving the way for super high-efficiency
US9935217B1 (en) High efficiency photovoltaic cells and manufacturing thereof
US9293615B2 (en) Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
CN106206780B (en) Solar battery structure based on nano wire
US9905714B2 (en) High efficiency photovoltaic cells
US10014421B2 (en) High efficiency photovoltaic cells with self concentrating effect
US8829337B1 (en) Photovoltaic cells based on nano or micro-scale structures
US20050081910A1 (en) High efficiency tandem solar cells on silicon substrates using ultra thin germanium buffer layers
JP5479574B2 (en) Multijunction photovoltaic cell with nanowires
US8624107B2 (en) Photovoltaic cells based on nanoscale structures
US20140209149A1 (en) Superstrate sub-cell voltage-matched multijunction solar cells
CN100573923C (en) Silicon base efficient multi-node solar battery and preparation method thereof
US10811551B2 (en) Tandem solar cell including metal disk array
US20090255577A1 (en) Conversion Solar Cell
CN101901854A (en) Method for preparing InGaP/GaAs/InGaAs three-junction thin film solar cell
WO2003100868A1 (en) Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
CN110931593A (en) Lattice-matched silicon-based arsenic-free compound four-junction solar cell
US8624108B1 (en) Photovoltaic cells based on nano or micro-scale structures
US9048376B2 (en) Solar cell devices and apparatus comprising the same
Razykov Photovoltaic solar electricity: State of the art and future prospects
TWI383509B (en) A method of stacking solar cells
JP5548908B2 (en) Manufacturing method of multi-junction solar cell
CN206992124U (en) A kind of multijunction solar cell containing embedded aluminum back surface field
CN206076259U (en) A kind of InGaN film solaode
KR101353350B1 (en) High-efficient Solar Cell using wide-band absorption and energy transfer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees