TW200527868A - High speed media access control and direct link protocol - Google Patents

High speed media access control and direct link protocol Download PDF

Info

Publication number
TW200527868A
TW200527868A TW93131485A TW93131485A TW200527868A TW 200527868 A TW200527868 A TW 200527868A TW 93131485 A TW93131485 A TW 93131485A TW 93131485 A TW93131485 A TW 93131485A TW 200527868 A TW200527868 A TW 200527868A
Authority
TW
Taiwan
Prior art keywords
station
sta
transmission
frame
data
Prior art date
Application number
TW93131485A
Other languages
Chinese (zh)
Other versions
TWI387279B (en
Inventor
J Rodney Walton
Sanjiv Nanda
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200527868A publication Critical patent/TW200527868A/en
Application granted granted Critical
Publication of TWI387279B publication Critical patent/TWI387279B/en

Links

Abstract

Techniques for MAC processing for efficient use of high throughput systems that may be backward compatible with various types of legacy systems are disclosed. In one aspect, a data frame is formed comprising a common portion for transmission in a format receivable by various stations, such as access points and remote stations. The data frame also comprises a dedicated portion, formatted for transmission to a specified remote station. In another aspect, the common portion is unsteered, and the dedicated portion is steered. In another aspect, an access point schedules an allocation in response to a data indication included in a common portion of a data frame transmitted from one remote station to another. In another aspect, a first station transmits a reference to a second station, which measures the reference and generates feedback therefrom.

Description

200527868 ψ 九、發明說明: 依據35 U.S.C. §119主張優先權 本專利申請案要求下列美國臨時專利申請案之優先權: 2003年10月15曰提出之臨時專利申請案號60/511,750, v 標題為「Method and Apparatus for Providing Interoperability and Backward Compatibility in Wireless Communication Systems」; 2003年10月15日提出之臨時專利申請案號60/5 11,904, 標題為 r Method,Apparatus,and System for Medium Access Control in a High Performance Wireless LAN Environment」; 2003年10月21曰提出之臨時專利申請案號60/5 13,239, 標題為「Peer-to-Peer Connections in ΜΙΜΟ WLAN System」; 2003年12月1日提出之臨時專利申請案號60/526,347,標 題為「Method,Apparatus,and System for Sub-Network Protocol Stack for Very High Speed Wireless LAN」; 2003年12月1日提出之臨時專利申請案號60/526,356,標 題為「Method, Apparatus,and System for Multiplexing200527868 ψ IX. Description of the invention: Claim priority according to 35 USC §119 This patent application claims priority from the following US provisional patent applications: Provisional patent application number 60 / 511,750, filed on October 15, 2003, v The title is "Method and Apparatus for Providing Interoperability and Backward Compatibility in Wireless Communication Systems"; provisional patent application number 60/5 11,904 filed on October 15, 2003, and the title is r Method, Apparatus, and System for Medium Access Control in a High Performance Wireless LAN Environment "; provisional patent application number 60/5 13,239 filed on October 21, 2003, entitled" Peer-to-Peer Connections in ΜΙΜΟ WLAN System "; December 1, 2003 Provisional Patent Application No. 60 / 526,347, filed on May 1, entitled "Method, Apparatus, and System for Sub-Network Protocol Stack for Very High Speed Wireless LAN"; Provisional Patent Application No. 60 / filed on December 1, 2003 526,356, titled "Method, Apparatus, and System for Multiplexing

Protocol data Units in a High Performance Wireless LAN Environment」; 2003年12月23日提出之臨時專利申請案號60/532,791, 標題為「Wireless Communications Medium Access Control 酗 (MAC) Enhancements」; ' 2004年2月18日提出之臨時專利申請案號60/545,963,標 96872.doc 200527868 題為「Adaptive Coordination Function(ACF)」; 2004年7月2日提出之臨時專利申請案號60/576,545,標 題為「Method and Apparatus for Robust Wireless Network」; 2004年6月8曰提出之臨時專利申請案號60/586,841,標 題為「Method and Apparatus for Distribution Communication Resources Among Multiple Users」;及 2004年8月11日提出之臨時專利申請案號60/600,960,標 題為「Method,Apparatus, and System for Wireless Communications」;彼等專利申請案都已讓渡給與與本專 利申請相同的受讓人,並且以引用方式明確併入本文中。 【發明所屬之技術領域】 本發明廣泛係關於通信領域,具體而言,本發明係關於 媒體存取控制。 【先前技術】 無線通信系統被廣泛部署以提供諸如語音、資料的各種 通信類型。典型無線資料系統或網路提供多使用者存取一 或多個共用資源。系統可使用各種多重存取技術,如分頻 多工(Frequency Division Multiplexing ; FDM)、分時多工 Time Division Multiplexing ; TDM)及分碼多工(Code Division Multiplexing ; CDM) 〇 示例性無線網路包括蜂巢式資料系統。下列是數項此類 實例:(1)「雙模寬頻展頻蜂巢式系統的TIA/EIA-95-B行動 台-基地台相容性標準」(TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode 96872.doc 200527868Protocol data Units in a High Performance Wireless LAN Environment "; provisional patent application number 60 / 532,791 filed on December 23, 2003, entitled" Wireless Communications Medium Access Control (MAC) Enhancements "; 'February 18, 2004 Temporary Patent Application No. 60 / 545,963 filed on July 26, 2009. The title is "Adaptive Coordination Function (ACF)"; the Temporary Patent Application No. 60 / 576,545 filed on July 2, 2004, entitled "Method and Apparatus for Robust Wireless Network "; provisional patent application number 60 / 586,841 filed on June 8, 2004, entitled" Method and Apparatus for Distribution Communication Resources Among Multiple Users "; and provisional patent filed on August 11, 2004 Application No. 60 / 600,960, entitled "Method, Apparatus, and System for Wireless Communications"; all of their patent applications have been assigned to the same assignee as this patent application and are expressly incorporated herein by reference in. [Technical Field to which the Invention belongs] The present invention relates broadly to the field of communications, and in particular, the present invention relates to media access control. [Prior Art] Wireless communication systems are widely deployed to provide various types of communication such as voice and data. A typical wireless data system or network provides multiple users access to one or more shared resources. The system can use various multiple access technologies, such as Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), and Code Division Multiplexing (CDM). Exemplary wireless networks Including honeycomb information system. The following are a few of these examples: (1) "TIA / EIA-95-B Mobile Station-Base for Dual-Mode Broadband Spread Spectrum Cellular System-TIA / EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode 96872.doc 200527868

Wideband Spread Spectrum Cellular System,即 IS-95 標 準);(2)名為「第三代合夥專案」(3rd Generation Partnership Project ; 3GPP)之聯盟所提出的標準,並且在 一組文獻中具體化,包括文號3G TS 25.211、3G TS 25.212、3G TS 25.213 及 3G TS 25.214 (W-CDMA 標準); (3)名為「第三代合夥專案2」(3rd Generation Partnership Project 2 ; 3GPP2)之聯盟所提出的標準,並且在「第三代 合夥專案」(TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems; IS-2000標準)文獻中具體化; 以及(4)符合TIA/EIA/IS-856標準(下文中稱為IS_856標準) 的高資料速率(HDR)通信系統。 其它無線系統實例包括無線區域網路(Wireless Local Area Network ; WLAN),例如,IEEE 802.11 標準(即, 802.11(a)、(b)或(g))。部署包括正交分頻多工(Orthogonal Frequency Division Multiplexing ; OFDM)調變技術的多重 輸入多重輸出(Multiple Input Multiple Output ; ΜΙΜΟ) WLAN,可達成改良這些網路。IEEE 802· ll(e)已被 採用,藉以改良先前802.1 1標準的部分缺點。 隨著無線系統設計進步,較高資料速率已成為可行。較 高資料速率開啟進階應用的可能性,其中包括語音、視 訊、快速資料傳送及各種其它應用。但是,各種應用可能 具有不同的資料傳送需求。許多類型資料會具有延時及輸 送量需求,或需要某服務品質(Quality of Service ; Q〇S)保 證。在無資源管理情況下,系統容量可能會減少,並且系 96872.doc 200527868 統無法高效率運作。 通#會使用媒體存取控制(Medium Access C()ntr()1 ; MAC)協定來配置數個使用者之間共用的通信資源。MAC 協定通常會介接較高層至用於傳輪及接收資料的實體層。 為了從資料速率增加而獲益,MAC協定必須經過設計以高 效率使用共用的資源。通常還希望維持與替代通信標準或 舊有通信標準的交互操作性。因A,此項技術需要一種用 於高效率使用高輸送量系統的MAC處理。此項技術領域進 一步需要一種回溯相容於各類型舊有系統的MAC處理。 【發明内容】 本發明揭示之具體實施例滿足對於回溯相容於舊有系統 之用於高效率使用高輸送量系統之MAC處理的需求。在一 項態樣中,一種資料訊框被形成而包括:一以各種站台 (例如,一存取點和多個遠端站台)可接收之格式予以傳輸 的共同部分。該資料訊框還包括一被格式成用於傳輪至— 特定遠端站台的專用部分。在另—項態樣中,該共同部分 是非操控式,而且該專用部分是操控式。在另一項態2 中,一存取點響應從某遠端站台傳輸至另一遠端站台 資料訊框之共同部分中所包含的一資料指示來排 該 該 料 在另一項態樣中,一第一站台一參考至一第二站台, 第二站台量測該參考並且據此產生反冑。在#收到來自 第一站台的該反饋後,該第—站台依據該反饋而傳輪資 至孩第二站台。也已提出各種其它觀點。 、 96872.doc 200527868 【實施方式】 本發明揭示各項示範性具體實施例支援配合無線 LAN(或使用最新問市傳輸技術的相似應用)極高位元速率 之實體層的高效率運作。示範性WLAN支援2〇 MHz頻寬超 過 100 Mbps(milli〇n bits per second;每秒百萬位元)位元 速率。 各項示範性具體實施例維持舊有WLAN系統分散式協調 作業的簡易性及強固性,可在802」1(a_e)中找到實例。各 達成各項具體實施例的優點,同時維持回溯相容於此類舊 有系統。(請注意,在下文的說明内容中,會以8〇2·丨丨系統 作為示範性舊有系統予以說明)。熟悉此項技術者應明 白,改良方案也相容於替代系統及標準。 示範性WLAN可包括一子網路協定堆集。子網路協定堆 集廣泛支援高資料速率、高頻寬實體層傳送機制,包括 (但不限於):以OFDM調變為基礎的傳送機制;單載波調 變技術;適用於極高頻寬效率運作之使用多個接收天線及 多個發射天線的系統(多重輸入多重輸出(Muhiple !叩W Multiple 〇utput ; MIM〇)系統(MIM〇),包括多重輸入單一 輸出(Multiple Input Single 〇utput; MIS〇)系統);配合空 間多工技術之使用多個接收天線及多個發射天線的系統, 用於在相同在此情況下期間傳輸資料至使用者終端機,或 接收來自使用者終端機的資料;以及使用分碼多向近接 (code diV1Slon multiple access ; CDMA)技術之系統,用於 允許多個使用者同時傳輸。替代實例包括單一輸入多重輸 96872.doc -10- 200527868 出(Single Input Multiple Output ; SIMO)及單一輸入單—輪 出(Single Input Single Output ; SISO)系統。 本文中說明的一個或一個以上示範性具體實施例係在盔 線資料通訊系統背景下提出。雖然在此背景下使用本發= 有許多優點,但是在不同的環境或組態中也可併入本發明 的不同具體實施例。一般而言,本文中說明的各種系統均 可使用軟體控制型處理器、積體電路或離散邏輯構成。整 份說明書所提及的資料、指令、命令、資訊、信號、符號 及晶片有利於以電壓、電流、電磁波、磁場或粒子、光場_ 或粒子、或其任何組合來表示。此外,每個方塊圖中所示 的方塊均可能代理硬體或方法步驟。方法步驟可互換,而 不會脫離本發明的範疇。本文中使用的術語「示範」係表 不「當作實例、例子或解說」。本文中當作「示範」說明 的任何具體實施例不一定被視為較佳具體實施例或優於其 它具體貫施例。 圖1繪示系統100的示範性具體實施例,該系統包括連接鲁 至一或多個使用者終端機(ut)106a—n的存取點(AP)104。 按照802.1 1專門用語,在文件中,Αρ&υτ也稱為站台或 STA。ΑΡ與UT經由無線區域網路區域(WLan)120通信。 在此示範性具體實施例中,WLAN 120是一種高速ΜΙΜΟ OFDM系統。然而,WLAN 12〇可能是任何無線lan。存 取點104經由網路102與任何外部裝置或處理序(pr〇cess)通 信。網路102可能是網際網路、内部網路或任何其它有 線、無線或光學網路。連接u〇將來自網路的實體層訊號 96872.doc -11- 200527868 載送至存取點104。裝置或處理序可連接至網路i〇2 ,或當 作WLAN 120上的UT(或經由連接與其相連)。可連接至網 路網路1 02或WLAN 1 20之實例包括電話、個人數位助理 (PDA)、各種類似電腦(膝上型電腦、個人電腦、工作站、 任何類型終端機)、視訊裝置(例如,攝影機、攝錄像機、 web攝影機以及幾乎任何類型資料裝置)。處理序(pr〇cess) 可包括語音、視訊、資料通信等等。各種資料流具有不同 的傳輸需求,這可以藉由用多樣化的服務品質(Quality 〇f 籲 Service ; QoS)技術來適應各需求。 使用集中式AP 104就可以部署系統100。在一項示範性 具體實施例中,所有UT 106都與該AP通信。在一項替代 具體實施例中,修改系統,就可以提供介於UT之間的直 接對等式(peer-t〇-peer)通信,如熟悉此項技術者所知,下 文會解說實例。可由一 AP來管理存取權,或專有 存取(即’競爭式存取)。 在一項具體實施例中,AP 1〇4提供乙太網路調節。在此鲁 情況下,除了 AP以外,還可以部署一 ιρ路由器,藉此提供 連至網路102的連接(圖中未繪示細節)。可透過wlan子網 路在路由态與UT 1 〇6之間傳輸乙太網路訊框(下文會詳細 說明)。乙太網路調節及連接能力是此項技術中已知的技 術。Wideband Spread Spectrum Cellular System (IS-95 standard); (2) A standard proposed by the consortium named "3rd Generation Partnership Project" (3GPP), and is specified in a set of documents, including Symbols 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214 (W-CDMA standard); (3) Proposed by the alliance named "3rd Generation Partnership Project 2" (3GPP2) And is specified in the "Third Generation Partnership Project" (TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems; IS-2000 standard); and (4) Complies with the TIA / EIA / IS-856 standard (below) A high data rate (HDR) communication system referred to herein as the IS_856 standard. Other examples of wireless systems include Wireless Local Area Networks (WLANs), such as the IEEE 802.11 standard (ie, 802.11 (a), (b), or (g)). The deployment of Multiple Input Multiple Output (MIMO) WLANs including Orthogonal Frequency Division Multiplexing (OFDM) modulation technology can improve these networks. IEEE 802.ll (e) has been adopted to improve some of the shortcomings of the previous 802.1 1 standard. As wireless system design progresses, higher data rates have become feasible. Higher data rates open up possibilities for advanced applications, including voice, video, fast data transfer, and various other applications. However, various applications may have different data transfer requirements. Many types of data may have delays and throughput requirements, or require a certain Quality of Service (QoS) guarantee. Without resource management, system capacity may be reduced, and the system 96872.doc 200527868 cannot operate efficiently.通 # will use the Medium Access Control (Medium Access C () ntr () 1; MAC) protocol to configure the communication resources shared between several users. MAC protocols typically interface higher layers to the physical layer used to transfer and receive data. To benefit from increased data rates, the MAC protocol must be designed to use shared resources efficiently. It is often desirable to maintain interoperability with alternative or legacy communication standards. Because of A, this technology requires a MAC processing for efficient use of high throughput systems. This technical field further requires a MAC process that is backwards compatible with all types of legacy systems. [Summary of the Invention] The specific embodiments disclosed in the present invention satisfy the need for MAC processing that is backwards compatible with legacy systems for efficient use of high throughput systems. In one aspect, a data frame is formed to include a common portion transmitted in a format that can be received by various stations (e.g., an access point and multiple remote stations). The data frame also includes a dedicated section formatted for round-trip to specific remote stations. In another aspect, the common part is non-manipulating, and the dedicated part is manipulating. In another aspect 2, an access point responds to a data indication contained in a common part of a data frame transmitted from a remote station to another remote station to rank the material in another aspect A first station has a reference to a second station, and the second station measures the reference and generates echoes accordingly. After #receiving the feedback from the first platform, the first platform transfers the round to the second platform according to the feedback. Various other points have also been made. 96872.doc 200527868 [Embodiments] The present invention discloses various exemplary embodiments to support the high-efficiency operation of the physical layer with the extremely high bit rate of wireless LAN (or similar applications using the latest market-oriented transmission technology). The exemplary WLAN supports a 20 MHz bandwidth over 100 Mbps (million bits per second; million bit per second) bit rates. Various exemplary embodiments maintain the simplicity and robustness of the decentralized coordination operation of the legacy WLAN system. Examples can be found in 802 ″ 1 (a_e). Each achieves the advantages of specific embodiments while maintaining backward compatibility with such legacy systems. (Please note that in the description below, the 802 · 丨 丨 system will be used as an exemplary legacy system for explanation). Those familiar with this technology should understand that the improvement scheme is also compatible with alternative systems and standards. An exemplary WLAN may include a sub-network protocol stack. Subnet protocol stacks widely support high-data-rate, high-bandwidth physical layer transmission mechanisms, including (but not limited to): transmission mechanisms based on OFDM modulation; single-carrier modulation technology; suitable for use with very high-bandwidth efficiency Receive antenna and multiple transmit antenna systems (Multiple Input Multiple Output (Muhiple! PutW Multiple 〇utput; MIM〇) System (MIM〇), including Multiple Input Single Output (MIS0) system); A system using multiple receiving antennas and multiple transmitting antennas in conjunction with spatial multiplexing technology for transmitting data to or receiving data from a user terminal during the same period; and using a partial code A system of code diV1Slon multiple access (CDMA) technology is used to allow multiple users to transmit at the same time. Alternative examples include Single Input Multiple Output (SIMO) 96872.doc -10- 200527868 and Single Input Single Output (SISO) systems. One or more exemplary embodiments described herein are proposed in the context of a helmet data communication system. Although there are many advantages to using the present invention in this context, different specific embodiments of the invention can also be incorporated in different environments or configurations. In general, the various systems described in this article can be constructed using software-controlled processors, integrated circuits, or discrete logic. The materials, instructions, commands, information, signals, symbols, and chips mentioned throughout the specification are useful for representing voltage, current, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. In addition, the blocks shown in each block diagram may represent hardware or method steps. The method steps are interchangeable without departing from the scope of the invention. The term "demonstration" as used herein is not meant to be "served as an example, instance, or illustration". Any specific embodiment described herein as "exemplary" is not necessarily to be construed as a preferred embodiment or superior to other specific embodiments. FIG. 1 illustrates an exemplary embodiment of a system 100 that includes an access point (AP) 104 connected to one or more user terminals (ut) 106a-n. According to the 802.1 1 terminology, Αρ & υτ is also referred to as a station or STA in the document. The AP and the UT communicate via a wireless local area network (WLan) 120. In this exemplary embodiment, WLAN 120 is a high-speed MIMO OFDM system. However, WLAN 120 may be any wireless LAN. The access point 104 communicates with any external device or process via the network 102. Network 102 may be the Internet, an intranet, or any other wired, wireless, or optical network. The connection u〇 transmits the physical layer signal 96872.doc -11- 200527868 from the network to the access point 104. The device or process can be connected to the network 102 or as a UT on the WLAN 120 (or connected to it via a connection). Examples of networks that can be connected to the network 102 or WLAN 1 20 include telephones, personal digital assistants (PDAs), various similar computers (laptops, personal computers, workstations, any type of terminal), video devices (for example, Cameras, camcorders, web cameras, and almost any type of data device). Processes can include voice, video, data communications, and so on. Various data streams have different transmission requirements, which can be adapted to each demand by using a variety of Quality of Service (QoS) technologies. System 100 can be deployed using a centralized AP 104. In an exemplary embodiment, all UTs 106 communicate with the AP. In an alternative embodiment, the system can be modified to provide direct peer-to-peer communication between UTs. As known to those skilled in the art, examples will be explained below. Access can be managed by an AP, or proprietary access (i.e., 'competitive access'). In a specific embodiment, AP 104 provides Ethernet regulation. In this case, in addition to the AP, a router can be deployed to provide a connection to the network 102 (details are not shown in the figure). The Ethernet frame can be transmitted between the routing state and UT 106 via the wlan subnet (explained in detail below). Ethernet adjustment and connection capabilities are known in the art.

在一項替代具體實施例中,AP 104提供IP調節。在此情 況下,AP係當做該組連接之口丁的閘道路由器(圖中未繪示 細節)。在此情況下,AP 1〇4可在UT 106之間往返投送IP 96872.doc -12- 200527868 資料元(IP datagram)。IP調節及連接能力是此項技術中已 知的技術。 圖2繪示無線通信裝置的示範性具體實施例,該無線通 信裝置可被組態成一存取點104或使用者終端機106。圖2 繪示存取點104組態。收發器210依據網路102的實體層需 求在連接110上進行接收及傳輸。接收自或傳至連接至網 路102之裝置或應用程式的資料被傳遞至MAC處理器220。 本文中將這些資料稱為資料流260。資料流可具有不同的 特性,並且會依據該資料流所相關聯的應用程式類型而需 要不同的處理方式。例如,視訊或語音的特徵為低延時資 料流(一般而言,視訊的輸送量需求高於語音的輸送量需 求)。許多資料應用程式較不受延時影響,但是可能具有 較高的資料完整性需求(即,語音可能容許某封包損失, 檔案傳送通常不容許封包損失)。 MAC處理器220接收並處理資料流260,以便在實體層上 傳輸資料流。MAC處理器220接收並處理資料流260,以便 在實體層上傳輸資料流。AP與UT之間也會傳送内部控制 及發訊號。在連接270上將MAC協定資料單元(MAC Protocol Data Unit; MAC PDU)(也稱為實體層(PHY)協定 資料單元(PPDU))傳遞至無線LAN收發器240及接收來自無 線LAN收發器240的MAC PDU。下文說明從資料流和命令 轉換至MAC PDU(反之亦然)之示範性技術。替代具體實施 例可採用任何轉換技術。基於各種目的,可將相對應於各 種MAC ID的反饋280從實體層(PHY)240傳回至MAC處理器 96872.doc -13- 200527868 220。反饋280可包含任何實體層資訊,包括可支援的頻道 速率(包括多點播送頻道及單點播送頻道)、調變格式及各 種其它參數。 在一項示範性具體實施例中,調節層(ADAP)及資料鏈 路控制層(DLC)係在MAC處理器220中執行。實體層(PHY) 係在無線LAN收發器240上執行。熟悉此項技術者應知 道,可使用任何各種組態來進行各項功能分割。MAC處理 器220可執行有關實體層的部分或所有處理。一無線LAN 收發器可包括一用於執行MAC處理或其子部分的處理器。 可部署任何數量之處理器、特殊用途硬體或其組合。 MAC處理器220可能是一般用途微處理器、數位信號處 理器(DSP)或特殊用途處理器。MAC處理器220可連接用於 輔助各種工作的特殊用途硬體(圖中未詳細繪示)。可在外 接處理器(例如,外接的電腦或透過網路連線)上執行各種 應用程式,或可在存取點104内的額外處理器(圖中未繪示) 上執行各種應用程式,或可在MAC處理器220本身上執行 各種應用程式。圖中所示之MAC處理器220係連接記憶體 255,記憶體255可用於儲存得以執行本文所說明之各項程 序和方法的資料以及指令。熟悉此項技術者應知道,記憶 體255可能係由一或多個各類型記憶體組件所組成,並且 可整個或局部具體化在MAC處理器220内。 除了儲存得以執行本文所說明之功能的指令及資料外, 記憶體255還可用於儲存相關聯於各種佇列的資料。 無線LAN收發器240可能是任何類型收發器。在一項示 96872.doc -14- 200527868 範性具體實施例中,無線LAN收發器240是可配合ΜΙΜΟ或 MISO介面運作的OFDM收發器。OFDM、ΜΙΜΟ及MISO為 此項技術者已知的技術。2003年8月27日提出的共同申請 美國專利申請案第10/650,295號 「FREQUENCY-INDEPENDENT SPATLAL-PROCESSING FOR WIDERAND MISO AND ΜΙΜΟ SYSTEMS」中詳述各種 OFDM、ΜΙΜΟ 及MISO收發器,該案已讓渡給本發明受讓人。替代具體 實施例可包括SIMO或SISO系統。 圖中所示之無線LAN收發器240係連接天線250 A-N。在 各項具體實施例中可以支援任何數量的天線。天線250可 用來在WLAN 120上傳輸和接收。 無線LAN收發器240可包括一連接至每個天線250的空間 處理器。該空間處理器可處理每個天線所要獨立傳輸的資 料,所共同處理在所有天線上所接收到的訊號。獨立處理 的實例包括係基於頻道評估、來自UT的反饋、頻道反轉 或此項技術已知的各種其它技術。使用各種已知的空間處 理技術來執行此項處理。此類型的各種收發器可使用波束 成形(beam forming)、波束操控(beam steering)、特徵操控 (eigen-steering)或用於增加一既定使用者終端機之收發輸 送量的其它空間技術。在一項傳輸OFDM符號的具體實施 例中,空間處理器可包括用於處理每個OFDM子頻道 (subchannel)或頻率格(bin)的多個子空間處理器。 在一項示範性系統中,AP可具有N個天線,並且示範性 UT可具有Μ個天線。因此,介於AP之天線與UT之天線之 96872.doc -15· 200527868 2有Μ x N個路徑。使用這些多路徑來改良輸送量的各種 空間技術為此項技術已知的技術。纟空間時間傳輸分集 (SP「ace Time T⑽smit Diversity; STTD)系統(本文中也二 為「分集」)中,傳輸之資料被格式化、編碼並且當做一 單一資料流用所有的天線予以傳送。運用M個發射天線與 γ個接收天線,可能可形成MIN(M,N)個獨立頻道。空間 多工處理利用這些獨立路徑,並且可在每個獨立路徑上傳 輸不同資料。 五用於獲知或調節AP與UT之間頻道特性的各種技術已為 吾人所知。可從每個傳輸天線傳輸獨特前導。可在每個接 收天線上接收及量測該等前導。接著,可將頻道狀態資訊 反饋傳回至傳輸方裝置’以便在傳輸時使用。可執行所量 測之頻道矩陣的特徵分解,藉以決定頻道特徵模態。為了 避免,道矩陣特徵分解’一項替代技術會使用前導及資料 的特徵操控(eigen_steering)來簡化接收器處的空間處理。 因此’依據目前的頻道狀況,整個系統可提供用於傳輸 至各種使用者終端機之不同的資料速率。具體而言,介於 AP與每個UT間之特定鏈路的效能可能高於-個以上UT可 共用之多點播送或廣播鏈路的效能。下文進一步咩述本 例。無線LAN收發器240可依據對於Αρ^τ間之實體鍵= 所使用的空間處理來決定可支援的速率。可在連接上 反饋此項資訊,以便在MAC處理中使用。 可依據UT的資料以及尺寸和外形需求來部署數個天 線。例如’高清晰度視訊顯示器基於高頻寬需求而可包括 96872.doc 200527868 (例如)四個天線,而PDA可能使用兩個天線就可滿足。一 示範性存取點可具有四個天線。 可按相似於圖2所示之存取點104的方式來部署使用者終 端機106。若是資料流260未連接LAN收發器(雖然UT可包 括有線或無線收發器),則資料流260通常係接收自或傳遞 至UT或連接UT之裝置上運作的一或多個應用程式或處理 序。連接至AP 104或UT 106的較高層級可能是任何類型。 本文所描述的各層僅為例證。In an alternative specific embodiment, the AP 104 provides IP adjustment. In this case, the AP acts as the gateway router for this group of connections (details are not shown in the figure). In this case, AP 104 can deliver IP 96872.doc -12- 200527868 data elements (IP datagram) to and from UT 106. IP adjustment and connection capabilities are known in this technology. FIG. 2 illustrates an exemplary embodiment of a wireless communication device. The wireless communication device may be configured as an access point 104 or a user terminal 106. FIG. 2 illustrates the configuration of the access point 104. The transceiver 210 receives and transmits on the connection 110 according to the physical layer requirements of the network 102. Data received from or transmitted to a device or application connected to the network 102 is passed to the MAC processor 220. This material is referred to herein as the data stream 260. Data streams can have different characteristics and require different processing methods depending on the type of application to which the data stream is associated. For example, video or voice is characterized by a low-latency data stream (generally, video needs more traffic than voice needs). Many data applications are less affected by latency, but may have higher data integrity requirements (that is, voice may tolerate a packet loss, and file transfers generally do not tolerate packet loss). The MAC processor 220 receives and processes the data stream 260 to transmit the data stream on the physical layer. The MAC processor 220 receives and processes the data stream 260 to transmit the data stream on the physical layer. Internal control and signaling are also transmitted between the AP and the UT. The MAC Protocol Data Unit (MAC PDU) (also referred to as the Physical Layer (PHY) Protocol Data Unit (PPDU)) is transmitted to and received from the wireless LAN transceiver 240 on the connection 270. MAC PDU. Exemplary techniques for transitioning from data streams and commands to MAC PDUs and vice versa are described below. Alternative embodiments may use any conversion technique. For various purposes, feedback 280 corresponding to various MAC IDs can be passed back from the physical layer (PHY) 240 to the MAC processor 96872.doc -13- 200527868 220. Feedback 280 may include any physical layer information, including supported channel rates (including multicast and unicast channels), modulation formats, and various other parameters. In an exemplary embodiment, the adjustment layer (ADAP) and the data link control layer (DLC) are executed in the MAC processor 220. The physical layer (PHY) is implemented on the wireless LAN transceiver 240. Those skilled in the art should know that any of the various configurations can be used to divide the functions. The MAC processor 220 may perform some or all of the processing on the physical layer. A wireless LAN transceiver may include a processor for performing MAC processing or a sub-portion thereof. You can deploy any number of processors, special-purpose hardware, or a combination of them. The MAC processor 220 may be a general-purpose microprocessor, a digital signal processor (DSP), or a special-purpose processor. The MAC processor 220 may be connected with special-purpose hardware (not shown in detail in the figure) for supporting various tasks. Various applications can be executed on an external processor (for example, an external computer or through a network connection), or various applications can be executed on an additional processor (not shown) in the access point 104, or Various applications can be executed on the MAC processor 220 itself. The MAC processor 220 shown in the figure is connected to a memory 255. The memory 255 can be used to store data and instructions that can execute the various programs and methods described herein. Those skilled in the art should know that the memory 255 may be composed of one or more types of memory components, and may be embodied in the MAC processor 220 in whole or in part. In addition to storing instructions and data capable of performing the functions described herein, memory 255 can also be used to store data associated with various queues. The wireless LAN transceiver 240 may be any type of transceiver. In an exemplary embodiment shown in 96872.doc -14-200527868, the wireless LAN transceiver 240 is an OFDM transceiver capable of operating with a MIMO or MISO interface. OFDM, MIMO and MISO are known to those skilled in the art. Common Application US Patent Application No. 10 / 650,295 filed on August 27, 2003, "FREQUENCY-INDEPENDENT SPATLAL-PROCESSING FOR WIDERAND MISO AND ΜΜΟ SYSTEMS" details various OFDM, ΜΜΟ and MISO transceivers. To the assignee of the present invention. Alternative specific embodiments may include a SIMO or SISO system. The wireless LAN transceiver 240 shown in the figure is connected to the antenna 250 A-N. Any number of antennas can be supported in various embodiments. The antenna 250 may be used for transmission and reception on the WLAN 120. The wireless LAN transceiver 240 may include a spatial processor connected to each antenna 250. The space processor can process the data to be transmitted independently by each antenna, and collectively process the signals received on all antennas. Examples of independent processing include channel-based evaluation, feedback from the UT, channel reversal, or various other techniques known in the art. This processing is performed using various known spatial processing techniques. Various types of transceivers of this type may use beam forming, beam steering, eigen-steering, or other space technologies to increase the transmission and reception throughput of a given user terminal. In a specific embodiment for transmitting OFDM symbols, the spatial processor may include a plurality of subspace processors for processing each OFDM subchannel or frequency bin. In one exemplary system, the AP may have N antennas, and the exemplary UT may have M antennas. Therefore, 96872.doc-15.200527868 2 between the antenna of the AP and the antenna of the UT has M x N paths. Various space technologies using these multipaths to improve the throughput are known in the art.纟 Space Time Transmission Diversity (SP “ace Time T⑽smit Diversity; STTD) system (also referred to as“ diversity ”in this article), the transmitted data is formatted, encoded and transmitted as a single data stream with all antennas. Using M transmitting antennas and γ receiving antennas, it is possible to form MIN (M, N) independent channels. Spatial multiplexing utilizes these independent paths, and different data can be uploaded on each independent path. Various techniques for obtaining or adjusting channel characteristics between AP and UT are known to me. A unique preamble can be transmitted from each transmission antenna. These preambles can be received and measured on each receive antenna. Then, the channel status information feedback can be transmitted back to the transmitting device 'for use during transmission. The characteristic decomposition of the measured channel matrix can be performed to determine the characteristic mode of the channel. To avoid this, an alternative technique of channel matrix feature decomposition 'will use preamble and data feature manipulation (eigen_steering) to simplify the spatial processing at the receiver. Therefore, according to the current channel conditions, the entire system can provide different data rates for transmission to various user terminals. Specifically, the performance of a particular link between the AP and each UT may be higher than the performance of a multicast or broadcast link that can be shared by more than one UT. This example is described further below. The wireless LAN transceiver 240 may determine a supportable rate according to the spatial processing used for the physical key between Aρ ^ τ. This information can be fed back on the connection for use in MAC processing. Several antennas can be deployed based on UT data and size and form factor requirements. For example, a high-definition video display may include 96872.doc 200527868 (for example) four antennas based on high-bandwidth requirements, while a PDA may use two antennas. An exemplary access point may have four antennas. The user terminal 106 can be deployed in a manner similar to the access point 104 shown in FIG. If the data stream 260 is not connected to a LAN transceiver (although the UT may include a wired or wireless transceiver), the data stream 260 is typically received from or passed to one or more applications or processes running on the UT or connected UT device . The higher levels connected to the AP 104 or UT 106 may be of any type. The layers described herein are for illustration only.

舊有 802.11 MAC 如上文所述,可部署本文中所說明的各項具體實施例, 促使相同於舊有系統。IEEE 802.11(e)功能集(其回溯相容 於早期的802.11標準)包括本節中所概述的各項功能,而且 還包括早期標準中所包括的功能。如需這些功能的詳細說 明,請參考對應IEEE 802.11標準。 基本802.1 1 MAC係由載波感測多向近接/避免碰撞 (Carrier Sense Multiple Access/Collision Avoidance ; CSMA/CA)型分散式協調功能(DCF)與點協調功能(PCP)所 組成。DCF允許不需要中央控制之情況下存取媒體。PCF 被部署在AP處,以便提供中央控制。DCF及PCF會利用介 於連續傳輸間的各間隙,藉以避免碰撞。傳輸 (transmission)稱為訊框(frame),以及訊框間的間隙(gap) 稱為訊框間間距(Interframe Spacing ; IFS)。訊框可能是使 用者資料訊框、控制訊框或管理訊框。 訊框間間距的持續期間會因插入的間隙類型而異。圖3 96872.doc -17- 200527868 繪示802.1 1訊框間間距參數:短訊框間間距(Short Interframe Spacing ; SIFS)、點訊框間間距(Point Interframe Spacing ; PIFS)以及 DCF 訊框間間距(DCF Interframe Spacing ; DIFS)。請注意,SIFS < PIFS < DIFS。因此,一接在較短持續期間後的傳輸之優先順序高 於必須等待較長持續期間才能嘗試存取頻道的傳輸之優先 順序。 按照CSMA/CA的載波感測功能(carrier sense ; CSMA), 一站台(STA)可在感測頻道在至少一 DIFS持續期間處於閒 置狀態之後獲得存取頻道。(在本文中,用詞STA可表示正 在存取WLAN的任何站台,並且可包括存取點及使用者終 端機)。為了避免碰撞,每個STA在存取頻道之後,除了等 待DIFS以外,還需等待一隨機所選退回(randomly selected backoff)。具有較長退回的STA將注意較高優先順序之STA 何時在頻道上進行傳輸,並且以此方式避免與該STA相碰 撞。(每個等待中STA可將其各自退回減少其在感應頻道上 一替代傳輸之前已等待的時間量,以此方式維護其相對優 先順序)。因此,在協定的避免碰撞(CA)功能之後,STA退 回一介於[0,CW]之間的隨機時段,其中起始選擇的CW是 CWmin,每碰撞以2為因子遞增,直到到達最大值 CWmax 〇 圖4繪示示範性實體層(PHY)傳輸片段(segment)400,用 於解說按照DCF來使用DIFS加上退回進行存取。一現有傳 輸410利用頻道。在此實例中,當傳輸410終止時,沒有任 96872.doc -18- 200527868 何較高優先順序存取出現,所以新傳輸420會在DIFS及相 關之退回時段之後開始。在下文的論述中,假設正在進行 傳輸420的STA已赢得傳輸機會(在此情況下,係透過競 爭)。 SIFS係運用在預期僅有一特定STA會回應現行傳輸的訊 框序列期間。例如,當傳輸一認可(Acknowledgement ; ACK)以回應一接收到之資料訊框時,會在該接收之資料 加上SIFS之後立即傳輸該ACK。其它傳輸序列也可使用訊 框間的SIFS。在SIFS之後,可在一「要求傳送」(Request To Send ; RTS)之後接著一「清除傳送」(Clear To Send ; CTS),接著在該CTS之後的一SIFS期間可傳輸該資料,在 SIFS之後一 ACK可接在該資料之後。已知,此類外訊框序 列都穿插了 SIFS。SIFS持續期間可運用在:(a)偵測頻道上 的能量,以及決定能量是否已耗盡(即,頻道清空(channel clear)) ; (b)解決先前訊息及決定一 ACK訊框是否將指示正 確接收到傳輸的時間;以及(c)STA收發器從接收切換至傳 輸(反之亦然)的時間。 圖5繪示示範性實體層(PHY)傳輸片段500,用於解說以 優先於一 DIFS存取的優先順序,在一 ACK之前使用SIFS。 一現有傳輸510利用頻道。在此實例中,當傳輸510終止 時,在DIFS之後,ACK 520會接著在傳輸510結束之後。 請注意,ACK 520會在一 DIFS逾時之前開始,因此嘗試赢 得傳輸的任何其它STA都不會成功。在此實例中,在ACK 520完成後,沒有任何較高優先順序存取出現,所以新傳 96872.doc -19- 200527868 輸5 30會在DIFS及相關之退回時段之後開始(若有的話)。 RTS/CTS訊框序列(除了提供流程控制功能以外)可運用 在改良資料訊框傳輸保護。RTS及CTS包含關於後續資料 訊框、ACK及任何居間之SIFS的持續期間資訊。正在聆聽 RTS或CTS的STA會在其網路配置向量(network allocation vector ; NAV)上制定佔用持續期間,並且會在該持續期間 將媒體視為忙碌中。一般而言,會使用RTS/CTS來保護長 度比一指定長度較長的訊框,而較短訊框會在無保護下予 以傳輸。 PCF可被用來允許AP提供頻道中央控制。一 AP可在感測 媒體在一 PIFS持續期間處於閒置狀態之後獲得該媒體之控 制權。PIFS比DIFS短,因此優先順序高於DIFS。一旦AP 已獲得頻道存取權,就可以為其它STA提供無競爭存取機 會,因此與DCF相比,會改良MAC效能。請注意,SIFS的 優先順序高於PIFS,所以PCF必須先等待任何SIFS序列完 成,之後才能取得頻道控制權。 一旦AP已使用PIFS來獲得媒體存取權,就可建置一無 競爭時期(Contention-Free Period ; CFP),AP 可在該無競 爭時期期間為相關聯STA提供輪詢式存取。無競爭輪詢 (contention-free poll; CF-Poll)(或直接稱為「輪詢」)係由 AP予以傳輸,並且之後接著一從被輪詢之STA傳至該AP的 傳輸。再次,STA必須在CF-Poll之後等待一段SIFS持續期 間,然而被輪詢之STA不需要等待DIFS或各種增強方案 (包括輪詢增強方案)所採用的任何退回802.1 1(e),下文會 96872.doc -20- 200527868 參考圖9來詳細說明實例。 AP所傳輸的信標訊號(Beacon)會建置CFP持續期間。這 相似於使用RTS或CTS來防止競爭存取。然而,仍然會因 為終端機無法聆聽信標訊號(Beacon)來發生隱藏的終端機 之問題,但是此類隱藏終端機會干擾AP所排程的傳輸。藉 由由開始在CFP期間開始一傳輸的每個終端機各使用一 CTS-to-self,就可以實行進一步保護。 ACK及CF-Poll都被准許包含在一訊框中,並且可連同 資料訊框一起包含在一訊框中,藉此改良MAC效率。請注 意,SIFS < PIFS < DIFS關係提供頻道存取的決定論優先 順序機制。DCF中介於STA之間的競爭存取係以退回機制 為基礎的或然性。 早期802.1 1標準還提供分割大型封包成為較小片段。此 分割處理的優點在於,一片段中錯誤所需的重新傳輸少於 較大型封包中錯誤所需的重新傳輸。在彼等標準中之分割 處理的一項缺點在於,針對已認可之傳輸,對於每個片段 都需要傳輸一 ACK,還需要對應於彼等ACK傳輸及片段傳 輸的額外SIFS。圖6中繪示這個情況。圖6繪示示範性實體 層(PHY)傳輸片段600,用於解說傳輸N個片段及對應之認 可。現有傳輸610被傳輸。在傳輸6 10結束時,一第一 STA 等待DIFS 620及退回630,以便赢得頻道存取權。該第一 STA傳輸N個片段640A-640N至一第二STA,之後N個對應 延遲SIFS 650A-650N必須發生。該第二STA傳輸N個ACK 訊框660A-660N。介於每個片段之間,該第一 STA必須等 96872.doc -21- 200527868 待SIFS,所以還有Ν-l個SIFS 670A-670N-1。因此,與傳 送一個封包、一個ACK及一個SIFS相關,一已分割之封包 需要相同的封包傳輸時間,還需要N個ACK及2N-1 SIFS。 802.11(e)標準新增了增強方案,藉以改良先前 802.11(a)、(b)及(g)標準的 MAC。802.11(g)及(a)都是 OFDM系統,兩者非常類似,但使用不同頻段運作。較低 速率MAC協定(例如,802.11(b))的各項功能被轉移至更高 位元速率的系統,這會造成無效率,下文會詳細說明。 在802.1 1(e)中,DCF已增強且稱為增強型分散頻道存取 (Enhanced Distributed Channel Access ; EDCA) 0 EDCA的 主要服務品質(Quality of Service ; QoS)增強方案是引用一 仲裁訊框間間距(Arbitration Interframe Spacing ; AIFS)。 AIFS[i]相關聯於一以索引i來識別的流量等級(Traffic Class ; TC)。AP使用的AIFS [i]值可不同於已允許其它STA 使用的AIFS[i]值。僅限於AP可使用一等於PIFS的AIFS[i] 值。否則,AIFS[i]大於或等於DIFS。依據預設,用於 「語音」及「視訊」流量等級的AIFS被選擇等於DIFS。 較大之AIFS思明者為流量等級「最佳工作」(best effort)及 「背景」(background)選擇較低優先順序。 競爭視窗大小也被做為TC的函數。最高優先順序等級 被准許設定CW=1,即,無退回。對於其它tc,不同的競 爭視窗大小提供一或然率相關優先順序,但無法運用在達 成延遲保證。 802.1 1(e)採用傳輪機會(Transmissi〇I1 Opportunity ; 96872.doc -22- 200527868 TXOP)。為了改良MAC效率,當一 STA透過EDCA或透過 HCCA中的一輪詢存取而獲取媒體時,就可准許該STA傳 輸一單一訊框以上。彼等一或多個訊框稱為TX0P。媒體 上一 TX0P的最大長度取決於流量等級並且係由AP建置。 再者,對於輪詢TXOP,AP指示所准許的TX0P持續期間。 在TX0P期間,STA可傳輸已穿插SIFS和來自目的地ACK的 一連串訊框。除了不需要每訊框等待DIFS加退回以外,已 赢得一 TXOP的STA必須可保留頻道用於後續傳輸。 在該丁X0P期間,來自目的地的ACK可能是按訊框(如同 早期802.11 MAC),或可能使用一立即或延遲區塊ACK, 如下文所述。再者’某些流量流程(例如’廣播或多點播 送)不准許任何ACK原則。 圖7繪示示範性實體層(PHY)傳輸片段700,用於解說一 含每訊框認可之TXOP。現有傳輸710被傳輸。在傳輸710 之後,並且等待DIFS 720及退回730(若有的話),一 STA赢 得TXOP 790。TXOP 790包括N個訊框740A-740N,每個訊 框後都接著N個對應SIFS 750A-750N。接收方STA回應N個 對應 ACK 760A-760N。ACK 760後接著 N_1 個 SIFS 770A-770N-1。請注意,每個訊框740各包括一前導項770以及標 頭和封包780。下文詳述之示範性具體實施例允許大幅縮 短為前導項所保留的傳輸時間量。 圖8繪示一含區塊認可之TXOP 810。可透過競爭或輪詢 來贏得丁乂0?810。丁乂0?810包括>1個訊框820八-82(^,每 個訊框後都接著N個對應SIFS 830A-830N。在傳輸訊框820 96872.doc -23- 200527868 及SIFS 830之後,會傳輸一區塊ACK要求840。接收方STA 在未來時間回應該區塊ACK要求。該區塊ACK可緊接在一 區塊訊框傳輸完成之後,或可被延遲以允許接收器使用軟 體予以處理。 下文詳述之示範性具體實施例允許大幅縮短介於訊框之 間的傳輸時間量(在此實例中為SIFS)。在某些具體實施例 中,連續傳輸(即,訊框)之間不需要有延遲。 請注意,在802.11(a)及標準中,對於某些傳輸格式,會 定義一訊號延伸,用於在每個訊框末端增加額外的延遲。 雖然未未技術上包括在SIFS定義中,但是在下文詳述的各 項具體實施例也允許去除該訊號延伸。 區塊ACK功能提供改良的效率。在一項實例中,一 STA 可傳輸相對應於1024個訊框的至多64個MAC服務資料單元 (Service Data Units; SDU)(每個SDU都可能被分割成16個 片段),同時准許目的地STA在每個訊框區塊末端提供一單 一回應,該回應係用來指示彼等1024個訊框中每個訊框的 ACK狀態。一般而言,在高速率下,不會分割MAC SDU,並且基於低延時,可能會先傳輸64個以下的MAC SDU,之後才需要來自該目的地的一區塊ACK。在此情況 下,傳輸Μ個訊框的總時間從Μ個訊框+ Μ個SIFS + Μ個 ACK + Μ-1個SIFS縮短為Μ個訊框+ Μ個SIFS +區塊ACK。 下文詳述的具體實施例更進一步改良區塊ACK效率。 802.11(e)所採用的直接鏈路協定(Direct Link Protocol ; DLP)允許一 STA直接轉遞訊框至一基本服務集(Basic 96872.doc -24- 200527868Legacy 802.11 MACs, as described above, can be deployed with the specific embodiments described in this document, making them the same as legacy systems. The IEEE 802.11 (e) feature set, whose traceability is compatible with earlier 802.11 standards, includes features outlined in this section, and also includes features included in earlier standards. For a detailed description of these functions, please refer to the corresponding IEEE 802.11 standards. The basic 802.1 1 MAC is composed of Carrier Sense Multiple Access / Collision Avoidance (CSMA / CA) type decentralized coordination function (DCF) and point coordination function (PCP). DCF allows media to be accessed without central control. The PCF is deployed at the AP to provide central control. DCF and PCF use gaps between successive transmissions to avoid collisions. Transmission is called frame, and the gap between frames is called Interframe Spacing (IFS). The frame may be a user data frame, a control frame, or a management frame. The duration of the space between frames varies depending on the type of gap inserted. Figure 3 96872.doc -17- 200527868 shows the parameters of the 802.1 1 frame spacing: Short Interframe Spacing (SIFS), Point Interframe Spacing (PIFS), and DCF frame spacing (DCF Interframe Spacing; DIFS). Please note that SIFS < PIFS < DIFS. Therefore, the priority of transmissions after a short duration is higher than the priority of transmissions that must wait for a longer duration before attempting to access a channel. According to the carrier sense function (CSMA) of CSMA / CA, a station (STA) can obtain an access channel after the sensing channel is idle for at least one DIFS duration. (In this article, the term STA can mean any station that is accessing the WLAN, and can include access points and user terminals). To avoid collisions, each STA, after accessing the channel, needs to wait for a randomly selected backoff in addition to waiting for DIFS. A STA with a longer return will notice when a higher priority STA is transmitting on the channel and avoid collisions with that STA in this way. (Each waiting STA can return its own to reduce the amount of time it has waited before the alternate transmission on the inductive channel, in this way maintaining its relative priority). Therefore, after the agreed collision avoidance (CA) function, the STA returns a random period between [0, CW], where the initially selected CW is CWmin, and each collision is increased by a factor of 2 until the maximum value CWmax is reached Figure 4 illustrates an exemplary physical layer (PHY) transport segment 400 for illustrating the use of DIFS plus bounce for access in accordance with DCF. An existing transmission 410 uses channels. In this example, when transmission 410 terminates, no higher priority accesses occur, so a new transmission 420 will start after DIFS and the associated return period. In the following discussion, it is assumed that the STA transmitting 420 has won the transmission opportunity (in this case, through competition). SIFS is used during the frame sequence in which only a specific STA is expected to respond to the current transmission. For example, when transmitting an acknowledgement (ACK) in response to a received data frame, the ACK is transmitted immediately after the received data is added to the SIFS. Other transmission sequences can also use SIFS between frames. After SIFS, a "Request To Send; RTS" can be followed by a "Clear To Send; CTS", and then the data can be transmitted during a SIFS after the CTS, after the SIFS An ACK may follow this information. It is known that the sequence of such frames is interspersed with SIFS. The duration of SIFS can be used for: (a) detecting the energy on the channel, and determining whether the energy is exhausted (ie, channel clear); (b) resolving the previous message and determining whether an ACK frame will indicate The time at which the transmission was received correctly; and (c) the time at which the STA transceiver switched from reception to transmission (and vice versa). FIG. 5 illustrates an exemplary physical layer (PHY) transmission segment 500 for illustrating the use of SIFS before an ACK in a priority order over a DIFS access. An existing transmission 510 uses channels. In this example, when transmission 510 terminates, after DIFS, ACK 520 will follow after transmission 510 ends. Note that ACK 520 will start before a DIFS timeout, so any other STAs attempting to win the transmission will not succeed. In this example, after ACK 520 is completed, no higher priority access occurs, so the new pass 96872.doc -19- 200527868 lose 5 30 will start after DIFS and related return period (if any) . RTS / CTS frame sequences (in addition to providing flow control functions) can be used to improve data frame transmission protection. RTS and CTS contain duration information about subsequent data frames, ACKs and any intervening SIFS. STAs that are listening to RTS or CTS will set an occupation duration on their network allocation vector (NAV) and will treat the media as busy during this duration. Generally, RTS / CTS is used to protect frames longer than a specified length, and shorter frames are transmitted without protection. PCF can be used to allow the AP to provide channel central control. An AP can gain control of the media after sensing that the media has been idle for the duration of a PIFS. PIFS is shorter than DIFS and therefore has higher priority than DIFS. Once the AP has obtained channel access, it can provide contention-free access to other STAs. Therefore, compared with DCF, MAC performance will be improved. Please note that SIFS takes precedence over PIFS, so the PCF must wait for any SIFS sequence to complete before gaining control of the channel. Once the AP has used PIFS to obtain media access, it can establish a Contention-Free Period (CFP), during which the AP can provide polling access to the associated STAs. Contention-free poll (CF-Poll) (or directly referred to as "polling") is transmitted by the AP, and then transmitted from the polled STA to the AP. Again, the STA must wait for a duration of SIFS after CF-Poll, but the polled STA does not need to wait for the return of 802.1 1 (e) adopted by DIFS or various enhancement schemes (including polling enhancement schemes). .doc -20- 200527868 Detailed examples will be described with reference to FIG. 9. The beacon signal transmitted by the AP establishes the duration of the CFP. This is similar to using RTS or CTS to prevent contention access. However, hidden terminals may still occur because the terminal cannot listen to the beacon signal, but such hidden terminals may interfere with the transmission scheduled by the AP. Further protection can be implemented by using one CTS-to-self for each terminal that starts a transmission during the CFP. Both ACK and CF-Poll are permitted to be included in a frame and can be included in a frame together with a data frame, thereby improving MAC efficiency. Note that the SIFS < PIFS < DIFS relationship provides a deterministic priority mechanism for channel access. Competitive access between STAs in DCF is based on the probability of a bounce mechanism. The early 802.1 1 standard also provided for segmenting large packets into smaller fragments. The advantage of this segmentation process is that errors in one segment require less retransmissions than errors in larger packets. One disadvantage of the split processing in their standards is that for approved transmissions, an ACK needs to be transmitted for each segment, and an additional SIFS corresponding to their ACK transmission and segment transmission is needed. This situation is illustrated in FIG. 6. FIG. 6 illustrates an exemplary physical layer (PHY) transmission segment 600 for illustrating the transmission of N segments and corresponding approvals. The existing transmission 610 is transmitted. At the end of transmission 6 10, a first STA waits for DIFS 620 and returns 630 in order to win channel access. The first STA transmits N segments 640A-640N to a second STA, after which N corresponding delay SIFS 650A-650N must occur. The second STA transmits N ACK frames 660A-660N. Between each segment, the first STA must wait 96872.doc -21-200527868 for SIFS, so there are N-1 SIFS 670A-670N-1. Therefore, related to transmitting one packet, one ACK, and one SIFS, a divided packet requires the same packet transmission time, and also requires N ACKs and 2N-1 SIFS. The 802.11 (e) standard adds enhancements to improve the MAC of the previous 802.11 (a), (b), and (g) standards. 802.11 (g) and (a) are both OFDM systems. They are very similar, but operate in different frequency bands. The functions of lower-rate MAC protocols (for example, 802.11 (b)) are transferred to higher-bit-rate systems, which can cause inefficiencies, as described in detail below. In 802.1 1 (e), DCF has been enhanced and is called Enhanced Distributed Channel Access (EDCA). 0 EDCA's main Quality of Service (QoS) enhancement scheme refers to an arbitration frame Spacing (Arbitration Interframe Spacing; AIFS). AIFS [i] is associated with a traffic class (TC) identified by index i. The AIFS [i] value used by the AP may be different from the AIFS [i] value that has been allowed for other STAs. Only the AP can use an AIFS [i] value equal to PIFS. Otherwise, AIFS [i] is greater than or equal to DIFS. By default, the AIFS for "voice" and "video" traffic levels is selected to be equal to DIFS. The larger AIFS thinker chooses the lower priority for the traffic level "best effort" and "background". The contention window size is also a function of TC. The highest priority level is permitted to set CW = 1, that is, no return. For other tc, different contention window sizes provide a likelihood-related priority order, but cannot be used to achieve latency guarantees. 802.1 1 (e) uses the opportunity of transfer (TransmissioI1 Opportunity; 96872.doc -22- 200527868 TXOP). In order to improve MAC efficiency, when a STA obtains media through EDCA or through a polling access in HCCA, the STA may be permitted to transmit more than a single frame. Their one or more frames are called TX0P. The maximum length of the previous TX0P depends on the traffic level and is set by the AP. Furthermore, for polling TXOP, the AP indicates the duration of the TXOP allowed. During TX0P, the STA can transmit a series of frames interspersed with SIFS and from the destination ACK. In addition to not having to wait for DIFS plus return per frame, STAs that have won a TXOP must reserve channels for subsequent transmissions. During this X0P, the ACK from the destination may be per-frame (as in earlier 802.11 MACs), or an immediate or delayed block ACK may be used, as described below. Furthermore, certain traffic procedures (such as 'broadcast or multicast') do not allow any ACK principles. FIG. 7 illustrates an exemplary physical layer (PHY) transmission segment 700 for illustrating a TXOP with per-frame approval. The existing transmission 710 is transmitted. After transmitting 710 and waiting for DIFS 720 and returning 730 (if any), a STA wins TXOP 790. TXOP 790 includes N frames 740A-740N, each frame is followed by N corresponding SIFS 750A-750N. The receiving STA responds with N corresponding ACKs 760A-760N. ACK 760 is followed by N_1 SIFS 770A-770N-1. Note that each frame 740 includes a leading item 770 and a header and packet 780. The exemplary embodiment detailed below allows a significant reduction in the amount of transmission time reserved for the leading term. Figure 8 shows a TXOP 810 with block recognition. You can win Ding Yan 0? 810 through competition or polling. Ding 乂 0? 810 includes > 1 frame 820-82-^ (^, each frame is followed by N corresponding SIFS 830A-830N. After transmitting frame 820 96872.doc -23- 200527868 and SIFS 830 Will send a block ACK request 840. The receiver STA will respond to the block ACK request in the future. The block ACK can be immediately after the completion of a block frame transmission, or it can be delayed to allow the receiver to use the software. The exemplary embodiments detailed below allow a substantial reduction in the amount of transmission time between frames (SIFS in this example). In some embodiments, continuous transmission (ie, frames) No delay is required. Please note that in 802.11 (a) and standards, for some transmission formats, a signal extension is defined to add additional delay at the end of each frame. Although not technically included In the SIFS definition, the specific embodiments detailed below also allow the signal extension to be removed. The block ACK function provides improved efficiency. In one example, a STA can transmit 1024 frames corresponding to Up to 64 MAC service data units (Servi ce Data Units (SDU) (each SDU may be divided into 16 segments), while allowing the destination STA to provide a single response at the end of each frame block, the response is used to indicate their 1024 frames ACK status of each frame in the frame. Generally speaking, at high rates, MAC SDUs are not split, and based on low latency, less than 64 MAC SDUs may be transmitted before a zone from the destination is required. Block ACK. In this case, the total time to transmit M frames is shortened from M frames + M SIFS + M ACK + M-1 SIFS to M frames + M SIFS + block ACK. The specific embodiments detailed below further improve the efficiency of the block ACK. The Direct Link Protocol (DLP) used by 802.11 (e) allows a STA to directly forward a frame to a basic service set (Basic 96872. doc -24- 200527868

Service Set ; BSS)内的另一目的地STA(受控制於相同的 AP)。AP可建置一可用於STA之間直接轉遞訊框的輪詢 TXOP。在採用此功能之前,在輪詢存取期間,來自被輪 詢之STA的訊框目的地必定是AP,接著該AP轉遞訊框至目 的地STA。藉由排除兩個跳躍式訊框轉遞,而改良了媒體 效率。下文詳述的具體實施例實質增加DLP轉遞效率。 802.1 1(e)也採用一種增強型PCF,稱為混合式協調功能 (Hybrid Coordination Function; HCF)。在 HCF控制型頻道 存取(HCF Controlled Channel Access ; HCCA)中,允許 AP 隨時存取頻道,藉以建置一受控存取階段(Controlled Access Phase ; CAP),CAP相似於CFP且係用來在競爭階 段期間隨時提供傳輸機會,而不是僅僅緊接在信標訊號 (Beacon)之後才提供傳輸機會。AP藉由等待一無退回之 PIFS來存取媒體。 圖9繪示示範性實體層(PHY)傳輸片段900,用於解說一 使用HCCA之輪詢TXOP。在此實例中,AP競爭輪詢。現 有傳輸910被傳輸。在傳輸910之後,AP等待PIFS,並且接 著傳輸一定址給一 STA的輪詢920。請注意,正在競爭頻 道的其它STA必須等待至少DIFS,由於該傳輸之輪詢 920,所以不會發生DIFS,如圖所示。被輪詢之STA在輪 詢920及SIFS 930之後傳輸輪詢TXOP 940。AP繼續輪詢, 等待介於每個輪詢TXOP 940與輪詢920之間的PIFS。在替 代情況下,AP可藉由等待來自一傳輸910的PIFS來建置一 CAP。AP可在該CAP期間傳輸一或多個輪詢。 96872.doc •25- 200527868 MAC改良 如上文所述,先前MAC的各項無效率功能會轉移至後期 版本。例如,為11 Mbps對64 Mbps所設計的非常長之前導 項會造成無效率。由於MAC協定資料單元(MAC Protocol Data Unit ; MPDU)會隨速率遞增而持續縮短,所以維持各 項訊框間間距及/或前導項怪定意謂著會相對降低頻道利 用。例如,與具有72微秒前導項的802.11(g)相比,一高資 料速率ΜΙΜΟ MPDU傳輸可能僅僅是幾微秒。排除或縮短 延遲(例如,SIFS、訊號延伸及/或前導項)將增加輸送量及 頻道利用。 圖10繪示一包括多個連續傳輸且無任何間隙之ΤΧΟΡ 1010的示範性具體實施例。ΤΧΟΡ 1010包括Ν個訊框 1020Α-1020Ν,彼等訊框被連續傳輸而且無任何間隙(相比 之下,圖8所示之ΤΧΟΡ 810中則需要SIFS)。ΤΧΟΡ中的訊 框數量僅受限於接收器的緩衝器及解碼能力。當S Τ Α正在 一 ΤΧΟΡ 1010中傳輸具有一區塊ACK的連續訊框時,由於 在連續訊框之間沒有任何其它STA需要獲取媒體存取權, 所以不需要穿插SIFS。一選用之區塊ACK要求1030被附加 至該等N個訊框。某些流量等級可不需要認可。可緊接在 ΤΧΟΡ之後回應一區塊ACK要求,或在稍後的時間傳輸區 塊ACK要求。訊框1020不需要訊號延伸。在本文中詳述之 需要ΤΧΟΡ的任何具體實施例中都可部署ΤΧΟΡ 1 〇 1 〇。 如圖10所示,當由相同的STA傳輸一 ΤΧΟΡ中所有的連 續訊框時,就可以排除該ΤΧΟΡ中連續訊框之間傳輸 96872.doc -26- 200527868 SIFS。在802· 11(e)中,此類被間隙被保留以限制接收器的 複雜需求。在802· 11(e)標準中,10微秒SIFS時段及6微秒 OFDM訊號延伸為接收器提供用於處理所接收之訊框(包括 解調變及解碼)的總時間16微秒。然而,在高ρΗγ速率 下,此16微秒會導致顯著無效率。在某些具體實施例中, 隨著採用ΜΙΜΟ處理,甚至16微秒都可能會無效率地完成 處理。反而,在此示範性具體實施例中,從某STA至Αρ或 另一 STA(使用直接鏈路協定(DLP))之連續傳輸之間的SIFS 及OFDM訊號延伸被排除。因此,在完成傳輸之後需要一 段額外時段(用於ΜΙΜΟ接收器處理及頻道解碼(例如turb〇/ 捲積/LDPC解碼))的接收器可執行彼等功能,同時利用媒 體進行額外傳輸。可在稍後的時間傳輸一認可,如下文所 述(例如,使用區塊ACK)。 由於介於STA之間的傳播延遲不同,所以可藉由警戒時 段(guard period)來分離介於不同成對STA之間的傳輸,藉 此在一接收器處避免介於媒體上來自不同STA之連續傳輸 之間的碰撞(圖10中未繪示,但是如下文會詳細說明)。在 一項示範性具體實施例中,對於802·!丨的所有作業環境而 言,一個OFDM符號的警戒時段(4微秒)就以足夠。從相同 STA至不同目的地STA的傳輸不需要利用警戒時段予以(如 圖10所示)。在下文的詳細說明内容中,彼等警戒時段被 稱為警戒頻段 框間間距(Guardband Interframe Spacing ; GIFS)。 若不使用SIFS及/或OFDM訊號延伸,可透過使用一視窗 96872.doc -27- 200527868 式ARQ機制(例如,g〇 back N(返回N)或選擇性重複 (selective repeat))來提供所需的接收器處理時間(例如,用 於ΜΙΜΟ處理及解碼),這屬於熟悉此項技術者熟知的技 術。在此實例中,舊有802」!中的停止和等待(st〇p-and_ wait)MAC層ACK已在802·丨丨(e)中增強為含至多丨〇24個訊框 及區塊ACK的似視窗機制。較佳方式為採用以標準視窗為 基礎之ARQ機制,而不要的採用8〇211(幻中設計的專有區 塊ACK機制。 可藉由接收器處理複雜度及緩衝處理來決定最大准許視 &可允迕發射器以介於成對之發射器-接收器之間可達 成的峰值PHY速率來傳輸足以填滿接收器視窗的資料。例 如,由於接收器處理會無跟上ρΗγ速率,所以接收器必須 射^_變Μ出’直到彼等輸出可被解瑪。因此,在 舉值PHY速率下’實體層處理的緩衝處理需求可被運用在 決定最大准許視窗。 宣告其在既定 ,而不會造成 宣告其在最大 ,而不會造成 ,可處理較長 器可使用一已 理的最大准許 最大准許ΡΗΥService Set; BSS) to another destination STA (controlled by the same AP). The AP can set up a polling TXOP that can be used to directly transfer frames between STAs. Before using this function, during polling access, the frame destination from the polled STA must be the AP, and then the AP forwards the frame to the destination STA. Improved media efficiency by excluding two skip frame forwards. The specific embodiments detailed below substantially increase DLP transfer efficiency. 802.1 1 (e) also uses an enhanced PCF, called Hybrid Coordination Function (HCF). In HCF Controlled Channel Access (HCCA), the AP is allowed to access the channel at any time to establish a Controlled Access Phase (CAP). CAP is similar to CFP and is used in Opportunities for transmission are provided at any time during the competition phase, rather than just after the beacon signal. The AP accesses the media by waiting for a non-returned PIFS. FIG. 9 illustrates an exemplary physical layer (PHY) transmission segment 900 for illustrating a polled TXOP using HCCA. In this example, APs compete for polling. The existing transmission 910 is transmitted. After transmitting 910, the AP waits for the PIFS and then transmits a poll 920 that transmits a certain address to a STA. Please note that other STAs competing for the channel must wait for at least DIFS. DIFS does not occur due to the polling of this transmission, as shown in the figure. The polled STA transmits polling TXOP 940 after polling 920 and SIFS 930. The AP continues to poll, waiting for a PIFS between each polling TXOP 940 and polling 920. In the alternative, the AP may establish a CAP by waiting for the PIFS from a transmission 910. The AP may transmit one or more polls during this CAP. 96872.doc • 25- 200527868 MAC improvements As mentioned above, the inefficiency features of previous MACs will be transferred to later versions. For example, very long preambles designed for 11 Mbps versus 64 Mbps can cause inefficiencies. Since the MAC Protocol Data Unit (MPDU) will continue to decrease as the rate increases, maintaining the space between each frame and / or the leading item means that the channel utilization will be relatively reduced. For example, compared to 802.11 (g) with a leading entry of 72 microseconds, a high data rate MIMIO MPDU transmission may be only a few microseconds. Eliminating or reducing delays (for example, SIFS, signal extension, and / or preamble) will increase throughput and channel utilization. FIG. 10 illustrates an exemplary embodiment of a TXOP 1010 including multiple continuous transmissions without any gaps. TXOP 1010 includes N frames 1020A-1020N, which are transmitted continuously without any gaps (in contrast, TXFS 810 shown in Figure 8 requires SIFS). The number of frames in TXOP is limited only by the buffer and decoding capabilities of the receiver. When STA is transmitting a continuous frame with a block ACK in a TXOP 1010, there is no need for any other STA to obtain media access rights between consecutive frames, so there is no need to intersperse the SIFS. An optional block ACK request 1030 is appended to these N frames. Certain traffic classes may not require approval. It can respond to a block ACK request immediately after TXOP, or transmit the block ACK request at a later time. The frame 1020 does not require signal extension. TXOP 1 0 1 0 may be deployed in any specific embodiment detailed herein that requires TXOP. As shown in FIG. 10, when all the continuous frames in a TXOP are transmitted by the same STA, transmission between consecutive frames in the TXOP can be excluded. 96872.doc -26- 200527868 SIFS. In 802.1 (e), this type of backlash was reserved to limit the complex requirements of the receiver. In the 802.11 (e) standard, a 10 microsecond SIFS period and a 6 microsecond OFDM signal extension provide the receiver with a total time of 16 microseconds for processing the received frame, including demodulation and decoding. However, at high ρΗγ rates, these 16 microseconds can cause significant inefficiencies. In some embodiments, even with 16 μs, the processing may be inefficiently completed. Instead, in this exemplary embodiment, SIFS and OFDM signal extensions between successive transmissions from a certain STA to Ap or another STA (using a direct link protocol (DLP)) are excluded. Therefore, receivers that require an additional period of time (for MIMI receiver processing and channel decoding (such as turb0 / convolution / LDPC decoding)) can perform their functions while completing the transmission while using the media for additional transmissions. An acknowledgement may be transmitted at a later time, as described below (for example, using a block ACK). Due to the different propagation delays between STAs, a guard period can be used to separate transmissions between different pairs of STAs, thereby avoiding a receiver at the receiver between media from different STAs Collisions between consecutive transmissions (not shown in Figure 10, but described in detail below). In an exemplary embodiment, a guard period (4 microseconds) of one OFDM symbol is sufficient for all operating environments of 802 ·! 丨. Transmission from the same STA to different destination STAs does not need to be performed using the guard period (as shown in Figure 10). In the detailed description below, their guard periods are referred to as the Guardband Interframe Spacing (GIFS). If SIFS and / or OFDM signal extension is not used, a window 96872.doc -27- 200527868-style ARQ mechanism (eg, goback N (selective repeat) or selective repeat) can be used to provide the required Receiver processing time (for example, for MIMO processing and decoding), which is a technique well known to those skilled in the art. In this example, the old 802 "! The stop-and-wait MAC-layer ACK has been enhanced in 802. (e) to a window-like mechanism with up to 24 frames and block ACKs. The preferred method is to use the ARQ mechanism based on the standard window, instead of using the proprietary block ACK mechanism designed by Magic. The maximum permitted view & amp can be determined by the receiver processing complexity and buffer processing. ; Allows the transmitter to transmit data at a peak PHY rate between the pair of transmitter-receivers that is sufficient to fill the receiver window. For example, because receiver processing will not keep up with the ρΗγ rate, The receiver must shoot ^ _M out 'until their output can be decoded. Therefore, the buffer processing requirements of' physical layer processing 'at the value PHY rate can be used to determine the maximum permitted window. Declare that it is in the established, and Will not cause the announcement that it is at the maximum, but will not cause, can handle a longer device can use a processed maximum permission maximum permission

在項不範性具體實施例中,接收器可以 ΡΗΥ速率下可處理的最大准許ΡΗΥ區塊大小 所屬實體層緩衝器溢滿。或者,接收器可以 ΡΗΥ速率下可處理的最大准許ΡΗΥ區塊大小 所屬實體層緩衝器溢滿。在較低ΡΗΥ速率下 的區塊大小’而不會造成緩衝器溢滿。發射 知的Α式’從所宣告之最大ΡΗΥ速率下可處 ΡΗΥ區塊大小,來計算—既㈣丫速率下的 區塊大小。 96872.doc -28- 200527868 如果所宣告之最大PHY區塊大小是靜態參數,則在可處 理貫體層緩衝器且接收器準備好接收下一 ΡΗγ叢發之前的 時間量是另一項接收器參數,並且發射器及排程器可能已 知彼參數。或者,所宣告之最大ΡΗγ區塊大小可能會按照 佔用的實體層緩衝器而動態變化。 可使用接收器處理延遲來決定ARQ的往返延遲,接著可 使用ARQ的往返延遲來決定應用程式所查覺到的延遲。因 此,為了實現低延時服務,可以限制所准許的ΡΗγ區塊大 /J \ 〇 圖11繪示一 TXOP 111的示範性具體實施例,用於解說減 夕必要的月丨〗導訊號前導項(pil〇t preambie)傳輸量。τχορ 1110包括前導項1120,之後接著N個連續傳輸113〇A-1130N。可附加一選用之區塊aCK要求U4〇。在此實例 中,一傳輸1130包括一標頭及一封包。比較丁^^卩111〇與 圖7所示之TX0P 790,TX0P 79〇除了包括標頭和封包以 外,母個訊框740還包括一前導項。藉由傳送一單一前導 項,對於相同的傳輸資料量,必要的前導項傳輸是一個前 導項,而不是Ν個前導項。 因此,可從連續傳輸排除前導項112〇。接收器可以使用 起始前導項120來獲取訊號,而且適用於〇FDM之細微頻率 獲取。對於ΜΙΜΟ傳輸,可相對於現r〇fdm前導項來擴 大起始前導項1120,促使接收器能夠排除空間頻道。但 是,相同τχορ内的後續訊框可不需要額外前導項。〇fdm 符號内的前導音頻(pilot tone)通常足夠運用在訊號追蹤。 96872.doc -29- 200527868 在一項替代具體實施例中,在TX0P丨丨10期間,可週期性 穿播額外(似前導項)符號。但是,可顯著減少整體前導附 加項(preamble overhead)。前導項可能僅視需要予以傳 送,並且可依據自先前傳輸之前導項以來所歷時之時間量 來以不同方式予以傳送。 請注意,TXOP 11 10還可併入舊有系統之功能。例如, 區塊ACK是選用項。可以支援更頻繁的ACK。即使如此, 一較短的間隙(例如,GIFS)可取代較長的SIFS(加上訊號延 伸’若有使用的話)。彼等連續傳輸丨丨3〇還可包括較大型 封包的片段,如上文所述。請注意,傳至相同接收方sta 的連續傳輸1130之標頭可被壓縮。下文會詳細說明壓縮標 頭的實例。 圖12繪示一種用於併入如前述各項態樣之方法1200的示 範性具體實施例,包括合併前導項、移除如SIFS等間隙以 及在適當情況下插入GIF。程序從步驟12 10開始,於此步 驟’一 STA使用本文詳述之技術而赢得一 τχορ。在步驟 1220 ’視需要傳輸一前導項。再次,前導項可能長於或短 於舊有前導項,並且會因各種參數(例如,自上次傳輸之 前導項以來所歷時之時間)而異,促使接收方STA能夠排除 MIM0空間頻道。在步驟1230,STA傳輸一或多個封包(或 廣泛而言,任何種類之連續傳輸)至目的地。請注意,不 需要傳輸額外前導項。在一項替代具體實施例中,可選擇 性傳輸一或多個額外前導項,或視需要穿插似前導項符 號。在步驟1240,STA可選擇性傳輸至一額外接收方 96872.doc -30- 200527868 STA。在此情況下’視需要插入一 GIFS,並且一或多個連 續傳輸可被傳輸至該額外接收方STA。接著程序停止。在 . 各項具體實施例中,STA可繼續傳輸至兩個以上STA,視 所要的效能等級的需求插入GIFS及/或前導項。 因此,如上文所述,藉由將從一 STA傳至多個目的地 STA的傳輸合併成為連續傳輸,就可以進一步改良mac效 能,因此排除了許多或所有警戒時段並且減少前導附加 項。可針對從同一 STA傳至不同目的地STA的多個連續傳 輸來使用一單一前導項(或前導傳輸)。 透過合併輪詢可獲得額外效能。在一項示範性具體實施 例中,數個輪詢可被合併成為一控制頻道,下文會詳述實 例。在一項實例中,AP可將一包括用於指派τχ〇ρ之輪詢 訊息的訊號傳輸至多個目的地STA。相比之下,在 802.1 1(幻中,會在每個1^〇1>的前面放置一來自入1)的^ PoU,之後接著一 SIFS。#數個此類CF_p〇u訊息被合併成 為:用於指派數個TX0P的控制頻道訊息(在一項示範性具 U例中稱為SCHED訊息’如下文所述)時,就得以改 良效能。在一項一般性具體實施例甲,任何時段都可被配 置用於合併之輪詢及其各自的τχορ。下文會參考圖15來 洋述項不範,J·生具體實施例,並且本文中還包含了進一步 實例。 自—白梯式速率結構來編碼一控制頻道(即,SCHED) ^ 一、文步改良效率。可按照介於ΑΡ與STA之間的 頻道品質來給i 、’馬一傳至任何STA的輪詢訊息。輪詢訊息的 96872.doc 200527868 傳輸順序不需要就是指派之TXOP的順序,而是可按照編 碼強固性予以排序。 圖13繪示示範性實體層(ΡΗΥ)傳輸片段1300,用於解說 合併輪詢及對應之ΤΧΟΡ。合併之輪詢13 10被傳輸。可使 用一控制頻道結構來傳輸輪詢(本文中會詳述實例),或可 使用混合式替代技術來傳輸輪詢,熟悉此項技術者很容易 瞭解此類技術。在此實例中,為了排除關於介於輪詢與任 何正向鏈路ΤΧΟΡ之間的訊框間間距之需要,會在合併之 輪詢1310之後直接傳輸正向鏈路ΤΧΟΡ 1320。在正向鏈路 丁乂0? 1320之後,傳輸各項反向鏈路丁乂0? 13 30八-13 30>^, 且視需要插入GIFS 1340。請注意,當進行來自一 STA的連 續傳輸時,不需要包含GIFS(類似於從AP至各STA的正向 鏈路傳輸不需要GIFS)。在此實例中,反向鏈路ΤΧΟΡ包括 STA至STA(即,對等式)ΤΧΟΡ(例如,使用DLP)。請注 意,圖中所示之傳輸順序僅基於解說用途。正向鏈路 ΤΧΟΡ及反向鏈路ΤΧΟΡ(包括對等式傳輸)可被交換或穿 插。某些組態不會導致排除相同於其它組態一樣多的間 隙。按照本文講授内容,熟悉此項技術者很容易調整許多 混合式替代具體實施例。 圖14繪示一種用於合併輪詢之方法的示範性具體實施例 1400。程序從步驟14 10開始,在此步驟將頻道資源配置成 為一或多個ΤΧΟΡ。可部署任何排程功能來進行ΤΧΟΡ配置 決策。在步驟1420,合併用於按照配置來指派ΤΧΟΡ的輪 詢。在步驟1420,在一或多個控制頻道(即,SCHED訊息 96872.doc -32· 200527868 的CTRLJ片段,如下文詳述之一項示範性具體實施例中所 述)上,將合併之輪詢傳輸至一或多個STA。在一項替代具 體實施例中,可部署任何發訊息技術來傳輸合併之輪詢。 在步驟1440,STA按照合併之輪詢中的輪詢配置來傳輸 TXOP。接著程序停止。此方法可結合任何長度之合併輪 詢間隔(可包括系統信標訊號(Beacon)間隔的全部或部分) 一起部署。可配合競爭式存取或舊式輪詢來間歇地使用合 併輪詢,如上文所述。在一項示範性具體實施例中,可週 期性或按照其它參數(例如,系統負載及資料傳輸需求)來 重複方法1400。 將參考圖15及圖16來詳細說明用於解說各項態樣之MAC 協定示範性具體實施例。連同本專利申請案一起提出的共 同申請美國專利申請案第χχ/χχχ,χχχ、χχ/χχχ,χχχ及 XX/XXX,XXX號(代理人播案第 030428、030433、030436) 號,標題「WIRELESS LAN PROTOCOL STACK」中詳述 MAC協定,彼等案已讓渡給本發明受讓人。 圖15繪示示範性TDD MAC訊框間隔1500。在本文中以 用詞「TDD MAC訊框間隔」來表示用於定義下文詳述之 各項傳輸片段的時段。TDD MAC訊框間隔1500有別於用 於描述802-11系統中傳輸的泛用用詞「訊框」。就802.1 1而 論,TDD MAC訊框間隔1500可能類似於信標訊號(Beacon) 間隔或信標訊號(Beacon)間隔之一分數。參考圖15至圖16 所詳述的參數僅為例證。使用部分或所有已說明的組件, 以配合各項參數值,熟悉此項技術者很容易調整此項實例 96872.doc -33- 200527868 以配合混合式替代具體實施例。在下列傳輸頻道片段之間 配置MAC功能15〇〇 :廣播、控制、正向和反向流量(分別 稱為下載鏈路階段及上載鏈路階段)以及隨機存取。In the specific embodiment of the non-standard item, the receiver can process the maximum permitted PY block size at the PY rate. The physical layer buffer to which the receiver belongs is full. Alternatively, the receiver may process the maximum permitted PY block size that can be processed at the PY rate. The physical layer buffer to which the receiver belongs is full. The block size ' The formula A of the transmission knowledge is calculated from the block size of the PQ block at the announced maximum PQ rate—the block size at the same rate. 96872.doc -28- 200527868 If the declared maximum PHY block size is a static parameter, then the amount of time before the body buffer can be processed and the receiver is ready to receive the next PΗγ burst is another receiver parameter The parameters of the transmitter and scheduler may be known. Alternatively, the announced maximum PY block size may change dynamically according to the occupied physical layer buffer. The receiver processing delay can be used to determine the ARQ round-trip delay, and then the ARQ round-trip delay can be used to determine the delay perceived by the application. Therefore, in order to achieve a low-latency service, the permitted PΗγ block size may be limited to / J \ 〇 FIG. 11 shows an exemplary embodiment of TXOP 111, which is used to explain the leading month of the reduction signal. pil〇t preambie) transmission volume. τχορ 1110 includes a leading term 1120, followed by N consecutive transmissions of 113 ° A-1130N. An optional block aCK can be attached to U40. In this example, a transmission 1130 includes a header and a packet. Comparing Ding ^^ 111 with TX0P 790, TX0P 79, as shown in FIG. 7, in addition to the header and the packet, the parent frame 740 also includes a leading item. By transmitting a single preamble, for the same amount of data to be transmitted, the necessary preamble transmission is one preamble, rather than N preambles. Therefore, the leading item 112 may be excluded from continuous transmission. The receiver can use the leading preamble 120 to obtain the signal, and it is suitable for subtle frequency acquisition of 0FDM. For MIMO transmission, the starting preamble 1120 can be enlarged relative to the current rofdm preamble, so that the receiver can exclude the spatial channel. However, subsequent frames within the same τχορ may not require additional leading terms. The pilot tone in the 〇fdm symbol is usually sufficient for signal tracking. 96872.doc -29- 200527868 In an alternative embodiment, during TXOP10, additional (like leading) symbols may be broadcasted periodically. However, the overall preamble overhead can be significantly reduced. The leading item may be transmitted only as needed, and may be transmitted in different ways depending on the amount of time that has elapsed since the previous leading item was previously transmitted. Please note that TXOP 11 10 can also incorporate the functionality of older systems. For example, block ACK is optional. Can support more frequent ACKs. Even so, a shorter gap (e.g., GIFS) can replace a longer SIFS (plus signal extension 'if used). Their continuous transmissions may also include fragments of larger packets, as described above. Note that the headers of consecutive transmissions 1130 to the same recipient sta can be compressed. Examples of compression headers are detailed below. FIG. 12 illustrates an exemplary embodiment of a method 1200 for incorporating aspects as described above, including merging leading items, removing gaps such as SIFS, and inserting GIFs where appropriate. The procedure starts at steps 12-10, where a STA uses the techniques detailed herein to win a τχορ. At step 1220 'a preamble is transmitted as needed. Again, the preamble term may be longer or shorter than the old preamble term, and will vary based on various parameters (for example, the time elapsed since the last time the preamble was transmitted), prompting the receiving STA to exclude the MIM0 spatial channel. At step 1230, the STA transmits one or more packets (or, broadly, any kind of continuous transmission) to the destination. Note that no additional preambles need to be transmitted. In an alternative embodiment, one or more additional leading terms may be selectively transmitted, or a leading-like symbol may be interspersed as necessary. In step 1240, the STA may selectively transmit to an additional receiver 96872.doc -30- 200527868 STA. In this case, a GIFS is inserted as needed, and one or more consecutive transmissions can be transmitted to the additional recipient STA. The program then stops. In various embodiments, the STA may continue to transmit to more than two STAs, and insert GIFS and / or leading items according to the requirements of the desired performance level. Therefore, as described above, by combining the transmissions from one STA to multiple destination STAs into continuous transmissions, the mac performance can be further improved, thus eliminating many or all guard periods and reducing the leading additional terms. A single preamble (or preamble transmission) can be used for multiple consecutive transmissions from the same STA to different destination STAs. Additional performance can be obtained by combining polls. In an exemplary embodiment, several polls can be combined into a control channel, examples will be detailed below. In one example, the AP may transmit a signal including a polling message to assign τχ〇ρ to multiple destination STAs. In contrast, in 802.1 1 (in the magic, a ^ PoU from 1 is placed in front of each 1 ^ 〇1>, followed by a SIFS. #Several such CF_p0u messages are combined into a control channel message (referred to as a SCHED message in one exemplary embodiment, as described below) for assigning several TXOPs, which improves performance. In a general embodiment A, any time period can be configured for combined polling and its respective τχορ. In the following, reference will be made to FIG. 15 for a description of a foreign item, a specific embodiment of J. Sheng, and further examples are included in this article. Self-white ladder-type rate structure to encode a control channel (ie, SCHED) ^ One step improvement efficiency. A polling message can be transmitted to i, ′ Ma Yi to any STA according to the channel quality between AP and STA. The transmission order of 96872.doc 200527868 for polling messages does not need to be the order of the assigned TXOPs, but can be sorted according to the coding robustness. FIG. 13 illustrates an exemplary physical layer (PQ) transmission segment 1300 for explaining merge polling and the corresponding TXOP. Merged polls 13 10 are transmitted. Polling can be transmitted using a control channel structure (examples will be detailed in this article), or polling can be transmitted using hybrid alternative technologies, which are easy for those skilled in the art to understand. In this example, to eliminate the need for inter-frame spacing between polling and any forward link TXOP, the forward link TXOP 1320 will be transmitted directly after the combined polling 1310. After the forward link T0? 1320, each reverse link T0? 13 30A-13-30 is transmitted, and GIFS 1340 is inserted as necessary. Note that when performing continuous transmission from a STA, it is not necessary to include GIFS (similar to forward link transmission from AP to each STA does not require GIFS). In this example, the reverse link TXOP includes STA-to-STA (ie, peer-to-peer) TXOP (eg, using DLP). Please note that the transmission sequence shown in the figure is for illustrative purposes only. The forward link TXOP and reverse link TXOP (including peer-to-peer transmission) can be exchanged or interspersed. Some configurations do not result in the exclusion of as many gaps as others. As taught in this article, those skilled in the art can easily adjust many hybrid alternative embodiments. FIG. 14 illustrates an exemplary embodiment 1400 of a method for merge polling. The procedure starts at steps 14-10, where the channel resources are configured as one or more TXOPs. Any scheduling function can be deployed to make TXOP configuration decisions. In step 1420, the polls used to assign TXOPs as configured are merged. At step 1420, on one or more control channels (ie, the CTRLJ fragment of the SCHED message 96872.doc-32 · 200527868, as described in an exemplary embodiment detailed below), the merged poll is polled Transmission to one or more STAs. In an alternative embodiment, any messaging technology can be deployed to transmit the combined polls. At step 1440, the STA transmits the TXOP according to the polling configuration in the combined polling. The program then stops. This method can be deployed in conjunction with a combined polling interval of any length (which can include all or part of the system beacon interval). Merge polling can be used intermittently with contention access or legacy polling, as described above. In an exemplary embodiment, method 1400 may be repeated periodically or according to other parameters (e.g., system load and data transmission requirements). Exemplary specific embodiments of the MAC protocol for explaining various aspects will be described in detail with reference to FIGS. 15 and 16. Common application US patent application filed with this patent application No. χχ / χχχ, χχχ, χχ / χχχ, χχχ and XX / XXX, XXX (Attorney's Case Nos. 030428, 030433, 030436), entitled "WIRELESS "LAN PROTOCOL STACK" details the MAC protocol, and their cases have been transferred to the assignee of the present invention. FIG. 15 illustrates an exemplary TDD MAC frame interval 1500. The term "TDD MAC frame interval" is used herein to denote the period used to define the various transmission segments detailed below. The TDD MAC frame interval 1500 is different from the general term "frame" used to describe transmission in the 802-11 system. With regard to 802.1 1, the TDD MAC frame interval 1500 may be similar to a beacon interval or a fraction of a beacon interval. The parameters detailed with reference to FIGS. 15 to 16 are merely examples. Some or all of the components described are used to match the various parameter values. Those skilled in the art can easily adjust this example. The MAC function 150 is configured between the following transmission channel segments: broadcast, control, forward and reverse traffic (referred to as download link phase and upload link phase, respectively) and random access.

在此示範性具體實施例中’會在一 2 ms(毫秒)時間間隔 時段内來分時雙工處理(TDD)一 TDD MAC訊框間隔1500 ’ 藉此分割成五個傳輸頻道片段15 10-1550 ’如圖所示。在 替代具體實施例中可部署替代順序及不同的訊框大小。有 關TDD MAC訊框間隔1 $⑼配置的持續時間可被量子化成 某小段共同時間間隔。 TDD MAC訊框間隔1 $⑼内的示範性五個傳輸頻道包 括:(a)廣播頻道(Broadcast Channel ; BCH)1510,用於載 送廣播控制頻道(Broadcast Contr〇l Channel ; BCCH) ; (b) 控制頻道(Control Channel ; CCH) 1520’用於在正向鏈路In this exemplary embodiment, 'Time Division Duplexing (TDD)-TDD MAC frame interval 1500 will be performed within a time interval of 2 ms (milliseconds), thereby dividing into five transmission channel segments 15 10- 1550 'as shown. Alternative orders and different frame sizes can be deployed in alternative embodiments. The TDD MAC frame interval 1 $ ⑼ can be quantized into a small common interval. Exemplary five transmission channels within a TDD MAC frame interval of $ 1 include: (a) Broadcast Channel (BCH) 1510, used to carry Broadcast Control Channel (BCCH); (b) ) Control Channel (CCH) 1520 'for forward link

上載送訊框控制頻道(Frame contro1 Channel; FCCH)及隨 機存取反饋頻道(Rand〇m Access Feedback Channel ; RFCH) ; (c)流量頻道(Traffic Channel ; TCH),用於載送使 用者資料及控制資訊,並且被細分成⑴正向鏈路上的正向 流量頻道(Forward Traffic Channel ; F-TCH)1530,及(ii)反 向鏈路上的反向流量頻道(Reverse Traffic Channel ; R-TCH)1540 ;以及(d)隨機存取頻道(Random Access Channel ; RCH)1550,用於載送存取要求頻道(Access Request Channel ; ARC Η)(用於UT存取要求)。還會在片段 1510中傳輸一前導信標訊號(pilot beacon)。 下載鏈路階段的訊框1500包括片段1510-1530。上載鏈 96872.doc -34- 200527868 路階段包括片段1540-1550。片段1560指示一後續TDD MAC訊框間隔1500開始。下文進一步解說包含對等式傳輸 之替代具體實施例。 由AP傳輸廣播頻道(BCH)及信標訊號(Beacon) 1510。 BCH 510的第一部分包含共同實體層添加項(c〇mm〇n physical layer overhead),例如,前導訊號,包括時序和 頻率獲取前導。在一項示範性具體實施例中,信標訊號 (Beacon)係由下列項目所組成:由υτ進行頻率和時序獲取 所使用的2個短型OFDM符號;之後接續是υτ用來評估頻 道的共同ΜΙΜΟ前導之8個短型〇fdM符號。 BCH 15 10的第二部分是資料部分。BCH資料部分定義關 於傳輸頻道片段的TDD MAC訊框間隔配置:CCH 1520、 F-TCH 15 30、R-TCH 1540和RCH 1550,並且還定義關於 子頻道的CCH組合。在此實例中,BCH 15 10定義無線LAN 120的涵蓋範圍,並且會在可用的大部分強固型資料傳輸 模式中予以傳輸。整個BCH的長度為固定。在一項示範性 具體實施例中,BCH定義MIMO-WLAN的涵蓋範圍,並且 會使用比率1/4碼之二進位相移鍵控(Binary Phase Shift Keying ; BPSK)在空間時間傳輸分集(space Time Transmit Diversity ; STTD)模式中予以傳輸。在此實例中,BCH的 長度固定為10個短型0FDM符號。在替代具體實施例中可 以部署各種其它發訊號技術。 控制頻道(CCH) 1520係由AP予以傳輸,並且定義TDD MAC訊框間隔餘項之組合,並且解說明使用合併之輪詢。 96872.doc -35- 200527868 會使用南強固型傳輸模式在多個子頻道中傳輸CCH 1520, 每個子頻道各具有不同的資料速率。第一個子頻道最為強 固,並預期所有UT都可予以解碼。在一項示範性具體實 私例中’會針對第一個CCH子頻道使用比率ι/4碼之 BPSK。還可以使用數個其它子頻道,彼等子頻道的強固 性會遞減(且效率會遞增)。在一項示範性具體實施例中, 至夕會使用二個額外子頻道。每個υτ都會嘗試依序解碼 所有子頻道’直到解碼失敗。每個訊框中的Cch傳輸頻道 片段為可變長度,長度取決於每個子頻道中的CCH訊息數 量。會在CCH的最強固(第一)子頻道上載送反向鏈路隨機 存取叢發之認可(acknowledgment)。 CCH包含有關正向鏈路和反向鏈路的實體層叢發指派 (類似於TXOP的合併輪詢)。指派可能是用於在正向鏈路或 反向鏈路上傳送資料。一般而言,一實體層叢發指派包 括.(a) — MAC ID ; (b)—用於指示訊框内配置開始時間的 值(在F-TCH或R-TCH)中;(c)配置的長度;(d)專用實體層 添加項的長度;(e)傳輸模式;以及(f)用於實體層叢發的 編碼和調變機制。 有關CCH的其它示範類型指派包括:一有關用於從一卩丁 傳輸專用别導之反向鍵路的指派;或一有關用於從一 11丁傳輸一緩衝器和鏈路狀態資訊之反向鏈路的指派。Cch 也可以定義訊框之保留未使用部分。UT可使用訊框的彼 等未使用部分來進行雜訊底限(及干擾)評估以及量測鄰近 系統之信標訊號(Beacon)。 96872.doc -36- 200527868 隨機存取頻道(RCH)l5 50是UT可用於傳輸一隨機存取叢 發的反向鏈路頻道。會在BCH中指定每個訊框的RCH可變 長度。 正向流量頻道(F-TCH) 1530包括從ΑΡ 104傳輸的一或多 個實體層叢發。會按照CCH指派中的指示,將每個叢發導 向至一特殊MAC ID。每個叢發各包括專用實體層添加項 (例如,前導訊號(若有的話)),以及一按照傳輸模式及在 CCH指派中指示之編石馬和調變機制所傳輸的MAC PDU。F-TCH屬於可變長度。在一項示範性具體實施例中,專用實 體層添加項可包括一專用ΜΙΜΟ前導。參考圖16詳述示範 性 MAC PDU。 反向流量頻道(R-TCH)1540包括從一或多個UT 106傳輸 的實體層叢發傳輸。按照CCH指派中的指示,每個叢發係 由一特殊UT予以傳輸。每個叢發各包括一前導訊號前導 項(pilot preamble)(若有的話),以及一按照傳輸模式及在 ccti指派中指示之編碼和調變機制所傳輸的MAC PDU 〇 R-丁Ctl屬於可變長度。 在此示範性具體實施例中,F-TCH 530、R-TCH 540或 兩者都可使用空間多工或分碼多向近接技術,藉此允許同 時傳輸相關聯於不同UT的MAC PDU。一包含MAC PDU所 相關聯之MAC ID的攔位(即,上載鏈路上的寄件者,或下 載鏈路上的預定收件者)可被包括MAC PDU標頭中。可使 用此攔位來解決當使用空間多工或CDMA時所引發的定址 語意模糊(ambiguity)。在替代具體實施例中,如果多工係 96872.doc -37- 200527868 嚴格依據分時技術,則由於在用於配置TDD MAC訊框間 隔中一既定時段給一特定MAC ID的CCH訊息中包括了定 址資訊,所以MAC PDU標頭中不需要MAC ID。可部署空 間多工、分碼多工、分時多工和此項技術中已知的任何其 它技術。 圖16繪示來自一封包1610之示範性MAC PDU 1660的形 式(在此實例中,可能是一 IP資料元或乙太網路片段)。在 此例證說明中將描述示範性之欄位大小及類型。熟悉此項 技術者應明白,各種其它大小、類型及組態皆被視為屬於 本發明範疇内。 如圖所示,在調節層分割該貢料封包1610成為片段。母 個調節子層PDU 1630各載送彼等片段1620之一。在此實例 中,資料封包1610被分割成1^個片段1620八-]^。一調節子 層PDU 1630包括一含有對應片段1620的封包承載 (payload)1634。一類型欄位1632(在此實例中為一個位元 組)被附加至該調節子層PDU 1630。 一邏輯鏈路(LL)標頭1644(在此實例中為4個位元組)被附 加至含該調節子層PDU 1630的該封包承載1644。該LL標 頭1 642的示範性資訊包括一資料流識別項、控制資訊及序 號。運用標頭1642及封包承載1644來計算出並且附加一 CRC 1646,藉此構成一邏輯鏈路子層PDU(LL PDU) 1640。 可用類似方式來構成邏輯鏈路控制(LLC)PDU及無線電鏈 路控制(RLC)PDU。LL PDU 1640及LLC PDU和 RLC PDU都 被置入佇列(例如,高QoS佇列、最佳工作(best effort)佇列 96872.doc -38- 200527868 或控制訊息佇列)中,以由MUX功能予以服務。 一MUX標頭1652被附加至每個LL PDU 1640。一示範性 MUX標頭1652可包含一長度及一類型(在此實例中,標頭 1652為2個位元組)。可針對每個控制?01;(即,1^1^?01;及 RLC PDU)來構成一類似的標頭。LL PDU 1640(或者, LLC或RLC PDU)構成封包承載1654。標頭1652及封包承載 1654構成MUX子層PDU(MPDU)1650(本文中也將MUX子層 PDU稱為 MUX PDU)。 在此實例中,MAC協定將共用媒體上的通信資源配置在 一連串TDD MAC訊框間隔中。在替代具體實施例中,下 文會詳述實例,彼等類型TDD MAC訊框間隔1500可被穿 插各種其它MAC功能(包括競爭式或輪詢式),並且包括使 用其它類型存取協定來介接舊有系統。如上文所述,一排 程器可決定為每個TDD MAC訊框間隔中一或多個MAC ID 所配置之實體層叢發大小(類似於合併輪詢之TXOP)。請注 意,並非所有含要傳輸之資料的MAC ID都會被配置在任 何特定TDD MAC訊框間隔的空間中。可部署任何存取控 制或排程機制,皆屬於本發明範圍内。當為一 MAC ID進 行配置作業時,該MAC ID所對應的MUX功能將構成一 MAC PDU 1660,其包含要包括在該TDD MAC訊框間隔中 的一或多個MUX PDU 1650。一或多個所配置之MAC ID的 一或多個MAC PDU 1660被包括在一 TDD MAC訊框間隔中 (即,參考圖15所詳述的TDD MAC訊框間隔1500)。 在一項示範性具體實施例中,一項態樣允許傳輸一局部 96872.doc -39- 200527868 MPDU 1650,藉此允許高效率地封裝在一 MAC PDU 1660 中。在此實例中,可包含前一次傳輸(藉由局部mpdu 1664來識別)所留下之任何局部MPDU 1650的未傳輸位元 組計數。會在目前訊框的任何新PDU 1664(即,LL PDU或 控制PDU)之前先傳輸彼等位元組1666。標頭1662(在此實 例中為2個位元組)包括一 MUX指標,用於指向目前訊框中 所要傳輸之第一個新MPDU(在此實例中為MPDU 1666A)的 起始處。標頭1662還可包括一 MAC位址。 MAC PDU 1660包括該MUX指標1662、一位於起始處之 可能的局部MUX PDU 1664(前一次配置所留下)、接著是 零或多個完整MUX PDU 1666A-N以及一可能的局部MUX PDU 1668(來自目前的配置)或用於填滿該實體層叢發之已 配置部分的其它填補項(padding)。會在已配置給MAC ID 的實體層叢發中運送MAC PDU 1660。 因此,示範性MAC PDU 1660解說可從一 δΤΑ傳輸至另 一 STA的傳輸(或按照802.1 1專門用語稱為訊框),其包括 來自被導向至該目的地S TA的資料部分。配合選擇性使用 局部MUX PDU就得以達成高效率封裝。在CCH中所包含 之合併輪詢中所指示的一時間,可在一 Τχ〇ρ中傳輸每個 MAC PDU(使用802.11專門用語)。 圖15至16中詳述之示範性具體實施例解說各項態樣,包 括合併輪詢、減少前導項傳輸以及藉由連續傳輸來自每個 STA(包括AP)的實體層叢發來排除間隙。彼等態樣適用於 任何MAC系統,包括802· 11系統。下文基於解說各項其它 96872.doc -40- 200527868 技術進一步評述各項替代具體實施例,藉此達成mac效 率,而且還支援對等式傳輪,並且與現有舊有協定或系統 整合在一起及/或協定。 - 如上文所述,本文中詳述之各項具體實施例皆可採用頻 道評估及嚴格的速率控制。透過最小化媒體上非必要的傳 輸可獲得增強型MAC效率,但是在某些情況下,不充分的 速率控制反饋會降低整個輸送量。因此,可為頻道評估及 反饋提供充分的機會,藉此最大化所有MIM〇模式的傳輸 率,以便防止由於不充分的頻道評估(這會抵消任何Mac 效率增益)導致損失輸送量。因此,如上文所述以及下文 詳細說明所述,示範性]^人〇具體實施例可被設計成提供充 分的前導項傳輸機會,以及接收器提供速率控制反饋至發 射器的機會。Upload frame contro1 channel (FCCH) and random access feedback channel (RFCH); (c) Traffic channel (TCH), used to carry user data and Control information and is subdivided into ⑴ Forward Traffic Channel (F-TCH) 1530 on the forward link, and (ii) Reverse Traffic Channel (R-TCH) on the reverse link 1540; and (d) Random Access Channel (RCH) 1550, which is used to carry an Access Request Channel (ARC) (for UT access requests). A pilot beacon signal is also transmitted in segment 1510. The frame 1500 of the download link phase includes fragments 1510-1530. The upload chain 96872.doc -34- 200527868 road phase includes fragments 1540-1550. Segment 1560 indicates the start of a subsequent TDD MAC frame interval 1500. The following further illustrates alternative embodiments including peer-to-peer transmission. The AP transmits the broadcast channel (BCH) and the beacon signal 1510. The first part of BCH 510 contains common physical layer overhead, such as preamble signals, including timing and frequency acquisition preambles. In an exemplary embodiment, the beacon signal is composed of the following two short OFDM symbols used for frequency and timing acquisition by υτ; subsequent υτ is used to evaluate the commonness of the channel The 8 short OfdM symbols for the MIMOO leader. The second part of BCH 15 10 is the information part. The BCH data section defines the TDD MAC frame interval configuration for transmission channel segments: CCH 1520, F-TCH 15 30, R-TCH 1540, and RCH 1550, and also defines CCH combinations for subchannels. In this example, BCH 15 10 defines the coverage of wireless LAN 120 and will be transmitted in most of the rugged data transmission modes available. The length of the entire BCH is fixed. In an exemplary embodiment, the BCH defines the coverage of the MIMO-WLAN, and will use Binary Phase Shift Keying (BPSK) in space time transmission diversity (space time transmission diversity). Transmit Diversity; STTD) mode. In this example, the length of the BCH is fixed to 10 short OFDM symbols. Various other signaling techniques may be deployed in alternative embodiments. The control channel (CCH) 1520 is transmitted by the AP, and defines the combination of TDD MAC frame interval remainders, and explains the use of combined polling. 96872.doc -35- 200527868 will use Nanqiang transmission mode to transmit CCH 1520 in multiple sub-channels, each sub-channel has a different data rate. The first subchannel is the strongest and is expected to be decoded by all UTs. In an exemplary specific private case, ’will use a BPSK ratio of ι / 4 yards for the first CCH subchannel. Several other sub-channels can also be used, and the robustness of their sub-channels will decrease (and the efficiency will increase). In an exemplary embodiment, two extra sub-channels will be used until evening. Each υτ will try to decode all sub-channels in sequence until the decoding fails. The Cch transmission channel segments in each frame are variable length, and the length depends on the number of CCH messages in each subchannel. Acknowledgment of reverse link random access bursts will be uploaded on the strongest (first) subchannel of the CCH. The CCH contains physical layer burst assignments for forward and reverse links (similar to TXOP's merge polling). Assignments may be used to transfer data on the forward or reverse link. Generally speaking, a physical layer burst assignment includes: (a) — MAC ID; (b) — a value (in F-TCH or R-TCH) used to indicate the configuration start time in the frame; (c) configuration (D) the length of the dedicated entity layer add-on; (e) the transmission mode; and (f) the encoding and modulation mechanism used for the entity layer burst. Other exemplary types of assignments related to CCH include: an assignment related to a reverse key used to transmit a dedicated derivative from a terminal; or a reverse related to a buffer and link state information used to transmit from a terminal Assignment of links. Cch can also define the unused portion of the frame. UTs can use their unused portions of the frame to perform noise floor (and interference) assessments and measure beacon signals from nearby systems. 96872.doc -36- 200527868 Random access channel (RCH) 1550 is a reverse link channel that the UT can use to transmit a random access burst. The variable RCH length of each frame is specified in the BCH. The Forward Traffic Channel (F-TCH) 1530 includes one or more physical layer bursts transmitted from AP 104. Each burst will be directed to a special MAC ID according to the instructions in the CCH assignment. Each burst includes a dedicated physical layer addition (for example, a preamble signal (if any)), and a MAC PDU transmitted in accordance with the transmission mode and the stone horse and modulation mechanism indicated in the CCH assignment. F-TCH is of variable length. In an exemplary embodiment, the dedicated entity layer addition may include a dedicated MIMO preamble. An exemplary MAC PDU is described in detail with reference to FIG. 16. The reverse traffic channel (R-TCH) 1540 includes a physical layer burst transmission transmitted from one or more UTs 106. According to the instructions in the CCH assignment, each burst is transmitted by a special UT. Each burst includes a pilot preamble (if any), and a MAC PDU transmitted in accordance with the transmission mode and the coding and modulation mechanism indicated in the ccti assignment. Variable length. In this exemplary embodiment, F-TCH 530, R-TCH 540, or both may use spatial multiplexing or code division multiple direction proximity technology, thereby allowing simultaneous transmission of MAC PDUs associated with different UTs. A block containing the MAC ID associated with the MAC PDU (ie, the sender on the upload link, or the intended recipient on the download link) may be included in the MAC PDU header. This stop can be used to address the ambiguity of addressing caused when using spatial multiplexing or CDMA. In an alternative embodiment, if the multiplexing system 96872.doc -37- 200527868 is strictly based on the time-sharing technology, the CCH message that is used to configure a TDD MAC frame interval to a specific MAC ID is included in the CCH message Addressing information, so no MAC ID is needed in the MAC PDU header. Space multiplexing, code division multiplexing, time division multiplexing, and any other technique known in the art can be deployed. FIG. 16 illustrates the form of an exemplary MAC PDU 1660 from a packet 1610 (in this example, it may be an IP data element or an Ethernet segment). Exemplary field sizes and types are described in this illustration. Those skilled in the art will appreciate that various other sizes, types, and configurations are considered to be within the scope of the present invention. As shown in the figure, the material packet 1610 is divided into fragments at the adjustment layer. The parent regulatory sub-layer PDUs 1630 each carry one of their segments 1620. In this example, the data packet 1610 is divided into 1 ^ fragments 1620-] ^. A moderator layer PDU 1630 includes a packet payload 1634 containing a corresponding segment 1620. A type field 1632 (a byte in this example) is appended to the adjustment sublayer PDU 1630. A logical link (LL) header 1644 (4 bytes in this example) is attached to the packet bearer 1644 containing the conditioning sublayer PDU 1630. Exemplary information of the LL header 1 642 includes a stream identification item, control information, and a serial number. The header 1642 and the packet bearer 1644 are used to calculate and append a CRC 1646 to form a logical link sub-layer PDU (LL PDU) 1640. The logical link control (LLC) PDU and the radio link control (RLC) PDU can be constructed in a similar manner. LL PDU 1640 and LLC PDUs and RLC PDUs are placed in queues (for example, high QoS queues, best effort queues 96872.doc -38- 200527868 or control message queues) to be assigned by the MUX Function to serve. A MUX header 1652 is attached to each LL PDU 1640. An exemplary MUX header 1652 may include a length and a type (in this example, the header 1652 is 2 bytes). Available for each control? 01; (ie, 1 ^ 1 ^? 01; and RLC PDU) to form a similar header. The LL PDU 1640 (or, LLC or RLC PDU) constitutes a packet bearer 1654. The header 1652 and the packet bearer 1654 constitute a MUX sublayer PDU (MPDU) 1650 (the MUX sublayer PDU is also referred to herein as a MUX PDU). In this example, the MAC protocol allocates communication resources on the shared media in a series of TDD MAC frame intervals. In alternative embodiments, examples will be described in detail below. Their types of TDD MAC frame interval 1500 can be interspersed with various other MAC functions (including contention or polling) and include using other types of access protocols to interface Legacy system. As mentioned above, a scheduler can determine the physical layer burst size configured for one or more MAC IDs in each TDD MAC frame interval (similar to TXOP for merge polling). Please note that not all MAC IDs containing the data to be transmitted will be allocated in the space of any particular TDD MAC frame interval. Any access control or scheduling mechanism can be deployed, which is within the scope of the present invention. When configuring a MAC ID, the MUX function corresponding to the MAC ID will constitute a MAC PDU 1660, which contains one or more MUX PDUs 1650 to be included in the TDD MAC frame interval. One or more MAC PDUs 1660 of one or more configured MAC IDs are included in a TDD MAC frame interval (ie, a TDD MAC frame interval 1500 as detailed with reference to FIG. 15). In an exemplary embodiment, an aspect allows transmission of a local 96872.doc -39- 200527868 MPDU 1650, thereby allowing efficient packing in a MAC PDU 1660. In this example, the untransmitted byte count of any local MPDU 1650 left over from the previous transmission (identified by local mpdu 1664) may be included. Their bytes 1666 are transmitted before any new PDUs 1664 (ie, LL PDUs or control PDUs) in the current frame. The header 1662 (2 bytes in this example) includes a MUX indicator to point to the beginning of the first new MPDU (MPDU 1666A in this example) to be transmitted in the current frame. The header 1662 may also include a MAC address. MAC PDU 1660 includes the MUX indicator 1662, a possible local MUX PDU 1664 at the beginning (left from the previous configuration), followed by zero or more complete MUX PDUs 1666A-N, and a possible local MUX PDU 1668 (From the current configuration) or other padding used to fill the configured portion of the entity layer. MAC PDU 1660 is carried in the physical layer burst that has been configured for the MAC ID. Thus, the exemplary MAC PDU 1660 illustrates the transmission (or frame in accordance with 802.1 1 terminology) that can be transmitted from one δTA to another STA, which includes the data portion from the STA directed to that destination. With the selective use of local MUX PDUs, high-efficiency packaging can be achieved. At a time indicated in the combined poll contained in the CCH, each MAC PDU can be transmitted in a TXOρ (using 802.11 specific terminology). The exemplary embodiments detailed in Figures 15 to 16 illustrate various aspects, including merged polling, reduced transmission of leading items, and elimination of gaps by continuously transmitting physical layer bursts from each STA (including AP). They are applicable to any MAC system, including 802.11 system. Based on the explanation of other 96872.doc -40- 200527868 technologies, the following further reviews various alternative embodiments to achieve mac efficiency, and also supports peer-to-peer transfers, and integrates with existing legacy protocols or systems and / Or agreement. -As mentioned above, each of the specific embodiments detailed in this document can use channel evaluation and strict rate control. Enhanced MAC efficiency can be achieved by minimizing unnecessary transmissions on the media, but in some cases, insufficient rate control feedback can reduce the overall throughput. Therefore, there is ample opportunity for channel evaluation and feedback, thereby maximizing the transfer rate of all MIM0 modes to prevent loss of throughput due to inadequate channel evaluation, which will offset any Mac efficiency gains. Therefore, as described above and described in the detailed description below, the exemplary embodiments may be designed to provide ample opportunity for transmission of the preamble and the opportunity for the receiver to provide rate control feedback to the transmitter.

在一項實例中,AP在其傳輸中週期性穿插ΜΙΜΟ前導 (至少每TP ms(毫秒),其中ΤΡ可是固定或可變參數)。每個 STA也可使用一 ΜΙΜΟ前導來開始其輪詢τχορ,其它STA 及ΑΡ也可以使用該ΜΙΜΟ前導來評估頻道。對於使用直接 鏈路協定(下文會進一步詳細說明)傳至ΑΡ或其它STA的傳 輸,ΜΙΜΟ前導可能是用來協定簡化目的地STA處之接收 器處理的的操控參考(steered reference)。 _ ΑΡ還可提供機會給目的地STA,讓目的地STA可能提供 ACK反饋。目的地STA還可使用彼等反饋機會來提供可用 ΜΙΜΟ模式的速率控制反饋給傳輸方STA。舊有802.1 1系統 中(包括802.1 1(e))中未定義此類速率控制反饋。採用 96872.doc -41- 200527868 ΜΙΜΟ可增加總速率控制資訊量(每MIM〇模式)。在某些情 況下,為了最大化MAC效率的改良優勢,可藉由嚴格的速 ,率控制反饋作為補充。 . 本文中採用的另一項態樣(下文會進一步詳細說明)是積 存(backlog)資訊及STA排程。每個STA可使用一前導項來 開始其TXOP,之後接著下_τχ〇ρ的要求之持續期間。這 項資δίΐ被預疋給ΑΡ。ΑΡ收集有關來自數個不同STA之下一 要求之TXOP的資訊,並且決定在1:^〇?媒體上配置給一後 續TDD MAC訊框間隔的持續期間。Ap可使用不同的優先 順序或QoS規則來決定共用媒體的方式,或可使用非常簡 單的規則,按照來自STA的要求以成比例方式來共用媒 體。也可部署任何其它排程技術。在來自Ap的後續控制頻 道訊息中會指派下一 TDD MAC訊框間隔之TXOP配置。 指定存取點 在本文詳述的具體實施例中,一網路可支援配合或不配 合適用的存取點一起運作。當一適用的AP存在時,該AP 可被連接(例如)至一有線多管連接(即,電纜線、光纖、 DSL或T1/T3、乙太網路)或一家用娛樂伺服器。在此情況 下’該適用的AP可能是介於網路中裝置間流動之大部分資 料的來源或接收處。 當沒有適用的AP存在時,站台仍然可使用如上文所述 之分散式協調功能(DCF)、802.11b/g/a或802.11e的增強型 分散頻道存取(Enhanced Distributed Channel Access)來與 ‘ 其它站台通信。如下文詳細說明所述,當需要額外資源 96872.doc -42- 200527868 a^r ’可使用集中式排程機制來達成更高效率使用媒體。例 如’在許多不同裝置必須互相通信(即,Dvd-TV、CD-Amp-Speaker等等)的家庭中,就會形成此項網路架構。在 此情況下,網路站台自動指定某站台變成Ap。請注意,如 下文所述’調節型協調功能(Adaptive coordination Function ; ACF)可和一指定存取點一起使用,並且可與集 中式排程、隨機存取、專有(ad-h〇c)通信或任何其組合一 起部署。 當然(但並非必定),非AP裝置可具有增強型mac能力, 並且適合當做一指定AP運作。請注意,並非所有的裝置都 必須被設計成具備指定AP MAC的能力。當Q〇s(例如,保 證延時)、高輸送量及/或效率極為關鍵時,網路中的裝置 之一必須具備指定的AP運作能力。 這表示指定之AP能力廣泛相關於具有較高能力的裝 置,例如,具有線功率、大量天線及/或傳輸/接收鏈或高 輸送量需求等一或多個屬性。(下文會進一步詳述選擇一 指定之AP的額外因數)。因此,低端裝置(例如,低端照相 機或電話)不需要被負加指定之AP能力,而高端裝置(例 如,兩端視訊來源或高清晰度視訊顯示器)可配備指定之 AP能力。 在非AP網路中,指定之AP承擔適用之Ap的角色,並且 可能具有或不具有縮減的功能。在各項具體實施例中,一 指定之AP可執行下列項目:(a)建置網路基本服務集In one example, the AP periodically intersperses the MIMO preamble in its transmission (at least every TP ms (milliseconds), where the TP may be a fixed or variable parameter). Each STA can also use a MIMO preamble to start its polling τχορ, and other STAs and APs can also use this MIMO preamble to evaluate the channel. For transmissions to AP or other STAs using a direct link protocol (described in further detail below), the MIMO preamble may be used to negotiate a steered reference that simplifies receiver processing at the destination STA. _ AP can also provide an opportunity to the destination STA, so that the destination STA may provide ACK feedback. The destination STA may also use their feedback opportunities to provide rate control feedback for the available MIMO mode to the transmitting STA. Such rate control feedback is not defined in older 802.1 1 systems (including 802.1 1 (e)). Using 96872.doc -41- 200527868 ΜΜΟ can increase the total rate control information amount (per MIM0 mode). In some cases, in order to maximize the improvement of MAC efficiency, it can be supplemented by strict speed and rate control feedback. . Another aspect used in this article (described in further detail below) is backlog information and STA scheduling. Each STA may start its TXOP with a leading term, followed by the duration of the request of ττχ〇ρ. This asset δΐ is pre-assigned to AP. The AP collects information about the TXOP requested from several different STAs, and decides to allocate the duration of a subsequent TDD MAC frame interval on the 1: ^ 0? Media. Aps can use different priorities or QoS rules to decide how to share media, or they can use very simple rules to share media in a proportional manner according to the requirements from STAs. Any other scheduling technology can also be deployed. The TXOP configuration for the next TDD MAC frame interval is assigned in the subsequent control channel messages from Ap. Designated Access Points In the specific embodiment detailed herein, a network may support operation with or without suitable access points. When a suitable AP is present, the AP can be connected (for example) to a wired multi-pipe connection (ie, cable, fiber, DSL or T1 / T3, Ethernet) or a home entertainment server. In this case, the applicable AP may be the source or receiver of most of the data flowing between devices on the network. When no applicable AP exists, stations can still use the Distributed Coordination Function (DCF), 802.11b / g / a, or 802.11e Enhanced Distributed Channel Access as described above to communicate with the ' Other station communication. As described in detail below, when additional resources are needed, 96872.doc -42- 200527868 a ^ r ’can use a centralized scheduling mechanism to achieve more efficient media use. For example, 'this network architecture is formed in a home where many different devices must communicate with each other (ie, DVD-TV, CD-Amp-Speaker, etc.). In this case, the network station automatically designates a certain station to become Ap. Please note that 'Adaptive coordination function (ACF) can be used with a designated access point as described below, and can be used with centralized scheduling, random access, ad-hoc Communications or any combination thereof. Of course (but not necessarily), non-AP devices can have enhanced mac capabilities and are suitable to operate as a designated AP. Please note that not all devices must be designed with the ability to specify an AP MAC. When Q0s (for example, guaranteed latency), high throughput, and / or efficiency are critical, one of the devices in the network must have a designated AP operating capability. This means that the specified AP capabilities are broadly related to devices with higher capabilities, such as having one or more attributes such as line power, a large number of antennas and / or transmission / reception chains or high throughput requirements. (The additional factors for selecting a designated AP are further detailed below.) Therefore, low-end devices (for example, low-end cameras or phones) do not need to be negatively assigned AP capabilities, while high-end devices (for example, two-end video sources or high-definition video displays) can be equipped with specified AP capabilities. In non-AP networks, the designated AP assumes the role of the applicable Ap and may or may not have reduced functionality. In various embodiments, a designated AP can perform the following items: (a) Set up a network basic service set

Set ; BSS)ID ; (b)藉由傳輸一信標訊號(Beac〇n)及 96872.doc •43- 200527868 廣播頻道(BCH)網路組態資訊來設定網路時序(bch可定義 媒體組合直到下一個BCH) ; (c)使用正向共同控制通道 (Forward Control Channel; FCCH)來排程網路上站台之傳 輸’藉以管理連線,(d)管理關聯性(association) ; (e)提供 QoS資料流之管理控制;及/或(f)各種其它功能。指定之 AP可貫行複雜的排程器,或任何類型排程演算法。可部署 一簡單的排程器,下文會詳細說明實例。Set; BSS) ID; (b) Set the network timing by transmitting a beacon signal (Beac〇n) and 96872.doc • 43- 200527868 broadcast channel (BCH) network configuration information (bch can define media combinations Until the next BCH); (c) use forward control channel (FCCH) to schedule the transmission of stations on the network 'to manage the connection, (d) manage the association; (e) provide Management control of QoS data flow; and / or (f) various other functions. The designated AP can run complex schedulers, or any type of scheduling algorithm. A simple scheduler can be deployed, examples are detailed below.

下文會詳述關於對等式通信的修改版實體層會聚協定 (Physical Layer Convergence Protocol ; PLCP)標頭,其也 適用於指定之AP。在一項具體實施例中,會利用所有站台 (包括指定之AP)都可解碼的基本資料速率來傳輸所有傳輸 的PLCP標頭。來自站台之傳輸的pLCp標頭包含相關聯於 -既定優先順序或資料流的接收器資料積存(backi(>g)。或 者,PLCP標頭包含對於m憂先順序或資料流之後續 傳輸機會持續期間的要求。The modified Physical Layer Convergence Protocol (PLCP) header for peer-to-peer communication is detailed below, which also applies to designated APs. In a specific embodiment, all transmitted PLCP headers are transmitted using a basic data rate that can be decoded by all stations (including designated APs). The pLCp header of the transmission from the station contains the receiver data accumulation (backi (> g)) associated with-a predetermined priority or data stream. Alternatively, the PLCP header contains a subsequent transmission opportunity for the m-order or data stream Requirements for duration.

才曰疋之AP可藉由r窺察」(sn〇〇ping)所有站台傳輸 PLCP;f示頭,$決定積存(backl〇g)或站台所要求之傳輸 ^持續期間。指定之AP可依據負載、碰撞或其它擁塞 來兵疋要配置給EDCA式(分散式)存取的時間分數 =及要配置給無競爭輪詢式(集中式)存取的時間分數。. 疋之AP可執行一基本排程 配f ^ 用於以與要求成正比方式〕 排程且在無競爭時期期間排程彼等要求。增強, 二:許但非強制。指定之Ap可在cch(控制: 旦σ已排程之傳輸。 96872.doc -44- 200527868 △減之AP可能不需要回應(eeh。)某站台之傳輸給其它站 台(即’當做一跳躍點),雖然這項功能被允許。—適合之 _ AP可能具備回應(ech〇ing)能力。 〇 , 田k擇私疋之存取點時,可建立一階層架構來決定應 當做存取點的裝置。可被合併在選擇一指定之存取點中的 示範性因數包括下列項目:⑷使用者覆寫;⑻較高的偏 好設定等級;⑷安全性等級;⑷能力··線功率;⑷能 力:天線數量;⑴能力:最大傳輸功能;(g)依據其它因匕 數中斷連線:媒體存取控制(MAC)位址;(h)第一裝置已開 機;⑴任何其它因數。 實際上,會希望指定之AP位於中央位置,並且具有最 佳總Rx SNR CDF(即,能夠以令人滿意的SNR來接收所有 站台)。一般而言,站台具有的天線愈多,接收靈敏度愈 仏。此外’指疋之AP還可具有較南的傳輸功率,促使大量 站口都可以付知指疋之AP。可以存及且利用彼等屬性,藉 此允a午網路隨者加入及/或四處移動的站台來動態重新組 態。 假使網路的組態具有一適用之AP或一指定之AP,就可 以支援對等式連線。下一節會一般性說明對等式連線。在 一項具體實施例中,可以支援兩種類型對等式連線。0)管 理對等式連線,其中AP排程每個相關站台的傳輸;以及 (b)專有(ad hoc)連線,其中AP不負責管理或排程站台傳 輸。 指定之AP可設定MAC訊框間隔,並且在該訊框開始時 96872.doc -45- 200527868 傳輸一信標訊號(Beacon)。廣播和控制頻道可指定該訊框 中用於站台傳輸的所配置持續期間。對於已要求對等式傳 輸配置的站台(並且AP已知彼等要求),AP可提供已排程之 配置。AP可在控制頻道中宣告這些配置,例如,每MAC 訊框。 AP還可選擇性在MAC訊框中包括一 A-TCH(ad hoc)片段 (下文會進一步詳細說明)。可以在BCH和FCCH中指示出 MAC訊框中有A-TCH存在。在A-TCH期間,站台可使用 CSMA/CA程序來實行對等式通信。IEEE無線LAN標準 802.1 1中的CSMA/CA程序可予以修改,藉以排除對立即 ACK之需求。當站台拿取(seize)頻道時,該站台可傳輸由 多個LLC-PDU所組成的MAC-PDU(協定資料單元)。可以在 BCH中指示出一站台可在A-TCH中佔用的最大持續期間。 對於已認可之LLC,可以按照必要的應用延遲來協商視窗 大小及最大認可延遲。下文會參考圖20來進一步詳細說明 一具有一 A-TCH片段的修改版MAC訊框,用於配合適用之 AP及指定之AP—起使用。 在一項具體實施例中,非操控式ΜΙΜΟ前導(unsteered ΜΙΜΟ pilot)可促使所有站台都可以得知介於本身與傳輸 方站台之間的頻道。這對於某些情況會非常有用。另外, 指定之AP可使用非操控式ΜΙΜΟ前導來允許頻道評估,並 且促進解調變可用於推導出配置的PCCH。一旦指定之ΑΡ 在一既定MAC訊框中接收到所有要求的配置,就可以針對 後續MAC訊框來排程彼等要求之配置。請注意,速率控制 96872.doc -46- 200527868 資訊非必須包括在FCCH中。 在一項具體實施例中,排程器執行下列作業。第一,排 程器收集有關下一 MAC訊框的所有要求之配置,並且計算 總要求之配置(要求總數(Total Requested))。第二,排程器 計算可用於配置給F-TCH及R-TCH的總資源(可用資源總數 (Total Available))。第三,如果要求總數(Total Requested) 超過資源總數(Total Available),則會按照「資源總數 (丁otal Available)/要求總數(Total Requested)」比例來按比 例調整所有要求之配置。第四,對於小於12個OFDM符號 的任何已按比例調整之配置,彼等配置會被增加至12個 OFDM符號(在此實例中,可使用替代參數來部署替代具體 實施例)。第五,為了在F-TCH + R-TCH中容納彼等結果之 配置,可從最大配置開始以循環(round-robin)方式一次一 個配置,將所有大於12個OFDM符號的配置減去一個符 號,藉此容納任何過大的OFDM符號及/或警戒時段。 一項實例解說前段描述之具體實施例。請考量如下之配 置要求:20、40、12、48。因此,「要求總數(Total Requested)」-120。假設「資源總數(T〇tai Available)」 =90。再假設’所需之警戒時段為〇·2個OFDM符號。接 著,如上文第三項作業所述,已按比例調整之配置為: 15、30、9、36。如上文第四項作業所述,值為9之配置被 增加至12。根據第五項作業,新增已修訂之配置及警戒時 段,總配置為93.8。這意謂著彼等配置被減少4個符號。 從最大配置開始,並且一次移除一個符號,而決定出最終 96872.doc -47- 200527868 配置14、29、12、34(即,總計89個符號及用於警戒時段 的0.8個符號)。 在一項不範性具體實施例中,當指定之Ap存取時,該 AP可建置用於BSS的信標訊號(Beac〇n)以及設定網路時 序。裝置相關聯於該指定之AP。當相關聯於一指定之Ap 的兩個裝置需要一 Q〇S連線(例如,低延時且高輸送量需求 之HDTV鏈路)時,則彼等裝置會提供流量規格給該指定之 AP ,以供管理控制之用。該指定之Ap可准許或拒絕連線 要求。 如果媒體利用率足夠低,則使用CSMA/CA將介於信標 訊號(Beacon)之間的整體媒體持續期間設定為供edca作 業使用。如果EDCA順暢執行中(例如,沒有任何過度的碰 撞、退回及延遲),則指定之AP就不需要提供協調功能。 指定之AP可藉由聆聽站台傳輸wpLcp標頭,來繼續監 視媒體利用率。依據觀察的媒體以及積存(backl〇g)或傳輸 機會持續期間要求,指定之AP可決定何時EDCA作業未滿 足被准許之資料流所要求之Q〇s。例如,指定之八?可觀察 所報告之積存(backlog)或所要求之持續期間之趨勢,並且 依據被准許之資料流來比對觀察之趨勢與預期值。 §才日疋之AP依據分散式存取而決定必要q〇s不符合時, 則可轉,菱媒體上之作業成為使用輪詢及排程作業。輪詢及 排程作業提供更決定論延時及較高的輸送量效率。下文進 一步詳述此類作業之實例。 因此,可以部署按照觀察之媒體利用率、碰撞、擁塞, 96872.doc -48- 200527868 以及按照觀察之來自傳輸方站台之傳輸機會要求並且比較 彼等要求與被准許之QoS資料流,從EDCA(分散式存取機 制)調節轉變至排程式(集中式)作業。 如上文所述,在本份說明書中詳述的任何具體實施例 中’文中已描述存取點,熟悉此項技術者應明白,具體實 施例可予以調整以配置適用之存取點或指定之存取點運 作。如本文詳細說明所述,指定之存取點也可被部署及/ 或選擇,並且可按照任何協定(包括本份說明書中未描述 的協定或任何協定組合)運作。 對等式傳輸(Peer-to-Peer Transmission)及直接鏈路協定 (DLP) 如上文所述,對等式傳輸允許某STA直接傳輸資料至其 它STA,而不需要先傳送資料至一 AP。本文中所說明的各 項態樣可被採用以配合對等式傳輸使用。在一項具體實施 例中’可按照下文詳細說明所述來調整直接鏈路協定 (DLP)。圖17繪示在一系統100内的示範性對等式通信。在 此實例中,系統1〇0(可能類似於圖1所示之系統1〇〇)被調整 成允許從某UT至其它UT的直接傳輸(在此實例中,解說介 於UT106A與UT106E之間的傳輸)。UT106可執行在 WLAN 120上與AP 1〇4之間的任何直接通信,如本文所 述。 在各項示範性具體實施例中,可以支援兩種類型對等式 連線:(a)管理對等式連線,其中Ap排程每個相關STA的傳 輸’以及(b)專有(ad hoc)連線,其中AP不負責管理或排程 96872.doc -49- 200527868 STA輸。-項具體實施例可包括任—或兩種類型連線。在 -項示範性具體實施例中,—傳輸之訊號中所包含的一部 分可含有可被-或多個站台(可能包括存取點)接收的共同 資訊’以及含有用於-對等式接收方站台接收所特別格式 化的資訊。該共同資訊可運用在排程作業(例如,如圖Μ 所不),或可運用在由各鄰近站台競爭積存(back〇ff)(例 如,如圖2 6所示)。 下文洋述之各項示範性具體實施例解說用於對等式連線 的封閉迴路速率控制。可部署此類速率控制,以便利用可 用的高資料速率。 基於清楚論述,在此示範性具體實施例中不需要詳述各 項功能(即,認可)。熟悉此項技術者應明白,在各項具體 實施例中可組合本文所揭示之功能,藉以構成任何數量及 集合或子集合。 圖18繪示先前技術實體層叢發18〇〇。可傳輸一前導項 1810,之後接著一實體層會聚協定(pLCp)標頭182〇。舊有 802.1 1系統定義一PLCP標頭,藉以包括傳輸為資料符號 1830之資料的速率類型及調變格式。 圖19繪示示範性實體層叢發19〇〇,其可部署以應用於對 等式通信。如圖18所示,可包括前導項181〇&pLcp標頭 1820,之後接著一對等式傳輸(標示為p2p 194〇)。pa 1940可包括ΜΙΜΟ前導1910,以供接收方υτ使用。可包括 ΜΙΜΟ速率反饋1920,以供接收方UT在回傳至傳送方卩丁之 未來傳輸使用。速率反饋可被產生,以回應一從接收方站 96872.doc -50- 200527868 '台至傳輪方站台的切傳輪。可按照對於對等式連線所選 擇的速率及調變格式來傳輸資料符號193〇。請注音,一實 體層叢發(例如,叢發19GG)可配合㈣理式對等式連線-(使用ϋ可配合專有對等式傳輸一起使用。下文會描述 示紐速率反饋具體實施例。下文巾㈣供包含彼《樣 之貫體層傳輸叢發替代具體實施例。 在一項示範性具體實施例中,一Αρ設定tdd mac訊框 間隔。可部署廣播和控制頻道,藉以指定該tdd說訊 框間隔中所配置之持續期間。對於已要求對等式傳輸配置 的STA(並且AP已知彼等要求),^可提供已排程之配置, 並且每TDD MAC訊框間隔在控制頻道中宣告這些配置。 前文已參考圖15詳述示範性系統。 圖20繪示一包括選用性專有片段(用a_tch 2〇ι〇予以識 別)之TDD MAC訊框間隔2000的示範性具體實施例。tdd MAC訊框間隔2000中相似編號之區段的作用實質上相同於 前文參考圖15描述之區段的作用。可以在BCH 51〇及/或 CCH 520中指示出TDD MAC訊框間隔2〇〇〇中有a tch 2010存在。在A-TCH2010期間,站台可使用任何競爭程序 來實行對等式通信。例如,可部署如上文所述之8〇2 u技 術,諸如SIFS、DIFS、退回等等。可選擇性部署Q〇s技 術’諸如802. ll(e)中採用的技術(即,aiFS)。還可以部署 各種其它競爭式機制。 在一項示範性具體實施例中,用於競爭的CSMA/CA程 序(諸如802.11中定義的程序)可按如下方式予以修改。不 96872.doc -51- 200527868 需要立即ACK。當STA拿取頻道時,該STA可傳輸由多個 PDU(即,LLC-PDU)所組成的MAC協定資料單元(MAC_ PDU)。可以在BCH中指示出一 STA可在A-TCH中佔用的最 大持續期間。當需要已認可之傳輸時,可以按照必要的應 用延遲來協商視窗大小及最大認可延遲。 在此實例中’ F-TCH 530屬於用於從AP至STA之傳輸的 TDD MAC訊框間隔之部分。可在a-TCH 2010中實施使用 競爭技術之介於STA間的對等式通信。可在r-Tch 540中 實施介於STA之間的排程對等式通信。彼等片段中任何片 段可被傳送為空值。 圖21繪示示範性實體層叢發21〇〇(也稱為「PHY叢 發」)。可配合排程式對等連線來部署PHY叢發2 100,例 如,在R-TCH 540期間,或在A-TCH 2010之專有連線期 間,如上文參考圖20之說明所述。PHY叢發2 100可包括非 操控式ΜΙΜΟ前導2110、對等共同控制頻道(Peer Common Control Channel ; PCCH)2120及一或多個資料符號 2130。 該非操控式ΜΙΜΟ前導2110可在一或多個站台處予以接 收,並且一接收方站台可使用該非操控式ΜΙΜΟ前導2 110 來評估介於非傳輸方站台與該接收方站台之間的各自頻 道。此示範性PCCH包括下列欄位:(a)—目的地MAC-ID ; (b)—配置要求,用於要求在下一 TDD MAC訊框間隔之所 要傳輸持續期間;(c)一傳輸率指示項,用於指示現行資料 封包的傳輸格式;(d)—控制頻道(即,CCH)子頻道,用於 接收來自八?的任何配置;以及卜)一€11(:。?0:(:112120連同 96872.doc -52- 200527868 非操控式ΜΙΜΟ前導2110是各聆聽中站台(包括存取點)可 接收的共同片段。可在PCCH中插入一配置要求,藉以在 一未來TDD MAC訊框間隔中允許一管理對等式連線。此 類PHY叢發可被包括在專有連線中,並且仍然可以在一未 來TDD MAC訊框間隔中要求一排程對等式配置。在此示 範性具體實施例中,非操控式ΜΙΜΟ前導是八個OFDM符 號(在下文詳述的替代具體實施例中,較少的符號可能就 足以用於頻道評估),並且PCCH是兩個OFDM符號。使用 每個STA在對等式連線中所決定的空間多工及/或較高調變 格式,在該共同片段(包括非操控式ΜΙΜΟ前導2110及 PCCH 2 120)之後接著傳輸一或多個資料符號2130。該傳輸 的此部分係按照内嵌於傳輸中之資料部分中的速率控制資 訊予以編碼。因此,PHY叢發2 100的一部分可被多個四周 站台予以接收,同時實際資料傳輸被調整成適合高效率傳 輸至一或多個特定對等式連線之站台或AP。可按照一存取 點的配置來傳輸資料符號2130中的資料,並且可按照專有 連線(即,CSMA/CA競爭式程序)來傳輸資料符號2130中的 資料。 一項PHY叢發之示範性具體實施例包括一由8個非操控 式ΜΙΜΟ參考之OFDM符號所組成的前導項。使用STTD模 式,以R=l/2 BPSK編碼,在後續2個OFDM符號中包括一 對等共同控制頻道(PCCH)MAC-PDU標頭。MAC-ID是12個 位元。包含一 8位元配置要求以供AP接收,藉以要求在下 一 TDD MAC訊框間隔之所要傳輸持續期間。TX Rate(傳輸 96872.doc -53- 200527868 率)是16個位元,用於指示目前封包中使用的傳輸率。 FCCH子頻道偏好設定是2個位元,其相對應於介於最至四 個子頻道之間的偏好設定,AP應據此設定來進行任何適用 的配置。CRC是1〇個位元。在替代PHY叢發具體實施例中 可包括任何數量的其它欄位及欄位大小。 在此實例中,MAC-PDU傳輸的餘項使用每個STA在對等 式連線中所決定的空間多工及/或較高調變。該傳輸的此 部分係按照内嵌於傳輸中之資料部分中的速率控制資訊予 以編碼。 圖22繪示一種用於對等式資料傳輸之示範性方法22〇〇。 程序從步驟2210開始,在此步驟一站台傳輸一非操控式 ΜΙΜΟ前導。在步驟222〇,該站台傳輸可共同解碼的資 訊。例如,非操控式ΜΙΜ〇前導211〇及PCCh 2120係當做 用於在管理式連線中要求配置之機制實例,Αρ或其它排程 中站台將必須能夠解碼包括該要求之訊號部分。熟悉此項 技術者應明白,有許多替代要求機制適用於在一共用頻道 上排程對等式連線。在步驟223〇中,會按照協商式傳輸格 式’將資料從某站台傳輸至其它站台。在此實例中,使用 按照非操控式ΜΙΜΟ前導2110之測量所決定的速率及參數 來傳輸操控式資料。熟悉此項技術者應明白,各種傳輸資 料之替代手段可調整成適用於一特定對等式頻道。 圖23繪示一種用於對等式資料通信之示範性方法⑼。 此不範性方法2300解說數項態樣,在任何既定具體實施例 中可邛署彼4怨樣之子集。程序從決策步驟1 〇開始。在 96872.doc 200527868 決策步驟23 10中,如果有用於STA-STA傳送的資料,則進 行到步驟2320。若無資料,則進行到步驟2370,並且執行 任何類型通信,包括其它存取類型(若有的話)。進行到決 策步驟2360中,在此步驟可藉由返回決策步驟23 10來重複 程序,或程序停止。 在決策步驟2320中,如果有要傳輸的STA-STA資料,則 決定對等式連線是否已屬排程式或專有式。如果傳輸要予 以排程,則程序進行到步驟2330,並且要求一配置以赢得 TXOP。請注意,可在TDD MAC訊框間隔之隨機存取部分 期間進行一配置要求(如上文所述),或可被包含在一專有 傳輸中。一旦已進行配置,則可在步驟2350傳輸一 STA-STA實體叢發。在一項示範性具體實施例中,方法2200可 當做一種類型STA-STA PHY叢發。 在決策步驟2320中,如果已排程之對等式連線不是所要 的連線,則進行到步驟2340以競爭存取。例如,可使用 TDD MAC訊框間隔2000的A-TCH 2010片段。當已透過競 爭而成功贏得存取時,則進行到步驟2320,並且傳輸一 STA-STA PHY叢發,如上文所述。 從步驟2350進行到決策步驟2360中,在此步驟可重複程 序(如上文所述)或程序停止。 圖24繪示一種用於提供對等式連線中使用之速率反饋之 示範性方法2400。此圖解說可由兩個站台(STA 1及STA 2) 執行的各項傳輸及其它步驟。STA 1傳輸一非操控式前導 (unsteered pilot)2410至STA 2。STA 2在接收非操控式前導 96872.doc -55- 200527868 2410過程中量測頻道242〇β在一項示範性具體實施例中, STA 2按照測量來決定該頻道上—可支援之傳輪率。彼傳 輸率决策被當做速率反饋2430而傳輸至STA i。在各項替 代具體實施例中,可推導出替代參數,以允許在sta 進行速率反饋決策。在2440, STA β (例如)a_tch期間接 收-排程之配置或競爭-傳輸機會。—旦已赢得_傳輸機 會,在2450 ’ STA 1按•照回應速率反饋243〇所決定之速率 及調變格式來傳輸資料至STA 2。The AP can only transmit PLCP by snooping all stations (snooping); f indicates the head, $ determines the backlog (backlog) or the transmission required by the station ^ duration. Designated APs can be assigned time points to be allocated to EDCA-style (distributed) access based on load, collision, or other congestion = and time points to be allocated to contention-free polling (centralized) access. AP's AP can perform a basic schedule with f ^ for proportional to the requirements] schedule and schedule their requirements during periods of no competition. Enhancement, 2: It is not mandatory. The designated Ap can be transmitted in cch (Control: once σ has been scheduled. 96872.doc -44- 200527868 △ minus AP may not need to respond (eeh.) A station's transmission to other stations (ie 'as a hop point ), Although this function is allowed. — Suitable _ AP may have echoing ability. 〇, when you choose a private access point, you can establish a hierarchical structure to determine the access point should be Devices. Exemplary factors that can be incorporated in selecting a given access point include the following: ⑷ user override; ⑻ higher preference level; ⑷ security level; ⑷ ability · line power; ⑷ ability : Number of antennas; ⑴ capacity: maximum transmission function; (g) disconnection based on other factors: media access control (MAC) address; (h) the first device is turned on; ⑴ any other factor. In fact, It would be desirable for the designated AP to be centrally located and to have the best total Rx SNR CDF (ie, to be able to receive all stations with a satisfactory SNR). In general, the more antennas a station has, the worse the receiving sensitivity. In addition 'Refers to the AP It can have a relatively south transmission power, so that a large number of stations can be informed of APs. You can save and use their attributes to allow a noon network participant to join and / or move around the station to dynamically regroup If the network configuration has an applicable AP or a designated AP, it can support peer-to-peer connection. The next section will describe the peer-to-peer connection in general. In a specific embodiment, it can support Two types of peer-to-peer connections. 0) Manage peer-to-peer connections, where the AP schedules transmissions for each relevant station; and (b) ad hoc connections, where the AP is not responsible for management or scheduling Station transmission. The designated AP can set the MAC frame interval, and at the beginning of the frame, 96872.doc -45- 200527868 transmits a beacon signal (Beacon). The broadcast and control channels specify the configured duration for station transmissions in the frame. For stations that already require a peer-to-peer transmission configuration (and the AP knows their requirements), the AP can provide a scheduled configuration. The AP can announce these configurations in the control channel, for example, per MAC frames. The AP may optionally include an A-TCH (ad hoc) segment in the MAC frame (described in further detail below). The presence of A-TCH in the MAC frame can be indicated in the BCH and FCCH. During A-TCH, stations can use CSMA / CA procedures to implement peer-to-peer communication. The CSMA / CA procedures in the IEEE Wireless LAN Standard 802.1 1 can be modified to eliminate the need for immediate ACK. When a station seizes a channel, the station can transmit a MAC-PDU (Protocol Data Unit) composed of multiple LLC-PDUs. The maximum duration that a station can occupy in the A-TCH can be indicated in the BCH. For approved LLCs, the window size and maximum approval delay can be negotiated according to the necessary application delay. A modified MAC frame with an A-TCH segment will be described in detail below with reference to FIG. 20 for use with applicable APs and designated APs. In a specific embodiment, an unsteered MIMO pilot can cause all stations to know the channel between itself and the transmitting station. This can be very useful in some situations. In addition, designated APs can use non-manipulated MIMO preambles to allow channel evaluation and facilitate demodulation that can be used to derive the configured PCCH. Once the designated APs have received all required configurations in a given MAC frame, they can schedule their required configurations for subsequent MAC frames. Please note that rate control 96872.doc -46- 200527868 information is not required to be included in the FCCH. In a specific embodiment, the scheduler performs the following operations. First, the scheduler collects all required configurations for the next MAC frame and calculates the total required configuration (Total Requested). Second, the scheduler calculates the total resources (Total Available) available for allocation to the F-TCH and R-TCH. Third, if the total number of requests (Total Requested) exceeds the total number of resources (Total Available), the configuration of all requirements will be adjusted proportionately according to the ratio of "Total Available" / Total Requested. Fourth, for any scaled configuration of less than 12 OFDM symbols, their configuration will be increased to 12 OFDM symbols (in this example, alternative parameters can be used to deploy alternative specific embodiments). Fifth, in order to accommodate the configurations of their results in F-TCH + R-TCH, one configuration at a time in a round-robin manner can be started from the maximum configuration, and all configurations larger than 12 OFDM symbols are subtracted by one symbol To accommodate any oversized OFDM symbols and / or alert periods. An example illustrates the specific embodiment described in the previous paragraph. Please consider the following configuration requirements: 20, 40, 12, 48. Therefore, "Total Requested" -120. Assume that "total resources (T〇tai Available)" = 90. It is further assumed that the required guard period is 0.2 OFDM symbols. Then, as mentioned in the third operation above, the scaled configuration is: 15, 30, 9, 36. As mentioned in the fourth operation above, the configuration with a value of 9 is increased to 12. According to the fifth operation, the revised configuration and alert period were added, with a total configuration of 93.8. This means that their configuration is reduced by 4 symbols. Starting from the maximum configuration and removing one symbol at a time, the final 96872.doc -47- 200527868 configuration was determined to be 14, 29, 12, 34 (that is, a total of 89 symbols and 0.8 symbols for the guard period). In a non-standard embodiment, the AP can set up a beacon signal for the BSS and set the network timing when the designated AP is accessed. The device is associated with the designated AP. When two devices associated with a designated Ap require a QOS connection (for example, a HDTV link with low latency and high throughput requirements), their devices will provide traffic specifications to the designated AP, For management control purposes. The designated Ap may grant or deny the connection request. If media utilization is low enough, use CSMA / CA to set the overall media duration between beacon signals to be used by edca operations. If the EDCA is running smoothly (for example, without any excessive collisions, returns, and delays), the designated AP need not provide coordination functions. The designated AP can continue to monitor media utilization by listening to the wpLcp header transmitted by the station. Based on the media requirements and the duration of the backlog or transmission opportunity, the designated AP can determine when the EDCA operation does not meet the Qos required by the permitted data stream. For example, specify eight? You can observe the reported backlog or the trend over the required duration, and compare the observed trend with the expected value based on the permitted data flow. §Only when the APs of the Nintendo decided that the necessary q0s did not meet the requirements based on distributed access, they could be transferred, and the operations on Rhombus Media used polling and scheduling operations. Polling and scheduling provide more deterministic delays and higher throughput efficiency. Examples of such operations are detailed further below. Therefore, it is possible to deploy according to observed media utilization, collision, congestion, 96872.doc -48- 200527868 and according to observed transmission opportunity requirements from the transmitting station and compare their requirements with permitted QoS data streams from EDCA ( Decentralized access mechanism) adjustment to programmatic (centralized) operation. As mentioned above, the access point has been described in any specific embodiment detailed in this specification. Those skilled in the art should understand that the specific embodiment can be adjusted to configure the applicable access point or specify the access point. The access point works. As described in detail herein, designated access points may also be deployed and / or selected, and may operate in accordance with any agreement (including agreements not described in this specification or any combination of agreements). Peer-to-Peer Transmission and Direct Link Protocol (DLP) As mentioned above, peer-to-peer transmission allows a STA to directly transmit data to other STAs without first transmitting data to an AP. The various aspects described in this article can be used in conjunction with peer-to-peer transmission. In a specific embodiment ', the direct link agreement (DLP) can be adjusted as described in detail below. FIG. 17 illustrates an exemplary peer-to-peer communication within a system 100. In this example, system 100 (which may be similar to system 100 shown in Figure 1) is adjusted to allow direct transmission from one UT to other UTs (in this example, the interpretation is between UT106A and UT106E Transmission). The UT 106 can perform any direct communication between the WLAN 120 and the AP 104, as described herein. In various exemplary embodiments, two types of peer-to-peer connections can be supported: (a) managing peer-to-peer connections, where Ap schedules transmissions for each relevant STA 'and (b) proprietary (ad hoc) connection, where the AP is not responsible for management or scheduling 96872.doc -49- 200527868 STA lose. -Specific embodiments may include either-or two types of connections. In an exemplary embodiment, a part of the transmitted signal may contain common information that can be received by the or multiple stations (possibly including access points), and the The station receives specially formatted information. This common information can be used for scheduling operations (for example, as shown in Figure M), or it can be used for competitive backlogs from neighboring stations (for example, as shown in Figure 26). The various exemplary embodiments described below illustrate closed loop rate control for peer-to-peer connections. Such rate control can be deployed to take advantage of the high data rates available. Based on a clear discussion, the various functions (i.e., approvals) need not be detailed in this exemplary embodiment. Those skilled in the art should understand that the functions disclosed herein can be combined in various embodiments to form any number and set or sub-set. FIG. 18 illustrates the prior art entity layer burst 1800. A leading item 1810 may be transmitted, followed by a physical layer convergence protocol (pLCp) header 1820. The old 802.1 1 system defined a PLCP header to include the rate type and modulation format of the data transmitted as the data symbol 1830. FIG. 19 illustrates an exemplary entity layer burst 1900, which can be deployed for peer-to-peer communication. As shown in FIG. 18, a leading term 1810 & pLcp header 1820 may be included, followed by a pair of equation transmissions (labeled p2p 194). The pa 1940 may include a MIMO preamble 1910 for use by a recipient vτ. It may include MIMO rate feedback 1920 for future transmission by the receiving UT to the transmitting party. Rate feedback can be generated in response to a pass-through wheel from the receiver's station 96872.doc -50- 200527868 'station to the passer's station. The data symbol 193 can be transmitted at the rate and modulation format selected for the peer-to-peer connection. Please note that an entity layer burst (for example, burst 19GG) can be connected with a logical peer-to-peer connection (using ϋ can be used with a proprietary peer-to-peer transmission. The specific embodiment of the rate feedback is described below The following is provided for the alternative embodiment that includes the same body layer transmission burst. In an exemplary embodiment, an AP sets the tdd mac frame interval. Broadcast and control channels can be deployed to specify the tdd Talk about the duration configured in the frame interval. For STAs (and APs knowing their requirements) that have already requested peer-to-peer transmission configurations, ^ can provide scheduled configurations, and each TDD MAC frame interval is on the control channel These configurations are announced in the foregoing. The exemplary system has been described in detail with reference to FIG. 15. FIG. 20 illustrates an exemplary embodiment of a TDD MAC frame interval 2000 including optional proprietary segments (identified by a_tch 200). The effect of .ddd MAC frame interval 2000 with similarly numbered segments is substantially the same as that of the segment described above with reference to Figure 15. The TDD MAC frame interval 2 can be indicated in BCH 51〇 and / or CCH 520. 〇〇 有 a tch 2010 exists. During A-TCH2010, stations may use any competitive procedure to implement peer-to-peer communication. For example, 802 u technologies such as SIFS, DIFS, return, etc. may be deployed as described above. Optional Deploy QOS technology 'such as the technology used in 802.ll (e) (ie, aiFS). Various other competitive mechanisms can also be deployed. In an exemplary embodiment, the CSMA / CA procedure for competition (Such as the procedures defined in 802.11) can be modified as follows. No 96872.doc -51- 200527868 requires an immediate ACK. When a STA fetches a channel, the STA can transmit multiple PDUs (ie, LLC-PDUs). The composition of the MAC protocol data unit (MAC_PDU). The maximum duration that a STA can occupy in the A-TCH can be indicated in the BCH. When an approved transmission is required, the window size and Maximum acknowledgement delay. In this example, 'F-TCH 530 is part of the TDD MAC frame interval used for transmission from AP to STA. Peer-to-peer peering using competing technologies can be implemented in a-TCH 2010 Communication. Available in r-Tch 540 Implement scheduled peer-to-peer communication between STAs. Any of their fragments can be transmitted as null values. Figure 21 illustrates an exemplary entity layer burst 2100 (also known as a "PHY burst"). The PHY Burst 2 100 can be deployed with a programmatic peer-to-peer connection, for example, during R-TCH 540, or during A-TCH 2010's proprietary connection, as described above with reference to FIG. 20. The PHY burst 2 100 may include a non-manipulated MIMO preamble 2110, a Peer Common Control Channel (PCCH) 2120, and one or more data symbols 2130. The unmanned MIMO preamble 2110 may be received at one or more stations, and a receiving station may use the unmanned MIMO preamble 2 110 to evaluate respective channels between the non-transmitting station and the receiving station. This exemplary PCCH includes the following fields: (a) —Destination MAC-ID; (b) —Configuration requirements for requesting the duration of the desired transmission at the next TDD MAC frame interval; (c) A transmission rate indicator , Used to indicate the transmission format of the current data packet; (d) —control channel (ie, CCH) subchannel, used to receive data from eight? Any configuration; and bu) a € 11 (:.? 0: (: 112120 together with 96872.doc -52- 200527868 non-manipulated MILM preamble 2110 is a common segment that can be received by stations (including access points) in each listening. A configuration requirement can be inserted in the PCCH to allow a management peering connection in a future TDD MAC frame interval. Such PHY bursts can be included in a proprietary connection and still be a future TDD A scheduling peering configuration is required in the MAC frame interval. In this exemplary embodiment, the non-manipulated MIMO preamble is eight OFDM symbols (in alternative embodiments detailed below, fewer symbols may be Is sufficient for channel evaluation), and the PCCH is two OFDM symbols. The spatial multiplexing and / or higher modulation format determined by each STA in the peer-to-peer connection is used in this common segment (including non-manipulated The MIMO preamble 2110 and PCCH 2 120) are then transmitted with one or more data symbols 2130. This part of the transmission is encoded according to the rate control information embedded in the data part of the transmission. Therefore, the PHY burst 2 100 Some can be received by multiple surrounding stations, and the actual data transmission is adjusted to transmit efficiently to one or more specific peer-connected stations or APs. Data symbols can be transmitted according to the configuration of an access point 2130 The data in the data, and the data in the data symbol 2130 can be transmitted in accordance with a proprietary connection (ie, CSMA / CA competitive procedure). An exemplary embodiment of a PHY burst includes an 8 non-manipulated MIMO The preamble composed of the reference OFDM symbols. Using STTD mode, R = l / 2 BPSK coding, and includes a peer-to-peer common control channel (PCCH) MAC-PDU header in the next 2 OFDM symbols. The MAC-ID is 12 bits. Contains an 8-bit configuration requirement for the AP to receive, thereby requesting the duration of the desired transmission during the next TDD MAC frame interval. TX Rate (Transmission 96872.doc -53- 200527868 rate) is 16 bits , Used to indicate the current transmission rate used in the packet. The FCCH subchannel preference setting is 2 bits, which corresponds to the preference setting between up to four subchannels, and the AP should make any applicable based on this setting. Configuration.CRC 10 bits. Any number of other fields and field sizes may be included in the alternative PHY burst specific embodiment. In this example, the remainder of the MAC-PDU transmission uses each STA to connect in a peer-to-peer connection. Spatial multiplexing and / or higher modulation as determined in the protocol. This part of the transmission is coded according to the rate control information embedded in the data part of the transmission. Figure 22 shows a scheme for peer-to-peer data transmission. Exemplary method 2200. The program starts at step 2210, where a station transmits a non-manipulated MIMO preamble. In step 2220, the station transmits co-decodeable information. For example, the non-manipulated MIMO preamble 2110 and PCCh 2120 are examples of mechanisms for requesting configuration in a managed connection. Stations in Aρ or other schedules must be able to decode the signal portion that includes the request. Those skilled in the art will appreciate that there are many alternative requirements mechanisms applicable to scheduling peer-to-peer connections on a shared channel. In step 223, the data will be transmitted from one station to another station according to the negotiated transmission format '. In this example, the maneuverable data is transmitted using the rate and parameters determined according to the measurement of the non-manipulated MIMO preamble 2110. Those skilled in the art will understand that various alternative means of transmitting data can be adapted to a particular peer-to-peer channel. FIG. 23 illustrates an exemplary method for peer-to-peer data communication. This anomalous method 2300 illustrates several aspects, and in any given embodiment, a subset of the four types of complaints can be identified. The procedure starts with decision step 10. In 96872.doc 200527868 decision step 23 10, if there is data for STA-STA transmission, go to step 2320. If no data is available, proceed to step 2370 and perform any type of communication, including other access types (if any). Proceed to decision step 2360, where the procedure can be repeated by returning to decision steps 23 10, or the procedure can be stopped. In decision step 2320, if there is STA-STA data to be transmitted, it is determined whether the peer-to-peer connection is already scheduled or proprietary. If the transmission is to be scheduled, the process proceeds to step 2330 and requires a configuration to win the TXOP. Please note that a configuration request may be made during the random access portion of the TDD MAC frame interval (as described above) or may be included in a proprietary transmission. Once configured, a STA-STA entity burst can be transmitted in step 2350. In an exemplary embodiment, method 2200 can be regarded as a type of STA-STA PHY burst. In decision step 2320, if the scheduled peer connection is not the desired connection, then proceed to step 2340 to compete for access. For example, a TDD MAC frame interval of 2000 A-TCH 2010 segments can be used. When the access has been successfully won through contention, it proceeds to step 2320 and transmits a STA-STA PHY burst, as described above. From step 2350 to decision step 2360, the procedure can be repeated (as described above) or the procedure can be stopped. FIG. 24 illustrates an exemplary method 2400 for providing rate feedback for use in a peer-to-peer connection. This diagram illustrates the various transmissions and other steps that can be performed by two stations (STA 1 and STA 2). STA 1 transmits an unsteered pilot 2410 to STA 2. STA 2 measures channel 2420 in the process of receiving the non-operating preamble 96872.doc -55- 200527868 2410. In an exemplary embodiment, STA 2 determines the channel on the channel according to the measurement—supportable transmission rate . The transmission rate decision is transmitted to STA i as rate feedback 2430. In various alternative embodiments, substitute parameters may be derived to allow rate feedback decisions to be made at sta. During 2440, STA β (for example) a_tch receive-scheduled configuration or competition-transmission opportunity. — Once it has won the opportunity to transmit, at 2450 ’STA 1 transmits data to STA 2 at a rate and modulation format determined by the response rate feedback 243.

圖24所示之方法通^適用於各項具體實施例,如熟悉 此項技術者所知。下文詳述合併料式速率反饋之某些實 例,以及其它態樣。 、 圖25繪示用於解決介於兩個站台(STA eSTA 2声一々 取點(AP)間管理對等式連線之方法测。在步驟2505, STA Η專輸-非操控式前導以及—配置要求。可按照一^ 先配置及先前速率反饋來傳輸資料,如下文所述。另外,The method shown in Figure 24 is generally applicable to specific embodiments, as known to those skilled in the art. Some examples of combined rate feedback and other aspects are detailed below. Figure 25 shows the method used to resolve the connection between two stations (STA eSTA 2 Acoustic Access Point (AP)). At step 2505, STA Η dedicated input-non-controlling leader and- Configuration requirements. Data can be transmitted in accordance with the first configuration and previous rate feedback, as described below. In addition,

可按照來自-先前管理式對等式連線的速率反饋,或來自 STA 1或STA 2起始之專右痛产从、古 ^一』, 之專有通^的速率反饋,來傳輸任何此 類貧料。非操控式前導及傳輸要求係由STA2及存取點子 以接收(並同可被區域中的各其它站台接收卜 存取點接收該傳輸要求,並且按照任何數項排程演算法 來蚊何時及是μ進行料式通信配置。似2 = =()5巾傳輸非操控式料難巾量_道決 疋用於與STA1進行對等式通信的可支援之速率。似2還 可按照-先前傳輪㈣擇性㈣來自的料反饋及/ 96872.doc -56- 200527868 或資料。 在此實例中,存取點已決定將為該要求傳輸進行一配 置。在步驟25 15 ’將一配置從該存取點傳輸至STA 1。在 此實例中,在控制頻道(例如,CCH 52〇)期間,在r_tch 540上傳輸配置,如上文所述。同樣地,在步驟252〇,為 STA 2進行R-TCH配置。在步驟2525,STA i接收來自該存 取點的配置。在步驟2530,STA 2接收來自該存取點的配 置。 在步驟2545,STA 2按照步驟2520中的配置來傳輸速率 反饋。如上文所述,可選擇性包括一排程傳輸要求,而且 逛可包括要按照一先前要求傳輸的任何資料。按照步驟 2510中的頻道測量選擇傳輸之速率反饋。步驟2535的1>11¥ 叢發可還包括一非操控式前導。在步驟254〇,STA i量測 來自STA 2的頻道、接收速率反饋並且還可接收選用之資 料。 ' 在步驟2545,按照步驟25 15中的配置,STA ^安照所接 收的速率反饋資訊來傳輸資料。此外,還可按照步驟254〇 中的測量來提供未來配置要求以及速率反饋。按照指定之 頻道測量來傳輸用於對等式通信的資料。在步驟·255〇, STA 2接收資料以及任何選擇性傳輸之速率反饋。sta二還 可量測頻道,藉以提供用於未來傳輸的速率反饋。 請注意’步驟2535及25辦的傳輸都可被存^點予以接 收’至少該非操控部分’如上文所述。因為,對於任何所 包含的要求,存取點可進行用於未來傳輪的額外配置,分 96872.doc -57- 200527868 別如給STA 1和STA 2的配置2555和2560所示。在步驟2565 及25 70,STA 1及STA 2接收各自對應的配置。接著,隨著 存取點管理共用媒體之存取,以及STA 1和STA 2使用按對 等式頻道上可支援能力所選擇的速率及調變格式互相直接 傳輸對等式通信,而不定期反覆此程序。請注意,在一項 替代具體實施例中,還可連同圖25所示之管理式對等式通 信來執行專有式對等式通信。 圖26繪示一競爭式(或專有(ad hoc))對等式連線。STA 1 與STA 2將互相通信。其它STA也可能在接收範圍中且可 存取共用頻道。在步驟2610,STA 1(具有要傳輸至STA 2 之資料)監視且競爭存取共用頻道。一旦已赢得一傳輸機 會,就會將對等式PHY叢發(步驟2615)傳輸至STA 2,其它 STA也可能接收該叢發。在步驟2620,其它STA(正在監視 共用頻道)會接收到來自STA 1的傳輸且知道避免存取該頻 道。例如,可在傳輸(步驟2615)中包含一 PCCH(如上文所 述)。在步驟2630,STA 2按照一非操控式前導來量測該頻 道,並且競爭在共用頻道上回程存取。STA 2也可傳輸資 料(若有需要)。請注意,競爭時間會改變。例如,在 802.11系統中,可在SIFS後回傳一 ACK。由於SIFS具有最 高優先順序,所以STA 2可回應且不會損失頻道。各項具 體實施例可允許較短延遲,並且可為回傳資料提供高優先 順序。 在步驟2635,STA 2傳輸速率反饋及選用之資料至STA 1。在步驟2640,STA 1接收該速率反饋,再次競爭存取共 96872.doc -58- 200527868 用頻道,並且在步驟2645按照所接收之速率反镇來傳輸至 STA 2。在步驟2640,STA 1也量測頻道,以便提供用;^未 來傳輸的速率反饋至STA 2,並且可接收STA 2所傳輸的任 何選用之資料。在步驟2650,STA 2按照所測量之頻道狀 況決定的速率及調變各式來接收步驟2645所傳輸的資料。 STA 2還可接收用於回傳一傳輸至STA 1的速率反饋。sta 2還可量測頻道,藉以提供未來的速率反饋。因此,藉由 返回至步驟2635,藉此STA 2回傳速率反饋及資料,就可 以重複此項程序。 因此,兩個站台可藉由競爭存取來執行雙向專有通信。 藉由使用速率反饋以及調整傳至接收方站台的傳輸,就會 使對等式連線本身有效率。當部署PHY叢發之一可共同接 收部分時,接著,如步驟2620所示,其它STA可存取資訊 且可在已知頻道被佔用時避免干擾頻道,如pCCH中所 示。如同圖25,在圖26所示之步驟之前,管理式對等式通 k或專有式對等式通信可起始資料傳送,並且隨後可用於 繼續對等式通信。因此,可部署排程式及專有式對等式通 信的任何組合。 圖27繪示示範性TDD MAC訊框間隔2700,用於解說介 於站台之間的管理對等式通信。在此實例中,F_tch及A-TCH持續期間都被設定為零。按前述方式傳輸信標訊號 (BeaC0n)/BCH 51〇 及 CCH 52〇。信標訊號(Beac〇n)/BCH 560指示出下一訊框開始。cch 520指示出對等式通信配 置彳女知、彼等配置,STA 1在所配置之叢發2710中傳輸至 96872.doc 200527868 STA 2。請注意,在相同的TDD MAC訊框間隔申,會將用 於回應STA 1的片段2730配置給STA 2。任何既定對等式 PHY層叢發中可以包含上文所述的任何組件,例如,速率 反饋、要求、操控式及/或非操控式前導以及操控式及/或 非操控式資料。STA 3在配置272〇t傳輸至STA 4。以相似 方式,STA 4在配置2740中傳輸至STA 3。R-TCH中可以包 含各種其它反向鏈路傳輸,包括非對等式連線。下文會進 步洋述用於解說彼等及其它態樣的額外示範性具體實施 例。 請注意,在圖27中,若有需要,可在片段之間排程警戒 守間間隔 項關於對等式通信的關鍵問題通常在於介於 STA之間的路控延遲未知。一項處理此問題的方法為,每 個STA維持其傳輸時間固定不變,促使以同步於時脈方 式抵達ΑΡ。在此情況下,Αρ可在每個對等式配置的兩端 提供警戒%段,藉以補償介於兩個通信中STA之間的路徑 L遲在斗夕凊况下,一個循環前置碼(CyClic prefix)就足 ❿ 夠,並且在STA接收器處不需要進行調整。接著,STA必 須決定各自的時間偏移量,以便得知何時接收其它STA的 傳輸。STA接收器必須維護兩個接收時脈:一接收時脈用 於AP訊框時序,而另一接收時脈用於對等式連線。 如上文各項具體實施例中所述,接收器可在其配置期間 衍生出認可及頻道反饋,並且回饋至一發射器。即使整體 流量流程為單向,接收器仍然會傳送參考及要求以獲得配 置。AP排程器確保為反饋提供足夠的資源。 96872.doc -60- 200527868 相容於舊有站台及存取點 如本文所述’描述之各項具體實施例提供舊有系統的改 良方案。然:巾’假定廣闊部署的舊有系統已存在,—系統 可能想要保持回溯相容於現有舊有系統及/或舊有使用者 終端機。在本文中,使用用詞「新類別」來區別「舊有系 統」。-新類別系統可包含本文詳述之—或多項態樣或功 能。一種示範性具體實施例新類別系、统是下文參考圖35至 圖52所詳述iMIM0 0FDM系統。另外,下文詳述之用於 合併新類別系統與一舊有系統的態樣也適用其它系統,無 論此-系統是否有包括本文詳述之任何特殊改良方案,仍 然會予以部署。 在-項示範性具體實施例中,可以藉由使用分開的頻率 指派(Frequency Assignment ; FA)來提供回溯相容於替代系 統,藉此允許從舊有使用者在一分離之?八上操作新類別系 統。因此,一新類別系統可搜尋供其運作用的可用fa。可 在新類別WLAN中實行一動態頻率選擇Any of this can be transmitted according to the rate feedback from the previous managed peer-to-peer connection, or the proprietary rate feedback from the dedicated right-hand pain from the beginning of STA 1 or STA 2. Class lean material. The non-manipulating preamble and transmission request are received by STA2 and the access point (and can be received by other stations in the area. The access point receives the transmission request, and according to any number of scheduling algorithms to determine when and when It is μ for the material communication configuration. It seems that 2 = = () 5 transmission of non-manipulated material is difficult. 道道 疋 Supported rate for peer-to-peer communication with STA1. It seems that 2 can also follow-first The feed wheel is optional, with feedback from / 96872.doc -56- 200527868 or data. In this example, the access point has decided to make a configuration for the requested transmission. At step 25 15 'Replace a configuration from The access point is transmitted to STA 1. In this example, the configuration is transmitted on r_tch 540 during the control channel (eg, CCH 52〇), as described above. Similarly, at step 2520, it is performed for STA 2 R-TCH configuration. In step 2525, STA i receives the configuration from the access point. In step 2530, STA 2 receives the configuration from the access point. In step 2545, STA 2 transmits the rate according to the configuration in step 2520. Feedback, as mentioned above, optionally including a schedule The transmission request may include any data to be transmitted in accordance with a previous request. The transmission rate feedback is selected in accordance with the channel measurement in step 2510. The 1 > 11 ¥ of the step 2535 may also include a non-operating preamble. In step 254〇, STA i measures the channel from STA 2, receives the rate feedback and can also receive the selected data. 'In step 2545, according to the configuration in step 25 15, STA transmits data according to the received rate feedback information. In addition, future configuration requirements and rate feedback can be provided according to the measurement in step 2540. Data for peer-to-peer communication is transmitted according to the specified channel measurement. In step 2550, STA 2 receives the data and any options Rate feedback for sexual transmission. Sta2 can also measure channels to provide rate feedback for future transmissions. Please note that 'transmissions in steps 2535 and 25 can be received by the storage site' at least the non-controlling portion 'is as above Because, for any of the requirements included, the access point can make additional configurations for future rounds, divided into 96872.doc -57- 200527868 The configurations 2555 and 2560 for STA 1 and STA 2 are shown. At steps 2565 and 25 70, STA 1 and STA 2 receive their corresponding configurations. Then, as the access point manages access to the shared media, and STA 1 and STA 2 transmits peer-to-peer communication directly to each other using the rate and modulation format selected according to the supportable capabilities on the peer-to-peer channel, without periodically repeating this procedure. Please note that in an alternative embodiment, it can also be combined with Managed peer-to-peer communication shown in FIG. 25 performs proprietary peer-to-peer communication. FIG. 26 illustrates a competitive (or ad hoc) peer-to-peer connection. STA 1 and STA 2 will communicate with each other. Other STAs may also be in range and have access to the shared channel. At step 2610, STA 1 (with data to be transmitted to STA 2) monitors and competes for access to the shared channel. Once a transmission opportunity has been won, the peer PHY burst (step 2615) is transmitted to STA 2, and other STAs may also receive the burst. At step 2620, other STAs (that are monitoring the shared channel) will receive transmissions from STA 1 and know to avoid accessing that channel. For example, a PCCH (as described above) may be included in the transmission (step 2615). In step 2630, STA 2 measures the channel according to a non-manipulated preamble and competes for backhaul access on the shared channel. STA 2 can also transmit data (if required). Please note that competition time will change. For example, in an 802.11 system, an ACK can be returned after SIFS. Since SIFS has the highest priority, STA 2 can respond without losing channels. Specific embodiments may allow for shorter delays and may provide high priority for returning data. In step 2635, STA 2 transmits the rate feedback and selected data to STA 1. In step 2640, STA 1 receives the rate feedback, competes again for access to a total of 96872.doc -58- 200527868 channels, and in step 2645 transmits back to STA 2 in accordance with the received rate. In step 2640, STA 1 also measures the channel to provide usefulness; ^ The future transmission rate is fed back to STA 2 and can receive any optional data transmitted by STA 2. In step 2650, STA 2 receives the data transmitted in step 2645 according to the rate and modulation determined by the measured channel conditions. STA 2 may also receive rate feedback for transmitting a transmission back to STA 1. sta 2 can also measure channels to provide future rate feedback. Therefore, by returning to step 2635, STA 2 can return the rate feedback and data, and this procedure can be repeated. Therefore, two stations can perform two-way proprietary communication by competing access. By using rate feedback and adjusting the transmission to the receiving station, the peer-to-peer connection itself is made efficient. When one of the PHY bursts can be jointly received, then, as shown in step 2620, other STAs can access the information and can avoid interfering with the channel when the known channel is occupied, as shown in pCCH. As in FIG. 25, prior to the steps shown in FIG. 26, managed peer-to-peer communication or proprietary peer-to-peer communication can initiate data transfer and can then be used to continue peer-to-peer communication. Therefore, any combination of scheduling and proprietary peer-to-peer communication can be deployed. FIG. 27 illustrates an exemplary TDD MAC frame interval 2700 for illustrating management peer-to-peer communication between stations. In this example, both F_tch and A-TCH duration are set to zero. Beacon signals (BeaC0n) / BCH 51〇 and CCH 52〇 are transmitted as described above. The beacon signal / BCH 560 indicates the start of the next frame. cch 520 indicates the peer-to-peer communication configuration, which is known to the female and their configurations, and STA 1 transmits to 96872.doc 200527868 STA 2 in the configured burst 2710. Please note that in the same TDD MAC frame interval, the segment 2730 used to respond to STA 1 will be allocated to STA 2. Any given peer-to-peer PHY layer burst may include any of the components described above, such as rate feedback, requests, manipulative and / or non-manipulating preambles, and manipulating and / or non-manipulating data. STA 3 transmits to STA 4 at configuration 27Ot. In a similar manner, STA 4 transmits to STA 3 in configuration 2740. R-TCH can contain various other reverse link transmissions, including non-equivalent connections. Additional exemplary embodiments for explaining them and other aspects are further described below. Please note that in Fig. 27, if necessary, the alert can be scheduled between segments. The key issue regarding peer-to-peer communication is that the routing delay between STAs is unknown. One method to deal with this problem is that each STA maintains its transmission time constant, which facilitates the arrival of APs in a synchronous manner. In this case, Αρ can provide alert% segments at both ends of each peer-to-peer configuration, so as to compensate the path L between the STAs in the two communications. A cyclic preamble ( CyClic prefix) is sufficient, and no adjustment is required at the STA receiver. Then, STAs must decide their own time offsets in order to know when to receive transmissions from other STAs. The STA receiver must maintain two reception clocks: one reception clock is used for AP frame timing, and the other reception clock is used for peer-to-peer connection. As described in the above specific embodiments, the receiver can derive approval and channel feedback during its configuration and return to a transmitter. Even if the overall traffic flow is one-way, the receiver still sends references and requests to get the configuration. The AP scheduler ensures that sufficient resources are provided for feedback. 96872.doc -60- 200527868 Compatible with legacy stations and access points The specific embodiments described herein ' provide improved solutions for legacy systems. However: Assume that a widely deployed legacy system already exists—the system may want to maintain backward compatibility with existing legacy systems and / or legacy user terminals. In this article, the term "new category" is used to distinguish "old system". -The new category system may contain—or multiple aspects or features—detailed in this article. An exemplary embodiment of the new category system is the iMIM0FDM system detailed below with reference to Figs. 35-52. In addition, the details detailed below for merging a new category system with an old system are also applicable to other systems, regardless of whether or not the system includes any special improvements detailed in this article, and will still be deployed. In one exemplary embodiment, retrospective compatibility with alternative systems can be provided by using separate frequency assignments (FAs), thereby allowing separation from legacy users? Yagami operates a new category system. Therefore, a new category system can search for available FAs for its operation. Can implement a dynamic frequency selection in a new class of WLANs

Frequency Selection; DFS)演算法,藉以提供頻率搜尋。 可能想要部署一 AP成為多載波。 正在嘗試存取WLAN的舊有STA可採用兩種掃描方法: 被動式及主動式。運用被動式掃描,STA藉由掃描操作頻 段,以便發展出位於其附近的可實行基本服務集(bss)清 單運用主動式掃描,STA傳輸一查詢,藉此徵求來自 BSS中其它STA的回應。 舊有標準不提供關於STA如何決定要加人哪_個腦的 96872.doc -61- 200527868 貝efL,但疋-旦已作出決策,就可以嘗試關聯性。如果不 成功,STA將在其BSS清單中移動直到成功。當一舊有§丁八 . 不瞭解所傳輸的信標訊號(Beacon)資訊時,該STA就不會 • 嘗試建立與一新新類別WLAN的關聯性。然而,一新類別 AP(以及UT)可忽略來自舊有STA的要求,作為一項用於在 一單一 FA上維護一單一 WLAN類別的方法。 一項替代技術為,新類別AP或新類別STA使用有效的舊 有(即,802.11)發訊息來拒絕任何舊有STA的要求。如果 一舊有系統支援此類發訊,則可為舊有STA提供一重新導 向訊息。 一項相關聯於使用分開之FA的顯著權衡考量點為,支援 兩種類別STA所需的額外頻譜。一項優點在於,很容易管 理不同WLAN而保持如Q〇S等等功能。然而,如本份說明 書的詳細說明所述,對於支援新類別系統的高資料速率而 言(例如,本文詳述之ΜΙΜΟ系統具體實施例),舊有CSMA MAC協定(例如,舊有802·η標準中詳述的協定)通常毫無 效率。因此,希望部署回溯相容於操作模式,藉此允許一 新類別MAC與舊有MAC在相同FA上共存。下文詳述舊有 系統與新類別系統可共用相同FA的數項示範性具體實施 例。 圖28繪示在相同頻率指派上支援舊有站台及新類別站台 之方法2800。在此實例中,基於清楚易懂’假設BSS係在 • 隔離狀態下運作(即,沒有介於多個重疊BSS之間的協 調)。程序從步驟2810開始,於此步驟使用舊有發訊號來 96872.doc -62- 200527868 建置一無競爭時期。 接著說明數項例證性實例,用於連同舊有802.1 1系統一 起使用,其中新類別WLAN AP可使用舊有802.1 1標準申内 建的攔截程序(Hook)來保留供新類別站台以獨佔方式使用 的時間。除了彼等發訊號技術外,還可以針對各種類型之 舊有系統,使用任何數量之發訊號技術來建置一無競爭時 期。 一項技術係在PCF/HCF模式中建置無競爭時期(CFP)。 AP可建置一信標訊號(Beacon)時間間隔,並且在該信標訊 號(Beacon)時間間隔宣告一無競爭時期,該AP可在此無競 爭時期以輪詢模式來伺服新類別及舊有STA。這會促使所 有舊有STA都會將其網路配置向量(NAV)(這是用於持續追 蹤CFP的計數器)設定為該宣告之CFP的持續期間。結果, 在該CFP期間會防止接收信標訊號(Beacon)的舊有STA使用 頻道,直到被AP輪詢為止。 另一項技術係經由RTS/CTS及持續期間/ID欄位來建立一 CFP,及設定NAV。在此情況下,新類別AP可傳出一具有 保留位址(Reserved Address ; RA)的特殊RTS,用於向所有 新類別STA指示出該AP正在保留頻道。舊有STA將該RA欄 位解譯為正導向至一特定STA並不予回應。新類別STA回 應一特殊CTS,用以在RTS/CTS訊息對中之持續期間/ID欄 位中指定的時段期間清空BSS。此時,新類別站台可在該 保留之持續期間自由使用頻道而不會發生衝突。 在步驟2820,已接收到用以建置無競爭時期之訊號的舊 96872.doc -63- 200527868 一別STA等待’直到輪詢或無競爭時期結束。目此,存取 點已成功配置共用媒體,以配合新類別ΜΑ。協定使用。在 步驟283G ’新STA可按照此協定來進行存取。在此一新類 別MAC協定中可部署本文詳述之各項態樣集合或子集合。 例如、可以σ卩署排程式正向和反向鏈路傳輸,以及管理式 對等式傳輸、料或競爭式通信(包㈣等式)或前述項之 任何組合。在步驟2840,使用任何各種訊號類型(因部署 之舊有系統而異),終止該新類別存取時段。在此示範性 具體實施例中,傳輸-無競爭時期結束訊號。在一項替代 具體貫施例中,也可以在一無競爭時期期間輪詢舊有 STA。此類存取可以在新類別存取之後進行,或穿插在新 類別存取内。 在步驟2850,如果定義一用於舊有系統的競爭時期,則 所有STA都會競爭存取。這允許無法在無競爭時期期間通 仏的舊有系統提出要求及/或嘗試傳輸。決策步驟, 程序可藉由返回決策步驟28 1〇而繼續,或程序停止。 圖29繪示舊有與新類別媒體存取控制之組合。圖上方緣 示一舊有MAC協定2910及一新類別協定2930,當組合時, 構成如組合式MAC協定2950之MAC協定。在此實例中, 基於解說用途,使用802.11舊有發訊號。熟悉此項技術者 應明白,本文所揭示之技術適用於任何各種舊有系統及任 何新類別MAC協定,包括本文揭示之功能的任何組合。 舊有MAC協定2910包括用於識別信標訊號(Beac〇n)時間 間隔的信標訊號(Beacon)2902。該舊有信標訊號(Beac〇n) 96872.doc -64- 200527868 時間間隔包括無競爭時期2904,之後接著競爭時期2906。 在該無競爭時期2904期間可產生各種無競爭輪詢2908ΑΝ 。 藉由無競爭時期結束2910來終止無競 爭時期 2904 。 在 802· 11示範性具體實施例中,在目標引導訊號傳輸時間 (Target Beacon Transmission Time ; ΤΒΤΤ)傳輸每個信標訊 號(Beacon)2902。新類別協定2930包括MAC訊框2932A-N。 組合式信標訊號(Beacon)時間間隔2950解說在無競爭時 期2904期間舊有與新類別MAC協定的交互操作性。包括新 類別TDD MAC訊框間隔2932,之後接著舊有輪詢CF輪詢 2908A-N。藉由UPEND(無競爭時期結束)2910來終止無競 爭時期,之後接著競爭時期2906。新類別TDD MAC訊框 間隔2932可能屬於任何類型,選擇性包括本文詳述之各項 態樣。在一項示範性具體實施例中,新類別TDD MAC訊 框間隔2932包括各種區段,如參考圖20描述之區段。因 此,在此實例中,新類別TDD MAC訊框間隔2932包括: 前導訊號(pilot)510、一控制頻道520、一正向傳輸頻道 5 30、專有對等式區段(A-TCH)2010、一反向鏈路傳輸頻道 540以及一隨機存取頻道550。 請注意,在CFP 2904期間,舊有STA不應干擾任何新類 別WLAN傳輸。AP可在CFP期間輪詢任何舊有STA,允許 在片段進行混合式模式操作。此外,AP還可保留整個CFP 2904供新類別使用,並且將所有舊有流量推入位於信標訊 號(Beacon)時間間隔結束點附近之競爭時期(CP)2906。 96872.doc -65- 200527868 示範性舊有802.11標準需要CP 2906的長度足以支援介於 兩個舊有對等式傳輸之間的交換。因此,信標訊號 (Beacon)可能會延遲,而導致系統時間不穩定⑴tte〇。若 希望,為了緩和不穩定,CFP時間間隔可被縮短以維護固 定之信標訊號(Beacon)時間間隔。用於建置CFp及cp的計 時器可被設定成促使相對於CP(即,小於1〇毫秒)而言, CFP為長時期(即,約秒)。然而,在cFp期間,如果 AP輪詢舊有終端機,則彼等舊有終端機的傳輸持續期間可 能未知且會造成額外的時間不穩定。結果,當在相同fa上 容納舊有STA時,必須極為謹慎維護新類別似的q〇s。舊 有802.U標準同步於毫秒時間單位; TU)。新類別MAC可被設計成同步於舊有系統,在此實例 t,採用2個TU或2.048毫秒之MAC訊框持續期間。 在相同具體實施例令,可能希望確保新類別mac訊框同 步。即,系統的MAC訊框時脈可能為連續,並且當傳輸 時’該MAC訊框邊界會在2.048毫秒訊框時間間隔的倍數 開始。在此方法中,很容易維護STA的休眼模式。 新類別傳輸不需要相容於舊有傳輸。標頭、前導項等等 可能都是新類別系統所獨有,本份說明書中詳述了其實 例。舊有STA可嘗試解調變彼等項目,但會無法正確解 碼。處於休眼模式中的STA通常不受影響。 圖30繪示-種用於赢得傳輸機會之示範性方法麵。方 法3000可被部署為方法胸之示範性具體實施例中的步驟 2830’如上文所述。程序從決策步驟30U)開始,在此步驟 96872.doc -66- 200527868 存取可能屬於排程式或非排程式。熟悉此項技術者應明 白,雖然此實例解說兩種類型存取,但是在任何既定具體 實施例中,可支援彼等存取類型之一或兩種皆支援。在決 策步驟3010中,如果想要非排程式存取,則進行到步驟 3040以競爭存取。可部署任何數量之競爭式存取技術。一 旦已赢得傳輸機會(TXOP),則在步驟3050,依據傳輸機會 進行傳輸。接著程序停止。 在步驟3010中,如果想要排程式存取,則進行到步驟 3020以要求存取。可在專有競爭期間,在一隨機存取頻道 上提出此項存取要求,或本文揭示之任何其它技術。在步 驟3030,當授予存取要求時,則接收一配置。進行到步驟 3050,按照所接收之配置來傳輸TXOP。 在某些情況下,可能希望在相同頻率配置中,適應介於 一新類別AP(和其相關聯之BSS)與一重疊舊有BSS之間的 互操作。舊有BSS可能係在DCF或PCF/HCF模式中運作, 並且會因此無法總是可達成介於新類別BSS與舊有BSS之 間的同步。 如果舊有BSS係在PCF或HCF模式中運作,則新類別AP 可嘗試同步於TBTT。若可實行同步,則新類別AP可於競 爭時期間使用任何各種機制(前文已描述其實例)來拿取頻 道,藉此在該重疊BSS區域内運作。如果舊有BSS係在 DCF模式中運作,則新類別AP也可嘗試拿取頻道並且宣告 一CFP以清空頻道。Frequency Selection; DFS) algorithm to provide frequency search. You may want to deploy an AP as a multi-carrier. Legacy STAs that are trying to access WLANs can use two scanning methods: passive and active. With passive scanning, the STA scans the operating frequency bands in order to develop an executable basic service set (bss) list located nearby. Using active scanning, the STA transmits a query to solicit responses from other STAs in the BSS. The old standard does not provide 96872.doc -61- 200527868 befL about how STAs decide which people to add, but once the decision has been made, the correlation can be tried. If unsuccessful, the STA will move through its BSS list until it succeeds. When an old § Ding Ba. Does not know the transmitted beacon signal (Beacon) information, the STA will not try to establish an association with a new class of WLAN. However, a new class of APs (and UTs) can ignore the requirements from old STAs as a method for maintaining a single WLAN class on a single FA. An alternative technique is that a new class AP or a new class STA uses a valid legacy (i.e., 802.11) message to reject a request from any legacy STA. If an older system supports such messaging, a redirect message can be provided for the legacy STA. A significant trade-off related to the use of separate FAs is the additional spectrum required to support the two types of STAs. One advantage is that it is easy to manage different WLANs while maintaining functions such as QOS. However, as described in the detailed description of this specification, for supporting high data rates of new types of systems (for example, the specific embodiment of the MIMO system detailed herein), the old CSMA MAC protocol (for example, the old 802 Agreements detailed in standards) are often inefficient. Therefore, it is desirable to deploy backtracking compatible operation modes, thereby allowing a new class of MAC to coexist with the old MAC on the same FA. Several exemplary embodiments in which the old system and the new category system can share the same FA are detailed below. FIG. 28 illustrates a method 2800 for supporting legacy stations and new-type stations on the same frequency assignment. In this example, it is assumed that the BSS is operating in an isolated state (ie, there is no coordination between multiple overlapping BSSs). The program starts at step 2810, at which step the old signal is used to build 96872.doc -62- 200527868 without a contention period. Next, we will illustrate several illustrative examples for use with the old 802.1 1 system, where the new class WLAN AP can use the built-in interception procedure (Hook) of the old 802.1 1 standard application to reserve for exclusive use by the new class station time. In addition to their signaling technologies, any number of signaling technologies can be used to build a competition-free period for any type of legacy system. One technology is the establishment of a competition-free period (CFP) in the PCF / HCF model. The AP can set up a beacon interval and declare a contention-free period during the beacon interval. The AP can poll the new class and the old one in a polling mode during this period STA. This will cause all older STAs to set their network configuration vector (NAV), which is a counter used to continuously track the CFP, to the duration of the declared CFP. As a result, the old STA receiving the beacon signal during the CFP period is prevented from using the channel until it is polled by the AP. Another technique is to establish a CFP via RTS / CTS and duration / ID fields, and set NAV. In this case, the new class AP can send out a special RTS with a Reserved Address (RA), which is used to indicate to all new class STAs that the AP is reserving a channel. The legacy STA interpreted the RA field as directing to a specific STA and did not respond. The new category STA responds with a special CTS to clear the BSS during the period specified in the duration / ID field of the RTS / CTS message pair. At this point, the new category station is free to use the channel for the duration of the reservation without conflict. In step 2820, the old 96872.doc -63- 200527868 has been received to build a signal for a contention-free period. Another STA waits' until the end of the polling or contention-free period. At this point, the access point has successfully configured shared media to match the new category MA. Used by agreement. At step 283G ', the new STA can access in accordance with this agreement. In this new type of MAC protocol, various sets or sub-sets detailed in this paper can be deployed. For example, it is possible to schedule forward and reverse link transmissions as well as managed peer-to-peer transmissions, material or competitive communications (including the equations), or any combination of the foregoing. At step 2840, the new category access period is terminated using any of a variety of signal types (varies depending on the legacy system deployed). In this exemplary embodiment, the transmission-contention-free period ends. In an alternative embodiment, legacy STAs may also be polled during a contention-free period. Such access can take place after or be interspersed with new category access. In step 2850, if a contention period is defined for the legacy system, all STAs will compete for access. This allows legacy systems that were unable to circulate during periods of no competition to make requests and / or attempt transmissions. In the decision step, the process can be continued by returning to decision step 28 10, or the process can be stopped. Figure 29 illustrates a combination of legacy and new categories of media access control. The upper edge of the figure shows an old MAC agreement 2910 and a new class agreement 2930. When combined, it constitutes a MAC agreement such as the combined MAC agreement 2950. In this example, 802.11 legacy signals are used for illustrative purposes. Those skilled in the art should understand that the techniques disclosed herein are applicable to any of various legacy systems and any new types of MAC protocols, including any combination of the functions disclosed herein. The legacy MAC protocol 2910 includes a beacon signal 2902 for identifying a beacon signal interval (Beacon). The legacy beacon signal (Beacon) 96872.doc -64- 200527868 time interval includes the no-competition period 2904, followed by the contention period 2906. During this contention-free period 2904, various contention-free polls 2908AN may be generated. End the no-competition period by ending the no-competition period at 2910 2904. In the exemplary specific embodiment of 802.11, each beacon signal 2902 is transmitted at a Target Beacon Transmission Time (TBTT). The new class agreement 2930 includes MAC frames 2932A-N. The combined beacon signal interval (Beacon) interval 2950 illustrates the interoperability of the old MAC protocol with the new type during the contention-free period 2904. Including the new type TDD MAC frame interval 2932, followed by the old polling CF polling 2908A-N. The non-competition period ends with UPEND 2910, followed by the competition period 2906. The new category TDD MAC frame interval 2932 may be of any type, and optionally includes various aspects detailed in this article. In an exemplary embodiment, the new class TDD MAC frame interval 2932 includes various sections, such as the sections described with reference to FIG. Therefore, in this example, the new class TDD MAC frame interval 2932 includes: a pilot signal 510, a control channel 520, a forward transmission channel 5 30, and a proprietary peering segment (A-TCH) 2010. , A reverse link transmission channel 540 and a random access channel 550. Please note that during CFP 2904, legacy STAs should not interfere with any new category of WLAN transmissions. The AP can poll any legacy STAs during the CFP, allowing mixed mode operation on the segment. In addition, the AP retains the entire CFP 2904 for use in the new category, and pushes all legacy traffic into the competition period (CP) 2906, which is located near the end of the beacon interval. 96872.doc -65- 200527868 The exemplary legacy 802.11 standard requires CP 2906 to be long enough to support the exchange between two legacy peer-to-peer transmissions. As a result, the beacon signal may be delayed, causing system time to be unstable. If desired, to mitigate instability, the CFP interval can be shortened to maintain a fixed beacon interval. The timers used to build CFp and cp can be set to promote a long period of CFP (i.e., about seconds) relative to CP (i.e., less than 10 milliseconds). However, during cFp, if the AP polls the old terminals, the transmission duration of their old terminals may be unknown and cause additional time instability. As a result, when accommodating old STAs on the same fa, it is necessary to take great care to maintain the new class-like q0s. The old 802.U standard was synchronized in millisecond time units; TU). The new type of MAC can be designed to synchronize with the old system. In this example t, a MAC frame duration of 2 TU or 2.048 milliseconds is used. In the same specific embodiment, it may be desirable to ensure that new types of mac frames are synchronized. That is, the MAC frame clock of the system may be continuous, and when transmitting, the boundary of the MAC frame will start at a multiple of the 2.048 millisecond frame interval. In this method, it is easy to maintain the eye-stop mode of the STA. New class transmissions need not be compatible with old transmissions. Headers, leading items, etc. may be unique to the new category system, and this manual details actual examples. Older STAs can try to demodulate their projects, but they will not decode correctly. STAs in eye break mode are generally unaffected. FIG. 30 illustrates an exemplary method for winning transmission opportunities. Method 3000 may be deployed as step 2830 ' in an exemplary embodiment of a method chest as described above. The process starts with decision step 30U). At this step 96872.doc -66- 200527868 access may be scheduled or non-scheduled. Those skilled in the art should understand that although this example illustrates two types of access, in any given embodiment, either or both of them can be supported. In decision step 3010, if non-scheduled access is desired, proceed to step 3040 to compete for access. Any number of competing access technologies can be deployed. Once the transmission opportunity (TXOP) has been won, transmission is performed according to the transmission opportunity at step 3050. The program then stops. In step 3010, if programmatic access is desired, proceed to step 3020 to request access. This access request may be made on a random access channel during a proprietary competition, or any other technique disclosed herein. In step 3030, when an access request is granted, a configuration is received. Proceeding to step 3050, TXOP is transmitted according to the received configuration. In some cases, it may be desirable to accommodate interoperation between a new class AP (and its associated BSS) and an overlapping legacy BSS in the same frequency configuration. The old BSS may operate in DCF or PCF / HCF mode, and therefore it may not always be possible to achieve synchronization between the new category BSS and the old BSS. If the old BSS was operating in PCF or HCF mode, the new class AP can try to synchronize with TBTT. If synchronization can be implemented, the APs of the new category can use any of a variety of mechanisms (examples of which have been described earlier) to obtain channels during the contention period, thereby operating in the overlapping BSS area. If the old BSS was operating in DCF mode, the new category AP can also try to fetch the channel and declare a CFP to clear the channel.

這可能是舊有BSS中的部分或所有STA未接收新類別AP 96872.doc -67- 200527868 傳輸的情況。在此情況下,舊有STA會干擾任何新類別 WLAN之運作。為了避免此干擾’新類別站台可預設為 CSMA式運魅且依㈣等式傳輸(下文會參考圖33至圖34 予以進一步詳細說明)。 圖31繪示多個BSS共用一單一FA之示範性方法31〇〇。在 步驟3U〇,一舊有存取點傳輸一信標訊號(Beacon)。一共 用相同頻率指派的新類別存取點可同步於該信標訊號 (Beacon)所相關聯的TBTT(選擇性)。在步驟312〇,如果已 依據該信標訊號(Beacon)指定一舊有無競爭時期,則會實 行该無競爭時期。一旦該無競爭時期(若有的話)已完成, 則所有STA都會在一指定之競爭時期期間競爭存取。在步 驟3 130 ’新類別存取點在競爭時期期間競爭存取。在步驟 3 140 ’新類別STA可在該新類別存取點已競爭存取期間存 取共用媒體。在此新類別存取期間的存取類型可包括本文 洋述之任何態樣。可使用各種技術(如上文所述之技術)來 向舊有STA指示出存取點保留頻道的時間量。一旦此時期 已完成,則在步驟3150,舊有STA可進行競爭。決策步驟 3160,程序可藉由返回決策步驟3110而繼續,或程序停 止。 圖32繪示使用一單一fa之重疊BSS。舊有系統32 10傳輸 信標訊號(3〇&(:〇11)3205(圖中繪示3205人及32056來解說舊 有系統的TBTT及整個信標訊號(Beacon)時間間隔)。信標 訊號(Beacon)3205A識別無競爭時期3210及競爭時期 3215。在無競爭時期3210期間,可實行舊有無競爭輪詢 96872.doc -68· 200527868 3220A-N,之後接著無競爭時期3225結束之指示器。 新類別WLAN 3240中的站台監視頻道、接收信標訊號 (Beacon)3205以及直到一競爭存取機會抵達才能存取媒 體。在此實例中,最早的機會係在無競爭時期期間。在 PIFS 3230之後,新類別存取點傳輸一舊有訊號3245以向 舊有站台指示出將佔用頻道的時間量。可使用各種符號來 執行此項功能,如上文說明之實例所述。可依據想要交互 操作的舊有系統來部署各種其它訊號。舊有訊號3245接收 範圍内的舊有STA會避免存取頻道,直到新類別存取時期 3250結束。新類別存取時期3250包括一或多個TDD MAC 訊框間隔3260(在此實例中為3260A-N)。TDD MAC訊框間 隔3260可能屬於任何類型,其實例包括本文詳述之各項態 樣中之一或多項態樣。 在一項示範性具體實施例中,新類別AP按時間間隔拿 取頻道(即,每40毫秒,AP拿取頻道長達20毫秒)。新類別 AP可維護一計時器,藉以確保僅限於所要的持續期間才持 有頻道,藉此保證公平地共用頻道。在拿取頻道過程中, 新類別AP可使用各種發訊號技術。例如,可以傳輸用於宣 告新CFP的CTS/RTS或舊有信標訊號(Beacon)。 在新類別時間間隔3250期間,可按下列方式來定義一示 範性TDD MAC訊框間隔:第一,傳送一信標訊號(Beacon) 力口上F-CCH,用於指示在目前MAC訊框中戶斤要輪詢之清單 上的UT。在F-CCH之後,廣播一 ΜΙΜΟ前導延展 (stretch),藉以允許STA獲取及構件ΜΙΜΟ頻道的一精確測 96872.doc -69- 200527868 量。在一項示範性具體實施例中,每傳輸2個短型OFDM符 號就達成極佳的效能。這意謂著,起始MAC訊框中的F-TCH可能係由約略8個ΜΙΜΟ前導符號所組成。第一MAC訊 框的R-TCH部分可被結構化,促使輪詢清單上的STA將操 控式ΜΙΜΟ前導以及一含認可之(下載鏈路)速率指示項回 傳至ΑΡ。在此實例中,此時,輪詢清單上的所有終端機都 準備好在下一 TDD MAC訊框間隔期間以正常排程方式運 作。接著,接在第一 TDD MAC訊框間隔之後的TDD MAC 訊框間隔可被用來交換資料,這是使用本文揭示之任何技 術由AP予以協調。 如上文所述,在某些情況下(例如,舊有BSS中的部分或 所有STA未接收新類別AP傳輸的情況),新類別站台可預 設為CSMA式運作並且依賴對等式傳輸。在此類情況下, 上文所述之開/關循環可能不會有所助益,或甚至可行。 在這些情況下,新類別站台可預設為對等式運作。 圖33繪示一種使用本文揭示之各項技術,執行高速對等 式通信且同時與一舊有BSS交互操作之示範性方法3300。 程序從步驟3310開始,於此步驟,具有要傳送至第二STA 之資料的第一 STA競爭存取。在步驟3320,已成功競爭存 取,站台使用一舊有訊號(如上文所述之舊有訊號)來清空 媒體。在步驟33 30,第一STA傳輸一要求(連同一前導)至 第二STA。第二STA能夠依據所傳輸之前導來量測頻道。 第二STA傳輸頻道反饋至第一 STA。因此,在步驟3340, 第一站台接收一含頻道反饋之回應。在步驟3350,第一 96872.doc -70- 200527868 STA按照該反饋來傳輸前導及操控資料至第二站台。在步 驟3360,第二STA可傳輸認可至第一 STA,並可傳輸連續 速率反饋以在未來傳輸中使用。用於清空媒體的舊有訊號 允許步驟使用任何高速技術及對舊有系統的改良方案(例 如,本文揭示之技術及改良方案)來實行步驟3330至 3360。一旦一 STA已清空媒體,則可部署任何對等MAC協 定,皆屬於本發明範圍内。程序如決策步驟3370所示返回 步驟3310繼續,或程序停止。 在一項示範性具體實施例中,運用對等式模式,拿取頻 道係按照CSMA的舊有規則運作。在此實例中,不會採用 PCF及HCF,並且可能未必是集中式網路架構。當一新類 別STA想要與另一新類別STA(或AP)通信時,該STA拿取頻 道。第一傳輸係由充分的ΜΙΜΟ前導加上用於要求建置連 線的某訊息所組成。可採用CTS和RTS來清空區域及保留 時間。要求方STA訊息必須包括STA BSS ID、STA MAC ID及目標STA MAC ID(如果已知)。回應應包括回應方STA 的BSS ID。這允許STA決定是否需要執行接收器校正傳輸 操控向量(transmit steering vector),如果已使用操控。請 注意,在此情況下,不一定需要使用傳輸操控,然而如果 STA全部都已校準於一協定BSS的指定之AP,使用傳輸操 控會有所助益。 如參考圖33之說明所述,一回應可包括ΜΙΜΟ前導(操控 式,如果採用)加上某速率指示。一旦已發生此項交換, 則在每個鏈路上操控為可行。然而,如果STA屬於不同 96872.doc -71- 200527868 BSS,則介於起始連線之STA之間的第一操控傳輸可包含 操控式ΜΙΜΟ前導,藉此允許回應方STA的接收器校正不 同BSS之間的相位差異。 在此示範性具體實施例中,一旦已發生起始交換,則操 控為可行。此交換應遵守介於下載鏈路傳輸與上載鏈路傳 輸之間的SIFS時間間隔。因為在計算用於操控之特徵向量 過程中潛在的處理延遲,所以會需要STA使用最小均方誤 差(Minimum Mean Squared Erro ; MMSE)處理,而不使用 特徵向量處理。一旦已計算操控向量,STA可開始在傳輸 端使用操控向量,並且在接收端繼續採用MMSE處理,以 最佳空間匹配濾波器方案為調整目標。藉由介於兩個STA 之間週期性反饋,就可以促進追蹤及速率控制。可遵守 SIFS時間間隔,藉此使STA維護頻道控制權。 圖34繪示在舊有BSS上藉由競爭存取(即,非管理式)使 用ΜΙΜΟ技術之對等式通信。在此實例中,起始方站台 106 Α競爭存取頻道。當起始方站台106Α已成功拿取頻道 時,則傳輸ΜΙΜΟ前導3405,之後接著傳輸要求3410。該 訊息可包括BSS ID、起始方STA MAC ID及目標STA MAC ID(如果已知)。可使用其它發訊號以進一步清空頻道,例 如,CTS及RTS。回應方STA 106B傳輸操控式前導3420, 之後接著傳輸認可和速率反饋3425。在要求3410之後的 SIFS 3415,傳輸操控式前導3420。在此示範性具體實施 例中,舊有存取點是一 802.1 1存取點,請回想SIFS是最高 優先順序,因此回應方站台106B將保持頻道控制權。圖34 96872.doc -72- 200527868 中所繪示之各項傳輸可能是互相分開傳輸的SIFS,藉此維 護頻道控制權直到對等式通信完成。 在一項示範性具體實施例中,可決定頻道佔用最大持續 期間。在速率反饋3425之後,按照該速率反饋,從起始方 STA 106A傳輸操控式前導3430及資料3435至回應方STA 106B。在資料3435之後,回應方STA 106B傳輸操控式前 導3440及認可和速率反饋3445。起始方STA 106A之回應為 傳輸操控式前導3450,之後接著傳輸資料3455。 視部署時期而定,此程序可不定期繼續,或至多直到所 允許的頻道存取最大時間。圖34中未繪示,回應方STA也 可傳輸資料,並且起始站台還可傳輸速率控制。這些資料 片段可能與圖34所示之資料片段組合在一起,藉此最高限 度地提高效率(即,彼等傳輸之間不需要穿插SIFS)。 當兩個或兩個以上BSS重疊時,會希望部署用於允許以 協調方式來共用頻道的機制。下文概述數項示範性機制, 以及與各項示範性機制相關聯的示範性作業程序。可組合 部署彼等機制。 第一項示範性機制為動態頻率選擇(DFS)。在建置BSS 之前,可能需要WLAN搜尋無線媒體,藉以決定用於建置 BSS作業的最佳頻率配置(Frequency Allocation ; FA)。在 搜尋候選人FA過程中,一 AP還可建立芳鄰清單,藉以促 進重新導向及AP間交遞。此外,WLAN可同步化MAC訊框 時序與芳鄰BBS(下文會詳細說明)。DFS可用來分佈BSS, 以最小化對於BSS間同步化之需要。 96872.doc -73- 200527868 第二項示範性機制為BSS間同步化(inter-BSS Synchronization)。在DFS程序期間,一 AP可獲取芳鄰BSS 的時序。一般而言,可能希望同步化所有BSS(在一項具體 實施例中,為在一單一 FA上;在另一項具體實施例中,為 存取多個FA),藉以促進BSS間交遞。然而,運用此項技 術,至少互相極接近且使用相同FA的BSS會同步化其MAC 訊框。此外,如果共同頻道BSS重疊(即,AP可互相得知 對方),則新抵達AP可向已建置之AP警示其存在,並且制 定一資源共用協定,如下所述。 第三項示範性機制為資源共用協定(resource sharing protocol)。在相同FA上重疊之BSS公平地共用頻道。藉由 以某已定義方式在BSS之間交替MAC訊框即可達成公平地 共用頻道。這允許每個BSS中的流量使用頻道,而不會有 來自鄰近BSS之干擾的風險。所有重疊之BSS之間都是完 成共用作業。例如,有2個重疊之BSS,某AP使用偶數 MAC訊框,而且其它AP使用奇數MAC。有3個重疊之 BSS,則可執行模3(modulo-3)共用作業等等。替代具體實 施例可署任何類型共用機制。BCH附加項訊息中的控制欄 位可指示出是否已啟用資源共用以及共用循環類型。在此 實例中,BSS中所有STA的時序調整為適當的共用循環。 在此實例中,延時會因重疊之B S S而遞增。 第四項示範性機制為STA協助型同步化(STA assisted resynchronization) 。 兩個 BSS 可 能會互 相不知 道對方 ,但是 重疊區中的新STA會得知這兩個BSS。該STA可決定彼等兩 96872.doc -74- 200527868 個BSS的時序並向彼等兩個BSS報告。此外,sta還可決定 犄間偏移量,並且指示哪一個Ap應調整其訊框時序及調整 ®。此項資訊必須被傳播至已連線至該Ap的所有BSS,並 且彼等BSS必須重新建置訊框時序,才能達成同步化。可 在BCH中宣告訊框同步化。演算法可被通用以處理更多未 知的重疊BSS。 上文會詳述示範性程序,其可被部署在前段式所描述之 一或多項機制中。 AP可以在開機時或在其它指定的時間執行同步化。可 藉由搜尋系統附近的所有FA來決定系統時序。為了促使同 步化’可使用一組正交碼來辅助區別不同的Ap。例如, AP已知每MAC訊框重複的信標訊號。可使用 Walsh序列(例如,長度為16)來隱蔽該等信標訊號 (Beacon)。因此,一裝置(例如,Ap或STA)可執行區域Ap 的 ^ ‘強度里測(Pilot Strength Measurement ; PSM),藉以 决疋重豐的BSS。下文會進一步詳細說明,相關聯於一 Αρ φ 的作用中STA可傳輸一回應(ech〇)來協助同步化。回應 (eCh〇)可使用相對應於AP隱蔽的調諧(tuning)和隱蔽 (covering)。因此,如果BSS重疊,但是彼等BSS所對應的 AP然法偵測到來自對方的訊號,則一鄰近八1>可接收一 §ΤΑ 回應(echo),以此方式提供關於其Ap的資訊,以及提供一 鄰近AP可同步化的訊號。請注意,不同FA上可重複使用 正交隱蔽編碼。 可依據未偵測之Walsh隱蔽集合,以決定論方式來完成 96872.doc -75- 200527868This may be the case where some or all of the STAs in the old BSS did not receive the new class AP 96872.doc -67- 200527868 transmission. In this case, the old STA will interfere with the operation of any new type of WLAN. In order to avoid this interference, the new type of stations can be preset to be CSMA-style and perform transmission according to the equation (refer to Figure 33 to Figure 34 for further details below). FIG. 31 illustrates an exemplary method 3100 in which multiple BSSs share a single FA. In step 3U0, a legacy access point transmits a beacon signal. A new class of access points assigned in total with the same frequency can be synchronized to the TBTT (optional) associated with the beacon signal. In step 3120, if an old or non-competition period has been designated based on the beacon signal, the non-competition period will be implemented. Once the contention-free period (if any) has been completed, all STAs compete for access during a designated contention period. At step 3 130 ', the new class access point competes for access during the competitive period. In step 3 140 ', the new class STA may access the shared media during the new class access point has been competing for access. The type of access during this new category of access can include any aspect described in this article. Various techniques (such as those described above) can be used to indicate to the legacy STAs the amount of time the access point reserves the channel. Once this period has been completed, at step 3150, the old STAs can compete. Decision step 3160, the process can continue by returning to decision step 3110, or the process can stop. Figure 32 shows an overlapping BSS using a single fa. The legacy system 32 10 transmits beacon signals (3〇 & (: 〇11) 3205 (3205 people and 32056 are shown in the figure to explain the TBTT of the legacy system and the entire beacon signal interval). Beacons The signal (Beacon) 3205A identifies the non-competition period 3210 and the competition period 3215. During the non-competition period 3210, the old non-competition polling can be implemented 96872.doc -68 · 200527868 3220A-N, followed by an indicator of the end of the non-competition period 3225 Station monitoring channels in the new category WLAN 3240, receiving beacons 3205, and not accessing media until a competing access opportunity arrives. In this example, the earliest opportunities were during periods of no competition. At PIFS 3230 Afterwards, the new class access point transmits an old signal 3245 to indicate to the old station the amount of time the channel will be occupied. This function can be performed using various symbols, as described in the example described above. Depending on the interaction you want Operate the legacy system to deploy various other signals. Legacy STAs within the range of the legacy signal 3245 will avoid accessing the channel until the end of the new category access period 3250. The new category access period 3250 includes one or more TDD MAC frame intervals 3260 (3260A-N in this example). TDD MAC frame intervals 3260 may be of any type. Examples include one or more of the various aspects detailed herein. In an exemplary embodiment, the AP of the new category fetches channels at time intervals (that is, the AP fetches channels for up to 20 milliseconds every 40 milliseconds). The AP of the new category can maintain a timer to ensure that The channel is held only for the desired duration, thereby ensuring fair channel sharing. In the process of acquiring the channel, the new type of AP can use various signaling technologies. For example, it can transmit CTS / RTS or The old beacon signal. During the new class time interval of 3250, an exemplary TDD MAC frame interval can be defined as follows: First, a beacon signal is transmitted. The F-CCH on the port is used to UT on the list indicating that the user is to be polled in the current MAC frame. After F-CCH, broadcast a MIMO preamble stretch to allow the STA to obtain and build an accurate measurement of the MIMO channel 96872.doc- 69- 200527868 volume. In an exemplary embodiment, excellent performance is achieved for every 2 short OFDM symbols transmitted. This means that the F-TCH in the initial MAC frame may be determined by approximately 8 MIMO preamble symbols. The R-TCH part of the first MAC frame can be structured to prompt the STAs on the polling list to return the controlled MIMO preamble and an approved (download link) rate indicator to AP. In this example, all terminals on the polling list are now ready to operate in the normal schedule during the next TDD MAC frame interval. The TDD MAC frame interval following the first TDD MAC frame interval can then be used to exchange data, which is coordinated by the AP using any of the techniques disclosed herein. As mentioned above, in some cases (for example, when some or all STAs in the old BSS did not receive AP transmissions in the new category), stations in the new category can be pre-set to operate in CSMA mode and rely on peer-to-peer transmission. In such cases, the on / off cycle described above may not be helpful or even feasible. In these cases, the new category of stations can default to peer-to-peer operation. FIG. 33 illustrates an exemplary method 3300 that uses the techniques disclosed herein to perform high-speed peer-to-peer communication while interoperating with an old BSS. The procedure starts at step 3310, where the first STA with data to be transmitted to the second STA competes for access. At step 3320, the access has been successfully contested, and the station uses an old signal (the old signal as described above) to empty the media. In step 33 30, the first STA transmits a request (with the same preamble) to the second STA. The second STA can measure the channel according to the transmitted preamble. The second STA transmits a channel feedback to the first STA. Therefore, in step 3340, the first station receives a response including channel feedback. In step 3350, the first 96872.doc -70- 200527868 STA transmits the preamble and control data to the second station according to the feedback. At step 3360, the second STA may transmit the acknowledgement to the first STA and may transmit continuous rate feedback for use in future transmissions. Legacy signals used to empty media Allow steps to implement steps 3330 to 3360 using any high-speed technology and improvements to legacy systems (for example, the technology and improvements disclosed herein). Once a STA has emptied the media, any peer MAC agreement can be deployed, which is within the scope of the present invention. The program returns to step 3310 as shown in decision step 3370, or the program stops. In an exemplary embodiment, using the peer-to-peer mode, the fetch channels operate according to the old rules of CSMA. In this example, PCF and HCF are not used and may not necessarily be a centralized network architecture. When a new category STA wants to communicate with another new category STA (or AP), the STA fetches the channel. The first transmission consists of a sufficient MIMO preamble plus a message for requesting a connection. CTS and RTS can be used to clear the area and retention time. The requesting STA message must include the STA BSS ID, STA MAC ID, and target STA MAC ID (if known). The response shall include the BSS ID of the responding STA. This allows the STA to decide if it is necessary to perform receiver correction of the transmission steering vector, if steering has been used. Please note that it is not necessary to use transmission control in this case. However, if all STAs have been calibrated to a designated AP of a protocol BSS, the use of transmission control will be helpful. As described with reference to FIG. 33, a response may include a MIMO preamble (manipulated, if used) plus a rate indication. Once this exchange has occurred, manipulation on each link is feasible. However, if the STAs belong to different 96872.doc -71- 200527868 BSSs, the first maneuver transmission between the STAs in the initial connection may include a manipulable MIMO preamble, thereby allowing the receiver of the responding STA to correct the different BSS Phase difference between. In this exemplary embodiment, once the initial exchange has occurred, control is possible. This exchange shall observe the SIFS time interval between the download link transmission and the upload link transmission. Because of the potential processing delay in computing the feature vectors for manipulation, STAs will be required to use Minimum Mean Squared Erro (MMSE) processing instead of feature vector processing. Once the steering vector has been calculated, the STA can start using the steering vector at the transmitting end and continue to use MMSE processing at the receiving end, with the optimal spatial matched filter scheme as the adjustment target. With periodic feedback between two STAs, tracking and rate control can be facilitated. The SIFS time interval can be respected, thereby enabling the STA to maintain channel control. Figure 34 illustrates peer-to-peer communication using MIMO technology over legacy BSS with contention access (i.e., unmanaged). In this example, the originator station 106A competes for access to the channel. When the originating station 106A has successfully acquired the channel, the MIMO preamble 3405 is transmitted, followed by the transmission request 3410. The message may include the BSS ID, the originating STA MAC ID, and the target STA MAC ID (if known). Other signals can be used to clear the channel further, such as CTS and RTS. The responder STA 106B transmits the pilot preamble 3420, and then transmits the acknowledgement and rate feedback 3425. SIFS 3415 after request 3410, transmission controlled pilot 3420. In this exemplary embodiment, the old access point is an 802.1 1 access point. Recall that SIFS is the highest priority, so the responder station 106B will maintain channel control. The transmission shown in Figure 34 96872.doc -72- 200527868 may be SIFS transmitted separately from each other, thereby maintaining channel control until peer-to-peer communication is completed. In an exemplary embodiment, a maximum duration of channel occupation may be determined. After the rate feedback 3425, according to the rate feedback, the steerable preamble 3430 and data 3435 are transmitted from the initiator STA 106A to the responder STA 106B. After the data 3435, the responder STA 106B transmits the controlled preamble 3440 and the acknowledgement and rate feedback 3445. The response from the originator STA 106A was a transmission-controlled preamble 3450, followed by transmission of data 3455. Depending on the deployment period, this process can continue from time to time or up to the maximum time allowed for channel access. Not shown in Figure 34, the responder STA can also transmit data, and the originating station can also transmit rate control. These data fragments may be combined with the data fragments shown in Fig. 34, thereby maximizing the efficiency (i.e., no SIFS need to be interspersed between them). When two or more BSSs overlap, it may be desirable to deploy a mechanism to allow channels to be shared in a coordinated manner. The following is an overview of several exemplary mechanisms and exemplary operating procedures associated with each. They can be deployed in combination. The first exemplary mechanism is dynamic frequency selection (DFS). Prior to the establishment of BSS, WLAN may be required to search for wireless media to determine the optimal frequency allocation (Frequency Allocation; FA) for BSS operation. In the process of searching for candidate FAs, an AP can also establish a neighbor list to facilitate redirection and handover between APs. In addition, WLAN can synchronize the timing of the MAC frame and the neighbor BBS (explained in detail below). DFS can be used to distribute BSS to minimize the need for synchronization between BSS. 96872.doc -73- 200527868 The second exemplary mechanism is inter-BSS Synchronization. During the DFS procedure, an AP can obtain the timing of the neighbor BSS. In general, it may be desirable to synchronize all BSSs (in a specific embodiment, on a single FA; in another embodiment, to access multiple FAs) to facilitate inter-BSS handovers. However, with this technology, BSSs that are at least very close to each other and use the same FA will synchronize their MAC frames. In addition, if the common channel BSS overlaps (that is, the APs can learn about each other), the newly arrived AP can warn the existing APs of its existence and establish a resource sharing agreement, as described below. The third exemplary mechanism is the resource sharing protocol. BSSs overlapping on the same FA share the channel fairly. Equivalent channel sharing can be achieved by alternating MAC frames between BSSs in a defined manner. This allows traffic in each BSS to use the channel without the risk of interference from neighboring BSSs. All overlapping BSSs are shared. For example, if there are two overlapping BSSs, one AP uses an even MAC frame and the other APs use an odd MAC frame. With 3 overlapping BSSs, modulo-3 common operations can be performed and so on. Alternative embodiments may be implemented with any type of sharing mechanism. The control field in the BCH add-on message indicates whether resource sharing is enabled and the type of sharing cycle. In this example, the timing of all STAs in the BSS is adjusted to an appropriate shared cycle. In this example, the delay will increase due to the overlapping B S S. The fourth exemplary mechanism is STA assisted resynchronization. The two BSSs may not know each other, but the new STAs in the overlapping area will know the two BSSs. The STA may determine the timing of the two 96872.doc -74- 200527868 BSSs and report to them. In addition, sta can also determine the amount of interstitial offset and indicate which Ap should adjust its frame timing and adjustment ®. This information must be propagated to all BSSs connected to the Ap, and their BSS must re-establish the frame timing to achieve synchronization. Frame synchronization can be announced in BCH. Algorithms can be generalized to handle more unknown overlapping BSS. Exemplary procedures are detailed above and may be deployed in one or more of the mechanisms described in the previous paragraph. The AP can perform synchronization at power-on or at other specified times. The system timing can be determined by searching all FAs near the system. To facilitate synchronization ', a set of orthogonal codes can be used to help distinguish different Aps. For example, the AP knows the beacon signal repeated every MAC frame. Such beacon signals (Beacon) can be masked using a Walsh sequence (eg, a length of 16). Therefore, a device (for example, Ap or STA) can perform ^ ‘Pilot Strength Measurement (PSM) of the area Ap to determine the BSS. It will be further described in detail below that the STA can transmit a response (ech0) to assist synchronization in the role associated with an Αρ φ. The response (eCh0) may use tuning and covering corresponding to the covert of the AP. Therefore, if the BSS overlaps, but the APs corresponding to their BSS can detect the signal from the other party, a neighbor 1 > can receive a §ΤΑ response (echo) to provide information about their Ap in this way, And provide a signal that can be synchronized with neighboring APs. Note that orthogonal concealment coding can be reused on different FAs. Can be done deterministically based on undetected Walsh concealed set 96872.doc -75- 200527868

Walsh隱蔽之選擇(即,選擇鄰近Ap上未偵測到的〜&丨让隱 蔽)如果所有隱蔽皆存在,則新AP可重複使用相對應於 最低接收訊號位準(Received Slgnal Level ; RSL)的編碼。、 否則’在-項具體實施例中,可選擇最大化^操作點的編 碼(請參閱用於調節重複使用的結構化功率退回,如下文 所述)。 在此實例中,每個AP所傳輸的訊框計數器互相相對交 錯排列(Stagger)。所採用之交錯排列相對應於Walsh隱蔽索 引。因此,ΑΡ0使用Walsh編碼〇。Apj•使用Walsh隱蔽j·,並 且每當ΑΡ0訊框計數器=J·時,其訊框計數器等於〇。 開機時或任何時間執行同步化時,Ap會發聽鄰近^信 標訊號(Beacon)及/或STA回應(ech〇)。未们則到鄰近系統 後,AP隨即建置自己的時間參考。此時間參考可能是任意 的時間參考,或相關於GPS,或任何其它當地時間參考。 偵測到一單一系統後,會據此建置區域時序。如果Ap偵測 到兩個或兩個以上使用不同時間線運作的系統,則Ap可同 步於具有最強訊號的系統。如果彼等系統使用相同的頻率 指派(FA),則AP可嘗試相關聯於較弱的八卩,藉此向較弱 的AP通知其它附近使用獨立時脈的Ap。新Ap嘗試向較弱Walsh's choice of concealment (that is, select undetected on the neighboring Ap ~ & make concealment) If all concealment exists, the new AP can be reused corresponding to the lowest received signal level (RSL) Encoding. Otherwise, in the-specific embodiment, the encoding of the maximum operating point can be selected (see Structured Power Return for Adjusting Reuse, as described below). In this example, the frame counters transmitted by each AP are staggered relative to each other. The staggered arrangement used corresponds to the Walsh covert index. Therefore, AP0 uses Walsh coding. Apj • Use Walsh to conceal j ·, and whenever the AP0 frame counter = J ·, its frame counter is equal to zero. When powering on or performing synchronization at any time, Ap will listen to the nearby ^ beacon signal (Beacon) and / or STA response (ech〇). After we went to the neighboring system, the AP built its own time reference. This time reference may be any time reference, or related to GPS, or any other local time reference. When a single system is detected, the regional timing is established accordingly. If Ap detects two or more systems operating on different timelines, Ap can synchronize with the system with the strongest signal. If their systems use the same frequency assignment (FA), the AP may attempt to associate with the weaker octave, thereby notifying the weaker AP of other nearby APs using independent clocks. New Ap tries to weaken

的時序誤差調整。接 。可對於多個重複AP 的AP通知同步於彼等兩個ap區所需 著,較弱區的AP可調整其時序誤差 重複此作業。新AP可使用彼等兩個或兩個以上系統的同步 化時序來建置其時序。在所有鄰近AP都無法(基於任何原 因)同步於一單一時序之情況下,新Ap可同步於任何鄰近 96872.doc -76- 200527868 AP。 AP可以在開機時執行動態頻率選擇。如上文所述,通 常希望使用DFS選擇來最小化BSS重疊,藉此最小化需要 同步的BSS數量,並且最小化可能相關聯於同步化的任何 延遲或輸送量縮減(即,在一 FA上存取整個媒體的BSS之 效率可能更高於一必須與一或多個鄰近BSS共用媒體的Timing error adjustment. Then. The AP notifications of multiple repeated APs can be synchronized with those of their two AP areas, and the APs in weaker areas can adjust their timing errors and repeat this operation. New APs can use their synchronized timing of two or more systems to build their timing. In the case where all neighboring APs cannot (for any reason) be synchronized to a single timing, the new Ap can be synchronized to any neighboring 96872.doc -76- 200527868 AP. The AP can perform dynamic frequency selection at power-on. As mentioned above, it is often desirable to use DFS selection to minimize BSS overlap, thereby minimizing the number of BSSs that need to be synchronized, and to minimize any delays or throughput reductions that may be associated with synchronization (ie, saving on a FA A BSS that takes the entire media may be more efficient than a BSS that must share media with one or more neighboring BSSs

BSS之效率)。同步化之後,新ap可選擇具有所相關聯之 最小RSL的FA(即,當量測鄰近AP,或於回應(ech〇)時 期)。AP可週期性查詢STA是否有AP前導測量。同樣地, AP可排程無訊息(Siient)時期,藉以實現在Ap處評估來自 其它區STA(即,鄰近BSS)所造成的干擾位準。如果RSL位 準過高,則AP可嘗試在非排程時間尋找其它FA,及/或制 定一功率退回原則,如上文所述。BSS efficiency). After synchronization, the new AP can choose the FA with the smallest RSL associated (i.e., when the neighboring AP is measured, or at the echo time). The AP may periodically query whether the STA has an AP preamble measurement. Similarly, the AP can schedule the Siient period to assess the level of interference caused by STAs from other areas (ie, neighboring BSS) at Ap. If the RSL level is too high, the AP may try to find other FAs at unscheduled times, and / or establish a power return principle, as described above.

如上文所述’可按照一前導隱蔽編碼(pil〇t c〇ver code) 來組織AP。在此實例中,每個Ap都可使用長度為i6的 Walsh序列隱蔽(Walsh sequence c〇ver)。可部署任何數量 之各種長度的編碼。前導隱蔽(pil〇t c〇ver)係用來在一超 正負號(sign)。在此 ,16個連續MAC訊 訊框週期期間調變信標訊號(Beac〇n)的 貫例中’該超訊框時期等於32毫秒(即 框信標訊號(Beacon))。接菩,λ 1 L ^ , 厂條考,STA可以相干方式整合超訊 框時間間隔,藉此決定相關辦 、夂邳關馬卩於一既定AP的前導功率。如 上文所述,一 AP可從可用的土 a t J州的未偵測之Walsh編碼集區選取 其Walsh編碼。如果已偵測所 识〜所有編碼(在相同FA上),則ap 可按最強至最弱順序來排序徜 攸寺編碼。AP可重複使用相對 96872.doc -77. 200527868 應於所偵測到之最弱Walsh編碼的Walsh編碼。 為了促使識別鄰近AP,可使用STA來傳輸一回應(echo) 來識別所對應的AP。因此,如上文所述,不偵測鄰近AP 的AP可偵測一相對應之STA回應(ech〇),以此方式識別AP 及其時序。每個AP都可以在自己的信標訊號(Beacon)中傳 輸其組悲資訊’並且每個STA可當做一中繼器(repeater), 藉以重新傳輸該AP組態資訊以及時序至任何接收方鄰近 AP。 可能會要求作用中STA(依據來自AP的命令)傳輸一指定 模式’用以允許附近AP使用相同FA來偵測鄰近系統之存 在。一種促使這項做法的簡單方式為,在非AP用來傳輸任 何流量的MAC訊框中定義一觀察時間間隔(即,介於fch 與RCH片段之間)。該觀察時間間隔的持續期間之長度可 被定義成足以處理介於相關聯於AP之STA與相關聯於鄰近 AP之STA之間的最大差異傳播延遲(例如,16〇個晶片 (chip)或2個OFDM符號)。例如,相關聯於使用Walsh隱蔽 編碼j之AP的STA可在每當MAC訊框計數器=0時傳輸其回 應(echo)。會使用用以允許鄰近ap偵測相關ap區中存取之 STA且高效率地與彼等STA共存所需的資訊來編碼該回應 (echo) ° 可部署用於調節式重複使用的結構化功率退回。當一系 統必須在另一 AP附近重複使用每個FA而變成擁塞時,可 能會希望利用一種結構化功率退回機制,藉以允許兩區中 的終端機以最大效率運作。當偵測到擁塞時,就可以使用 96872.doc -78- 200527868 功率控制來改良系統效率。即,AP可使用一種同步於其 MAC訊框計數器的結構化功率退回機制,而不是整個時間 都使用全功率傳輸。 舉例而言,假設兩個AP正在使用相同的FA。一旦AP偵 測到此狀況,雙方可制定一已知之功率退回原則。例如, 雙方AP都使用一種退回機制,用於允許在MAC訊框0使用 全功率Ptot、在MAC訊框1使用功率Ptot(15/16)、…、在 MAC訊框15使用功率Ptot/16。由於彼等AP已同步,並且 各自訊框計數器已交錯排列,所以任一 AP區都不是同時使 用全功率。目標是選擇得以允許每AP區中的STA以最高可 行輸送量運作的退回模式。 一既定AP所使用的退回模式可能是所偵測到之干擾程 度的函數。在此實例中,一既定AP可使用至多16個已知退 回模式。AP可在BCH中運送退回模式,以及在相關聯於一 AP的STA所傳輸的回應(echo)中運送退回模式。As described above ', the APs can be organized according to a leading cover code. In this example, each Ap can be concealed using a Walsh sequence of length i6 (Walsh sequence cover). Any number of encodings of various lengths can be deployed. Leader concealment is used to sign in a super. Here, in the example of the modulation beacon signal (Beacon) during 16 consecutive MAC frame periods, the super frame period is equal to 32 milliseconds (ie, the beacon signal). In the case of λ 1 L ^, factory test, the STA can integrate the super frame time interval in a coherent manner, thereby determining the relevant pilot power of a given AP. As described above, an AP can select its Walsh code from the undetected Walsh code pool in the state of AT, J. If all codes detected (on the same FA) have been detected, ap can sort the Yau Temple codes in the strongest to weakest order. The AP can reuse the Walsh encoding which is relative to the weakest Walsh encoding detected relative to 96872.doc -77. 200527868. To facilitate identification of neighboring APs, an STA can be used to transmit an echo to identify the corresponding AP. Therefore, as described above, an AP that does not detect neighboring APs can detect a corresponding STA response (ech0) to identify the AP and its timing in this way. Each AP can transmit its group information in its beacon signal and each STA can act as a repeater to retransmit the AP configuration information and timing to any receiver's neighbors AP. It may be required that the active STA (according to the command from the AP) transmit a designated mode 'to allow nearby APs to use the same FA to detect the presence of neighboring systems. A simple way to facilitate this is to define an observation interval (ie, between the fch and RCH segments) in the MAC frame that the non-AP uses to transmit any traffic. The duration of the observation interval can be defined to be sufficient to handle the maximum differential propagation delay between the STA associated with the AP and the STA associated with the neighboring AP (for example, 16 chips or 2 OFDM symbols). For example, an STA associated with an AP using Walsh concealment code j may transmit its echo whenever the MAC frame counter = 0. The response is encoded using the information needed to allow neighboring APs to detect STAs accessed in the relevant AP area and coexist with them efficiently. ° Structured power that can be deployed for regulated reuse return. When a system has to reuse each FA near another AP to become congested, it may be desirable to use a structured power fallback mechanism to allow terminals in both regions to operate at maximum efficiency. When congestion is detected, 96872.doc -78- 200527868 power control can be used to improve system efficiency. That is, the AP can use a structured power bounce mechanism that is synchronized with its MAC frame counter instead of using full power transmission for the entire time. For example, suppose two APs are using the same FA. Once the AP detects this condition, the two parties can develop a known power return principle. For example, both APs use a fallback mechanism to allow full power Ptot in MAC frame 0, power Ptot (15/16) in MAC frame 1, ..., power Ptot / 16 in MAC frame 15. Since their APs are synchronized and their frame counters are staggered, it is not possible to use full power at the same time in any AP area. The goal is to choose a fallback mode that allows STAs in each AP zone to operate with the highest possible throughput. The bounce mode used by a given AP may be a function of the degree of interference detected. In this example, a given AP can use up to 16 known return modes. The AP may carry the bounce mode in the BCH and the echo in the echo transmitted by the STA associated with an AP.

Walton等人所提出之美國專利案第6,493,33 1號標題為 「Method and apparatus for controlling transmissions of a communications systems」中詳述一種示範性退回機制,這 份專利案已讓渡給本發明受讓人。 圖53繪示一種用於與舊有系統交互操作之技術的另一示 範性具體實施例。圖中繪示一示範性MAC訊框1500,如前 文參考圖15之說明所述。採用一種時槽模式,其中定義多 個時槽時間間隔5310。一時槽時間間隔53 10包括一 ΜΙΜΟ 前導時間間隔53 15及時槽間隙5320。如圖所示,插入多個 96872.doc -79- 200527868 前導53 15,藉此保留頻道以防止受到按照規則(例如, EDC A)運作之其它站台(包括Ap)干擾。修改版MAC訊框 5 3 30實質上包括該MAC訊框15〇〇及多個插入之前導5315, 藉以保持媒體控制權。圖5 3僅為例證,如熟悉此項技術者 所知。一時槽模式可與任何類型MAC訊框合併,本文中已 詳述各項實例。 在此實例中,基於解說目的,假設一舊有8〇2· 11系統使 用的MAC訊框為1204毫秒之倍數。MAC訊框可被設定為 要同步的2.048毫秒。在目標引導訊號傳輸時間(TBTT), 一宣告CFP持續期間促使STA設定自己的NAV。在該CFP期 間’ BSS中的STA不應傳輸直到被輪詢。如上文所述,Ap 可選擇性傳送一rTS,並且有STA回應(ech〇)—完全相同的 CTS,藉此進一步清空bss。此CTS可能是一來自所有STA 的同步化傳輸。在此實例中,藉由確保MAC訊框總是在 2.048毫秒邊界開始,就可以排除不穩定。甚至使用按透 視法縮短的TBTT,這項做法仍然會維護介於鄰近/重叠 BBS之間的時間同步。各種其它技術(例如,如上文所述之 技術)可與下文所述之技術組合。一旦媒體已保留用於修 改版MAC訊框53 30,就可以使用任何可用的技術來部署時 槽模式以維持佔用媒體,藉此防止舊有STA干擾已排程之 傳輸’因而潛在降低新類別系統(即,使用如圖丨5或圖53 所示之機制的系統,或本文詳述之各種其它系統)之輸送 量增益。 在此實例中,新類別AP依據CSMA規則來拿取頻道。但 96872.doc -80- 200527868 新類別Ap應藉㈣聽信標訊號—或 /、匕、,旨試決定是否有其它BSS。但是,不需要同步 化’以便允許公平資源共用。 一旦已偵測到鄰近BSS,則新類別Αρτ藉由傳輸師標 訊號咖叫來拿取頻道。為了封鎖其它❹纟新類別 AP使用-頻率來傳輸前導,用以防止其它似使用該頻道 (即,沒有任何大於PIFS=25微秒的閒置時期)。 新類別AP可設定一計時器,藉以允許其在所決定公平 的固定持續期間佔用頻道。這可能大略同步於舊有Ap的信 標訊號(Beacon)時期或非同步(即,每2〇〇毫秒中的⑽毫 秒)。 新類別AP可在被准許的時間間隔期間的任何時間點拿 取頻道,這可能會被舊有BSS使用者延遲。如{沒有要飼 服的流量’則新類別AP可在逾期之前先讓出頻道。當新類 別AP旱取頻道時,其具有—公正時段期限的使用限制。另 外,新類別AP所建置的時序可相符於所建置的mac訊框 日丁序即,新類別信標訊號(Beacon)會在新類別AP時脈的 2.048¾秒邊界發生。以此方式,新類別§τα藉由查看彼等 特定時間間隔來決定HT AP是否已拿取頻道,就可以維持 同步化。 新頒別AP可在一信標訊號(Beac〇n)中宣告其訊框參數。 彼等訊框參數部分可包括前導時間間隔間距,用以指示整 個MAC訊框的前導傳輸頻率。請注意,新類別人?可排程 STA ’促使彼等STA的傳輸重疊於週期性叢發前導。在此 96872.doc -81- 200527868 情況下,指派重疊的STA會得知此狀況且於該時期期間忽 略前導。其它STA不知道此狀況,因此會使用一臨限值偵 測來確保在指定的時間間隔是否有傳輸前導。 可行的做法是,一 STA可在認可AP進行傳輸的瞬間傳輸 一前導,或AP在此時間間隔正在傳輸操控式前導。為了防 止其它STA使用此前導,因而造成其頻道評估錯誤,AP前 導可使用正交於共同前導Walsh隱蔽的Walsh隱蔽。可以部 署一種用於指派Walsh隱蔽的結構。例如,當STA及AP使 用不同的Walsh隱蔽時,Walsh空間可包括2N個隱蔽,其中 N個隱蔽保留給AP,而其餘隱蔽則保留給相關聯於一既定 AP的STA,彼等STA使用的隱蔽以已知方式耦合於對應AP 的Walsh隱蔽。 當新類別AP傳輸一指派給一 STA時,其預期該STA會在 指定的時間間隔進行回傳傳輸。STA可能無法接收該指 派,在此情況下,在長於PIFS的時間間隔期間,頻道可能 處於未使用狀態。為了防止發生此狀況,AP可在t < SIFS 期間感測頻道並且決定頻道是否被佔用。如果頻道未被佔 用,則AP可藉由傳輸前導以立即拿取頻道,據此定相位。 新類別頻道指派可能被分時槽成為SIFS時間間隔(16微 秒)。這項做準可以保證頻道佔用,藉此在新類別獨佔使 用時期期間封鎖舊有使用者。 由於RCH的持續期間會超過16微秒,所以RCH必須被設 計成適應互操作性。在一既定具體實施例中,如果RCH難 以適應,則當新類別MAC不具有頻道控制權時,RCH可被 96872.doc -82- 200527868 配置在舊有模式下運作(即,在在舊有模式下共存)。如圖 53所示,藉由允許STA在一前導傳輸後隨時傳輸存取要求 (即,等待4微秒,並且在8微秒期間進行傳輸),就得以適 應 F-RCH。An exemplary return mechanism is detailed in U.S. Patent No. 6,493,33 1 entitled "Method and apparatus for controlling transmissions of a communications systems" filed by Walton et al., Which has been assigned to the assignee of the present invention people. Figure 53 illustrates another exemplary embodiment of a technique for interoperating with legacy systems. An exemplary MAC frame 1500 is shown in the figure, as described above with reference to FIG. 15. A time slot mode is adopted in which multiple time slot intervals of 5310 are defined. The slot time interval 53 10 includes a MIMO lead time interval 53 15 and the slot time interval 5320. As shown in the figure, multiple 96872.doc -79- 200527868 preambles 53 15 are inserted to reserve channels to prevent interference from other stations (including Ap) operating in accordance with rules (eg, EDC A). The modified version of the MAC frame 5 3 30 essentially includes the MAC frame 1500 and multiple preambles 5315 to maintain media control. Figure 53 is for illustration only, as known to those skilled in the art. The time slot mode can be combined with any type of MAC frame, and various examples have been detailed in this article. In this example, for the purpose of explanation, it is assumed that the MAC frame used by an old 802.11 system is a multiple of 1204 milliseconds. The MAC frame can be set to 2.048 milliseconds to be synchronized. During the target guidance signal transmission time (TBTT), an announcement of the CFP duration prompts the STA to set its own NAV. During this CFP, STAs in the BSS should not transmit until they are polled. As mentioned above, Ap can selectively transmit an rTS and have a STA response (ech0)-the exact same CTS, thereby further emptying the bss. This CTS may be a synchronized transmission from all STAs. In this example, instability can be eliminated by ensuring that the MAC frame always starts at the 2.048 millisecond boundary. Even with the TBTT shortened by see-through, this approach still maintains time synchronization between adjacent / overlapping BBSs. Various other technologies (for example, the technologies described above) can be combined with the technologies described below. Once the media has been reserved for the modified MAC frame 53 30, any available technology can be used to deploy the time slot mode to maintain the occupied media, thereby preventing old STAs from interfering with scheduled transmissions, thereby potentially reducing the new category of systems (Ie, a system using the mechanism shown in Figure 5 or Figure 53, or various other systems detailed herein). In this example, the new category AP fetches the channel according to CSMA rules. But 96872.doc -80- 200527868 A new category of Ap should try to determine whether there are other BSSs by listening to beacon signals—or /, daggers. However, synchronization is not needed 'in order to allow fair resource sharing. Once a nearby BSS has been detected, the new category Αρτ fetches the channel by transmitting the signal from the signaler. In order to block other new types of APs using -frequency to transmit the preamble to prevent others from using the channel (ie, there is no idle period greater than PIFS = 25 microseconds). The new class AP may set a timer to allow it to occupy the channel for a fixed and fair duration that is determined to be fair. This may be roughly synchronous with the beacon signal (Beacon) period of the old Ap or asynchronous (i.e., milliseconds every 200 milliseconds). New class APs can access channels at any point during the permitted time interval, which may be delayed by legacy BSS users. If {no traffic to feed ”, the new category AP can give up the channel before it expires. When a new category of AP accesses a channel, it has a limited use of the fair period. In addition, the timing established by the new class AP can be consistent with the established mac frame date order, that is, the new class beacon signal (Beacon) occurs at the 2.048¾ second boundary of the clock of the new class AP. In this way, the new category §τα can maintain synchronization by looking at their specific time intervals to determine if the HT AP has taken the channel. The newly awarded AP can announce its frame parameters in a beacon signal. The frame parameter part of them may include a preamble time interval interval to indicate the preamble transmission frequency of the entire MAC frame. Please note that the new category of people? Scheduled STA's cause transmissions of their STAs to overlap the periodic burst preamble. In the case of 96872.doc -81- 200527868, the STAs assigned to overlap will learn of this condition and ignore the leader during this period. Other STAs are unaware of this condition and therefore will use a threshold detection to ensure that there is a transmission preamble at a specified time interval. A feasible approach is that a STA can transmit a preamble at the instant when the AP is authorized to transmit, or the AP is transmitting a controlled preamble at this time interval. In order to prevent other STAs from using the preamble, which will cause their channel evaluation errors, the AP preamble may use the Walsh concealment orthogonal to the common preamble Walsh concealment. A structure for assigning Walsh concealment can be deployed. For example, when the STA and AP use different Walsh concealment, the Walsh space may include 2N concealment, of which N concealment is reserved for the AP, and the remaining concealment is reserved for the STA associated with a given AP, and the concealment used by other STAs. Walsh concealment coupled to the corresponding AP in a known manner. When a new class AP transmits an assignment to an STA, it expects that the STA will perform a backhaul transmission at a specified time interval. The STA may not be able to receive the assignment, in which case the channel may be unused during time intervals longer than PIFS. To prevent this from happening, the AP can sense the channel during t < SIFS and decide whether the channel is occupied. If the channel is not occupied, the AP can take the channel immediately by transmitting the preamble and phase it accordingly. New category channel assignments may be time-slotted into SIFS intervals (16 microseconds). This accuracy guarantees channel occupancy, thereby blocking older users during periods of exclusive use of the new category. Since the duration of the RCH can exceed 16 microseconds, the RCH must be designed to accommodate interoperability. In a given specific embodiment, if the RCH is difficult to adapt, when the new class MAC does not have channel control, the RCH can be configured to operate in the legacy mode by 96872.doc -82- 200527868 (ie, in the legacy mode Coexist). As shown in Figure 53, by allowing the STA to transmit an access request at any time after a preamble transmission (that is, waiting for 4 microseconds and transmitting during 8 microseconds), F-RCH can be adapted.

示範性具體實施例:增強型802.1 1 ΜΙΜΟ WLAN 下文詳述用於解說前文介紹之各項態樣以及額外態樣的 示範性具體實施例。在此實例中,解說一使用ΜΙΜΟ的增 強型802.11 WLAN。會詳述各項MAC增強方案,還會詳述 在MAC層和實體層使用之對應資料及發訊號結構。熟悉此 項技術者應明白,僅揭示WLAN功能的例證子集,並且很 容易調整本文之講授内容以配合802.1 1舊有系統的互操作 性,以及與其它系統的互操作性。 下文詳述之示範性具體實施例的特徵在於,與舊有 802.11a、802.llg STA的互操作性,以及與802.1 le草稿及 預期最終標準的互操作性。示範性具體實施例包括一 ΜΙΜΟ OFDM AP,此名稱是為了區別舊有AP。如上文所 述,由於回溯相容性,所以舊有STA可應相關聯於一回溯 相容。但是,ΜΙΜΟ OFDM AP可明確拒絕來自一舊有STA 的關聯性要求,若希望如此。DFS程序可將被拒絕之STA 導向至支援舊有作業的其它AP(可能是舊有AP或其它 ΜΙΜΟ OFDM AP)。 ΜΙΜΟ OFDM STA 能夠相關聯於一 802.1 1a 或 802.1 1g BSS,或相關聯於無AP存在的獨立BSS(Independent BSS ; IBSS)。因此,對於此類作業,STA將實行802.11a、 96872.doc -83- 200527868 802. llg以及預期最終草稿802. lie的所有強制功能。 當舊有與ΜΙΜΟ OFDM STA共用相同RF頻道時,會在 BSS或IBSS中支援各種功能。建議的ΜΙΜΟ OFDM PHY頻 譜遮罩(spectral mask)相容於現有的802.11a、802.llg頻譜 遮罩,所以沒有任何額外鄰近頻道干擾被引入舊有STA。· PLCP標頭(下文會詳細說明)中的延伸式SIGNAL欄位回溯 相容於舊有802.1 1中的SIGNAL攔位。舊有SIGNAL欄位中 的未使用之RATE值被設定為定義新PPDU類型(下文會詳細 說明)。調節型協調功能(ACF)(下文會詳細說明)准許在舊 有與ΜΙΜΟ OFDM STA之間任意共用媒體。可按照AP排程 器之決定,將802.1 1e EDCA、802.11e CAP及SCAP等時期 (下文會介紹)任意穿插在任何信標訊號(Beacon)時間間隔 中〇 如上文所述,需要高效率MAC,以便高效率充分利用 ΜΙΜΟ WLAN實體層所啟用的高資料速率。下文會詳細說 明此示範性MAC的各項屬性。下列是數項示範性屬性: PHY速率及傳輸模式調節高效率利用ΜΙΜΟ頻道的容 量。 ΡΗΥ的低延時服務提供低端對端延遲,藉以應對高輸送 量(例如,多媒體)應用的需求。在低負載下使用競爭式 MAC技術,或在高負載系統中使用集中式或分散式排程作 業,就得以達成低延時運作。低延時提供許多優點。例 如,低延時准許快速速率調整,以最大化實體層資料速 率。低延時准許使用小緩衝器來實作低成本MAC實施,而 96872.doc -84- 200527868 不會遲滯(stamng)ARQ。低延時也最小化端對端延遲,而 適用於多媒體及高輸送量應用。 另一項屬性是高mac效率及低競爭附加項。在競爭式 MAC中,在高資料速率下,有用傳輸所佔用的時間會縮 短,而該時間的增量分數被耗用在附加項、碰撞及閒置時 期。透過排私作業,以及透過彙總多個較高層封包(例 如,IP負料元)成為一單一 MAC訊框,就得以減少浪費的 媒體時間。還可形成彙總式訊框,藉以最小化前導項 (preamble)及 5川練附加項(training 〇verhead)。 PHY所啟用的高資料速率准許簡化的Q〇s處理。 下文詳述之示範性mac增強方案被設計成,以回溯相容 於802.1 1g及802.11a的方式來應對前述的效能準則。此 外,還支援且改良草稿標準8〇2· ne中所包含的功能(如上 文所述),包含如TXOP和直接鏈路協定(DLp)等功能,以 及選用性區塊認可(Block Ack)機制。 在下文描述的示範性具體實施例中,會針對前文介紹的 某些觀念來使用新的專門用語。表格1中詳述新專門用語 對照。 96872.doc •85- 200527868 表格1 :專門用語對照Exemplary embodiments: Enhanced 802.1 1 MIMO WLAN Exemplary embodiments are described below to explain various aspects and additional aspects introduced above. In this example, an enhanced 802.11 WLAN using MIMO is illustrated. Each MAC enhancement scheme will be detailed, and the corresponding data and signal structure used in the MAC layer and the physical layer will also be detailed. Those familiar with this technology should understand that only an illustrative subset of WLAN functionality is disclosed and it is easy to adapt the teachings in this article to match the interoperability of 802.1 1 legacy systems, as well as interoperability with other systems. The exemplary embodiments detailed below are characterized by interoperability with legacy 802.11a, 802.llg STAs, and interoperability with 802.1 le drafts and expected final standards. The exemplary embodiment includes a MIMO OFDM AP, this name is to distinguish the old AP. As mentioned above, legacy STAs should be associated with a retrospective compatibility due to retrospective compatibility. However, the MIMO OFDM AP can explicitly reject the association request from an old STA, if so. The DFS procedure can direct rejected STAs to other APs (possibly old APs or other MIMO OFDM APs) that support legacy operations. ΜΙΜΟ OFDM STA can be associated with an 802.1 1a or 802.1 1g BSS, or an independent BSS (Independent BSS; IBSS) without an AP. Therefore, for such operations, the STA will implement all mandatory functions of 802.11a, 96872.doc -83- 200527868 802.llg, and the expected final draft 802.lie. When the old RF channel is shared with the MIMO OFDM STA, various functions are supported in the BSS or IBSS. The proposed MIMO PHY spectrum mask is compatible with the existing 802.11a and 802.llg spectrum masks, so no additional adjacent channel interference is introduced into the old STAs. · The extended SIGNAL field in the PLCP header (explained below) is backwards compatible with the SIGNAL block in the old 802.1 1. The unused RATE value in the old SIGNAL field is set to define the new PPDU type (explained in detail below). The Adjusted Coordination Function (ACF) (explained in more detail below) allows any media to be shared arbitrarily between the legacy and MIMO OFDM STAs. According to the decision of the AP scheduler, the 802.1 1e EDCA, 802.11e CAP, and SCAP periods (described below) can be arbitrarily interspersed in any beacon signal interval. As described above, a high-efficiency MAC is required In order to make full use of the high data rate enabled by the MIMO WLAN physical layer with high efficiency. The attributes of this exemplary MAC are explained in detail below. The following are several exemplary attributes: PHY rate and transmission mode adjustments make efficient use of the capacity of the MIMO channel. PU's low-latency service provides low-end-to-end latency to meet the needs of high-throughput (eg, multimedia) applications. Low-latency operation can be achieved by using competitive MAC technology under low load, or using centralized or decentralized scheduling in high-load systems. Low latency provides many advantages. For example, low latency allows fast rate adjustments to maximize the physical layer data rate. Low latency allows the use of small buffers to implement low-cost MAC implementations, while 96872.doc -84- 200527868 does not stamng ARQ. Low latency also minimizes end-to-end delays and is suitable for multimedia and high throughput applications. Another attribute is high mac efficiency and low competition add-ons. In a competitive MAC, at high data rates, the time taken for useful transmission is reduced, and the incremental fraction of that time is consumed in additional terms, collisions, and idle periods. By eliminating smuggling operations and by aggregating multiple higher-layer packets (for example, IP minus elements) into a single MAC frame, wasted media time can be reduced. A summary frame can also be formed to minimize the preamble and training 〇verhead. The high data rate enabled by the PHY allows simplified Qos processing. The exemplary mac enhancement scheme detailed below is designed to address the aforementioned performance criteria in a way that is backward compatible with 802.1 1g and 802.11a. In addition, it also supports and improves the functions contained in the draft standard 802 · ne (as described above), including functions such as TXOP and Direct Link Protocol (DLp), and the optional Block Ack mechanism . In the exemplary embodiments described below, new terminology will be used for certain concepts introduced previously. Table 1 details the comparison of the new terminology. 96872.doc • 85- 200527868 Table 1: Comparison of specific terms

早期的專門用語 前段落中使用的用詞 對照至新專門用語 後段落中使用的用詞 MUX PDU或 MPDU MAC訊框 局部MPDU MAC訊框片段 MAC PDU PPDU 廣播頻道訊息(BCΗ)及控制 頻道訊息(CCH) SCHED訊息 控制頻道訊息子頻道 SCHED訊息的CTRLJ片段 TDD MAC訊框間隔 排程式存取時期(SCAP) F-TCH(正向流量頻道) 排程式AP-STA傳輸 R-TCH(反向流量頻道) 排程式STA-AP或STA-STA傳輸 A-TCH(專有對等式流量頻 道) 保護之EDCA或ΜΙΜΟ OFDM EDCA PCCH(對等式控制頻道) PLCP標頭SIGNAL欄位 RCH FRACH 彈性訊框彙總 在此示範性具體實施例中,促進彈性訊框彙總。圖35繪 示在一彙總訊框内封裝一或多個MAC訊框(或片段)。訊框 彙總准許在一彙總訊框3520内封裝一或多個MAC訊框(或 片段)3510,其可包含標頭壓縮,如下文所述。彙總之 96872.doc -86- 200527868 MAC訊框3520構成可傳輸為一單一 PPDU的PSDU 3530。 該彙總訊框3520可包括類型資料(管理或控制)的封裝訊框 (或片段)35 10。當啟用隱私權時,訊框封包承載可被加 密。「以無危險方式」來傳輸一加密訊框的MAC訊框標 頭。 如剛剛的說明所述,此MAC層級訊框彙總准許傳輸含有 零個 IFS 或 BIFS(Burst Interframe Spacing(叢發訊框間間 距),下文會進一步詳細說明)的訊框至相同的接收方 STA。在某些應用中,會希望准許AP傳輸含有零個IFS的 訊框至多個接收方STA。透過使用下文所述之SCBED訊框 就可准許此項做法。SCBED訊框定義多個TXOP的開始時 間。當AP進行連續(back-to-back)傳輸至多個接收方STA 時,就可以排除前導項及IFS。這稱為PPDU彙總,藉以區 別MAC層級訊框彙總。 一示範性彙總之MAC訊框傳輸(即,一 PPDU)以一前導 項開始,之後接著ΜΙΜΟ OFDM PLCP標頭(包括一 SIGNAL 攔位,該SIGNAL欄位可包括兩個欄位SIGNAL 1及 SIGNAL2),之後接著MEMO OFDM訓練符號(若有的話)。 下文中將參考圖49至圖52來詳細說明示範性PPDU格式。 該彙總MAC訊框彈性地彙總要傳輸至相同接收方STA的一 或多個封裝訊框或片段。(SCHED訊息(下文會進一步詳細 說明)准許彙總從AP傳至多個接收方STA的TXOP)。沒有有 關可彙總的訊框及片段數量之限制。可能會有透過協商所 建置之彙總訊框的最大大小之限制。一般而言,彙總訊框 96872.doc -87- 200527868 中的第- &最後訊框可能是基於高效率封裝所建立的片 段。當一彙總訊框内包含數個封裝之資料訊框時,則資料 及QoS資料訊框的MAC標頭可被壓縮,如下文所述。 傳輸方MAC可透過使用彈性訊框彙總,嘗試最小化ρΗγ 和PLCP附加項以及閒置時期。可達成此目的之方式為, 將訊框彙總在一起以排除訊框間間距和pLcp標頭,以及 彈性訊框片段,藉此完全佔用一 τχ〇ρ中的可用空間。在 一項示範性技術中,MAC先依據目前的資料速率及所指派 或競爭式τχορ的持續期間,來計算出要提供給ρΗγ的八 位兀組數量。接著,可封裝完整及分割的Mac訊框,藉此 佔用整個TX0P。 如果無法在一 TX0P中的剩餘空間中容納一完整的訊 框,則MAC可分割下一訊框,以便儘可能地佔用該τχ〇ρ 中剩餘的八位元組。可基於高效率封裝目的來任意分割訊 框。在一項示範性具體實施例中,此項任意分割須遵守每 汛框取大16個片段的限制。在替代具體實施例中,此項限 _ 制可能非屬必要。可以在後續τχ〇ρ中傳輸MAC訊框的其 餘片段。在後續TX0P中,MAC可將較高優先順序授予給 未完全傳輸之訊框的片段。 在被插入在每個封裝之訊框(或片段)的訊框標頭中插入 一彙總標頭(在此實例中為2個八位元組,下文會進一步詳 細說明)。該彙總標頭中的一長度欄位指示出封裝之MAC 訊框的長度(以八位元組為單位),並且接收器會使用彼長 度欄位來從該彙總訊框擷取訊框(及片段)。所建議之 96872.doc -88- 200527868 SIGNAL欄位中的PPDU大小攔位提供ΜΙΜΟ OFDM PPDU 傳輸的大小(OFDM符號的數量),同時藉由該彙總標頭來 指示每個封裝之MAC訊框的長度(以八位元組為單位)。 封裝之訊框的標頭壓縮 圖36繪示一舊有MAC訊框3600,其包括MAC標頭 3 660,之後接著一訊框主體3650(其可包含可變數量N的八 位元組)以及一訊框檢查符號(Frame Check Symbol ; FCS)3655(在此實例中為4個八位元組)。802.11中詳述此先 前技術MAC訊框格式。MAC標頭3660包括一訊框控制欄 位3610(2個八位元組)、一持續期間/ID欄位3615(2個八位 元組)、一序列控制攔位3635(2個八位元組)及一 Q〇S控制 欄位3645(2個八位元組)。此外,還包括四個位址欄位:位 址1 3620、位址2 3625、位址3 3630及位址4 3640(各6個八 位元組)。該等處理器位址也分別稱為TA、RA、S A及 DA。TA是傳輸方站台位址。RA是接收方站台位址。SA是 來源站台位址。DA是目的地站台位址。 當一彙總訊框内包含數個封裝之資料訊框時,則資料及 QoS資料訊框的MAC標頭可被壓縮。圖37至39繪示QoS資 料訊框的示範性壓縮MAC標頭。請注意,會依據壓縮 MAC標頭及(已加密或未加密)封包承載來計算FCS。 如圖37至39所示,當使用一 ΜΙΜΟ Data PPDU(類型 0000)來傳輸訊框時,一彙總標頭攔位被導入MAC訊框 3 600的MAC標頭3660中,藉此建立一封裝之MAC訊框, 即,分別是3705、3 805或3905。包含該彙總標頭欄位的該 96872.doc -89- 200527868 MAC標頭被稱為延伸式MAC標頭(即,分別是37〇〇、38〇〇 或3900)。一或多個封裝之管理、控制及/或資料訊框(包括 QoS資料)可被彙總成為一彙總MAC訊框。當使用資料隱私 權時,資料或QoS資料訊框的封包承載可被加密。 針對該彙總訊框(分別是3705、38〇5或39〇5)中所插入的 每個訊框(或片段)插入一彙總標頭371〇。標頭壓縮由該彙 總標頭欄位予以指示,下文會詳細說明。資料或資料 訊框的訊框標頭可被壓縮,藉此排除冗餘欄位。圖37所示 之彙總訊框3705繪示一未壓縮訊框,其包含所有四個位址 及持續期間/ID欄位。 在傳輸一未壓縮彙總訊框之後,額外之彙總訊框不需要 識別傳輸方及接收方站台位址(因為完全相同)。因此,可 忽略位址1 3620及位址2 3625。不需要對於該彙總訊框中 的後續訊框包含該持續期間/ID攔位3615。可使用持續期 間來設定NAV。會依據内容來多載(〇verl〇ad)該持續期間 /ID攔位。在輪詢訊息中,該持續期間/ID欄位該包含存取 ID(Access ID ; AID)。在其它訊息中,該持續期間/m欄位 指定用於設定NAV的持續期間。圖38繪示相對應之訊框 3805 ° 當來源位址及目的地站台位址含有重複的資訊時,就可 以進一步壓縮。在此情況下,還可以移除位址3 3630及位 址4 3640,產生圖39所示之訊框3905。 當移除欄位時,為了解壓縮,接收器可將來自先前標頭 的相對應欄位(解壓縮之後)插入在該彙總訊框中。在此實 96872.doc -90- 200527868The wording used in the pre-terms of the earlier term is compared to the word used in the post-term of the new term. MUX PDU or MPDU MAC frame Local MPDU MAC frame fragment MAC PDU PPDU Broadcast channel information (BCΗ) and control channel information ( CCH) SCHED message Control channel message Sub-channel SCHJ message CTRLJ fragment TDD MAC frame interval Schedule access period (SCAP) F-TCH (forward traffic channel) Schedule AP-STA transmission R-TCH (reverse traffic channel ) Program STA-AP or STA-STA transmit A-TCH (proprietary peer-to-peer traffic channel) protected EDCA or MIMO OFDM EDCA PCCH (peer-to-peer control channel) PLCP header SIGNAL field RCH FRACH flexible frame summary In this exemplary embodiment, flexible frame aggregation is facilitated. FIG. 35 illustrates encapsulation of one or more MAC frames (or fragments) in a summary frame. Frame aggregation permits encapsulation of one or more MAC frames (or fragments) 3510 within a summary frame 3520, which may include header compression, as described below. The summary 96872.doc -86- 200527868 MAC frame 3520 constitutes a PSDU 3530 that can be transmitted as a single PPDU. The aggregate frame 3520 may include an encapsulated frame (or fragment) 35 10 of type data (management or control). When privacy is enabled, the frame packet bearer can be encrypted. The MAC frame header of an encrypted frame is transmitted "in a non-hazardous manner". As stated in the description just now, this MAC-level frame aggregation allows transmission of frames containing zero IFS or BIFS (Burst Interframe Spacing), which will be explained in more detail below) to the same recipient STA. In some applications, it may be desirable to allow the AP to transmit frames with zero IFS to multiple receiver STAs. This is permitted by using the SCBED frame described below. The SCBED frame defines the start time of multiple TXOPs. When the AP performs back-to-back transmission to multiple receiver STAs, it can exclude leading items and IFS. This is called PPDU aggregation, which distinguishes MAC-level frame aggregation. An exemplary aggregated MAC frame transmission (ie, a PPDU) starts with a preamble, followed by a MIMO PLCP header (including a SIGNAL block, which can include two fields SIGNAL 1 and SIGNAL2) , Followed by MEMO OFDM training symbols (if any). Hereinafter, an exemplary PPDU format will be described in detail with reference to FIGS. 49 to 52. The aggregate MAC frame flexibly aggregates one or more encapsulated frames or fragments to be transmitted to the same recipient STA. (SCHED messages (explained in more detail below) allow summary TXOPs transmitted from the AP to multiple receiver STAs). There are no restrictions on the number of frames and clips that can be aggregated. There may be a limit on the maximum size of the summary frame built through negotiation. In general, the & last frame in the summary frame 96872.doc -87- 200527868 may be a segment based on high-efficiency packaging. When an aggregated frame contains several encapsulated data frames, the MAC header of the data and QoS data frames can be compressed, as described below. The transmitting MAC can try to minimize ρΗγ and PLCP add-ons and idle periods by using flexible frame aggregation. The way to achieve this is to aggregate the frames together to exclude inter-frame spacing and pLcp headers, as well as flexible frame fragments, thereby completely occupying the available space in a τχ〇ρ. In an exemplary technique, the MAC first calculates the number of octets to be provided to ρΗγ based on the current data rate and the duration of the assigned or competitive τχορ. Then, a complete and divided Mac frame can be encapsulated, thereby occupying the entire TX0P. If a complete frame cannot be accommodated in the remaining space in a TXOP, the MAC can split the next frame in order to occupy as much as possible the remaining octets in τχ〇ρ. Frames can be arbitrarily divided for high-efficiency packaging purposes. In an exemplary embodiment, this arbitrary segmentation is subject to the limitation of taking 16 large segments per flood frame. In alternative embodiments, this limitation may not be necessary. The remaining fragments of the MAC frame can be transmitted in subsequent τχ〇ρ. In subsequent TX0Ps, the MAC may grant higher priority to segments of frames that are not completely transmitted. Insert a summary header (2 octets in this example, described in more detail below) into the frame header that is inserted into the frame (or fragment) of each package. A length field in the summary header indicates the length of the encapsulated MAC frame (in octets), and the receiver uses that length field to retrieve the frame from the summary frame (and Fragment). The suggested PPDU size block in 96872.doc -88- 200527868 SIGNAL field provides the size of the MIMO PPDU transmission (the number of OFDM symbols), and at the same time the summary header is used to indicate the size of each encapsulated MAC frame. Length in octets. Header Compression of the Encapsulated Frame Figure 36 shows an old MAC frame 3600, which includes a MAC header 3 660, followed by a frame body 3650 (which can contain a variable number of N octets) and A frame check symbol (FCS) 3655 (4 octets in this example). This prior art MAC frame format is detailed in 802.11. The MAC header 3660 includes a frame control field 3610 (2 octets), a duration / ID field 3615 (2 octets), and a sequence control block 3635 (2 octets). Group) and a QOS control field of 3645 (2 octets). In addition, there are four address fields: Address 1 3620, Address 2 3625, Address 3 3630, and Address 4 3640 (6 octets each). These processor addresses are also referred to as TA, RA, SA, and DA, respectively. TA is the address of the transmitting station. RA is the receiver station address. SA is the source station address. DA is the destination station address. When an aggregated frame contains several encapsulated data frames, the MAC header of the data and QoS data frames can be compressed. Figures 37 to 39 illustrate exemplary compressed MAC headers for QoS data frames. Note that FCS is calculated based on the compressed MAC header and (encrypted or unencrypted) packet bearer. As shown in Figures 37 to 39, when a MIMO Data PPDU (type 0000) is used to transmit a frame, a summary header block is introduced into the MAC header 3660 of the MAC frame 3 600, thereby establishing an encapsulated The MAC frame, that is, 3705, 3 805, or 3905, respectively. The 96872.doc -89- 200527868 MAC header containing the summary header field is called an extended MAC header (ie, 37000, 3800, or 3900, respectively). One or more encapsulated management, control, and / or data frames (including QoS data) can be aggregated into an aggregate MAC frame. When data privacy is used, the packet bearer of the data or QoS data frame can be encrypted. For each frame (or segment) inserted in the summary frame (3705, 3805, or 3905, respectively), a summary header 3710 is inserted. Header compression is indicated by this aggregate header field, which is explained in more detail below. Data or data frame headers can be compressed to eliminate redundant fields. The summary frame 3705 shown in FIG. 37 shows an uncompressed frame containing all four addresses and duration / ID fields. After transmitting an uncompressed summary frame, the additional summary frame does not need to identify the transmitter and receiver station addresses (because they are identical). Therefore, address 1 3620 and address 2 3625 can be ignored. There is no need to include the duration / ID block 3615 for subsequent frames of the summary frame. NAV can be set using duration. The duration / ID block will be overloaded (〇verl0ad) according to the content. In the polling message, the duration / ID field should include an Access ID (AID). In other messages, the duration / m field specifies the duration for setting the NAV. Figure 38 shows the corresponding frame 3805 ° When the source address and destination station address contain duplicate information, it can be further compressed. In this case, the address 3 3630 and the address 4 3640 can also be removed to generate a frame 3905 shown in FIG. 39. When the field is removed, the receiver can insert the corresponding field (after decompression) from the previous header in the summary frame to understand the compression. 96872.doc -90- 200527868

總訊框擷取訊框(及片段)。 使用該長度攔位,以便從該彙 長度攔位指示出含壓縮標頭之 讯框的長度(以八位元組為單位)。 擷取之後,移除該彙總標頭欄位。接著,解壓縮之訊框 被傳送給解密引擎。在解密期間,可能會基於訊息完整性 確認而需要(解壓縮)MAC標頭中的攔位。 圖40繪示一示範性彙總標頭3710。針對一 MIMQ Dau PPDU中所傳輸的一或多個訊框(已加密或未加密),一彙總 標頭欄位被加入至每個訊框(或片段)標頭。該彙總標頭包 括一 2位元之彙總標頭類型攔位4〇1〇(用以指示是否有採用 標頭壓縮及採用的標頭壓縮類型)以及一丨2位元之長度搁 位4030。類型00訊框不採用標頭壓縮。類型〇 1訊框已移除 持續期間/ID、位址1及位址2攔位。如同類型〇丨訊框,類 型10 框已移除持續期間/ID、位址1及位址2欄位,而且 還已移除位址3及位址4欄位。該彙總標頭中的長度攔位 4030指示出含壓縮標頭之訊框的長度(以八位元組為單 位)。2個位元4020被保留。表格2概述彙總標頭類型。 96872.doc -91- 200527868 表格2 :彙總標頭類型Frame capture frame (and clip). This length stop is used to indicate from the sink length stop the length of the frame containing the compressed header (in octets). After extraction, remove the summary header field. The decompressed frame is then passed to the decryption engine. During decryption, a block in the MAC header may be needed (decompressed) based on the message integrity confirmation. FIG. 40 illustrates an exemplary summary header 3710. For one or more frames (encrypted or unencrypted) transmitted in a MIMQ Dau PPDU, a summary header field is added to each frame (or fragment) header. The summary header includes a 2-bit summary header type block 4010 (to indicate whether there is header compression and the type of header compression used) and a 2-bit length 4030. Type 00 frames do not use header compression. Type 0 1 frame removed Duration / ID, address 1 and address 2 blocks. Like the type 0 frame, the type 10 frame has been removed from the Duration / ID, Address 1 and Address 2 fields, and the Address 3 and Address 4 fields have been removed. The length block 4030 in the summary header indicates the length (in octets) of the frame containing the compressed header. 2 bits 4020 are reserved. Table 2 summarizes the summary header types. 96872.doc -91- 200527868 Table 2: Summary header types

回應、解除關聯性、鑑認及取消鑑認。下列控制訊框可連 同資料訊框一起被封裝在一彙總訊框中:B1〇ckAck& BlockAckRequcst。在替代具體實施例中,可以封裝任何 類型訊框。 調節型協調功能 調節型協調功能(ACF)是HCCA及EDCA的延伸功能,其 准許彈性、高效率低延時排程作業,適用於配合ΜΙΜΟ PHY所啟用的高資料速率運作。圖41繪示在SCF中使用之 排程存取時期訊框(Scheduled Access Period Frame ; SCAP)之示範性具體實施例。使用一 SCHED訊息4120,一 AP可在稱為排程存取時期4130期間同時排程一或多個AP-STA、STA-AP或STA_STA TXOP。彼等已排程之傳輸係以 96872.doc -92- 200527868 排程傳輸4140予以識別。該SCHED訊息4120是前文所述之 舊有H C C A輪詢的替代項。在此示範性具體實施例中, SCAP的最大准許值為4毫秒。 基於解說用途,圖41繪示示範性排程傳輸4140,其包括 AP至STA傳輸4142、STA至AP傳輸4144及STA至STA傳輸 4146。在此實例中,AP傳輸至STA B 4142A,接著傳輸至 STA D 4142B,然後傳輸至STA G 4142C。請注意,由於每 個訊框的來源(AP)皆相同,所以不需要在彼等TXOP之間 導入間隙。當來源變更時,則會在TXOP之間繪示間隙(下 文會進一步詳細說明示範性間隙)。在此段解說内容中, 在AP至STA傳輸4142之後,STA C傳輸至AP 4144A,接著 在一間隙後,STA G傳輸至AP 4144B,然後在一間隙後, STA E傳輸至AP 4144C。接著排程一對等式TXOP 4146。 在此情況下,STA E仍然是來源(傳輸至STA F),所以如果 STA E傳輸功率未變更就不需要導入間隙,否則可使用一 BIFS間隙。可排程額外STA至STA傳輸,但在此實例中未 繪示。可按任何順序來排程任何TXOP組合。圖中所示之 TXOP類型順序僅僅是示範性慣例。然而,可能會希望排 程TXOP,藉以最小化必要的間隙數量,但非屬強制性。 該排程存取時期41 30還可包含一專用於快速隨機存取頻 道(Fast Random Access Channel ; FRACH)傳輸的 FRACH 時 期4150(其中一 STA可提出一配置要求)及/或一 ΜΙΜΟ OFDM EDCA 4160時期(在此時期期間,ΜΙΜΟ STA可使用 EDCA程序)。彼等競爭式存取時期會受到SCAP的NAV設 96872.doc • 93- 200527868 定所保護。在ΜΙΜΟ OFDM EDCA 4160時期期間,ΜΙΜΟ STA使用EDCA程序來存取媒體,而不需要與舊有STA競 爭。任一受保護競爭時期的傳輸都使用ΜΙΜΟ PLCP標頭 (下文會進一步詳細說明)。在此項具體實施例中,在受保 護競爭時期期間,ΑΡ不提供ΤΧΟΡ排程。 當僅有ΜΙΜΟ STA存在時,可透過SCHED訊框的一持續 期間欄位來設定SCAP的NAV(下文會進一步詳細說明 SCHED訊框)。選擇性,如果受舊有STA的保護,貝ΑΡ 可在30:11£0訊框4120之前加上一(:丁34〇-36^4110,藉此 在BSS中的一 STA處建置SCAP的NAV。 在此具體實施例中,ΜΙΜΟ STA遵守SCAP邊界。在一 SCAP中傳輸的最後STA必須在SCAP結束前的至少PIFS持 續期間終止其TXOP。ΜΙΜΟ STA也必須遵守已排程之 ΤΧΟΡ邊界,並且在指派之ΤΧΟΡ結束前完成其傳輸。這允 許後續排程之STA不需要感測頻道是否閒置就可以開始其 ΤΧΟΡ。 SCHED訊息 4120 定義排程。TXOP(AP-STA、STA-AP及 / 或STA-STA)之指派被包含括在該SCHED訊框中的CTRLJ元 素(圖45中的45 15-4530,下文會詳細說明)中。該SCHED訊 息還可定義專用於FRACH 4150的SCAP 4100部分(若有的 話)以及用於EDCA作業4160的一受保護部分(若有的話)。 如果沒有任何排程之ΤΧΟΡ指派被包含括在該SCHED訊框 中,則整個SCAP被設定為用於藉由SCAP的NAV設定而受 到舊有STA保護的EDCA傳輸(包含任何FRACH)。 96872.doc •94- 200527868 可在一 ACF能力元素中指示出SCAP期間所准許之排程 式或競爭式TXOP的最大長度。在此具體實施例中,在一 信標訊號(Beacon)時間間隔期間,SCAP長度不會變更。可 在該ACF能力元素中指示出長度。一示範性ACF元素包括 一 SCAP長度(10個位元)、一最大SCAP TXOP長度(10個位 元)、一警戒IFS(GIFS)持續期間(4個位元)以及一 FRACH回 應(4個位元)。SCAP長度欄位指示出在目前信標訊號 (Beacon)時間間隔期間的SCAP長度。該SCAP長度欄位係 以4微秒為單元予以編碼。最大SCAP TXOP長度欄位指示 出在一 SCAP期間的最大可允許TXOP長度。該最大SCAP TXOP長度欄位係以4微秒為單元予以編碼。GIFS持續期間 欄位是介於連續排程之STA TXOP之間的警戒時間間隔。 該SCAP長度攔位係為800奈秒為單元予以編碼。FRACH回 應欄位係以SCAP為單元予以編碼。AP必須使用一 FRACH PPDU來回應一接收到的要求,回應方式為將FRACH回應 SCAP内的一排程之TXOP提供給STA。 圖42繪示SCAP配合HCCA及EDCA—起使用之方式的實 例。在任何信標訊號(Beacon)時間間隔(圖中繪示為信標訊 號(Beacon)4210A-C)中,AP具有全彈性,能夠使用802.11e CAP及ΜΙΜΟ OFDM SCAP以調節方式穿插EDCA競爭式存 取持續期間。 因此,使用ACF,AP可運作為HCC A,但是具有配置 SCAP時期的額夕卜能力。例如,AP可使用CFP和CP(就如同 PCF—樣)來配置一用於輪詢作業的CAP(就如同HCCA — 96872.doc -95- 200527868 樣),或可配置一用於排程作業的SCAP。如圖42所示,在 信標訊號(Beacon)時間間隔中,AP可使用用於競爭式存取 (BDCA)4220A-F、CAP 4230A-F及 SCAP 4100A-I的時期組 合。(基於簡化,圖42中的實例未繪示任何CFP)。AP依據 其排程演算法及其對媒體佔用的觀察,來調節不同類型存 取機制佔用的媒體比例。可部署任何排程技術。AP決定所 准許的QoS資料流是否已被滿足,並且使用任何其它觀 察,包括用於調節的所測量之媒體佔用。 前文描述HCCA及相關聯的CAP。圖42繪示例證用的示 範性CAP 4230。一 AP TXOP 4232之後接著一輪詢 4234A。 HCCA ΤΧΟΡ 4236A接在一輪詢4234A之後。傳輸其它輪詢 4234B,之後接著其它各自之HCCA TXOP 4236B。 上文已描述EDCA。圖42繪示例證用的示範性EDCA 4220。繪示各種EDCA TXOPs 4222 A-C。在此實例中省略 了一 CFP。 如圖42所示,一 SCAP 4100可能屬於圖41中詳述的格 式,包括一選用之€丁3 1〇8^£4110、30:^^0 4120及排程 存取時期4130。 AP使用802.1 1傳遞流量指示訊息(Delivery Traffic Indication Message ; DTIM)來指示出排程之作業,如下所 述。DTIM包含一存取ID(AID)位元對映(bitmap),該AP或 BSS中的其它STA具有彼等存取ID的積存資料。使用 DTIM,用訊號通知所有具有ΜΙΜΟ功能之STA在信標訊號 (Beacon)之後保持喚醒狀態。在舊有及ΜΙΜΟ STA皆存在 96872.doc -96- 200527868 的BSS中,緊接在信標訊號(Beacon)之後,會先排程舊有 STA。舊有傳輸之後,立即傳輸SCHED訊息,用以指示排 程存取時期的組合。在一特定排程存取時期中未排程的具 有ΜΙΜΟ功能之STA會在SCAP的剩餘時間處於睡眠狀態, 並且喚醒以聆聽後續SCHED訊息。 使用ACF來啟用各種其它操作模式。圖43繪示一項示範 性作業,其中每個信標訊號(Beacon)間隔都包含穿插競爭 式存取時期4220之數個SCAP 4100。此模式准許「公平」 共用媒體,其中會在SCAP期間排程ΜΙΜΟ QoS資料流,而 ΜΙΜΟ非QoS資料流則是和舊有STA(若有的話)一起使用競 爭時期。穿插之時期准許低延時服務ΜΙΜΟ及舊有STA。 如上文所述,可在SCAP中的SCHED訊息前加上CTS-to-Self來保護舊有STA。如果沒有任何舊有STA存在,則不需 要CTS-to-Self(或其它舊有清除訊號)。信標訊號 (Beacon)4210可設定一長型CFP,藉以防止所有SCAP期間 有任何抵達之舊有STA。在信標訊號(Beacon)時間間隔結 束時,一CP允許最新抵達之舊有STA存取媒體。Respond, disassociate, authenticate, and cancel authentication. The following control frames can be packaged in a summary frame together with the data frame: B10ckAck & BlockAckRequcst. In alternative embodiments, any type of frame can be encapsulated. Adjustable Coordination Function The Adjustable Coordination Function (ACF) is an extension of HCCA and EDCA. It allows flexible, efficient, and low-latency scheduling. It is suitable for operation with the high data rate enabled by MIMO PHY. FIG. 41 illustrates an exemplary embodiment of a Scheduled Access Period Frame (SCAP) used in the SCF. Using a SCHED message 4120, an AP can schedule one or more AP-STA, STA-AP, or STA_STA TXOP at the same time during a period called scheduled access period 4130. Their scheduled transmissions are identified by 96872.doc -92- 200527868 scheduled transmission 4140. The SCHED message 4120 is an alternative to the previous H C C A polling described earlier. In this exemplary embodiment, the maximum allowed value of SCAP is 4 milliseconds. For illustrative purposes, FIG. 41 illustrates an exemplary scheduled transmission 4140, which includes AP to STA transmission 4142, STA to AP transmission 4144, and STA to STA transmission 4146. In this example, the AP is transmitted to STA B 4142A, then to STA D 4142B, and then to STA G 4142C. Note that since the source (AP) of each frame is the same, there is no need to introduce a gap between their TXOPs. When the source changes, gaps are drawn between the TXOPs (exemplary gaps are explained in further detail below). In this paragraph, after AP to STA transmission 4142, STA C transmits to AP 4144A, then after a gap, STA G transmits to AP 4144B, and after a gap, STA E transmits to AP 4144C. Then schedule a pair of equations TXOP 4146. In this case, STA E is still the source (transmitted to STA F), so if the transmission power of STA E is not changed, it is not necessary to introduce a gap, otherwise a BIFS gap can be used. Additional STA-to-STA transmissions can be scheduled, but not shown in this example. Any TXOP combination can be scheduled in any order. The TXOP type sequence shown in the figure is merely exemplary convention. However, it may be desirable to schedule a TXOP to minimize the number of necessary gaps, but it is not mandatory. The scheduled access period 41 30 may also include a FRACH period 4150 (where a STA can make a configuration request) and / or a MIMO OFDM EDCA 4160 dedicated to Fast Random Access Channel (FRACH) transmission. Period (During this period, MIMO STA may use the EDCA procedure). Their competitive access periods are protected by SCAP's NAV designation 96872.doc • 93- 200527868. During the MIMO EDCA 4160 period, MIMO STAs used EDCA procedures to access the media without competing with legacy STAs. Transmissions in any protected competition period use the MIMO PLCP header (described in further detail below). In this specific embodiment, AP does not provide TXOP scheduling during the protected competition period. When only MIM0 STA exists, the NAV of the SCAP can be set through a duration field of the SCHED frame (the SCHED frame will be explained in more detail below). Optional, if it is protected by the old STA, Be AP can add one (: 340-36 ^ 4110) before 30:11 £ 0 frame 4120 to build the SCAP at a STA in the BSS. NAV. In this specific embodiment, the MIMO STA adheres to the SCAP boundary. The last STA transmitted in an SCAP must terminate its TXOP for at least the PIFS duration before the end of the SCAP. The MIMO STA must also adhere to the scheduled TXOP boundary, and Complete the transmission before the end of the assigned TXOP. This allows subsequent scheduled STAs to start their TXOP without sensing whether the channel is idle. SCHED message 4120 defines the schedule. TXOP (AP-STA, STA-AP, and / or STA -STA) assignment is included in the CTRLJ element (45 15-4530 in Figure 45, described in detail below) in the SCHED frame. The SCHED message can also define the SCAP 4100 part dedicated to FRACH 4150 (if (If any) and a protected part (if any) for EDCA operation 4160. If no TXOP assignments for any schedule are included in the SCHED frame, the entire SCAP is set to be used by SCAP NAV settings are subject to the old STA-protected EDCA transmission (including any FRACH). 96872.doc • 94- 200527868 The maximum length of a scheduled or competitive TXOP allowed during SCAP can be indicated in an ACF capability element. In this specific embodiment, in A SCAP length does not change during a beacon time interval. The length can be indicated in the ACF capability element. An exemplary ACF element includes a SCAP length (10 bits), a maximum SCAP TXOP length ( 10 bits), a warning IFS (GIFS) duration (4 bits), and a FRACH response (4 bits). The SCAP length field indicates the SCAP during the current beacon signal interval Length. The SCAP length field is encoded in units of 4 microseconds. The maximum SCAP TXOP length field indicates the maximum allowable TXOP length during a SCAP. The maximum SCAP TXOP length field is in units of 4 microseconds. Encode. The duration of the GIFS field is the guard interval between consecutive scheduled STA TXOPs. The SCAP length block is encoded in units of 800 nanoseconds. The FRACH response field is in SCAP units Must be used to encode a FRACH .AP a PPDU received a response to the request, a response may be scheduled within the FRACH response to the STA to provide SCAP TXOP. Figure 42 shows an example of how SCAP is used in conjunction with HCCA and EDCA. In any beacon time interval (beacon 4210A-C is shown in the figure), the AP is fully flexible and can use 802.11e CAP and MIMO OFDM SCAP to intersperse EDCA competitive storage in a regulated manner. Take duration. Therefore, using ACF, the AP can operate as HCC A, but has the ability to configure the SCAP period. For example, the AP can use CFP and CP (just like PCF) to configure a CAP for polling jobs (like HCCA — 96872.doc -95- 200527868), or it can configure a CAP for scheduled jobs SCAP. As shown in Figure 42, during the beacon interval, the AP can use a combination of periods for contention-based access (BDCA) 4220A-F, CAP 4230A-F, and SCAP 4100A-I. (Based on simplification, the example in Figure 42 does not show any CFP). The AP adjusts the proportion of media occupied by different types of access mechanisms based on its scheduling algorithm and its observation of media occupation. Any scheduling technology can be deployed. The AP decides whether the permitted QoS data stream has been met and uses any other observations, including the measured media occupancy for adjustment. The foregoing describes HCCA and associated CAPs. Figure 42 shows an exemplary CAP 4230 for illustration. An AP TXOP 4232 is followed by a poll of the 4234A. HCCA TXOP 4236A is connected after a polling 4234A. Transmission of other polls 4234B followed by other respective HCCA TXOP 4236B. EDCA has been described above. FIG. 42 illustrates an exemplary EDCA 4220 for illustration. Show various EDCA TXOPs 4222 A-C. A CFP is omitted in this example. As shown in FIG. 42, a SCAP 4100 may belong to the format detailed in FIG. 41, including an optional 31108 £ 4110, 30: ^^ 0 4120, and a scheduled access period 4130. The AP uses 802.1 1 Delivery Traffic Indication Message (DTIM) to indicate scheduled tasks, as described below. The DTIM includes an access ID (AID) bitmap, and other STAs in the AP or BSS have accumulated data of their access IDs. With DTIM, all IMS capable STAs are signaled to stay awake after the beacon signal. In both the old and MILM0 STAs, 96872.doc -96- 200527868 BSS, the old STA will be scheduled immediately after the beacon signal. A SCHED message is transmitted immediately after the old transmission to indicate the combination of scheduled access periods. An STA with MIMO capabilities that is not scheduled during a specific scheduled access period will sleep during the rest of the SCAP and wake up to listen to subsequent SCHED messages. Use ACF to enable various other modes of operation. Figure 43 illustrates an exemplary operation in which each beacon interval includes a number of SCAP 4100 interspersed with a contention-based access period 4220. This mode allows "fair" shared media, where MIMO QoS data streams are scheduled during SCAP, while MIMO non-QoS data streams are used with legacy STAs (if any) during the contention period. The intervening period allows low-latency service MIMO and legacy STAs. As mentioned above, CTS-to-Self can be added before the SCHED message in SCAP to protect the old STA. If no old STAs are present, no CTS-to-Self (or other old clear signal) is needed. The beacon 4210 can be configured with a long CFP to prevent any old STAs arriving during all SCAP periods. At the end of the beacon signal interval, a CP allows the newly arrived old STA to access the media.

可使用圖44所示之示範性作業來啟用含大量ΜΙΜΟ STA 的最佳化低延時作業。在此實例中,假設舊有STA(若有的 話)僅需要有限的資源。AP傳輸一信標訊號(Beacon),建 置一長型CFP 4410及一短型CP 4420。一信標訊號 (Beacon)4210之後接著舊有STA的任何廣播/多點播送訊 息。接著,以連續(back-to-back)方式排程多個SCAP 4100。此操作模式還提供最佳化功率管理,這是因為STA 96872.doc -97- 200527868 必須週期性喚醒以聆聽SCHED訊息’並且如果目前SCAP 中未被排程,則會在SCAP時間間隔處於睡眠狀態。 透過80八?4100的排程存取時期4130中所包含的卩1^(:11 或ΜΙΜΟ EDCA時期來為ΜΙΜΟ STA提供受保護競爭式存 取。舊有STA可於CP 4420期間來獲得媒體競爭式存取。 可能會在傳輸SCHED訊息之後,立即排程來自ΑΡ的連 續的排程傳輸。可能會傳輸含一前導項的SCHED訊框。後 續排程之ΑΡ傳輸可能會在不含一前導項情況下予以傳輸 (可能會傳輸一用於指示是否包含一前導項的指示項)。下 文進一步詳細說明一示範性PLCP前導項。在此示範性具 體實施例中,排程之STA傳輸將以一前導項開始。 錯誤復原 ΑΡ可使用適用於從SCHED接收錯誤復原的各種程序。 例如,如果一 STA無法解碼一 SCHED訊息,就無法利用其 TXOP。如果一排程之TXOP不是在指派的開始時間開始, 則AP藉由在該未使用之排程τχορ開始後的一 PIFs時傳 輸,就可起始復原。AP可將該未使用之排程TXOP時期當 做一 CAP來使用。在該CAP期間,AP可傳輸至一或多個 STA或輪詢一 STA。該輪詢對象可能是錯失排程之TXOP的 STA或其它STA。CAP會在下一排程之τχορ前終止。 當一排程之TXOP提前終止時,也可使用相同的程序。 AP藉由在該排程之TXOP中最後傳輸結束後的一 PIFS時傳 輸,就可起始復原。AP可將一排程之τχορ的未使用時期 當做一 CAP來使用,如剛剛的說明内容所述。 96872.doc -98- 200527868 受保護式競爭 如上文所述,一 SCAP也可包含專用於FRACH傳輸的部 分,及/或ΜΙΜΟ STA可使用EDCA程序的部分。彼等競爭 式存取時期可能受到SCAP的NAV設定所保護。 受保護式競爭藉由准許STA指示ΤΧΟΡ要求來協助ΑΡ進 行排程,來補充低延時排程作業。在該受保護EDCΑ時期 期間,ΜΙΜΟ STA可使用EDCA式存取來傳輸訊框(防止與 舊有STA競爭)。使用舊有技術,STA可在MAC標頭中的 802.11e QoS控制攔位中指示TXOP持續期間要求或緩衝器 狀態。但是,FRACH是提供相同功能的更高效率手段。在 FRACH時期期間,ΜΙΜΟ STA使用似競爭的時槽 Aloha(slotted Aloha),在固定大小FRACH時槽中存取頻 道。FRACH PPDU可包括TXOP持續期間要求。 在此示範性具體實施例中,ΜΙΜΟ訊框傳輸使用ΜΙΜΟ PLCP標頭,下文會詳細說明。由於舊有802.1 1b、802.1 1a 及802.1 lg STA都能夠僅解碼ΜΙΜΟ PLCP標頭的SIGNAL1 欄位(下文會參考圖50詳細說明),所以在有非ΜΙΜΟ STA 存在的情況下,ΜΙΜΟ訊框必須在受保護情況下予以傳 輸。當舊有及ΜΙΜΟ STA皆存在時,使用EDCA存取程序 的STA可使用一舊有RTS/CTS序列供保護之用。舊有 RTS/CTS表示傳輸使用舊有前導項、PLCP標頭及MAC訊 框格式的RTS/CTS訊框。 ΜΙΜΟ傳輸也可以利用802.11e HCCA所提供的保護機 制。因此,可使用控制式存取時期(Controlled Access 96872.doc -99- 200527868The exemplary operation shown in FIG. 44 may be used to enable an optimized low-latency operation with a large number of MIMO STAs. In this example, it is assumed that the legacy STA (if any) requires only limited resources. The AP transmits a beacon signal and builds a long CFP 4410 and a short CP 4420. A beacon signal (Beacon) 4210 is followed by any broadcast / multicast message from the old STA. Then, multiple SCAPs 4100 are scheduled in a back-to-back manner. This operating mode also provides optimized power management because STA 96872.doc -97- 200527868 must periodically wake up to listen to the SCHED message 'and if it is not currently scheduled in SCAP, it will sleep at the SCAP interval . Through 80 Eight? The scheduled access period of 4100 includes the 卩 1 ^ (: 11 or ΙΜΟ EDCA period to provide protected competitive access for MIMO STAs. Older STAs can obtain media competitive access during CP 4420. A continuous scheduled transmission from AP may be scheduled immediately after transmitting a SCHED message. A SCHED frame with a predecessor may be transmitted. The subsequent AP transmission may be transmitted without a preamble (An indication item indicating whether to include a leading item may be transmitted.) An exemplary PLCP leading item is described in further detail below. In this exemplary embodiment, the scheduled STA transmission will start with a leading item. Error recovery AP can use various procedures suitable for receiving error recovery from SCHED. For example, if a STA cannot decode a SCHED message, it cannot use its TXOP. If a scheduled TXOP does not start at the assigned start time, the AP borrows The transmission can be initiated by transmitting a PIFs after the unused schedule τχορ starts. The AP can use the unused schedule TXOP period as a CAP to use. During the CAP, the AP can transmit to one or more STAs or poll one STA. The polling object may be the STA that missed the TXOP or other STAs. The CAP will be terminated before τχορ in the next schedule. When a row When the TXOP of the process is terminated early, the same procedure can be used. The AP can initiate recovery by transmitting at a PIFS after the last transmission in the scheduled TXOP. The AP can reset the τχορ of a schedule The usage period is used as a CAP, as described in the description just now. 96872.doc -98- 200527868 Protected competition As mentioned above, a SCAP may also include a part dedicated to FRACH transmission, and / or MIM0 STA may Use the part of the EDCA process. Their competitive access periods may be protected by the SCAP NAV setting. Protected competition complements low-latency scheduling by allowing STAs to instruct TXOP requests to assist AP scheduling. During the protected EDCA period, ΜΙΜΟ STAs can use EDCA-style access to transmit frames (to prevent competition with legacy STAs). Using legacy technologies, STAs can indicate TXOP support in the 802.11e QoS control block in the MAC header Requirement or buffer status. However, FRACH is a more efficient means of providing the same function. During the FRACH period, MIMO STA uses a slot-like slot Aloha (slotted Aloha) to access channels in a fixed-size FRACH slot. The FRACH PPDU may include a TXOP duration requirement. In this exemplary embodiment, the MIMO frame transmission uses the MIMO PLCP header, which will be described in detail below. Since the old 802.1 1b, 802.1 1a, and 802.1 lg STAs can only decode the SIGNAL1 field of the PLCP header (described in detail below with reference to Figure 50), in the presence of non-MIM STAs, the MIM frame must Transmitted under protected conditions. When both old and MIMO STAs are present, STAs using the EDCA access procedure can use an old RTS / CTS sequence for protection. Legacy RTS / CTS indicates that the transmission uses the legacy preamble, PLCP header, and RTS / CTS frame in MAC frame format. MIMO transmission can also take advantage of the protection mechanisms provided by 802.11e HCCA. Therefore, the controlled access period (Controlled Access 96872.doc -99- 200527868

Period ; CAP)來保護從AP至STA的傳輸、從STA至AP的輪 詢傳輸或從STA至其它STA(使用直接鏈路協定(DLP))的傳 輸。 AP也可使用舊有CTS-to-Self來保護ΜΙΜΟ排程存取時期 (SCAP)以防止舊有STA進行存取。 當一 ΑΡ決定BSS中的所有STA都能夠解碼ΜΙΜΟ PLCP標 頭時,則會在信標訊號(Beacon)中的ΜΙΜΟ能力元素中指 示出這項決策結果。這稱為ΜΙΜΟ BSS。 在ΜΙΜΟ BSS中,依據EDCA及HCCA,訊框傳輸依據 ΜΙΜΟ OFDM訓練符號老化規則(aging rule)來使用ΜΙΜΟ PLCP標頭及ΜΙΜΟ OFDM訓練符號。ΜΙΜΟ BSS中的傳輸 使用 ΜΙΜΟ PLCP。 縮短訊框間間距 前文已詳述廣泛用於縮短訊框間間距的各項技術。在此 示範性具體實施例中,解說縮短訊框間間距的數項實例。 對於排程式傳輸,會在SCHED訊息中指示TXOP的開始時 間。傳輸方STA可在SCHED訊息中指示之精確開始時間來 開始其排程之TXOP,而不需要決定媒體是否在閒置狀 態。如上文所述,一SCAP期間的連續排程之AP傳輸係在 不含最小IFS情況下予以傳輸。 在此示範性具體實施例中,一 SCAP期間的連續排程之 AP傳輸係在含至少警戒IFS(Guard IFS ; GIFS)的一 IFS情 況下予以傳輸。GIFS的預設值為800奈秒。可選用一較大 值,至多為下一定義之叢發IFS(Burst IFS ; BIFS)的值。 96872.doc -100- 200527868 可在該ACF功能元素中指示出GIFS的值。替代具體實施例 可採用任何GIFS值及BIFS值。 來自同一 STA的連續ΜΙΜΟ OFDM PPDU傳輸(TXOP叢發 作業)係藉由一 BIFS予以分開。當使用2·4 GHz頻段時, BIFS等於10微秒,並且ΜΙΜΟ OFDM PPDU不包含6微秒 OFDM訊號延伸。當使用5 GHz頻段時,BIFS為10微秒。 在一項替代具體實施例中,BIFS可被設定為較小或較大的 值,包括0。為了允許接收方STA自動增益控制(Automatic Gain Control ; AGC)以在傳輸之間切換,當傳輸方STA傳 輸功率有變更時,可使用一大於0的間隙。 需要一來自接收方STA之立即回應的訊框不會使用一 ΜΙΜΟ OFDM PPDU予以傳輸。而是使用基礎舊有PPDU予 以傳輸,即,使用2.4 GHz頻段中的Clause 19,或使用5 GHz頻段中的Clause 17。下文提出如何在媒體上多工傳輸 舊有及ΜΙΜΟ OFDM PPDU的數項實例。 第一,請考慮一舊有RTS/CTS,之後接著ΜΙΜΟ OFDM PPDU叢發。傳輸序列如下:舊有RTS-SIFS-舊有CTS_ SIFS-MIMO OFDM PPDU-BIFS-MIMO OFDM PPDU。在 2.4 GHz中,舊有RTS或CTS PPDU使用OFDM訊號延伸且 SIFS為10微秒。在5 GHz中,沒有OFDM延伸,但是SIFS 為16微秒。 第二,請考慮一使用ΜΙΜΟ OFDM PPDU的EDCA TXOP。傳輸序歹ij 如下:ΜΙΜΟ OFDM PPDU-BIFS-舊有 BlockAckRequest-SIFS-ACK。使用適當之存取類別 96872.doc -101- 200527868 (Access Class ; AC)的 EDCA程序來獲得 EDCA TXOP。如 上文所述,EDC Α定義可按AC來使用不同參數的存取類 別,例如,AIFS[AC]、CWmin[AC]及 CWmax[AC]。舊有 BlockAckRequest係在含訊號延伸或16微秒SIFS情況下予 以傳輸。如果在ΜΙΜΟ OFDM PPDU内的彙總訊框中傳輸 BlockAckRequest,則沒有 ACK。 第三,請考慮連續排程之TXOP。傳輸序列如下:STA A ΜΙΜΟ OFDM PPDU-GIFS-STA Β ΜΙΜΟ OFDM PPDU。如 果PPDU傳輸短於指派之最大准許TXOP,則在STA A ΜΙΜΟ OFDM PPDU之後可能會有一段閒置時期。 如上文所述,解碼及解調變已編碼之OFDM傳輸會使接 收方STA需要負擔額外的處理需求。為了適應此情況, 802.1 la及802.11 g允許接收方STA在必須傳輸ACK之前有一 段額外時間。在802.11a中,SIFS時間被設定為16微秒。在 802.1 lg中,SIFS時間被設定為1〇微秒,但是會導入一 6微 秒OFDM額外訊號延伸。 由於解碼及解調變ΜΙΜΟ OFDM傳輸會造成更多處理負 擔,所以按照相同邏輯,一項具體實施例被設計成增加 SIFS或OFDM訊號延伸,會導致進一步降低效率。在此示 範性具體實施例中,藉由擴充802· lie的區塊認可(Block ACK)及延遲區塊認可(Delayed Block ACK)機制,以便排 除所有ΜΙΜΟ OFDM傳輸之立即ACK之需求。若不增加 SIFS或OFDM訊號延伸,排除訊號延伸,並且對於許多情 況,會縮短或排除介於連續傳輸之間的必要訊框間間距, 96872.doc -102- 200527868 進而導致提高效率。 SCHED訊息 圖45繪示前文參考圖41所介紹之SCHED訊息,並且下文 會進一步詳細說明。SCHED訊息4120是在一排程存取時期 (SCAP)持續期間期間,指派給一或多個AP-STA、STA-AP 或STA-STA TXOP的多重輪詢訊息。使用SCHED訊息准許 減少輪詢及競爭附加項,而且還排除非必要的IFS。 SCHED訊息4120定義SCAP排程。SCHED訊息4120包含 一 MAC標頭4510(在此示範性具體實施例中為15個八位元 組)。在此示範十生具體實方例中,CTRL0、CTRL1、CTRL2 及CTRL3片段(本文中統稱為CTRLJ,其中J可能是0至3, 用以分別解說片段45 15-4530)都屬於可變長度,並且當存 在時可能分別以6、12、18及24 Mbps予以傳輸。 示範性MAC標頭4510包括訊框控制4535(2個八位元 組)、持續期間4540(2個八位元組)、BSSID 4545(6個八位 元組)、功率管理4550(2個八位元組)及MAP 4550(3個八位 元組)。位元13-0之持續期間欄位4540指定SCAP長度(以微 秒為單位)。具有ΜΙΜΟ OFDM傳輸功能之STA使用持續 期間欄位4540來設定SCAP持續期間的NAV。當BSS中有舊 有STA存在時,AP可使用其它手段來保護SCAP,例如, 一舊有CTS-to-Self。在此示範性具體實施例中,SCAP的 最大值為4毫秒。BSSID欄位4545識別AP。 圖46繪示功率管理欄位4550。功率管理4550包括SCHED 計數4610、一保留欄位4620(2個位元)、傳輸功率4630及接 96872.doc -103- 200527868 收功率4640。AP傳輸功率及AP接收功率係按功率管理襴 位中的指示,而STA接收功率位準則是在STA處測量。 SCHED計數是一在每個SCHED傳輸時遞增的欄位(在此 實例中為6個位元)。在每個信標訊號(Beacon)傳輸時會重 設SCHED計數。可基於各種用途來使用SCHED計數。舉 例而言,下文描述一種使用SCHED計數的省電功能。 傳輸功率攔位4630表示AP所使用的傳輸功率位準。在 此示範性具體實施例中,該4位元傳輸功率欄位之編碼方 式如下:該值表示傳輸功率位準低於如信標訊號(Beacon) 中之資訊元素中所指示之該頻道之最大傳輸功率位準(以 dBm為單位)的4 dB級數。 接收功率欄位4640表示AP所預期的接收功率位準。在 此示範性具體實施例中,該4位元接收功率欄位之編碼方 式如下:該值表示接收功率位準高於最小接收器靈敏度位 準(-82 dBm)的4 dB級數。依據STA的接收功率位準,STA 可計算其傳輸功率位準,如下所示:STA傳輸功率 (dBm)=AP傳輸功率(dBm)+AP接收功率(dBm)-STA接收功 率(dBm)。 在此示範性具體實施例中,在排程之STA-STA傳輸期 間,會利用AP及接收方STA雙方都可以解碼的功率位準來 傳輸控制片段。來自AP的功率控制報告,或來自SCHED 訊框中功率管理欄位4550的功率控制報告,准許STA決定 所需的傳輸功率位準,促使可在AP處解碼該控制片段。前 文已參考圖22詳述此一般態樣。對於一排程之STA-STA傳 96872.doc -104- 200527868 輸,當在AP處解碼所需的功率不同於在接收方STA處解碼 所需的功率時,會以彼等功率位準中較高的功率位準來傳 輸 PPDU。 圖47所示之MAP欄位4555指示在SCAP期間存在受保護 競爭式存取時期及持續期間。MAP欄位4555包括FRACH計 數4710、FRACH偏移量4720及EDCA偏移量4730。示範性 FRACH計數4710(4個位元)是從FRACH偏移量4720(10個位 元)開始排程之FRACH時槽數量。每個FRACH時槽是28微 秒。,0f值FRACH計數指示目前的排程存取時期中沒有 FRACH時期。EDCA偏移量4730是受保護EDCA時期開 始。示範性EDCA偏移量4730是10個位元。FRACH偏移量 4720及EDCA偏移量4730都是係以4微秒為單元且從SCHED 訊框傳輸起始時開始。 SCHED訊息4120係傳輸為一特殊SCHED PPDU 5100(類 型0010),下文會參考圖51進一步詳細說明。SCHED訊息 4120 内存在 CTRL0 4515、CTRL1 4520、CTRL2 4525 及 CTRL3 4530片段,並且會在 SCHED PPDU 5100的 PLCP 標 頭的SIGNAL欄位(5 120和5 140)中指示彼等片段之長度。 圖48繪示用於TXOP指f瓜之SCHED控制訊;HI。CTRL0 4515、CTRL1 4520、CTRL2 4525 及 CTRL3 4530 片段都屬 於可變長度,並且每個片段各包括零或多個指派元素(分 別是 4820、4840、4860和 4880)。CTRLJ片段加入一 16位元 FCS(分別是4830、4850、4870和4890)及6個尾端位元(圖 中未繪示)。對於CTRL0片段4515,會使用MAC標頭45 1〇 96872.doc -105- 200527868 及任何CTRL0指派元素4820來計算FCS(因此,圖中所示之 MAC標頭被附加至圖48中的CTRL0 4515)。在此示範性具 體實施例中,即使CTRL0片段中沒有指派元素,仍然會包 括 CTRL0 4515 的 FCS 4830 〇 如本文詳述,AP在SCHED訊框中傳輸用於AP-STA、 STA-AP或STA-STA傳輸的指派。按照STA在所屬傳輸之 PLCP標頭的SCHED速率攔位中的指示,在一 CTRLJ片段 中傳輸不同STA的指派元素。請注意,CTRL0到CTRL3的 強固性遞減。每個STA開始解碼SCHED PPDU的PLCP標 頭。SIGNAL欄位指示在SCHED PPDU中有CTRL0、 CTRL1、CTRL2矛口 CTRL3片段存在及其長度。STA接收器 從解碼MAC標頭及CTRL0片段開始,解碼每個指派元素直 到FCS,並且繼續接著解碼CTRL1、CTRL2和CTRL3,在 無法確認其FCS的CTRLJ片段停止。 表格3中顯示定義的五種類型指派元素。數個指派元素 可被封裝至每個CTRLJ片段中。每個指派元素都指定傳輸 方STA存取ID(AID)、接收方STA AID、排程之TXOP的開 始時間以及排程之TXOP的最大准許長度。 96872.doc 106· 200527868 表格3:指派元素類型 類型 (3個 位元) 指派元素 欄位 (以位元為早位的長度) 總數 (以位7G為早位 的長度) 000 單一 AP-STA 前導項存在(1) AID(16) 開始偏移量(10) TXOP持續時間(10) 40 001 單一 STA-AP AID(16) 開始偏移量(10) TXOP持續時間(10) 39 010 雙工AP-STA 前導項存在(1) AID(16) AP開始偏移量(10) AP TXOP持續時間(10) STA開始偏移量(10) STA TXOP持續時間(10) 60 011 單一 STA-STA 傳輸 AID(16) 接收 AID(16) 開始偏移量(10) 最大PPDU大小(10) 55 100 雙工 STA-STA AID 1(16) AID 2(16) STA 1開始偏移量(10) STA 1最大PPDU大小(10) STA2開始偏移量(10) STA 2最大PPDU大小(1〇) 75 在來自AP的連續傳輸中可排除前導項。如果AP不傳輸 一用於一排程之AP傳輸的前導項,則將「前導項存在」位 元設定為0。排除前導項的實例優點在於當AP具有要傳至 數個STA的低頻寬、低延時資料流時,例如,在具有許多 96872.doc -107- 200527868 IP上語音(Voice over IP ; VoIP)資料流的BSS中。因此, SCHED訊息准許彙總從AP傳至多個接收方STA的傳輸 (即,PPDU彙總,如上文所述)。如上文定義的訊框彙總准 許彙總要傳至一個接收方STA的訊框。 「開始偏移量」欄位是參考SCHED訊息前導項開始時間 的偏移量(以4微秒的倍數為單位)。AID是所指派之STA的 存取ID。 對於所有指派元素類型(惟排程之STA-STA除外), 「TXOP持續期間」欄位是排程之TXOP的最大准許長度 (以4微秒的倍數為單位)。傳輸之PPDU的實際PPDU大小係 在PPDU的SIGNAL1欄位中予以指示(下文會進一步詳細說 明)。 對於排程之STA-STA傳輸(指派元素類型011及100),「最 大PPDU大小」欄位也是排程之TXOP的最大准許長度(以4 微秒的倍數為單位),但是可應用額外規則。在此示範性 具體實施例中,對於排程之STA-STA傳輸,TXOP僅包含 一個PPDU。接收方STA使用指派元素中指示的最大PPDU 大小來決定PPDU中的OFDM符號數量(由於ppdU大小欄位 被SIGNAL 1中的一要求欄位所取代,下文會參考圖5 1詳細 說明)。如果STA-STA資料流使用含標準警戒時間間隔 (Guard Interval; GI)的OFDM符號,則接收方STA會排程 之TXOP的PPDU大小設定為指派元素中所指示的最大 PPDU大小。如果STA-STA資料流使用含縮短型GI的OFDM 符號,則接收方STA會以10/9因數按比例換算最大ppdU大 96872.doc •108- 200527868 小欄位及捨去法來決定PPDU大小。傳輸方STA可傳輸一短 於指派之最大PPDU大小的PPDU。PPDU大小不提供彙總 之MAC訊框的長度給接收器。封裝之訊框的長度被包含在 每個MAC訊框的彙總標頭中。 將傳輸方STA及接收方STA包含在指派元素中,准許在 SCAP期間未被排程傳輸或接收的STA節省功率。請回想前 文介紹的SCHBD計數欄位。SCHED訊息所排程的每個指 派都指定傳輸方STA AID、接收方STA AID、排程之TXOP 的開始時間以及排程之TXOP的最大准許長度。SCHED計 數是會在每個SCHED傳輸時遞增,並且在每個信標訊號 (Beacon)傳輸時會重設SCHED計數。STA可向AP指示出一 省電操作,因此在AP可能指派其排程之傳輸或接收TXOP 期間,會提供一特定SCHED計數給彼等STA。接著,可週 期性喚醒STA,以便僅聆聽含一適當SCHED計數的SCHED 訊息。 PPDU格式 圖49繪示一舊有802.11 PPDU 4970,其包括一 PLCP前導 項4975(12個OFDM符號)、一 PLCP標頭4910、一可變長度 的PSDU 4945、一 6位元尾端4950及可變長度的填補項 4955。PPDU 4970之一部分4960包括一使用比率=1/2之 BPSK傳輸的SIGNAL欄位(1個OFDM符號)以及一使用 SIGNAL 4980中所指示的調變格式及速率予以傳輸的可變 長度資料欄位498 5。PLCP標頭4910包括SIGNAL 4980及16 位元服務攔位4940(其包括在DATA 4985中,並且按其格式 96872.doc -109- 200527868 予以傳輸)。SIGNAL欄位4980包括速率4915 (4個位元)、保 留欄位4920(1個位元)、長度4925(12個位元)、同位元檢查 位元4930及尾端4935(6個位元)。 在此示範性PLCP標頭中的延伸式SIGNAL欄位(下文會詳 細說明)回溯相容於舊有802.1 1中的SIGNAL欄位4980。舊 有SIGNAL欄位4980中的未使用之RATE欄位4915值被設定 為定義新PPDU類型(下文會詳細說明)。 介紹數種PPDU類型。為了回溯相容於舊有STA,PLCP 標頭中SIGNAL欄位中的速率欄位被修改為速率/類型欄 位。未使用之RATE值被指定為PPDU類型。PPDU類型還 指示出一 SIGNAL欄位延伸指定之SIGNAL2的存在及長 度。表格4中定義速率/類型攔位的新值。舊有STA中未定 義彼等速率/類型欄位值。因此,舊有STA會在成功解碼 SIGNAL1欄位及發現速率欄位中未定義值之後中止解碼 PPDU。 或者,舊有SIGNAL欄位中的保留位元可被設定為4’, 以指示一要傳至新類別STA的ΜΙΜΟ OFDM傳輸。接收方 STA會忽略保留位元,並且繼續嘗試解碼SIGNAL欄位及 其餘傳輸。 接收器能夠依據PPDU類型來決定SIGNAL2欄位的長 度。FRACH PPDU僅會出現在SCAP的一指定部分中,並 且僅能被AP予以解碼。 96872.doc -110- 200527868 表格4 : ΜΙΜΟ PPDU類型 速率/類型 (4個位元) ΜΙΜΟ PPDU SIGNAL2 欄 位長度(以 OFDM符號 為單位) 0000 ΜΙΜΟ BSS IBSS 或 ΜΙΜΟ AP 傳輸 (惟 SCHED PPDU除外) 1 0010 ΜΙΜΟ BSS SCHED PPDU 1 0100 ΜΙΜΟ BSS FRACH PPDU 2 圖50繪示一種用於資料傳輸之示範性ΜΙΜΟ PPDU格式 5000。PPDU 5000被指定為 PPDU類型 0000 ° PPDU 5000 包 括一 PLCP 前導項 5010 'SIGNAL 1 5020(1 個 OFDM 符號)、 SIGNAL 2 5 040( 1 個 OFDM符號)、尾端符號 5060(0、2、3 或4個符號)及一可變長度資料欄位5080。在此示範性具體 實施例中,PLCP前導項5010(若有的話)為16微秒。會使用 PPDU控制片段速率及調變格式來傳輸SIGNAL 1 5020及 SIGNAL 2 5 040。資料5080包括月艮務5082( 16個位元)、反 饋5084(16個位元)、一可變長度的PSDU 5086、尾端 5088(每資料流6個位元)及可變長度的填補項5090。會使用 PPDU資料片段速率及調變格式來傳輸資料5080。 PPDU類型 0000 的 ΜΙΜΟ PLCP標頭 5020 包括 SIGNAL(包 括 SIGNAL1 5020 和 SIGNAL2 5040)、月艮務 5082 及反饋 5084 等欄位。服務攔位係來自舊有802.1 1而未變更,並且係使 用資料片段速率及格式予以傳輸。 反饋欄位5084係使用資料片段速率及格式予以傳輸。反 96872.doc -111- 200527868 饋欄位包括ES欄位(1個位元)、資料速率向量反饋(Data Rate Vector Feedback; DRVF)欄位(13個位元)以及功率控 制欄位(2個位元)。 ES攔位指示最佳操控方法。在此示範性具體實施例中, 當設定ES位元時會選擇特徵向量操控(Eigenvector Steering ; ES);否則會選擇空間擴展(Spatial Spreading ; SS) 〇 資料速率向量反饋(DRVF)攔位提供關於至多四種空間模 式各支援之速率的反饋至對等站台。 明確的速率反饋允許站台迅速且精確地最大化其傳輸 率,顯著改良系統效率。低延時反饋為吾人所期望。然 而,反饋機會非必須要同步。可用任何方式來獲得傳輸機 會,例如,競爭式(即,EDCA)、輪詢式(即,HCF)或排程 式(即,ACF)。因此,可變時間量會在傳輸機會與速率反 饋之間傳遞。依據速率反饋時期,發射器可應用一退回來 決定傳輸率。 _ 用於從STA A至STA B之傳輸的PPDU資料片段速率調節 依賴STA B提供給STA A的反饋(如上文所述,例如,請參 閱圖24)。對於ES或SS操作模式,每次STA B接收到來自 STA A的ΜΙΜΟ OFDM訓練符號時,就會評估每個空間資 料流可達成的資料速率。在從STA B至STA A的任何續續 傳輸中,STA B在將此項評估包含在反饋5084的DRVF欄位 中。DRVF欄位係按資料片段5080速率予以傳輸。 當傳輸至STA B時,STA A會依據其接收自STA B的 96872.doc -112- 200527868 DRVF以及一考慮到延遲所需的選用性退回,來決定所要 使用的傳輸率。SIGNAL欄位(下文會詳細說明)包括13位 元DRV欄位5046,用於允許接收方STAB解碼STA A所傳輸 的訊框。DRV 5046係按控制片段速率予以傳輸。 DRVF欄位被編碼以便包括一 STR欄位(4個位元)、一 R2 攔位(3個位元)、一 R3欄位(3個位元)以及一 R4欄位(3個位 元)。STR欄位指示資料流1的速率。此欄位係按照表格5所 示之STR值予以編碼。R2指示出資料流1的STR值與資料流 2的STR值之間的差值。”111”值之R2指示出資料流2為關閉 狀態。R3指示出資料流2的STR值與資料流3的STR值之間 的差值。” 111π值之R3指示出資料流3為關閉狀態。如果 R2 = nllln,則R3被設定為”111”。R4指示出資料流3的STR 值與資料流4的STR值之間的差值。”111”值之R4指示出資 料流4為關閉狀態。如果R3 = n 111”,則R4被設定為π 111”。 當ES = 0(即,空間擴展)時,則替代DRVF編碼法如下: 資料流數量(2個位元)、每資料流速率(4個位元)。該每資 料流速率欄位係按照前述之STR值予以編碼。其餘7個位 元為保留位元。 96872.doc -113- 200527868 表格5 : STR編碼法Period; CAP) to protect transmission from AP to STA, polling transmission from STA to AP, or transmission from STA to other STAs (using Direct Link Protocol (DLP)). The AP can also use the old CTS-to-Self to protect the MIMO Scheduled Access Period (SCAP) to prevent old STAs from accessing it. When an AP determines that all STAs in the BSS are able to decode the MIMO PLCP header, the decision result is indicated in the MIMO capability element in the beacon signal (Beacon). This is called MIMO BSS. In the MIMO BSS, according to the EDCA and HCCA, the frame transmission uses the MIMO PLCP header and the MIMO training symbol in accordance with the MIMO training symbol aging rule. Transmission in MIMO BSS uses MIMO PLCP. Shortening the Spacing Between Frames The techniques that have been widely used to shorten the spacing between frames have been detailed previously. In this exemplary embodiment, several examples of shortening the space between frames are explained. For scheduled transmissions, the start time of TXOP is indicated in the SCHED message. The transmitting STA can start its scheduled TXOP at the exact start time indicated in the SCHED message without having to decide whether the media is idle. As mentioned above, consecutively scheduled AP transmissions during a SCAP are transmitted without the minimum IFS. In this exemplary embodiment, a continuously scheduled AP transmission during a SCAP is transmitted under an IFS including at least Guard IFS (GIFS). The default value of GIFS is 800 nanoseconds. A larger value can be selected, at most it is the value of Burst IFS (Burst IFS; BIFS) defined next. 96872.doc -100- 200527868 The value of GIFS can be indicated in this ACF functional element. Alternative embodiments may use any GIFS value and BIFS value. Successive MIMO OFDM PPDU transmissions (TXOP burst operations) from the same STA are separated by a BIFS. When using the 2.4 GHz band, BIFS is equal to 10 microseconds, and the MIMO OFDM PPDU does not include the 6 microsecond OFDM signal extension. When using the 5 GHz band, BIFS is 10 microseconds. In an alternative embodiment, BIFS can be set to a smaller or larger value, including zero. In order to allow the receiver STA's Automatic Gain Control (AGC) to switch between transmissions, a gap greater than 0 can be used when the transmission power of the transmitter's STA changes. Frames that require an immediate response from the receiving STA will not be transmitted using a MIMO OFDM PPDU. Instead, base legacy PPDUs are used for transmission, that is, Clause 19 in the 2.4 GHz band, or Clause 17 in the 5 GHz band. The following sections provide several examples of how to multiplex the legacy and MIMO OFDM PPDUs on the media. First, consider an old RTS / CTS, followed by a burst of MIMO OFDM PPDUs. The transmission sequence is as follows: old RTS-SIFS-old CTS_SIFS-MIMO OFDM PPDU-BIFS-MIMO OFDM PPDU. In 2.4 GHz, legacy RTS or CTS PPDUs were extended using OFDM signals and SIFS was 10 microseconds. In 5 GHz, there is no OFDM extension, but SIFS is 16 microseconds. Second, consider an EDCA TXOP that uses MIMO OFDM PPDUs. The transmission sequence 歹 ij is as follows: ΜΙΜΟ OFDM PPDU-BIFS- Legacy BlockAckRequest-SIFS-ACK. Use the appropriate EDCA program 96872.doc -101- 200527868 (Access Class; AC) to obtain the EDCA TXOP. As mentioned above, EDC A defines access types that can use different parameters by AC, such as AIFS [AC], CWmin [AC], and CWmax [AC]. The old BlockAckRequest was transmitted with signal extension or 16 microsecond SIFS. If a BlockAckRequest is transmitted in a summary frame within a MIMO OFDM PPDU, there is no ACK. Third, consider TXOP for continuous scheduling. The transmission sequence is as follows: STA A ΜΙΜΟ OFDM PPDU-GIFS-STA B ΜΙΜΟ OFDM PPDU. If the PPDU transmission is shorter than the assigned maximum grant TXOP, there may be a period of inactivity after the STA A MIMO PPDU. As described above, decoding and demodulating an OFDM transmission that has been encoded will cause the receiver STA to bear additional processing requirements. To accommodate this, 802.1la and 802.11g allow the receiving STA to have an extra period of time before having to transmit an ACK. In 802.11a, the SIFS time is set to 16 microseconds. In 802.1 lg, the SIFS time is set to 10 microseconds, but a 6 microsecond OFDM extra signal extension is introduced. Since decoding and demodulating MIMO transmission will cause more processing burden, a specific embodiment is designed to increase SIFS or OFDM signal extension according to the same logic, which will further reduce efficiency. In this exemplary embodiment, the Block ACK and Delayed Block ACK mechanisms of 802.lie are extended to eliminate the need for immediate ACK for all MIMO OFDM transmissions. If SIFS or OFDM signal extension is not increased, signal extension is excluded, and in many cases, the necessary inter-frame space between consecutive transmissions will be shortened or excluded, and 96872.doc -102- 200527868 leads to improved efficiency. SCHED message FIG. 45 shows the SCHED message described earlier with reference to FIG. 41 and will be described in further detail below. The SCHED message 4120 is a multiple polling message assigned to one or more AP-STA, STA-AP, or STA-STA TXOP during the duration of a scheduled access period (SCAP). The use of SCHED messages allows for reduced polling and competition for additional items, and also eliminates unnecessary IFS. SCHED message 4120 defines the SCAP schedule. The SCHED message 4120 includes a MAC header 4510 (15 octets in this exemplary embodiment). In this example, the CTRL0, CTRL1, CTRL2, and CTRL3 fragments (collectively referred to as CTRLJ in this article, where J may be 0 to 3, used to explain fragments 45 15-4530 respectively) are all variable length. And when present, it may transmit at 6, 12, 18, and 24 Mbps, respectively. Exemplary MAC header 4510 includes frame control 4535 (2 octets), duration 4540 (2 octets), BSSID 4545 (6 octets), power management 4550 (2 octets) Bytes) and MAP 4550 (3 octets). The duration of bit 13-0 field 4540 specifies the SCAP length (in microseconds). STAs with MIMO OFDM transmission function use duration field 4540 to set NAV for SCAP duration. When an old STA exists in the BSS, the AP can use other means to protect the SCAP, for example, an old CTS-to-Self. In this exemplary embodiment, the maximum value of SCAP is 4 milliseconds. The BSSID field 4545 identifies the AP. FIG. 46 illustrates a power management field 4550. The power management 4550 includes a SCHED count of 4610, a reserved field of 4620 (2 bits), a transmission power of 4630, and a reception power of 4640 at 96872.doc -103- 200527868. The transmission power of the AP and the reception power of the AP are according to the instructions in the power management bit, and the STA reception power bit criterion is measured at the STA. The SCHED count is a field that is incremented on each SCHED transmission (6 bits in this example). The SCHED count is reset when each beacon signal is transmitted. SCHED counting can be used based on various uses. For example, the following describes a power-saving feature that uses SCHED counting. The transmission power block 4630 indicates the transmission power level used by the AP. In this exemplary embodiment, the encoding method of the 4-bit transmission power field is as follows: the value indicates that the transmission power level is lower than the maximum value of the channel as indicated by the information element in the beacon signal 4 dB level of transmission power level (in dBm). The received power field 4640 indicates the expected received power level of the AP. In this exemplary embodiment, the encoding method of the 4-bit received power field is as follows: This value represents a 4 dB level of the received power level higher than the minimum receiver sensitivity level (-82 dBm). Based on the STA's received power level, the STA can calculate its transmission power level, as shown below: STA transmission power (dBm) = AP transmission power (dBm) + AP received power (dBm)-STA received power (dBm). In this exemplary embodiment, during the scheduled STA-STA transmission, the control segment is transmitted using a power level that can be decoded by both the AP and the receiving STA. The power control report from the AP, or the power control report from the power management field 4550 in the SCHED frame, allows the STA to determine the required transmission power level, so that the control segment can be decoded at the AP. This general aspect has been described in detail with reference to FIG. For a scheduled STA-STA transmission 96872.doc -104- 200527868, when the power required for decoding at the AP is different from the power required for decoding at the receiving STA, it will be compared at their power level. High power levels to transmit PPDUs. The MAP field 4555 shown in FIG. 47 indicates that there is a protected contention access period and duration during the SCAP period. The MAP field 4555 includes the FRACH count 4710, the FRACH offset 4720, and the EDCA offset 4730. An exemplary FRACH count of 4710 (4 bits) is the number of FRACH time slots scheduled from FRACH offset 4720 (10 bits). Each FRACH slot is 28 microseconds. The 0f value FRACH count indicates that there is no FRACH period in the current scheduled access period. The EDCA offset 4730 is the beginning of the protected EDCA period. An exemplary EDCA offset 4730 is 10 bits. Both the FRACH offset 4720 and the EDCA offset 4730 are in units of 4 microseconds and start from the beginning of the SCHED frame transmission. The SCHED message 4120 is transmitted as a special SCHED PPDU 5100 (type 0010), which will be described in further detail with reference to FIG. 51 below. SCHED message 4120 contains fragments CTRL0 4515, CTRL1 4520, CTRL2 4525, and CTRL3 4530. The length of each fragment is indicated in the SIGNAL field (5 120 and 5 140) of the PLCP header of SCHED PPDU 5100. FIG. 48 shows the SCHED control message for HI and TXOP. The CTRL0 4515, CTRL1 4520, CTRL2 4525, and CTRL3 4530 fragments are all variable length, and each fragment contains zero or more assigned elements (4820, 4840, 4860, and 4880, respectively). The CTRLJ fragment adds a 16-bit FCS (4830, 4850, 4870, and 4890 respectively) and 6 tail bits (not shown in the figure). For the CTRL0 fragment 4515, the MAC header 45 1〇96872.doc -105- 200527868 and any CTRL0 assignment element 4820 are used to calculate the FCS (therefore, the MAC header shown in the figure is appended to the CTRL0 4515 in Figure 48) . In this exemplary embodiment, even if no element is assigned in the CTRL0 segment, the FCS 4830 of CTRL0 4515 will still be included. As detailed herein, the AP transmits in the SCHED frame for AP-STA, STA-AP, or STA- Assignment of STA transmission. According to the instruction of the STA in the SCHED rate block of the PLCP header of the transmission, the assigned elements of different STAs are transmitted in a CTRLJ segment. Note that the robustness of CTRL0 to CTRL3 decreases. Each STA starts to decode the PLCP header of the SCHED PPDU. The SIGNAL field indicates the presence of CTRL0, CTRL1, CTRL2 and CTRL3 fragments in the SCHED PPDU and their length. The STA receiver starts by decoding the MAC header and the CTRL0 fragment, decodes each assigned element to the FCS, and continues to decode CTRL1, CTRL2, and CTRL3, stopping at the CTRLJ fragment whose FCS cannot be confirmed. Table 3 shows the five types of assignment elements defined. Several assigned elements can be encapsulated into each CTRLJ fragment. Each assignment element specifies the transmitting STA access ID (AID), the receiving STA AID, the start time of the scheduled TXOP, and the maximum permitted length of the scheduled TXOP. 96872.doc 106 · 200527868 Table 3: Assigned element type (3 bits) Assigned element field (length in bits) 7 Total AP (length in bits 7G) 000 Single AP-STA Leader Item exists (1) AID (16) start offset (10) TXOP duration (10) 40 001 single STA-AP AID (16) start offset (10) TXOP duration (10) 39 010 duplex AP -STA leading entry exists (1) AID (16) AP start offset (10) AP TXOP duration (10) STA start offset (10) STA TXOP duration (10) 60 011 A single STA-STA transmits AID (16) Receive AID (16) Start offset (10) Maximum PPDU size (10) 55 100 Duplex STA-STA AID 1 (16) AID 2 (16) STA 1 start offset (10) STA 1 max PPDU size (10) STA2 start offset (10) STA 2 maximum PPDU size (10) 75 The leading term can be excluded in continuous transmission from the AP. If the AP does not transmit a leading entry for a scheduled AP transmission, then the "leader entry exists" bit is set to zero. The advantage of excluding the leading example is that when the AP has a low-bandwidth, low-latency data stream to be transmitted to several STAs, for example, a voice over IP (VoIP) data stream with many 96872.doc -107- 200527868 BSS. Therefore, the SCHED message permits the aggregation of transmissions from the AP to multiple receiver STAs (ie, PPDU aggregation, as described above). Frame aggregation as defined above allows aggregation of frames to be transmitted to a receiving STA. The “Start Offset” field refers to the offset (in multiples of 4 microseconds) of the start time of the leading item of the SCHED message. AID is the access ID of the assigned STA. For all assigned element types (except the scheduled STA-STA), the TXOP Duration field is the maximum allowed length of the scheduled TXOP (in multiples of 4 microseconds). The actual PPDU size of the transmitted PPDU is indicated in the SIGNAL1 field of the PPDU (explained in further detail below). For scheduled STA-STA transmissions (assigned element types 011 and 100), the “Max PPDU Size” field is also the maximum allowed length of the scheduled TXOP (in multiples of 4 microseconds), but additional rules may apply. In this exemplary embodiment, for a scheduled STA-STA transmission, the TXOP contains only one PPDU. The receiving STA uses the maximum PPDU size indicated in the assignment element to determine the number of OFDM symbols in the PPDU (because the ppdU size field is replaced by a required field in SIGNAL 1, which will be described in detail below with reference to Figure 51). If the STA-STA data stream uses OFDM symbols with a standard guard interval (GI), the TXPDU PPDU size of the receiving STA is set to the maximum PPDU size indicated in the assignment element. If the STA-STA data stream uses OFDM symbols with shortened GI, the receiving STA will scale the maximum ppdU by a factor of 10/9. 96872.doc • 108- 200527868 Small field and rounding method to determine the PPDU size. The transmitting STA may transmit a PPDU shorter than the assigned maximum PPDU size. The PPDU size does not provide the length of the aggregated MAC frame to the receiver. The length of the encapsulated frame is included in the summary header of each MAC frame. The transmitting STA and the receiving STA are included in the assignment element, allowing STAs that have not been scheduled to transmit or receive during the SCAP to save power. Recall the SCHBD count field described earlier. Each assignment scheduled by the SCHED message specifies the transmitting STA AID, the receiving STA AID, the start time of the scheduled TXOP, and the maximum permitted length of the scheduled TXOP. The SCHED count is incremented on every SCHED transmission, and the SCHED count is reset on every beacon signal transmission. STAs can indicate a power saving operation to the AP, so during the AP may assign its scheduled transmission or receive TXOP, a specific SCHED count will be provided to their STAs. Then, the STA can be woken up periodically to listen to only the SCHED messages with an appropriate SCHED count. Figure 49 of the PPDU format shows an old 802.11 PPDU 4970, which includes a PLCP leading item 4975 (12 OFDM symbols), a PLCP header 4910, a variable-length PSDU 4945, a 6-bit tail 4950, and Variable length padding 4955. Part 4960 of PPDU 4970 includes a SIGNAL field (1 OFDM symbol) transmitted using BPSK with a ratio of 1/2 and a variable-length data field 498 transmitted using the modulation format and rate indicated in SIGNAL 4980. 5. PLCP header 4910 includes SIGNAL 4980 and 16-bit service block 4940 (it is included in DATA 4985 and transmitted in its format 96872.doc -109- 200527868). SIGNAL field 4980 includes rate 4915 (4 bits), reserved field 4920 (1 bit), length 4925 (12 bits), parity check bit 4930, and trailing end 4935 (6 bits) . The extended SIGNAL field (described in more detail below) in this exemplary PLCP header is backward compatible with the SIGNAL field 4980 in the old 802.1 1. The unused RATE field 4915 in the old SIGNAL field 4980 is set to define the new PPDU type (explained in detail below). Describes several PPDU types. In order to be backward compatible with the old STA, the rate field in the SIGNAL field in the PLCP header was changed to the rate / type field. Unused RATE values are specified as PPDU types. The PPDU type also indicates the presence and length of a SIGNAL field that is extended by a SIGNAL field. New values for rate / type stops are defined in Table 4. Their rate / type field values are undefined in the old STA. Therefore, the old STA will abort decoding the PPDU after successfully decoding the SIGNAL1 field and finding an undefined value in the rate field. Alternatively, the reserved bit in the old SIGNAL field may be set to 4 'to indicate a MIMO OFDM transmission to be transmitted to the new type of STA. The receiver STA ignores the reserved bits and continues to try to decode the SIGNAL field and the rest of the transmission. The receiver can determine the length of the SIGNAL2 field based on the PPDU type. FRACH PPDUs only appear in a specified part of the SCAP and can only be decoded by the AP. 96872.doc -110- 200527868 Table 4: ΜΙΜΟ PPDU type rate / type (4 bits) ΜΙΜΟ PPDU SIGNAL2 Field length (in OFDM symbols) 0000 ΜΙΜΟ BSS IBSS or ΜΙΟ AP transmission (except SCHED PPDU) 1 0010 ΜΙΜΟ BSS SCHED PPDU 1 0100 ΜΙΜΟ BSS FRACH PPDU 2 Figure 50 illustrates an exemplary MIMO PPDU format 5000 for data transmission. PPDU 5000 is designated as PPDU type 0000 ° PPDU 5000 includes a PLCP leading item 5010 'SIGNAL 1 5020 (1 OFDM symbol), SIGNAL 2 5 040 (1 OFDM symbol), trailing symbol 5060 (0, 2, 3 or 4 symbols) and a variable-length data field of 5080. In this exemplary embodiment, the PLCP leading term 5010, if any, is 16 microseconds. SIGNAL 1 5020 and SIGNAL 2 5 040 will be transmitted using PPDU control fragment rate and modulation format. Data 5080 includes month service 5082 (16 bits), feedback 5084 (16 bits), a variable-length PSDU 5086, trailing end 5088 (6 bits per data stream), and variable-length padding items 5090. 5080 will be transmitted using the PPDU data fragment rate and modulation format. ΜΙΜΟ PLCP header 5020 of PPDU type 0000 includes SIGNAL (including SIGNAL1 5020 and SIGNAL2 5040), month service 5082, and feedback 5084 and other fields. Service stops are from the original 802.1 1 and have not changed, and are transmitted using data fragment rates and formats. The feedback field 5084 is transmitted using the data segment rate and format. Anti-96872.doc -111- 200527868 Feed fields include ES field (1 bit), Data Rate Vector Feedback (DRVF) field (13 bits), and power control field (2 Bit). The ES stop indicates the best control method. In this exemplary embodiment, when the ES bit is set, Eigenvector Steering (ES) is selected; otherwise, Spatial Spreading (SS) is selected. The data rate vector feedback (DRVF) block provides information about Feedback from up to four supported spatial modes to peer stations. Clear rate feedback allows stations to quickly and accurately maximize their transmission rates, significantly improving system efficiency. Low latency feedback is what we expect. However, feedback opportunities do not have to be synchronized. Transmission opportunities can be obtained in any way, for example, competitive (ie, EDCA), polling (ie, HCF), or scheduled (ie, ACF). Therefore, a variable amount of time passes between transmission opportunities and rate feedback. Depending on the rate feedback period, the transmitter can apply a backoff to determine the transmission rate. _ PPDU data segment rate adjustment for transmission from STA A to STA B relies on feedback provided by STA B to STA A (as described above, for example, see Figure 24). For ES or SS mode of operation, each time STA B receives the MIMO training symbol from STA A, it evaluates the achievable data rate for each spatial data stream. In any subsequent transmissions from STA B to STA A, STA B is including this evaluation in the DRVF field of feedback 5084. The DRVF field is transmitted at a data fragment rate of 5080. When transmitting to STA B, STA A will determine the transmission rate to use based on the 96872.doc -112- 200527868 DRVF it received from STA B and an optional return that takes into account the delay. The SIGNAL field (detailed below) includes the 13-bit DRV field 5046, which is used to allow the receiver STAB to decode the frame transmitted by STA A. The DRV 5046 is transmitted at the control fragment rate. The DRVF field is coded to include a STR field (4 bits), a R2 field (3 bits), a R3 field (3 bits), and a R4 field (3 bits) . The STR field indicates the rate of stream 1. This field is coded according to the STR values shown in Table 5. R2 indicates the difference between the STR value of data stream 1 and the STR value of data stream 2. R2 with a value of "111" indicates that data stream 2 is closed. R3 indicates the difference between the STR value of data stream 2 and the STR value of data stream 3. A R3 of 111π indicates that data stream 3 is off. If R2 = nllln, R3 is set to "111". R4 indicates the difference between the STR value of data stream 3 and the STR value of data stream 4. R4 with a value of "111" indicates that data stream 4 is closed. If R3 = n 111 ", then R4 is set to π 111". When ES = 0 (that is, spatial expansion), the DRVF encoding method is replaced as follows: The number of data streams (2 bits) and the rate of each stream (4 bits). The field of each stream rate is coded according to the aforementioned STR value. The remaining 7 bits are reserved bits. 96872.doc -113- 200527868 Table 5: STR encoding method

除了 DRVF以外,STA B還提供功率控制反饋至傳輸方 STA A。此攔位被包含在功率控制欄位中,並且係使用資 料片段速率予以傳輸。此欄位是2個位元,並且指示出要 遞增或遞減功率’或是要維持功率位準不變。結果之傳輸 功率位準命名為資料片段傳輸功率位準。 表格6中列出示範性功率控制攔位值。替代具體實施例 可(5署各種大小之功率控制搁位,並且運用替代之功率調 整值。 96872.doc -114- 200527868 表格6 :功率控制欄位值In addition to DRVF, STA B also provides power control feedback to the transmitting party STA A. This stop is included in the power control field and is transmitted using the data fragment rate. This field is 2 bits and indicates whether to increase or decrease the power 'or to maintain the power level unchanged. The resulting transmission power level is named the data segment transmission power level. Exemplary power control stops are listed in Table 6. Alternative Specific Embodiments (5 power control shelves of various sizes can be used, and alternative power adjustment values can be used. 96872.doc -114- 200527868 Table 6: Power control field values

無變更 以1 dB為增量遞增功率 以1 dB為增量遞溘分銮No change Power is incremented in 1 dB increments

—在整個PPDl^ @,傳輸功率位準維持㈣不變。當該 資料片段傳輸功率位準不同於開放迴路sta傳輸功率(即, 在=處解碼傳輸所需的功率位準,如上文所述),會使用 該等兩個功率位準中的最大功率位準來傳輸。即, PPDU傳輸功率位準是開放迴路§τα傳輸功率(犯的與該資 料片段傳輸功率位準(dBm)中的最大值。 在此示範性具體貫施例中,會在任何訊框交換序列中的-The transmission power level remains unchanged throughout PPDl ^ @. When the data segment transmission power level is different from the open loop sta transmission power level (ie, the power level required for decoding transmission at =, as described above), the maximum power level of these two power levels will be used To be transmitted. That is, the PPDU transmission power level is the open loop §τα transmission power (the maximum value in the transmission power level (dBm) with the data fragment. In this exemplary embodiment, the sequence will be exchanged in any frame middle

第個汛框,將功率控制欄位設定為”〇〇,,。在後續訊框 中,此攔位指示出以i dB為增量來遞增或遞減功率。接收 方STA會在傳輸至該STA的所有後續訊框傳輸中使用此反 饋資訊。 SIGNAL1 5020包括速率/類型欄位5022(4個位元)、1位 兀保留位元5024、ρρ〇υ大小/要求5026(12個位元)、同位 兀檢查位元5028及6位元尾端5030。SIGNAL1欄位5020係 使用控制片段速率及格式予以傳輸(在此示範性具體實施 例令為6 Mbit/s)。速率/類型攔位5022被設定為〇〇〇〇。保留 位元5024可被設定為〇。 96872.doc -115- 200527868 PPDU大小/要求攔位5026有兩種作用,其作用取決於傳 輸模式。在競爭式STA傳輸及所有AP傳輸中,此欄位標示 出PPDU大小。在此第一模式中,位元1指示出PPDU使用 擴展式OFDM符號,位元2指示出PPDU使用含縮短型GI的 OFDM符號,以及位元3_12指示出OFDM符號數量。 在排程式非AP STA傳輸中,PPDU大小/要求欄位5026標 示出要求。在此第二模式中,位元1-2指示出SCHED速 率。SCHED速率指示出可用來傳輸一指派給STA的最高編 碼SCHED(0、1、2或3)欄位。在來自AP之訓練符號傳輸期 間,每個非AP STA都會評估其可強固地接收來自該AP之 SCHED訊框傳輸的速率。在來自STA的後續排程之傳輸 中,最大可准許速率被包括在SCHLD速率欄位中。這攔位 係由AP予以解碼。AP使用此資訊來排程器STA的後續 TXOP,並且決定用於發佈配置給STA的CTRLJ(0、1、2或 3)。 在此第二模式中,位元3-4指示出QoS欄位,此QoS欄位 TC 0或1之要求的分數(以三分之一為單元)(即,〇%、 3 3%、67%、100%)。位元5-12指示出TXOP的要求長度(在 此示範性具體實施例中以16微米倍數為單位)。 SIGNAL1襴位5020係利用1位元之同位元檢查位元5028 予以檢查,並且以一 6位元尾端5030終止,以配合捲積編 碼器。 SIGNAL2欄位5040的存在及長度係由SIGNAL 1欄位5020 中的速率/類型欄位5022予以指示。SIGNAL2欄位5040係 96872.doc -116- 200527868 使用控制片段速率及格式予以傳輸。SIGNAL2 5040包括 一保留位元5042、訓練類型5044(3個位元)、資料速率向量 (DRV)5046(13個位元)、同位元檢查位元5048及尾端 5050(6個位元)。3位元訓練類型攔位指示出ΜΙΜΟ OFDM 訓練符號的長度及格式。位元1-2指示出ΜΙΜΟ OFDM訓練 符號5060(0、2、3或4個OFDM符號)。位元3是訓練類型 攔位:0指示SS ; 1指示ES。DRV 5046提供至多四種空間 模式的各自速率。DRV 5046係以相同於DRVF(被包括在反 饋5084中,如上文所述)方式予以編碼。SIGNAL2欄位 5040係利用1位元之同位元檢查位元5048予以檢查,並且 以一 6位元尾端5050終止,以配合捲積編碼器。 圖 51 繪示 SCHED PPDU 5100(速率 / 類型=0010)。SCHED PPDU 5100 包括一 PLCP 前導項 5110、SIGNAL 1 5120(1 個 OFDM符號)、SIGNAL 2 5 140(1個OFDM符號)、尾端符號 5160(0、2、3或4個符號)及一可變長度SCHED訊框5180。 在此示範性具體實施例中,PLCP前導項5010(若有的話)為 16微秒。會使用PPDU控制片段速率及調變格式來傳輸 SIGNAL 1 5020及 SIGNAL 2 5040。SCHED訊框 5180可包 括各種速率,如上文關於ACF之說明所述。 SIGNALl欄位5120包括速率/類型5122(4個位元)、一保 留位元5124、CTRL0大小5126(6個位元)、CTRL1大小 5 128(6個位元)、同位元檢查位元5130及尾端5132(6個位 元)。速率/類型5 122被設定為0010。保留位元5 124可被設 定為0。CTRL0大小5 126指示出以最低速率(在此實例中為 96872.doc -117- 200527868 6 Mbps)傳輸之SCHED PPDU的片段長度。此片段包括 PLCP標頭的月艮務欄位、MAC標頭及CTRL0片段5126。在 此實例中,此值係以4微秒倍數為單元予以編碼。CTRL 1 大小5128指示出以下一較高速率(在此實例中為12 Mbps) 傳輸之SCHED PPDU的片段長度。在此實例中,此值係以 4微秒倍數為單元予以編碼。’0f值CTRL1大小指示出 SCHED PPDU中沒有對應之CTRL1片段。SIGNAL1杨1位 5 120係利用1位元之同位元檢查位元5 130予以檢查,並且 以一 6位元尾端5132終止,以配合捲積編碼器。 SIGNAL2 5140包括一保留位元5142、訓練類型5144(3個 位元)、CTRL2大小5146(5個位元)、CTRL3大小5148(5個 位元)、FCS 5 150(4個位元)及尾端5 152(6個位元)。保留位 元5142可被設定為0。訓練類型5144被指定為PPDU類型 0000(訓練類型5044)。 CTRL2大小5146指示出以下一最高速率(在此實例中為 18 Mbps)傳輸之SCHED PPDU的片段長度。在此實例中, 此值係以4微秒倍數為單元予以編碼。,0’值CTRL2大小指 示出SCHED PPDU中沒有對應之CTRL2片段。CTRL3大小 5 148指示出以最高速率(在此實例中為24 Mbps)傳輸之 SCHED PPDU的片段長度。在此實例中,此值係以4微秒 倍數為單元予以編碼。,(V值CTRL3大小指示出SCHED PPDU中沒有對應之CTRL3片段。 會使用整個SIGNAL1及SIGNAL2欄位來計算FCS 5150。 SIGNAL2欄位5140係以一 6位元尾端5152終止,以配合捲 96872.doc -118- 200527868 積編碼器。 圖 52繪示 FRACH PPDU 5200(速率 /類型=0010)。FRACH PPDU 5200 包括一 PLCP 前導項 5210 'SIGNAL 1 5220(1 個 OFDM符號)及SIGNAL 2 5240(2個OFDM符號)。在此示範 性具體實施例中,PLCP前導項5210(若有的話)為16微秒。 會使用PPDU控制片段速率及調變格式來傳輸SIGNAL 1 5220 及 SIGNAL 2 5240。FRACH PPDU 5200 係由 STA在 ΜΙΜΟ排程存取時期的FRACH時期期間予以傳輸。FRACH φ 時期係由ΑΡ予以建置且因此已為ΑΡ所知。 SIGNAL1 5220包括速率/類型5222(4個位元)、一保留欄 位5224、要求5226( 12個位元)、同位元檢查位元5228及尾 端5230(6個位元)。速率/類型5222被設定為〇1〇〇。保留位 元5 124可被設定為0。要求攔位5226被指定為PPDU類型 0000(5000),如上文所述。SIGNAL1欄位5220係利用1位 元之同位元檢查位元5228予以檢查,並且以一 6位元尾端 5230終止,以配合捲積編碼器。 _ SIGNAL2 5240包括一保留位元5242、來源AID 5244(16 個位元)、目的地AID 5246(16個位元)、FCS 5248(4個位 元)及尾端5250(6個位元)。保留位元5242可被設定為0。來 源AID欄位5244識別在FRACH上進行傳輸的STA。目的地 AID攔位5246識別TXOP所要求的目的地STA。在此示範性 具體實施例中,假使目的地是AP,則目的地AID欄位5246 被設定為2048。會使用整個SIGNAL1及SIGNAL2欄位來計 算一位元FCS 5248。會捲積編碼之前會先加入一 6位元尾 96872.doc -119- 200527868 端5250 。 在此示範性具體實施例中,STA可使用時槽 Aloha(slotted Aloha)會在FRACH中存取頻道及傳輸要求§氏 息。如果被AP成功接收,則AP會在一後續排程之存取時 期提供一排程之TXOP給要求方STA。目前排程之存取時期 的FRACH時槽數量係在SCHED訊息中指示(N_FRACH)。 STA也可維護一變數B—FRACH。在FRACH上之一傳輸 後,如果STA接收到一來自AP的一 TX0P指派,則會重設 B—FRACH 〇如果STA在來自AP之SCHED訊框之預先決定 數量RACH RESPONSE内未接收到一 TX0P指派,貝U會將 B_FRACH加1,直到最大值7為止。參數FRACH RESPONSE被包括在信標訊號(Beacon)的一 ACF元素中。 在任何 FRACH期間,STA具有(N_FRACH)-1 * 2-B-FRACH機 率獲得FRACH時槽。 如果AP未排程任何FRACH時期,則ΜΙΜΟ STA可在 SCAP期間的受保護競爭時期使用EDCa規則競爭。 熟習此項技術者應明白,可使用各種不同術語或技術的 任一種來代表資訊及信號。例如,資料、指令、命令、資 訊、信號、位元、符號及晶片有利於以電壓、電流、電磁 波、磁場或粒子、光場或粒子、或其任何組合來表示。 熟習此項技術者應明白,配合本文所發表之具體實施例 說明的各種圖解邏輯方塊、模組、電路及演算法步驟可實 施為電子硬體、電腦軟體或其組合。為了清楚解說硬體與 軟體的互換性’前文中已就功能而論作廣泛說明各種圖解 96872.doc -120- 200527868 的組件、區塊、模組、 個糸統的設計限制條件 熟悉本技藝者可以用每種特別A 兮禋特別應用的不同方法來實施所述 的功能,但這種實施決定X At $目4 # 、 疋不月匕視為月離本發明之範圍。 %路及步驟。視特定應用及影響整 而疋’將功能實施成硬體或軟體。In the first flood box, set the power control field to "〇〇". In the subsequent message box, this block indicates that the power is increased or decreased in increments of i dB. The receiving STA will transmit to the STA. This feedback information is used in all subsequent frame transmissions. SIGNAL1 5020 includes rate / type field 5022 (4 bits), 1 bit reserved bit 5024, ρρ〇υ size / requires 5026 (12 bits), Parity check bit 5028 and 6-bit trailing end 5030. SIGNAL1 field 5020 is transmitted using the control fragment rate and format (in this exemplary embodiment, it is 6 Mbit / s). The rate / type block 5022 is Set to 00. 00. The reserved bit 5024 can be set to 0. 96872.doc -115- 200527868 PPDU size / request block 5026 has two functions, and its function depends on the transmission mode. In the competitive STA transmission and all During AP transmission, this field indicates the PPDU size. In this first mode, bit 1 indicates that the PPDU uses the extended OFDM symbol, bit 2 indicates that the PPDU uses the OFDM symbol with shortened GI, and bit 3_12 Indicates the number of OFDM symbols. Non-AP STA in scheduling In the loss, the PPDU size / requirement field 5026 indicates the requirement. In this second mode, bits 1-2 indicate the SCHED rate. The SCHED rate indicates the highest coded SCHED (0, 1) assigned to the STA. , 2 or 3) field. During the transmission of training symbols from the AP, each non-AP STA will evaluate the rate at which it can firmly receive the SCHED frame transmission from the AP. In the subsequent scheduled transmission from the STA The maximum allowable rate is included in the SCHLD rate field. This block is decoded by the AP. The AP uses this information to schedule subsequent TXOPs of the STA and decides to issue a CTRLJ (0, 1) configured for the STA. , 2 or 3). In this second mode, bits 3-4 indicate the QoS field, and the required score (in units of one third) of this QoS field TC 0 or 1 (ie, 0% , 3 3%, 67%, 100%). Bits 5-12 indicate the required length of TXOP (in this exemplary embodiment, in multiples of 16 micrometers). SIGNAL1 bit 5020 uses 1 bit Parity check bit 5028 is checked and terminated with a 6-bit trailing end 5030 to cooperate with the convolutional encoder. The existence and length of the SIGNAL2 field 5040 is indicated by the rate / type field 5022 in the SIGNAL 1 field 5020. The SIGNAL2 field 5040 is 96872.doc -116- 200527868 and is transmitted using the control fragment rate and format. SIGNAL2 5040 includes a reserved bit 5042, a training type 5044 (3 bits), a data rate vector (DRV) 5046 (13 bits), a parity check bit 5048, and a trailing end 5050 (6 bits). The 3-bit training type block indicates the length and format of the MIMO training symbol. Bits 1-2 indicate MIMO training symbols 5060 (0, 2, 3, or 4 OFDM symbols). Bit 3 is the training type Block: 0 indicates SS; 1 indicates ES. The DRV 5046 provides individual rates for up to four spatial modes. DRV 5046 is coded in the same way as DRVF (included in feedback 5084, as described above). The SIGNAL2 field 5040 is checked by using the 1-bit parity check bit 5048 and terminated by a 6-bit trailing end 5050 to cooperate with the convolutional encoder. Figure 51 shows the SCHED PPDU 5100 (rate / type = 0010). SCHED PPDU 5100 includes a PLCP leading item 5110, SIGNAL 1 5120 (1 OFDM symbol), SIGNAL 2 5 140 (1 OFDM symbol), tail symbol 5160 (0, 2, 3, or 4 symbols) and a variable Length SCHED frame 5180. In this exemplary embodiment, the PLCP leading term 5010 (if any) is 16 microseconds. SIGNAL 1 5020 and SIGNAL 2 5040 are transmitted using the PPDU to control the fragment rate and modulation format. The SCHED frame 5180 can include various rates, as described above with respect to the ACF. The SIGNALl field 5120 includes rate / type 5122 (4 bits), a reserved bit 5124, CTRL0 size 5126 (6 bits), CTRL1 size 5 128 (6 bits), parity check bit 5130, and Trailing end 5132 (6 bits). The rate / type 5 122 is set to 0010. Reserved bits 5 124 can be set to zero. The CTRL0 size of 5 126 indicates the fragment length of the SCHED PPDU transmitted at the lowest rate (96872.doc -117- 200527868 6 Mbps in this example). This snippet includes the PLCP header field, MAC header, and CTRL0 segment 5126. In this example, this value is encoded in multiples of 4 microseconds. The CTRL 1 size 5128 indicates the segment length of the SCHED PPDU transmitted at the next higher rate (12 Mbps in this example). In this example, this value is encoded in multiples of 4 microseconds. The '0f value CTRL1 size indicates that there is no corresponding CTRL1 segment in the SCHED PPDU. SIGNAL1 Yang 1 bit 5 120 is checked with 1 bit parity check bit 5 130 and terminated with a 6 bit tail 5132 to match the convolutional encoder. SIGNAL2 5140 includes a reserved bit 5142, training type 5144 (3 bits), CTRL2 size 5146 (5 bits), CTRL3 size 5148 (5 bits), FCS 5 150 (4 bits) and tail End 5 152 (6 bits). Reserved bit 5142 can be set to zero. Training type 5144 is designated as PPDU type 0000 (training type 5044). The CTRL2 size 5146 indicates the segment length of a SCHED PPDU transmitted at the next highest rate (18 Mbps in this example). In this example, this value is encoded in multiples of 4 microseconds. The 0 'value CTRL2 size indicates that there is no corresponding CTRL2 segment in the SCHED PPDU. CTRL3 size 5 148 indicates the segment length of the SCHED PPDU transmitted at the highest rate (24 Mbps in this example). In this example, this value is encoded in multiples of 4 microseconds. (The value of CTRL3 indicates that there is no corresponding CTRL3 fragment in the SCHED PPDU. The entire SIGNAL1 and SIGNAL2 fields are used to calculate the FCS 5150. The SIGNAL2 field 5140 is terminated with a 6-bit tail 5152 to match volume 96872. doc -118- 200527868 product encoder. Figure 52 shows FRACH PPDU 5200 (rate / type = 0010). FRACH PPDU 5200 includes a PLCP preamble 5210 'SIGNAL 1 5220 (1 OFDM symbol) and SIGNAL 2 5240 (2 OFDM symbol). In this exemplary embodiment, the PLCP preamble 5210 (if any) is 16 microseconds. The PPDU control fragment rate and modulation format are used to transmit SIGNAL 1 5220 and SIGNAL 2 5240. FRACH PPDU 5200 is transmitted by the STA during the FRACH period of the MIM0 scheduled access period. The FRACH φ period is established by AP and is therefore known to AP. SIGNAL1 5220 includes rate / type 5222 (4 bits), one Reserved field 5224, required 5226 (12 bits), parity check bit 5228, and trailing end 5230 (6 bits). The rate / type 5222 is set to 0100. Reserved bit 5 124 can be changed. Set to 0. Block 5226 required It is a PPDU type 0000 (5000), as described above. The SIGNAL1 field 5220 is checked by using the 1-bit parity check bit 5228 and terminated with a 6-bit trailing end 5230 to cooperate with the convolutional encoder. _ SIGNAL2 5240 includes a reserved bit 5242, source AID 5244 (16 bits), destination AID 5246 (16 bits), FCS 5248 (4 bits), and trailing end 5250 (6 bits). The reserved bit 5242 can be set to 0. The source AID field 5244 identifies the STA transmitting on FRACH. The destination AID block 5246 identifies the destination STA required by TXOP. In this exemplary embodiment, if the destination If the ground is AP, the destination AID field 5246 is set to 2048. The entire SIGNAL1 and SIGNAL2 fields will be used to calculate a one-bit FCS 5248. A 6-bit tail will be added before convolutional coding. 96872.doc -119 -200527868 end 5250. In this exemplary embodiment, the STA can use the slot Aloha (slotted Aloha) to access the channel in FRACH and the transmission request §. If successfully received by the AP, the AP will provide a scheduled TXOP to the requesting STA in a subsequent scheduled access time. The number of FRACH slots in the currently scheduled access period is indicated in the SCHED message (N_FRACH). STA can also maintain a variable B-FRACH. After one transmission on FRACH, if the STA receives a TX0P assignment from the AP, it will reset B-FRACH. If the STA does not receive a TX0P assignment within a predetermined number of RACH RESPONSE in the SCHED frame from the AP , U will increase B_FRACH by 1 until the maximum value of 7. The parameter FRACH RESPONSE is included in an ACF element of the beacon signal. During any FRACH, the STA has (N_FRACH) -1 * 2-B-FRACH probability to obtain the FRACH time slot. If the AP is not scheduled for any FRACH period, the MIM STA may compete using the EDCa rule during a protected competition period during SCAP. Those skilled in the art will understand that information and signals may be represented using any of a variety of different terms or techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips are useful for representing voltage, current, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. Those skilled in the art should understand that the various illustrated logical blocks, modules, circuits, and algorithm steps described in conjunction with the specific embodiments published herein can be implemented as electronic hardware, computer software, or a combination thereof. In order to clearly explain the interchangeability of hardware and software, the various functions, components, blocks, modules, and systems of various diagrams have been extensively explained in the previous section on functionality. 96872.doc -120- 200527868 The described functions can be implemented in different ways for each particular application, but this implementation determines that X At $ 目 4 # and 疋 不 月 刀 are considered to be outside the scope of the present invention. % Way and steps. Depending on the specific application and impact, the function is implemented as hardware or software.

可使用-般用途處理器、數位信號處理器(Dsp)、專用 積體电路(八呂1〇、場可程式規劃閘極陣列㈣GA)或里他可 程式規劃邏輯裝置(PLD)、離散閘極或電晶體邏輯1散 硬體組件或其任何的組合以執行本文所說明的功能,以實 施或執行配合本文所發表之具體實施例說明的各種圖解邏 輯方塊、模組及電路。一私田、A # < 般用逆處理器可能是微處理器, 但是在替代方案中,處理器可能是任何傳統處理器、控制 器、微控制器或狀態機器。處理器可實施為電腦裝置的組 合,例如DSP和微處理器的組合、複數個微處理器、連接 D S P核心的一個或一個以上微處理器或任何其他此類的組 配合本文中揭示之具體實施例中說明的方法或演算法步籲 驟可直接用硬體、處理器執行的軟體模組或軟硬體組合具 體化。軟體模組可駐存於RAM記憶體、快閃記憶體、 R〇M記憶體、EP職記憶體、eepr〇m記憶體、暫存器、 更碟可抽取磁碟、CD_R〇M、或此項技術所熟知之任何 二他开V式的儲存媒體中。一種示範性儲存媒體係柄合處理 益’以致於處理器可自儲存媒體中讀取資訊,以及寫入資 =到儲存媒體。在替代方案中,儲存媒體可被整合至處理 為中。處理器和儲存媒體可駐存在ASIC甲。該ASIC可存 96872.doc -121- 200527868 在於:使用者終端機中。在替代方案中,處理器和儲存媒 體可當作散離組件駐存在使用者終端機中。 本文中所列出的標題係供參考並且辅助找出各段落。這 些標題非用以限制本文中所說明之觀念刪。這些觀念 可在整份說明書中具有適用性。 月il文中提供所揭示具體實施例的說明,讓熟習此項技術 者可運用或利用本發明。熟習此項技術者應明白這些具體 只施例的各種修改,並且本文中定義的一般原理可適用於 其他具體貫施例,而不會脫離本發明的精神或範疇。因 此,本發明不受限於本文中提出的具體實施例,而是符合 與本文中所說明的原理及新穎功能一致的最廣泛的範疇。 【圖式簡單說明】 圖1繪不一種包括高速WLAN之系統的示範性具體實施 例; 圖2緣示無線通信裝置的示範性具體實施例,該無線通 4吕裝置可被組態成一存取點或使用者終端機; 圖3繪示802.11訊框間間距(interframe spacing)參數; 圖4缘示示範性實體層(ρΗγ)傳輸片段(segment),用於 解說按照DCF來使用DIFS加上退回(backoff)進行存取; 圖5繪示示範性實體層(phy)傳輸片段,用於解說以優先 於一 DIFS存取的優先順序,在一 ACK之前使用SIFS ; 圖6繪示分割大型封包成為含相關聯之SIFS的較小片 段; 圖7繪示示範性實體層(phy)傳輸片段,用於解說一含每 96872.doc -122- 200527868 訊框認可之ΤΧΟΡ ; 圖8繪示一含區塊認可之ΤΧΟΡ ; 圖9繪示示範性實體層(PHY)傳輸片段,用於解說一使用 HCCA之輪詢ΤΧΟΡ ; 圖10繪示一包括多個連續傳輸且無任何間隙之ΤΧΟΡ的 示範性具體實施例; 圖11繪示一 ΤΧΟΡ的示範性具體實施例,用於解說減少 必要的前導訊號前導項(pilot preamble)傳輸量; 圖12繪示一種用於併入各項態樣之方法的示範性具體實 施例,包括合併前導項、移除如SIFS等間隙以及在適當情 況下插入GIF ; 圖13繪示示範性實體層(PHY)傳輸片段,用於解說合併 輪詢及對應之ΤΧΟΡ ; 圖14繪示一種用於合併輪詢之方法的示範性具體實施 例; 圖15繪示示範性MAC訊框; 圖16繪示示範性MAC PDU ; 圖17繪示示範性對等式通信; 圖1 8繪示先前技術實體層叢發; 圖1 9繪示示範性實體層叢發,其可部署以應用於對等式 通信; 圖20繪示一包括選用性專有片段(optional ad hoc segment)之MAC訊框的示範性具體實施例; 圖21繪示一示範性實體層叢發; 96872.doc -123- 200527868 圖22繪示一種用於對等式資料傳輪 圖22繪示一 之示範性方法;Can use-general purpose processor, digital signal processor (Dsp), dedicated integrated circuit (Hachi 10, field programmable gate array (GA)), programmable logic device (PLD), discrete gate OR transistor logic 1 has hardware components or any combination thereof to perform the functions described herein, to implement or execute the various illustrated logic blocks, modules and circuits described in conjunction with the specific embodiments published herein. A private field, A # < general-purpose inverse processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may be implemented as a combination of computer devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors connected to a DSP core, or any other such group in conjunction with the specific implementations disclosed herein The method or algorithm steps described in the examples can be directly embodied by hardware, software modules executed by a processor, or a combination of software and hardware. Software modules can reside in RAM memory, flash memory, ROM memory, EP memory, eeprom memory, scratchpad, removable disk, CD_ROM, or this This technology is well-known in any of the alternative V-shaped storage media. An exemplary storage medium is processed so that the processor can read information from the storage medium and write data to the storage medium. In the alternative, the storage medium may be integrated into the process. The processor and the storage medium may reside in an ASIC. The ASIC can be stored in 96872.doc -121- 200527868 in the user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal. The headings listed in this article are for reference and to help find the paragraphs. These headings are not intended to limit the deletion of concepts described in this article. These concepts can be applied throughout the specification. The description of the specific embodiments disclosed is provided in the article, so that those skilled in the art can use or utilize the present invention. Those skilled in the art should understand that various modifications of these specific embodiments are only applicable, and the general principles defined herein can be applied to other specific embodiments without departing from the spirit or scope of the present invention. Therefore, the present invention is not limited to the specific embodiments presented herein, but conforms to the broadest scope consistent with the principles and novel functions described herein. [Brief description of the drawings] FIG. 1 illustrates an exemplary specific embodiment of a system including a high-speed WLAN; FIG. 2 illustrates an exemplary specific embodiment of a wireless communication device, and the wireless communication device can be configured as an access Point or user terminal; Figure 3 shows the 802.11 interframe spacing parameters; Figure 4 shows an exemplary physical layer (ρΗγ) transmission segment for explaining the use of DIFS plus return in accordance with DCF (Backoff) to access; Figure 5 shows an exemplary physical layer (phy) transmission segment, used to explain the priority order over a DIFS access, using SIFS before an ACK; Figure 6 shows the division of large packets into A smaller fragment containing the associated SIFS; Figure 7 shows an exemplary physical layer (phy) transmission fragment to illustrate a TXOP with frame recognition per 96872.doc -122- 200527868; Figure 8 shows a containing area Block approved TXOP; Figure 9 shows an exemplary physical layer (PHY) transmission segment to illustrate a polled TXOP using HCCA; Figure 10 shows an exemplary specific TXOP including multiple continuous transmissions without any gaps Examples FIG. 11 shows an exemplary embodiment of a TXOP, which is used to explain the reduction of the necessary pilot preamble transmission amount. FIG. 12 shows an exemplary implementation of a method for incorporating various aspects. Examples include merging leading items, removing gaps such as SIFS, and inserting GIFs where appropriate; Figure 13 shows an exemplary physical layer (PHY) transmission segment for explaining merge polling and the corresponding TXOP; Figure 14 shows An exemplary embodiment of a method for merge polling; FIG. 15 illustrates an exemplary MAC frame; FIG. 16 illustrates an exemplary MAC PDU; FIG. 17 illustrates an exemplary peer-to-peer communication; and FIG. 18 illustrates Prior art entity layer bursts; FIG. 19 illustrates an exemplary entity layer burst that can be deployed for peer-to-peer communication; FIG. 20 illustrates a MAC message including optional ad hoc segments Fig. 21 shows an exemplary entity layer burst; 96872.doc -123- 200527868 Fig. 22 shows an exemplary method for peer data transfer Fig. 22 shows an exemplary method;

示範性方法;Exemplary method

理對等式通信; 圖28繪示在相同頻率指派上支援舊有站台及新類別站 圖29緣示舊有與新類別媒體存取控制之組合; 圖30繪示一種用於赢得傳輸機會之示範性方法; 圖31繪示多個BSS共用一單一fa之示範性方法; 圖32綠示使用一單一 fa之重疊BSS ; 圖33繪示一種用於執行高速對等式通信且同時與一舊有 BSS交互操作之示範性方法; 圖34繪示在舊有BSS上藉由競爭存取使用ΜΙΜΟ技術之 對等式通信; 圖3 5繪示在一彙總訊框内封裝一或多個MAC訊框(或片 段); 圖36繪示一舊有MAC訊框; 圖3 7繪示一示範性解壓縮訊框; 圖3 8繪示一示範性壓縮訊框; 96872.doc -124- 200527868 圖39繪示另一示範性壓縮訊框; 圖40繪示一示範性彙總標頭(Aggregation Header); 圖41繪示在SCF中使用之排程存取時期訊框(Scheduled Access Period Frame ; SCAP)之示範性具體實施例; 圖42繪示SCAP配合HCCA及EDCA—起使用之方式; 圖43繪示包含穿插競爭式存取時期之數個SCAP的信標 訊號(Beacon)間隔; 圖44繪示含大量ΜΙΜΟ STA的低延時作業; 圖45繪示示範性SCHED訊息; 圖46緣示一示範性功率管理(p〇wer Management)攔位; 圖47繪示一示範性MAP欄位; 圖48繪示用於τχορ指派之示範性SCHED控制訊框; 圖49繪示一舊有802.11 PPDU ; 圖50緣示一種用於資料傳輸之示範性ΜΙΜΟ PPDU格 式; 圖5 U會示一示範性SCHED PPDU ; 圖52緣示一示範性FRACH PPDU;以及 圖53繪tf —種具有與舊有系統交互操作性之方法的替代 具體實施例。 【主要元件符號說明】 100 系統 102 104 網路 存取點CAP) 106A-N 使用者終端機(UT) 96872.doc 200527868 110, 270 連接 120 無線區域網路區域(WLAN) 210 收發器 220 MAC處理器 240 LAN收發器(圖2) 250 A-N 天線 255 記憶體 260 貧料流 280 反饋 400, 500, 600, 700, 800, 900, 1310 實體層(PHY)傳輪片段 410, 510, 610, 710, 810 現有傳輸 420, 530 新傳輸 520 ACK(認可) 620, 720 DCF訊框間間距(dipq 630, 730 退回(backoff) 640A-640N, 片段 650A-650N, 延遲SIFS 660A-660N,760A-760N ACK訊框 670A-670N-1,750A-750N, SIFS 830A-830N,930, 1340 740A-740N,820A-820N,1020 訊框 770, 1120 前導項 780 標頭和封包 790, 1010, 1110 TX0P(傳輸機會) 96872.doc -126- 200527868 810 含區塊認可之ΤΧ〇ί> 840, 1030, 1140 區塊ACK要求 920 輪詢 940 輪詢TXOP 1130A-1130N 連續傳輸 1310 合併之輪詢 1320 正向鏈路TXOP 1330A-1330N 反向鏈路TXOP 1500 TDD MAC訊框間隔 1510 廣播頻道(BCH)(傳輪頻道 片段) 1520 控制頻道(CCH)(傳輪頻道 片段) 1530 正向流量頻道(F-TCH)(傳輪 頻道片段) 1540 1550 1560 1610 1620A-N 反向流量頻道(F-TCH)(傳輪 頻道片段) 隨機存取頻道(RCH)(傳輸 頻道片段) 片段 資料封包 片段 調節子層PDU 1630 1634, 1644, 1654 多于包承載(payload) 96872.doc -127- 200527868 1640 1642 1646 1650 1652 1660 1662 1664 1666Peer-to-peer communication; Figure 28 shows support for legacy stations and new-type stations on the same frequency assignment. Figure 29 shows a combination of old and new-type media access control. Figure 30 shows a method for winning transmission opportunities. Exemplary method; Figure 31 illustrates an exemplary method in which multiple BSSs share a single fa; Figure 32 green illustrates an overlapping BSS using a single fa; Figure 33 illustrates a method for performing high-speed peer-to-peer communication and simultaneously communicating with an old Exemplary method with BSS interoperation; Figure 34 shows the peer-to-peer communication using MIMO technology with competitive access on the old BSS; Figure 35 shows the encapsulation of one or more MAC messages in a summary frame Frame (or fragment); Figure 36 shows an old MAC frame; Figure 37 shows an exemplary decompressed frame; Figure 38 shows an exemplary compressed frame; 96872.doc -124- 200527868 Figure 39 shows another exemplary compressed frame; FIG. 40 shows an exemplary Aggregation Header; FIG. 41 shows a Scheduled Access Period Frame (SCAP) used in the SCF Exemplary embodiment; FIG. 42 shows the combination of SCAP with HCCA and EDCA. Figure 43 shows a beacon interval containing several SCAPs interspersed with the contention access period; Figure 44 shows a low-latency operation with a large number of MIMO STAs; Figure 45 shows an exemplary SCHED message; Figure 46 shows an exemplary poWer management block; Figure 47 shows an exemplary MAP field; Figure 48 shows an exemplary SCHED control frame for τχορ assignment; Figure 49 shows a Legacy 802.11 PPDU; Figure 50 illustrates an exemplary MIMO PPDU format for data transmission; Figure 5U illustrates an exemplary SCHED PPDU; Figure 52 illustrates an exemplary FRACH PPDU; and Figure 53 illustrates tf— Alternative embodiments of a method of interoperability with legacy systems. [Description of main component symbols] 100 system 102 104 network access point CAP) 106A-N user terminal (UT) 96872.doc 200527868 110, 270 connection 120 wireless LAN area (WLAN) 210 transceiver 220 MAC processing 240 LAN transceiver (Figure 2) 250 AN antenna 255 memory 260 lean stream 280 feedback 400, 500, 600, 700, 800, 900, 1310 physical layer (PHY) wheel segment 410, 510, 610, 710, 810 Existing transmission 420, 530 New transmission 520 ACK (recognized) 620, 720 DCF frame interval (dipq 630, 730 backoff) 640A-640N, fragment 650A-650N, delayed SIFS 660A-660N, 760A-760N ACK message Frame 670A-670N-1, 750A-750N, SIFS 830A-830N, 930, 1340 740A-740N, 820A-820N, 1020 Frame 770, 1120 Leading item 780 Header and packet 790, 1010, 1110 TX0P (transmission opportunity) 96872.doc -126- 200527868 810 TXX with block recognition> 840, 1030, 1140 Block ACK requirements 920 Polling 940 Polling TXOP 1130A-1130N Continuous transmission 1310 Merging polling 1320 Forward link TXOP 1330A -1330N Reverse Link TXOP 1500 TDD MAC Frame Every 1510 Broadcast Channel (BCH) (Transfer Channel Segment) 1520 Control Channel (CCH) (Transfer Channel Segment) 1530 Forward Traffic Channel (F-TCH) (Transfer Channel Segment) 1540 1550 1560 1610 1620A-N Reverse Traffic Channel (F-TCH) (Transfer Channel Fragment) Random Access Channel (RCH) (Transmission Channel Fragment) Fragment Data Packet Fragment Adjustment Sublayer PDU 1630 1634, 1644, 1654 More Than Packet Payload 96872.doc- 127- 200527868 1640 1642 1646 1650 1652 1660 1662 1664 1666

邏輯鏈路子層PDU (LL PDU) LL標頭 CRC MUX子層 PDU (MPDU) MUX標頭 MAC PDU MUX指標 局部MPDU 新PDULogical link sub-layer PDU (LL PDU) LL header CRC MUX sub-layer PDU (MPDU) MUX header MAC PDU MUX indicator Local MPDU New PDU

1666A1666A

MPDU 1800, 1900, 2100 1810 1820 1830, 1930 1940 1910 實體層叢發(PHY叢發) 前導項 實體層會聚協定(PLCP)標頭 資料符號 對等式傳輸(P2P) · ΜΙΜΟ前導 1920 ΜΙΜΟ傳輸率反饋 2000, 2700 TDD MAC訊框間隔 2010 2110 2120 2130 510 選用性隨意片段(A-TCH) 非操控式ΜΙΜΟ前導 對等共同控制頻道(PCCH) 資料符號 廣播頻道(BCH) 96872.doc -128- 200527868 520 530 540 2410 2420 控制頻道(CCH) 正向流量頻道(F-TCH) 反向流量頻道(F-TCH) 非操控式前導(unsteered pilot) 頻道 2430 傳輸率反饋 2710 2720, 2730 配置之叢發 配置 2730 片段 2902 2904 2906 2908A-N 2910 2910 2930 信標訊號(Beacon) 無競爭時期(CFP) 競爭時期(CP) 無競爭輪詢(CF輪詢) 無競爭時期結束(UPEND) 舊有MAC協定 H 新類別協定MPDU 1800, 1900, 2100 1810 1820 1830, 1930 1940 1910 Physical layer burst (PHY burst) Leading item Physical layer convergence protocol (PLCP) header data symbol peer-to-peer transmission (P2P) · ΜΜΟ preamble 1920 ΜΜΟ transmission rate feedback 2000, 2700 TDD MAC frame interval 2010 2110 2120 2130 510 Optional Random Segment (A-TCH) Non-Manipulated ΜΙΜΟ Leading Peer Common Control Channel (PCCH) Data Symbol Broadcast Channel (BCH) 96872.doc -128- 200527868 520 530 540 2410 2420 Control channel (CCH) Forward flow channel (F-TCH) Reverse flow channel (F-TCH) Unsteered pilot channel 2430 Transmission rate feedback 2710 2720, 2730 Configuration burst configuration 2730 Segment 2902 2904 2906 2908A-N 2910 2910 2930 Beacon Signaling No Competition Period (CFP) Competition Period (CP) No Competition Polling (CF Polling) End of No Competition Period (UPEND) Old MAC Agreement H New Category agreement

2932A-N MAC訊框 2950 3210 3205, 3205A,3205B 3210 3215 組合式MAC協定(組合式信 標訊號(Beacon)時間間隔) 舊有系統 信標訊號(Beacon) 無競爭時期 競爭時期 96872.doc 129- 200527868 3220A-N 舊有無競爭輪詢 3225 無競爭時期 3230 PIFS 3245 舊有訊號 3250 新類別存取時期 3260 TDD MAC訊框間隔 3405 ΜΙΜΟ前導 3410 要求 3415 SIFS 3420 操控式前導 3425 認可和傳輸率反饋 3430 操控式前導 3435 資料 3440 操控式前導 3445 認可和傳輸率反饋 3450 操控式前導 3455 資料 3510 MAC訊框(或片段) 3520 彙總之MAC訊框 3530 PSDU 3600 舊有MAC訊框 3610 訊框控制攔位 3615 持續期間/ID欄位 3620 位址1(TA)2932A-N MAC frame 2950 3210 3205, 3205A, 3205B 3210 3215 Combined MAC protocol (Beacon time interval) Legacy system beacon signal (Beacon) No competition period Competition period 96872.doc 129- 200527868 3220A-N Polling with or without competition 3225 Non-contention with period 3230 PIFS 3245 Legacy signal 3250 New category access period 3260 TDD MAC frame interval 3405 ΜΜΟ preamble 3410 requirement 3415 SIFS 3420 steerable preamble 3425 recognition and transmission rate feedback 3430 control Preamble 3435 data 3440 control preamble 3445 approval and transmission rate feedback 3450 control preamble 3455 data 3510 MAC frame (or fragment) 3520 aggregated MAC frame 3530 PSDU 3600 old MAC frame 3610 frame control stop 3615 continuous Period / ID field 3620 Address 1 (TA)

96872.doc -130- 200527868 3625 位址2(RA) 3630 位址3(SA) 3640 位址4(DA) 3635 序列控制搁位 3645 QoS控制欄位 3650 訊框主體 3655 訊框檢查符號(FCS) 3660 MAC標頭 3700, 3800, 3900 延伸式MAC標頭 3705, 3805, 3905 封裝之MAC訊框 3710 彙總標頭 4100 SCAP(排程存取時期訊框) 4010 彙總標頭類型欄位 4110 CTS-to-Self 4020 保留 4030 長度欄位 4120 SCHED訊息 4130 排程存取時期 4140 排程之傳輸 4142 AP至STA傳輸 4144 STA至AP傳輸 4146 STA至STA傳輸(對等式 TX0P) 4150 FRACH (快速隨機存取頻 96872.doc -131- 200527868 4160 4515-4530 4160 4210A-C 4220A-F 4230A-F 4510 4515-4530 4535 4540 4545 4550 4550 4610 4620 4630 4640 4710 4720 4730 4820 4840 道)時期 ΜΙΜΟ OFDM EDCA CTRLJ元素 EDCA(增強型分散頻道存 取)作業 信標訊號(Beacon) 競爭式存取(BDCA) CAP(受控存取階段) MAC標頭 片段96872.doc -130- 200527868 3625 Address 2 (RA) 3630 Address 3 (SA) 3640 Address 4 (DA) 3635 Sequence Control Shelf 3645 QoS Control Field 3650 Frame Body 3655 Frame Check Symbol (FCS) 3660 MAC header 3700, 3800, 3900 Extended MAC header 3705, 3805, 3905 MAC frame encapsulated 3710 Summary header 4100 SCAP (scheduled access period frame) 4010 Summary header type field 4110 CTS-to -Self 4020 Reserved 4030 Length field 4120 SCHED message 4130 Scheduled access period 4140 Scheduled transmission 4142 AP to STA transmission 4144 STA to AP transmission 4146 STA to STA transmission (equivalent TX0P) 4150 FRACH (Fast Random Access Frequency 96872.doc -131- 200527868 4160 4515-4530 4160 4210A-C 4220A-F 4230A-F 4510 4515-4530 4535 4540 4545 4550 4550 4610 4620 4630 4640 4710 4720 4730 4820 4840 channels) period MIMO EDCA CTRLJ element EDCA ( Enhanced Distributed Channel Access) Beacon Operational Access (BDCA) CAP (Controlled Access Phase) MAC Header Segment

訊框控制 持續期間 BSSID 功率管理 MAP SCHED計數 保留欄位 傳輸功率 接收功率 FRACH計數 FRACH偏移 EDCA偏移 CTRL0指派元素 CTRL1指派元素Frame control Duration BSSID Power management MAP SCHED count Reserved field Transmit power Receive power FRACH count FRACH offset EDCA offset CTRL0 assigned element CTRL1 assigned element

96872.doc •132- 200527868 4860 4880 4830, 4850, 4870, 4890 4910 4915 4920 4925 4930 4935 4945 4950 4955 4970 4955 4960 4970 4975 4980 4985 5000 5010 5020 5022 502496872.doc • 132- 200527868 4860 4880 4830, 4850, 4870, 4890 4910 4915 4920 4925 4930 4935 4945 4950 4955 4970 4955 4960 4970 4975 4980 4985 5000 5010 5020 5022 5024

CTRL2指派元素 CTRL3指派元素 FCS PLCP標頭 傳輸率 保留欄位 長度 同位元檢查位元 尾端CTRL2 assigned element CTRL3 assigned element FCS PLCP header Transmission rate Reserved field Length Parity check bit End

PSDU 尾端 填補項PSDU tail padding

舊有 802.11 PPDU 填補項Legacy 802.11 PPDU padding

PPDU 4970之一部分 舊有802.11 ??〇11 PLCP前導項 SIGNAL 資料欄位(DATA) ΜΙΜΟ PPDU格式 PLCP前導項 SIGNAL1 傳輸率/類型攔位 保留搁位Part of PPDU 4970 Legacy 802.11 ?? 11 PLCP Leading Item SIGNAL Data Field (DATA) ΜΙΜΟ PPDU Format PLCP Leading Item SIGNAL1 Transmission Rate / Type Block Reserved Hold

96872.doc -133- 200527868 5026 PPDU大小/要求 5028 同位元檢查位元 5030 尾端 5040 SIGNAL2 5042 保留位元 5044 訓練類型 5046 資料速率向量(DRV) 5048 同位元檢查位元 5050 尾端 5060 尾端符號 5080 資料欄位(DATA) 5082 服務 5084 反饋 5086 PSDU 5088 尾端 5090 填補項 5310 時槽時間間隔 5315 ΜΙΜΟ前導時間間隔 5320 時槽間隙 5330 修改版MAC訊框 5046 DRV 5100 SCHED PPDU 5110 PLCP前導項 5120 SIGNAL 196872.doc -133- 200527868 5026 PPDU size / requirement 5028 parity check bit 5030 trailing end 5040 SIGNAL2 5042 reserved bit 5044 training type 5046 data rate vector (DRV) 5048 parity checking bit 5050 trailing end 5060 trailing end symbol 5080 DATA 5082 Service 5084 Feedback 5086 PSDU 5088 End 5090 Filling Item 5310 Time Slot Time Interval 5315 ΜΙ Leading Time Interval 5320 Time Slot Gap 5330 Modified MAC Frame 5046 DRV 5100 SCHED PPDU 5110 PLCP Leading Item 5120 SIGNAL 1

96872.doc . 134- 200527868 5122 速率/類型 5124 保留位元 5126 CTRL0大小 5128 CTRL1大小 5130 同位元檢查位,元 5132 尾端 5140 SIGNAL2 5142 保留位元 5144 訓練類型 5146 CTRL2大小 5148 CTRL3大小 5150 FCS 5152 尾端 5160 尾端符號 5180 SCHED訊框 5200 FRACH PPDU 5210 PLCP前導項 5220 SIGNAL 1 5222 速率/類型 5224 保留欄位 5226 要求 5228 同位元檢查位元 5230 尾端 5240 SIGNAL296872.doc. 134- 200527868 5122 rate / type 5124 reserved bit 5126 CTRL0 size 5128 CTRL1 size 5130 parity check bit, element 5132 end 5140 SIGNAL2 5142 reserved bit 5144 training type 5146 CTRL2 size 5148 CTRL3 size 5150 FCS 5152 tail End 5160 End symbol 5180 SCHED frame 5200 FRACH PPDU 5210 PLCP Leader 5220 SIGNAL 1 5222 Rate / Type 5224 Reserved field 5226 Requires 5228 Parity check bit 5230 End 5240 SIGNAL2

96872.doc -135- 20052786896872.doc -135- 200527868

5242 保留位元 5244 來源AID 5246 目的地AID 5248 FCS5242 Reserved bits 5244 Source AID 5246 Destination AID 5248 FCS

96872.doc 136-96872.doc 136-

Claims (1)

200527868 十、申請專利範圍: 1 · 一種資料訊框,包括·· 收之第-格式予以傳輸 二格式予以傳輸的專用 一按照一或多個第一站台可接 的共同部分;以及 一按照一第二站台可接收之第 部分。 2.如請求項1之資料訊框式參考。 其中該共同部分包括 一非操控200527868 10. Scope of patent application: 1 · a data frame, including ·· the first format to be transmitted, the second format to be used for transmission, the common part accessible in accordance with one or more first stations; and Receivable part two of the platform. 2. Refer to the information frame for request item 1. The common part includes a non-manipulation 3·如請求項1之資料訊框,其中該第二格式包括操控。 4 · 一種設備,包括: 二站台之電路, 用於從一第一站台傳輸一訊框至一第 該訊框包括: —按照一或多個第三站台可接收之第—格式予以傳 輸的共同部分;以及 一按照該第二站台可接收之箆-炊2 ^ <弟一格式予以傳輸的專 用部分。3. The data frame of claim 1, wherein the second format includes manipulation. 4 · A device comprising: a two-station circuit for transmitting a frame from a first station to a first frame including: — common in the first format that can be received by one or more third stations — to be transmitted Part; and a dedicated part to be transmitted in accordance with the format of 箆-cook 2 ^ < brother one that can be received by the second station. 5. —種無線通信系統,包括·· 一或多個第一站台; 弟-一站台,以及 一第二站台,用於傳輸一訊框至該第二站台,該訊框 包括: —按照該等一或多個第一站台可接收之第一格式予 以傳輸的共同部分;以及 一按照該第二站台可接收之第二格式予以傳輸的專 96872.doc 200527868 用部分。 6. 一種設備’包括:5. — A wireless communication system comprising: one or more first stations; a brother-a station and a second station for transmitting a frame to the second station, the frame including: — according to the A common part that is transmitted in a first format receivable by one or more first stations; and a dedicated 96872.doc 200527868 part that is transmitted in a second format receivable by the second station 6. A device ’includes: 之構件, 用於從一第一站台傳輸一訊框至一 該訊框包括: 一按照一或多個第三站台可接收之第 輸的共同部分;以及 一按照該第二站台可接收之第二格式 用部分。 一種方法,包括: 從一第一站台傳輸一訊框至一第 括: 格式予 以傳 予以傳輪的專 站台, 该訊框包 按照一或多個第三站台可接收之第 格式予以傳 輸的共同部分;以及 用2照該第二站台可接收之第二格式予以傳輪的專8.:請求項7之方法’其中該*同部分包括-非操控式參Means for transmitting a frame from a first station to a frame including: a common part according to a first station or a plurality of third stations; and a second part according to a second station Part of the second format. A method includes: transmitting a frame from a first station to a block: a dedicated station whose format is transmitted to a ship, and the frame packet is transmitted according to a common format that can be received by one or more third stations Part; and the special method of requesting a transfer in 2 according to the second format receivable by the second station: the method of claim item 7 wherein the * same part includes-a non-manipulating parameter 該專用部 9.如請求項7之方法,纟中該第二格式包括操控 分0 10·如請求項7之方法 輸的資料指示。 其中該第~部分包括一 用於未來傳 11 ·如請求 12 ·如請求 13.如請求 項10之方法,其中該第二站台接收該資料指示 項10之方法,其中該資料指示是一配置要求。 項10之方法’其中該等-❹個第三站台包括 96872.doc -2- 200527868 存取點,以及其中該存取點: 接收該第一站台至該第二站台之傳輪的該共同部分中 的該資料指示; 響應該資料指示而排程一配置;以及 傳輸該配置至該第一站台。 14. 如請求項13之方法,其中在—合併輪詢中傳輸該配置。 15. -種可運作用於在一共用媒體上通信之無線通信系統, 存取被配置給相對應於一第一持續期間之至少一第一部 分及相對應力-第二持續期間之至少—第二部分的該共 用媒體,該無線通信系統包括: 存取媒體構件,用於在該第一部分期間使用一競爭式 程序而運用一第一站台來存取該媒體,以便傳輸至一第 二站台;以及 存取媒體構件,用於在該第二部分期間按照一存取配 置而運用一第二站台來存取該媒體,以便傳輸至一第四 站台。 16. -種用於在一共用媒體上通信之方法,存取被配置給相 對應於―第—持續期間之至少—第—部分及相對應於- 第二持續期間之至少一第二部分的該共用媒體,該方法 包括: 在該第一部分期間使用一競爭式程序而運用一第一站 口來存取該媒體,以便傳輸至一第二站台;以及 在6亥第二部分期間按照一存取配置而運用一第二站台 來存取该媒體,以便傳輸至一第四站台。 96872.doc -3- 200527868 17. 18. 19. 20. 21. 22. 23. 24. 如請求項16之方法,其中該第一站台與該第三站台是同 一站台。 如請求項16之方法,其中該第一站台與该第四站台是同 一站台。 如請求項16之方法,其中該第二站台與该第三站台是同 一站台。 士明求項16之方法’其中該第二站台與该第四站台是同 一站台。 一種設備,包括: 用以贏得一傳輸機會之構件;以及 用於傳輸一訊框至一遠端站台之構件,使用操控來傳 輸該訊框之至少一部分。 一種電腦可讀型媒體,其可運作以執行下列步驟·· 赢得一傳輸機會;以及 傳輸一訊框至一遠端站台,傕用 =, 使用知控來傳輪該訊框 至少一部分。 一種無線通信系統,包括·· 一存取點; 一第一站台;以及 一第二站台,用於·· 從該存取點赢得一傳輸機會;以及 在该傳輸機會期間傳輸一訊框至該第一站a 才朱控來傳輸該訊框之至少一部分。 一種用於形成一介於一第一 站台與一第二站台 之 使用 之間的直 96872.doc -4- 200527868 接鏈路之方法,包括: 赢得一傳輸機會;以及 傳輸一訊框至一遠端站台,使用操控來傳輸該訊框之 至少一部分。 25·如請求項24之方法,其中赢得該傳輸機會包括: 向一排程方站台要求關於一共用媒體之一配置; 響應該配置要求而接收來自該排程方遠端站台之_配 置。 26_如請求項24之方法’其中臝得該傳輸機會包括競爭存取 一共用媒體。 2 7 · —種無線通信系統,包括: 用於從一第一站台傳輸一前導訊號至一第二站台之構 件; 用於在該第二遠端站台處量測該前導訊號並且據此決 定反饋之構件; 用於從該第二站台傳輸該反饋至該第一站台之構件; 以及 用於按照該反饋而從該第一站台傳輸資料至該第二站 台之構件。 28. —種方法’該方法包括: 從一第一站台傳輸一前導訊號至一第二站台; 在該第二遠端站台處量測該前導訊號並且據此決定反 領, ;以及 從該第二站台傳輸該反饋至該第一站台 96872.doc 200527868 按照該反饋而從該第_站台傳輸資料至該第 站台 29·如請求項28之方法,其中該資料包一 個資料各包括: ,夕個訊框,每 一按照一或多個第三站台可接收 的共同部分;以及 一格式予以傳輸 一按照該第二站台可接收之m _ 部分。 —秸式予以傳輸的專用 30·如請求項28之方法,進一步句 /匕括連同該傳 傳輸資料。 输之反饋一起 31·如請求項28之方法,進一步包括連 傳輪一第二前導訊號 同該傳輪之反饋一起 32.如岣未項31之方法,進一 α ^ 匕括I測該第二前導m號廿 且據此決定反饋。 引唬亚 3 3.如請求項28之方法,進一步 輪一次如 > — 匕括連同该前導訊號一起傳 輸一資料指不 34.如 請求項28之方法,進一步包括連 傳輪資料。 同該傳輸之反饋一起 96872.docThe dedicated section 9. If the method of item 7 is requested, the second format in the description includes a manipulation instruction of 0.10. The method of data input of item 7 is required. Wherein the first part includes a method for future transmission 11 · as requested 12 · as requested 13. as the method of item 10, wherein the second station receives the data indication item 10, wherein the data indication is a configuration request . The method of item 10, wherein the third station includes 96872.doc -2- 200527868 access point, and wherein the access point: receives the common part of the transfer wheel from the first station to the second station The data instruction in; scheduling a configuration in response to the data instruction; and transmitting the configuration to the first station. 14. The method of claim 13, wherein the configuration is transmitted in a merge poll. 15. A wireless communication system operable to communicate on a common medium, the access is configured to correspond to at least a first portion of a first duration and relative stress-at least a second duration-second Part of the shared media, the wireless communication system includes: an access media component for accessing the media using a first station during the first part using a competitive program for transmission to a second station; and The access media component is used to access the media using a second station during the second part according to an access configuration for transmission to a fourth station. 16.-A method for communicating on a common medium, the access is configured to correspond to at least a first part of the first duration and to at least a second part of the second duration The shared media, the method comprising: using a competitive program during the first part to use a first station to access the media for transmission to a second station; and during a second part of the 6th part according to a storage Take the configuration and use a second station to access the media for transmission to a fourth station. 96872.doc -3- 200527868 17. 18. 19. 20. 21. 22. 23. 24. The method of claim 16 wherein the first station and the third station are the same station. The method of claim 16, wherein the first station and the fourth station are the same station. The method of claim 16, wherein the second station and the third station are the same station. Shi Ming's method of finding item 16 'wherein the second platform and the fourth platform are the same platform. An apparatus includes: a means for winning a transmission opportunity; and a means for transmitting a frame to a remote station, using a manipulation to transmit at least a portion of the frame. A computer-readable medium that is operable to perform the following steps: to win a transmission opportunity; and to transmit a frame to a remote station, using =, using knowledge control to pass at least a portion of the frame. A wireless communication system comprising: an access point; a first station; and a second station for winning a transmission opportunity from the access point; and transmitting a frame to the transmission period during the transmission opportunity. The first stop a is Zhu Kong to transmit at least part of the frame. A method for forming a direct 96872.doc -4- 200527868 link between the use of a first station and a second station includes: winning a transmission opportunity; and transmitting a frame to a remote end The station uses manipulation to transmit at least a portion of the frame. 25. The method of claim 24, wherein winning the transmission opportunity includes: requesting a scheduler station for a configuration of a shared media; and receiving a configuration from a remote station of the scheduler in response to the configuration request. 26_ The method of claim 24, wherein the naked opportunity includes competing access to a shared medium. 2 7 · A wireless communication system including: a component for transmitting a preamble signal from a first station to a second station; for measuring the preamble signal at the second remote station and determining feedback based thereon A component for transmitting the feedback from the second platform to the first platform; and a component for transmitting data from the first platform to the second platform according to the feedback. 28. A method 'The method includes: transmitting a preamble signal from a first station to a second station; measuring the preamble signal at the second remote station and deciding to return the collar accordingly; and from the first station The second station transmits the feedback to the first station 96872.doc 200527868 According to the feedback, the data is transmitted from the first station to the second station 29. If the method of item 28 is requested, each of the data in the data package includes: Frame, each in accordance with a common part receivable by one or more third stations; and a format to transmit a m_ part receivable according to the second station. -Dedicated for transmission 30. If the method of item 28 is requested, the sentence / dagger is transmitted together with the transmission data. Lost feedback together 31. If the method of item 28 is requested, it further includes passing a round a second leading signal together with the feedback of the pass 32. If the method of item 31 is not included, enter an α ^ to test the second The leading m number 廿 and decides feedback accordingly. Aggravate Asia 3 3. If the method of item 28 is requested, further rounds such as > — Transferring a piece of data together with the preamble signal means 34. If the method of item 28 is requested, further include serial pass data. Along with feedback from that transmission
TW93131485A 2003-10-15 2004-10-15 High speed media access control and direct link protocol TWI387279B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US51175003P 2003-10-15 2003-10-15
US51190403P 2003-10-15 2003-10-15
US51323903P 2003-10-21 2003-10-21
US52634703P 2003-12-01 2003-12-01
US52635603P 2003-12-01 2003-12-01
US53279103P 2003-12-23 2003-12-23
US54596304P 2004-02-18 2004-02-18
US57654504P 2004-06-02 2004-06-02
US58684104P 2004-07-08 2004-07-08
US60096004P 2004-08-11 2004-08-11

Publications (2)

Publication Number Publication Date
TW200527868A true TW200527868A (en) 2005-08-16
TWI387279B TWI387279B (en) 2013-02-21

Family

ID=37491830

Family Applications (6)

Application Number Title Priority Date Filing Date
TW93131484A TWI380633B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for multiplexing protocol data units
TW93131485A TWI387279B (en) 2003-10-15 2004-10-15 High speed media access control and direct link protocol
TW93131483A TWI385993B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for medium access control
TW93131491A TWI384793B (en) 2003-10-15 2004-10-15 High speed media access control with legacy system interoperability
TW93131486A TWI383302B (en) 2003-10-15 2004-10-15 Wireless lan protocol stack
TW093131490A TWI466517B (en) 2003-10-15 2004-10-15 High speed media access control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW93131484A TWI380633B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for multiplexing protocol data units

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW93131483A TWI385993B (en) 2003-10-15 2004-10-15 Method, apparatus, and system for medium access control
TW93131491A TWI384793B (en) 2003-10-15 2004-10-15 High speed media access control with legacy system interoperability
TW93131486A TWI383302B (en) 2003-10-15 2004-10-15 Wireless lan protocol stack
TW093131490A TWI466517B (en) 2003-10-15 2004-10-15 High speed media access control

Country Status (3)

Country Link
CN (4) CN1894914B (en)
BR (2) BRPI0415422A (en)
TW (6) TWI380633B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718093B2 (en) 2006-04-24 2014-05-06 Interdigital Technology Corporation Method and apparatus for exchanging control of a transmission opportunity
US9113478B2 (en) 2008-08-20 2015-08-18 Qualcomm Incorporated Methods and apparatus for requesting and allocating resources in multiple transmission opportunities

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465085B (en) * 2006-02-14 2014-12-11 Interdigital Tech Corp Methods and systems for providing reliable multicast service in a wlan service
WO2007127312A2 (en) * 2006-04-25 2007-11-08 Interdigital Technology Corporation High-throughput channel operation in a mesh wireless local area network
KR101424258B1 (en) 2006-08-23 2014-08-13 엘지전자 주식회사 Method for performing random access procedure in wirelss communication system
US8488508B2 (en) 2006-11-13 2013-07-16 Qualcomm Incorporated Method and apparatus for providing reliable multicast in a wireless communication system
US7817669B2 (en) 2007-02-01 2010-10-19 Interdigital Technology Corporation Method and apparatus for supporting RLC re-segmentation
KR20080084533A (en) 2007-03-16 2008-09-19 엘지전자 주식회사 A method of data communication in mobile communication system
US7885220B2 (en) * 2007-08-17 2011-02-08 Intel Corporation Method and apparatus for improved dual channel operation and access point discovery in wireless communication networks
US8989106B2 (en) * 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
TWI420874B (en) * 2009-07-01 2013-12-21 Wistron Corp Information system of actively providing information to electronic devices and method thereof
US10389479B2 (en) * 2010-01-29 2019-08-20 Qualcomm Incorporated Method and apparatus for signaling expansion and backward compatibility preservation in wireless communication systems
CN101917772A (en) * 2010-08-26 2010-12-15 张若南 Media access control method based on double-buffer area mixed type media access control protocol
US8340601B2 (en) * 2010-09-20 2012-12-25 Intel Corporation MU MIMO support with highly directional antennas
US8989102B2 (en) * 2011-04-26 2015-03-24 Intel Corporation Methods and arrangements for low power wireless networks
CN102892208B (en) * 2011-06-07 2016-01-20 宏达国际电子股份有限公司 Wireless telecommunication system back-off procedure establishing method
CN105208670B (en) * 2011-09-16 2019-01-18 华为技术有限公司 It is a kind of to recycle the method and device for inversely authorizing middle transmission opportunity control
CN103095364B (en) * 2011-11-01 2016-01-27 华为技术有限公司 Data transferring method and device
KR101851614B1 (en) * 2011-12-12 2018-06-12 삼성전자주식회사 Method of clock control of system on chip including functional block, system on chip of the same and semicondutor system including the same
CN102595648B (en) * 2011-12-31 2015-04-08 重庆邮电大学 Adaptive carrier sense multiple access (CSMA)/conditional access (CA) method based on institute of electrical and electronics engineers (IEEE)802.15.4
CN102802071B (en) * 2012-08-24 2014-10-29 上海广电电子科技有限公司 Intelligent television, mobile terminal, multi-screen interaction system and wireless communication method
US20140105098A1 (en) * 2012-10-16 2014-04-17 Stmicroelectronics, Inc. Frame specification for a wireless network communication
CN104104616B (en) 2013-04-03 2019-04-19 华为技术有限公司 The method, apparatus and system of data dispatch and exchange
WO2014179722A1 (en) * 2013-05-02 2014-11-06 Interdigital Patent Holdings, Inc. Method for selecting an entity based on a total link quality
US9577811B2 (en) * 2013-05-03 2017-02-21 Qualcomm Incorporated Methods and systems for frequency multiplexed communication in dense wireless environments
US9492741B2 (en) 2013-05-22 2016-11-15 Microsoft Technology Licensing, Llc Wireless gaming protocol
CN105379145A (en) * 2013-08-12 2016-03-02 Kt株式会社 Method and device for transmitting data in WLAN system
WO2015042896A1 (en) 2013-09-29 2015-04-02 华为技术有限公司 Data transmission method and device
US9661634B2 (en) * 2013-11-01 2017-05-23 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
CN103916850B (en) * 2014-04-08 2017-02-15 中国科学院微电子研究所 Safe wireless communication method and device
US10045369B2 (en) * 2014-06-09 2018-08-07 Intel IP Corporation Apparatus, method and system of multi-user downlink transmission
CN104410481B (en) * 2014-11-28 2018-01-19 国家电网公司 A kind of setting means based on NTP networks and pair when system
US9693371B2 (en) * 2015-04-10 2017-06-27 Qualcomm Incorporated IoE device transmission signaling and scheduling
CN108141887B (en) * 2015-09-28 2021-07-02 阿特拉斯全球技术有限责任公司 Apparatus and method for TXOP duration field in PHY header
US10230498B2 (en) 2015-11-13 2019-03-12 Microsoft Technology Licensing, Llc Data acknowledgment to multiple devices
KR102453795B1 (en) * 2015-12-09 2022-10-17 주식회사 윌러스표준기술연구소 Wireless communication method and wireless communication terminal using multi-basic service identifier set
KR102342150B1 (en) 2016-03-04 2021-12-23 주식회사 윌러스표준기술연구소 Wireless communication method and wireless communication terminal in the basic service set overlapped with other basic service sets
US10225867B2 (en) * 2016-09-02 2019-03-05 Qualcomm Incorporated Transmission configuration and format for random access messages
US10200874B2 (en) * 2016-09-29 2019-02-05 Qualcomm Incorporated Signature sequence for system identification in a shared spectrum
TWI657688B (en) * 2017-11-22 2019-04-21 群登科技股份有限公司 Time division multiplexing channel structure and time division multiplexing communication method using the same
US20220225323A1 (en) * 2019-05-10 2022-07-14 Interdigital Patent Holdings, Inc. Efficient uplink resource requests in wlan systems
CN110190873B (en) * 2019-05-30 2022-04-08 磐基技术有限公司 Wired communication method supporting multiple users
TWI729682B (en) * 2020-01-21 2021-06-01 元大期貨股份有限公司 Network communication device for realizing high-frequency issuance of transaction data

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133081A (en) * 1989-11-03 1992-07-21 Mayo Scott T Remotely controllable message broadcast system including central programming station, remote message transmitters and repeaters
GB9019488D0 (en) * 1990-09-06 1990-10-24 Ncr Co Local area network having a wireless transmission link
US5276703A (en) * 1992-01-13 1994-01-04 Windata, Inc. Wireless local area network communications system
US5444702A (en) * 1992-09-14 1995-08-22 Network Equipment Technologies, Inc. Virtual network using asynchronous transfer mode
FI98586C (en) * 1995-01-10 1997-07-10 Nokia Telecommunications Oy Packet radio system and methods for protocol-independent routing of a data packet in packet radio networks
US5638371A (en) * 1995-06-27 1997-06-10 Nec Usa, Inc. Multiservices medium access control protocol for wireless ATM system
JP3302578B2 (en) * 1996-10-21 2002-07-15 富士通株式会社 OAM processing equipment
GB9717868D0 (en) * 1997-08-23 1997-10-29 Philips Electronics Nv Wireless network
US6681315B1 (en) * 1997-11-26 2004-01-20 International Business Machines Corporation Method and apparatus for bit vector array
WO1999048227A1 (en) * 1998-03-14 1999-09-23 Samsung Electronics Co., Ltd. Device and method for exchanging frame messages of different lengths in cdma communication system
US6697345B1 (en) * 1998-07-24 2004-02-24 Hughes Electronics Corporation Multi-transport mode radio communications having synchronous and asynchronous transport mode capability
JP3756061B2 (en) * 1998-10-05 2006-03-15 ノキア コーポレイション Frame control method and apparatus
US6731627B1 (en) * 1998-11-17 2004-05-04 Cisco Technology, Inc. Virtual loop carrier system
US6587441B1 (en) * 1999-01-22 2003-07-01 Technology Alternatives, Inc. Method and apparatus for transportation of data over a managed wireless network using unique communication protocol
US6542490B1 (en) * 1999-01-29 2003-04-01 Nortel Networks Limited Data link control proctocol for 3G wireless system
AU2936099A (en) * 1999-03-17 2000-10-04 Nokia Networks Oy Internet protocol switch and method
WO2000064111A1 (en) * 1999-04-16 2000-10-26 Unifree, L.L.C. Media file distribution with adaptive transmission protocols
CN1149794C (en) * 1999-07-27 2004-05-12 信息产业部武汉邮电科学研究院 Interfacing apparatus and method for adapting ethernet directly to physical channel
US6721565B1 (en) * 2000-08-07 2004-04-13 Lucent Technologies Inc. Handover of wireless calls between systems supporting circuit and packet call models
US6795409B1 (en) * 2000-09-29 2004-09-21 Arraycomm, Inc. Cooperative polling in a wireless data communication system having smart antenna processing
EP1261183A1 (en) * 2001-05-23 2002-11-27 Telefonaktiebolaget L M Ericsson (Publ) Method and system for processing a data unit
US7280517B2 (en) * 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
CN100417151C (en) * 2001-11-30 2008-09-03 中兴通讯股份有限公司 Method and apparatus for realizing support circuit business in wireless access system
US7486693B2 (en) * 2001-12-14 2009-02-03 General Electric Company Time slot protocol
US20030162519A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device
US6795419B2 (en) * 2002-03-13 2004-09-21 Nokia Corporation Wireless telecommunications system using multislot channel allocation for multimedia broadcast/multicast service

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718093B2 (en) 2006-04-24 2014-05-06 Interdigital Technology Corporation Method and apparatus for exchanging control of a transmission opportunity
US9113478B2 (en) 2008-08-20 2015-08-18 Qualcomm Incorporated Methods and apparatus for requesting and allocating resources in multiple transmission opportunities

Also Published As

Publication number Publication date
CN1894914B (en) 2010-06-16
TWI383302B (en) 2013-01-21
TW200531489A (en) 2005-09-16
BRPI0415426A (en) 2006-12-05
TW200527846A (en) 2005-08-16
TWI380633B (en) 2012-12-21
TW200529619A (en) 2005-09-01
CN102571801B (en) 2015-09-09
TWI385993B (en) 2013-02-11
BRPI0415422A (en) 2006-12-05
TWI387279B (en) 2013-02-21
TWI466517B (en) 2014-12-21
CN102612076B (en) 2015-07-01
TWI384793B (en) 2013-02-01
CN102612076A (en) 2012-07-25
TW200525375A (en) 2005-08-01
CN1894914A (en) 2007-01-10
TW200536306A (en) 2005-11-01
CN102571801A (en) 2012-07-11
CN101860925B (en) 2013-03-27
CN101860925A (en) 2010-10-13

Similar Documents

Publication Publication Date Title
TWI387279B (en) High speed media access control and direct link protocol
KR100813455B1 (en) High speed media access control and direct link protocol
EP2267956B1 (en) High speed media access control with legacy system interoperability
EP1678893B1 (en) High speed media access control
MXPA06004137A (en) High speed media access control with legacy system interoperability
MXPA06004230A (en) High speed media access control and direct link protocol