TW201042078A - Metallization method of manufacturing a flexible printed circuit board - Google Patents

Metallization method of manufacturing a flexible printed circuit board Download PDF

Info

Publication number
TW201042078A
TW201042078A TW098116900A TW98116900A TW201042078A TW 201042078 A TW201042078 A TW 201042078A TW 098116900 A TW098116900 A TW 098116900A TW 98116900 A TW98116900 A TW 98116900A TW 201042078 A TW201042078 A TW 201042078A
Authority
TW
Taiwan
Prior art keywords
aqueous solution
solution
soft electronic
material according
metallization
Prior art date
Application number
TW098116900A
Other languages
Chinese (zh)
Other versions
TWI379919B (en
Inventor
Wei-Ping Dow
Guo-Liang Liao
Shinn-Wen Chen
Original Assignee
Univ Nat Chunghsing
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing, Nat Univ Tsing Hua filed Critical Univ Nat Chunghsing
Priority to TW098116900A priority Critical patent/TWI379919B/en
Publication of TW201042078A publication Critical patent/TW201042078A/en
Application granted granted Critical
Publication of TWI379919B publication Critical patent/TWI379919B/en

Links

Abstract

A metallization method of manufacturing a flexible printed circuit board is disclosed. The method includes the steps of processing a ring cleavage reaction on the polyimide (PI) surface, processing an ion-exchange reaction on the PI surface for metal ions bonding on the PI surface, processing a reduction reaction on the PI surface with a reducer, wherein the chemical additives is added in a reducer, and processing an electroless plating on the PI surface.

Description

201042078 六、發明説明: 【發明所屬之技術領域】 本發明是有關於一種軟性電子材料之製備方法’且特 別是有關於一種軟性電子材料表面改質之方法° 【先前技術】 近年來,隨著電子元件朝向輕薄短小、高性能化及高 0 密度的目標發展’不但在訊號傳輸連接及承載元件電路基 板的製成上需要不斷的精進,且在材料的選擇及使用上也 必須有重要的改變。尤其是對於輕量、小體積佔有十足貢 獻的軟性印刷電路板上,新材料的需求更是殷切。 軟性印刷電路板(Flexible Printed Circuit Board,簡稱 FPC)乃將一可撓式銅fl基板進行加工,使其表面留下所需 的金屬線路’並應用在光電、電子與半導體產業中。其中, 在基材的選擇上’聚亞醯胺(Polyimide,簡稱PI)為含有亞 Ο 醯胺基團(Imide group)的高分子聚合物。此高分子材料具有 良好的熱穩定性、化學抵抗性及低的熱膨脹係數,且在電 學特性上具有低介電係數、高電阻抗性等,而在市場需求 趨勢方面,符合尺寸穩定性、抗撕強度、高度撓曲性及透 明度的嚴苛需求。因此,軟性印刷電路板已成為未來軟性 印刷電路板市場的主流。 為了符合應用產品中嚴苛的製程條件及高功能的特 性’傳統利用接著劑將金屬層固定於聚亞醯胺材料表面上 的三層軟性電子材料已不符合要求,取而代之的是無接著 3 201042078 劑的兩層軟性電子材料。 目前無接著劑軟性電子材料的製作方法主要有三種, 分別為塗佈法、濺鍍法及壓合法。使用塗佈法無法製造出 薄銅的軟性電子材料,且無法進行雙面生產。濺渡法則在 生產設備上需要真空系統,造成設備花費高昂、生產速度 較慢之問題。壓合法之製程與具有接著劑的三層軟性電子 材料相似,且不易製造出較薄的基板。 【發明内容】 本發明之一態樣是在提供一種軟性電子材料表面金屬 化之方法,利用一化學添加劑改善軟性電子材料的表面進 行還原金屬化的製程,產生一沉積量較大且導電性較佳的 金屬表面。 依據本發明另一實施方式,提供一種軟性電子材料表 面金屬化之方法,其步驟包含選用一化學鹼對一聚亞醯胺 材料表面進行表面開環。選用一水溶液將聚亞醯胺材料表 面進行離子交換反應,使一金屬離子層鍵結於聚亞醯胺材 料表面。選用一具有化學添加劑之還原液將聚亞醯胺材料 表面之金屬離子層進行還原反應,使其還原出一金屬奈米 顆粒於聚亞醯胺材料表面上。使用一電鍍液進行無電電 鍍,使金屬奈米顆粒沉積於聚亞醯胺材料表面上。 【實施方式】 請參照第1圖,其繪示依照本發明一實施例之一種軟 4 201042078 性電子材料表面金屬化方法的步驟流程圖。 在步驟100中,使用一化學鹼對一聚亞醯胺膜(PI)表面 進行表面開環,其中化學鹼為5M、50°C之KOH水溶液。 將聚亞醯胺膜浸在KOH水溶液中數分鐘後取出,並利用離 子水沖洗,將聚亞醯胺膜表面殘留的化學鹼及開環後聚亞 醯胺膜表面上的其他離子沖洗乾淨。其中,化學鹼亦可選 用NaOH水溶液或LiOH水溶液。 在步驟110中,選用一水溶液將步驟100中之聚亞醯 胺膜表面進行離子交換反應,使一金屬離子層鍵結於聚亞 醯胺膜表面。本實施例使用一 50mM、25°C之CuS04水溶 液將聚亞醯胺膜浸泡5分鐘,以進行Cu2+離子交換。接著 將聚亞醯胺膜取出,並用大量的離子水將殘留的硫酸銅水 溶液沖乾淨,再將其吹乾。其中,亦可選用NiS〇4水溶液、 AgN03水溶液、AuC13水溶液、PdCl2水溶液或H2PtCl6· (H20)6)水溶液分別依序進行Ni2+、Ag+、Au3+、Pd2+或Pt2+ 離子交換。 在步驟120中,選用一具有化學添加劑之還原液將步 驟110中之聚亞醯胺膜表面之金屬離子層進行還原反應, 使其還原出金屬奈米顆粒於聚亞醯胺膜表面上。選用 0.5M、25°C之DMAB(二曱基胺硼烷)水溶液並加入O.lppm 的SPS(NaS03(CH2)3S-)2)製作成一還原液,並將聚亞醯胺膜 浸入還原液中20分鐘,以進行銅離子的還原反應。還原後 之銅金屬奈米顆粒會依附於聚亞醯胺膜表面,並利用大量 離子水沖洗試片。 201042078 上述之還原液另可選用硼氫化鈉(NaBH4)水溶液或聯 胺(NH2NH2)水溶液,而上述之化學添加劑亦可為 HS-(CH2)n_Y,其 n=l〜15,YOH、COOH、COONa、 S03Na、NH2 或 CH3 ; X-(CH2)m-S-S-(CH2)n-Y,其 m、n=l~15,X、Y=OH、 COOH、COONa、S03Na、NH2 或 CH3 ;或 HS-(CH2)m-CH(SH)-(CH2)n-X,其 m、n=l〜15,X、 Y=OH、COOH、COONa、S03Na、NH2 或 CH3。 例如: MPS(3-mercapto-l-propanesulfoante) : NaS〇3(CH2)3SH MPE(3-Mercapto-1-propanol) : HS(CH2)3OH MPA(3-Mercaptopropionic acid) : HS(CH2)2COOH MES(Sodium 2-mercaptoethanesulfonate) ·· HS(CH2)2S03Na TGC(Sodium thioglycolate) : HSCH2COONa DMPS(2,3-Dimercapto-l-propanesulfonic acid sodium) : HSCH2CH(SH)CH2S02Na 在步驟130中,使用一鍍液進行無電電鍍,使依附於 聚亞醯胺膜表面之金屬奈米顆粒沉積於聚亞醯胺膜表面。 選用一前置液與相對量的37%曱醛(HCHO)混合,配成PH =13、25°C之鍍液,其中前置液的配置如下:201042078 VI. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a soft electronic material, and in particular to a method for surface modification of a soft electronic material. [Prior Art] In recent years, The development of electronic components toward light, short, high-performance and high-density density requires continuous improvement in the production of signal transmission connections and carrier circuit boards, and important changes in the selection and use of materials. . Especially for flexible printed circuit boards with a small contribution to light weight and small volume, the demand for new materials is even more intense. The Flexible Printed Circuit Board (FPC) processes a flexible copper substrate to leave the desired metal lines on its surface and is used in the optoelectronic, electronics and semiconductor industries. Among them, in the selection of the substrate, polyimide (PI) is a polymer containing an imide group. The polymer material has good thermal stability, chemical resistance and low thermal expansion coefficient, and has low dielectric constant and high electrical resistance in electrical properties, and meets dimensional stability and resistance in terms of market demand trends. The demanding requirements of tear strength, high flexibility and transparency. Therefore, flexible printed circuit boards have become the mainstream of the future flexible printed circuit board market. In order to meet the stringent process conditions and high-performance characteristics of the application product, the traditional three-layer soft electronic material that uses the adhesive to fix the metal layer on the surface of the polyimide material is not satisfactory. Instead, it is replaced by 3 201042078. Two layers of soft electronic materials. At present, there are mainly three methods for producing non-adhesive soft electronic materials, namely coating method, sputtering method and pressing method. Soft electronic materials of thin copper cannot be produced by the coating method, and double-sided production cannot be performed. The splash rule requires a vacuum system on the production equipment, resulting in high equipment costs and slow production speeds. The process of pressing is similar to the three-layer soft electronic material having an adhesive, and it is not easy to manufacture a thin substrate. SUMMARY OF THE INVENTION One aspect of the present invention provides a method for surface metallization of a soft electronic material, which utilizes a chemical additive to improve the surface of the soft electronic material for reduction metallization, resulting in a larger deposition amount and higher conductivity. Good metal surface. In accordance with another embodiment of the present invention, a method of surface metallization of a flexible electronic material is provided, the method comprising the step of surface opening a surface of a polymethyleneamine material using a chemical base. An aqueous solution is used to ion exchange the surface of the polyimide material to bond a metal ion layer to the surface of the polyamidide material. A metal ion layer on the surface of the polyimide material is subjected to a reduction reaction using a reducing solution having a chemical additive to reduce a metal nanoparticle on the surface of the polyimide material. Electroless plating is performed using a plating solution to deposit metal nanoparticles on the surface of the polyimide material. Embodiments Please refer to FIG. 1 , which is a flow chart showing the steps of a method for surface metallization of a soft electronic material according to an embodiment of the present invention. In step 100, the surface of a polymethyleneamine film (PI) is surface-opened using a chemical base, wherein the chemical base is a 5 M, 50 ° C aqueous KOH solution. The polyimide film was immersed in an aqueous KOH solution for several minutes, and then taken out, and rinsed with ion water to rinse off the chemical alkali remaining on the surface of the polyimide film and other ions on the surface of the opened polyimide film. Among them, the chemical base may also be an aqueous solution of NaOH or an aqueous solution of LiOH. In step 110, an aqueous solution is used to carry out an ion exchange reaction on the surface of the polyamidamide film in the step 100 to bond a metal ion layer to the surface of the polyimide film. In this example, a polyacrylamide film was immersed for 5 minutes using a 50 mM CuS04 aqueous solution at 25 °C for Cu2+ ion exchange. Next, the polyamidamine film was taken out, and the residual copper sulfate aqueous solution was washed away with a large amount of ionized water, and then dried. Ni2+, Ag+, Au3+, Pd2+ or Pt2+ ion exchange may be sequentially performed in an aqueous solution of NiS〇4, AgN03, AuC13, PdCl2 or H2PtCl6·(H20)6). In step 120, a metal ion layer on the surface of the polyimide film in step 110 is subjected to a reduction reaction using a reducing solution having a chemical additive to reduce the metal nanoparticles on the surface of the polyimide film. A 0.5M, 25 ° C DMAB (didecylamine borane) aqueous solution was added and 0.1 ppm of SPS (NaS03(CH2)3S-) 2) was added to prepare a reducing solution, and the polyamidamine membrane was immersed in the reducing solution. In the middle of 20 minutes, the reduction reaction of copper ions was carried out. The reduced copper metal nanoparticles are attached to the surface of the polyimide film and the test piece is rinsed with a large amount of ionized water. 201042078 The above reducing solution may also be selected from aqueous sodium borohydride (NaBH4) solution or aqueous solution of hydrazine (NH2NH2), and the above chemical additive may also be HS-(CH2)n_Y, where n=l~15, YOH, COOH, COONa , S03Na, NH2 or CH3; X-(CH2)mSS-(CH2)nY, m, n=l~15, X, Y=OH, COOH, COONa, S03Na, NH2 or CH3; or HS-(CH2) m-CH(SH)-(CH2)nX, m, n=l~15, X, Y=OH, COOH, COONa, S03Na, NH2 or CH3. For example: MPS(3-mercapto-l-propanesulfoante) : NaS〇3(CH2)3SH MPE(3-Mercapto-1-propanol) : HS(CH2)3OH MPA(3-Mercaptopropionic acid) : HS(CH2)2COOH MES (Sodium 2-mercaptoethanesulfonate) · · HS(CH2)2S03Na TGC(Sodium thioglycolate) : HSCH2COONa DMPS (2,3-Dimercapto-l-propanesulfonic acid sodium) : HSCH2CH(SH)CH2S02Na In step 130, using a plating solution Electroless plating is performed to deposit metal nanoparticles adhering to the surface of the polyimide film on the surface of the polyimide film. A pre-liquid is mixed with a relative amount of 37% furfural (HCHO) to form a plating solution of pH = 13, 25 ° C, wherein the configuration of the pre-liquid is as follows:

CuS04 · 5H20 : 0.8g/100mlCuS04 · 5H20 : 0.8g/100ml

Potassium Sodium Tartrate : 2.4g/l00ml 201042078 2,2,_DiPyridyl : 〇.〇〇2g/1〇〇ml NaOH : 1.4g/l〇〇ml 並將聚亞醯胺膜浸入鍍液中進行無電鍵銅,取出後再用大 量離子水沖洗,即可得到表面金屬化之聚亞醯胺膜。 。在。步驟14〇中’將表面金屬化之聚亞醯胺膜加熱至1〇〇 °C-200°C的範圍,進行除水風乾。由於步驟13〇將聚亞蟪 胺膜浸入鍍液中進行無電鍍銅,因此,銅臈及聚亞醯胺骐 〇 中會含^水分。本實施例中,將無電鍍銅後的聚亞醯胺膦 以125 C、氮與氫7 : 3的狀態下除水1小時,使銅膜及 亞醯胺獏間的水分蒸發。 如上述步驟’在還原反應中,將還原液加入化學添加 劑,增加鋼層的厚度,且提升銅層的連續性,以增加導電 性’且可催化無電錢銅的沉積速率。 請參照第2A圖,其為第i圖之步驟120將聚亞醯胺 膜表面進行金屬還原後之AFM(原子力顯微鏡)照片。而第 〇 2B圖為第2A圖一比較例之AFM照片,其製作過程中未加 入化學添加劑。 比較第2Α圖及第2Β圖可知,加入化學添加劑sps於 還原劑中’會使聚亞醯胺膜表面所沉積之金屬量明顯增 加’而沒有加入化學添加劑的聚亞醯胺膜表面所沉積之金 屬量不值較小且結構較為鬆散,若再經蝕刻等加工後銅層 可月b厚度會漸漸變小,甚至消失。 °月參照第3 A圖’其為第1圖之步驟120將聚亞酿胺 膜表面進行金屬還原後之SEM(掃描式電子顯微鏡)照片, 201042078 其中進行金屬還原之還原液摻有化學添加劑sps。而第3b 圖為一比較例之SEM照片,其在聚亞醯胺祺表面進行金屬 還原之還原液中為摻入化學添加劑。Potassium Sodium Tartrate : 2.4g/l00ml 201042078 2,2,_DiPyridyl : 〇.〇〇2g/1〇〇ml NaOH : 1.4g/l〇〇ml and immersing the polyimide membrane in the plating solution for copper-free bonding, After taking out, it is rinsed with a large amount of ionized water to obtain a surface-metallized polyamidamine film. . in. In step 14, the surface metallized polyiminamide film is heated to a range of from 1 ° C to 200 ° C, and air-dried. Since the polyimide film is immersed in the plating solution for electroless copper plating in step 13, the copper ruthenium and the polyamidamine hydrazine may contain water. In the present embodiment, the polyphosphoramine after electroless copper plating was dehydrated in an amount of 125 C, nitrogen and hydrogen at 7:3 for 1 hour to evaporate water between the copper film and the amide. In the above step 'in the reduction reaction, the reducing solution is added to the chemical additive to increase the thickness of the steel layer and to enhance the continuity of the copper layer to increase the conductivity' and to catalyze the deposition rate of the copper-free copper. Please refer to Fig. 2A, which is an AFM (atomic force microscope) photograph of the surface of the polyimide film after metal reduction in step 120 of Fig. The second drawing of Fig. 2B is an AFM photograph of the comparative example of Fig. 2A, and no chemical additive is added during the production process. Comparing Fig. 2 and Fig. 2, it can be seen that the addition of the chemical additive sps to the reducing agent 'significantly increases the amount of metal deposited on the surface of the polyimide film' is deposited on the surface of the polyimide film without the addition of chemical additives. The amount of metal is not small and the structure is relatively loose. If the copper layer is processed by etching or the like, the thickness of the copper layer may gradually decrease or even disappear. SEM (Scanning Electron Microscope) photograph of the surface of the polyacrylamide film after metal reduction is carried out according to FIG. 3A, which is a step 120 of FIG. 1, 201042078, wherein the reducing solution for metal reduction is doped with a chemical additive sps . Fig. 3b is a SEM photograph of a comparative example in which a chemical additive is incorporated in a reducing solution for metal reduction on the surface of polyamidoguanidine.

比較第3A圖及第3B圖可知,加入化學添加劑spSK 還原劑中’金屬還原於聚亞醯胺膜表面的量會增加,且粒 徑變小,分佈較均勻,進而影響奈米銅顆粒對於無電鍍銅 的催化活性。Comparing Figures 3A and 3B, it can be seen that the amount of metal reduced to the surface of the polyimide film is increased by adding the chemical additive spSK reducing agent, and the particle size becomes smaller and the distribution is more uniform, thereby affecting the nano copper particles. Catalytic activity of electroplated copper.

請參照第4A圖,其為第1圖之步驟14〇將軟性電子 材料表面金屬化方法中無電鍍銅後的聚亞酿胺膜之 SEM(掃描式電子顯微鏡)照片。而第4B圖為一比較例之 SEM照片,其製作過程中未加入化學添加劑。 比較第4A圖及第4B圖可知,加入化學添加劑sps於Please refer to Fig. 4A, which is a SEM (scanning electron microscope) photograph of the polyacrylamide film after electroless copper plating in the method of metallizing the surface of the soft electronic material in the step 14 of Fig. 1. Fig. 4B is a SEM photograph of a comparative example in which no chemical additive was added during the production. Comparing Figures 4A and 4B, it is known that the chemical additive sps is added.

還原劑中,可進一步影響無電鍍銅的顆粒大小及沉積量’ 相較於沒有加入化學添加劑之第4B圖,第4A圖二= 佈明顯平均且沉積量較大〇 X §月參照第5A ffi,其為第【圖之步驟12〇將聚亞醯胺 膜表面進行金践原後之TEM(穿透式電子顯微片。 而第5B圖為-比較例之TEM照片,其製作過程来 化學添加劑。 由第5A圖可知,聚亞醯胺膜表面之+ 列緊密且連續’而第5B圖中,其金屬沉積量少排 ===奈米顆粒緊密連續時’其臟 綜上所述,當軟性電子材料之表面金屬化過程中,摻 8 201042078 入化,加劑於還原液中,會使金屬還原於聚亞醯胺膜表 $的”變小且分佈均勻,而提升無電鍍銅的沉積量及其 /儿積刀佈的連續性,進而影響表面金屬化的聚亞醯胺應用 . 於電子元件的導電性。 —雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明’任何熟習此技藝者,在不脫離本發明之精神和 範圍内’當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖其繪示依照本發明一實施例之一種軟性電子材 料表面金屬化方法的步驟流程圖。 第2A圖其為第1圖之步驟120將聚亞醯胺膜表面進 q 行金屬還原後之AFM(原子力顯微鏡)照片。 第2B圖為第2A圖一比較例之AFM照片。 第3A圖其為第1圖之步驟120將聚亞醯胺膜表面進 行金屬還原後之SEM(掃描式電子顯微鏡)照片。 第3B圖為第3A圖一比較例之SEM照片。 第4A圖其為第1圖之步驟140將軟性電子材料表面 金屬化方法中無電鍍銅後的聚亞醯胺膜之SEM(掃描式電 . 子顯微鏡)照片。 第4B圖為第4A圖一比較例之SEM照片。 9 201042078 第5A圖其為第1圖之步驟120將聚亞醯胺膜表面進 行金屬還原後之TEM(穿透式電子顯微鏡)照片。 第5B圖為第5A圖一比較例之TEM照片。 【主要元件符號說明】 100-140 :步驟In the reducing agent, the particle size and deposition amount of electroless copper can be further affected. Compared with Figure 4B without chemical additives, Figure 4A shows that the cloth is obviously average and the deposition amount is larger. X § month refers to the 5A ffi It is the TEM (transmissive electron microscopy of the surface of the polyimide film on the surface of the polyimide film in step 12 of the figure), and the TEM photograph of the comparative example is shown in Fig. 5B, and the chemical additive is prepared in the process. It can be seen from Fig. 5A that the + column of the surface of the polyimide film is compact and continuous 'and in Fig. 5B, the amount of metal deposition is small. === When the nanoparticles are closely continuous, the viscera is described above, when soft In the surface metallization process of electronic materials, the addition of 8 201042078, the addition of the agent to the reducing solution, will reduce the metal to the polyamidamine film table "small and evenly distributed, and increase the deposition of electroless copper. The continuity of the knives and/or the cleavage of the knives, which in turn affects the surface metallization of the polyamines. The electrical conductivity of the electronic components. - Although the invention has been disclosed in the above embodiments, it is not intended to limit the invention' Anyone who is familiar with this skill, does not leave this In the spirit and scope of the invention, the invention may be modified and modified, and the scope of the invention is defined by the scope of the appended claims. The objects, features, advantages and embodiments can be more clearly understood. The description of the drawings is as follows: FIG. 1 is a flow chart showing the steps of a method for surface metallization of a soft electronic material according to an embodiment of the invention. Fig. 2 is an AFM (atomic force microscope) photograph of the surface of the polyimide film after the metal reduction in step 120 of Fig. 1. Fig. 2B is an AFM photograph of the comparative example of Fig. 2A. SEM (Scanning Electron Microscope) photograph of the surface of the polyimide film after metal reduction in step 120 of Fig. 3. Fig. 3B is a SEM photograph of a comparative example of Fig. 3A. Fig. 4A is a step of Fig. 1. SEM (Scanning Electron Microscope) photograph of a polyiminamide film after electroless copper plating in a method of metallizing a surface of a soft electronic material. Fig. 4B is a SEM photograph of a comparative example of Fig. 4A. 9 201042078 5A Figure 12 is the first step of Figure 1 Amides film surface alkylene proceed TEM (transmission electron microscope) photograph of the metal reduction of the graph of FIG. 5A 5B a TEM photograph of Comparative Example Main reference numerals 100-140 DESCRIPTION: Step

1010

Claims (1)

201042078 七、申請專利範圍: 1. 一種軟性電子材料表面金屬化之方法,包含: 選用一化學鹼對一聚亞醯胺材料表面進行表面開環; 選用一水溶液將該聚亞醯胺材料表面進行離子交換反 應,使一金屬離子層鍵結於該聚亞醯胺材料表面; 選用一具有化學添加劑之還原液將該聚亞醯胺材料表 面之金屬離子層進行還原反應,使其還原出一金屬奈米顆 0 粒於該聚亞醯胺材料表面上;以及 使用一電鍍液進行無電電鍍,使該金屬奈米顆粒沉積 於該聚亞醯胺材料表面上。 2. 如請求項1所述之軟性電子材料表面金屬化之方 法,其中該金屬離子層可為Cu2+、Ni2+、Ag+、Au3+、Pd2+ 或 Pt2+。 Q 3.如請求項1所述之軟性電子材料表面金屬化之方 法,其中該化學添加劑之化學式為HS-(CH2)n-Y,其 n=l〜15,Y=OH、COOH、COONa、S03Na、NH2 或 CH3。 4.如請求項1所述之軟性電子材料表面金屬化之方 法,其中該化學添加劑之化學式為X-(CH2)m-S-S-(CH2)n-Y, 其 m=l〜15、n=l〜15、X=OH、COOH、COONa ; S03Na、NH2 或 CH3 及 Y=OH、COOH、COONa ; S03Na、NH2 或 CH3。 11 201042078 5. 如請求項1所述之軟性電子材料表面金屬化之方 法,其中該化學添加劑之化學式為 HS-(CH2)m-CH(SH)-(CH2)n-X ’ 其 m=l〜15、n=l~15、X= OH、COOH、COONa、S03Na、NH2 或 CH3 以及 Y=OH、 COOH、COONa、S03Na、NH2 或 CH3。 6. 如請求項1所述之軟性電子材料表面金屬化之方 法,更包含: 將該具有金屬奈米顆粒於表面之聚亞醯胺材料加熱至 100。〇200。(:。 7. 如請求項1所述之軟性電子材料表面金屬化之方法, 其中該還原液可選用為二曱基胺硼烷(簡稱DMAB)、硼氫 化鈉(NaBH4)或聯胺(NH2NH2)水溶液。 8.如請求項1所述之軟性電子材料表面金屬化之方 法,其中該化學鹼可選用KOH水溶液、NaOH水溶液或 LiOH水溶液。 12 201042078 9.如請求項1所述之軟性電子材料表面金屬化之方 法,其中該水溶液可選用CuS04水溶液、NiS04水溶液、 AgN03水溶液、AuC13水溶液、PdCl2水溶液或H2PtCl6. (H20)6)水溶液。201042078 VII. Patent application scope: 1. A method for surface metallization of soft electronic materials, comprising: using a chemical base to surface open the surface of a polyamidamine material; using an aqueous solution to carry out the surface of the polyamidamine material The ion exchange reaction is performed to bond a metal ion layer to the surface of the polyamidamine material; and a metal ion layer on the surface of the polyamidamine material is reduced by a reducing solution containing a chemical additive to reduce a metal Nanoparticles are coated on the surface of the polyimide material; and electroless plating is performed using a plating solution to deposit the metal nanoparticles on the surface of the polyimide material. 2. The method of surface metallization of a soft electronic material according to claim 1, wherein the metal ion layer is Cu2+, Ni2+, Ag+, Au3+, Pd2+ or Pt2+. Q. The method for surface metallization of a soft electronic material according to claim 1, wherein the chemical formula has the chemical formula HS-(CH2)nY, wherein n=l~15, Y=OH, COOH, COONa, S03Na, NH2 or CH3. 4. The method of surface metallization of a soft electronic material according to claim 1, wherein the chemical formula has the chemical formula X-(CH2)mSS-(CH2)nY, wherein m=l~15, n=l~15, X = OH, COOH, COONa; S03Na, NH2 or CH3 and Y = OH, COOH, COONa; S03Na, NH2 or CH3. The method of claim 3, wherein the chemical formula of the chemical additive is HS-(CH2)m-CH(SH)-(CH2)nX 'm=l~15 , n = l ~ 15, X = OH, COOH, COONa, S03Na, NH2 or CH3 and Y = OH, COOH, COONa, S03Na, NH2 or CH3. 6. The method of surface metallization of a soft electronic material according to claim 1, further comprising: heating the polyamine material having the metal nanoparticles on the surface to 100. 〇200. (7) The method of surface metallization of a soft electronic material according to claim 1, wherein the reducing solution is selected from the group consisting of dimercaptoamine borane (DMAB), sodium borohydride (NaBH4) or hydrazine (NH2NH2). 8. A method of surface metallization of a soft electronic material according to claim 1, wherein the chemical base is selected from an aqueous KOH solution, an aqueous NaOH solution or an aqueous LiOH solution. 12 201042078 9. Soft electronic material according to claim 1. A method of surface metallization, wherein the aqueous solution may be selected from an aqueous solution of CuS04, an aqueous solution of NiS04, an aqueous solution of AgN03, an aqueous solution of AuC13, an aqueous solution of PdCl2 or an aqueous solution of H2PtCl6. (H20)6). 1313
TW098116900A 2009-05-21 2009-05-21 Method of manufacturing a flexible printed circuit board TWI379919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098116900A TWI379919B (en) 2009-05-21 2009-05-21 Method of manufacturing a flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098116900A TWI379919B (en) 2009-05-21 2009-05-21 Method of manufacturing a flexible printed circuit board

Publications (2)

Publication Number Publication Date
TW201042078A true TW201042078A (en) 2010-12-01
TWI379919B TWI379919B (en) 2012-12-21

Family

ID=45000383

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098116900A TWI379919B (en) 2009-05-21 2009-05-21 Method of manufacturing a flexible printed circuit board

Country Status (1)

Country Link
TW (1) TWI379919B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201529885A (en) * 2014-01-24 2015-08-01 Taiwan Uyemura Co Ltd Polyimide substrate metallization method

Also Published As

Publication number Publication date
TWI379919B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
Ghosh Electroless copper deposition: A critical review
JP5461988B2 (en) Metal laminated polyimide substrate and manufacturing method thereof
JP6081199B2 (en) Plating catalyst and method
CN110724943A (en) Palladium-free activating solution before chemical nickel plating on copper surface, preparation method and nickel plating method
JP6322691B2 (en) Eco-friendly stable catalyst for electroless metallization of printed circuit boards and through holes
TW201504472A (en) Catalyst for nonelectrolytic plating, metal coating film using the same, and method for manufacturing the same
US20020197404A1 (en) Method of activating non-conductive substrate for use in electroless deposition
TW201224201A (en) Stable nanoparticles for electroless plating
JP2016507009A (en) Method for forming a first metal layer on a non-conductive polymer
TW201223639A (en) A composition of nanoparticles
JP2017110296A (en) Environmentally friendly stable catalyst for electroless metalization of printed circuit board and through-hole
JP7285370B2 (en) Method for synchronous metallization of metallic and non-metallic layers in PCB aluminum substrate holes
WO2021220788A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
JP6322692B2 (en) Eco-friendly stable catalyst for electroless metallization of printed circuit boards and through holes
WO2008130080A1 (en) Manufacturing method of conductive electroless plating powder
JP5371465B2 (en) Non-cyan electroless gold plating solution and conductor pattern plating method
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
TW201042078A (en) Metallization method of manufacturing a flexible printed circuit board
KR20140019174A (en) Method for manufacturing printed circuit board
US9451707B2 (en) Stabilized silver catalysts and methods
CN111542647A (en) Method for forming metal film on polyimide resin
CN115537788A (en) Chemical plating activator and preparation method and application thereof
JP3437980B2 (en) Electroless palladium-nickel plating bath, plating method using the same, and plated product obtained by this method
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP2009076740A (en) Method of manufacturing metal thin film on polyimide resin surface and metal thin film formed by same method, and manufacturing method of polyimide wiring board and polyimide wiring board manufactured by same method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees