TWI383302B - Wireless lan protocol stack - Google Patents

Wireless lan protocol stack Download PDF

Info

Publication number
TWI383302B
TWI383302B TW93131486A TW93131486A TWI383302B TW I383302 B TWI383302 B TW I383302B TW 93131486 A TW93131486 A TW 93131486A TW 93131486 A TW93131486 A TW 93131486A TW I383302 B TWI383302 B TW I383302B
Authority
TW
Taiwan
Prior art keywords
multicast
mac
transmission
packet
channel
Prior art date
Application number
TW93131486A
Other languages
Chinese (zh)
Other versions
TW200525375A (en
Inventor
John W Ketchum
J Rodney Walton
Sanjiv Nanda
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200525375A publication Critical patent/TW200525375A/en
Application granted granted Critical
Publication of TWI383302B publication Critical patent/TWI383302B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Description

無線區域網路協定堆集Wireless area network protocol heap 依據35 U.S.C.§119主張優先權Priority is claimed in accordance with 35 U.S.C. §119

本專利申請案要求下列美國臨時專利申請案之優先權:2003年10月15日提出之臨時專利申請案號60/511,750,標題為「Method and Apparatus for Providing Interoperability and Backward Compatibility in Wireless Communication Systems」;2003年10月15日提出之臨時專利申請案號60/511,904,標題為「Method,Apparatus,and System for Medium Access Control in a High Performance Wireless LAN Environment」;2003年10月21日提出之臨時專利申請案號60/513,239,標題為「Peer-to-Peer Connections in MIMO WEAN System」;2003年12月1日提出之臨時專利申請案號60/526,347,標題為「Method,Apparatus,and System for Sub-Network Protocol Stack for Very High Speed Wireless LAN」;2003年12月1日提出之臨時專利申請案號60/526,356,標題為「Method,Apparatus,and System for Multiplexing Protocol data Units in a High Performance Wireless LAN Environment」;2003年12月23日提出之臨時專利申請案號60/532,791,標題為「Wireless Communications Medium Access Control(MAC)Enhancements」;2004年2月18日提出之臨時專利申請案號60/545,963,標題為「Adaptive Coordination Function(ACF)」;2004年6月2日提出之臨時專利申請案號60/576,545,標 題為「Method and Apparatus for Robust Wireless Network」;2004年6月8日提出之臨時專利申請案號60/586,841,標題為「Method and Apparatus for Distribution Communication Resources Among Multiple Users」;及2004年8月11日提出之臨時專利申請案號60/600,960,標題為「Method,Apparatus,and System for Wireless Communications」;彼等專利申請案都已讓渡給與與本專利申請相同的受讓人,並且以引用方式明確併入本文中。This patent application claims priority to the following U.S. Provisional Patent Application Serial No. 60/511,750, filed on Oct. 15, 2003, entitled "Method and Apparatus for Providing Interoperability and Backward Compatibility in Wireless Communication Systems"; Provisional Patent Application No. 60/511,904, filed on October 15, 2003, entitled "Method, Apparatus, and System for Medium Access Control in a High Performance Wireless LAN Environment"; Provisional Patent Application, filed on October 21, 2003 Case No. 60/513,239, entitled "Peer-to-Peer Connections in MIMO WEAN System"; Provisional Patent Application No. 60/526,347, filed on December 1, 2003, entitled "Method, Apparatus, and System for Sub- Provisional Patent Application No. 60/526,356, filed on December 1, 2003, entitled "Method, Apparatus, and System for Multiplexing Protocol data Units in a High Performance Wireless LAN Environment" Provisional Patent Application No. 60/532,791, dated December 23, 2003 "Wireless Communications Medium Access Control (MAC) Enhancements"; Provisional Patent Application No. 60/545,963, filed on February 18, 2004, entitled "Adaptive Coordination Function (ACF)"; provisional dated June 2, 2004 Patent Application No. 60/576,545, Standard Titled "Method and Apparatus for Robust Wireless Network"; Provisional Patent Application No. 60/586,841, filed on June 8, 2004, entitled "Method and Apparatus for Distribution Communication Resources Among Multiple Users"; and August 11, 2004 Provisional Patent Application No. 60/600,960, entitled "Method, Apparatus, and System for Wireless Communications"; these patent applications have been assigned to the same assignee as the present patent application, and The manner is explicitly incorporated herein.

本發明廣泛係關於通信領域,具體而言,本發明係關於無線區域網路(LAN)協定堆集。The present invention is broadly related to the field of communications, and in particular, to wireless local area network (LAN) protocol stacking.

無線通信系統被廣泛部署以提供諸如語音、資料的各種通信類型。典型無線資料系統或網路提供多使用者存取一或多個共用資源。系統可使用各種多重存取技術,如分頻多工(Frequency Division Multiplexing;FDM)、分時多工Time Division Multiplexing;TDM)及分碼多工(Code Division Multiplexing;CDM),及其它。Wireless communication systems are widely deployed to provide various types of communication such as voice, data. A typical wireless data system or network provides multiple users with access to one or more shared resources. The system can use various multiple access technologies, such as Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), and Code Division Multiplexing (CDM), among others.

示例之無線網路包括蜂巢式資料系統。下列是數項此類實例:(1)「雙模寬頻展頻蜂巢式系統的TIA/EIA-95-B行動台-基地台相容性標準」(TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,即IS-95標準);(2)名為「第三代合夥專案」(3rd Generation Partnership Project;3GPP)之聯盟所提出的標準,並且在一組文獻中具體化,包括文號3G TS 25.211、3G TS 25.212、3G TS 25.213及3G TS 25.214(W-CDMA標準);(3)名為「第三代合夥專案2」(3rd Generation Partnership Project 2;3GPP2)之聯盟所提出的標準,並且在「cdma2000展頻系統之TR-45.5實體層標準」(TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems;IS-2000標準)文獻中具體化;以及(4)符合TIA/EIA/IS-856標準(稱為IS-856標準)的高資料傳輸率(HDR)通信系統。An exemplary wireless network includes a cellular data system. The following are a few examples of this: (1) "TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual Mode Broadband Spread Spectrum Honeycomb Systems" (TIA/EIA-95-B Mobile Station-Base) Station Compatibility standard for Dual-Mode Wideband Spread Spectrum Cellular System, that is, iS-95 standard); (2), entitled "third Generation partnership Project" (3 rd Generation partnership Project; standard 3GPP) of the proposed alliance, and A set of documents specific, including the number 3G TS 25.211, 3G TS 25.212, 3G TS 25.213 and 3G TS 25.214 (W-CDMA standard); (3) named "3rd Generation Partnership 2" (3 rd Generation Partnership The standard proposed by the Alliance 2; 3GPP2) and embodied in the "TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems; IS-2000 Standard"document; And (4) a high data rate (HDR) communication system that complies with the TIA/EIA/IS-856 standard (referred to as the IS-856 standard).

其他無線系統實例包括無線區域網路(Wireless Local Area Network;WLAN),例如,IEEE 802.11標準(即,802.11(a)、(b)或(g))。部署包括正交分頻多工(Orthogonal Frequency Division Multiplexing;OFDM)調變技術的一多重輸入多重輸出(Multiple Input Multiple Output;MIMO)WLAN,可達成改良這些網路。Other examples of wireless systems include Wireless Local Area Network (WLAN), such as the IEEE 802.11 standard (ie, 802.11 (a), (b), or (g)). The deployment of a Multiple Input Multiple Output (MIMO) WLAN including Orthogonal Frequency Division Multiplexing (OFDM) modulation technology can improve these networks.

隨著無線系統設計進步,較高資料傳輸率已成為可行。較高資料傳輸率開啟進階應用的可能性,其中包括語音、視訊、快速資料傳送及各種其他應用。但是,各種應用可能具有不同的資料傳送需求。許多類型資料會具有延時及輸送量需求,或需要某些服務品質(Quality of Service;QoS)保證。在無資源管理情況下,系統容量可能會減少,並且系統無法高效率運作。With the advancement of wireless system design, higher data transmission rates have become feasible. Higher data transfer rates open up advanced applications, including voice, video, fast data transfer and a variety of other applications. However, various applications may have different data transfer requirements. Many types of data will have latency and throughput requirements, or require certain Quality of Service (QoS) guarantees. In the absence of resource management, system capacity may be reduced and the system will not operate efficiently.

通常會使用媒體存取控制(Medium Access Control;MAC)協定來配置數個使用者之間共用的通信資源。MAC協定通 常會介接較高層至用於傳輸及接收資料的實體層。為了從資料傳輸率增加而獲益,MAC協定必須經過設計以高效率使用共用的資源。A Medium Access Control (MAC) protocol is typically used to configure communication resources shared between several users. MAC protocol pass Often, higher layers are interfaced to the physical layer for transmitting and receiving data. In order to benefit from increased data transmission rates, MAC agreements must be designed to use shared resources efficiently.

已開發的高效率系統支援多重傳輸率,傳輸率會依據實體鏈路特性而範圍廣泛地改變。已知不同資料應用類型的需求不同,並且至系統內不同使用者終端機之可支援的資料傳輸率之變化極大,所以還必須開發佇列處理各種流量類型,及在通常異類的各種實體鏈路上傳輸等方面的進展。因此,用於高效率使用高輸送量系統的MAC處理的技術係為需要的。The highly efficient systems that have been developed support multiple transmission rates, which vary widely depending on the physical link characteristics. It is known that the requirements of different data application types are different, and the data transmission rate that can be supported by different user terminals in the system varies greatly, so it is necessary to develop a queue to handle various traffic types, and on various physical links of different heterogeneous types. Progress in transmission and other aspects. Therefore, techniques for efficient use of MAC processing of high throughput systems are needed.

本發明揭示之具體實施例滿足此項技術對於高效率使用高輸送量系統的MAC處理之需求。在一項態樣中,一種設備包括一第一層,用於接收來自一或多個資料流之一或多個封包,以及用於從該等一或多個封包來產生一或多個第一層協定資料單元(Protocol Data Unit;PDU)。在另一項態樣中,一第二層被部署,用於接收來自該第一層之一或多個第一層PDU,並且從該等一或多個第一層PDU來產生一或多個第二層PDU。在另一項態樣中,一第三層被部署,用於接收該等一或多個第二層PDU,並且傳輸該等一或多個第二層PDU至一遠端站台。在另一項態樣中,一層管理員被部署,用於接收第二層反饋,並且傳遞該第二層反饋至一第一層。一層管理員還可接收來自任何層之反饋,並且傳遞該反饋至任何其他層。在一項態樣中,反饋包括實 體層反饋。The disclosed embodiments of the present invention address the need for this technology to efficiently handle MAC processing of high throughput systems. In one aspect, an apparatus includes a first layer for receiving one or more packets from one or more data streams, and for generating one or more packets from the one or more packets A layer of Protocol Data Unit (PDU). In another aspect, a second layer is deployed for receiving one or more first layer PDUs from the first layer and generating one or more from the one or more first layer PDUs Second layer PDU. In another aspect, a third layer is deployed for receiving the one or more second layer PDUs and transmitting the one or more second layer PDUs to a remote station. In another aspect, a layer administrator is deployed to receive Layer 2 feedback and pass the second layer feedback to a first layer. The layer administrator can also receive feedback from any layer and pass the feedback to any other layer. In one aspect, the feedback includes Volume feedback.

在另一項態樣中,部署一種協定堆集,其具有一第一層,該第一層包括邏輯,該邏輯用於檢查來自一或多個封包的較高層標頭以及響應該等檢查後之標頭而分類該等封包成為一或多個資料流。在另一項態樣中,一種協定堆集可包括用於多點播送映射已分類之封包的邏輯。該多點播送映射可被執行以響應實體層反饋。在另一項態樣中,一種協定堆集可包括用於分割及/或重組已分類之封包的邏輯。該分割及/或重組可被執行以響應實體層反饋。在另一項態樣中,一種協定堆集可包括用於實體層傳輸已分類之封包的邏輯。In another aspect, a protocol stack is deployed having a first layer, the first layer including logic for checking higher layer headers from one or more packets and responding to the checks The headers are classified into one or more data streams. In another aspect, a protocol stack can include logic for multicasting mapped packets that have been classified. The multicast mapping can be performed in response to entity layer feedback. In another aspect, a protocol stack can include logic for partitioning and/or reassembling the classified packets. This segmentation and/or reassembly can be performed in response to entity layer feedback. In another aspect, a protocol stack can include logic for the physical layer to transport the classified packets.

在另一項態樣中,本發明揭示一種協定堆集,包括下列一或多項:一調節層、一資料鏈路控制層、一實體層及一層管理員。本發明揭示一種可調整以包括來自多個資料流之資料的MAC子層協定資料單元。下文會進一步詳述各項特徵及態樣。In another aspect, the present invention discloses a protocol stack including one or more of the following: an adjustment layer, a data link control layer, a physical layer, and a layer administrator. The present invention discloses a MAC sublayer protocol data unit that can be adjusted to include data from a plurality of data streams. The features and aspects are further detailed below.

在另一項態樣中,實體層反饋係用於調節層處理。在一項具體實施例中,實體層反饋係用於分割。在另一項具體實施例中,實體層反饋係用於多點播送映射至一或多個單點播送頻道。在另一項具體實施例中,可選擇一用於執行多點播送傳輸的單點播送、多點播送或廣播頻道之組合,以響應對應於各種頻道的實體層反饋。In another aspect, the physical layer feedback is used to adjust layer processing. In a specific embodiment, the physical layer feedback is used for segmentation. In another specific embodiment, the entity layer feedback is for multicast mapping to one or more unicast channels. In another embodiment, a combination of unicast, multicast, or broadcast channels for performing multicast transmissions may be selected in response to entity layer feedback corresponding to various channels.

在另一項態樣中,一用於從一第一站台傳輸至一第二站台的資料單元包括:零或多個完整之子資料單元、來自前 一傳輸的零或一個局部子資料單元以及用於填滿該資料單元的零或一個局部子資料單元。在一項具體實施例中,一指標係用於指示任何完整之子資料單元的位置。一局部子資料單元可被插入在一預先決定位置。局部子資料單元可與先前儲存之局部子資料單元組合在一起,或予以儲存以供以後使用。在一項具體實施例中,一子資料單元可能是一MUX子層協定資料單元(MUX PDU)。In another aspect, a data unit for transmitting from a first station to a second station includes: zero or more complete sub-data units, from the previous A transmitted zero or a local sub-data unit and zero or one local sub-data unit for filling the data unit. In a specific embodiment, an indicator is used to indicate the location of any complete sub-data unit. A partial sub-data unit can be inserted at a predetermined location. The local sub-data unit can be combined with a previously stored local sub-data unit or stored for later use. In a specific embodiment, a sub-data unit may be a MUX sub-layer protocol data unit (MUX PDU).

也已提出各種其他態樣及具體實施例。彼等態樣具有提供高效率媒體存取控制之優勢,並且適用於配合包含高資料傳輸率以及低資料傳輸率之實體層。Various other aspects and specific embodiments have also been proposed. These aspects have the advantage of providing high-efficiency media access control and are suitable for use with physical layers that contain high data rates and low data rates.

本發明揭示一種子網路協定堆集,其支援配合無線LAN(或使用最新問市傳輸技術的相似應用)極高位元速率之實體層的高效率、低延時且高輸送量運作。示範性WLAN支援20 MHz頻寬超過100 Mbps(million bits per second;每秒百萬位元)位元速率。The present invention discloses a sub-network protocol stack that supports high efficiency, low latency, and high throughput operation of a physical layer of very high bit rate in conjunction with a wireless LAN (or similar application using the latest market transmission technology). The exemplary WLAN supports a 20 MHz bandwidth exceeding 100 Mbps (million bits per second) bit rate.

配合該協定堆集說明一種用於多工處理來自多個使用者資料流之協定資料單元(PDU)與子網路控制實體(MAC PDU)成為單一位元組資料流之方法。配合該協定堆集說明一種用於多工處理來自多個使用者資料流之協定資料單元(PDU)與子網路控制實體(MAC PDU)成為單一位元組資料流之方法。這項做法可支援高效能無線LAN子網路,用於配合極高位元速率之實體層的高效率、低延時且高輸送量運作。In conjunction with the protocol stacking, a method for multiplexing a protocol data unit (PDU) and a subnet control entity (MAC PDU) from a plurality of user data streams into a single byte data stream is illustrated. In conjunction with the protocol stacking, a method for multiplexing a protocol data unit (PDU) and a subnet control entity (MAC PDU) from a plurality of user data streams into a single byte data stream is illustrated. This approach supports high-performance wireless LAN subnets for high-efficiency, low-latency, high-traffic operation with a very high bit rate physical layer.

子網路協定堆集廣泛支援高資料傳輸率、高頻寬實體層傳送機制,包括(但不限於):以OFDM調變為基礎的傳送機制;單載波調變技術;適用於極高頻寬效率運作之使用多個接收天線及多個發射天線的系統(多重輸入多重輸出(Multiple Input Multiple Output;MIMO)系統(MIMO),包括多重輸入單一輸出(Multiple Input Single Output;MISO)系統);配合空間多工技術之使用多個接收天線及多個發射天線的系統,用於在相同在此情況下期間傳輸資料至使用者終端機,或接收來自使用者終端機的資料;以及使用分碼多向近接(code division multiple access;CDMA)技術之系統,用於允許多個使用者同時傳輸。Sub-network protocol stacking supports a wide data transmission rate and high-bandwidth physical layer transmission mechanism, including (but not limited to): transmission mechanism based on OFDM modulation; single-carrier modulation technology; suitable for use in extremely high-frequency and wide-efficiency operation A system for receiving antennas and multiple transmit antennas (Multiple Input Multiple Output (MIMO) systems (MIMO), including Multiple Input Single Output (MISO) systems); with space multiplexing technology a system using a plurality of receiving antennas and a plurality of transmitting antennas for transmitting data to a user terminal during the same period of time, or receiving data from a user terminal; and using code division multi-directional proximity (code division) Multiple access; CDMA) technology system for allowing multiple users to transmit simultaneously.

本文中說明的一個或一個以上示範性具體實施例係在無線資料通訊系統背景下提出。雖然在此背景下使用本發明有許多優點,但是在不同的環境或組態中也可併入本發明的不同具體實施例。一般而言,本文中說明的各種系統均可使用軟體控制型處理器、積體電路或離散邏輯構成。整份說明書所提及的資料、指令、命令、資訊、信號、符號及晶片有利於以電壓、電流、電磁波、磁場或粒子、光場或粒子、或其任何組合來表示。此外,每個方塊圖中所示的方塊均可能代理硬體或方法步驟。方法步驟可互換,而不會脫離本發明的範疇。本文中使用的術語「示範」係表示「當作實例、例子或解說」。本文中當作「示範」說明的任何具體實施例不一定被視為較佳具體實施例或優於其他具體實施例。One or more exemplary embodiments described herein are presented in the context of a wireless data communication system. While there are many advantages to using the invention in this context, various specific embodiments of the invention may be incorporated in different environments or configurations. In general, the various systems described herein can be constructed using software controlled processors, integrated circuits, or discrete logic. The materials, instructions, commands, information, signals, symbols and wafers referred to throughout the specification are advantageously represented by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. In addition, the blocks shown in each block diagram may proxy hardware or method steps. The method steps are interchangeable without departing from the scope of the invention. The term "demonstration" as used in this document means "serving as an example, instance or explanation." Any specific embodiments described herein as "exemplary" are not necessarily to be construed as preferred or preferred embodiments.

圖1繪示系統100的示範性具體實施例,該系統包括連接至一或多個使用者終端機(UT)106A-N的存取點(AP)104。AP與UT經由無線區域網路區域(WLAN)120通信。在此示範性具體實施例中,WLAN 120是一種高速MIMO OFDM系統。然而,WLAN 120可能是任何無線LAN。存取點104經由網路102與任何外部裝置或處理序(process)通信。網路102可能是網際網路、內部網路或任何其他有線、無線或光學網路。連接110將來自網路的實體層訊號載送至存取點104。裝置或處理序可連接至網路102,或當作WLAN 120上的UT(或經由連接與其相連)。可連接至網路網路102或WLAN 120之實例包括電話、個人數位助理(PDA)、各種類似電腦(膝上型電腦、個人電腦、工作站、任何類型終端機)、視訊裝置(例如,攝影機、攝錄像機、web攝影機以及幾乎任何類型資料裝置)。處理序(process)可包括語音、視訊、資料通信等等。各種資料流具有不同的傳輸需求,這可以藉由用多樣化的服務品質(Quality of Service;QoS)技術來適應各需求。1 illustrates an exemplary embodiment of a system 100 that includes an access point (AP) 104 coupled to one or more user terminals (UTs) 106A-N. The AP communicates with the UT via a wireless local area network (WLAN) 120. In this exemplary embodiment, WLAN 120 is a high speed MIMO OFDM system. However, WLAN 120 may be any wireless LAN. Access point 104 communicates with any external device or process via network 102. Network 102 may be the Internet, an internal network, or any other wired, wireless, or optical network. Connection 110 carries the physical layer signal from the network to access point 104. The device or process can be connected to the network 102 or as a UT on the WLAN 120 (or connected thereto via a connection). Examples of connections that may be connected to network network 102 or WLAN 120 include telephones, personal digital assistants (PDAs), various similar computers (laptops, personal computers, workstations, any type of terminal), video devices (eg, cameras, Camcorders, web cameras and almost any type of data device). Processes can include voice, video, data communication, and the like. Various data streams have different transmission requirements, which can be adapted to various needs by using a variety of Quality of Service (QoS) technologies.

使用集中式AP 104來部署系統100。在此示範性具體實施例中,所有UT 106都與該AP通信。在一項替代具體實施例中,修改系統,就可以提供介於UT之間的直接對等式(peer-to-peer)通信,如熟悉此項技術者所知。基於清楚論述,在此示範性具體實施例中,由AP來控制實體層傳輸機制之存取。System 100 is deployed using centralized AP 104. In this exemplary embodiment, all UTs 106 are in communication with the AP. In an alternate embodiment, modifying the system provides for peer-to-peer communication between the UTs, as is known to those skilled in the art. Based on the clear discussion, in this exemplary embodiment, the access of the physical layer transport mechanism is controlled by the AP.

在一項具體實施例中,AP 104提供乙太網路調節,圖24 繪示其實例。在此情況下,可使用AP 104來部署IP路由器2410,藉此提供連至網路網路102的連接(經由乙太網路連接110)。例如,圖中所示之例證性實例UT 106是行動電話106A、個人數位助理(PDA)106B、膝上型電腦106C、工作站106D、個人電腦106E、視訊攝影機106F及視訊投影機106G。可透過WLAN子網路120在路由器與UT 106之間傳輸乙太網路訊框(如下文詳細說明所述)。In a specific embodiment, the AP 104 provides Ethernet conditioning, Figure 24 Show examples of it. In this case, the IP 104 can be deployed using the AP 104, thereby providing a connection to the network network 102 (via the Ethernet connection 110). For example, the illustrative example UT 106 shown in the figures is a mobile phone 106A, a personal digital assistant (PDA) 106B, a laptop 106C, a workstation 106D, a personal computer 106E, a video camera 106F, and a video projector 106G. An Ethernet frame can be transmitted between the router and the UT 106 via the WLAN subnet 120 (as described in detail below).

乙太網路調節及連接能力是此項技術中已知的技術。圖26繪示(例如)分別用於UT 106和AP 104的乙太網路調節協定堆集2640和2650,如下文整合各實例層之詳細說明所述。UT協定堆集2640包括較上層2610、IP層2615、乙太網路MAC層2620A、調節層310A、資料鏈路層320A及實體層(PHY)240A。AP協定堆集2650包括PHY 240B(經由RF鏈路120連接至UT PHY 240A)、資料鏈路層320B及調節層310B。乙太網路MAC 2620B將調節層310B連接至乙太網路PHY 2625,乙太網路PHY 2625連接至110有線網路102。Ethernet conditioning and connectivity capabilities are known in the art. 26 illustrates, for example, Ethernet conditioning protocol stacks 2640 and 2650 for UT 106 and AP 104, respectively, as described in the detailed description of the various example layers as follows. The UT protocol stack 2640 includes an upper layer 2610, an IP layer 2615, an Ethernet MAC layer 2620A, an adjustment layer 310A, a data link layer 320A, and a physical layer (PHY) 240A. The AP protocol stack 2650 includes a PHY 240B (connected to the UT PHY 240A via the RF link 120), a data link layer 320B, and an adjustment layer 310B. The Ethernet MAC 2620B connects the adjustment layer 310B to the Ethernet PHY 2625, and the Ethernet PHY 2625 connects to the 110 wired network 102.

在一項替代具體實施例中,AP 104提供IP調節,圖25繪示其實例。在此情況下,AP 104係當做該組連接之使用者的閘道路由器(如參考圖24之說明所述)。在此情況下,AP 104可在UT 106之間往返投送IP資料元(IP datagram)。In an alternate embodiment, the AP 104 provides IP conditioning, and Figure 25 depicts an example thereof. In this case, the AP 104 acts as a gateway router for the user of the set of connections (as described with reference to Figure 24). In this case, the AP 104 can route IP datagrams back and forth between the UTs 106.

IP調節及連接能力是此項技術中已知的技術。圖27繪示(例如)分別用於UT 106和AP 104的IP協定堆集2740和2750,如下文整合各實例層之詳細說明所述。UT協定堆集2740包括較上層2710、IP層2720A、調節層310A、資料鏈 路層320A及實體層(PHY)240A。AP協定堆集2750包括PHY 240B(經由RF鏈路120連接至UT PHY 240A)、資料鏈路層320B及調節層310B。IP層2720B將調節層310B連接至乙太網路MAC 2725,而乙太網路MAC 2725連接至乙太網路PHY 2730。乙太網路PHY 2730連接至110有線網路102。IP conditioning and connectivity are techniques known in the art. 27 illustrates, for example, IP protocol stacks 2740 and 2750 for UT 106 and AP 104, respectively, as described in the detailed description of the various example layers as follows. The UT protocol stack 2740 includes an upper layer 2710, an IP layer 2720A, an adjustment layer 310A, and a data chain. Road layer 320A and physical layer (PHY) 240A. The AP protocol stack 2750 includes a PHY 240B (connected to the UT PHY 240A via the RF link 120), a data link layer 320B, and an adjustment layer 310B. The IP layer 2720B connects the adjustment layer 310B to the Ethernet MAC 2725, while the Ethernet MAC 2725 is connected to the Ethernet PHY 2730. The Ethernet PHY 2730 is connected to the 110 wired network 102.

圖2繪示無線通信裝置的示範性具體實施例,該無線通信裝置可被組態成一存取點104或使用者終端機106。圖2繪示存取點104組態。收發器210依據網路102的實體層需求在連接110上進行接收及傳輸。接收自或傳至連接至網路102之裝置或應用程式的資料被傳遞至MAC處理器220。本文中將這些資料稱為資料流260。資料流可具有不同的特性,並且會依據該資料流所相關聯的應用程式類型而需要不同的處理方式。例如,視訊或語音的特徵為低延時資料流(一般而言,視訊的輸送量需求高於語音的輸送量需求)。許多資料應用程式較不受延時影響,但是可能具有較高的資料完整性需求(即,語音可能容許某封包損失,檔案傳送通常不容許封包損失)。2 illustrates an exemplary embodiment of a wireless communication device that can be configured as an access point 104 or user terminal 106. Figure 2 illustrates the configuration of the access point 104. The transceiver 210 receives and transmits on the connection 110 in accordance with the physical layer requirements of the network 102. The data received or transmitted to the device or application connected to the network 102 is passed to the MAC processor 220. These materials are referred to herein as data streams 260. Data streams can have different characteristics and require different processing depending on the type of application associated with the data stream. For example, video or speech is characterized by a low-latency data stream (generally, the video throughput requirement is higher than the voice throughput requirement). Many data applications are less susceptible to latency, but may have higher data integrity requirements (ie, voice may allow for loss of a packet, and file transfers typically do not allow for packet loss).

MAC處理器220接收並處理資料流260,以便在實體層上傳輸資料流。MAC處理器220接收並處理資料流260,以便在實體層上傳輸資料流。AP與UT之間也會傳送內部控制及發訊號。在連接270上將MAC協定資料單元(MAC Protocol Data Unit;MAC PDU)傳遞至無線LAN收發器240及接收來自無線LAN收發器240的MAC PDU。下文說明從資料流和命令轉換至MAC PDU,反之亦然。下文進一步說明基於各 種目的,將相對應於各種MAC ID的反饋280從實體層(PHY)240傳回至MAC處理器220。反饋280可包含任何實體層資訊,包括可支援的頻道傳輸率(包括多點播送頻道及單點播送頻道)、調變格式及各種其他參數。The MAC processor 220 receives and processes the data stream 260 to transport the data stream on the physical layer. The MAC processor 220 receives and processes the data stream 260 to transport the data stream on the physical layer. Internal control and signaling numbers are also transmitted between the AP and the UT. A MAC Protocol Data Unit (MAC PDU) is delivered to the wireless LAN transceiver 240 and receives a MAC PDU from the wireless LAN transceiver 240 over the connection 270. The following describes the conversion from data streams and commands to MAC PDUs and vice versa. Further explanation below based on each For this purpose, feedback 280 corresponding to various MAC IDs is passed back from the physical layer (PHY) 240 to the MAC processor 220. Feedback 280 can include any physical layer information, including supported channel transmission rates (including multicast channels and unicast channels), modulation formats, and various other parameters.

在一項示範性具體實施例中,調節層(ADAP)及資料鏈路控制層(DLC)係在MAC處理器220中執行。實體層(PHY)係在無線LAN收發器240上執行。熟悉此項技術者應知道,可使用任何各種組態來進行各項功能分割。MAC處理器220可執行有關實體層的部分或所有處理。一無線LAN收發器可包括一用於執行MAC處理或其子部分的處理器。可部署任何數量之處理器、特殊用途硬體或其組合。In an exemplary embodiment, an adjustment layer (ADAP) and a data link control layer (DLC) are implemented in the MAC processor 220. The physical layer (PHY) is executed on the wireless LAN transceiver 240. Those skilled in the art should be aware that any of a variety of configurations can be used to perform the functional segmentation. The MAC processor 220 can perform some or all of the processing related to the physical layer. A wireless LAN transceiver can include a processor for performing MAC processing or a sub-portion thereof. Any number of processors, special purpose hardware, or a combination thereof can be deployed.

MAC處理器220可能是一般用途微處理器、數位信號處理器(DSP)或特殊用途處理器。MAC處理器220可連接用於輔助各種工作的特殊用途硬體(圖中未詳細繪示)。可在外接處理器(例如,外接的電腦或透過網路連線)上執行各種應用程式,或可在存取點104內的額外處理器(圖中未繪示)上執行各種應用程式,或可在MAC處理器220本身上執行各種應用程式。圖中所示之MAC處理器220係連接記憶體255,記憶體255可用於儲存得以執行本文所說明之各項程序和方法的資料以及指令。熟悉此項技術者應知道,記憶體255可能係由一或多個各類型記憶體組件所組成,並且可整個或局部具體化在MAC處理器220內。The MAC processor 220 may be a general purpose microprocessor, a digital signal processor (DSP) or a special purpose processor. The MAC processor 220 can be connected to a special purpose hardware (not shown in detail) for assisting various tasks. Various applications can be executed on an external processor (for example, an external computer or via a network connection), or various applications can be executed on an additional processor (not shown) in the access point 104, or Various applications can be executed on the MAC processor 220 itself. The MAC processor 220 shown in the figure is coupled to a memory 255 that can be used to store data and instructions for performing the various procedures and methods described herein. Those skilled in the art will appreciate that memory 255 may be comprised of one or more types of memory components and may be embodied in whole or in part within MAC processor 220.

除了儲存得以執行本文所說明之功能的指令及資料外,記憶體255還可用於儲存相關聯於各種佇列的資料(如下文 詳細說明所述)。記憶體255可包括UT代理伺服器(proxy)佇列(如下文所述)。In addition to storing instructions and materials that perform the functions described herein, the memory 255 can also be used to store data associated with various queues (see below) Detailed description). Memory 255 can include a UT proxy server queue (as described below).

無線LAN收發器240可能是任何類型收發器。在一項示範性具體實施例中,無線LAN收發器240是可配合MIMO或MISO介面運作的OFDM收發器。OFDM、MIMO及MISO為此項技術者已知的技術。2003年8月27日提出的共同申請美國專利申請案號10/650,295標題為「FREQUENCY-INDEPENDENT SPATIAL-PROCIESSING FOR WIDEBAND MISO AND MIMO SYSTEMS」中詳述各種OFDM、MIMO及MISO收發器,該案已讓渡給本發明受讓人。Wireless LAN transceiver 240 may be any type of transceiver. In an exemplary embodiment, wireless LAN transceiver 240 is an OFDM transceiver that can operate in conjunction with a MIMO or MISO interface. OFDM, MIMO, and MISO are techniques known to those skilled in the art. A variety of OFDM, MIMO, and MISO transceivers are described in detail in the "FREQUENCY-INDEPENDENT SPATIAL-PROCIESSING FOR WIDEBAND MISO AND MIMO SYSTEMS", filed on August 27, 2003, in the co-pending application Serial No. 10/650,295. Transfer to the assignee of the present invention.

圖中所示之無線LAN收發器240係連接天線250 A-N。在各項具體實施例中可以支援任何數量的天線。天線250係用來在WLAN 120上傳輸和接收。The wireless LAN transceiver 240 shown in the figure is connected to the antennas 250 A-N. Any number of antennas can be supported in various embodiments. Antenna 250 is used to transmit and receive on WLAN 120.

無線LAN收發器240可包括一連接至每個天線天線250的空間處理器。該空間處理器可處理每個天線所要獨立傳輸的資料。獨立處理的實例包括係基於頻道評估、來自UT的反饋、頻道反轉或此項技術已知的各種其他技術。使用各種已知的空間處理技術來執行此項處理。此類型的各種收發器可使用波束成形(beam forming)、波束操控(beam steering)、特徵操控(eigen-steering)或用於增加一既定使用者終端機之收發輸送量的其他空間技術。在一項傳輸OFDM符號的具體實施例中,空間處理器可包括用於處理每個OFDM子頻道(subchannel)或頻率格(bin)的多個子空間處理器。Wireless LAN transceiver 240 can include a spatial processor coupled to each antenna antenna 250. The spatial processor can process the data to be transmitted independently for each antenna. Examples of independent processing include channel based evaluation, feedback from the UT, channel reversal, or various other techniques known in the art. This processing is performed using various known spatial processing techniques. Various transceivers of this type may use beam forming, beam steering, eigen-steering, or other spatial techniques for increasing the throughput of a given user terminal. In a particular embodiment of transmitting OFDM symbols, the spatial processor may include a plurality of subspace processors for processing each OFDM subchannel or bin.

在一項示範性系統中,AP可具有N個天線,並且示範性UT可具有M個天線。因此,介於AP之天線與UT之天線之間有M x N個路徑。使用這些多路徑來改良輸送量的各種空間技術為此項技術已知的技術。在空間時間傳輸分集(Space Time Transmit Diversity;STTD)系統(本文中也稱為「分集」)中,傳輸之資料被格式化、編碼並且當做一單一資料流用所有的天線予以傳送。運用M個發射天線與N個接收天線,可能可形成MIN(M,N)個獨立頻道。空間多工處理利用這些獨立路徑,並且可在每個獨立路徑上傳輸不同資料。In an exemplary system, an AP may have N antennas, and an exemplary UT may have M antennas. Therefore, there are M x N paths between the antenna of the AP and the antenna of the UT. Various spatial techniques that use these multipaths to improve throughput are known in the art. In a Space Time Transmit Diversity (STTD) system (also referred to herein as "diversity"), the transmitted data is formatted, encoded, and transmitted as a single data stream using all of the antennas. Using M transmit antennas and N receive antennas, it is possible to form MIN (M, N) independent channels. Spatial multiplexing processing utilizes these independent paths and can transmit different data on each independent path.

用於獲知或調節AP與UT之間頻道特性的各種技術已為吾人所知。可從每個傳輸天線傳輸獨特前導。可在每個接收天線上接收及量測該等前導。接著,可將頻道反饋傳回至傳輸方裝置,以便在傳輸時使用。頻道反轉是一種允許預處理及傳輸之技術,但是屬於計算密集型技術。可執行特徵分解(eigen decomposition),並且可採用查詢表來決定傳輸率。為了避免頻道分解,一項替代技術會使用前導的特徵導入來簡化空間處理。預失真(pre-distortion)技術是用於簡化接收器處理的已知技術。Various techniques for knowing or adjusting the channel characteristics between the AP and the UT are known. A unique preamble can be transmitted from each transmit antenna. The preambles can be received and measured on each receive antenna. Channel feedback can then be passed back to the transmitting device for use during transmission. Channel reversal is a technique that allows for preprocessing and transmission, but is computationally intensive. An eigen decomposition can be performed, and a lookup table can be used to determine the transmission rate. To avoid channel decomposition, an alternative technique uses preamble feature import to simplify spatial processing. Pre-distortion techniques are known techniques for simplifying receiver processing.

因此,依據目前的頻道狀況,整個系統可提供用於傳輸至各種使用者終端機之不同的資料傳輸率。具體而言,介於AP與每個UT間之特定鏈路的效能可能高於一個以上UT可共用之鏈路的效能。下文進一步詳述實例。無線LAN收發器240可依據對於AP與UT間之實體鏈路所使用的空間處理來決定可支援的傳輸率。可在連接280上反饋此項資訊, 以便在MAC處理中使用,如下文詳細說明所述。Thus, depending on current channel conditions, the entire system can provide different data transmission rates for transmission to various user terminals. In particular, the performance of a particular link between an AP and each UT may be higher than the performance of a link that more than one UT can share. Examples are further detailed below. The wireless LAN transceiver 240 can determine the supportable transmission rate based on the spatial processing used for the physical link between the AP and the UT. This information can be fed back on connection 280. For use in MAC processing, as described in detail below.

可依據UT的資料需要來部署數個天線。例如,高清晰度視訊顯示器基於高頻寬需求而可包括(例如)四個天線,而PDA可能使用兩個天線就可滿足。一示範性存取點可具有四個天線。Several antennas can be deployed according to the data needs of the UT. For example, high definition video displays may include, for example, four antennas based on high frequency bandwidth requirements, while PDAs may be satisfied using two antennas. An exemplary access point can have four antennas.

可按相似於圖2所示之存取點104的方式來部署使用者終端機106。若是資料流260未連接LAN收發器(雖然UT可包括有線或無線收發器),則資料流260通常係接收自或傳遞至UT或連接UT之裝置上運作的一或多個應用程式或處理序。連接至AP 104或UT 106的較高層級可能是任何類型。本文所描述的各項僅為例證。The user terminal 106 can be deployed in a manner similar to the access point 104 shown in FIG. If data stream 260 is not connected to a LAN transceiver (although the UT may include a wired or wireless transceiver), then data stream 260 is typically one or more applications or processes that are received from or transmitted to the UT or device connected to the UT. . The higher level connected to the AP 104 or UT 106 may be of any type. The items described herein are merely illustrative.

協定堆集Agreement stack

圖3繪示示範性子網路協定堆集300。子網路協定堆集300可當做介於極高位元速率LAN實體層與網路層或其他網路的MAC層(例如,乙太網路MAC層或TCP/IP網路層)之間的介面。可部署各種特徵的協定堆集300,藉此充分利用極高效率無線LAN實體層。示範性協定堆集可被設計成提供各項優勢,實例包括:(a)最小化協定所耗用的輸送量負荷量;(b)最大化封裝子網路資料單元成為實體層訊框的效率;(c)最小化延時對易受延遲影響之傳輸機制(例如,TCP)所造成的端對端來回傳輸延遲;(d)提供高可靠、按順序傳遞子網路資料單元;(e)提供支援現有網路層及應用,以及提供適應未來網路和應用程式的充分彈性;以及(f)無障礙地整合現有網路技術。FIG. 3 illustrates an exemplary sub-network protocol stack 300. The sub-network protocol stack 300 can serve as an interface between the very high bit rate LAN physical layer and the MAC layer of the network layer or other network (eg, the Ethernet MAC layer or the TCP/IP network layer). A protocol stack 300 of various features can be deployed, thereby taking advantage of the extremely efficient wireless LAN physical layer. An exemplary protocol stack can be designed to provide advantages, examples of which include: (a) minimizing the amount of throughput load consumed by the agreement; and (b) maximizing the efficiency with which the encapsulated subnet data unit becomes a physical layer frame; (c) Minimize latency for end-to-end transmission delays caused by transmission mechanisms that are susceptible to delays (eg, TCP); (d) provide highly reliable, sequential delivery of subnet data units; (e) provide support Existing network layers and applications, as well as providing full flexibility for future networks and applications; and (f) unobstructed integration of existing network technologies.

協定堆集300具有數個薄子層、數個操作模式以及用於支援多個外部網路之介面的設施。圖3繪示調節層310、資料鏈路控制層320及實體層240。層管理員380互連於每個子層,用於提供各種功能之通信及控制,如下文所述。The protocol stack 300 has several thin sub-layers, several modes of operation, and facilities for supporting multiple external network interfaces. 3 illustrates an adjustment layer 310, a data link control layer 320, and a physical layer 240. Layer administrators 380 are interconnected to each sub-layer for providing communication and control of various functions, as described below.

圖3繪示示範性協定堆集300組態。虛線標示可在MAC處理器220中部署之組件的示範性組態,如上文所述。包括調節層310、資料鏈路控制層320及層管理員380。如上文所述,在此組態中,實體層240在連接270上接收及傳輸MAC協定資料單元(PDU)。反饋連接280被導引至層管理員380,以便提供用於在下文所述之各項功能中使用的實體層資訊。此項實例僅僅是例證性。熟悉此項技術者應明白,在本發明範疇內,可部署任何數量組件,且被組態成包括所說明之堆集功能的任何組合。FIG. 3 illustrates an exemplary protocol stack 300 configuration. The dashed lines indicate exemplary configurations of components that may be deployed in the MAC processor 220, as described above. The adjustment layer 310, the data link control layer 320, and the layer administrator 380 are included. As described above, in this configuration, the physical layer 240 receives and transmits MAC Protocol Data Units (PDUs) on the connection 270. Feedback link 280 is directed to layer administrator 380 to provide physical layer information for use in the various functions described below. This example is merely illustrative. Those skilled in the art will appreciate that any number of components can be deployed within the scope of the present invention and configured to include any combination of the illustrated stacking functions.

調節層310提供介接至較高層的介面。例如,調節層可介接IP堆集(用於IP調節)、乙太網路MAC(用於乙太網路調節)或各種其他網路層。資料流260可接收自用於MAC處理的一或多個較高層,並且在實體層240上傳輸。資料流260也可經由實體層予以接收、處理及重新組合,以便傳遞至一或多個較高層。The conditioning layer 310 provides an interface that interfaces to higher layers. For example, the adjustment layer can interface with IP stacking (for IP conditioning), Ethernet MAC (for Ethernet conditioning), or various other network layers. Data stream 260 can be received from one or more higher layers for MAC processing and transmitted on physical layer 240. The data stream 260 can also be received, processed, and recombined via the physical layer for delivery to one or more higher layers.

調節層310包括下列功能:分割和重組312、資料流分類314及多點播送映射316。資料流分類功能314檢查接收自較高層的標頭封包(來自資料流260)、映射每個封包至一使用者終端機或一多點播送群組MAC識別項(MAC ID)以及基於服務品質(QoS)差別待遇來分類封包。多點播送映射功能 316決定是否使用多點播送MAC ID(稱為「MAC層多點播送」)來傳輸多點播送使用者資料,或透過多個單點播送MAC ID(稱為「調節層多點播送」)來傳輸多點播送使用者資料,下文會詳細說明實例。分割和重組(SAR)功能312調節每個較高層封包成為適用於邏輯鏈路(Logical Link;LL)模式的協定資料單元(PDU)大小。針對每個MAC ID來個別執行SAR功能312。資料流分類功能314是共通的功能。The adjustment layer 310 includes the following functions: segmentation and reassembly 312, data stream classification 314, and multicast mapping 316. The data stream classification function 314 checks for header packets received from higher layers (from data stream 260), maps each packet to a user terminal or a multicast group MAC identification (MAC ID), and based on quality of service ( QoS) differential treatment to classify packets. Multicast mapping function 316 determines whether to use a multicast MAC ID (referred to as "MAC layer multicast") to transmit multicast data, or through multiple unicast MAC IDs (referred to as "adjustment layer multicast") Transfer multicast user data, as detailed below. The Segmentation and Reassembly (SAR) function 312 adjusts each higher layer packet to a Protocol Data Unit (PDU) size suitable for a Logical Link (LL) mode. The SAR function 312 is performed individually for each MAC ID. The data stream classification function 314 is a common function.

資料鏈路控制層320包括邏輯鏈路(LL)層330、無線電鏈路控制(Radio Link Control;RLC)層340、系統組態控制350、MUX功能360及共通MAC功能370。圖3中繪示彼等層中每一層的子組塊,並且將於下文詳細說明。圖中所示之組塊僅為例證。在各項替代具體實施例中可部署彼等功能之子集以及額外功能。The data link control layer 320 includes a logical link (LL) layer 330, a Radio Link Control (RLC) layer 340, a system configuration control 350, a MUX function 360, and a common MAC function 370. Sub-blocks of each of the layers are depicted in Figure 3 and will be described in detail below. The blocks shown in the figures are only examples. A subset of their functions and additional functionality may be deployed in various alternative embodiments.

實體層240可能是任何類型實體層,如上文說明之實例所述。一項示範性具體實施例使用MIMO OFDM實體層。下文說明內容中包含此項具體實施例的示範性參數。The physical layer 240 may be any type of physical layer, as described in the examples described above. An exemplary embodiment uses a MIMO OFDM physical layer. Exemplary parameters of this particular embodiment are included in the description below.

層管理員380(LM)介接調節層310、資料鏈路控制層320及實體層240,用以管理QoS、許可控制以及實體層發射器和接收器參數控制。請注意,在執行本文中所說明之各項功能過程中,可使用來自實體層的反饋280。例如,在多點播送映射316或分割和重組312中可使用適用於各種UT的可支援傳輸率。The layer administrator 380 (LM) interfaces with the conditioning layer 310, the data link control layer 320, and the physical layer 240 for managing QoS, admission control, and physical layer transmitter and receiver parameter control. Note that feedback 280 from the physical layer can be used in performing the functions described herein. For example, a supportable transmission rate suitable for various UTs can be used in the multicast map 316 or the split and reassembly 312.

調節層Adjustment layer

資料流分類(FLCL)功能314檢查傳入之封包的封包標頭 欄位,並且其對映成資料流。在執行IP調節的示範性具體實施例中,資料流分類可運用下列欄位:(a)IP來源位址和目的地位址;(b)IP來源埠和目的地埠;(c)IP DiffServ Code Point(DSCP;IP DiffServ字碼指標);(d)資源保留協定(Resource Reservation Protocol;RSVP)訊息;以及(e)即時傳輸控制協定(Real-time Transport Control Protocol;RTCP)訊息及即時傳輸協定(Real-time Transport Protocol;RTP)標頭。在執行乙太網路調節的示範性具體實施例中,資料流分類可使用802.1p及802.1q標頭欄位。乙太網路調節也可以使用IP資料流分類,然而這會發生層違規。熟悉此項技術者應明白,可部署各種其他類型資料流分類作為替代方案。The data stream classification (FLCL) function 314 checks the packet header of the incoming packet. The field, and its mapping into a stream of data. In an exemplary embodiment of performing IP conditioning, the data flow classification may use the following fields: (a) IP source address and destination address; (b) IP source port and destination port; (c) IP DiffServ Code Point (DSCP; IP DiffServ code indicator); (d) Resource Reservation Protocol (RSVP) message; and (e) Real-time Transport Control Protocol (RTCP) message and instant transmission protocol (Real) -time Transport Protocol; RTP) header. In an exemplary embodiment of performing Ethernet adjustment, the data flow classification may use 802.1p and 802.1q header fields. Ethernet traffic adjustments can also be classified using IP data streams, however this can result in layer violations. Those skilled in the art should appreciate that various other types of data stream classifications can be deployed as an alternative.

FLCL 314決定一識別之資料流260是否映射至現有的MAC ID、邏輯鏈路(Logical Link;LL)模式及資料流ID(如下文詳細說明所述)。如果傳入之封包映射至現有資料流,則FLCL會將要進一步處理的封包轉遞至分割和重組(SAR)功能312。如果要求新的MAC ID,則會將一要求轉遞至無線電鏈路控制(RLC)340中的關聯控制功能344。FLCL 314 determines whether an identified data stream 260 is mapped to an existing MAC ID, Logical Link (LL) mode, and data stream ID (as described in detail below). If the incoming packet is mapped to an existing data stream, the FLCL forwards the packet to be further processed to the Split and Reassembly (SAR) function 312. If a new MAC ID is required, a request is forwarded to the associated control function 344 in the Radio Link Control (RLC) 340.

如果識別到一現有MAC ID的新資料流,則層管理員380中的QoS管理員功能382會決定該資料流所需的邏輯鏈路模式類型。如果初始化新的LL模式,則會將該要求轉遞至相對應於該MAC ID的LLC功能338,以便處理模式協商。如果在現有的LL模式內建置新的資料流,則會將該要求轉遞至LLC功能338。2003年11月26日提出的共同申請美國專利 申請案第10/723,346號標題為「QUALITY OF SERVICE SCHEDULER FOR A WIRELESS NETWORK」中詳述維護QoS佇列之具體實施例,該專利案已讓渡給本發明受讓人。If a new data stream for an existing MAC ID is identified, the QoS administrator function 382 in the layer administrator 380 determines the type of logical link mode required for the data flow. If a new LL mode is initialized, the request is forwarded to the LLC function 338 corresponding to the MAC ID to handle mode negotiation. If a new data stream is built in the existing LL mode, the request will be forwarded to the LLC function 338. The joint application of the US patent filed on November 26, 2003 A specific embodiment of the maintenance of the QoS queue is described in detail in the application Serial No. 10/723,346 entitled "QUALITY OF SERVICE SCHEDULER FOR A WIRELESS NETWORK", which is assigned to the assignee of the present invention.

在IP或乙太網路多點播送之實例中,多點播送映射功能316決定是否要藉由映射至一多點播送MAC ID以便使用MAC層多點播送來處理該封包,或是否將該封包處理成為多個單點播送傳輸(本文中稱為「調節層多點播送」(Adaptation Layer Multicast)。如果要將該封包處理成為多個單點播送傳輸,則多點播送映射功能316會複製該封包的多個複本(各複本係用於要傳輸封包至該處的每個單點播送MAC ID),並且轉遞該等封包至分割和重組(SAR)功能312。下文中將參考圖15至圖16來詳細說明此態樣。In the case of IP or Ethernet multicast, the multicast mapping function 316 determines whether to process the packet using MAC layer multicast by mapping to a multicast MAC ID, or whether to packetize the packet. Processing becomes multiple unicast transmissions (referred to herein as "Adaptation Layer Multicast". If the packet is to be processed into multiple unicast transmissions, the multicast mapping function 316 will copy the Multiple copies of the packet (each copy is used for each unicast MAC ID to which the packet is to be transmitted), and the packets are forwarded to the Split and Reassembly (SAR) function 312. Reference will now be made to Figure 15 to Figure 16 illustrates this aspect in detail.

如前段落說明所述,資料流分類功能314映射一封包至一MAC ID、LL模式及資料流ID(若有的話)。分割和重組功能312將較高層封包(即,IP資料元或乙太網路訊框)分割成適用於透過邏輯鏈路模式傳輸的多個片段(segment)。下文中將參考圖17至圖18來詳細說明此態樣之示範性具體實施例。在此實例中,會加入每片段一個一位元組調節層標頭,用於允許當將該等片段依序傳遞至接收器中相對應之SAR功能時予以重組。接著,調節層協定資料單元(PDU)被傳遞至資料鏈路控制層320,以便配合分類參數予以處理:MAC ID、LL模式及資料流ID。As described in the previous paragraph, the data stream classification function 314 maps a packet to a MAC ID, LL mode, and data stream ID (if any). The segmentation and reassembly function 312 partitions the higher layer packets (i.e., IP data elements or Ethernet frames) into a plurality of segments suitable for transmission over the logical link mode. Exemplary embodiments of this aspect will be described in detail below with reference to FIGS. 17 through 18. In this example, a one-bit tuple adjustment layer header per fragment is added to allow recombination when the fragments are sequentially passed to the corresponding SAR function in the receiver. Next, the adjustment layer protocol data unit (PDU) is passed to the data link control layer 320 for processing in accordance with the classification parameters: MAC ID, LL mode, and data stream ID.

資料鏈路控制層Data link control layer

圖4繪示通過各層行進之使用者資料封包410(即,IP資料 元、乙太網路訊框或其他封包)。在此例證說明中將描述示範性之欄位大小及類型。熟悉此項技術者應明白,各種其他大小、類型及組態皆被視為屬於本發明範疇內。4 illustrates a user data packet 410 traveling through layers (ie, IP data) Yuan, Ethernet frame or other packet). Exemplary column sizes and types will be described in this illustrative description. Those skilled in the art will appreciate that a variety of other sizes, types, and configurations are considered to be within the scope of the present invention.

如圖所示,在調節層310分割該資料封包410成為片段。每個調節子層PDU 430各載送彼等片段420之一。在此實例中,資料封包410被分割成N個片段420A-N。一調節子層PDU 430包括一含有對應片段420的封包承載(payload)434。一類型欄位432(在此實例中為一個位元組)被附加至該調節子層PDU 430。As shown, the data packet 410 is segmented at the adjustment layer 310 into segments. Each adjustment sublayer PDU 430 each carries one of its segments 420. In this example, data packet 410 is segmented into N segments 420A-N. A conditioning sublayer PDU 430 includes a packet payload 434 containing a corresponding segment 420. A type field 432 (one bit in this example) is attached to the adjustment sublayer PDU 430.

在邏輯鏈路(LL)層330,一LL標頭442(在此實例中為4個位元組)被附加至含該調節子層PDU 430的該封包承載434。該LL標頭442的示範性資訊包括一資料流識別項、控制資訊及序號。運用標頭442及封包承載444來計算出並且附加一CRC 446,藉此構成一邏輯鏈路子層PDU(LL PDU)440。以類似方式,邏輯鏈路控制(LLC)338及無線電鏈路控制(RLC)340(下文會詳細說明)構成LLC PDU及RLC PDU。LL PDU 440及LLC PDU和RLC PDU都被置入佇列(即,高QoS佇列362、最佳工作(best effort)佇列364或控制訊息佇列366)中,以由MUX功能360予以服務。At logical link (LL) layer 330, an LL header 442 (4 bytes in this example) is appended to the packet bearer 434 containing the conditioning sublayer PDU 430. Exemplary information of the LL header 442 includes a data stream identification item, control information, and serial number. A header 442 and a packet bearer 444 are utilized to calculate and append a CRC 446, thereby forming a Logical Link Sublayer PDU (LL PDU) 440. In a similar manner, Logical Link Control (LLC) 338 and Radio Link Control (RLC) 340 (described in more detail below) form an LLC PDU and an RLC PDU. The LL PDU 440 and the LLC PDU and the RLC PDU are both placed in a queue (i.e., a high QoS queue 362, a best effort queue 364, or a control message queue 366) for servicing by the MUX function 360. .

MUX功能360將一MUX標頭452附加至每個LL PDU 440。一示範性MUX標頭452可包含一長度及一類型(在此實例中,標頭452為2個位元組)。可針對每個控制PDU(即,LLC PDU及RLC PDU)來構成一類似的標頭。LL PDU 440(或者,LLC或RLC PDU)構成封包承載454。標頭452及封包承載454 構成MUX子層PDU(MPDU)450(本文中也將MUX子層PDU稱為MUX PDU)。MUX function 360 appends a MUX header 452 to each LL PDU 440. An exemplary MUX header 452 can include a length and a type (in this example, header 452 is 2 bytes). A similar header can be constructed for each control PDU (ie, LLC PDU and RLC PDU). The LL PDU 440 (or, LLC or RLC PDU) constitutes a packet bearer 454. Header 452 and packet bearing 454 A MUX sublayer PDU (MPDU) 450 is formed (the MUX sublayer PDU is also referred to herein as a MUX PDU).

MAC協定將共用媒體上的通信資源配置在一連串MAC訊框中。MAC排程器376決定為每個MAC訊框(標示為MAC訊框f,其中f指示一定特殊MAC訊框)中一或多個MAC ID所配置之實體層叢發大小。請注意,並非所有含要傳輸之資料的MAC ID都會被配置在任何特定MAC訊框的空間中。可部署任何存取控制或排程機制,皆屬於本發明範圍內。當為一MAC ID進行配置作業時,該MAC ID所對應的MUX功能360將構成一MAC PDU 460,其包含要包括在該MAC訊框f中的一或多個MUX PDU 450。一或多個所配置之MAC ID的一或多個MAC PDU 460被包括在一MAC訊框中(即,下文中參考圖5所詳述的MAC訊框500)。The MAC protocol configures communication resources on the shared medium in a series of MAC frames. The MAC scheduler 376 determines the physical layer burst size configured for one or more MAC IDs in each MAC frame (labeled as MAC frame f, where f indicates a particular MAC frame). Please note that not all MAC IDs containing the material to be transmitted will be configured in the space of any particular MAC frame. Any access control or scheduling mechanism can be deployed and is within the scope of the present invention. When a configuration job is performed for a MAC ID, the MUX function 360 corresponding to the MAC ID will constitute a MAC PDU 460 containing one or more MUX PDUs 450 to be included in the MAC frame f. One or more MAC PDUs 460 of one or more configured MAC IDs are included in a MAC frame (i.e., MAC frame 500 detailed below with reference to FIG. 5).

在一項示範性具體實施例中,一項態樣允許傳輸一局部MPDU 450,藉此允許高效率地封裝在一MAC PDU 460中。下文會詳細解說此態樣。在此實例中,MUX功能360維護前一次傳輸(藉由局部MPDU 464來識別)所留下之任何局部MPDU 450的未傳輸位元組計數。會在目前訊框的任何新PDU 466(即,LL PDU或控制PDU)之前先傳輸彼等位元組464。標頭462(在此實例中為2個位元組)包括一MUX指標,用於指向目前訊框中所要傳輸之第一個新MPDU(在此實例中為MPDU 466A)的起始處。標頭462還可包括一MAC位址。In an exemplary embodiment, an aspect allows for transmission of a local MPDU 450, thereby allowing for efficient packaging in a MAC PDU 460. This will be explained in detail below. In this example, MUX function 360 maintains the untransmitted byte count of any local MPDUs 450 left by the previous transmission (identified by local MPDU 464). These bytes 464 are transmitted prior to any new PDUs 466 (i.e., LL PDUs or Control PDUs) of the current frame. Header 462 (2 bytes in this example) includes a MUX indicator that points to the beginning of the first new MPDU (MPDU 466A in this example) to be transmitted in the current frame. Header 462 can also include a MAC address.

MAC PDU 460包括該MUX指標462、一位於起始處之可能的局部MUX PDU 464(前一次配置所留下)、接著是零或 多個完整MUX PDU 466A-N以及一可能的局部MUX PDU 468(來自目前的配置)或用於填滿該實體層叢發之已配置部分的其他填補項(padding)。會在已配置給MAC ID的實體層叢發中運送MAC PDU 460。The MAC PDU 460 includes the MUX indicator 462, a possible local MUX PDU 464 at the beginning (left in the previous configuration), followed by zero or A plurality of full MUX PDUs 466A-N and a possible local MUX PDU 468 (from the current configuration) or other padding for filling the configured portion of the physical layer burst. The MAC PDU 460 is shipped in the physical layer burst that has been configured for the MAC ID.

共同MAC、MAC訊框及傳輸頻道Common MAC, MAC frame and transmission channel

圖5繪示示範性MAC訊框500。共同MAC功能370管理下列傳輸頻道片段之間的MAC訊框500配置:廣播、控制、正向和反向流量(分別稱為下載鏈路階段及上載鏈路階段)以及隨機存取。MAC組訊框功能372可使用各種構成組件來構成訊框,下文會詳細說明。下文會詳細說明示範性功能、編碼及傳輸頻道持續時間。FIG. 5 illustrates an exemplary MAC frame 500. The common MAC function 370 manages the MAC frame 500 configuration between the following transport channel segments: broadcast, control, forward and reverse traffic (referred to as the download link phase and the upload link phase, respectively), and random access. The MAC group frame function 372 can use various components to form a frame, which will be described in detail below. Exemplary function, coding, and transmission channel durations are detailed below.

在此示範性具體實施例中,會在一2 ms(毫秒)時間間隔時段內來分時雙工處理(TDD)一MAC訊框。MAC訊框500被分成五個傳輸頻道(按圖中所示之510-550順序出現)。在替代具體實施例中可部署替代順序及不同的訊框大小。有關MAC訊框500配置的持續時間可被量子化成某小段共同時間間隔。在一項示範性具體實施例中,會以800 ns(奈秒,這也是短型或長型OFDM符號的循環前置碼(cyclic prefix)持續時間,下文會詳細說明)為單元來量子化有關MAC訊框500配置的持續時間。短型OFDM符號為4.0 μs(微秒)或5倍的800 ns。In this exemplary embodiment, a time division duplex processing (TDD)-MAC frame is performed over a 2 ms (millisecond) time interval. The MAC frame 500 is divided into five transmission channels (appearing in the order of 510-550 as shown). Alternative sequences and different frame sizes can be deployed in alternative embodiments. The duration of the configuration of the MAC frame 500 can be quantized into a small common time interval. In an exemplary embodiment, the quantization is performed in units of 800 ns (nanoseconds, which is also the cyclic prefix duration of short or long OFDM symbols, as described in more detail below). The duration of the MAC frame 500 configuration. The short OFDM symbol is 4.0 μs (microseconds) or 5 times 800 ns.

示範性MAC在一MAC訊框內提供五個傳輸頻道:(a)廣播頻道(Broadcast Channel;BCH)510,用於載送廣播控制頻道(Broadcast Control Channel;BCCH);(b)控制頻道(Control Channel;CCH)520,用於在正向鏈路上載送訊框控制頻道(Frame Control Channel;FCCH)及隨機存取反饋頻道(Random Access Feedback Channel;RFCH);(c)流量頻道(Traffic Channel;TCH),用於載送使用者資料及控制資訊,並且被細分成(i)正向鏈路上的正向流量頻道(Forward Traffic Channel;F-TCH)530,及(ii)反向鏈路上的反向流量頻道(Reverse Traffic Channel;R-TCH)540;以及(d)隨機存取頻道(Random Access Channel;RCH)550,用於載送存取要求頻道(Access Request Channel;ARCH)(用於UT存取要求)。還會在片段510中傳輸一前導引導訊號(pilot beacon)。The exemplary MAC provides five transmission channels in one MAC frame: (a) Broadcast Channel (BCH) 510 for carrying a Broadcast Control Channel (BCCH); (b) Control Channel (Control) Channel; CCH) 520, used to upload a frame control channel (FCCH) and a random access feedback channel (RFCH) on the forward link; (c) a traffic channel (Traffic Channel; TCH) for carrying user data and control information, and subdivided into (i) Forward Traffic Channel (F-TCH) 530 on the forward link, and (ii) on the reverse link a reverse traffic channel (R-TCH) 540; and (d) a random access channel (RCH) 550 for carrying an access request channel (ARCH) (for UT access requirements). A pilot beacon is also transmitted in segment 510.

下載鏈路階段的訊框500包括片段510-530。上載鏈路階段包括片段540-550。片段560指示一後續MAC訊框開始。The frame 500 of the download link phase includes segments 510-530. The upload link phase includes segments 540-550. Fragment 560 indicates the start of a subsequent MAC frame.

廣播頻道(BCH)Broadcast Channel (BCH)

由AP傳輸廣播頻道(BCH)及引導訊號510。BCH 510的第一部分包含共同實體層添加項(common physical layer overhead),例如,前導訊號,包括時序和頻率獲取前導。在一項示範性具體實施例中,引導訊號(beacon)係由下列項目所組成:由UT進行頻率和時序獲取所使用的2個短型OFDM符號;之後接續是UT用來評估頻道的共同MIMO前導之8個短型OFDM符號。The broadcast channel (BCH) and the pilot signal 510 are transmitted by the AP. The first portion of BCH 510 includes a common physical layer overhead, such as a preamble, including timing and frequency acquisition preambles. In an exemplary embodiment, the beacon is composed of two short OFDM symbols used by the UT for frequency and timing acquisition; followed by a common MIMO used by the UT to evaluate the channel. The leading 8 short OFDM symbols.

BCH 510的第二部分是資料部分。BCH資料部分定義關於傳輸頻道片段的MAC訊框配置:CCH 520、F-TCH 530、R-TCH 540和RCH 550,並且還定義關於子頻道的CCH組合。在此實例中,BCH 510定義無線LAN 120的涵蓋範圍, 並且會在可用的大部分強固型資料傳輸模式中予以傳輸。整個BCH的長度為固定。在一項示範性具體實施例中,BCH定義MIMO-WLAN的涵蓋範圍,並且會使用比率1/4碼之二進位相移鍵控(Binary Phase Shift Keying;BPSK)在空間時間傳輸分集(Space Time Transmit Diversity;STTD)模式中予以傳輸。在此實例中,BCH的長度固定為10個短型OFDM符號。The second part of the BCH 510 is the data section. The BCH data portion defines the MAC frame configuration for the transmission channel segments: CCH 520, F-TCH 530, R-TCH 540, and RCH 550, and also defines CCH combinations for the subchannels. In this example, BCH 510 defines the coverage of wireless LAN 120, It will also be transmitted in most of the robust data transfer modes available. The length of the entire BCH is fixed. In an exemplary embodiment, the BCH defines the coverage of the MIMO-WLAN and uses a ratio of 1/4 code Binary Phase Shift Keying (BPSK) in space time transmission diversity (Space Time). Transmit Diversity; STTD) mode is transmitted. In this example, the length of the BCH is fixed to 10 short OFDM symbols.

控制頻道(CCH)Control channel (CCH)

控制頻道(CCH)520係由AP予以傳輸,並且定義MAC訊框餘項之組合。共同MAC功能370的控制頻道功能374產生CCH。下文會詳細說明CCH的示範性具體實施例。會使用高強固型傳輸模式在多個子頻道中傳輸CCH 520,每個子頻道各具有不同的資料傳輸率。第一個子頻道最為強固,並預期所有UT都可予以解碼。在一項示範性具體實施例中,會針對第一個CCH子頻道使用比率1/4碼之BPSK。還可以使用數個其他子頻道,彼等子頻道的強固性會遞減(且效率會遞增)。在一項示範性具體實施例中,至多會使用三個額外子頻道。每個UT都會嘗試依序解碼所有子頻道,直到解碼失敗。每個訊框中的CCH傳輸頻道片段為可變長度,長度取決於每個子頻道中的CCH訊息數量。會在CCH的最強固(第一)子頻道上載送反向鏈路隨機存取叢發之認可(acknowledgment)。The Control Channel (CCH) 520 is transmitted by the AP and defines the combination of the remainder of the MAC frame. The control channel function 374 of the common MAC function 370 generates a CCH. Exemplary embodiments of the CCH are described in detail below. The CCH 520 is transmitted in a plurality of subchannels using a high-strength transmission mode, each of which has a different data transmission rate. The first subchannel is the strongest and expects all UTs to be decoded. In an exemplary embodiment, a ratio 1/4 code BPSK is used for the first CCH subchannel. Several other subchannels can also be used, and the robustness of their subchannels will be decremented (and the efficiency will increase). In an exemplary embodiment, up to three additional subchannels will be used. Each UT will attempt to decode all subchannels in sequence until the decoding fails. The CCH transmission channel segment in each frame is variable length, and the length depends on the number of CCH messages in each subchannel. An acknowledgement (acknowledgment) of the reverse link random access burst is sent on the most robust (first) subchannel of the CCH.

CCH包含有關正向鏈路和反向鏈路的實體層叢發指派。指派可能是用於在正向鏈路或反向鏈路上傳送資料。一般 而言,一實體層叢發指派包括:(a)一MAC ID;(b)一用於指示訊框內配置開始時間的值(在F-TCH或R-TCH)中;(c)配置的長度;(d)專用實體層添加項的長度;(e)傳輸模式;以及(f)用於實體層叢發的編碼和調變機制。一MAC ID識別一用於多個單點播送傳輸的單一UT或用於多點播送傳輸的一組UT。在此示範性具體實施例中,還會指派一用於傳輸至所有UT的唯一廣播MAC ID。在一項示範性具體實施例中,實體層添加項包括一由0、4或8個短型OFDM符號所組成的MIMO前導。在此實例中,傳輸模式是STTD或空間多工。The CCH contains physical layer burst assignments for the forward and reverse links. The assignment may be for transmitting data on the forward link or the reverse link. general For example, a physical layer burst assignment includes: (a) a MAC ID; (b) a value for indicating the start time of the configuration in the frame (in F-TCH or R-TCH); (c) configured Length; (d) the length of the special entity layer addition; (e) the transmission mode; and (f) the coding and modulation mechanism for the physical layer burst. A MAC ID identifies a single UT for multiple unicast transmissions or a set of UTs for multicast transmissions. In this exemplary embodiment, a unique broadcast MAC ID for transmission to all UTs is also assigned. In an exemplary embodiment, the physical layer addition includes a MIMO preamble consisting of 0, 4, or 8 short OFDM symbols. In this example, the transmission mode is STTD or spatial multiplexing.

有關CCH的其他示範類型指派包括:一有關用於從一UT傳輸一專用前導之反向鏈路的指派;或一有關用於從一UT傳輸一緩衝器和鏈路狀態資訊之反向鏈路的指派。CCH也可以定義訊框之保留未使用部分。UT可使用訊框的彼等未使用部分來進行雜訊底限(及干擾)評估以及量測鄰近系統之引導訊號。下文會詳細說明控制頻道的示範性具體實施例。Other exemplary type assignments for CCH include: an assignment for a reverse link for transmitting a dedicated preamble from a UT; or a reverse link for transmitting a buffer and link state information from a UT Assignment. The CCH can also define the unused portion of the frame. The UT can use the unused portions of the frame to perform noise floor (and interference) evaluation and to measure the pilot signals of adjacent systems. Exemplary embodiments of the control channel are described in detail below.

隨機存取頻道(RCH)Random access channel (RCH)

隨機存取頻道(RCH)550是UT可用於傳輸一隨機存取叢發的反向鏈路頻道。會在RCH中指定每個訊框的RCH可變長度。在一項示範性具體實施例中,會使用比率1/4碼BPSK的主要特徵模態(eigenmode)來傳輸隨機存取叢發。Random Access Channel (RCH) 550 is a reverse link channel that the UT can use to transmit a random access burst. The RCH variable length of each frame is specified in the RCH. In an exemplary embodiment, a primary feature modality (eigenmode) of a ratio 1/4 code BPSK is used to transmit random access bursts.

在此示範性具體實施例中會定義兩種類型隨機存取叢發。當AP必須使用一滑動關聯器(sliding correlator)來偵測 存取叢發的起始處時,UT會使用一長型叢發來進行起始存取。一旦UT向一AP註冊,鏈路的兩端會完成一時序調整程序。在時序調整之後,UT可以用同步於RCH上之時槽時序的方式來傳輸其隨機存取叢發。接著,UT會使用一短型叢發來進行隨機存取。在一項示範性具體實施例中,一長型叢發是4個短型OFDM符號,而一短型叢發是2個短型OFDM符號。Two types of random access bursts are defined in this exemplary embodiment. When the AP must use a sliding correlator to detect When accessing the beginning of a burst, the UT uses a long burst to initiate the access. Once the UT registers with an AP, both ends of the link complete a timing adjustment procedure. After timing adjustment, the UT can transmit its random access bursts in a manner synchronized to the time slot timing on the RCH. Next, the UT uses a short burst for random access. In an exemplary embodiment, a long burst is 4 short OFDM symbols and a short burst is 2 short OFDM symbols.

正向流量頻道(F-TCH)Forward traffic channel (F-TCH)

正向流量頻道(F-TCH)530包括從AP 104傳輸的一或多個實體層叢發。會按照CCH指派中的指示,將每個叢發導向至一特殊MAC ID。每個叢發各包括專用實體層添加項(例如,前導訊號(若有的話)),以及一按照傳輸模式及在CCH指派中指示之編碼和調變機制所傳輸的MAC PDU。F-TCH屬於可變長度。在一項示範性具體實施例中,專用實體層添加項可包括一專用MIMO前導。Forward Traffic Channel (F-TCH) 530 includes one or more physical layer bursts transmitted from AP 104. Each burst is directed to a special MAC ID as indicated in the CCH assignment. Each burst includes a dedicated entity layer addition (e.g., a preamble (if any)) and a MAC PDU transmitted in accordance with the transmission mode and the coding and modulation mechanisms indicated in the CCH assignment. F-TCH is variable length. In an exemplary embodiment, the dedicated physical layer addition may include a dedicated MIMO preamble.

在一項示範性具體實施例中,在STTD模式中,有一個同等級空間分集頻道的效能會在每短型OFDM符號12個位元(有關48個音頻(tone)的比率1/2碼RPSK)與每長型OFDM符號1344個位元(有關192個音頻的比率7/8碼256 QAM)之間變化。這會轉譯為在峰值實體層資料傳輸率範圍內的33因子(或在此實例中為3-99 Mbps)。In an exemplary embodiment, in STTD mode, the performance of a peer-level spatial diversity channel will be 12 bits per short OFDM symbol (a ratio of 1/2 codes RPSK for 48 tones) ) varies from 1344 bits per long OFDM symbol (ratio of 7/8 codes 256 QAM for 192 audio). This translates to a factor of 33 (or 3-99 Mbps in this example) over the peak physical layer data rate.

在此實例中,可使用一至多四個平行空間頻道的空間多工模式。每個空間頻道都會使用一適當的編碼和調變機制,其效率係在每短型OFDM符號12個位元與每長型OFDM 符號1344個位元之間。因此,空間多工模式中的峰值實體層資料傳輸率範圍係在3與395 Mbps之間。由於空間處理約束限制,導致並非所有的平行空間頻道都能夠在最高效率下運作,所以有關峰值實體層資料傳輸率的最實用限制可能是240 Mbps,在此實例中為介於最低傳輸率與最高傳輸率之間的80因子。In this example, a spatial multiplex mode of one to four parallel spatial channels can be used. Each spatial channel uses an appropriate coding and modulation mechanism with an efficiency of 12 bits per short OFDM symbol and each long OFDM The symbol is between 1344 bits. Therefore, the peak physical layer data transmission rate range in the spatial multiplex mode is between 3 and 395 Mbps. Due to space processing constraints, not all parallel space channels can operate at maximum efficiency, so the most practical limit on the peak physical layer data transfer rate may be 240 Mbps, which in this example is between the lowest transfer rate and the highest 80 factors between transmission rates.

反向流量頻道(R-TCH)Reverse Traffic Channel (R-TCH)

反向流量頻道(R-TCH)540包括從一或多個UT 106傳輸的實體層叢發傳輸。按照CCH指派中的指示,每個叢發係由一特殊UT予以傳輸。每個叢發各包括一前導訊號前導項(pilot preamble)(若有的話),以及一按照傳輸模式及在CCH指派中指示之編碼和調變機制所傳輸的MAC PDU。R-TCH屬於可變長度。在一項示範性具體實施例中,如同F-TCH,在STTD模式中的資料傳輸率範圍為3至98 Mbps,在空間多工模式中的資料傳輸率範圍為3至395 Mbps,或許240 Mbps是最實用的限制。Reverse Traffic Channel (R-TCH) 540 includes physical layer burst transmissions transmitted from one or more UTs 106. Each burst is transmitted by a special UT as indicated in the CCH assignment. Each burst includes a pilot preamble (if any) and a MAC PDU transmitted in accordance with the transmission mode and the coding and modulation mechanisms indicated in the CCH assignment. R-TCH is variable length. In an exemplary embodiment, like the F-TCH, the data transfer rate in the STTD mode ranges from 3 to 98 Mbps, and the data transfer rate in the spatial multiplex mode ranges from 3 to 395 Mbps, perhaps 240 Mbps. It is the most practical limit.

在此示範性具體實施例中,F-TCH 530、R-TCH 540或兩者都可使用空間多工或分碼多向近接技術,藉此允許同時傳輸相關聯於不同UT的MAC PDU。一包含MAC PDU所相關聯之MAC ID的欄位(即,上載鏈路上的寄件者,或下載鏈路上的預定收件者)可被包括MAC PDU標頭中。可使用此欄位來解決當使用空間多工或CDMA時所引發的定址語意模糊(ambiguity)。在替代具體實施例中,如果多工係嚴格依據分時技術,則由於在用於配置MAC訊框中一既定時槽 給一特定MAC ID的CCH訊息中包括了定址資訊,所以MAC PDU標頭中不需要MAC ID。可部署空間多工、分碼多工、分時多工和此項技術中已知的任何其他技術。In this exemplary embodiment, either F-TCH 530, R-TCH 540, or both may use spatial multiplexing or code division multi-directional proximity techniques, thereby allowing simultaneous transmission of MAC PDUs associated with different UTs. A field containing the MAC ID associated with the MAC PDU (i.e., the sender on the upload link, or the intended recipient on the download link) may be included in the MAC PDU header. This field can be used to address the ambiguity of addressing when using spatial multiplexing or CDMA. In an alternative embodiment, if the multiplex system is strictly based on the time-sharing technique, then a timing slot is used in the configuration of the MAC frame. Address information is included in the CCH message for a specific MAC ID, so the MAC ID is not required in the MAC PDU header. Space multiplex, code division multiplexing, time division multiplexing, and any other techniques known in the art can be deployed.

會起始註冊期間,每個作用中UT都被指派一MAC ID。MAC ID指派是由RLC 340的關聯控制(AC)功能344予以處理。會為正向鏈路上的廣播傳輸配置一個唯一MAC ID。廣播傳輸屬於正向傳輸頻道(Forward Transport Channel;F-TCH)之一部分,並且會透過使用唯一廣播MAC ID來使用控制頻道(CCH)予以指派。在此實例中,會使用一廣播MAC ID配置,每16個訊框廣播一系統識別訊息一次。使用者資料廣播也可以使用廣播MAC ID。During the initial registration period, each active UT is assigned a MAC ID. The MAC ID assignment is handled by the Association Control (AC) function 344 of the RLC 340. A unique MAC ID is configured for broadcast transmissions on the forward link. The broadcast transmission is part of the Forward Transport Channel (F-TCH) and is assigned using the Control Channel (CCH) by using a unique broadcast MAC ID. In this example, a broadcast MAC ID configuration is used, and a system identification message is broadcast every 16 frames. The broadcast data ID can also be used for the user profile broadcast.

可以為正向鏈路上的廣播傳輸配置一組由一或多個MAC ID組成的集合。多點播送傳輸屬於F-TCH之一部分,並且會透過使用一指派給一特定多點播送群組的特定多點播送MAC ID來使用CCH予以指派。指派一MAC ID給一組UT群組是由RLC 340的關聯控制(AC)功能344予以處理。A set of one or more MAC IDs can be configured for broadcast transmissions on the forward link. Multicast transmissions are part of the F-TCH and are assigned using the CCH by using a specific multicast MAC ID assigned to a particular multicast group. Assigning a MAC ID to a group of UT groups is handled by the Association Control (AC) function 344 of the RLC 340.

現在重新說明圖3所示的共同MAC 370。位於AP處的隨機存取控制功能378處理來自使用者之存取叢發認可。連同該認可,AP必須立即進行R-TCH配置,以便獲得來自UT的緩衝器狀態資訊。此要求被轉遞至排程器376。The common MAC 370 shown in Fig. 3 will now be re-explained. The random access control function 378 located at the AP handles access burst approvals from the user. Along with this approval, the AP must immediately perform an R-TCH configuration to obtain buffer status information from the UT. This request is forwarded to scheduler 376.

在UT處,一隨機存取管理員依據其MUX佇列中的資料以及其現有配置來決定何時傳輸一存取叢發。當UT由於現有LL連接而具有一週期性配置時,則可使用現有的R-TCH配置來提供叢發狀態資訊。At the UT, a random access administrator decides when to transmit an access burst based on the data in its MUX queue and its existing configuration. When the UT has a periodic configuration due to an existing LL connection, the existing R-TCH configuration can be used to provide burst status information.

依據接收自UT的緩衝器和鏈路狀態訊息中所包含的資訊,位於AP處的對應MUX功能360會更新UT代理伺服器(proxy)。UT代理伺服器(proxy)維護UT的MUX功能緩衝器狀態,排程器376會使用彼等狀態來進行R-TCH配置。UT代理伺服器(proxy)還會維護AP在F-TCH上傳輸至UT的最大傳輸率。Based on the information contained in the buffer and link state messages received from the UT, the corresponding MUX function 360 located at the AP updates the UT proxy server. The UT proxy server maintains the UT's MUX function buffer status, and scheduler 376 uses these states for R-TCH configuration. The UT proxy server also maintains the maximum transfer rate that the AP transmits to the UT on the F-TCH.

位於AP的共同MAC功能370實行排程器376,以便仲裁UT間之配置,同時高效率利用每個MAC訊框。為了限制添加項,並非會在每個訊框中為所有作用中UT配置一實體層叢發。The common MAC function 370 located at the AP implements scheduler 376 to arbitrate the configuration between UTs while efficiently utilizing each MAC frame. In order to limit the additions, it is not necessary to configure a physical layer burst for all active UTs in each frame.

排程器376可運用下列資訊在每個MAC訊框中進行配置:Scheduler 376 can be configured in each MAC frame using the following information:

1.每個MAC ID的標稱配置。可能在任何訊框中僅有作用中UT之子集才會被指派一標稱配置。例如,僅每隔一訊框或每第四個訊框等等,才會為某些UT提供一標稱配置。標稱配置係由層管理員380中的許可控制功能384予以決定。在一項示範性具體實施例中,會就OFDM符號數量而論來進行標稱配置。1. The nominal configuration of each MAC ID. It is possible that only a subset of the active UTs in any frame will be assigned a nominal configuration. For example, only one frame or every fourth frame, etc., will provide a nominal configuration for some UTs. The nominal configuration is determined by the admission control function 384 in the layer administrator 380. In an exemplary embodiment, the nominal configuration will be made in terms of the number of OFDM symbols.

2.專用實體層添加項(例如,前導訊號)配置。RLC 340中的無線電資源控制(Radio Resource Control;RRC)342決定專用實體層添加項的必要長度及週期性。在一項示範性具體實施例中,專用實體層添加項包括一專用MIMO前導。2. Dedicated entity layer add-on (for example, preamble) configuration. The Radio Resource Control (RRC) 342 in the RLC 340 determines the necessary length and periodicity of the dedicated entity layer addition. In an exemplary embodiment, the dedicated physical layer addition includes a dedicated MIMO preamble.

3.傳輸模式及傳輸率。這是由用於R-TCH的RRC 342所決定且被提供給排程器376。對於F-TCH,這資訊係獲自UT的鏈路和緩衝器狀態訊息,並且係在UT代理伺服器(proxy) 予以維護。3. Transmission mode and transmission rate. This is determined by the RRC 342 for the R-TCH and is provided to the scheduler 376. For F-TCH, this information is obtained from the UT link and buffer status messages and is attached to the UT proxy server. Be maintained.

4.每個MAC ID的資料積存(backlog)。排程器376可從下列各項取得此項資訊:用於正向鏈路的每個MAC ID之MUX功能360;以及用於反向鏈路的UT代理伺服器(proxy)。4. The data backlog of each MAC ID. Scheduler 376 can obtain this information from the MUX function 360 for each MAC ID of the forward link; and the UT proxy for the reverse link.

此外,排程器還會配置RCH的持續時間,以及決定CCH的持續時間。會使用四個編碼機制之一(依據UT的頻道品質),在CCH上傳輸每項指派。因此,CCH的持續時間是指派數量與用於傳輸每項指派之編碼機制的函數。In addition, the scheduler also configures the duration of the RCH and determines the duration of the CCH. Each assignment is transmitted on the CCH using one of four encoding mechanisms (according to the channel quality of the UT). Thus, the duration of the CCH is a function of the number of assignments and the encoding mechanism used to transport each assignment.

依據排程器所決定的配置,位於AP的MAC實體會填入(populate)每項指派的參數,以便建構BCH和CCH。BCH定義關於傳輸頻道片段的MAC訊框配置:CCH、F-TCH、R-TCH和RCH,並且還定義關於子頻道的CCH組合,如上文參考圖5之說明所述。下文詳細說明示範性CCH。According to the configuration determined by the scheduler, the MAC entity located in the AP populates each assigned parameter to construct the BCH and CCH. The BCH defines the MAC frame configuration for the transmission channel segments: CCH, F-TCH, R-TCH, and RCH, and also defines CCH combinations for the subchannels, as described above with reference to FIG. An exemplary CCH is described in detail below.

在一項示範性具體實施例中,會在至多四個子頻道之一(依據UT的頻道品質,每個子頻道各使用一不同的編碼和調變機制)中,在CCH上傳輸每項指派。會使用最強固的編碼機制(第一個子頻道或子片段)來傳輸多點播送和廣播指派。位於UT上的MAC實體讀取CCH,以便決定用於該訊框之本身的正向鏈路和反向鏈路配置。In an exemplary embodiment, each assignment is transmitted on the CCH in one of up to four subchannels (using a different encoding and modulation mechanism for each subchannel, depending on the channel quality of the UT). Multicast and broadcast assignments are transmitted using the strongest encoding mechanism (the first subchannel or subsegment). The MAC entity located on the UT reads the CCH to determine the forward link and reverse link configurations for the frame itself.

在發射器處,MAC功能在F-TCH(位於AP處)或R-TCH(位於UT處)上配置給一特定MAC ID的實體層叢發上傳輸相關聯於該特定MAC ID的MAC PDU。在接收器處,MAC功能依據CCH指派來擷取相對應於一MAC ID的MAC PDU,並且將其傳遞至該MAC ID的MUX功能。At the transmitter, the MAC function is configured to transmit a MAC PDU associated with the particular MAC ID to the physical layer of a particular MAC ID at the F-TCH (at the AP) or R-TCH (at the UT). At the receiver, the MAC function retrieves the MAC PDU corresponding to a MAC ID according to the CCH assignment and passes it to the MUX function of the MAC ID.

MUXMUX

下文中將參考圖19至圖23來詳細說明MUX功能360。在接收器處,MUX功能從由連續MAC PDU所組成的位元組流來擷取PDU,並且將其投送至所屬的LL、LLC或RLC實體。路徑選擇係以MUX PDU標頭中所包含的類型欄位(邏輯頻道)為基礎。The MUX function 360 will be described in detail below with reference to FIGS. 19 through 23. At the receiver, the MUX function fetches the PDU from the byte stream consisting of consecutive MAC PDUs and routes it to the associated LL, LLC or RLC entity. The path selection is based on the type field (logical channel) contained in the MUX PDU header.

無線電鏈路控制(RLC)Radio Link Control (RLC)

在系統初始化期間,會初始化由系統識別控制功能346所組成的無線電鏈路控制(RLC)功能340。當UT使用來自存取集區的MAC ID來起始存取系統時,RLC功能會指派一新的MAC ID給該UT。接著,如果該UT加入一多點播送群組,則可被配置額外的多點播送MAC ID。During system initialization, a Radio Link Control (RLC) function 340 consisting of system identification control functions 346 is initialized. When the UT initiates access to the system using the MAC ID from the access pool, the RLC function assigns a new MAC ID to the UT. Then, if the UT joins a multicast group, an additional multicast MAC ID can be configured.

當一新MAC ID被指派給一UT時,RLC功能會初始化下列每項功能的一個執行個體(instance):關聯控制(AC)功能344、無線電資源控制(RRC)342及邏輯鏈路控制(LLC)338。當指派一新的多點播送MAC ID時,RLC功能會初始化一新的AC執行個體以及用於LL多點播送模式的LLC。When a new MAC ID is assigned to a UT, the RLC function initializes an instance of each of the following functions: Association Control (AC) Function 344, Radio Resource Control (RRC) 342, and Logical Link Control (LLC) ) 338. When assigning a new multicast MAC ID, the RLC function initializes a new AC executive and the LLC for the LL multicast mode.

在此示範性具體實施例中,AP會使用廣播MAC ID,每16個MAC訊框傳輸一系統識別參數訊息一次。系統識別參數訊息包含網路和AP ID以及協定版本號碼。此外,系統識別參數訊息還包含供UT起始存取系統所使用的存取MAC ID清單。In this exemplary embodiment, the AP uses the broadcast MAC ID to transmit a system identification parameter message every 16 MAC frames. The system identification parameter message contains the network and AP ID and the agreement version number. In addition, the system identification parameter message also contains a list of access MAC IDs used by the UT to initiate access to the system.

AC功能344(a)提供UT鑑認;(b)管理UT的註冊(附加/卸離)功能(至於多點播送MAC ID,AC功能會管理對多點播送 群組之附加/卸離(attach/detach);以及(c)用於LL的加密金鑰交換。AC function 344(a) provides UT authentication; (b) manages UT registration (attach/discharge) function (as for multicast MAC ID, AC function manages multicasting) Group attachment/detachment (attach/detach); and (c) encryption key exchange for LL.

會在每個UT處初始化一個RRC執行個體342。會在AP處初始化每作用中UT一個RRC執行個體。位於AP和UT處的RRC功能可共用正向和反向鏈路頻道度量(若需要)。An RRC Execution Individual 342 will be initialized at each UT. An RRC executor of each active UT is initialized at the AP. The RRC functions located at the AP and UT can share forward and reverse link channel metrics (if needed).

RRC(a)管理AP和UT處的傳輸鏈和接收鏈的校準(calibration)(空間多工傳輸模式可能需要此校準);(b)決定用於傳至UT之傳輸的傳輸模式及傳輸率控制,並且將決定結果提供給MAC排程器376;(c)決定專用實體層添加項(例如,在R-TCH上及F-TCH上之實體層叢發傳輸所需的專用前導)的週期性及長度;(d)管理傳至及來自一UT之傳輸的功率控制,並將功率控制提供給PHY管理員;以及(e)決定來自UT之R-TCH傳輸的時序調整。RRC(a) manages the calibration of the transmission and reception chains at the AP and UT (the spatial multiplexing transmission mode may require this calibration); (b) determines the transmission mode and transmission rate control for transmissions to the UT And providing the decision result to the MAC scheduler 376; (c) determining the periodicity of the dedicated entity layer addition (eg, the dedicated preamble required for the physical layer burst transmission on the R-TCH and the F-TCH) And length; (d) managing power control to and from the transmission of a UT, and providing power control to the PHY administrator; and (e) determining timing adjustments for R-TCH transmissions from the UT.

邏輯鏈路(LL)Logical link (LL)

由使用者資料片段所組成之調節層PDU連同相關聯之MAC ID、LL模式及資料流ID(若有的話)一起提供給DLC層320。LL模式功能330新增一LL標頭及一運用整個LL PDU所計算得出的3位元組CRC。在示範性具體實施例中支援數種模式。可部署認可336和否定認可334功能。還可部署無障礙式廣播/多點播送/單點播送功能332。基於例證說明,下列列出四個LL模式(圖23中詳示MUX PDU內的模式格式細節)。The adjustment layer PDU consisting of the user profile is provided to the DLC layer 320 along with the associated MAC ID, LL mode, and data stream ID (if any). The LL mode function 330 adds an LL header and a 3-bit CRC calculated using the entire LL PDU. Several modes are supported in the exemplary embodiment. Deployable Approval 336 and Negative Approval 334 features are available. Accessible broadcast/multicast/unicast function 332 can also be deployed. Based on the illustration, the following four LL modes are listed (the mode format details within the MUX PDU are detailed in Figure 23).

1.非連線式否定認可模式(模式0)。在此情況下,LL標頭為空值(null)。此模式可運用在無障礙地轉遞調節層PDU。 LL模式0可實作原則(policing)。廣播及多點播送MAC ID僅提供非連線式否定認可(無障礙)模式。1. Non-connected negative recognition mode (mode 0). In this case, the LL header is null (null). This mode can be used to transfer the adjustment layer PDU in an unobstructed manner. LL mode 0 can be implemented as policing. Broadcast and multicast MAC IDs only provide a non-wired negative recognition (accessibility) mode.

2.非連線式認可模式(模式1)。此模式係運用在傳輸調節層PDU,而不需要相關聯於LL模式3連接建置的添加項及延遲。LL模式1標頭包括被傳輸之LL PDU的序號,或包含被認可之PDU的序號。由於調節層頻道被預期以低隨機LL PDU損失可能性方式及以低往返延遲方式運作,所以使用簡單的Go-Back-N ARQ機制。2. Non-wired approval mode (mode 1). This mode is applied to the Transport Adjustment Layer PDU without the additions and delays associated with the LL Mode 3 connection setup. The LL Mode 1 header includes the sequence number of the transmitted LL PDU or the sequence number of the acknowledged PDU. Since the conditioning layer channel is expected to operate in a low random LL PDU loss probability mode and in a low round trip delay mode, a simple Go-Back-N ARQ mechanism is used.

3.連線導向式否定認可模式(模式2)。LL連線導向式否定認可模式允許透過使用一資料流ID來多工處理數個資料流。LL模式2可實作每資料流ID之原則。該LL模式2標頭包包該資料流ID及12位元序號。3. Connection-oriented negative recognition mode (mode 2). The LL connection-oriented negative recognition mode allows multiple data streams to be processed by using a stream ID. LL mode 2 can be implemented as the principle of each stream ID. The LL Mode 2 header packet includes the data stream ID and the 12-bit number.

4.連線導向式認可模式(模式3)。LL連線導向式認可模式允許透過使用一資料流ID來多工處理數個資料流。LL模式3可實作每資料流ID之原則。LL模式3標頭係由一用於識別透過可靠連線傳輸之多個資料流的資料流ID所組成。一12位元序號識別LL PDU,並且一ACK欄位指示被認可的最高接收之序號。如同關於LL模式1之論述,由於調節層頻道被預期以低隨機LL PDU損失可能性方式及以低往返延遲方式運作,所以使用簡單的Go-Back-N ARQ機制。然而,也可使用一選擇性重複ARQ機制。4. Connection-oriented approval mode (mode 3). The LL connection-oriented approval mode allows multiple data streams to be processed by using a stream ID. LL mode 3 can be implemented as the principle of each stream ID. The LL Mode 3 header consists of a stream ID that identifies multiple streams of data transmitted over a reliable connection. A 12-bit serial number identifies the LL PDU, and an ACK field indicates the highest received sequence number that is accepted. As with the discussion of LL Mode 1, a simple Go-Back-N ARQ mechanism is used since the conditioning layer channel is expected to operate in a low random LL PDU loss probability mode and in a low round trip delay mode. However, an alternative repeat ARQ mechanism can also be used.

邏輯鏈路控制(LLC)功能338管理邏輯鏈路模式控制。當建置一新的LL模式時,LLC功能提供模式協商,包括:(a)QoS:保證的傳輸率;(b)模式設定;(c)模式刪除(mode teardown);(e)模式重設;(f)LL模式2及3中的資料流ID之指派。一端對端資料流至一LL模式的映射係由層管理員380中的QoS管理員功能382予以決定。用於初始化一新的LL模式或新增一資料流至一現有LL模式的要求係來自於調節層310,如上文所述。Logical Link Control (LLC) function 338 manages logical link mode control. When a new LL mode is established, the LLC function provides mode negotiation, including: (a) QoS: guaranteed transmission rate; (b) mode setting; (c) mode deletion (mode) Teardown); (e) mode reset; (f) assignment of data stream IDs in LL modes 2 and 3. The mapping of the end-to-end data stream to an LL mode is determined by the QoS administrator function 382 in the layer administrator 380. The requirements for initializing a new LL mode or adding a data stream to an existing LL mode are from the adjustment layer 310, as described above.

系統組態控制350管理TDD MAC訊框的組態,包括引導訊號(Beacon)和BCH的內容以及RCH的長度。The System Configuration Control 350 manages the configuration of the TDD MAC frame, including the contents of the Beacon and BCH and the length of the RCH.

層管理員Layer administrator

QoS管理員382解譯網路QoS協定,包括RSVP和RTCP。如果QoS係以IP標頭之資料流分類為基礎,則QoS管理員會決定要用於識別相對於不同服務的資料流分類器(即,IP來源位址和目的地位址、IP來源埠和目的地埠)。QoS管理員藉由映射資料流至LL模式來輔助調節層。The QoS administrator 382 interprets network QoS protocols, including RSVP and RTCP. If the QoS is based on the data stream classification of the IP header, the QoS administrator decides which data classifier to use to identify the different services (ie, IP source and destination addresses, IP source, and destination). Cellar). The QoS administrator assists the adjustment layer by mapping the data stream to the LL mode.

許可控制功能384接收來自LLC的要求,用於允許含傳輸率需求的新資料流。許可控制功能維護一由已准許之標稱配置與一組規定和臨限值所組成的資料庫。許可控制功能依據臨限值和規定來決定是否可准許一資料流、決定該資料流的標稱配置(就每m個MAC訊框所配置的傳輸時間量而論)並且提供此資訊給共同MAC中的排程器。The admission control function 384 receives requests from the LLC for allowing new data streams containing transmission rate requirements. The license control function maintains a database of approved nominal configurations and a set of regulations and thresholds. The admission control function determines whether a data flow can be permitted based on thresholds and regulations, determines the nominal configuration of the data flow (in terms of the amount of transmission time configured per m MAC frames) and provides this information to the common MAC. Scheduler in .

實體層管理員使用於AP和UT處所收集的實體層度量,以便控制實體層的發射器和接收器參數。可透過RRC訊息來獲得遠端度量。The physical layer administrator uses the physical layer metrics collected at the AP and UT to control the transmitter and receiver parameters of the physical layer. The remote metric can be obtained through the RRC message.

例證性程序Illustrative procedure

依據前文所說明各項層實體,使用數項程序來描述的 WLAN 120運作。這些程序不是詳盡的程序,而是例證說明本文中所描述的各項功能及組件。According to the various layer entities described above, using several programs to describe WLAN 120 operates. These programs are not exhaustive programs, but rather illustrate the various functions and components described in this article.

圖6繪示從AP傳輸一正向鏈路訊息傳送之示範性方法600。在步驟610,位於AP處的RLC功能(關聯控制、無線電資源控制或邏輯鏈路控制)將一訊息(RLC PDU)置入控制訊息佇列中。或位於AP處的LL模式將一LL PDU置入高QoS佇列或最佳工作(best effort)佇列中。6 illustrates an exemplary method 600 of transmitting a forward link message transmission from an AP. At step 610, the RLC function (association control, radio resource control or logical link control) at the AP places a message (RLC PDU) in the control message queue. Or the LL mode at the AP places an LL PDU into a high QoS queue or a best effort queue.

在步驟620,排程器配置用於傳輸在三個MUX佇列中之PDU的F-TCH資源。在步驟640,由MAC在CCH上指示該指派。在步驟650,位於AP的MAC傳輸已配置之實體層叢發中MAC PDU中的訊息。At step 620, the scheduler configures F-TCH resources for transmitting PDUs in the three MUX queues. At step 640, the assignment is indicated by the MAC on the CCH. At step 650, the MAC located at the AP transmits the message in the MAC PDU in the configured physical layer burst.

圖7繪示在UT處接收一正向鏈路訊息傳送之示範性方法700。在步驟710,UT監視CCH。UT識別一被導向至該UT的已配置之叢發。在步驟720,UT按照CCH中的識別來擷取MAC PDU。在步驟730,UT重組資料流封包,該資料流封包包含在MAC PDU中擷取且在MAC處理器中處理之片段。FIG. 7 illustrates an exemplary method 700 of receiving a forward link message transmission at a UT. At step 710, the UT monitors the CCH. The UT identifies a configured burst that is directed to the UT. At step 720, the UT retrieves the MAC PDU according to the identification in the CCH. At step 730, the UT reassembles the data stream packet, which contains the fragments retrieved in the MAC PDU and processed in the MAC processor.

圖8繪示從UT傳輸一反向鏈路訊息傳送之示範性方法800。在步驟810,位於UT處的RLC功能(關聯控制、無線電資源控制或邏輯鏈路控制)將一訊息(RLC PDU)置入控制訊息佇列中。或位於UT處的LL模式將一LL PDU置入高QoS佇列或最佳工作(best effort)佇列中。在決策步驟820中,如果UT具有一現有R-TCH配置,則進行到步驟870。否則,進行到步驟830。8 illustrates an exemplary method 800 of transmitting a reverse link message transmission from a UT. At step 810, the RLC function (association control, radio resource control or logical link control) at the UT places a message (RLC PDU) in the control message queue. Or the LL mode at the UT places an LL PDU into a high QoS queue or a best effort queue. In decision step 820, if the UT has an existing R-TCH configuration, then proceed to step 870. Otherwise, proceed to step 830.

在步驟830,UT在RCH上傳輸一短型存取叢發。在步驟 840,UT在CCH上接收該RCH存取叢發認可及存取授予配置。在步驟850,UT傳輸一鏈路和緩衝器狀態訊息至該AP。在步驟860,UT監視CCH是否有R-TCH授予配置。在步驟870,接收一配置(或在決策步驟820中已存在)。UT將MUX PDU組成訊框而成為一MAC PDU,並且在已配置之實體層叢發中傳輸該MAC PDU。At step 830, the UT transmits a short access burst on the RCH. In the steps 840. The UT receives the RCH access burst grant and access grant configuration on the CCH. At step 850, the UT transmits a link and buffer status message to the AP. At step 860, the UT monitors whether the CCH has an R-TCH grant configuration. At step 870, a configuration is received (or already exists in decision step 820). The UT groups the MUX PDU into a MAC PDU and transmits the MAC PDU in the configured physical layer burst.

圖9繪示在AP處接收一反向鏈路訊息傳送之示範性方法900。在步驟910,AP接收並且監視RCH。在步驟920,AP識別一來自UT的短型存取叢發。在步驟930,排程器配置一存取授予。在步驟940,AP在CCH上傳輸認可和存取授予。在步驟950,該AP回應存取授予而在R-TCH上接收該鏈路和緩衝器狀態訊息。在步驟960,AP使用該緩衝器狀態來更新UT代理伺服器(proxy)。排程器具有此項資訊之存取權。在步驟970,排程器配置R-TCH資源。在步驟980,AP按照配置來接收MAC PDU。在步驟990,AP回應一或多個接收之MAC PDU來執行重組一資料流封包。9 illustrates an exemplary method 900 of receiving a reverse link message transmission at an AP. At step 910, the AP receives and monitors the RCH. At step 920, the AP identifies a short access burst from the UT. At step 930, the scheduler configures an access grant. At step 940, the AP transmits an admission and access grant on the CCH. At step 950, the AP receives the link and buffer status message on the R-TCH in response to the grant grant. At step 960, the AP uses the buffer status to update the UT proxy server. The scheduler has access to this information. At step 970, the scheduler configures the R-TCH resource. At step 980, the AP receives the MAC PDU as configured. At step 990, the AP responds to one or more received MAC PDUs to perform reassembly of a data stream packet.

圖10繪示UT執行起始存取及註冊之示範性方法1000。在步驟1010中,UT從BCH上的頻率獲取前導來獲取頻率和時序。在步驟1020,UT接收來自RLC廣播訊息的系統識別資訊。在步驟1030,UT使用來自BCH的長型叢發來決定用於(非時槽式)隨機存取的RCH配置。在步驟1040,UT從該組起始MAC ID集合中隨機選擇一MAC ID。在步驟1050,UT使用該起始MAC ID在RCH上傳輸一長型隨機存取叢發。在步驟1060,UT接收在後續MAC訊框中的一認可、一MAC ID 指派及一時序調整。在步驟1070,UT關聯控制功能與AP關聯控制功能完成鑑認和金鑰交換序列。正向鏈路和反向鏈路上的控制訊息傳輸係遵循前面參考圖6至圖9說明的低層級訊息傳送程序。10 illustrates an exemplary method 1000 in which a UT performs initial access and registration. In step 1010, the UT acquires a preamble from the frequency on the BCH to obtain the frequency and timing. At step 1020, the UT receives system identification information from the RLC broadcast message. At step 1030, the UT uses the long burst from the BCH to determine the RCH configuration for (non-time slot) random access. At step 1040, the UT randomly selects a MAC ID from the set of starting MAC IDs. At step 1050, the UT transmits a long random access burst on the RCH using the starting MAC ID. At step 1060, the UT receives an acknowledgement, a MAC ID in the subsequent MAC frame. Assignment and a timing adjustment. At step 1070, the UT association control function and the AP association control function complete the authentication and key exchange sequence. The control message transmission on the forward and reverse links follows the low level messaging procedure described above with reference to Figures 6-9.

圖11繪示AP執行起始存取及註冊之示範性方法1100。在步驟1110,AP在RCH上接收來自UT的一長型隨機存取叢發。在步驟1120,AP指派一MAC ID給該UT。由無線電鏈路控制功能來管理MAC ID集區。在步驟1130,AP指派一時序調整給該UT。在步驟1140,AP在CCH上傳輸認可、MAC ID和時序調整。在步驟1150,AP關聯控制功能與UT關聯控制功能完成鑑認和金鑰交換序列。正向鏈路和反向鏈路上的控制訊息傳輸係遵循前面參考圖6至圖9說明的低層級訊息傳送程序。11 illustrates an exemplary method 1100 for an AP to perform initial access and registration. At step 1110, the AP receives a long random access burst from the UT on the RCH. At step 1120, the AP assigns a MAC ID to the UT. The MAC ID pool is managed by the radio link control function. At step 1130, the AP assigns a timing adjustment to the UT. At step 1140, the AP transmits an acknowledgement, MAC ID, and timing adjustment on the CCH. At step 1150, the AP association control function and the UT association control function complete the authentication and key exchange sequence. The control message transmission on the forward and reverse links follows the low level messaging procedure described above with reference to Figures 6-9.

圖12繪示AP使用者資料流之示範性方法1200。在步驟1210中,層管理員中的QoS管理員將資料流分類參數填入資料流分類功能中。參數與值的一特定組合可指示出一新的資料流抵達。彼等參數可包括:IP DiffSery Code Point(DSCP)、IP來源位址或IP埠。乙太網路參數可包括:802.1Q VLAN ID或802.1p優先順序指示。特定IP埠值可指示一要轉遞至QoS管理員的控制協定訊息(例如,RSVP或RTCP)。FIG. 12 illustrates an exemplary method 1200 of an AP user data stream. In step 1210, the QoS administrator in the layer administrator fills in the data flow classification function into the data flow classification function. A specific combination of parameters and values can indicate the arrival of a new data stream. These parameters may include: IP DiffSery Code Point (DSCP), IP source address or IP port. The Ethernet parameters may include: 802.1Q VLAN ID or 802.1p priority indication. The specific IP threshold may indicate a control agreement message (eg, RSVP or RTCP) to be forwarded to the QoS administrator.

在步驟1215,AP決定許可參數。當一封包抵達AP調節層且被資料流分類判定為新資料流時,資料流分類會配合QoS管理員運作,以便決定許可參數,包括要為該資料流配置 的QoS類別(高QoS或最佳工作)、LL模式及標稱傳輸率。在決策步驟1220中,層管理員中的許可控制依據彼等許可參數來決定是否可准許該資料流。如果不准許,則程序停止。否則,進行到步驟1225。At step 1215, the AP determines the license parameters. When a packet arrives at the AP adjustment layer and is classified as a new data stream by the data flow classification, the data flow classification works with the QoS administrator to determine the license parameters, including configuring the data flow. QoS class (high QoS or best operation), LL mode and nominal transmission rate. In decision step 1220, the admission control in the layer administrator determines whether the data flow can be permitted based on their permission parameters. If not allowed, the program stops. Otherwise, proceed to step 1225.

在步驟1225,資料流分類要求LLC建置一新的資料流。在此論述中,會考量高QoS、LL模式3連線之案例。在步驟1230,位於AP的LLC與位於UT的LLC通信以建置連線(或是,如果適用的連線已存在,則建立新的資料流ID)。在此實例中,彼等LLC將嘗試建置LL模式3連線(或是,如果適用的LL模式3連線已存在,則建立新的資料流ID)。在步驟1235,將為該資料流所配置的標稱傳輸率傳達給排程器。就LL模式3而言,會在正向頻道和反向頻道上配置標稱傳輸率。At step 1225, the data flow classification requires the LLC to construct a new data stream. In this discussion, the case of high QoS and LL mode 3 connections will be considered. At step 1230, the LLC located at the AP communicates with the LLC located at the UT to establish a connection (or, if the applicable connection already exists, establish a new data stream ID). In this example, their LLC will attempt to build an LL Mode 3 connection (or, if the applicable LL Mode 3 connection already exists, a new Stream ID). At step 1235, the nominal transmission rate configured for the data stream is communicated to the scheduler. In the case of LL mode 3, the nominal transmission rate is configured on the forward channel and the reverse channel.

在步驟1240,資料流分類進行:分類該資料流的封包;識別MAC ID、LL模式和資料流ID;實行資料流原則;以及轉遞符合的封包至SAR功能。在步驟1245,SAR分割封包成為片段,並且將調節層PDU連同LL模式和資料流ID一起轉遞至該MAC ID的LL功能。在步驟1250,LL功能附加LL標頭及CRC,並且將LL PDU置入適當的佇列中。在此實例中,LL模式3功能附加LL標頭及CRC,並且將LL PDU置入MUX的高QoS佇列中。At step 1240, the data flow classification is performed: classifying the packet of the data stream; identifying the MAC ID, the LL mode, and the data stream ID; implementing the data flow principle; and forwarding the conforming packet to the SAR function. At step 1245, the SAR split packet becomes a fragment and the adjustment layer PDU is forwarded along with the LL mode and the stream ID to the LL function of the MAC ID. At step 1250, the LL function appends the LL header and CRC and places the LL PDU in the appropriate queue. In this example, the LL Mode 3 function appends the LL header and CRC and places the LL PDU in the high QoS queue of the MUX.

在步驟1255,MUX藉由附加一用於識別LL模式和長度的MUX標頭來準備MUX PDU。MUX建立一MUX指標,用於指示至第一個新MUX PDU之起始處的位元組數量。At step 1255, the MUX prepares the MUX PDU by appending a MUX header for identifying the LL mode and length. The MUX establishes a MUX indicator for indicating the number of bytes to the beginning of the first new MUX PDU.

在步驟1260,排程器決定為MAC ID配置的F-TCH(實體層叢發)。排程器知道所要使用的傳輸模式(來自RRC)及傳輸率(來自UT代理伺服器(proxy))。請注意,也可以包含一反向鏈路配置。在步驟1265,會在CCH上傳輸該配置。At step 1260, the scheduler determines the F-TCH (physical layer burst) configured for the MAC ID. The scheduler knows which transmission mode to use (from RRC) and the transmission rate (from the UT proxy). Note that a reverse link configuration can also be included. At step 1265, the configuration is transmitted on the CCH.

在步驟1270,MAC傳輸MAC PDU。MAC PDU係由下列項目所組成:MUX指標、接著是一位於起始處之可能的局部MUX PDU、接著是零或多個完整MUX PDU以及最後是一位於實體層叢發尾端的一可能的局部MUX PDU。At step 1270, the MAC transmits a MAC PDU. The MAC PDU consists of the following items: the MUX indicator, followed by a possible local MUX PDU at the beginning, followed by zero or more complete MUX PDUs, and finally a possible locality at the end of the physical layer. MUX PDU.

圖13繪示UT使用者資料流之示範性方法1300。在步驟1310,UT在CCH上接收該配置。在步驟1320,UT按照該配置來接收MAC PDU。在步驟1330,位於UT的MUX藉由使用MUX指標及MUX標頭中的長度欄位來擷取MUX PDU,並且準備LL PDU。在步驟1340,MUX依據MUX標頭中的類型欄位將LL PDU傳送至適當的LL功能(在此實例中為LL模式3)。在步驟1350,LL模式3執行ARQ接收器並且計算每個LL PDU的CRC。在步驟1360,位於UT的LL模式3必須傳輸ACK/NAK至位於AP的LL模式3 ARQ。該ACK/NAK被置入位於UT MUX處的高QoS佇列中。請注意,其他LL模式可不包含認可,如上文所述。FIG. 13 illustrates an exemplary method 1300 of a UT user data stream. At step 1310, the UT receives the configuration on the CCH. At step 1320, the UT receives the MAC PDU in accordance with the configuration. At step 1330, the MUX at the UT retrieves the MUX PDU by using the MUX indicator and the length field in the MUX header, and prepares the LL PDU. At step 1340, the MUX transfers the LL PDU to the appropriate LL function (LL mode 3 in this example) according to the type field in the MUX header. At step 1350, LL Mode 3 performs an ARQ Receiver and calculates the CRC for each LL PDU. At step 1360, LL Mode 3 at the UT must transmit ACK/NAK to the LL Mode 3 ARQ located at the AP. The ACK/NAK is placed in the high QoS queue at the UT MUX. Please note that other LL modes may not include approval as described above.

在步驟1370,AP依據該配置在R-TCH上傳輸該ACK/NAK。如上文所述,排程器會依據反向鏈路的標稱配置來配置MAC ID的R-TCH資源。會在來自UT的反向鏈路實體層叢發上的MAC PDU中傳輸ACK/NAK訊息。在步驟1380,UT可在剩餘的配置中傳輸任何其他已排入佇列中的 反向鏈路資料。At step 1370, the AP transmits the ACK/NAK on the R-TCH in accordance with the configuration. As mentioned above, the scheduler configures the R-TCH resource for the MAC ID based on the nominal configuration of the reverse link. The ACK/NAK message is transmitted in the MAC PDU on the reverse link physical layer burst from the UT. At step 1380, the UT may transmit any other queues that have been queued in the remaining configurations. Reverse link data.

請再次參考圖3,如上文所述,資料流260係在AP MAC處理器220接收,並且對應之資料和發訊號會向下行進通過調節層310、資料鏈路控制層320及實體層,以便傳輸至UT。位於UT的實體層240接收MAC PDU,並且對應之資料和發訊號會向上行進通過UT MAC處理器220中的資料鏈路控制層320及調節層310實體層,已重組之資料流係要傳遞至一或多個較高層級之各層(即,各種處理序,包括資料、語音、視訊等等)。對於源自於UT且傳輸至AP的資料流,則類似的處理序會以反向順序發生。Referring again to FIG. 3, as described above, the data stream 260 is received at the AP MAC processor 220, and the corresponding data and signaling numbers travel down through the conditioning layer 310, the data link control layer 320, and the physical layer so that Transfer to UT. The physical layer 240 located at the UT receives the MAC PDU, and the corresponding data and signaling numbers travel upward through the data link control layer 320 and the adjustment layer 310 physical layer in the UT MAC processor 220, and the reorganized data stream is transmitted to One or more layers of a higher level (ie, various processing sequences, including data, voice, video, etc.). For data streams originating from the UT and transmitted to the AP, similar processing sequences occur in reverse order.

可以在AP和UT中部署各自的層管理員380,藉此控制資訊如何向上和向下流向至各MAC子層。大體而言,層管理員380可使用來自實體層240的任何類型反饋280來執行各項子層功能,實體層管理員386介接實體層240。層管理員中的任何功能(實例包括許可控制功能384和QoS管理員382)。接著,彼等功能可互動於上文所述的任何子層功能。The respective layer administrators 380 can be deployed in the AP and UT, thereby controlling how information flows up and down to each MAC sublayer. In general, layer administrator 380 can use any type of feedback 280 from physical layer 240 to perform various sub-layer functions, and physical layer administrator 386 interfaces with physical layer 240. Any of the layers administrators (examples include license control function 384 and QoS administrator 382). Then, their functions can interact with any of the sub-layer functions described above.

可配合支援多重傳輸格式的任何實體層規格來部署本文中所說明的原理。例如,許多實體層格式允許多重傳輸率。可按可用的功能、頻道干擾、可支援的調變格式及類似項來決定任何既定實體鏈路的輸送量。示範性系統包括可採用MIMO技術的OFDM系統及CDMA系統。在彼等系統中,會使用封閉迴路技術來決定傳輸率及格式。封閉迴路可採用各種訊息或訊號來指示頻道度量、可支援傳輸率的等等。熟悉此項技術者很容易調整這些和其他系統來部署本 文中說明的技術。The principles described in this article can be deployed in conjunction with any physical layer specification that supports multiple transport formats. For example, many physical layer formats allow for multiple transfer rates. The amount of delivery of any given physical link can be determined by available functions, channel interference, supported modulation formats, and the like. Exemplary systems include OFDM systems and CDMA systems that employ MIMO technology. In these systems, closed loop techniques are used to determine the transmission rate and format. The closed loop can use various messages or signals to indicate channel metrics, support transmission rates, and the like. Those skilled in the art can easily adjust these and other systems to deploy this The technique described in the text.

調節層310中可使用實體層反饋。例如,可在分割和重組、資料流分類及多點播送映射中使用傳輸率資訊。圖14繪示併入實體層反饋至調節層功能中之示範性方法1400。此方法係就存取點而言予以描述,但是可用類似方式配合使用者終端機應用此方法。程序從步驟1410開始,於此步驟接收要傳輸至使用者終端機的資料流封包。在步驟1420,響應各別使用者終端機的實體層反饋而執行調節層功能。為了進一步解說此態樣,下文會詳細說明示範性多點播送映射和分割具體實施例。在步驟1440,監視一或多個使用者終端機的實體層反饋。程序回到步驟1410開始,針對額外接收到的資料流封包來重複程序,以回應已更新之實體層反饋。Physical layer feedback can be used in the adjustment layer 310. For example, transmission rate information can be used in split and reassemble, data stream classification, and multicast mapping. 14 illustrates an exemplary method 1400 of incorporating physical layer feedback into an adjustment layer function. This method is described in terms of access points, but this method can be applied in a similar manner to the user terminal. The process begins in step 1410, where the data stream packet to be transmitted to the user terminal is received. At step 1420, the adjustment layer function is performed in response to the physical layer feedback of the respective user terminal. To further illustrate this aspect, exemplary embodiments of exemplary multicast mapping and segmentation are described in detail below. At step 1440, physical layer feedback of one or more user terminals is monitored. The process returns to step 1410 to repeat the procedure for the additionally received data stream packets in response to the updated entity layer feedback.

在一項替代具體實施例中,在進行許可控制決策過程中可使用其他實體層反饋的傳輸率資訊。例如,高QoS資料流不被給予許可,除非目標MAC ID實體層能夠支援充分高效率等級的傳輸率。可依據系統負載(包括,現有資料流的標稱配置、已註冊之UT數量及類似項)來調整此等級。例如,一具有相對高品質鏈路的UT被配置到高QoS資料流的可能性高於一相關聯於較低品質鏈路的MAC ID。如果系統處於少量負載下時,則可降低臨限值需求。In an alternate embodiment, transmission rate information fed back by other entity layers may be used in the admission control decision process. For example, a high QoS data stream is not granted unless the target MAC ID entity layer is capable of supporting a sufficiently high efficiency level of transmission rate. This level can be adjusted based on system load (including the nominal configuration of existing streams, the number of registered UTs, and the like). For example, a UT with a relatively high quality link is more likely to be configured to a high QoS data stream than a MAC ID associated with a lower quality link. If the system is under a small load, the threshold requirement can be reduced.

調節層多點播送Adjustment layer multicast

圖15繪示執行調節層多點播送之示範性方法1500。調節層多點播送是方法1400的一項實例,用於併入實體層反饋 至調節層功能。如上文所述,一種多點播送傳輸、MAC層多點播送方法提供一相對應於一使用者終端機清單的共同MAC ID,該共同或多點播送MAC ID區分於使用者終端機MAC ID。因此,當一UT被指派給一或多個多點播送群組時,該UT將監視CCH是否有不僅被導向至所屬MAC ID而且還導向至該UT所相關聯之一或多個多點播送MAC ID的傳輸。因此,一多點播送MAC ID可能相關聯於一或多個較高層資料流,藉此允許傳輸單一資料流至多個使用者終端機。FIG. 15 illustrates an exemplary method 1500 of performing an adjustment layer multicast. Tuning layer multicasting is an example of method 1400 for incorporating physical layer feedback To the adjustment layer function. As described above, a multicast transmission, MAC layer multicast method provides a common MAC ID corresponding to a list of user terminals, the common or multicast MAC ID being distinguished from the user terminal MAC ID. Thus, when a UT is assigned to one or more multicast groups, the UT will monitor whether the CCH is directed not only to the associated MAC ID but also to one or more multicasts associated with the UT. The transmission of the MAC ID. Thus, a multicast multicast MAC ID may be associated with one or more higher layer data streams, thereby allowing a single data stream to be transmitted to multiple user terminals.

在調節層多點播送中,若不執行用於由一多點播送清單中所有使用者終端機接收的單一傳輸,則可執行一或多個額外傳輸多點播送資料至彼等使用者終端機中之一或多個使用者終端機。在具體實施例中,調節層多點播送進行一要傳輸至多點播送群組中每個使用者終端機的單點播送傳輸。在一項替代具體實施例中,調節層多點播送可使用相關聯於多點播送群組中之子集的一或多個MAC ID來進行一或多個MAC層多點播送傳輸。單點播送傳輸可被導向至未包含在彼等子群組之一中的使用者終端機。可部署前文所述之任何組合。在步驟1510,接收一被導向至一使用者終端機清單的多點播送資料流。在一項具體實施例中,一MAC ID相關聯於該使用者終端機清單。In the adjustment layer multicast, one or more additional transmission multicast data may be performed to their user terminals if a single transmission for receiving by all user terminals in a multicast list is not performed. One or more user terminals. In a particular embodiment, the adjustment layer multicasts a unicast transmission to be transmitted to each of the user terminals in the multicast group. In an alternate embodiment, the adjustment layer multicast may perform one or more MAC layer multicast transmissions using one or more MAC IDs associated with a subset of the multicast groups. The unicast transmissions can be directed to user terminals not included in one of their subgroups. Any combination as described above can be deployed. At step 1510, a multicast data stream directed to a list of user terminals is received. In a specific embodiment, a MAC ID is associated with the list of user terminals.

在決策步驟1520,決定對於傳輸至清單中的使用者終端機,單點播送傳輸的效率是否高於多點播送傳輸(即,多個使用者接收一單一傳輸)的效率。如果單點播送傳輸的效率高於多點播送傳輸的效率,則在步驟1530,在兩個或兩個 以上頻道上傳輸該單點播送傳輸。彼等兩個或兩個以上頻道可包括單點播送頻道、其他多點播送頻道或兩者之組合。在決策步驟1520,如果多點播送傳輸的效率更高,則會使用多點播送MAC ID,以單一傳輸將多點播送資料廣播至該多點播送群組之成員。At decision step 1520, it is determined whether the efficiency of the unicast transmission is higher than the efficiency of the multicast transmission (i.e., multiple users receive a single transmission) for the user terminal transmitted to the list. If the efficiency of the unicast transmission is higher than the efficiency of the multicast transmission, then at step 1530, in two or two The unicast transmission is transmitted on the above channel. Two or more of these channels may include unicast channels, other multicast channels, or a combination of both. At decision step 1520, if the multicast transmission is more efficient, the multicast MAC ID is used to broadcast the multicast material to the members of the multicast group in a single transmission.

一般而言,多點播送傳輸所使用的格式必須適合在多點播送群組中的使用者終端機實體鏈路群組之中最弱的實體鏈路上傳輸。在某些系統中,由於仍然必須進行最低共通分母傳輸,以便使用最低品質實體鏈路來送達至使用者終端機,所以事實上,可從較高傳輸率及較大輸送量獲益的較佳處境的使用者終端機不會影響系統輸送量。但是,在其他情況下,則不會保持適用狀態。例如,考慮到在MIMO系統中使用的空間處理。多點播送群組成員可能分散於涵蓋區域各地,並且兩個或兩個以上成員會具有極不同的頻道特性。考量包含兩個使用者終端機的多點播送群組之例證性實例。藉由配合每個使用者終端機的傳輸格式,可實現適用於至每個使用者終端機之單點播送傳輸的高輸送量。但是,由於用於每個實體鏈路的兩個頻道環境完全不同,所以適合運用一單一多點播送訊息送達每個使用者終端機的傳輸格式之輸送量可能低於任一單點播送頻道。當介於多點播送頻道與單點播送頻道輸送量之間的差異足夠大時,系統傳輸兩個多點播送資料所使用的資源會少於傳輸雙方可接收之單一訊息所使用的資源。In general, the format used for multicast transmissions must be suitable for transmission on the weakest physical link among the user terminal entity link groups in the multicast group. In some systems, the minimum common denominator transmission is still necessary to be delivered to the user terminal using the lowest quality physical link, so in fact, it is better to benefit from higher transmission rates and higher throughput. The user terminal in the situation does not affect the system throughput. However, in other cases, it will not remain applicable. For example, consider the spatial processing used in MIMO systems. Multicast group members may be scattered throughout the coverage area, and two or more members will have very different channel characteristics. Consider an illustrative example of a multicast group containing two user terminals. By cooperating with the transmission format of each user terminal, a high throughput for unicast transmission to each user terminal can be achieved. However, since the two channel environments for each physical link are completely different, the transmission format suitable for transmitting a single multicast message to each user terminal may be lower than that of any unicast channel. . When the difference between the multicast channel and the unicast channel throughput is large enough, the system transmits two multicast data using less resources than the single message that the two parties can receive.

圖16繪示決定是否使用調節層多點播送或使用MAC多點 播送之示範性方法,此方法適合部署在步驟1520中。在步驟1610,接收多點播送清單中每個使用者終端機的鏈路參數。在一項具體實施例中,可使用傳輸率參數。在步驟1620,接收一適合傳輸至多點播送清單中之使用者終端機的多點播送頻道之鏈路參數。該多點播送頻道之彼等鏈路參數可能不同於用於多點播送群組中之使用者終端機的任何和所有個別頻道的鏈路參數。在步驟1630,比較用於在多點播送頻道上傳輸的系統資源需求(即,單一傳輸使用多點播送MAC ID)與個別單點播送傳輸之總和的系統資源需求。可使用最低系統資源需求來決定最具效率選擇。Figure 16 shows whether to decide whether to use the adjustment layer multicast or use MAC multipoint An exemplary method of broadcasting, the method is suitable for deployment in step 1520. At step 1610, the link parameters for each user terminal in the multicast list are received. In a specific embodiment, a transmission rate parameter can be used. At step 1620, a link parameter for a multicast channel suitable for transmission to a user terminal in the multicast list is received. The link parameters of the multicast channel may be different from the link parameters for any and all individual channels of the user terminal in the multicast group. At step 1630, the system resource requirements for the sum of the system resource requirements (i.e., the single transmission uses the multicast MAC ID) and the individual unicast transmissions for transmission on the multicast channel are compared. The lowest system resource requirements can be used to determine the most efficient choice.

在一項替代具體實施例中,可修改步驟1610,以便包括鏈路參數MAC層多點播送頻道(包括多點播送群組使用者終端機之子群組)。可比較多點播送和單點播送之組合與純MAC層多點播送。熟悉此項技術者應知道本發明的這些和其他修改案。In an alternate embodiment, step 1610 can be modified to include link parameter MAC layer multicast channels (including sub-groups of multicast group user terminals). It can compare the combination of multicast and unicast and pure MAC layer multicast. These and other modifications of the invention will be apparent to those skilled in the art.

實體層反饋分割Physical layer feedback segmentation

圖17繪示響應實體層反饋而執行分割之示範性方法1700。這屬於方法1400的另一項實例,用於併入實體層反饋至調節層功能。可在調節層310中的分割和重組功能312中實行此項程序,以便響應層管理員380所提供的實體層反饋。FIG. 17 illustrates an exemplary method 1700 of performing segmentation in response to entity layer feedback. This is another example of method 1400 for incorporating physical layer feedback to the adjustment layer function. This procedure can be implemented in the segmentation and reassembly function 312 in the adjustment layer 310 in response to the entity layer feedback provided by the layer administrator 380.

在步驟1710,接收要傳輸至對應MAC ID的資料流封包。在步驟1720,擷取對應MAC ID的傳輸率資訊。在步驟1730,分割該封包成為片段以響應MAC ID傳輸率。在一項 示範性具體實施例中,此分割作業會產生多個片段420,彼等片段420係用於產生實體子層PDU 430,如前文參考圖5之說明所述。At step 1710, a data stream packet to be transmitted to the corresponding MAC ID is received. At step 1720, the transmission rate information corresponding to the MAC ID is retrieved. At step 1730, the packet is split into segments to respond to the MAC ID transmission rate. In one In an exemplary embodiment, the splitting operation produces a plurality of segments 420 that are used to generate an entity sub-layer PDU 430, as described above with reference to FIG.

圖18繪示響應傳輸率而分割片段(segmenting)之示範性方法。此方法適合部署在前段落中所說明的步驟1730中。程序從決策步驟1810開始。如果傳輸率已變更,則進行到決策步驟1820。如果傳輸率未變更,則程序停止,並且分割大小維持不變。FIG. 18 illustrates an exemplary method of segmentation in response to a transmission rate. This method is suitable for deployment in step 1730 as explained in the previous paragraph. The program begins at decision step 1810. If the transmission rate has changed, proceed to decision step 1820. If the transfer rate has not changed, the program stops and the split size remains unchanged.

在決策步驟1820,如果傳輸率變更是傳輸率增加,則可能會有相關聯於增加片段大小之增益。例如,如圖4所示,每個片段會在其行進協定堆集時接收各層添加項。減少片段數量會減少所需的添加項量。另外,較高傳輸率通常意謂著較高品質頻道。當頻道會隨時間而急遽變更時,可能的情況為,在某片段時間期間,一頻道之平均值維持相對恆定。傳輸率增加且片段大小會相對應增加,會允許傳輸一片段的時間量約相同於較慢傳輸率之較小片段大小的時間量。如果此時間量成正比於一頻道傾向維持相對穩定(即,可支援的傳輸率未變更)的時間,則增加片段大小可允許增加效率,且不可能會有片段大小增加的負面影響。At decision step 1820, if the transmission rate change is an increase in the transmission rate, there may be a gain associated with increasing the fragment size. For example, as shown in Figure 4, each segment receives a layer of add-ons as it travels to the stack. Reducing the number of clips reduces the amount of added items you need. In addition, higher transmission rates usually mean higher quality channels. When a channel changes eagerly over time, it is possible that the average value of a channel remains relatively constant during a certain segment time. The transmission rate increases and the fragment size increases correspondingly, allowing an amount of time to transmit a segment to be about the same as the smaller segment size of the slower transmission rate. If this amount of time is proportional to the time when a channel tends to remain relatively stable (ie, the supported transmission rate is unchanged), increasing the fragment size may allow for increased efficiency and there may be no negative impact of increased fragment size.

另一項考慮選擇一片段大小係在已發生實體層傳輸率變更時。傳輸率變更會引起必須變更片段大小,促使藉由MUX功能中的非先佔式優先順序來滿足最短延遲條件約束需求(或控制訊息佇列)的服務延遲條件約束,下文會參考圖19至圖23予以詳細說明。Another consideration is to choose a fragment size when a physical layer transfer rate change has occurred. The change in transmission rate causes the fragment size to be changed, and the service delay condition constraint of the shortest delay condition constraint requirement (or control message queue) is satisfied by the non-preemptive priority order in the MUX function. Referring to FIG. 19 to FIG. 23 will be explained in detail.

在本發明的範疇內可併入各種用於選擇片段大小的技術。請重新參考圖18,在此示範性具體實施例中,在決策步驟1820中,當發生傳輸率變更時,會進行至步驟1830以增加調節子層PDU大小。在決策步驟1820,如果傳輸率變更是傳輸率降低,則進行至步驟1840,在此步驟會按照前段落所論述的任何技術來減小調節子層PDU大小。Various techniques for selecting fragment sizes can be incorporated within the scope of the present invention. Referring back to FIG. 18, in this exemplary embodiment, in decision step 1820, when a transmission rate change occurs, proceeding to step 1830 to increase the adjustment sub-layer PDU size. At decision step 1820, if the transmission rate change is a decrease in transmission rate, then proceed to step 1840 where the adjustment sub-layer PDU size is reduced in accordance with any of the techniques discussed in the preceding paragraph.

圖18所示之方法主要係用於解說一種可行機制,用於使用介於實體層傳輸率與分割片段大小之間的關係來進行分割。在一項替代具體實施例中,可產生一片段大小表,每個片段大小相關聯於一傳輸率或傳輸率範圍。在另一項具體實施例中,可部署一項函數,該函數的一運算元傳輸率,並且該函數的輸出會產出一片段大小表。按照本文講授內容,熟悉此項技術者應明白有許其他可行方案。請注意,如前段落說明所述,分割可結合多點播送映射技術(如前文參考圖14至圖16說明所述),以及響應實體層反饋而執行的任何其他調節層功能。The method shown in FIG. 18 is mainly used to illustrate a feasible mechanism for performing segmentation using a relationship between a physical layer transmission rate and a segmentation segment size. In an alternate embodiment, a segment size table can be generated, each segment size being associated with a transmission rate or transmission rate range. In another embodiment, a function can be deployed, an operand transfer rate of the function, and the output of the function produces a fragment size table. According to the content of this article, those who are familiar with this technology should understand that there are other feasible solutions. Note that as described in the previous paragraphs, the segmentation may be combined with a multicast mapping technique (as described above with reference to Figures 14-16), as well as any other layer adjustment functions performed in response to entity layer feedback.

多工處理Multiple processing

在示範性高效率無線LAN子網路(例如,無線網路120)中,介於AP 104與一或多個UT 106之間的會發生所有的通信。如上文所述,這些通信的性質可能是單點播送或多點播送。在單點播送通信中,使用者資料或控制資料係從AP傳送至單一UT,或從UT傳送至AP。每個UT各具有一唯一MAC ID,所以介於UT與AP之間的所有單點播送通信係相關聯於該唯一MAC ID。在多點播送通信中,使用者資料或 控制資料係從AP傳輸至多個UT。會設置一MAC ID集區來當做多點播送位址。可能有定義相關聯於一存取點的一或多個多點播送群組,並且每個群組各被指派一唯一多點播送MAC ID。每個UT可能屬於彼等多點播送群組中之一或多個群組(或不屬於任一群組),並且將會接收相關聯於其所屬之每個多點播送群組的傳輸。基於多工處理論述之目的,調節層多點播送被視為單點播送。在此實例中,UT不傳輸多點播送資料。In an exemplary high efficiency wireless LAN subnet (e.g., wireless network 120), all communication occurs between the AP 104 and one or more UTs 106. As mentioned above, the nature of these communications may be unicast or multicast. In unicast communication, user data or control data is transmitted from the AP to a single UT or from the UT to the AP. Each UT has a unique MAC ID, so all unicast communication between the UT and the AP is associated with the unique MAC ID. In multicast communication, user profile or Control data is transmitted from the AP to multiple UTs. A MAC ID pool will be set up as a multicast address. There may be one or more multicast groups defined to be associated with an access point, and each group is assigned a unique multicast MAC ID. Each UT may belong to one or more of its multicast groups (or not belong to any group) and will receive transmissions associated with each multicast group to which it belongs. For the purpose of multiplex processing discussion, the adjustment layer multicast is considered as unicast. In this example, the UT does not transmit multicast material.

一存取點接收來自外部網路(即,網路102)之定址至所屬涵蓋區域內之UT的使用者資料,而且接收來自所屬涵蓋區域內UT之被導向至其他裝置(可能是所屬涵蓋區域內的UT,或透過網路附接的UT)的使用者資料。一存取點還可從無線電鏈路控制(RLC)功能340、邏輯鏈路控制(LLC)功能330以及其他實體,來產生預定給其涵蓋區域內的個別或多個UT。可依據QoS考量或其他考量(例如,來源應用),將定址給單一UT的使用者資料隔離成數個資料流,如上文所述。An access point receives user data from an external network (ie, network 102) addressed to a UT within its coverage area, and receives information from the UT within the coverage area that is directed to other devices (possibly the coverage area) User data within the UT, or UT attached via the network. An access point may also generate predetermined or multiple UTs within its coverage area from Radio Link Control (RLC) function 340, Logical Link Control (LLC) function 330, and other entities. The user data addressed to a single UT can be segregated into several data streams based on QoS considerations or other considerations (eg, source applications), as described above.

如上文所述,最後,存取點將來自所有來源之預定給單一MAC ID的所有資料彙總成為一單一位元組資料流,接著該位元組資料流被格式化成數個MAC PDU,每個MAC PDU都是在一單一MAC訊框中予以傳輸。存取點可在單一MAC訊框中傳送一或多個MAC ID的MAC PDU(即,在正向鏈路上)。As mentioned above, finally, the access point aggregates all data destined for a single MAC ID from all sources into a single byte data stream, which is then formatted into several MAC PDUs, each MAC PDUs are transmitted in a single MAC frame. The access point may transmit one or more MAC PDUs of the MAC ID in a single MAC frame (ie, on the forward link).

同樣地,UT可具有要傳送之可被隔離成數個資料流的使 用者資料。UT還可產生相關聯於RLC 340、LLC 330或其他實體的控制資訊。UT彙總使用者資料和控制資料成為一位元組資料流,接著該位元組資料流被格式化成數個MAC PDU,每個MAC PDU都是在一單一MAC訊框中傳送至AP。一或多個UT可在單一MAC訊框中傳送一MAC PDU(即,在反向鏈路上)。Similarly, the UT can have a payload to be transmitted that can be isolated into several streams. User information. The UT may also generate control information associated with RLC 340, LLC 330, or other entities. The UT aggregates the user data and the control data into a tuple stream, and then the byte stream is formatted into a number of MAC PDUs, each of which is transmitted to the AP in a single MAC frame. One or more UTs may transmit a MAC PDU (ie, on the reverse link) in a single MAC frame.

在AP處按MAC ID來實行MUX功能360。每個UT最初都被指派一用於單點播送傳輸的MAC ID。如果UT屬於一或多個多點播送群組,則可指派額外MAC ID。MUX功能准許(a)將配置給一MAC ID的連續實體層叢發配置視為一位元組資料流;以及(b)將來自一或多個LL或RLC實體的PDU多工處理成為MAC的位元組資料流。The MUX function 360 is implemented by pressing the MAC ID at the AP. Each UT is initially assigned a MAC ID for unicast transmission. If the UT belongs to one or more multicast groups, an additional MAC ID can be assigned. The MUX function permits (a) to treat a contiguous entity layer burst configuration configured for a MAC ID as a one-tuple data stream; and (b) multiplex PDU processing from one or more LL or RLC entities into a MAC. The byte stream.

圖19繪示在單一MAC訊框中傳輸多資料流及命令之示範性方法1900。此方法適合部署在存取點或使用者終端機中。程序從決策步驟1910開始。如果接收到預定給一MAC ID的一或多個資料流中的一或多個封包,則進行到步驟1920,在此步驟針對各自一或多個資料流來準備相關聯於該MAC ID的MUX PDU。在此示範性具體實施例中,MUX PDU係按照上文所述之MAC協定予以準備,但是在本發明範圍內可部署替代的MAC協定。MUX PDU可被置入適當的佇列中(在示範性具體實施例中,高QoS佇列或最佳工作佇列)。如果在步驟1910中未接收到MAC ID的資料流,則在步驟1920中已準備MUX PDU後,進行到決策步驟1930。FIG. 19 illustrates an exemplary method 1900 of transmitting multiple data streams and commands in a single MAC frame. This method is suitable for deployment in an access point or user terminal. The program begins at decision step 1910. If one or more packets of one or more data streams destined for a MAC ID are received, proceed to step 1920 where the MUX associated with the MAC ID is prepared for each one or more data streams. PDU. In this exemplary embodiment, the MUX PDU is prepared in accordance with the MAC protocol described above, but alternative MAC protocols may be deployed within the scope of the present invention. The MUX PDUs can be placed in an appropriate queue (in an exemplary embodiment, a high QoS queue or a best working queue). If the data stream of the MAC ID is not received in step 1910, then after the MUX PDU has been prepared in step 1920, proceed to decision step 1930.

在決策步驟1930,如果來自RLC 340或LLC 330的一或多 個命令係要傳輸至相關聯於該MAC ID的UT,則進行到步驟1940並且準備每個命令PDU的一MUX PDU。如果沒有預定給MAC ID的命令,或已在步驟1940中準備好MUX PDU後,則進行到決策步驟1950。At decision step 1930, if one or more from RLC 340 or LLC 330 The commands are to be transmitted to the UT associated with the MAC ID, then proceed to step 1940 and prepare a MUX PDU for each command PDU. If there is no command to the MAC ID, or if the MUX PDU has been prepared in step 1940, then proceed to decision step 1950.

決策步驟1950解說用於持續監視預定給一MAC ID之資料流的反覆型處理序。替代具體實施例可在整個存取點或使用者終端機處理序的任何其他部中置入迴圈功能。在一項替代具體實施例中,程序1900反覆重複,或被包含在其他反覆型處理序中。僅基於例證目的,就單一MAC ID來說明此項處理序。顯而易見,在存取點中,可同時處理多個MAC ID。熟悉此項技術者應明白本發明的這些和其他修改案。Decision step 1950 illustrates a repetitive process for continuously monitoring the flow of data destined for a MAC ID. Alternate embodiments may place a loop function in the entire access point or any other portion of the user terminal processing sequence. In an alternate embodiment, the program 1900 repeats repeatedly or is included in other repetitive processing sequences. This processing sequence is described in terms of a single MAC ID for illustrative purposes only. Obviously, multiple MAC IDs can be processed simultaneously in an access point. These and other modifications of the invention will be apparent to those skilled in the art.

當沒有任何準備好要處理的命令或資料流時,在此實例中,處理序迴圈會回到決策步驟1910以重複迴圈。請注意,在使用者終端機中,必須向存取點提出用以起始一MAC訊框配置的要求,如上文所述。可部署任何此類技術。圖19中未包含細節。顯然地,如果沒有正等待傳輸的命令或資料流,則不需要提出要求,因此沒有任何MAC訊框配置會抵達。當一命令或資料流正等待傳輸時,則排程器會隨時進行一MAC訊框配置,如上文所述。在此示範性具體實施例中,一存取點排程器376會進行正向鏈路MAC訊框配置以響應UT特有的MUX功能360中的MAC ID佇列,並且會進行反向鏈路MAC訊框配置以響應有關RCH或UT代理伺服器(proxy)佇列之要求,如上文所述。無論如何,執行方法1900 的通信裝置會在決策步驟1950等待一MAC訊框配置。When there are no commands or streams ready to be processed, in this example, the processing loop will return to decision step 1910 to repeat the loop. Please note that in the user terminal, the request to initiate a MAC frame configuration must be presented to the access point, as described above. Any such technology can be deployed. No details are included in Figure 19. Obviously, if there are no commands or data streams waiting to be transmitted, no request is required, so no MAC frame configuration will arrive. When a command or data stream is waiting for transmission, the scheduler will perform a MAC frame configuration at any time, as described above. In this exemplary embodiment, an access point scheduler 376 performs a forward link MAC frame configuration in response to a MAC ID queue in the UT-specific MUX function 360 and performs a reverse link MAC. The frame is configured to respond to requests for RCH or UT proxy servers, as described above. In any case, execute method 1900 The communication device will wait for a MAC frame configuration at decision step 1950.

當在決策步驟1950中進行一MAC訊框配置時,則會在步驟1960中將一或多個MUX PDU置入一單一MAC PDU中。該MAC PDU可包含從前一MAC訊框剩餘的局部MUX PDU 464、一來自一或多個資料流的MUX PDU、一或多個命令MUX PDU或彼等項之任何組合。如果任何已配置空間仍是未被使用,則可以將一局部MUX PDU插入該MAC訊框中(或可以插入任何類型填補項(padding),以便填滿該已配置之MAC訊框)。When a MAC frame configuration is performed in decision step 1950, one or more MUX PDUs are placed in a single MAC PDU in step 1960. The MAC PDU may include a local MUX PDU 464 remaining from the previous MAC frame, a MUX PDU from one or more data streams, one or more command MUX PDUs, or any combination thereof. If any of the configured space is still unused, a partial MUX PDU can be inserted into the MAC frame (or any type of padding can be inserted to fill the configured MAC frame).

在步驟1970,會在該配置所指示的位置處,在實體鏈路上傳輸MAC PDU。請注意,MAC PDU可包括來自一或多個資料流或命令PDU之任何組合的MUX PDU。At step 1970, the MAC PDU is transmitted on the physical link at the location indicated by the configuration. Note that the MAC PDU may include MUX PDUs from any combination of one or more data streams or command PDUs.

如上文所述,在此示範性具體實施例中,在F-TCH或R-TCH上,MAC PDU是適合指派給一MAC ID之實體層叢發的傳輸單位。圖20繪示示範性案例。一MAC PDU 460係由下列項目所組成:一MUX指標462、接著是一位於起始處之可能的局部MUX PDU 464、接著是零或多個完整MUX PDU 466以及最後是一位於實體層叢發尾端的一可能的局部MUX PDU 468。請注意,圖中繪示兩個連續MAC訊框460A和460B之各自部分。在訊框f期間所傳輸之MAC訊框460A的子部分係以附加的「A」予以識別。在訊框f+1期間所傳輸之MAC訊框460B的子部分係以附加的「B」予以識別。當多個MUX PDU被串連在一MAC PDU內時,則可以在該MAC PDU之尾端來傳輸一局部MUX PDU,在此情況下,會 在下一MAC訊框中傳送之MAC PDU的開頭部分傳輸該MUX PDU的餘項。圖20中藉由在MAC訊框460A中所傳輸的局部MUX PDU 468A予以圖解說明。會在下一MAC訊框460B期間傳輸該MUX PDU 464B的餘項。As described above, in this exemplary embodiment, on an F-TCH or R-TCH, the MAC PDU is a transmission unit suitable for assignment to a physical layer of a MAC ID. Figure 20 depicts an exemplary case. A MAC PDU 460 is comprised of the following items: a MUX indicator 462, followed by a possible local MUX PDU 464 at the beginning, followed by zero or more full MUX PDUs 466, and finally a physical layer burst. A possible local MUX PDU 468 at the end. Please note that the respective portions of two consecutive MAC frames 460A and 460B are shown. The sub-portions of the MAC frame 460A transmitted during the frame f are identified by an additional "A". The sub-portions of the MAC frame 460B transmitted during frame f+1 are identified by an additional "B". When multiple MUX PDUs are serially connected in a MAC PDU, a partial MUX PDU may be transmitted at the end of the MAC PDU. In this case, The remainder of the MUX PDU is transmitted at the beginning of the MAC PDU transmitted in the next MAC frame. The partial MUX PDU 468A transmitted in the MAC frame 460A is illustrated in FIG. The remainder of the MUX PDU 464B will be transmitted during the next MAC frame 460B.

MAC標頭係由MUX指標2020及可能有相關聯於MAC PDU的MAC ID 2010所組成。當正在使用空間多工時,則可能會需要MAC ID,並且可能會有同時傳輸的一個以上MAC PDU。熟悉此項技術者應知道何時應部署MAC ID 2010,圖中用陰影繪示以表示這些選用項。The MAC header consists of a MUX indicator 2020 and a MAC ID 2010 that may be associated with a MAC PDU. When space multiplex is being used, a MAC ID may be required and there may be more than one MAC PDU transmitted simultaneously. Those familiar with this technology should know when to deploy MAC ID 2010, which is shaded to indicate these options.

在此示範性具體實施例中,部署每MAC PDU一個2位元組MUX指標2020,以便識別在MAC訊框中傳輸之任何MUX PDU的位置(如圖20中從MUX指標2020至MUX PDU 466A的箭頭所示)。每MAC PDU都會使用MUX指標2020。MUX指標指向MAC PDU內第一個MUX PDU的起始處。MUX指標連同每個MUX PDU中所包含之長度欄位一起允許接收方MUX層從位元組資料流(由配置至該MAC ID的連續實體層叢發所組成)擷取LL及PLC PDU。熟悉此項技術者應明白,屬於本發明範疇內之用於部署指標的各種替代手段。例如,從上文所述的實例,可按替代順序來封裝MAC訊框。一餘項局部MUX PDU可被置放在MAC訊框配置的尾端,並且指標係指向該餘項的起始處,而不是指向新的MUX PDU。因此,新的PDU(若有的話)被置放在開頭部分。可部署數種指標技術(即,一用於識別一位元組的索引值、一時間值、一基數值加一位移或熟悉此項技術者所知的任何許 多變化方案)。In this exemplary embodiment, a 2-bit MUX indicator 2020 per MAC PDU is deployed to identify the location of any MUX PDUs transmitted in the MAC frame (as in Figure 20 from MUX Indicator 2020 to MUX PDU 466A). The arrow shows). The MUX indicator 2020 is used for every MAC PDU. The MUX indicator points to the beginning of the first MUX PDU in the MAC PDU. The MUX metric, along with the length field included in each MUX PDU, allows the recipient MUX layer to retrieve LL and PLC PDUs from the byte data stream (composed of contiguous entity layer bursts configured to the MAC ID). Those skilled in the art will appreciate that various alternative means for deploying indicators are within the scope of the present invention. For example, from the examples described above, the MAC frame can be encapsulated in an alternate order. A number of local MUX PDUs can be placed at the end of the MAC frame configuration, and the indicator points to the beginning of the remainder, rather than to the new MUX PDU. Therefore, new PDUs (if any) are placed at the beginning. Several indicator techniques can be deployed (ie, an index value for identifying a tuple, a time value, a base value plus a displacement, or any knowledge known to the skilled artisan Multiple change programs).

在此示範性具體實施例中,MUX指標2020包括一單一16位元欄位,該欄位的值是1加上始於訊框開始之第一個MUX PDU開頭部分之該MUX指標之尾端的位移(以位元組為單位)。如果值為0,則沒有開始訊框的MUX PDU。如果值為1,則MUX PDU會立即接在該MUX指標後開始。如果值為n>1,則MAC PDU中的前n-1個位元組是一在前一訊框開始之MUX PDU的尾端。此項資訊有助於接收器MUX(即,MUX功能360)從導致同步於MUX PDU邊界損失之先前訊框錯誤復原。熟悉此項技術者應明白,可部署任可數量之替代索引技術。In this exemplary embodiment, the MUX indicator 2020 includes a single 16-bit field, the value of the field being 1 plus the end of the MUX indicator starting at the beginning of the first MUX PDU at the beginning of the frame. Displacement (in bytes). If the value is 0, there is no MUX PDU for the start frame. If the value is 1, the MUX PDU will immediately start after the MUX indicator. If the value is n>1, the first n-1 bytes in the MAC PDU are the end of the MUX PDU starting at the previous frame. This information helps the receiver MUX (i.e., MUX function 360) to recover from previous frame errors that result in synchronization of the MUX PDU boundary loss. Those skilled in the art should understand that any number of alternative indexing techniques can be deployed.

包含一類型(邏輯頻道)欄位及一長度欄位的MUX標頭被附加至提供給MUX的所有LL或RLC PDU。該類型(邏輯頻道)欄位識別PDU所屬的LL或RLC實體。如同前段落說明所述,長度欄位係連同MUX指標一起使用,以便允許接收方MUX層從位元組資料流(由配置至該MAC ID的連續實體層叢發所組成)擷取LL及PLC PDU。A MUX header containing a type (logical channel) field and a length field is appended to all LL or RLC PDUs provided to the MUX. This type (logical channel) field identifies the LL or RLC entity to which the PDU belongs. As explained in the previous paragraph, the length field is used in conjunction with the MUX indicator to allow the receiver MUX layer to retrieve LL and PLC from the byte data stream (consisting of a contiguous entity layer configuration configured to the MAC ID). PDU.

如上文所述,MUX功能360維護用於要傳輸之資料的三個佇列。高QoS佇列362可包含相關聯於一已協商之服務的LL PDU,該許可控制功能384已配置該已協商之服務的保證傳輸率。最佳工作佇列364可包含相關聯於一傳輸率保證的LL PDU。控制訊息佇列366可包含RLC和LLC PDU。As described above, the MUX function 360 maintains three queues for the data to be transmitted. The high QoS queue 362 can include an LL PDU associated with a negotiated service that has configured a guaranteed transmission rate for the negotiated service. The best working queue 364 may contain LL PDUs associated with a transmission rate guarantee. Control message queue 366 can include RLC and LLC PDUs.

替代具體實施例可包含一個以上QoS佇列。但是,如本文所述,高效率運用高傳輸率WLAN允許一單一QoS佇列來 達成極佳的QoS效能。在許情況下,藉由MAC協定來高效率運用可用的頻道頻寬會提供不必要的額外佇列及相關聯的複雜度。Alternate embodiments may include more than one QoS queue. However, as described herein, high efficiency using high transmission rate WLANs allows for a single QoS queue. Achieve excellent QoS performance. In this case, the efficient use of the available channel bandwidth by the MAC protocol provides unnecessary extra queues and associated complexity.

在AP處,會促使每個佇列中的積存(backlog)可供共同MAC功能370中的排程器376使用。在AP處會在MUX功能360的UT代理伺服器(proxy)中維護位於UT處之彼等佇列中的積存(backlog)。請注意,基於簡明清楚,圖3中未獨立繪示彼等UT代理伺服器(proxy)佇列。佇列362、364及366可被視為包含每個MAC ID的正向鏈路佇列和反向鏈路佇列(即,UT代理伺服器(proxy)佇列),無論共用FW或分離的組件中是否有部署彼等佇列。請注意,所支援的正向鏈路佇列和反向鏈路佇列之數量和類型不需要完全相同。UT代理伺服器(proxy)佇列不需要完全相符於UT佇列。例如,UT可維護一命令佇列,以便給予某些易受時間影響之命令優先於其他高QoS PDU的優先順序。在AP處,可使用單一高QoS來指示對兩種類型UT流量的要求。因此,可使用在UT處所決定的優先順序來填補對UT的配置。舉另一實例而言,可在UT或AP處分別維護不同的QoS佇列,而且在AP或UT處不會維護對方的QoS佇列。At the AP, the backlog in each queue is made available to scheduler 376 in the common MAC function 370. At the AP, the backlogs in the queues at the UT are maintained in the UT proxy server of the MUX function 360. Please note that, based on simplicity and clarity, the UT proxy server queues are not independently depicted in Figure 3.伫 362, 364, and 366 can be considered to include a forward link queue and a reverse link queue for each MAC ID (ie, a UT proxy queue), whether shared FW or separate. Whether or not they are deployed in the component. Note that the number and type of supported forward link queues and reverse link queues do not need to be identical. The UT proxy server (proxy) queue does not need to match the UT queue exactly. For example, the UT can maintain a command queue to prioritize certain time-sensitive commands over other high QoS PDUs. At the AP, a single high QoS can be used to indicate the requirements for both types of UT traffic. Therefore, the configuration of the UT can be padded using the priority order determined at the UT. As another example, different QoS queues can be maintained at the UT or AP, and the QoS queue of the other party is not maintained at the AP or UT.

排程器376仲裁來自所有MAC ID的競爭需求,並且在F-TCH或R-TCH上配置一實體層叢發至一或多個所選MAC ID。響應一項配置,對應之MUX功能360封裝LL和RLC PDU成為MAC PDU封包承載,如上文所述。在此示範性具體實施例中,每個MUX功能360都會按下列非先佔式優先順序來 (徹底)伺服來自下列佇列的PDU:控制訊息佇列366、高QoS佇列362及最佳工作佇列364。在伺服來自較高優先順序佇列的新PDU之前,會先完成來自先前MAC PDU的任何局部PDU(即使局部PDU係來自較低優先順序佇列)。在替代具體實施例中,可在一或多個層級處部署先佔式優先順序,如熟悉此項技術者所知。Scheduler 376 arbitrates the contention requirements from all MAC IDs and configures a physical layer burst to one or more selected MAC IDs on the F-TCH or R-TCH. In response to a configuration, the corresponding MUX function 360 encapsulates the LL and RLC PDUs into a MAC PDU packet bearer, as described above. In this exemplary embodiment, each MUX function 360 will be in the following non-preemptive priority order. (Completely) Serving the PDUs from the following queues: Control Message Array 366, High QoS Array 362, and Best Operation Queue 364. Any local PDUs from previous MAC PDUs are completed prior to servicing new PDUs from the higher priority queue (even if the local PDUs are from a lower priority queue). In an alternate embodiment, preemptive prioritization may be deployed at one or more levels, as is known to those skilled in the art.

在接收器處,MUX功能從由連續MAC PDU所組成的位元組流來擷取PDU,並且將其投送至所屬的LL或RLC實體。路徑選擇係以MUX PDU標頭中所包含的類型欄位(邏輯頻道)為基礎。At the receiver, the MUX function retrieves the PDU from the byte stream consisting of consecutive MAC PDUs and routes it to the associated LL or RLC entity. The path selection is based on the type field (logical channel) contained in the MUX PDU header.

在此示範性具體實施例中,按照MUX功能之設計,一旦已開始傳輸MUX PDU,就會先完成此項傳輸,之後才能開始另一MUX PDU。因此,如果在一MAC訊框中開始傳輸一來自最佳工作佇列的MUX PDU,則會先在一後續MAC訊框(或多訊框)中完成此項傳輸,之後才會傳輸來自控制訊息佇列或高QoS佇列的其他MUX PDU。換言之,在正常運作中,較高類別佇列具有非先佔式優先順序。In this exemplary embodiment, according to the design of the MUX function, once the MUX PDU has been transmitted, the transmission is completed before another MUX PDU can be started. Therefore, if a MUX PDU from the best working queue is started to be transmitted in a MAC frame, the transmission will be completed in a subsequent MAC frame (or multi-frame) before the control message is transmitted. Other MUX PDUs in the queue or high QoS queue. In other words, in normal operation, the higher category queue has a non-preemptive priority.

在替代具體實施例中,或在此示範性具體實施例中在某些情況下,可能會想要用先佔式優先順序。例如,如果實體層資料傳輸率已變更,則可能需要緊急傳輸一控制訊息,這需要優先於最佳工作或高QoS MUX PDU的傳輸先佔式優先順序。這是被准許的做法。接收方MUX會偵測並丟棄未完全傳輸的MUX PDU,下文中會進一步詳細說明。In an alternate embodiment, or in certain instances of this exemplary embodiment, it may be desirable to use preemptive prioritization. For example, if the physical layer data transfer rate has changed, it may be necessary to urgently transmit a control message, which requires prioritization over the best work or high QoS MUX PDUs. This is a permitted practice. The receiver MUX will detect and discard the MUX PDUs that are not fully transmitted, as described in further detail below.

先佔式事件(即,實體層傳輸率變更)也可引發需要變更 該UT所使用的片段大小。可選用UT所使用的片段大小,促使藉由MUX功能中的非先佔式優先順序來滿足最短延遲條件約束或控制訊息佇列的服務延遲條件約束。這些技術可結合上文參考圖17至圖18所說明的分割技術。Preemptive events (ie, physical layer transfer rate changes) can also trigger changes The fragment size used by the UT. The fragment size used by the UT can be selected to facilitate the service delay condition constraint of the shortest delay condition constraint or control message queue by non-preemptive priority order in the MUX function. These techniques can be combined with the segmentation techniques described above with reference to Figures 17-18.

圖21繪示使用MUX指標來準備MAC訊框之示範性方法2100。此方法可被部署在AP或UT中。按照本文講授內容,熟悉此項技術者很容易調整此例證性實例以配合許多具體實施例(AP或UT)。程序從步驟2110開始,在此步驟接收用於一MAC PDU的配置。21 illustrates an exemplary method 2100 of preparing a MAC frame using MUX metrics. This method can be deployed in an AP or UT. This illustrative example can be readily adapted to fit a number of specific embodiments (AP or UT) in light of the teachings herein. The process begins in step 2110 where a configuration for a MAC PDU is received.

在決策步驟2120,如果來自前一MAC訊框的局部MUX PDU仍然存在,則進行到決策步驟2130。如果沒有局部MUX PDU存在,則進行到步驟2150。At decision step 2120, if the local MUX PDU from the previous MAC frame is still present, then proceed to decision step 2130. If no local MUX PDU exists, then go to step 2150.

在決策步驟2130,如果想要用先佔式優先順序,則不會傳輸該局部MUX PDU。程序進行到步驟2150。在此示範性具體實施例中,在某些情況下可使用先佔式優先順序,以便傳送一易受時間影響之命令MUX PDU。前文已詳述先佔式優先順序之其他實例。當希望放棄傳輸MUX PDU之餘項時,就可使用任何先佔式條件。MAC訊框的接收器可直接丟棄該MUX PDU的前部分。下文詳細說明示範性接收器功能。在一項替代具體實施例中,可定義先佔式優先順序,以便允許在以後的時間傳輸已具先佔式優先順序的MUX PDU。替代具體實施例可部署任何數量之先佔式優先順序規格,以便在決策步驟2130中使用。如果不想先佔式優先順序,則進行到步驟2140。At decision step 2130, if a preemptive priority order is desired, the local MUX PDU is not transmitted. The program proceeds to step 2150. In this exemplary embodiment, preemptive priority order may be used in some cases to transmit a time-sensitive command MUX PDU. Other examples of preemptive prioritization have been detailed above. Any preemptive condition can be used when it is desired to abandon the remainder of the transmission of the MUX PDU. The receiver of the MAC frame can directly discard the front part of the MUX PDU. Exemplary receiver functions are described in detail below. In an alternate embodiment, preemptive priority may be defined to allow MUX PDUs with preemptive priority to be transmitted at a later time. Any number of preemptive priority specifications may be deployed in place of the specific embodiment for use in decision step 2130. If the preemption priority is not desired, then go to step 2140.

在步驟2140,先將該局部MUX PDU置放在MAC PDU中。如果配置小於該局部MUX PDU,則可以使用所想要的MUX PDU數量來填補該配置,並且可儲存餘項,以便在後續MAC訊框配置中傳輸。At step 2140, the local MUX PDU is first placed in the MAC PDU. If the configuration is less than the local MUX PDU, the configuration can be padded with the desired number of MUX PDUs and the remainder can be stored for transmission in subsequent MAC frame configurations.

在步驟2150,可將任何新的MUX PDU置放在MAC PDU中。MUX功能可決定置放來自任何可用佇列之MUX PDU的優先順序。前文已說明示範性優先順序機制,然而可部署任何優先順序機制。At step 2150, any new MUX PDUs can be placed in the MAC PDU. The MUX function determines the priority order for placing MUX PDUs from any available queue. An exemplary prioritization mechanism has been described above, however any prioritization mechanism can be deployed.

在步驟2160,將MUX指標設定為第一個新MUX PDU的位置。在此示範性具體實施例中,0值MUX指標意謂著配置中不包含任何MUX PDU。1值MUX指標意謂著接在MUX標頭後的第一個位元組是下一個新MUX PDU的起始處(即,在MAC PDU的開頭部分沒有任何局部MUX PDU)。其他MUX指標值指示介於一餘項局部MUX PDU與任何新MUX PDU起始處之間的適當邊界。在替代具體實施例中,可定義其他特殊MUX指標值,或可部署指標值指標機制。At step 2160, the MUX indicator is set to the location of the first new MUX PDU. In this exemplary embodiment, a zero value MUX indicator means that no MUX PDUs are included in the configuration. The 1-value MUX indicator means that the first byte following the MUX header is the beginning of the next new MUX PDU (ie, there are no local MUX PDUs at the beginning of the MAC PDU). Other MUX indicator values indicate the appropriate boundary between a remainder of the local MUX PDU and the beginning of any new MUX PDU. In alternative embodiments, other special MUX indicator values may be defined, or an indicator value indicator mechanism may be deployed.

在步驟2170,如果已配置之MAC PDU中仍然有空間,則一局部MUX PDU可被置放在剩餘空間中。或者,任何類類填補項可被插入在剩餘空間中。可儲存一局部置放之MUX PDU的餘項,以便在後續訊框配置中傳輸。At step 2170, if there is still space in the configured MAC PDU, then a partial MUX PDU can be placed in the remaining space. Alternatively, any class class fill item can be inserted in the remaining space. The remainder of a partially placed MUX PDU can be stored for transmission in subsequent frame configurations.

圖22繪示接收包含MUX指標之MAC訊框之示範性方法2200。此方法可被部署在AP或UT中。按照本文講授內容,熟悉此項技術者很容易調整此例證性實例以配合許多具體實施例(AP或UT)。22 illustrates an exemplary method 2200 of receiving a MAC frame containing MUX metrics. This method can be deployed in an AP or UT. This illustrative example can be readily adapted to fit a number of specific embodiments (AP or UT) in light of the teachings herein.

程序從步驟2210開始,在此步驟接收一MAC PDU。在步驟2215,從該MAC PDU擷取MUX指標。在決策步驟2220,如果MUX指標大於1,則進行到步驟2225。在此示範性具體實施例中,如果MUX指標是0或1,則在MAC訊框的開頭部分沒有任何局部MUX PDU。0值MUX指標指示沒有任何MUX PDU。在任一情況下,進行到決策步驟2230。The program begins at step 2210 where a MAC PDU is received. At step 2215, the MUX indicator is retrieved from the MAC PDU. At decision step 2220, if the MUX indicator is greater than 1, then proceed to step 2225. In this exemplary embodiment, if the MUX indicator is 0 or 1, there are no local MUX PDUs at the beginning of the MAC frame. The 0 value MUX indicator indicates that there are no MUX PDUs. In either case, proceed to decision step 2230.

在決策步驟2230,如果有儲存一來自前一MAC訊框的局部MUX PDU,則進行到步驟2235並且丟棄該儲存之前一訊框。在此實例中,已優先處理該儲存之訊框的餘項。替代具體實施例可允許隨後傳輸該儲存之訊框的餘項,在此情況下,可儲存先前的局部MUX PDU(例證性示範性方法2200中未詳細繪示細節)。在決策步驟2230,如果沒有儲存任何局部MUX PDU,或要後續處理該儲存之先前局部MUX PDU,則進行到步驟2240。At decision step 2230, if a local MUX PDU from the previous MAC frame is stored, then proceed to step 2235 and discard the previous frame. In this example, the remainder of the stored frame has been prioritized. Alternate embodiments may allow for subsequent transmission of the remainder of the stored frame, in which case the previous partial MUX PDU may be stored (details not shown in detail in the illustrative exemplary method 2200). At decision step 2230, if no local MUX PDUs are stored, or if the stored previous partial MUX PDUs are to be subsequently processed, then proceed to step 2240.

在步驟2240,在MUX指標所指示之位置處的開頭部分擷取新的MUX PDU。請注意,在此示範性具體實施例中,0值MUX指標意謂著MAC PDU中沒有任何新的MUX PDU。可擷取任何新的MUX PDU,包括一新的局部MUX PDU。如上文所述,可使用MUX PDU標頭中的長度欄位來定義MUX PDU的邊界。At step 2240, a new MUX PDU is retrieved at the beginning of the location indicated by the MUX indicator. Please note that in this exemplary embodiment, the zero value MUX indicator means that there are no new MUX PDUs in the MAC PDU. Any new MUX PDUs can be retrieved, including a new local MUX PDU. As described above, the length field in the MUX PDU header can be used to define the boundaries of the MUX PDU.

在決策步驟2245,如果MAC PDU中包括一局部MUX PDU,則進行到步驟2250以儲存該局部MUX PDU。可將該儲存之局部MUX PDU結合來自一未來MAC PDU中的餘項(除非以後決定應丟棄該局部MUX PDU,如上文所述)。在 決策步驟2245,如果MAC PDU中不包括任何新的局部MUX PDU,或如果已在步驟2250中儲存該局部MUX PDU,則進行到步驟2255。At decision step 2245, if a partial MUX PDU is included in the MAC PDU, then proceed to step 2250 to store the local MUX PDU. The stored local MUX PDU may be combined with the remainder from a future MAC PDU (unless it is later determined that the local MUX PDU should be discarded, as described above). in Decision step 2245, if no new local MUX PDUs are included in the MAC PDU, or if the local MUX PDU has been stored in step 2250, proceed to step 2255.

在步驟2255,可傳遞任何完整的MUX PDU,以便在協定堆集中進一步處理,包括重組(若適當),如上文所述。At step 2255, any complete MUX PDUs may be passed for further processing in the contract heap, including reorganization (if appropriate), as described above.

如上文所述,MUX功能允許多工處理MAC訊框上定義之流量頻道片段內的邏輯頻道(F-TCH及R-TCH)。在此示範性具體實施例中,MUX功能所多工處理的邏輯頻道係藉由MUX標頭中的4位元訊息類型欄位予以識別,表格1詳細此項實例。As mentioned above, the MUX function allows multiplexing to process logical channels (F-TCH and R-TCH) within the traffic channel segment defined on the MAC frame. In this exemplary embodiment, the logical channel processed by the MUX function is identified by the 4-bit message type field in the MUX header. Table 1 details this example.

圖23繪示表格1所列出之數種MUX類型的示範性MUX PDU。可使用使用者資料頻道PDU(UDCH0 2310、UDCH1 2320、UDCH2 2330、UDCH3 2340)來傳輸及接收使用者資料。可按照如前文參考圖4之說明所述來形成PDU。每個PDU各包括一含類型和長度欄位的MUX標頭。接在該MUX標頭後的項目是:LL標頭、一1位元組AL標頭、至多4087個位元組資料及一3位元組CRC。對於UDCH0 2310,LL標 頭是1個位元組。對於UDCH1 2320,LL標頭是2個位元組。對於UDCH2 2330,LL標頭是3個位元組。對於UDCH3 2340,LL標頭是4個位元組。前文已詳述用於處理彼等LL PDU類型的邏輯層功能。FIG. 23 illustrates exemplary MUX PDUs of several MUX types listed in Table 1. User data channel PDUs (UDCH0 2310, UDCH1 2320, UDCH2 2330, UDCH3 2340) can be used to transmit and receive user data. The PDU can be formed as described above with reference to FIG. Each PDU includes a MUX header containing a type and length field. The items following the MUX header are: LL header, 1-bit AL header, up to 4087 byte data, and a 3-bit CRC. For UDCH0 2310, LL standard The header is 1 byte. For UDCH1 2320, the LL header is 2 bytes. For UDCH2 2330, the LL header is 3 bytes. For UDCH3 2340, the LL header is 4 bytes. The logical layer functions for handling the types of their LL PDUs have been detailed above.

圖23中還繪示各種控制訊息PDU 2350-2370。每個PDU各包括一含一類型欄位、一保留欄位和一長度欄位的MUX標頭。接在該MUX標頭後的項目是可變長度的資料欄位,此資料欄位可能是介於4與255個位元組之間,並且包括RLC訊息封包承載。圖23中繪示無線電鏈路廣播頻道(Radio Link Broadcast Channel;RBCH)PDU 2350、專用控制頻道(Dedicated Control Channel PDU;DCCH)PDU 2360以及邏輯鏈路控制頻道(Logical Link Control Channel;LLCH)PDU 2370。使用者廣播頻道(User Broadcast Channel;UBCH)PDU及使用者多點播送頻道(User Multicast Channel;UMCH)PDU的格式完全相同於UDCH0 PDU 2310。UBCH的類型欄位被設定為0111。UMCH的類型欄位被設定為1000。Various control message PDUs 2350-2370 are also depicted in FIG. Each PDU includes a MUX header containing a type field, a reserved field, and a length field. The item following the MUX header is a variable length data field, which may be between 4 and 255 bytes and includes the RLC message packet bearer. A Radio Link Broadcast Channel (RBCH) PDU 2350, a Dedicated Control Channel PDU (DCCH) PDU 2360, and a Logical Link Control Channel (LLCH) PDU 2370 are shown in FIG. . The format of the User Broadcast Channel (UBCH) PDU and the User Multicast Channel (UMCH) PDU is exactly the same as the UDCH0 PDU 2310. The type field of UBCH is set to 0111. The type field of the UMCH is set to 1000.

熟悉此項技術者應明白彼等PDU僅作為例證用途。還可以支援各種額外PDU以及所繪示之PDU的子集。在替代具體實施例中,所繪示之每項欄位可具有替代寬度。其他PDU也包含額外欄位。Those skilled in the art should understand that their PDUs are for illustrative purposes only. A variety of additional PDUs as well as a subset of the illustrated PDUs can also be supported. In an alternate embodiment, each of the fields depicted may have an alternate width. Other PDUs also contain additional fields.

示範性無線電鏈路控制(RLC)Exemplary Radio Link Control (RLC)

前文已說明無線電鏈路控制340,並且會在此段落中進一步詳細示範性具體實施例。表格2提出一組示範性RLC訊息。所描述之示範性訊息僅僅是示範,在各項替代具體實 施例中可部署彼等訊息之子集以及額外訊息。每項訊息中的欄位大小及類型也是示範性。按照本文講授內容,熟悉此項技術者很容易調整敨多替代訊息格式。Radio link control 340 has been described above, and exemplary embodiments are further detailed in this paragraph. Table 2 presents a set of exemplary RLC messages. The exemplary messages described are merely demonstrations, A subset of their messages and additional messages can be deployed in the example. The size and type of fields in each message are also exemplary. According to the content of this article, those skilled in the art can easily adjust many alternative message formats.

在此實例中,所有RLC訊息都具有共同的結構,但可以在數個傳輸頻道之一上載送彼等訊息。RLC PDU結構包括:一八位元類型欄位,用於識別特定的RLC訊息;一由0至251個位元組所組成的封包承載;以及一由3個位元組所組成的CRC欄位。表格3闡明使用類型欄位中的位元部分來指示某類型RLC訊息。最高有效位元(MSB)0或1分別指示正向鏈路訊息或反向鏈路訊息。當設定第二位MSB時,則該訊息是一否定認可(NACK)或拒絕訊息。In this example, all RLC messages have a common structure, but they can be uploaded on one of several transmission channels. The RLC PDU structure includes: an octet type field for identifying a specific RLC message; a packet consisting of 0 to 251 bytes; and a CRC field consisting of 3 bytes. . Table 3 illustrates the use of the bit portion in the type field to indicate a type of RLC message. The most significant bit (MSB) 0 or 1 indicates a forward link message or a reverse link message, respectively. When the second MSB is set, the message is a negative acknowledgement (NACK) or rejection message.

在系統初始化期間,會初始化由系統識別控制功能346所組成的廣播RLC功能。當UT使用來自存取集區的MAC-ID來起始存取系統時,RLC功能會指派一新的MAC-ID給該UT。接著,如果該UT加入一多點播送群組,則可被配置額外的多點播送MAC-ID。當一新MAC-ID被指派給一UT時,RLC功能會初始化下列每項功能的一個執行個體(instance):AC 344、RRC 342及LLC 338,如上文所述。當指派一新的多點播送MAC-ID時,RLC功能會初始化一新的AC執行個體以及用於LL多點播送模式的LLC。During system initialization, the broadcast RLC function consisting of the system identification control function 346 is initialized. When the UT initiates access to the system using the MAC-ID from the access pool, the RLC function assigns a new MAC-ID to the UT. Then, if the UT joins a multicast group, an additional multicast MAC-ID can be configured. When a new MAC-ID is assigned to a UT, the RLC function initializes an instance of each of the following functions: AC 344, RRC 342, and LLC 338, as described above. When assigning a new multicast MAC-ID, the RLC function initializes a new AC executive and the LLC for the LL multicast mode.

AP會使用廣播MAC-ID,每16個MAC訊框傳輸一系統識別參數訊息(列在表格4中)一次。系統識別參數訊息包含網路和AP ID以及協定版本號碼。此外,系統識別參數訊息還包含供UT起始存取系統所使用的存取MAC-ID清單。表格4列出其他示範性參數。The AP will use the broadcast MAC-ID to transmit a system identification parameter message (listed in Table 4) once every 16 MAC frames. The system identification parameter message contains the network and AP ID and the agreement version number. In addition, the system identification parameter message also contains a list of access MAC-IDs used by the UT to initiate access to the system. Table 4 lists other exemplary parameters.

關聯控制(AC)功能提供UT鑑認。AC功能管理UT的註冊(即,附加/卸離)功能。至於多點播送MAC-ID,AC功能會管理一UT附加/卸離多點播送群組。AC功能也管理用於LL控制的加密金鑰交換。The Association Control (AC) function provides UT authentication. The AC function manages the registration (ie, attach/detach) function of the UT. As for the multicast MAC-ID, the AC function manages a UT add/drop multicast group. The AC function also manages the encryption key exchange for LL control.

會在來自UT的反向鏈路上傳送註冊查問訊息(Registration Challenge Message),如表格5所示。UT包括一24位元亂數(24-bit random number),用以允許AP區分同時具有存取權且挑選相同MAC-ID的多個UT。A Registration Challenge Message is transmitted on the reverse link from the UT, as shown in Table 5. The UT includes a 24-bit random number to allow the AP to distinguish between multiple UTs that have access rights and pick the same MAC-ID.

由AP傳輸註冊查問認可訊息(Registration Challenge Acknowledgement Message)(如表格6所示),以響應該註冊查問訊息。該AP包括該UT所傳輸隨機ID。這允許解決介於已挑選相同MAC-ID和存取時槽的UT之間的衝突。The Registration Challenge Acknowledgement Message (as shown in Table 6) is transmitted by the AP in response to the registration challenge message. The AP includes a random ID transmitted by the UT. This allows for resolution of conflicts between UTs that have picked the same MAC-ID and access slot.

由AP傳送註冊查問拒絕訊息(Registration Challenge Reject Message)(如表格7所示)至一UT,以拒絕臨時MAC ID指派,例如,當兩個或兩個以上UT隨機選擇相同的臨時MAC ID時。A Registration Challenge Reject Message (as shown in Table 7) is transmitted by the AP to a UT to reject the temporary MAC ID assignment, for example, when two or more UTs randomly select the same temporary MAC ID.

由AP傳輸硬體ID要求訊息(Hardware ID Request Message)(如表格8所示),以從UT獲取硬體ID。The hardware ID Request Message (as shown in Table 8) is transmitted by the AP to obtain the hardware ID from the UT.

由UT傳輸硬體ID要求認可訊息(Hardware ID Request Acknowledgment Message)(如表格9所示),以響應該硬體ID 要求訊息並且包括該UT的48位元硬體ID。(具體而言,UT可使用的48位元IEEE MAC位址)。The Hardware ID Request Acknowledgment Message (as shown in Table 9) is transmitted by the UT in response to the hardware ID. Request message and include the 48-bit hardware ID of the UT. (In particular, the 48-bit IEEE MAC address that the UT can use).

系統功能訊息(System Capabilities Message)(如表格10所示)被傳輸至新註冊的UT,以向該UT指示AP功能。A System Capabilities Message (as shown in Table 10) is transmitted to the newly registered UT to indicate the AP function to the UT.

由UT傳送系統功能認可訊息(System Capabilities Acknowledgment Message)(如表格11所示),以響應該系統功能訊息,藉此向該AP指示該UT功能。A System Capabilities Acknowledgment Message (as shown in Table 11) is transmitted by the UT in response to the system function message, thereby indicating the UT function to the AP.

會在每個UT處初始化一個無線電資源控制RRC執行個體。會在AP處初始化每作用中UT一個RRC執行個體。位於AP和UT處的RRC功能可共用正向和反向鏈路頻道度量(若需要)。RRC管理位於AP與UT處之傳輸鏈和接收鏈之校準。在此實例中,校準對於空間多工傳輸模式很有助益。A radio resource control RRC enforcement entity will be initialized at each UT. An RRC executor of each active UT is initialized at the AP. The RRC functions located at the AP and UT can share forward and reverse link channel metrics (if needed). The RRC manages the calibration of the transmission and reception chains at the AP and UT. In this example, calibration is helpful for spatial multiplex transmission mode.

RRC決定用於傳至UT之傳輸的傳輸模式及傳輸率控制,並且將決定結果提供給MAC排程器。RRC決定在R-TCH上及F-TCH上(若需要)之實體層(PHY)叢發傳輸所需之專用MIMO前導的週期性及長度。RRC管理在空間時間傳輸分集(STTD)模式中傳至及來自一UT之傳輸的功率控制,並將功率控制提供給PHY管理員。RRC決定來自UT之R-TCH傳輸的時序調整。The RRC decides the transmission mode and transmission rate control for the transmission to the UT, and provides the decision result to the MAC scheduler. The RRC determines the periodicity and length of the dedicated MIMO preamble required for the physical layer (PHY) burst transmission on the R-TCH and on the F-TCH (if needed). The RRC manages the power control transmitted to and from a UT in Space Time Transport Diversity (STTD) mode and provides power control to the PHY administrator. The RRC determines the timing adjustment of the R-TCH transmission from the UT.

由AP傳輸校準要求訊息(Request Request Message)(如表格12所示),以要求校準於UT。CalType欄位指示校準音頻(calibration tone)集合以及將運用在校準程序的每天線校準符號數量。A Request Request Message (as shown in Table 12) is transmitted by the AP to request calibration to the UT. The CalType field indicates the calibration tone set and the number of daily line calibration symbols that will be used in the calibration procedure.

表格13中列出校準類型(CalType)值。每個CalType各對應於一組OFDM音頻集合以及校準所需的每天線校準符號數量。校準前導符號(Calibration Pilot Symbol)使用Walsh序列來建置跨發射天線的正交(orthogonality)。The calibration type (CalType) values are listed in Table 13. Each CalType corresponds to a set of OFDM audio sets and the number of daily line calibration symbols required for calibration. The Calibration Pilot Symbol uses the Walsh sequence to establish orthogonality across the transmit antenna.

由UT傳輸校準要求拒絕訊息(Request Request Reject Message)(如表格14所示),以拒絕來自AP的該校準要求訊息。A Request Request Reject Message (as shown in Table 14) is transmitted by the UT to reject the calibration request message from the AP.

由UT傳送校準量測要求訊息(Request Measurement Request Message)(如表格15所示)至AP。此訊息包括AP用於量測介於UT與AP間之頻道的校準前導(Calibration Pilot)符號。The Measure sends a Request Measurement Request Message (as shown in Table 15) to the AP. This message includes the calibration Pilot symbol used by the AP to measure the channel between the UT and the AP.

由AP傳送校準量測結果訊息(Request Measurement Result Message)(如表格16所示),用以將AP針對該UT在該校準要求訊息中所傳輸之校準符號所完成的頻道測量結果提供給該UT。A Request Measurement Result Message (shown in Table 16) is sent by the AP to provide the channel measurement result performed by the AP for the calibration symbol transmitted by the UT in the calibration request message to the UT. .

在此實例中,每個校準量測結果訊息各載送一4x4頻道之4個音頻的頻道響應值、一2x4頻道之至多8個音頻的頻道響應值或一1x4頻道之至多16個音頻的頻道響應值。可能需要至多13個此訊息,以便載送含已測量之52個音頻的4x4頻道 之測量資料,所以還會採用一序號,藉以追蹤彼等訊息的序列。假使沒有足夠的資料足以填滿整個資料欄位,則會將資料欄位的未使用部分設定為零。In this example, each calibration measurement result message carries a channel response value of 4 audios of 4x4 channels, a channel response value of up to 8 audios of 2x4 channels, or a channel of up to 16 audios of 1x4 channels. Response. Up to 13 messages may be required to carry 4x4 channels with 52 audio measurements The measurement data, so a sequence number is also used to track the sequence of their messages. If there is not enough data to fill the entire data field, the unused portion of the data field will be set to zero.

傳送校準量測結果認可訊息(Calibration Measurement Result Acknowledgement Message)(如表格17所示),藉以認可該校準量測結果訊息的片段。A Calibration Measurement Result Acknowledgement Message (as shown in Table 17) is transmitted to acknowledge the fragment of the calibration measurement result message.

同樣地,可能不會認可該校準量測結果認可訊息,在此情況下,可在反向鏈路上傳輸一校準量測結果否定認可訊息(Calibration Measurement Result NACK Message)(如表格18所示),藉以否定認可(NACK)該校準量測結果訊息的片段。Similarly, the calibration measurement result approval message may not be recognized, in which case a Calibration Measurement Result NACK Message may be transmitted on the reverse link (as shown in Table 18). By means of a negative acknowledgement (NACK) a fragment of the calibration measurement result message.

校準量測結果訊息可能以go-back-N(返回N)或選擇性重複為基礎予以否定認可。SEQ欄位係由四個連續的4位元片段所組成,每個片段各表示一訊息序號。對於go-back-N模式,MODE位元被設定為0,並且SEQ欄位的第一個片段指示必須重複之序列中的第一個訊息之序號。在此情況下,SEQ欄位中其餘的12位位元被設定為0且被忽略。對於選擇性重複模式,MODE位元被設定為1,並且SEQ欄位保存必須重複之至多四個訊息之序號。如果少於四個訊息必須被重複,則僅含有非零值之片段才具有意義。會忽略所有零值片段。The calibration measurement result message may be negatively recognized based on go-back-N (return to N) or selective repetition. The SEQ field consists of four consecutive 4-bit segments, each of which represents a message sequence number. For the go-back-N mode, the MODE bit is set to 0, and the first fragment of the SEQ field indicates the sequence number of the first message in the sequence that must be repeated. In this case, the remaining 12 bits in the SEQ field are set to 0 and are ignored. For the selective repeat mode, the MODE bit is set to 1, and the SEQ field holds the sequence number of up to four messages that must be repeated. If fewer than four messages must be repeated, then only segments with non-zero values are meaningful. All zero value fragments are ignored.

由AP傳送UT鏈路狀態訊息(UT Link Status Message)(如表格19所示),藉以要求UT提供反饋。在此實例中,UT必須提供有關緩衝器狀態(已積存之資料量和QoS類別)以及鏈路品質(MIMO及控制頻道所支援的正向鏈路傳輸率)的反饋。The UT Link Status Message (as shown in Table 19) is transmitted by the AP to request the UT to provide feedback. In this example, the UT must provide feedback on the buffer status (the amount of data accumulated and the QoS class) and the link quality (the forward link transmission rate supported by the MIMO and control channels).

UT_BUF_STAT指示UT無線電鏈路緩衝器大小(以四位元組為增量單位)。0xFFFF值指示大於或等於262,140個位元組之緩衝器大小。FL_RATE_STAT提供每模式最大正向鏈路傳輸率(每模式4位位元)。對於分集模式,僅仗用前四位最高有效位元。其餘12位位元被設定為0。QOS_FLAG指示出RL緩衝器是否包含高優先順序資料。表格20中定義值QOS_FLAG。UT_BUF_STAT indicates the UT radio link buffer size (in increments of four bytes). A value of 0xFFFF indicates a buffer size greater than or equal to 262, 140 bytes. FL_RATE_STAT provides the maximum forward link transmission rate per mode (4 bits per mode). For the diversity mode, only the first four most significant bits are used. The remaining 12 bits are set to zero. QOS_FLAG indicates whether the RL buffer contains high priority data. The value QOS_FLAG is defined in Table 20.

在UT處,由RRC建立該UT鏈路狀態訊息。在AP處,該UT鏈路狀態訊息被轉遞至用於提供值給UT代理伺服器(proxy)的RRC。At the UT, the UT link status message is established by RRC. At the AP, the UT link state message is forwarded to the RRC for providing a value to the UT proxy server.

此段落中所說明的示範性RRC具體實施例可結合整份說明書中所詳細之各項具體實施例一起部署。熟悉此項技術 者應明白這項示範性具體實施例僅供例證用途,並且按照本文講授內容就會明瞭許多替代具體實施例。此下一段落中會說明控制頻道之示範性具體實施例,其適合結合整份說明書中所詳細之各項具體實施例一起部署。The exemplary RRC embodiments described in this paragraph can be deployed in conjunction with the specific embodiments detailed throughout the specification. Familiar with this technology It is understood that this exemplary embodiment is for illustrative purposes only and that many alternative embodiments are apparent in light of the teachings herein. Exemplary embodiments of the control channel are described in this next paragraph, which are suitable for deployment together with the specific embodiments detailed in the entire specification.

示範性控制頻道(CCH)Exemplary Control Channel (CCH)

如上文所述,存取MAC訊框及指派資源受控於控制頻道(CCH),控制頻道(CCH)依據來自排程器的指令來指派F-TCH及R-TCH資源給MAC ID。這些資源授予可能是一對於相關聯於該特定MAC ID之AP處一或多個佇列的已知狀態之回應,或是一對於相關聯於該MAC ID之UT處一或多個佇列的已知狀態之回應,如同對應之UT代理伺服器(proxy)中資訊的反映。資源授予也可能是一對於在一存取要求頻道(Access Request Channel;ARCH)接收到之存取要求的回應,或是對於排程器可取得之某其他刺激(stimulus)或資訊的回應。下文會詳細說明CCH的示範性具體實施例。此項示範性CCH係當做可部署在如上文所述之高效能WLAN中的各項控制機制之例證。替代具體實施例可包括額外功能,以及下文所述之功能的子集。下文所述之欄位名稱、欄位寬度、參數值等等僅僅是例證說明。熟悉此項技術者很容易調整所說明之原理以配置屬於本發明範疇內的許多替代具體實施例。As described above, accessing the MAC frame and assigning resources are controlled by a Control Channel (CCH), which assigns F-TCH and R-TCH resources to the MAC ID in accordance with instructions from the scheduler. These resource grants may be a response to a known state of one or more queues associated with the AP of the particular MAC ID, or a queue for one or more queues at the UT associated with the MAC ID. The response to the known state is reflected in the information in the corresponding UT proxy server. The resource grant may also be a response to an access request received on an Access Request Channel (ARCH) or to some other stimulus or information available to the scheduler. Exemplary embodiments of the CCH are described in detail below. This exemplary CCH is exemplified as various control mechanisms that can be deployed in a high performance WLAN as described above. Alternative embodiments may include additional functionality, as well as a subset of the functionality described below. The field names, field widths, parameter values, and the like described below are merely illustrative. It will be readily apparent to those skilled in the art that the described principles can be modified to configure many alternative embodiments that are within the scope of the invention.

示範性CCH係由4個分離的子頻道所組成,每個子頻道各以不同資料傳輸率運作,如表格21所示。表格21中所使用的用詞已為此項技術所熟知(SNR表示訊雜比(Signal to Noise Ratio),以及FER表示正向錯誤率(Forward Error Rate),也是此項技術所熟知)。CCH結合STTD來使用短型OFDM符號。這意謂著每個邏輯頻道都是由偶數個短型OFDM符號所組成。在隨機存取反饋頻道(RFCH)及訊框控制頻道(FCCH)上傳送的訊息被格式化成為資訊元素(Information Element;IE),並且會在該等CCH子頻道之一上予以傳輸。The exemplary CCH system consists of four separate sub-channels, each operating at a different data transmission rate, as shown in Table 21. The terms used in Table 21 are well known in the art (SNR stands for Signal to Ratio (Signal to Noise Ratio), and FER represents the Forward Error Rate, which is well known in the art. CCH combines STTD to use short OFDM symbols. This means that each logical channel is composed of an even number of short OFDM symbols. Messages transmitted on the Random Access Feedback Channel (RFCH) and Frame Control Channel (FCCH) are formatted as Information Elements (IEs) and transmitted on one of the CCH subchannels.

BCCH指示CCH_MASK參數中是否有一既定CCH子頻道存在或不存在。下面表格22中提供每個CCH子頻道各式(其中N標示子頻道尾碼0到3)。格式包括多個欄位,用於指示IE數量、IE本身、CRC、填零項(若需求)及尾端位元。AP決定要用於每個IE的子頻道。屬於使用者終端機(UT)特有的IE類型係在用於最大化該UT之傳輸效率的CCH子頻道上予以傳輸。如果AP無法精確決定相關聯於一既定UT的傳輸率,則可使用CCH_0。廣播/多點播送IE類型係在CCH_0上予以傳輸。The BCCH indicates whether there is a predetermined CCH subchannel present or absent in the CCH_MASK parameter. Each of the CCH subchannels is provided in Table 22 below (where N indicates the subchannel end codes 0 to 3). The format includes multiple fields for indicating the number of IEs, the IE itself, the CRC, the zero padding (if required), and the trailing bit. The AP decides which subchannel to use for each IE. The IE type unique to the User Terminal (UT) is transmitted on the CCH subchannel for maximizing the transmission efficiency of the UT. CCH_0 can be used if the AP cannot accurately determine the transmission rate associated with a given UT. The broadcast/multicast IE type is transmitted on CCH_0.

CCH係以最低至最高傳輸率予以傳輸。會提供每個CCH子頻道的一CRC。所有UT都會嘗試解碼每個以最低傳輸率CCH開始傳輸的每個CCH。無法正確解碼CCH_N意謂著被解碼的較傳輸率CCH有錯誤。每個CCH子頻道都能夠傳輸至多32個IE。CCH is transmitted at the lowest to highest transmission rate. A CRC for each CCH subchannel is provided. All UTs will attempt to decode each CCH that starts transmitting at the lowest transmission rate CCH. Failure to correctly decode CCH_N means that the decoded higher transmission rate CCH has an error. Each CCH subchannel can transmit up to 32 IEs.

CCH傳輸頻道被映射至兩個邏輯頻道。RFCH包括對在RCH上接收到之存取嘗試的認可。FCCH包括資源配置(即,F-TCH和R-TCH上的實體層訊框指派)、實體層控制功能(包含有關F-TCH和R-TCH的實體層資料傳輸率控制、R-TCH專用前導插入、R-TCH時序以及R-TCH功率控制。FCCH還可包括一R-TCHR-TCH,用以向一UT要求一緩衝器和鏈路狀態更新。The CCH transmission channel is mapped to two logical channels. The RFCH includes an acknowledgement of the access attempt received on the RCH. FCCH includes resource configuration (ie, physical layer frame assignment on F-TCH and R-TCH), physical layer control functions (including physical layer data rate control on F-TCH and R-TCH, R-TCH dedicated preamble) Insert, R-TCH timing, and R-TCH power control. The FCCH may also include an R-TCHR-TCH to request a buffer and link status update to a UT.

一般而言,在此具體實施例中,在CCH上傳送的資訊屬於時間關鍵型資訊,並且會被目前MAC訊框內的收件者所採用。In general, in this particular embodiment, the information transmitted on the CCH is time critical information and will be used by recipients within the current MAC frame.

表格23列出CCH資訊元素類型及各自的類型值。下文會進一步詳述資訊元素格式。在下面的表格中,所有的位移值係以800奈米為單位。Table 23 lists the CCH information element types and their respective type values. The information element format is further detailed below. In the table below, all displacement values are in units of 800 nm.

表格24顯示註冊要求認可IE(Registration Request Acknowledgment IE)(RFCH)(表格23中標示為RegistrationReqACK)的格式。該註冊要求認可係用於回應在該RCH上接收自一UT的註冊要求。格式包括一IE類型、一時槽ID、該存取ID(由UT選擇並包含在其註冊要求中)、指派給該UT的MAC ID以及一時序進階值。Table 24 shows the format of the Registration Request Acknowledgment IE (RFCH) (labeled as RegistrationReqACK in Table 23). The registration request authorization is used to respond to registration requests received from a UT on the RCH. The format includes an IE type, a time slot ID, the access ID (selected by the UT and included in its registration request), the MAC ID assigned to the UT, and a timing advance value.

表格25顯示F-TCH分集模式指派IE(F-TCH Diversity Mode Assignment IE)(FCCH)(表格23中標示為FwdDivModeAssign)的格式。該F-TCH分集模式指派用於指示將使用分集模式在 F-TCH上傳輸之MAC PDU。分集是包括的另一STTD限期。格式包括一IE類型、一MAC ID、一F-TCH位移(用於指示MAC訊框中MAC PDU的位置)、使用的傳輸率、封包中的OFDM符號數量、前導項類型(下文會詳細說明)以及封包中的短型OFDM符號數量。Table 25 shows the format of the F-TCH Diversity Mode Assignment IE (FCCH) (labeled FwdDivModeAssign in Table 23). The F-TCH diversity mode assignment is used to indicate that the diversity mode will be used MAC PDU transmitted on the F-TCH. Diversity is another STTD deadline included. The format includes an IE type, a MAC ID, an F-TCH offset (used to indicate the location of the MAC PDU in the MAC frame), the used transmission rate, the number of OFDM symbols in the packet, and the type of the preamble (described in detail below). And the number of short OFDM symbols in the packet.

表格26顯示含R-TCH狀態的F-TCH分集模式指派IE(FCCH)(表格23中標示為FwdDivModeAssignStat)的格式。此IE係用於指示將使用分集模式在F-TCH上傳輸之MAC PDU,並且會配置用於回應一狀態要求的R-TCH空間。格式包括FwdDivModeAssign欄位。此外,格式還包括一配置位移,以供UT在R-TCH上報告其緩衝器狀態。用於R-TCH上之鏈路狀態訊息的配置指定R-TCH前導項類型,以及反向參數,包括傳輸率、時序調整、狀態訊息要求位元和鏈路狀態封包中的長型和短型OFDM符號數量。Table 26 shows the format of the F-TCH Diversity Mode Assignment IE (FCCH) containing the R-TCH state (labeled FwdDivModeAssignStat in Table 23). This IE is used to indicate the MAC PDU to be transmitted on the F-TCH using the diversity mode, and will configure the R-TCH space for responding to a state request. The format includes the FwdDivModeAssign field. In addition, the format includes a configuration shift for the UT to report its buffer status on the R-TCH. The configuration of the link state message for the R-TCH specifies the R-TCH preamble type, as well as the reverse parameters, including the transmission rate, timing adjustment, status message request bits, and long and short types in the link state packet. The number of OFDM symbols.

FWD_PREAMBLE和REV_PREAMBLE欄位分別提供在反向鏈路上使用之前導項的長度以及在反向鏈路上傳送的狀態訊息。前導項係由表格27中提供之短型OFDM符號數量所組成,僅載送用於主要特徵模態(eigenmode)的操控參考(steered reference)。The FWD_PREAMBLE and REV_PREAMBLE fields provide the length of the preamble used on the reverse link and the status message transmitted on the reverse link, respectively. The preamble consists of the number of short OFDM symbols provided in Table 27, carrying only the steered reference for the main feature mode (eigenmode).

表格28顯示F-TCH空間多工模式指派IE(F-TCH Spatial Multiplex Mode Assignment IE)(FCCH)(表格23中標示為 FwdSpaModeAssign)的格式。此IE的欄位類似於FwdDivModeAssign,惟使用空間多工(而不是使用分集)除外。Table 28 shows the F-TCH Spatial Multiplex Mode Assignment IE (FCCH) (labeled in Table 23 as The format of FwdSpaModeAssign). This IE field is similar to FwdDivModeAssign except that space multiplex is used instead of using diversity.

表格29顯示含R-TCH狀態的F-TCH空間多工模式指派IE(FCCH)(表格23中標示為FwdSpaModeAssignStat)的格式。此IE的欄位類似於FwdDivModeAssignStat,惟使用空間多工(而不是使用分集)除外。Table 29 shows the format of the F-TCH Spatial Multiplex Mode Assignment IE (FCCH) with the R-TCH state (labeled FwdSpaModeAssignStat in Table 23). This IE field is similar to FwdDivModeAssignStat except that space multiplex is used instead of using diversity.

表格30顯示R-TCH分集模式指派IE(R-TCH Diversity Mode Assignment IE)(FCCH)(表格23中標示為RevDivModeAssign)的格式。此IE係用於使用分集模式以訊號發出一用於MAC PDU之R-TCH配置。此IE包括如上文所述的MAC ID欄位。此IE還包括如上文所述之狀態要求訊息中所包含的反向鏈路欄位(FwdDivModeAssignStat和FwdSpaModeAssignStat)。此IE進一步包括一反向傳輸功率調整欄位。Table 30 shows the format of the R-TCH Diversity Mode Assignment IE (FCCH) (labeled RevDivModeAssign in Table 23). This IE is used to signal a R-TCH configuration for a MAC PDU using a diversity mode. This IE includes the MAC ID field as described above. This IE also includes the reverse link fields (FwdDivModeAssignStat and FwdSpaModeAssignStat) included in the status request message as described above. This IE further includes a reverse transmission power adjustment field.

表格31顯示R-TCH空間多工模式指派IE(R-TCH Spatial Multiplex Mode Assignment IE)(FCCH)(表格23中標示為RevSpaModeAssign)的格式。此IE的欄位類似於RevDivModeAssign,惟使用空間多工(而不是使用分集)除外。Table 31 shows the format of the R-TCH Spatial Multiplex Mode Assignment IE (FCCH) (labeled RevSpaModeAssign in Table 23). This IE field is similar to RevDivModeAssign except that space multiplex is used instead of using diversity.

表格32顯示TCH分集模式指派IE(TCH Div Mode Assignment IE)(FCCH)(表格23中標示為DivModeAssign)的格式。此IE係用於配置正向鏈路和反向鏈路MAC PDU。此IE的欄位PwdDivModeAssign和RevDivModeAssign的欄位組合。Table 32 shows the format of the TCH Div Mode Assignment IE (FCCH) (labeled as DivModeAssign in Table 23). This IE is used to configure forward link and reverse link MAC PDUs. The field combination of the fields PwdDivModeAssign and RevDivModeAssign of this IE.

表格33顯示TCH空間多工模式指派IE(TCH Spatial Mul Mode Assignment IE)(FCCH)(表格23中標示為SpaModeAssign)的格式。此IE的欄位類似於DivModeAssign,惟使用空間多工(而不是使用分集)除外。Table 33 shows the format of the TCH Spatial Mul Mode Assignment IE (FCCH) (labeled as SpaModeAssign in Table 23). This IE field is similar to DivModeAssign except that space multiplex is used instead of using diversity.

表格34顯示緩衝器和鏈路狀態要求IE(Buffer and Link Status Request IE)(RFCH或FCCH)(表格23中標示為LinkStatusReq)的格式。AP使用此IE來向UT向要求目前的緩衝器狀態及連至該UT之實體鏈路的目前狀態。會配合該要求進行一用於提供回應的反向鏈路配置。除了類型及MAC ID欄位以外,該反向鏈路配置還包括類型於上文所述 之反向鏈路配置的欄位。Table 34 shows the format of the Buffer and Link Status Request IE (RFCH or FCCH) (labeled as LinkStatusReq in Table 23). The AP uses this IE to request the current buffer state and the current state of the physical link to the UT to the UT. A reverse link configuration for providing a response is performed in conjunction with this requirement. In addition to the type and MAC ID fields, the reverse link configuration also includes the types described above. The field of the reverse link configuration.

表格35顯示校準要求認可IE(Calibration Request Acknowledgment IE)(FCCH)(表格23中標示為CalRequestAck)的格式。傳輸此IE來認可一UT的校準要求。通常會在註冊之後立即執行校準,並且之後極少會執行校準。雖然TDD無線頻道屬於對稱式,但是位於AP與UT處的傳輸鏈和接收鏈可具有不相等的增益及相位。執行校準是為了排除此項不對稱。此IE包括一類型欄位、一MAC ID欄位(包含指派給UT的臨時MAC ID)、UT的天線數量以及所要之校準類型的認可。4位元之校準類型欄位指定用於校準的音頻組合,以及基於校準用途所傳送之訓練符號(training symbol)的數量。Table 35 shows the format of the Calibration Request Acknowledgment IE (FCCH) (labeled as CalRequestAck in Table 23). This IE is transmitted to recognize the calibration requirements of a UT. Calibration is usually performed immediately after registration, and calibration is rarely performed afterwards. Although the TDD radio channel is symmetric, the transmission and reception chains at the AP and UT may have unequal gains and phases. Calibration is performed to rule out this asymmetry. This IE includes a type field, a MAC ID field (containing the temporary MAC ID assigned to the UT), the number of antennas of the UT, and the approval of the desired type of calibration. The 4-bit calibration type field specifies the audio combination used for calibration and the number of training symbols transmitted based on the calibration usage.

表格36顯示校準要求拒絕IE(Calibration Request Reject IE)(FCCH)(表格23中標示為CalRequestRej)的格式。此IE拒絕來自一UT的校準要求。此IE包括類型欄位、MAC ID欄位及校準要求類型欄位,如同CalRequestAck。此外,還會提供一原因欄位,用以說明拒絕校準要求的原因。Table 36 shows the format of the Calibration Request Reject IE (FCCH) (labeled as CalRequestRej in Table 23). This IE rejects calibration requirements from a UT. This IE includes a type field, a MAC ID field, and a calibration requirement type field, just like CalRequestAck. In addition, a reason field is provided to explain the reason for rejecting the calibration request.

藉由原因值來參照一校準要求的原因。表格37中詳列原因及原因值。The reason for the calibration requirement is referenced by the cause value. The cause and cause values are detailed in Table 37.

表格38顯示要求訊息(Request Message)(ARCH)的格式。在起始存取時,該要求訊息被視為一註冊要求。存取方UT會從設置用於起始存取且在BCCH訊息中發佈的一組ID集合中隨機挑選一存取ID。如果連續接收到該要求訊息,則AP會在RFCH上使用註冊要求認可IE來認可該要求訊息,並且指派一臨時MAC ID給該UT。Table 38 shows the format of the Request Message (ARCH). The request message is considered a registration request at the time of initial access. The accessing UT randomly picks an access ID from a set of IDs set for initial access and published in the BCCH message. If the request message is continuously received, the AP will use the registration request approval IE on the RFCH to acknowledge the request message and assign a temporary MAC ID to the UT.

已註冊之UT會在ARCH上使用相同的訊息,但是使用在存取ID欄位中指派的MAC ID來要求服務。如果連續接收到該要求訊息,則AP會傳輸一R-TCH鏈路狀態要求IE,藉以獲得有關該UT所想要之配置的類型及大小。The registered UT will use the same message on the ARCH, but will request the service using the MAC ID assigned in the Access ID field. If the request message is continuously received, the AP transmits an R-TCH link state request IE to obtain the type and size of the configuration desired by the UT.

熟習此項技術者應明白,可使用各種不同術語或技術的任一種來代表資訊及信號。例如,資料、指令、命令、資訊、信號、位元、符號及晶片有利於以電壓、電流、電磁波、磁場或粒子、光場或粒子、或其任何組合來表示。Those skilled in the art will appreciate that any of a variety of different terms or techniques can be used to represent information and signals. For example, data, instructions, commands, information, signals, bits, symbols, and wafers are advantageously represented by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof.

熟習此項技術者應進一步明白,配合本文所發表之具體實施例說明的各種圖解邏輯方塊、模組、電路及演算法步驟可實施為電子硬體、電腦軟體或其組合。為了清楚解說硬體與軟體的互換性,前文中已就功能而論作廣泛說明各種圖解的組件、區塊、模組、電路及步驟。視特定應用及影響整個系統的設計限制條件而定,將功能實施成硬體或軟體。熟悉本技藝者可以用每種特別應用的不同方法來實施所述的功能,但這種實施決定不能視為背離本發明之範圍Those skilled in the art should further appreciate that the various illustrative logic blocks, modules, circuits, and algorithm steps described in connection with the specific embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations thereof. In order to clearly illustrate the interchangeability of hardware and software, the various components, blocks, modules, circuits, and steps of the various figures are described above in terms of functionality. The functionality is implemented as hardware or software depending on the particular application and the design constraints that affect the overall system. Those skilled in the art can implement the described functions in different ways for each particular application, but such implementation decisions are not considered to be a departure from the scope of the present invention.

可使用一般用途處理器、數位信號處理器(DSP)、專用積體電路(ASIC)、場可程式規劃閘極陣列(FPGA)或其他可程 式規劃邏輯裝置(PLD)、離散閘極或電晶體邏輯、離散硬體組件或其任何的組合以執行本文所說明的功能,以實施或執行配合本文所發表之具體實施例說明的各種圖解邏輯方塊、模組及電路。一般用途處理器可能是微處理器,但是在替代方案中,處理器可能是任何傳統處理器、控制器、微控制器或狀態機器。處理器可實施為電腦裝置的組合,例如DSP和微處理器的組合、複數個微處理器、連接DSP核心的一個或一個以上微處理器或任何其他此類的組態。Use general purpose processors, digital signal processors (DSPs), dedicated integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable Programmatic logic device (PLD), discrete gate or transistor logic, discrete hardware components, or any combination thereof, to perform the functions described herein to implement or perform various illustrative logic in conjunction with the specific embodiments disclosed herein. Blocks, modules and circuits. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller or state machine. The processor can be implemented as a combination of computer devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors connected to a DSP core, or any other such configuration.

配合本文中揭示之具體實施例中說明的方法或演算法步驟可直接用硬體、處理器執行的軟體模組或軟硬體組合具體化。軟體模組可駐存於RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、可抽取磁碟、CD-ROM、或此項技術所熟知之任何其他形式的儲存媒體中。一種示範性儲存媒體係耦合處理器,以致於處理器可自儲存媒體中讀取資訊,以及寫入資訊到儲存媒體。在替代方案中,儲存媒體可被整合至處理器中。處理器和儲存媒體可駐存在ASIC中。該ASIC可存在於一使用者終端機中。在替代方案中,處理器和儲存媒體可當作散離組件駐存在使用者終端機中。The method or algorithm steps described in connection with the specific embodiments disclosed herein may be embodied directly by hardware, a software module executed by a processor, or a combination of software and hardware. The software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable disk, CD-ROM, or well known in the art. Any other form of storage medium. An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium. In the alternative, the storage medium can be integrated into the processor. The processor and storage medium can reside in the ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium may reside as a separate component in the user terminal.

本文中所列出的標題係供參考並且輔助找出各段落。這些標題非用以限制本文中所說明之觀念的範疇。這些觀念可在整份說明書中具有適用性。The headings listed herein are for reference and assist in finding the paragraphs. These headings are not intended to limit the scope of the concepts described herein. These concepts can be applied in the entire specification.

前文中提供所揭示具體實施例的說明,讓熟習此項技術者可運用或利用本發明。熟習此項技術者應明白這些具體 實施例的各種修改,並且本文中定義的一般原理可適用於其他具體實施例,而不會脫離本發明的精神或範疇。因此,本發明不受限於本文中提出的具體實施例,而是符合與本文中所說明的原理及新穎功能一致的最廣泛的範疇。The foregoing description of the specific embodiments of the invention is intended to be illustrative Those skilled in the art should understand these specifics. The various modifications of the embodiments, and the general principles defined herein, may be applied to other specific embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not to be limited to the details of the embodiments disclosed herein, but the scope of the invention.

100‧‧‧系統100‧‧‧ system

102‧‧‧網路102‧‧‧Network

104‧‧‧存取點(AP)104‧‧‧Access Point (AP)

106A-N‧‧‧使用者終端機(UT)106A-N‧‧‧User Terminal (UT)

110,270‧‧‧連接110,270‧‧‧ Connection

120‧‧‧無線區域網路區域(WLAN)(圖1)120‧‧‧Wireless Local Area Network (WLAN) (Figure 1)

120‧‧‧RF鏈路(圖26)120‧‧‧RF link (Figure 26)

210‧‧‧收發器210‧‧‧ transceiver

220‧‧‧MAC處理器220‧‧‧MAC processor

240‧‧‧LAN收發器(圖2)240‧‧‧LAN transceiver (Figure 2)

250A-N‧‧‧天線250A-N‧‧‧Antenna

255‧‧‧記憶體255‧‧‧ memory

260‧‧‧資料流260‧‧‧ data flow

280‧‧‧反饋280‧‧‧Feedback

300‧‧‧子網路協定堆集(圖3)300‧‧‧Subnet Protocol Stacking (Figure 3)

310A,310B‧‧‧調節層310A, 310B‧‧‧ adjustment layer

312‧‧‧分割和重組(SAR)312‧‧ Division and Reorganization (SAR)

314‧‧‧資料流分類314‧‧‧ Data stream classification

316‧‧‧多點播送映射316‧‧‧Multicast mapping

320A,320B‧‧‧資料鏈路層320A, 320B‧‧‧ data link layer

240A,240B‧‧‧實體層(PHY)240A, 240B‧‧‧ Physical Layer (PHY)

320‧‧‧資料鏈路控制層(圖3)320‧‧‧Data Link Control Layer (Figure 3)

330‧‧‧邏輯鏈路(LL)層330‧‧‧Logical Link (LL) Layer

332‧‧‧無障礙式廣播/多點播送/單點播送332‧‧‧Accessible Broadcast/Multicast/Unicast

334‧‧‧否定認可334‧‧‧Negative recognition

336‧‧‧認可336‧‧ ‧Approved

340‧‧‧無線電鏈路控制(RLC)層340‧‧‧ Radio Link Control (RLC) layer

342‧‧‧無線電資源控制(RRC)342‧‧‧ Radio Resource Control (RRC)

344‧‧‧關聯控制功能344‧‧‧Association control function

350‧‧‧系統組態控制350‧‧‧System configuration control

360‧‧‧MUX功能360‧‧‧MUX function

370‧‧‧共同MAC功能370‧‧‧Common MAC function

372‧‧‧MAC組訊框功能372‧‧‧MAC group frame function

374‧‧‧控制頻道功能374‧‧‧Control channel function

376‧‧‧MAC排程器376‧‧‧MAC Scheduler

378‧‧‧隨機存取控制功能378‧‧‧ Random access control

380‧‧‧層管理員380‧‧ ‧ layer administrator

382‧‧‧QoS管理員功能382‧‧‧QoS administrator function

384‧‧‧許可控制功能384‧‧‧License Control Function

386‧‧‧實體層管理員386‧‧‧Physical layer administrator

410‧‧‧使用者資料封包410‧‧‧User data package

420A-N‧‧‧片段420A-N‧‧‧ fragment

430‧‧‧調節子層PDU430‧‧‧Adjust sublayer PDU

434,444,454‧‧‧封包承載(payload)434,444,454‧‧‧Package (payload)

440‧‧‧邏輯鏈路子層PDU(LL PDU)440‧‧‧ Logical Link Sublayer PDU (LL PDU)

442‧‧‧LL標頭442‧‧‧LL header

450‧‧‧MUX子層PDU(MPDU)450‧‧‧MUX Sublayer PDU (MPDU)

452‧‧‧MUX標頭452‧‧‧MUX header

462‧‧‧MUX指標462‧‧‧MUX indicator

464‧‧‧局部MPDU464‧‧‧Local MPDU

466‧‧‧新PDU466‧‧‧New PDU

466A‧‧‧MPDU466A‧‧‧MPDU

468‧‧‧局部MUX PDU468‧‧‧Local MUX PDU

500‧‧‧MAC訊框500‧‧‧MAC frame

510‧‧‧廣播頻道(BCH)510‧‧‧Broadcast Channel (BCH)

520‧‧‧控制頻道(CCH)520‧‧‧Control Channel (CCH)

530‧‧‧正向流量頻道(F-TCH)530‧‧‧ Forward Traffic Channel (F-TCH)

540‧‧‧反向流量頻道(F-TCH)540‧‧‧Reverse Traffic Channel (F-TCH)

550‧‧‧隨機存取頻道(RCH)550‧‧‧ Random Access Channel (RCH)

560‧‧‧片段560‧‧‧frag

2410‧‧‧IP路由器2410‧‧‧IP router

2610,2710‧‧‧較上層2610, 2710‧‧‧ upper level

2615,2720A‧‧‧IP層2615,2720A‧‧‧IP layer

2620A‧‧‧乙太網路MAC層2620A‧‧‧Ethernet MAC layer

2620B‧‧‧乙太網路MAC2620B‧‧‧Ethernet MAC

2640‧‧‧乙太網路調節協定堆集(UT協定堆集)2640‧‧‧Ethernet adjustment protocol heap (UT protocol heap)

2650‧‧‧乙太網路調節協定堆集(AP協定堆集)2650‧‧‧Ethernet adjustment protocol stacking (AP protocol stacking)

2740‧‧‧IP調節協定堆集(UT協定堆集)2740‧‧‧IP adjustment protocol heap (UT protocol heap)

2750‧‧‧IP調節協定堆集(AP協定堆集)2750‧‧‧IP adjustment protocol stacking (AP protocol stacking)

圖1繪示一種包括高速WLAN之系統的示範性具體實施例;圖2繪示無線通信裝置的示範性具體實施例,該無線通信裝置可被組態成一存取點或使用者終端機;圖3繪示示範性子網路協定堆集;圖4繪示通過協定堆集各層行進之使用者資料封包;圖5繪示示範性MAC訊框;圖6繪示傳輸正向鏈路訊息傳送之示範性方法;圖7繪示接收正向鏈路訊息傳送之示範性方法;圖8繪示傳輸反向鏈路訊息傳送之示範性方法;圖9繪示接收反向鏈路訊息傳送之示範性方法;圖10繪示UT執行起始存取及註冊之示範性方法;圖11繪示AP執行起始存取及註冊之示範性方法;圖12繪示AP使用者資料流之示範性方法1200;圖13繪示UT使用者資料流之示範性方法1300;圖14繪示併入實體層反饋至調節層功能中之示範性方法;圖15繪示執行調節層多點播送之示範性方法;圖16繪示決定是否使用調節層多點播送或使用MAC多點 播送之示範性方法;圖17繪示響應實體層反饋而執行分割(Segmentation)之示範性方法;圖18繪示響應傳輸率而分割片段(segmenting);圖19繪示在單一MAC訊框中傳輸多資料流及命令之示範性方法;圖20繪示連續MAC訊框,包括傳輸各種局部MUX PDU之實例;圖21繪示使用MUX指標來準備MAC訊框之示範性方法;圖22繪示接收包含MUX指標之MAC訊框之示範性方法;圖23繪示示範性MUX PDU格式;圖24繪示經組態適用於乙太網路調節之示範性系統;圖25繪示經組態適用於IP調節之示範性系統;圖26繪示示範性乙太網路協定堆集;以及圖27繪示示範性IP協定堆集。1 illustrates an exemplary embodiment of a system including a high speed WLAN; FIG. 2 illustrates an exemplary embodiment of a wireless communication device that can be configured as an access point or user terminal; 3 illustrates an exemplary sub-network protocol stack; FIG. 4 illustrates a user data packet traveling through the protocol stacking layers; FIG. 5 illustrates an exemplary MAC frame; FIG. 6 illustrates an exemplary method of transmitting forward link message transmission FIG. 7 illustrates an exemplary method of receiving forward link message transmission; FIG. 8 illustrates an exemplary method of transmitting reverse link message transmission; FIG. 9 illustrates an exemplary method of receiving reverse link message transmission; 10 illustrates an exemplary method for the UT to perform initial access and registration; FIG. 11 illustrates an exemplary method for the AP to perform initial access and registration; FIG. 12 illustrates an exemplary method 1200 for AP user data flow; FIG. An exemplary method 1300 for mapping a UT user data stream; FIG. 14 illustrates an exemplary method of incorporating a physical layer feedback into an adjustment layer function; FIG. 15 illustrates an exemplary method of performing an adjustment layer multicast; FIG. Determine whether to use the adjustment layer multi-cast Send or use MAC multipoint An exemplary method of broadcasting; FIG. 17 illustrates an exemplary method of performing segmentation in response to entity layer feedback; FIG. 18 illustrates segmentation by response to transmission rate; and FIG. 19 illustrates transmission in a single MAC frame. An exemplary method of multiple data streams and commands; FIG. 20 illustrates a continuous MAC frame, including an example of transmitting various local MUX PDUs; FIG. 21 illustrates an exemplary method of preparing a MAC frame using MUX indicators; An exemplary method of including a MAC frame of a MUX indicator; FIG. 23 illustrates an exemplary MUX PDU format; FIG. 24 illustrates an exemplary system configured for Ethernet adjustment; FIG. 25 is configured to apply An exemplary system for IP conditioning; FIG. 26 depicts an exemplary Ethernet protocol stack; and FIG. 27 depicts an exemplary IP protocol stack.

300‧‧‧子網路協定堆集(圖3)300‧‧‧Subnet Protocol Stacking (Figure 3)

312‧‧‧分割和重組(SAR)312‧‧ Division and Reorganization (SAR)

314‧‧‧資料流分類314‧‧‧ Data stream classification

316‧‧‧多點播送映射316‧‧‧Multicast mapping

320‧‧‧資料鏈路控制層(圖3)320‧‧‧Data Link Control Layer (Figure 3)

330‧‧‧邏輯鏈路(LL)層330‧‧‧Logical Link (LL) Layer

332‧‧‧無障礙式廣播/多點播送/單點播送332‧‧‧Accessible Broadcast/Multicast/Unicast

334‧‧‧否定認可334‧‧‧Negative recognition

336‧‧‧認可336‧‧ ‧Approved

340‧‧‧無線電鏈路控制(RLC)層340‧‧‧ Radio Link Control (RLC) layer

342‧‧‧無線電資源控制(RRC)342‧‧‧ Radio Resource Control (RRC)

344‧‧‧關聯控制功能344‧‧‧Association control function

350‧‧‧系統組態控制350‧‧‧System configuration control

360‧‧‧MUX功能360‧‧‧MUX function

370‧‧‧共同MAC功能370‧‧‧Common MAC function

372‧‧‧MAC組訊框功能372‧‧‧MAC group frame function

374‧‧‧控制頻道功能374‧‧‧Control channel function

376‧‧‧MAC排程器376‧‧‧MAC Scheduler

378‧‧‧隨機存取控制功能378‧‧‧ Random access control

380‧‧‧層管理員380‧‧ ‧ layer administrator

382‧‧‧QoS管理員功能382‧‧‧QoS administrator function

384‧‧‧許可控制功能384‧‧‧License Control Function

386‧‧‧實體層管理員386‧‧‧Physical layer administrator

Claims (28)

一種媒體存取控制方法,包括:接收被定址至一多點播送群組的一封包,該多點播送群組包括兩個或兩個以上遠端站台;比較在一單一頻道上多點播送傳輸至該多點播送群組所需的一第一資源配置,與在兩個或兩個以上頻道上單點播送傳輸至該多點播送群組所需的一第二資源配置;及當該第一資源配置少於該第二資源配置時,則在一個頻道上傳輸該封包;否則在兩個或兩個以上頻道上傳輸該封包。 A media access control method includes: receiving a packet addressed to a multicast group, the multicast group comprising two or more remote stations; comparing multicast transmissions on a single channel a first resource configuration required to the multicast group, and a second resource configuration required for unicast transmission to the multicast group on two or more channels; and when the first When a resource configuration is less than the second resource configuration, the packet is transmitted on one channel; otherwise, the packet is transmitted on two or more channels. 如請求項1之方法,其中:基於該多點播送群組中每個遠端站台可接收之一多點播送頻道的一最低可支援傳輸率以決定該第一資源配置;及基於該兩個或兩個以上頻道之每個頻道可接收之單點播送頻道的可支援傳輸率以決定該第二資源配置。 The method of claim 1, wherein: each of the remote stations in the multicast group can receive a lowest supportable transmission rate of one of the multicast channels to determine the first resource configuration; and based on the two Or the supported transmission rate of the unicast channel that can be received by each of the two or more channels to determine the second resource configuration. 如請求項2之方法,其中接收可支援傳輸率作為實體層反饋。 The method of claim 2, wherein receiving the supportable transmission rate as entity layer feedback. 如請求項1之方法,其進一步包括:基於該比較以決定單點播送傳輸是否比多點播送傳輸更有效率。 The method of claim 1, further comprising: determining whether the unicast transmission is more efficient than the multicast transmission based on the comparison. 如請求項1之方法,其進一步包括:接收該多點播送群組中之每個遠端站台的鏈路參數;及接收適合傳輸至該多點播送群組中之所有遠端站台的 一多點播送頻道之鏈路參數。 The method of claim 1, further comprising: receiving link parameters of each of the remote stations of the multicast group; and receiving, for transmission to all remote stations in the multicast group The link parameters of a multicast channel. 如請求項5之方法,其中該比較包括比較至該多點播送頻道上之該多點播送群組之該封包之多點播送傳輸的系統資源需求,與至該多點播送群組中之該等遠端站台中之每個站台之該封包之個別單點播送傳輸的一總和的系統資源需求。 The method of claim 5, wherein the comparing comprises comparing a system resource requirement of the multicast transmission of the packet to the multicast group on the multicast channel, and to the multicast group to the multicast group A sum of system resource requirements for individual unicast transmissions of the packet for each station in the remote station. 如請求項1之方法,其中在兩個或兩個以上頻道上傳輸該封包包括:傳輸至少一多點播送封包至該多點播送群組之一子集。 The method of claim 1, wherein transmitting the packet on two or more channels comprises transmitting at least one multicast packet to a subset of the multicast group. 一種電腦可讀型媒體,其包括指令碼,當該指令碼由一機器執行時可使該機器執行運作,該等運作包括下列步驟:接收被定址至一多點播送群組的一封包,該多點播送群組包括兩個或兩個以上遠端站台;比較在一單一頻道上多點播送傳輸至該多點播送群組所需的一第一資源配置,與在兩個或兩個以上頻道上單點播送傳輸至該多點播送群組所需的一第二資源配置;及當該第一資源配置少於該第二資源配置時,則在一個頻道上傳輸該封包;否則在兩個或兩個以上頻道上傳輸該封包。 A computer readable medium comprising an instruction code that, when executed by a machine, causes the machine to perform operations, the operations comprising the steps of: receiving a packet addressed to a multicast group, A multicast group includes two or more remote stations; comparing a first resource configuration required for multicast transmission to the multicast group on a single channel, with two or more Transmitting, by the channel, a second resource configuration required for transmission to the multicast group; and when the first resource configuration is less than the second resource configuration, transmitting the packet on one channel; otherwise, The packet is transmitted on one or more channels. 如請求項8之電腦可讀型媒體,其中:基於該多點播送群組中每個遠端站台可接收之一多點播送頻道的一最低可支援傳輸率以決定該第一資源配置;及 基於該兩個或兩個以上頻道之每個頻道可接收之單點播送頻道的可支援傳輸率以決定該第二資源配置。 The computer readable medium of claim 8, wherein: each of the remote stations in the multicast group can receive a lowest supportable transmission rate of one of the multicast channels to determine the first resource configuration; The second resource configuration is determined based on the supportable transmission rate of the unicast channel that can be received by each of the two or more channels. 如請求項9之電腦可讀型媒體,其中該等運作進一步包括接收可支援傳輸率作為實體層反饋。 The computer readable medium of claim 9, wherein the operations further comprise receiving a supportable transmission rate as entity layer feedback. 如請求項8之電腦可讀型媒體,其中該等運作進一步包括:基於該比較以決定單點播送傳輸是否比多點播送傳輸更有效率。 The computer readable medium of claim 8, wherein the operations further comprise: determining whether the unicast transmission is more efficient than the multicast transmission based on the comparison. 如請求項8之電腦可讀型媒體,其中該等運作進一步包括:接收該多點播送群組中之每個遠端站台的鏈路參數;及接收適合傳輸至該多點播送群組中之所有遠端站台的一多點播送頻道之鏈路參數。 The computer readable medium of claim 8, wherein the operations further comprise: receiving a link parameter of each of the remote stations of the multicast group; and receiving the suitable transmission to the multicast group Link parameters of a multicast channel of all remote stations. 如請求項12之電腦可讀型媒體,其中該比較包括比較至該多點播送頻道上之該多點播送群組之該封包之多點播送傳輸的系統資源需求,與至該多點播送群組中之該等遠端站台中之每個站台之該封包之個別單點播送傳輸的一總和的系統資源需求。 The computer readable medium of claim 12, wherein the comparing comprises comparing a system resource requirement of the multicast transmission of the packet to the multicast group on the multicast channel, and to the multicast group A sum of system resource requirements for the individual unicast transmissions of the packet for each of the remote stations in the group. 如請求項8之電腦可讀型媒體,其中在兩個或兩個以上頻道上傳輸該封包包括:傳輸至少一多點播送封包至該多點播送群組之一子集。 The computer readable medium of claim 8, wherein transmitting the packet on two or more channels comprises transmitting at least one multicast packet to a subset of the multicast group. 一種無線通信設備,包括:接收構件,用於接收被定址至一多點播送群組的一封包,該多點播送群組包括兩個或兩個以上遠端站台; 比較構件,用於比較在一單一頻道上多點播送傳輸至該多點播送群組所需的一第一資源配置,與在兩個或兩個以上頻道上單點播送傳輸至該多點播送群組所需的一第二資源配置;及用於當該第一資源配置少於該第二資源配置時,則在一個頻道上傳輸該封包,否則在兩個或兩個以上頻道上傳輸該封包之構件。 A wireless communication device, comprising: a receiving component, configured to receive a packet addressed to a multicast group, the multicast group comprising two or more remote stations; Comparing means for comparing a first resource configuration required for multicast transmission to the multicast group on a single channel, and unicast transmission to the multicast on two or more channels a second resource configuration required by the group; and for transmitting the packet on one channel when the first resource configuration is less than the second resource configuration, otherwise transmitting the packet on two or more channels The component of the package. 如請求項15之無線通信設備,其中:基於該多點播送群組中每個遠端站台可接收之一多點播送頻道的一最低可支援傳輸率以決定該第一資源配置;及基於該兩個或兩個以上頻道之每個頻道可接收之單點播送頻道的可支援傳輸率以決定該第二資源配置。 The wireless communication device of claim 15, wherein: each of the remote stations in the multicast group can receive a lowest supportable transmission rate of one of the multicast channels to determine the first resource configuration; and based on the The supported transmission rate of the unicast channel that can be received by each of the two or more channels determines the second resource configuration. 如請求項16之無線通信設備,其進一步包括用於接收可支援傳輸率作為實體層反饋之構件。 The wireless communication device of claim 16, further comprising means for receiving a supportable transmission rate as entity layer feedback. 如請求項15之無線通信設備,其進一步包括:用於基於該比較以決定單點播送傳輸是否比多點播送傳輸更有效率之構件。 The wireless communication device of claim 15, further comprising: means for determining whether the unicast transmission is more efficient than the multicast transmission based on the comparing. 如請求項15之無線通信設備,其進一步包括:用於接收該多點播送群組中之每個遠端站台的鏈路參數之構件;及用於接收適合傳輸至該多點播送群組中之所有遠端站台的一多點播送頻道之鏈路參數之構件。 The wireless communication device of claim 15, further comprising: means for receiving link parameters of each of the remote stations of the multicast group; and for receiving for transmission to the multicast group A component of a link parameter of a multicast channel of all remote stations. 如請求項19之無線通信設備,其中該比較構件包括用於 比較至該多點播送頻道上之該多點播送群組之該封包之多點播送傳輸的系統資源需求,與至該多點播送群組中之該等遠端站台中之每個站台之該封包之個別單點播送傳輸的一總和的系統資源需求之構件。 The wireless communication device of claim 19, wherein the comparison component comprises Comparing the system resource requirements of the multicast transmission of the packet to the multicast group on the multicast channel, and to each of the remote stations in the multicast group A component of the system resource requirements of a sum of individual unicast transmissions of packets. 如請求項15之無線通信設備,其中用於在兩個或兩個以上頻道上傳輸該封包之該構件包括:傳輸至少一多點播送封包至該多點播送群組之一子集。 The wireless communication device of claim 15, wherein the means for transmitting the packet on two or more channels comprises transmitting at least one multicast packet to a subset of the multicast group. 一種處理通信資料流之設備,該設備包括:至少一天線;及至少一處理器,其經組態以:經由該至少一天線以接收被定址至一多點播送群組的一封包,該多點播送群組包括兩個或兩個以上遠端站台;比較在一單一頻道上多點播送傳輸至該多點播送群組所需的一第一資源配置,與在兩個或兩個以上頻道上單點播送傳輸至該多點播送群組所需的一第二資源配置;及當該第一資源配置少於該第二資源配置時,則經由該至少一天線以在一個頻道上傳輸該封包;否則經由該至少一天線以在兩個或兩個以上頻道上傳輸該封包。 An apparatus for processing a stream of communication data, the apparatus comprising: at least one antenna; and at least one processor configured to: receive, via the at least one antenna, a packet addressed to a multicast group, the plurality of A point-to-speech group includes two or more remote stations; comparing a first resource configuration required for multicast transmission to the multicast group on a single channel, with two or more channels Transmitting, by a single point, a second resource configuration required for transmission to the multicast group; and when the first resource configuration is less than the second resource configuration, transmitting the channel over the at least one antenna Packet; otherwise the packet is transmitted over two or more channels via the at least one antenna. 如請求項22之設備,其中:基於該多點播送群組中每個遠端站台可接收之一多點播送頻道的一最低可支援傳輸率以決定該第一資源配置;及 基於該兩個或兩個以上頻道之每個頻道可接收之單點播送頻道的可支援傳輸率以決定該第二資源配置。 The device of claim 22, wherein: each of the remote stations in the multicast group can receive a lowest supportable transmission rate of one of the multicast channels to determine the first resource configuration; The second resource configuration is determined based on the supportable transmission rate of the unicast channel that can be received by each of the two or more channels. 如請求項23之設備,其中該至少一處理器經進一步組態以經由該至少一天線而接收可支援傳輸率作為實體層反饋。 The device of claim 23, wherein the at least one processor is further configured to receive the supportable transmission rate as physical layer feedback via the at least one antenna. 如請求項22之設備,其中該至少一處理器經進一步組態以基於該比較以決定單點播送傳輸是否比多點播送傳輸更有效率。 The device of claim 22, wherein the at least one processor is further configured to determine whether the unicast transmission is more efficient than the multicast transmission based on the comparison. 如請求項22之設備,其中該至少一處理器經進一步組態以:經由該至少一天線以接收該多點播送群組中之每個遠端站台的鏈路參數及適合傳輸至該多點播送群組中之所有遠端站台的一多點播送頻道之鏈路參數。 The device of claim 22, wherein the at least one processor is further configured to: receive, via the at least one antenna, link parameters of each of the remote stations in the multicast group and to transmit to the multi-cast The link parameters of a multicast channel of all remote stations in the group. 如請求項26之設備,其中該至少一處理器經組態以比較至該多點播送頻道上之該多點播送群組之該封包之多點播送傳輸的系統資源需求,與至該多點播送群組中之該等遠端站台中之每個站台之該封包之個別單點播送傳輸的一總和的系統資源需求。 The device of claim 26, wherein the at least one processor is configured to compare system resource requirements for the multicast transmission of the packet to the multicast group on the multicast channel, and to the multi-cast A sum of system resource requirements for a single unicast transmission of the packet of each of the remote stations in the group. 如請求項22之設備,其中該至少一處理器經組態以在兩個或兩個以上頻道上傳輸該封包係藉由下列步驟:傳輸至少一多點播送封包至該多點播送群組之一子集。 The device of claim 22, wherein the at least one processor is configured to transmit the packet on two or more channels by transmitting at least one multicast packet to the multicast group A subset.
TW93131486A 2003-10-15 2004-10-15 Wireless lan protocol stack TWI383302B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US51175003P 2003-10-15 2003-10-15
US51190403P 2003-10-15 2003-10-15
US51323903P 2003-10-21 2003-10-21
US52634703P 2003-12-01 2003-12-01
US52635603P 2003-12-01 2003-12-01
US53279103P 2003-12-23 2003-12-23
US54596304P 2004-02-18 2004-02-18
US57654504P 2004-06-02 2004-06-02
US58684104P 2004-07-08 2004-07-08
US60096004P 2004-08-11 2004-08-11

Publications (2)

Publication Number Publication Date
TW200525375A TW200525375A (en) 2005-08-01
TWI383302B true TWI383302B (en) 2013-01-21

Family

ID=37491830

Family Applications (6)

Application Number Title Priority Date Filing Date
TW93131484A TWI380633B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for multiplexing protocol data units
TW93131483A TWI385993B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for medium access control
TW93131491A TWI384793B (en) 2003-10-15 2004-10-15 High speed media access control with legacy system interoperability
TW93131485A TWI387279B (en) 2003-10-15 2004-10-15 High speed media access control and direct link protocol
TW093131490A TWI466517B (en) 2003-10-15 2004-10-15 High speed media access control
TW93131486A TWI383302B (en) 2003-10-15 2004-10-15 Wireless lan protocol stack

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW93131484A TWI380633B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for multiplexing protocol data units
TW93131483A TWI385993B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for medium access control
TW93131491A TWI384793B (en) 2003-10-15 2004-10-15 High speed media access control with legacy system interoperability
TW93131485A TWI387279B (en) 2003-10-15 2004-10-15 High speed media access control and direct link protocol
TW093131490A TWI466517B (en) 2003-10-15 2004-10-15 High speed media access control

Country Status (3)

Country Link
CN (4) CN101860925B (en)
BR (2) BRPI0415422A (en)
TW (6) TWI380633B (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465085B (en) * 2006-02-14 2014-12-11 Interdigital Tech Corp Methods and systems for providing reliable multicast service in a wlan service
CN101433022B (en) 2006-04-24 2012-09-05 交互数字技术公司 Method and signaling procedure for transmission opportunity usage in a wireless mesh network
KR20090017701A (en) * 2006-04-25 2009-02-18 인터디지탈 테크날러지 코포레이션 High-throughput channel operation in a mesh wireless local area network
KR101424258B1 (en) * 2006-08-23 2014-08-13 엘지전자 주식회사 Method for performing random access procedure in wirelss communication system
US8488508B2 (en) 2006-11-13 2013-07-16 Qualcomm Incorporated Method and apparatus for providing reliable multicast in a wireless communication system
US7817669B2 (en) 2007-02-01 2010-10-19 Interdigital Technology Corporation Method and apparatus for supporting RLC re-segmentation
KR20080084533A (en) 2007-03-16 2008-09-19 엘지전자 주식회사 A method of data communication in mobile communication system
US7885220B2 (en) * 2007-08-17 2011-02-08 Intel Corporation Method and apparatus for improved dual channel operation and access point discovery in wireless communication networks
US9113478B2 (en) 2008-08-20 2015-08-18 Qualcomm Incorporated Methods and apparatus for requesting and allocating resources in multiple transmission opportunities
US8989106B2 (en) 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
TWI420874B (en) * 2009-07-01 2013-12-21 Wistron Corp Information system of actively providing information to electronic devices and method thereof
US10389479B2 (en) * 2010-01-29 2019-08-20 Qualcomm Incorporated Method and apparatus for signaling expansion and backward compatibility preservation in wireless communication systems
CN101917772A (en) * 2010-08-26 2010-12-15 张若南 Media access control method based on double-buffer area mixed type media access control protocol
US8340601B2 (en) * 2010-09-20 2012-12-25 Intel Corporation MU MIMO support with highly directional antennas
KR101538255B1 (en) * 2011-04-26 2015-07-20 인텔 코포레이션 Methods and arrangements for low power wireless networks
TWI478550B (en) * 2011-06-07 2015-03-21 Htc Corp Method of back-off procedure setup in a wireless communication system
CN103002592B (en) * 2011-09-16 2015-08-19 华为技术有限公司 A kind ofly reclaim reverse method and the device of authorizing middle transmission opportunity control
CN103095364B (en) * 2011-11-01 2016-01-27 华为技术有限公司 Data transferring method and device
KR101851614B1 (en) * 2011-12-12 2018-06-12 삼성전자주식회사 Method of clock control of system on chip including functional block, system on chip of the same and semicondutor system including the same
CN102595648B (en) * 2011-12-31 2015-04-08 重庆邮电大学 Adaptive carrier sense multiple access (CSMA)/conditional access (CA) method based on institute of electrical and electronics engineers (IEEE)802.15.4
CN102802071B (en) * 2012-08-24 2014-10-29 上海广电电子科技有限公司 Intelligent television, mobile terminal, multi-screen interaction system and wireless communication method
US20140105098A1 (en) * 2012-10-16 2014-04-17 Stmicroelectronics, Inc. Frame specification for a wireless network communication
CN104104616B (en) 2013-04-03 2019-04-19 华为技术有限公司 The method, apparatus and system of data dispatch and exchange
RU2625943C2 (en) * 2013-05-02 2017-07-19 Интердиджитал Пэйтент Холдингз, Инк. Method of entity selection based on full quality of link
US9577811B2 (en) * 2013-05-03 2017-02-21 Qualcomm Incorporated Methods and systems for frequency multiplexed communication in dense wireless environments
US9492741B2 (en) 2013-05-22 2016-11-15 Microsoft Technology Licensing, Llc Wireless gaming protocol
WO2015023103A1 (en) * 2013-08-12 2015-02-19 주식회사 케이티 Method and device for transmitting data in wlan system
CN105393589B (en) * 2013-09-29 2019-08-02 华为技术有限公司 A kind of method and apparatus of data transmission
US9661634B2 (en) * 2013-11-01 2017-05-23 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
CN103916850B (en) * 2014-04-08 2017-02-15 中国科学院微电子研究所 Safe wireless communication method and device
US10045369B2 (en) * 2014-06-09 2018-08-07 Intel IP Corporation Apparatus, method and system of multi-user downlink transmission
CN104410481B (en) * 2014-11-28 2018-01-19 国家电网公司 A kind of setting means based on NTP networks and pair when system
US9693371B2 (en) * 2015-04-10 2017-06-27 Qualcomm Incorporated IoE device transmission signaling and scheduling
CN113365368A (en) * 2015-09-28 2021-09-07 纽瑞科姆有限公司 Apparatus and method for TXOP duration field in PHY header
US10230498B2 (en) 2015-11-13 2019-03-12 Microsoft Technology Licensing, Llc Data acknowledgment to multiple devices
CN108370585B (en) * 2015-12-09 2022-02-01 韦勒斯标准与技术协会公司 Wireless communication method and wireless communication terminal using multiple basic service identifier sets
KR102425184B1 (en) 2016-03-04 2022-07-27 주식회사 윌러스표준기술연구소 Wireless communication method and wireless communication terminal in basic service set overlapping with another basic service set
US10225867B2 (en) * 2016-09-02 2019-03-05 Qualcomm Incorporated Transmission configuration and format for random access messages
US10200874B2 (en) * 2016-09-29 2019-02-05 Qualcomm Incorporated Signature sequence for system identification in a shared spectrum
TWI657688B (en) * 2017-11-22 2019-04-21 群登科技股份有限公司 Time division multiplexing channel structure and time division multiplexing communication method using the same
BR112021022590A2 (en) * 2019-05-10 2022-01-04 Interdigital Patent Holdings Inc Wireless communication method, and wireless transmit/receive unit
CN110190873B (en) * 2019-05-30 2022-04-08 磐基技术有限公司 Wired communication method supporting multiple users
TWI729682B (en) * 2020-01-21 2021-06-01 元大期貨股份有限公司 Network communication device for realizing high-frequency issuance of transaction data
CN115426078A (en) * 2022-08-29 2022-12-02 宁波奥克斯电气股份有限公司 Data transmission method, device, communication system and readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974045A (en) * 1996-10-21 1999-10-26 Fujitsu Limited OAM processing device in an ATM network
WO2000056113A1 (en) * 1999-03-17 2000-09-21 Nokia Networks Oy Internet protocol switch and method
WO2000064111A1 (en) * 1999-04-16 2000-10-26 Unifree, L.L.C. Media file distribution with adaptive transmission protocols
EP1261183A1 (en) * 2001-05-23 2002-11-27 Telefonaktiebolaget L M Ericsson (Publ) Method and system for processing a data unit
US6542490B1 (en) * 1999-01-29 2003-04-01 Nortel Networks Limited Data link control proctocol for 3G wireless system
US20030162519A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device
US20030174645A1 (en) * 2002-03-13 2003-09-18 Janne Paratainen Wireless telecommunications system using multislot channel allocation for multimedia broadcast/multicast service

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133081A (en) * 1989-11-03 1992-07-21 Mayo Scott T Remotely controllable message broadcast system including central programming station, remote message transmitters and repeaters
GB9019488D0 (en) * 1990-09-06 1990-10-24 Ncr Co Local area network having a wireless transmission link
US5276703A (en) * 1992-01-13 1994-01-04 Windata, Inc. Wireless local area network communications system
US5444702A (en) * 1992-09-14 1995-08-22 Network Equipment Technologies, Inc. Virtual network using asynchronous transfer mode
FI98586C (en) * 1995-01-10 1997-07-10 Nokia Telecommunications Oy Packet radio system and methods for protocol-independent routing of a data packet in packet radio networks
US5638371A (en) * 1995-06-27 1997-06-10 Nec Usa, Inc. Multiservices medium access control protocol for wireless ATM system
GB9717868D0 (en) * 1997-08-23 1997-10-29 Philips Electronics Nv Wireless network
US6681315B1 (en) * 1997-11-26 2004-01-20 International Business Machines Corporation Method and apparatus for bit vector array
CN101106418B (en) * 1998-03-14 2012-10-03 三星电子株式会社 Receiving device and data receiving method in radio communication system
CN1260653A (en) * 1998-07-24 2000-07-19 休斯电子公司 Multi-mode, multi-modulation point-to-multi point communication
DE69841338D1 (en) * 1998-10-05 2010-01-07 Nokia Corp
US6731627B1 (en) * 1998-11-17 2004-05-04 Cisco Technology, Inc. Virtual loop carrier system
US6587441B1 (en) * 1999-01-22 2003-07-01 Technology Alternatives, Inc. Method and apparatus for transportation of data over a managed wireless network using unique communication protocol
CN1149794C (en) * 1999-07-27 2004-05-12 信息产业部武汉邮电科学研究院 Interfacing apparatus and method for adapting ethernet directly to physical channel
US6721565B1 (en) * 2000-08-07 2004-04-13 Lucent Technologies Inc. Handover of wireless calls between systems supporting circuit and packet call models
US6795409B1 (en) * 2000-09-29 2004-09-21 Arraycomm, Inc. Cooperative polling in a wireless data communication system having smart antenna processing
US7280517B2 (en) * 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
CN100417151C (en) * 2001-11-30 2008-09-03 中兴通讯股份有限公司 Method and apparatus for realizing support circuit business in wireless access system
US7486693B2 (en) * 2001-12-14 2009-02-03 General Electric Company Time slot protocol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974045A (en) * 1996-10-21 1999-10-26 Fujitsu Limited OAM processing device in an ATM network
US6542490B1 (en) * 1999-01-29 2003-04-01 Nortel Networks Limited Data link control proctocol for 3G wireless system
WO2000056113A1 (en) * 1999-03-17 2000-09-21 Nokia Networks Oy Internet protocol switch and method
WO2000064111A1 (en) * 1999-04-16 2000-10-26 Unifree, L.L.C. Media file distribution with adaptive transmission protocols
EP1261183A1 (en) * 2001-05-23 2002-11-27 Telefonaktiebolaget L M Ericsson (Publ) Method and system for processing a data unit
WO2002100064A2 (en) * 2001-05-23 2002-12-12 Telefonaktiebolaget L M Ericsson (Publ) Method and system for processing a data unit
US20030162519A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device
US20030174645A1 (en) * 2002-03-13 2003-09-18 Janne Paratainen Wireless telecommunications system using multislot channel allocation for multimedia broadcast/multicast service

Also Published As

Publication number Publication date
CN102571801B (en) 2015-09-09
CN1894914A (en) 2007-01-10
BRPI0415422A (en) 2006-12-05
TW200529619A (en) 2005-09-01
CN1894914B (en) 2010-06-16
CN102571801A (en) 2012-07-11
BRPI0415426A (en) 2006-12-05
CN101860925A (en) 2010-10-13
TWI380633B (en) 2012-12-21
CN102612076A (en) 2012-07-25
TWI385993B (en) 2013-02-11
TW200525375A (en) 2005-08-01
TWI466517B (en) 2014-12-21
TWI384793B (en) 2013-02-01
TW200536306A (en) 2005-11-01
TW200531489A (en) 2005-09-16
CN101860925B (en) 2013-03-27
TW200527868A (en) 2005-08-16
TWI387279B (en) 2013-02-21
CN102612076B (en) 2015-07-01
TW200527846A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
TWI383302B (en) Wireless lan protocol stack
EP1680897B1 (en) Method, apparatus, and system for medium access control
EP1680892B1 (en) Method, apparatus, and system for multiplexing protocol data units
US8582430B2 (en) Method and apparatus for wireless LAN (WLAN) data multiplexing
US9226308B2 (en) Method, apparatus, and system for medium access control
JP7321349B2 (en) Communication system, method and integrated circuit
JP5280465B2 (en) Enhanced block acknowledgment
JP4086304B2 (en) Communication apparatus, communication system, and communication control program
JP4444237B2 (en) Wireless communication device
CN115804146A (en) Method and apparatus for wireless communication of low latency data between multilink devices
Prasad et al. Medium Access Control Layer