TWI381263B - Maximum power tracking device - Google Patents
Maximum power tracking device Download PDFInfo
- Publication number
- TWI381263B TWI381263B TW98125539A TW98125539A TWI381263B TW I381263 B TWI381263 B TW I381263B TW 98125539 A TW98125539 A TW 98125539A TW 98125539 A TW98125539 A TW 98125539A TW I381263 B TWI381263 B TW I381263B
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- output
- value
- voltage
- current
- Prior art date
Links
Landscapes
- Control Of Electrical Variables (AREA)
Description
本發明是有關於一種追蹤裝置,特別是指一種找出能量產生裝置之最大輸出功率的最大功率追蹤裝置。The present invention relates to a tracking device, and more particularly to a maximum power tracking device for finding the maximum output power of an energy generating device.
由於太陽能發電之輸出功率會受到外界環境因素,如溫度、照度變化之影響,因此針對太陽能發電找出其輸出功率的最大值的方法被提出,如圖1所示,擾動觀察法為目前實現最大功率追蹤的一種方法,其是以太陽能發電之輸出功率與電壓間之特性曲線為考量,以最大輸出功率點為中心,可將操作區域劃分為兩種,分別為正斜率區RP與負斜率區RN,當太陽能板的功率輸出操作於正斜率時,可增加其輸出電壓以使操作點趨近最大功率點Pmax ,當太陽能板的功率輸出操作於負斜率時,可降低其輸出電壓以使操作點趨近最大功率點Pmax 。Since the output power of solar power generation is affected by external environmental factors such as temperature and illuminance changes, a method for finding the maximum value of the output power for solar power generation is proposed. As shown in Fig. 1, the disturbance observation method is currently the largest. A method of power tracking, which is based on the characteristic curve between the output power and the voltage of solar power generation, and the operation area is divided into two types, which are the positive slope region RP and the negative slope region, centering on the maximum output power point. RN, when the power output of the solar panel operates at a positive slope, its output voltage can be increased to bring the operating point closer to the maximum power point P max , and when the power output of the solar panel operates at a negative slope, the output voltage can be lowered to enable The operating point approaches the maximum power point Pmax .
如圖2所示,為將上述最大功率追蹤方法以硬體實現實施,其概念為於二不同時間點,最大功率追蹤裝置2根據所量測到太陽能板的輸出電壓和輸出電流以估算出功率而比較前後的功率,再根據功率變化以動態地調整太陽能板經由電源轉換器1輸出到蓄電池的能量,以將能量作最佳化的轉換。As shown in FIG. 2, in order to implement the above-mentioned maximum power tracking method in hardware, the concept is that at two different time points, the maximum power tracking device 2 estimates the power according to the measured output voltage and output current of the solar panel. Before and after the power is compared, the energy output from the solar panel to the battery via the power converter 1 is dynamically adjusted according to the power change to optimize the conversion of the energy.
在習知美國專利號US 7053506 B2揭露一種最大功率追蹤裝置,其缺點為照度改變時進行功率追蹤期間被去能(disable),而無法輸出脈波寬度調變(PWM)信號,如圖3所示的t1~t2期間,使得電源轉換器的等效輸入電阻近似無限大導致太陽能板無法輸出電流,造成能量的浪費,其中參數IMAX 、IOMB 分別為太陽能板於二不同穩定照度下的輸出電流。A maximum power tracking device is disclosed in the prior art US Pat. No. 7,053,506 B2, which has the disadvantage that it is disabled during power tracking when the illuminance is changed, and the pulse width modulation (PWM) signal cannot be output, as shown in FIG. During the period from t1 to t2, the equivalent input resistance of the power converter is approximately infinite, causing the solar panel to fail to output current, resulting in waste of energy. The parameters I MAX and I OMB are the outputs of the solar panel under two different stable illuminations. Current.
因此,本發明之目的,即在提供一種避免上述缺失和增加效率的最大功率追蹤裝置。Accordingly, it is an object of the present invention to provide a maximum power tracking device that avoids the aforementioned deficiencies and increases efficiency.
該最大功率追蹤裝置,適用於與一能源產生裝置和一具有一開關的電源轉換器耦接,且包含:一電壓偵測器、一電流偵測器、一偏移量修正單元,和一脈波調變單元。The maximum power tracking device is adapted to be coupled to an energy generating device and a power converter having a switch, and includes: a voltage detector, a current detector, an offset correction unit, and a pulse Wave modulation unit.
該電壓偵測器用於偵測該能源產生裝置輸出到該電源轉換器的一輸出電壓,以提供一偵測電壓值;電流偵測器,用於偵測該能源產生裝置輸出到該電源轉換器的一輸出電流,以提供一偵測電流值。The voltage detector is configured to detect an output voltage of the energy generating device outputted to the power converter to provide a detected voltage value, and a current detector for detecting the output of the energy generating device to the power converter An output current to provide a detected current value.
該偏移量修正單元包括:一功率比較模組,和一電壓準位產生器。The offset correction unit includes: a power comparison module, and a voltage level generator.
該功率比較模組根據目前所接收到的該偵測電壓值、該偵測電流值與先前所接收到的該偵測電壓值、該偵測電流值,分別估算出一目前功率和一先前功率,再比較該目前功率與該先前功率的大小以輸出一於高、低電位之間變化的控制信號。The power comparison module estimates a current power and a previous power according to the detected voltage value, the detected current value, and the previously received detected voltage value and the detected current value respectively. And comparing the current power with the magnitude of the previous power to output a control signal that varies between high and low potentials.
該電壓準位產生器接收該控制信號並根據該控制信號的變化以增加或減少所要輸出的一呈類比的偏移電壓。The voltage level generator receives the control signal and increases or decreases an analog offset voltage to be output according to the change of the control signal.
該脈波調變單元包括一第一差值運算器、一第二差值運算器,和一脈波信號產生模組。The pulse wave modulation unit includes a first difference value operator, a second difference value operator, and a pulse wave signal generation module.
該第一差值運算器分別接收該偵測電壓值和該偏移電壓值,進行相減後再乘以一增益值,而輸出一第一差異。The first difference operator receives the detected voltage value and the offset voltage value respectively, performs subtraction, and then multiplies a gain value to output a first difference.
該第二差值運算器分別接收該偵測電流值和該第一差異值,再進行相減後輸出一第二差異值。The second difference operator receives the detected current value and the first difference value respectively, and performs subtraction to output a second difference value.
該脈波信號產生模組接收該第二差異值且輸出一責任週期比例根據該第二差異值變化的一脈波寬度調變驅動電壓,並利用該脈波寬度調變驅動電壓控制該電源轉換器之該開關的切換。The pulse wave signal generating module receives the second difference value and outputs a pulse width modulation driving voltage whose duty cycle ratio changes according to the second difference value, and controls the power conversion by using the pulse width modulation driving voltage Switching of the switch of the device.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.
若將電源轉換器的輸入電阻Rin視為可變電阻,而忽略太陽能板內部的並聯輸出電阻Rs只考慮其內部串聯輸出電阻Ro,則等效電路如圖4所示,藉由所量測到輸出電壓Vpv_sen 和一輸出電流Ipv_sen 改變以調整PWM信號的責任週期比例(duty ratio)以調整電源轉換器的輸入電阻Rin匹配於串聯輸出電阻Ro,而使太陽能板的輸出功率達到最大值。If the input resistance Rin of the power converter is regarded as a variable resistor, and the parallel output resistance Rs inside the solar panel is ignored, only the internal series output resistance Ro is considered, and the equivalent circuit is as shown in FIG. The output voltage Vpv_sen and an output current Ipv_sen are varied to adjust the duty cycle ratio of the PWM signal to adjust the input resistance Rin of the power converter to match the series output resistance Ro to maximize the output power of the solar panel.
如圖5所示,虛線33為本發明根據電源轉換器的輸入電阻Rin於多數個照度情況下所設計出的一最大功率負載線,其設計公式為根據不同照度情況量測太陽能板的最大功率點以得到多數個數據,再以一次逼近法將該多數個數據調整成一直線以推出其最大功率負載線公式為As shown in FIG. 5, the broken line 33 is a maximum power load line designed according to the input resistance Rin of the power converter under a plurality of illumination conditions, and the design formula is to measure the maximum power of the solar panel according to different illumination conditions. Point to get a lot of data, and then adjust the majority of the data to a straight line by one approximation method to introduce its maximum power load line formula as
Vpv_sen -Vstep -kIpv_sen =0 式一V pv_sen -V step -kI pv_sen =0
其中,參數Vpv_sen 為為太陽能板輸出電壓,Vstep 為預定偏移電壓量,Ipv_sen 為太陽能板輸出電流,k為一負載斜率,其根據不同太陽能板而定出不同的負載斜率。Wherein, the parameter V pv_sen is the solar panel output voltage, V step is the predetermined offset voltage amount, I pv_sen is the solar panel output current, and k is a load slope, which determines different load slopes according to different solar panels.
如圖6所示,本發明最大功率追蹤裝置之較佳實施例,適用於不同照度和溫度的情況下,偵測一能源產生裝置(在本實施例中以太陽能板為例作說明,但不限於此,也可為風力發電裝置或其他裝置)提供到具有開關S1、S2的電源轉換器34的一輸出電壓Vpv_se n和一輸出電流Ipv_sen ,以產生一脈波調變(PWM)驅動電壓改變電源轉換器34之開關S1、S2的責任週期比例,以使電源轉換器34的輸入電阻Rin符合該最大功率負載線公式,且包括:一電壓偵測器31、一電流偵測器32、一偏移量修正單元40,和一脈波調整單元6。As shown in FIG. 6, a preferred embodiment of the maximum power tracking device of the present invention is suitable for detecting an energy generating device under different illumination and temperature conditions (in the embodiment, a solar panel is taken as an example, but not In this case, an output voltage V pv_se n and an output current I pv_sen of the power converter 34 having the switches S1 and S2 may be supplied to the wind power generator or other device to generate a pulse-wave modulation (PWM) drive. The voltage changes the duty cycle ratio of the switches S1 and S2 of the power converter 34 such that the input resistance Rin of the power converter 34 conforms to the maximum power load line formula, and includes: a voltage detector 31 and a current detector 32. An offset correction unit 40 and a pulse wave adjustment unit 6.
電壓偵測器31、電流偵測器32分別偵測太陽能板提供到電源轉換器34的輸出電壓Vpv_sen 、輸出電流Ipv_sen ,以分別提供一偵測電壓值、一偵測電流值。The voltage detector 31 and the current detector 32 respectively detect the output voltage V pv_sen and the output current I pv_sen provided by the solar panel to the power converter 34 to respectively provide a detection voltage value and a detection current value.
該偏移量修正單元40根據偵測電壓值與偵測電流值相乘值的變化以輸出一偏移電壓Vstep ,且包括一功率比較模組4,和一電壓準位產生器5。The offset correction unit 40 outputs an offset voltage V step according to the change of the detected voltage value and the detected current value, and includes a power comparison module 4 and a voltage level generator 5.
功率比較模組4根據目前所接收到的偵測電壓值、偵測電流值與先前所接收到的偵測電壓值、偵測電流值,分別估算出一目前功率P(t)和一先前功率P(t-1),再比較該目前功率P(t)與該先前功率P(t-1)的大小以輸出一於高、低電位之間變化的控制信號,且具有一乘法器41、一取樣保持器42,和一功率比較器43。The power comparison module 4 estimates a current power P(t) and a previous power according to the currently detected detection voltage value, the detected current value, the previously received detection voltage value, and the detected current value. P(t-1), comparing the current power P(t) with the magnitude of the previous power P(t-1) to output a control signal that varies between high and low potentials, and having a multiplier 41, A sample holder 42, and a power comparator 43.
該乘法器41分別根據目前、先前的該偵測電壓值和該偵測電壓值的進行乘法運算以得到該目前功率P(t)、先前功率P(t-1)。The multiplier 41 multiplies the current and previous detected voltage values and the detected voltage values to obtain the current power P(t) and the previous power P(t-1), respectively.
取樣保持器42對目前的功率P(t)進行取樣並暫存,且輸出前次暫存的先前功率P(t-1)。The sample holder 42 samples the current power P(t) and temporarily stores it, and outputs the previous power P(t-1) temporarily stored.
功率比較器43具有一接收該目前的功率信號P(t)的第一端(即:非反向輸入端(+))、一接收該先前的功率信號P(t-1)的第二端(即:反向輸入端(-)),和一輸出端,且進行比較由輸出端輸出一控制信號。The power comparator 43 has a first end (ie, a non-inverting input (+)) that receives the current power signal P(t), and a second end that receives the previous power signal P(t-1). (ie: the inverting input (-)), and an output, and comparing and outputting a control signal from the output.
電壓準位產生器5接收該控制信號並根據該控制信號的變化以增加或減少所要輸出的一呈類比的偏移電壓Vstep ,且在本實施例中,該電壓準位產生器5包括:一計數器51和一數位至類比轉換器52,但不限於此,也可以其他電路架構實現。The voltage level generator 5 receives the control signal and increases or decreases an analogy of the offset voltage Vstep to be output according to the change of the control signal. In the embodiment, the voltage level generator 5 includes: A counter 51 and a digital to analog converter 52, but are not limited thereto, may be implemented in other circuit architectures.
計數器51接收該控制信號以輸出一具有多位元且數位形式表示數值的數位碼,且根據該控制信號處於高電位或低電位以增加或減少其數值。The counter 51 receives the control signal to output a digital code having a multi-bit and digital representation of the value, and is at a high or low level to increase or decrease its value depending on the control signal.
數位至類比轉換器52接收該數位碼,且根據其數值進行轉換成該偏移電壓Vstep 。The digit to analog converter 52 receives the digit code and converts it to the offset voltage Vstep based on its value.
在此舉一例子說明,如圖7所示為取樣保持器42的操作時序圖,於時間t0~t1期間是取樣模式,於t1~t2期間是保持模式,假設時脈週期信號CK的前一正緣時間點t0對先前功率信號P(t-1)取樣,而於t1~t2期間則保持先前功率信號P(t-1),於時脈週期信號CK的目前正緣時間點t2則是對目前功率P(t)取樣,而同時輸出先前功率信號P(t-1)給功率比較器,對目前的功率信號P(t)和上一次的功率信號P(t-1)進行比較。As an example, as shown in FIG. 7, the operation timing chart of the sample holder 42 is a sampling mode during time t0~t1, and is a hold mode during t1~t2, assuming the previous one of the clock period signal CK. The positive edge time point t0 samples the previous power signal P(t-1), and during the period t1~t2, the previous power signal P(t-1) is maintained, and the current positive time point t2 of the clock period signal CK is The current power P(t) is sampled while the previous power signal P(t-1) is simultaneously output to the power comparator, and the current power signal P(t) is compared with the previous power signal P(t-1).
且若目前的功率信號P(t)大於上一次的功率信號P(t-1),則輸出一高電位信號使計數器51將目前的數位碼增加一單位,反之則減少一單位,而使偏移電壓Vstep 也隨著增加或減少。And if the current power signal P(t) is greater than the previous power signal P(t-1), outputting a high potential signal causes the counter 51 to increase the current digit code by one unit, and vice versa by one unit. The shift voltage V step also increases or decreases.
回到參閱圖6,該脈波調整單元6根據偏移電壓Vstep 的變化輸出一PWM驅動電壓,且包括一第一、二差值運算器61、62,和一脈波信號產生模組7。Referring back to FIG. 6, the pulse wave adjusting unit 6 outputs a PWM driving voltage according to the change of the offset voltage Vstep , and includes a first and second difference computing units 61, 62, and a pulse signal generating module 7 .
第一差值運算器61分別接收該偵測電壓值和偏移電壓Vstep ,進行相減後再乘以一增益,而輸出一第一差異值,在本實施例中,第一差值運算器61為一運算放大器OP而其增益相同於式(一)所示負載斜率之倒數(1/k),且具有一接收該偵測電壓值的第一端(即:非反向輸入端(+))、一接收該偏移電壓Vstep 的第二端(即:反向輸入端(-)),和一提供該第一差異值的輸出端。The first difference computing unit 61 receives the detected voltage value and the offset voltage V step respectively , performs subtraction, multiplies the gain by a gain, and outputs a first difference value. In this embodiment, the first difference operation is performed. The device 61 is an operational amplifier OP having a gain equal to the reciprocal (1/k) of the load slope shown in equation (1) and having a first end receiving the detected voltage value (ie, a non-inverting input terminal ( +)), receiving a second end of the offset voltage Vstep (i.e., an inverting input (-)), and an output providing the first difference value.
第二差值運算器62分別接收該偵測電流值和第一差異值,進行相減後輸出一第二差異值,在本實施例中,第二差值運算器62為一運算放大器OP,且具有一接收該偵測電流值的第一端(即:非反向輸入端(+))、一接收該第一差異值的第二端(即:反向輸入端(-)),和一提供該第二差異值的輸出端。The second difference operator 62 receives the detected current value and the first difference value, and performs subtraction to output a second difference value. In this embodiment, the second difference operator 62 is an operational amplifier OP. And having a first end receiving the detected current value (ie, a non-inverting input terminal (+)), a second end receiving the first difference value (ie, an inverting input terminal (-)), and An output that provides the second difference value.
脈波信號產生模組7接收該第二差異值且輸出一責任週期比例根據該第二差異值變化的該脈波寬度調變驅動電壓,並利用該脈波寬度調變驅動電壓控制該電源轉換器34之開關S1、S2的切換,且包括一補償器72、一三角波產生器71、一比較器73,和一緩衝器74。The pulse wave signal generating module 7 receives the second difference value and outputs a pulse width modulation driving voltage whose duty cycle ratio changes according to the second difference value, and controls the power conversion by using the pulse width modulation driving voltage The switches S1, S2 of the switch 34 are switched, and include a compensator 72, a triangular wave generator 71, a comparator 73, and a buffer 74.
該三角波產生器71輸出一呈週期變化的鋸齒波信號。The triangular wave generator 71 outputs a sawtooth wave signal that changes periodically.
補償器72接收該第二差異值,且提供一零點以抵銷第二差異值中的高頻極點以輸出一低頻比較信號,在本實施例中,該低頻比較信號相對於該鋸齒波信號可視為直流,且該補償器72可以視為一低通濾波器。The compensator 72 receives the second difference value and provides a zero point to offset the high frequency pole of the second difference value to output a low frequency comparison signal. In the embodiment, the low frequency comparison signal is relative to the sawtooth wave signal. It can be considered DC and the compensator 72 can be considered a low pass filter.
比較器73包括一接收該低頻比較信號的第一端(即:非反向輸入端(+))、一接收該鋸齒波信號的第二端(即:反向輸入端(-)),和一輸出端,該輸出端根據該低頻比較信號是否高於該鋸齒波信號以提供一PWM驅動電壓,而該PWM驅動電壓於低頻比較信號高於鋸齒波信號時處於高電位,反之則處於低電位。The comparator 73 includes a first end receiving the low frequency comparison signal (ie, a non-inverting input terminal (+)), a second end receiving the sawtooth wave signal (ie, an inverting input terminal (-)), and An output terminal, according to whether the low frequency comparison signal is higher than the sawtooth wave signal to provide a PWM driving voltage, and the PWM driving voltage is at a high potential when the low frequency comparison signal is higher than the sawtooth wave signal, and vice versa. .
緩衝器74接收該PWM驅動電壓且加強其驅動能力以提供給電源轉換器34,藉以調整電源轉換器34之開關S1、S2的責任週期比例。The buffer 74 receives the PWM drive voltage and enhances its drive capability for supply to the power converter 34, thereby adjusting the duty cycle ratio of the switches S1, S2 of the power converter 34.
以下分別針對本發明實際模擬於照度固定與照度改變的暫態追蹤進行討論:The following is a discussion of the transient tracking of the actual simulation of illumination fixation and illumination change in the present invention:
一、照度固定下的暫態追蹤:First, the transient tracking under fixed illumination:
如圖8所示,當於照度不變的情況下,且根據所量到的輸出電壓Vpv_sen 和輸出電流Ipv_sen 所計算出的目前功率P(t)大於上次所估算的先前功率P(t-1)時,則表示追蹤點位於最大功率線的左方,因此偏移量修正單元40將逐漸遞增偏移電壓Vstep ,使脈波調整單元6增加PWM驅動電壓的責任週期比例以減少電源轉換器34的輸入電阻Rin,使其逐漸匹配於太陽能板的輸出阻抗Ro而獲得最大功率,因此導致圖8的追蹤點A朝箭頭1所指方向往右逼近第一照度曲線81上的最大功率點B,而當到達最大功率點B時,因為目前功率P(t)與先前功率P(t-1)的第一差異值會於正負之間變化,因此追蹤點將於最大功率點B的左右振盪。As shown in FIG. 8, when the illuminance is constant, and the current power P(t) calculated according to the measured output voltage Vpv_sen and the output current Ipv_sen is greater than the previous estimated previous power P ( When t-1), it means that the tracking point is located to the left of the maximum power line, so the offset correction unit 40 will gradually increase the offset voltage Vstep to cause the pulse wave adjusting unit 6 to increase the duty cycle ratio of the PWM driving voltage to reduce The input resistance Rin of the power converter 34 is gradually matched to the output impedance Ro of the solar panel to obtain the maximum power, thus causing the tracking point A of FIG. 8 to approach the right direction of the arrow 1 toward the maximum on the first illuminance curve 81. Power point B, and when the maximum power point B is reached, since the first difference between the current power P(t) and the previous power P(t-1) will vary between positive and negative, the tracking point will be at the maximum power point B. Oscillating left and right.
若目前功率P(t)小於先前功率P(t-1)時,則表示追蹤點位於最大功率點的右方,因此偏移電壓Vstep 將逐漸遞減,以減少PWM驅動電壓的責任週期比例,而增加電源轉換器34的輸入電阻Rin,且導致追蹤點往左逼近最大功率點。If the current power P(t) is less than the previous power P(t-1), it means that the tracking point is located to the right of the maximum power point, so the offset voltage Vstep will gradually decrease to reduce the duty cycle ratio of the PWM driving voltage. The input resistance Rin of the power converter 34 is increased and causes the tracking point to approach the maximum power point to the left.
二、照度改變時的暫態追蹤:Second, the transient tracking when the illuminance changes:
由於最大功率負載線上的點位置近似於不同照度情況的每一實際最大功率點位置,若照度由大逐漸變小時,太陽能板的輸出電流Ipv_sen 也隨之逐漸變小,使追蹤點將沿著每一照度的最大功率點的左右振盪且下移直到照度固定,而導致圖8之追蹤點B朝箭頭2所指方向往下移動,直到照度穩定而落於第二照度曲線上的追蹤點C,因為隨著照度越小,位於照度曲線上之近似最大功率處的平滑範圍較大,也就是說平滑範圍附近功率增加的斜率近似於0,因此偏移量修正單元40將在此平滑範圍間調整偏移電壓Vstep ,而朝箭頭3所指方向到達第二照度曲線上的最大功率點D,而於其左右振盪。Since the point position on the maximum power load line approximates the position of each actual maximum power point of different illumination conditions, if the illuminance gradually decreases from large to large, the output current I pv_sen of the solar panel also becomes smaller, so that the tracking point will follow each The maximum power point of one illuminance oscillates left and right and moves down until the illuminance is fixed, causing the tracking point B of FIG. 8 to move downward in the direction indicated by the arrow 2 until the illuminance is stable and falls on the tracking point C on the second illuminance curve, Because the smaller the illuminance, the smoothing range at the approximate maximum power on the illuminance curve is larger, that is, the slope of the power increase near the smoothing range is approximately 0, so the offset correction unit 40 will adjust between the smoothing ranges. The voltage V step is offset and reaches the maximum power point D on the second illuminance curve in the direction indicated by the arrow 3, and oscillates left and right.
綜上所述,本發明之較佳實施例的優點為在不同環境條件之下,以預先所估算出的最大功率負載線對能源產生裝置的輸出功率進行連續性的追蹤,不僅可快速地找到最大功率追蹤點,且能避免於追蹤過程中浪費能量,又根據最大功率負載線以實現電路而使所需的電路元件數目相對於先前技術能減少以降低製造成本,且元件數目較少可以積體電路方式整合至電源轉換器中以減少體積。In summary, the preferred embodiment of the present invention has the advantage of continuously tracking the output power of the energy generating device with the maximum estimated power load line under different environmental conditions, which can not only be quickly found. The maximum power tracking point, and can avoid wasting energy during the tracking process, and according to the maximum power load line to realize the circuit, the required number of circuit components can be reduced relative to the prior art to reduce the manufacturing cost, and the number of components can be reduced. The bulk circuit is integrated into the power converter to reduce the size.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.
31...電壓偵測器31. . . Voltage detector
32...電流偵測器32. . . Current detector
34...電源轉換器34. . . Power converter
S1、S2...開關S1, S2. . . switch
40...偏移量修正單元40. . . Offset correction unit
4...功率比較模組4. . . Power comparison module
41...乘法器41. . . Multiplier
42...取樣保持器42. . . Sample holder
43...功率比較器43. . . Power comparator
5...電壓準位產生器5. . . Voltage level generator
51...計數器51. . . counter
52...數位至類比轉換器52. . . Digital to analog converter
6...脈波調整單元6. . . Pulse wave adjustment unit
61...第一差值運算器61. . . First difference operator
62...第二差值運算器62. . . Second difference operator
7...脈波信號產生模組7. . . Pulse signal generation module
71...三角波產生器71. . . Triangle wave generator
72...補償器72. . . Compensator
73...比較器73. . . Comparators
74...緩衝器74. . . buffer
Rin...輸入電阻Rin. . . Input resistance
Ro...輸出電阻Ro. . . Output resistance
圖1是一示意圖,說明習知最大功率追蹤方法的輸出功率與輸出電壓之間的關係;1 is a schematic diagram showing the relationship between output power and output voltage of a conventional maximum power tracking method;
圖2是一方塊圖,說明習知最大功率追蹤的系統;Figure 2 is a block diagram illustrating a conventional maximum power tracking system;
圖3是一示意圖,說明習知進行功率追蹤時的輸出電流;Figure 3 is a schematic diagram showing the output current when conventionally performing power tracking;
圖4是一電路圖,說明應用本發明進行功率追蹤的等效電路;4 is a circuit diagram illustrating an equivalent circuit for power tracking using the present invention;
圖5是一示意圖,說明太陽能板的輸出電壓與輸出電流的關係;Figure 5 is a schematic view showing the relationship between the output voltage of the solar panel and the output current;
圖6是一電路圖,說明本發明之較佳實施例的電路;Figure 6 is a circuit diagram illustrating a circuit of a preferred embodiment of the present invention;
圖7是一時序圖,說明該較佳實施例之取樣保持器的時序;及Figure 7 is a timing diagram illustrating the timing of the sample holder of the preferred embodiment;
圖8是該較佳實施例之模擬圖,說明於照度改變下的功率追蹤情況。Figure 8 is a simulation of the preferred embodiment illustrating power tracking under illumination changes.
31...電壓偵測器31. . . Voltage detector
32...電流偵測器32. . . Current detector
34...電源轉換器34. . . Power converter
S1、S2...開關S1, S2. . . switch
40...偏移量修正單元40. . . Offset correction unit
4...功率比較模組4. . . Power comparison module
41...乘法器41. . . Multiplier
42...取樣保持器42. . . Sample holder
43...功率比較器43. . . Power comparator
5...電壓準位產生器5. . . Voltage level generator
51...計數器51. . . counter
52...數位至類比轉換器52. . . Digital to analog converter
6...脈波調整單元6. . . Pulse wave adjustment unit
61...第一差值運算器61. . . First difference operator
62...第二差值運算器62. . . Second difference operator
7...脈波信號產生模組7. . . Pulse signal generation module
71...三角波產生器71. . . Triangle wave generator
72...補償器72. . . Compensator
73...比較器73. . . Comparators
74...緩衝器74. . . buffer
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98125539A TWI381263B (en) | 2009-07-29 | 2009-07-29 | Maximum power tracking device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98125539A TWI381263B (en) | 2009-07-29 | 2009-07-29 | Maximum power tracking device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201104380A TW201104380A (en) | 2011-02-01 |
TWI381263B true TWI381263B (en) | 2013-01-01 |
Family
ID=44813600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98125539A TWI381263B (en) | 2009-07-29 | 2009-07-29 | Maximum power tracking device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI381263B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9065336B2 (en) | 2013-06-26 | 2015-06-23 | Industrial Technology Research Institute | Maximum power point tracking method and apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI467357B (en) * | 2011-04-29 | 2015-01-01 | Au Optronics Corp | System and method for power management |
TWI438602B (en) * | 2011-12-02 | 2014-05-21 | Ind Tech Res Inst | Maximum power point tracking controllers, maximum power point tracking systems and maximum power point tracking methods |
TWI669590B (en) * | 2018-09-28 | 2019-08-21 | 龍華科技大學 | Maximum power tracking method for solar power generation system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI232361B (en) * | 2003-11-25 | 2005-05-11 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
US7158395B2 (en) * | 2003-05-02 | 2007-01-02 | Ballard Power Systems Corporation | Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications |
TW200723653A (en) * | 2005-12-01 | 2007-06-16 | Ming-Chin Ho | A power inverter for a solar energy photovoltaic system |
TW200723665A (en) * | 2005-12-07 | 2007-06-16 | Univ Chung Yuan Christian | Impedance matching theory for tracking the maximum power point of the photovoltaic system |
TW200801889A (en) * | 2006-06-16 | 2008-01-01 | Ablerex Electronics Co Ltd | Maximum power point tracking method and tracker thereof for a solar power system |
US20080150366A1 (en) * | 2006-12-06 | 2008-06-26 | Solaredge, Ltd. | Method for distributed power harvesting using dc power sources |
US20080203994A1 (en) * | 2006-05-09 | 2008-08-28 | Min Won Park | Control Apparatus and Method of Senseless MPPT Control For Photovoltaic Power Generation System |
-
2009
- 2009-07-29 TW TW98125539A patent/TWI381263B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158395B2 (en) * | 2003-05-02 | 2007-01-02 | Ballard Power Systems Corporation | Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications |
TWI232361B (en) * | 2003-11-25 | 2005-05-11 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
TW200723653A (en) * | 2005-12-01 | 2007-06-16 | Ming-Chin Ho | A power inverter for a solar energy photovoltaic system |
TW200723665A (en) * | 2005-12-07 | 2007-06-16 | Univ Chung Yuan Christian | Impedance matching theory for tracking the maximum power point of the photovoltaic system |
US20080203994A1 (en) * | 2006-05-09 | 2008-08-28 | Min Won Park | Control Apparatus and Method of Senseless MPPT Control For Photovoltaic Power Generation System |
TW200801889A (en) * | 2006-06-16 | 2008-01-01 | Ablerex Electronics Co Ltd | Maximum power point tracking method and tracker thereof for a solar power system |
US20080150366A1 (en) * | 2006-12-06 | 2008-06-26 | Solaredge, Ltd. | Method for distributed power harvesting using dc power sources |
Non-Patent Citations (1)
Title |
---|
Jung-Min Kwon, Kwang-Hee Nam, and Bong-Hwan Kwon, " Photovoltaic Power Conditioning System With Line Connection", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 4, AUGUST 2006 on 1048 to 1054 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9065336B2 (en) | 2013-06-26 | 2015-06-23 | Industrial Technology Research Institute | Maximum power point tracking method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201104380A (en) | 2011-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI444807B (en) | Analog control apparatus of inverter | |
CN106849675B (en) | The control circuit and its method of Switching Power Supply | |
TWI554020B (en) | Inverter apparatus and control method thereof | |
KR101885296B1 (en) | Power detection circuit for tracking maximum power point of solar cell and method for detecting using the same | |
JP2009117658A (en) | Photovoltaic power generation controller and power evaluation method in photovoltaic power generation control | |
US9285465B2 (en) | Analog-digital conversion circuit, sensor apparatus, cellular phone, and digital camera | |
TWI381263B (en) | Maximum power tracking device | |
CN104426374B (en) | Power conversion device and multiplication and division circuit | |
JPH0962387A (en) | Method and device for power control of battery power source and battery power source system | |
CN101964647A (en) | Pulse width signal duty ratio detection circuit | |
CN107992153A (en) | A kind of photovoltaic maximum power point-tracing control method | |
US10181787B2 (en) | Power factor correction device, and current sensing method and apparatus thereof | |
CN104184347A (en) | Power Converter and Power Factor Correction Device | |
WO2016004700A1 (en) | Staggered power factor corrector | |
AU2012370020A1 (en) | Maximum power point tracking (MPPT) | |
CN103034278A (en) | Method for realizing simulation circuit based on double linear approximate value MPPT (Maximum Power Point Tracking) algorithm | |
KR101256433B1 (en) | Photovoltaic system of maximum power point tracking mode using pv current | |
JP2009207239A (en) | Charging controller for solar cells | |
US8294444B2 (en) | Power tracking device and power tracking method thereof | |
CN103095103B (en) | Frequency regulation control circuit capable of achieving curvature frequency-reduction with changes of loads in switching power supply | |
CN104159357A (en) | Method and system for controlling output current effective value and power factor of LED lighting circuit | |
KR20150027365A (en) | Referential signal generating circuit and method, and power factor compensation apparatus including the same | |
JP6029540B2 (en) | Solar cell control device and solar cell control method | |
US20120013312A1 (en) | Power Control Device and Method thereof | |
TWI465003B (en) | Solar storage system and method of charge using the same |