1379919 4 r ‘ I------------- · 丨〇1年10月29曰修正替換頁 六、發明說明: 【發明所屬之技術領域】 - 本發明是有關於一種軟性電子材料之製 ^ 別是有關於一種軟性電子材料表面改質之方法方法,且特 【先前技術】 近年來,隨著電子元件朝向輕薄短小、高性能化及高 •密度的目標發展,不但在訊號傳輪連接及承载元件電路基 板的製成上需要不斷的精進,且在材料的選擇及使用上也 必須有重要的改變。尤其是對於輕量、小體積佔有十足貢 獻的軟性印刷電路板上,新材料的需求更是殷切。 • 軟性印刷電路板(Flexible Printed Circuit Board,簡稱 • FPC)乃將一可撓式銅箔基板進行加工,使其表面留下所需 的金屬線路,並應用在光電、電子與半導體產業中。其中, 在基材的選擇上,聚亞醯胺(p〇lyimide,簡稱PI)為含有亞 • 酿胺基團(hide group)的高分子聚合物《此高分子材料具有 良好的熱穩定性、化學抵抗性及低的熱膨脹係數,且在電 學特性上具有低介電係數、高電阻抗性等,而在市場需求 趨勢方面’符合尺寸穩定性、抗撕強度、高度撓曲性及透 明度的嚴苛需求。因此,軟性印刷電路板已成為未來軟性 、 印刷電路板市場的主流。 為了符合應用產品中嚴苛的製程條件及高功能的特 性,傳統利用接著劑將金屬層固定於聚亞醯胺材料表面上 的三層軟性電子材料已不符合要求,取而代之的是無接著 1379919 __ 101年10月29日修正替換頁 劑的兩層軟性電子材料。 目前無接著劑軟性電子材料的製作方法主要有三種, 分別為塗佈法、濺鍍法及壓合法。使用塗佈法無法製造出 r 薄銅的軟性電子材料,且無法進行雙面生產。藏渡法則在 . 生產設備上需要真空系統,造成設備花費高昂、生產速度 較慢之問題。壓合法之製程與具有接著劑的三層軟性電子 材料相似,且不易製造出較薄的基板。 【發明内容】 本發明之一態樣是在提供一種軟性電子材料表面金屬 化之方法,利用一化學添加劑改善軟性電子材料的表面進 行還原金屬化的製程,產生一沉積量較大且導電性較佳的 金屬表面。 依據本發明另一實施方式,提供一種軟性電子材料表面金 屬化之方法,其步驟包含選用一化學鹼對一聚亞醯胺材料 φ 表面進行表面開環。選用一水溶液將聚亞醯胺材料表面進 行離子交換反應,使一金屬離子層鍵結於聚亞醯胺材料表 面。選用一具有化學添加劑之還原液將聚亞醯胺材料表面 之金屬離子層進行還原反應,使其還原出一金屬奈米顆粒 於聚亞醯胺材料表面上。使用一電鍍液進行無電電鍍,使 金屬奈米顆粒沉積於聚亞醯胺材料表面上。 【實施方式】 請參照第1圖,其繪示依照本發明一實施例之一種軟 4 13.79919 101年10月29日修正替換頁 性電子材料表面金屬化方法的步驟流程圖。 在步驟1GG中’使P化學㈣1㈣胺膜⑼表面 進行表面開環,其中化學驗為5M、5(rc《K〇H水溶液。 *將聚㈣胺驗在丽讀財數分錢μ,並利用離 •子水沖洗,將聚亞酿胺膜表面殘留的化學驗及開環後聚亞 酿胺膜表面上的其他離子沖洗乾淨。其中,化學驗亦可選 用NaOH水溶液或UOH水溶液。 φ 好驟110中’選用-水溶液將步心⑻中之聚亞酿 胺膜表面進行離子交換反應,使一金屬離子層鍵結於聚亞 醯胺膜表面。本實施例使用一 5〇inM、25¾之CuS04水溶 液將聚亞醯胺膜浸泡5分鐘,以進行cu2+離子交換。接著 將聚亞醯胺膜取出,並用大量的離子水將殘留的硫酸銅水 溶液沖乾淨,再將其吹乾。其中,亦可選用Nis〇4水溶液、 AgN〇3水溶液、AuCh水溶液、PdC12水溶液或H2ptci6 (H20)6)水溶液分別依序進行Ni2+、Ag+、Au3+、別2+或朽2+ 離子交換。 / 在步驟120 +,選用-具有化學添加劑之還原液將步 驟110中之聚亞醯胺膜表面之金屬離子層進行還原反應, 使其還原出金屬奈米顆粒於聚亞酿胺臈表面上。選用 0.5Μ、25 C之DMAB(一曱基胺爛烧)水溶液並加入〇]ppm 的SPS(NaS〇3(CH2)3S-)2)製作成一還原液,並將聚亞醢胺膜 浸入還原液中20分鐘,以進行銅離子的還原反應。還原後 之銅金屬奈米顆粒會依附於聚亞醯胺膜表面,並利用大量 離子水沖洗試片。 1379919 - -. 101年10月29曰修正替換頁 上述之還原液另可選用硼氫化鈉(NaBH4)水溶液或聯 胺(NHiNH2)水溶液,而上述之化學添加劑亦可為 HS-(CH2)n-Y ’ 其 n=l〜15,Y=〇h ' COOH、COONa、 • S03Na、NH2 或 CH3 ; • X-(CH2)m-S-S-(CH2)n_Y,其 m、n=l〜15,X、Y=〇H、 COOH、COONa、S03Na、NH2 或 CH3 ;或 HS-(CH2)m-CH(SH)-(CH2)n-X,其 m、n=1〜15,X、 • Y=OH、COOH、COONa、S03Na、NH2 或 CH3。 例如: MPS(3-mercapto-l-propanesulfoante) : NaS03(CH2)3SH MPE(3-Mercapto-l-propanol) : HS(CH2)3OH MPA(3-Mercaptopropionic acid) : HS(CH2)2COOH . MES(Sodium 2-mercaptoethanesulfonate) · HS(CH2)2S03Na TGC(Sodium thioglycolate) ^ HSCH2COONa DMPS(2,3-Dimercapto-l-propanesulfonic acid sodium) : HSCH2CH(SH)CH2S02Na 在步驟130中,使用一鍍液進行無電電鍍,使依附於 聚亞醯胺膜表面之金屬奈米顆粒沉積於聚亞醯胺膜表面。 選用一前置液與相對量的37%曱醛(HCHO)混合,配成PH =13、25°C之鍍液,其中前置液的配置如下:1379919 4 r ' I------------- · 10 October 29 曰 Amendment Replacement Page VI, Description of the Invention: [Technical Field of the Invention] - The present invention relates to a soft The manufacture of electronic materials is a method of surface modification of soft electronic materials, and [previous technology] In recent years, with the development of electronic components toward light, short, high performance and high density, not only The signal transmission connection and the production of the carrier circuit board need to be continuously improved, and important changes must be made in the selection and use of materials. Especially for flexible printed circuit boards with a small contribution to light weight and small volume, the demand for new materials is even more intense. • Flexible Printed Circuit Board (FPC) processes a flexible copper foil substrate with the desired metal circuitry on the surface and is used in the optoelectronic, electronics and semiconductor industries. Among them, in the selection of the substrate, polypamine (p〇lyimide, abbreviated as PI) is a high molecular polymer containing a hide group. "The polymer material has good thermal stability, Chemical resistance and low coefficient of thermal expansion, and low dielectric constant, high electrical resistance, etc. in terms of electrical properties, and in terms of market demand trends, 'consistent dimensional stability, tear strength, high flexibility and transparency Demanding demand. Therefore, flexible printed circuit boards have become the mainstream of the future soft and printed circuit board market. In order to meet the stringent process conditions and high-performance characteristics of the application products, the traditional three-layer soft electronic materials that use the adhesive to fix the metal layer on the surface of the polyimide material have not met the requirements, and instead, there is no subsequent 1379919 __ On October 29, 101, two layers of soft electronic materials were replaced. At present, there are mainly three methods for producing non-adhesive soft electronic materials, namely coating method, sputtering method and pressing method. Soft electronic materials with r thin copper cannot be produced by coating, and double-sided production cannot be performed. The Tibetan law requires a vacuum system on the production equipment, which causes high equipment costs and slow production speeds. The process of pressing is similar to the three-layer soft electronic material having an adhesive, and it is not easy to manufacture a thin substrate. SUMMARY OF THE INVENTION One aspect of the present invention provides a method for surface metallization of a soft electronic material, which utilizes a chemical additive to improve the surface of the soft electronic material for reduction metallization, resulting in a larger deposition amount and higher conductivity. Good metal surface. According to another embodiment of the present invention, a method for metallizing a surface of a soft electronic material is provided, the method comprising the step of surface opening a surface of a polyamidoamine material φ using a chemical base. An aqueous solution is used to ion exchange the surface of the polyimide material to bond a metal ion layer to the surface of the polyimide material. A metal ion layer on the surface of the polyimide material is subjected to a reduction reaction using a reducing solution having a chemical additive to reduce a metal nanoparticle on the surface of the polyimide material. Electroless plating is performed using a plating solution to deposit metal nanoparticles on the surface of the polyimide material. [Embodiment] Please refer to FIG. 1 , which is a flow chart showing the steps of a method for modifying the surface metallization of a pageable electronic material on October 29, 1999, in accordance with an embodiment of the invention. In step 1GG, 'the surface of the P chemical (tetra) 1 (tetra) amine film (9) is subjected to surface ring opening, wherein the chemical test is 5M, 5 (rc "K〇H aqueous solution. * The poly(tetra)amine is tested in the money, and the utilization is utilized. Rinse with water, rinse the surface of the poly-aniline film and other ions on the surface of the poly-branched amine film after opening. Among them, the NaOH solution or UOH solution can be used for the chemical test. In 110, the surface of the poly-branched amine film in the step (8) is subjected to an ion exchange reaction to bond a metal ion layer to the surface of the polyimide film. In this embodiment, a 5 〇inM, 253⁄4 CuS04 is used. The aqueous solution is immersed in the polyimide film for 5 minutes for cu2+ ion exchange. Then, the polyamidamine film is taken out, and the residual copper sulfate aqueous solution is washed away with a large amount of ionized water, and then dried. Ni2+, Ag+, Au3+, 2+2+ or 2+2+ ion exchange were sequentially carried out in an aqueous solution of Nis〇4, AgN〇3, AuCh, PdC12 or H2ptci6(H20)6). / In step 120 +, the metal ion layer on the surface of the polyimide film in step 110 is subjected to a reduction reaction using a reducing solution having a chemical additive to reduce the metal nanoparticles on the surface of the polyaramine. A 0.5 Μ, 25 C DMAB (monodecylamine rotten) aqueous solution was added and 〇]ppm of SPS (NaS〇3(CH2)3S-)2) was added to prepare a reducing solution, and the polyamidamine film was immersed in the solution. In the stock solution for 20 minutes to carry out the reduction reaction of copper ions. The reduced copper metal nanoparticles are attached to the surface of the polyimide film and the test piece is rinsed with a large amount of ionized water. 1379919 - -. October 29, 2010 Correction replacement page The above reduction solution may also be an aqueous solution of sodium borohydride (NaBH4) or hydrazine (NHiNH2), and the above chemical additive may also be HS-(CH2)nY ' Its n=l~15, Y=〇h 'COOH, COONa, • S03Na, NH2 or CH3; • X-(CH2)mSS-(CH2)n_Y, where m, n=l~15, X, Y=〇 H, COOH, COONa, S03Na, NH2 or CH3; or HS-(CH2)m-CH(SH)-(CH2)nX, m, n=1~15, X, • Y=OH, COOH, COONa, S03Na, NH2 or CH3. For example: MPS(3-mercapto-l-propanesulfoante) : NaS03(CH2)3SH MPE(3-Mercapto-l-propanol) : HS(CH2)3OH MPA(3-Mercaptopropionic acid) : HS(CH2)2COOH . MES( Sodium 2-mercaptoethanesulfonate) HS(CH2)2S03Na TGC(Sodium thioglycolate) ^ HSCH2COONa DMPS (2,3-Dimercapto-l-propanesulfonic acid sodium) : HSCH2CH(SH)CH2S02Na In step 130, electroless plating is performed using a plating solution The metal nanoparticles adhered to the surface of the polyimide film are deposited on the surface of the polyimide film. A pre-liquid is mixed with a relative amount of 37% furfural (HCHO) to form a plating solution of pH = 13, 25 ° C, wherein the configuration of the pre-liquid is as follows:
CuS04 · 5H20 : 0.8g/100mlCuS04 · 5H20 : 0.8g/100ml
Potassium Sodium Tartrate : 2.4g/l00ml 1379919 _ 101年10月29日修正替換頁 2,2,-Dipyridyl : 0.002g/100ml NaOH : 1.4g/100ml 並將聚亞醯胺膜浸入鍍液中進行無電鍍銅,取出後再用大 * 量離子水沖洗,即可得到表面金屬化之聚亞醯胺膜。 ' 在步驟140中,將表面金屬化之聚亞醯胺膜加熱至100 °C-200°C的範圍,進行除水風乾。由於步驟130將聚亞醯 胺膜浸入鍍液_進行無電鍍銅,因此,銅膜及聚亞醯胺膜 • 中會含有水分。本實施例中,將無電鍍銅後的聚亞醯胺膜 以125°C、氮與氳7 : 3的狀態下除水1小時,使銅膜及聚 亞醯胺膜間的水分蒸發。 如上述步驟,在還原反應中,將還原液加入化學添加 ' 劑,增加銅層的厚度,且提升銅層的連續性,以增加導電 . 性,且可催化無電鍍銅的沉積速率。 請參照第2A圖,其為第1圖之步驟120將聚亞醯胺 膜表面進行金屬還原後之AFM(原子力顯微鏡)照片。而第 參 2B圖為第2A圖一比較例之AFM照片,其製作過程中未加 入化學添加劑。 比較第2A圖及第2B圖可知,加入化學添加劑SPS於 還原劑中,會使聚亞醯胺膜表面所沉積之金屬量明顯增 Λ 加,而沒有加入化學添加劑的聚亞醯胺膜表面所沉積之金 " 屬量不但較小且結構較為鬆散,若再經钱刻等加工後銅層 可能厚度會漸漸變小,甚至消失。 請參照第3Α圖,其為第1圖之步驟120將聚亞醯胺 膜表面進行金屬還原後之SEM(掃描式電子顯微鏡)照片, 8 1379919Potassium Sodium Tartrate : 2.4g/l00ml 1379919 _ October 29, 2011 Revision Replacement Page 2,2,-Dipyridyl : 0.002g/100ml NaOH : 1.4g/100ml and immersing the polyimide membrane in the plating bath for electroless plating After the copper is removed, it is rinsed with a large amount of ionized water to obtain a surface-metallized polyimine film. In step 140, the surface-metallized polyiminamide film is heated to a range of from 100 ° C to 200 ° C, and air-dried. Since the polyimene film is immersed in the plating solution in step 130 to perform electroless copper plating, the copper film and the polyimide film may contain moisture. In the present embodiment, the polyiminamide film after electroless copper plating was dehydrated at 125 ° C for 1 hour under nitrogen and helium 7 : 3 to evaporate water between the copper film and the polyimide film. In the above step, in the reduction reaction, the reducing solution is added to the chemical addition agent to increase the thickness of the copper layer and enhance the continuity of the copper layer to increase conductivity and catalyze the deposition rate of the electroless copper plating. Referring to Fig. 2A, it is an AFM (atomic force microscope) photograph of the surface of the polyimide film after metal reduction in the step 120 of Fig. 1. The reference Fig. 2B is an AFM photograph of the comparative example of Fig. 2A, and no chemical additive is added during the production process. Comparing Fig. 2A and Fig. 2B, it can be seen that the addition of the chemical additive SPS to the reducing agent causes a significant increase in the amount of metal deposited on the surface of the polyimide film without the addition of a chemical additive to the surface of the polyimide film. The gold deposits are not only small but also loose in structure. If processed by money, the thickness of the copper layer may gradually decrease or even disappear. Please refer to the third drawing, which is a SEM (scanning electron microscope) photograph of the surface of the polyimide film after metal reduction in step 120 of Fig. 1, 8 1379919
其中進行金屬還原之還原液摻有 圖為一比較例之SEM照片添加劑SPS。而第犯 還原之還原液t為摻人化學添加劑亞酿胺膜表面進行金屬 還房:ΐ第ϋ圖及第3B圖可知,加入化學添加劑训於 和變J 還原於聚亞酿胺膜表面的量會增加,且粒 :催化活:。勻’進而影響奈米銅顆粒對於無電鍍銅 从』請參照第4Α®,其為第1圖之步驟140將軟性電子 SEM(n屬化方法中無電鍍銅後的聚亞酿胺膜之 二日=顯微鏡)照片。而第圖為-比較例之 “、、片’其製作過程中未加入化學添加劑。 =第4Α圖及第4Β圖可知’加入化學添加劑聊於 還原劑中,可進一步影響無電鍍銅的顆粒 入化學添加劑之第犯圖,第分 佈明顯平均且沉積量較大。 膜表2照第5A圖’其為第1圖之步驟120將聚亞酿胺 金屬還原後之皿(穿透式電子顯微鏡)照片。 化學添力Γ。—比較例之照片,其製作過程中未加入 列緊2Ϊ 圖可知,聚亞賴膜表面之金屬奈米顆粒排 J茱密且連續,而第5B圖中,其金屬沉 =亞:_表面之金屬奈米顆粒緊密連“且^用多於 €子兀件上之導電性較佳。 综上所述,當軟性電子材料之表面金屬化過程中摻 13.79919 - 101年10月29日修正替換頁 入化學添加劑於還原液中,會使金屬還原於聚亞醯胺膜表 面的粒徑變小且分佈均勻,而提升無電鍍銅的沉積量及其 沉積分佈的連續性,進而影響表面金屬化的聚亞醯胺應用 於電子元件的導電性。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖其繪示依照本發明一實施例之一種軟性電子材 料表面金屬化方法的步驟流程圖。 第2A圖其為第1圖之步驟120將聚亞醯胺膜表面進 行金屬還原後之AFM(原子力顯微鏡)照片。 第2B圖為第2A圖一比較例之AFM照片。 第3A圖其為第1圖之步驟120將聚亞醯胺膜表面進 行金屬還原後之SEM(掃描式電子顯微鏡)照片。 第3B圖為第3A圖一比較例之SEM照片。 第4A圖其為第1圖之步驟140將軟性電子材料表面 金屬化方法中無電鍍銅後的聚亞醯胺膜之SEM(掃描式電 子顯微鏡)照片。 第4B圖為第4A圖一比較例之SEM照片。 1379919 - 101年10月29日修正替換頁 第5A圖其為第1圖之步驟120將聚亞醯胺膜表面進 行金屬還原後之TEM(穿透式電子顯微鏡)照片。 第5B圖為第5A圖一比較例之TEM照片。 【主要元件符號說明】 100-140 :步騾The reducing solution in which metal reduction was carried out was incorporated with a SEM photo additive SPS of a comparative example. The reducing liquid t which is reduced by the first remedy is a metal compound which is mixed with a chemical additive, and the surface of the melamine film is used for the metal rejuvenation: ΐ ϋ 及 and FIG. 3B, the chemical additive is added and the J is reduced to the surface of the poly-aniline film. The amount will increase, and the grain: catalytic activity:. Evenly affecting the nano-copper particles for electroless copper plating, please refer to the fourth Α®, which is the soft electron SEM in step 140 of the first figure (the second polyacrylamide film after the electroless copper in the n-generalization method) Day = microscope) photo. The figure is - ", the film" of the comparative example, no chemical additives were added during the production process. = Figure 4 and Figure 4 show that 'adding chemical additives to the reducing agent can further affect the electroless copper particles. The first plot of chemical additives, the first distribution is significantly average and the deposition amount is large. Membrane Table 2 according to Figure 5A, which is the step 120 of Figure 1 to reduce the poly-aramin metal (transmissive electron microscope) Photo. Chemical Addition Γ.—Photograph of the comparative example, which was not added to the column during the production process. It can be seen that the metal nanoparticle particles on the surface of the poly-Asian film are dense and continuous, while in Figure 5B, the metal Shen = Ya: _ surface of the metal nanoparticle is closely connected "and ^ more than the use of the conductivity of the member is better. In summary, when the surface of the soft electronic material is metallized, it is modified to replace the chemical additive in the reducing solution on October 29, 2003, which will reduce the particle size of the metal on the surface of the polyimide film. It is small and evenly distributed, which enhances the deposition of electroless copper and the continuity of its deposition distribution, which in turn affects the electrical conductivity of surface metallized polyamines for electronic components. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; Flow chart of the steps of the surface metallization method of soft electronic materials. Fig. 2A is an AFM (atomic force microscope) photograph of the surface of the polyimide film after metal reduction in the step 120 of Fig. 1. Fig. 2B is an AFM photograph of the comparative example of Fig. 2A. Fig. 3A is a SEM (scanning electron microscope) photograph of the surface of the polyimide film after metal reduction in the step 120 of Fig. 1. Fig. 3B is a SEM photograph of a comparative example of Fig. 3A. Fig. 4A is a SEM (scanning electron microscope) photograph of a polyimide film after electroless copper plating in a method of metallizing a surface of a soft electronic material in the step 140 of Fig. 1. Fig. 4B is a SEM photograph of a comparative example of Fig. 4A. 1379919 - October 29, 2011 Revision Replacement Page 5A is a TEM (transmission electron microscope) photograph of the surface of the polyimide film after metal reduction in step 120 of Fig. 1. Fig. 5B is a TEM photograph of a comparative example of Fig. 5A. [Main component symbol description] 100-140 : Step
1111