1378245 第94103223號申請案說明書修正頁 修正日期:ι〇ι 〇3览 九、發明說明: 【發明所屬之技術領域】 本發明大體上關於一種用以測試一晶圓上積體電路之 測試系統之組態。本發明特別是關於一種用於探針卡之探 針卡機械支撐組態,該探針卡具有低機械撓曲強度之電路 由基板。 【先前技術】 因晶圓尺寸加大,用以測試該晶圓之測試系統探針卡 之尺寸及複雜性相對提昇。考量該較大尺寸的晶圓,該晶 圓測試系統中之探針卡基板尺寸通常較大,且係設計用以 支樓較多探針或簧片接點(Spring c〇ntacts),以連接至並測 試該晶圓上更多的積體電路(ICs)。該具有附加探針之較大 探針卡通常在探針卡上造成較大之彎曲負載。 雖…、:曰S圓尺寸加大導致具有較高探針密度之較大探針 卡組態,惟其仍傾向使用低撓曲強度材料之探針卡。使用 低撓曲強度材料之探針卡之原因在於半導體裝置之複雜 性增加以及—晶圓上單位面積欲測試之積體電路(ICs)密 度增加’而需改良該揲針卡之電子性能。為能達到電子性 月匕南求選擇做為一支樓探針之空間變麼器基板之材料及 製造技術將形成較薄且強度較低之組態。當該探針卡較多 ’ ^接點接觸到一文測試之晶圓,因積體電路(1C)密度 提什而增加之探針數量(負载)進一步使該探針卡基板產生 較大的彎曲。 >見圖1圖中顯示利用一探針卡測試一半導體晶圓 PM7023-AM-SPCL-120326 1378245 修正日期:101.03.26. 第94103223號申請案說明書修正頁 上積體電路(ICs)之測試系統之簡化方塊圖。該測試系統包 含一測試控制器4,其藉由一通訊纜線6連接至一測試頭 8。該測試系統另包含一探測器1〇,其由一用以裝設一欲 測試之晶圓14之平台12所組成,該平台12可移動而利用一 探針卡18上之探針16與該晶圓14接觸。該探測器1〇包含支 撐著與該晶圓14上積體電路(ICs)接觸之探針16的探針卡 18 ° 在該測試系統中,該測試控制器4產生之測試資料藉 由該通訊纜線6、測試頭8、探針卡18、探針16及最後傳輸 至該晶圓14上積體電路(ICs)。之後來自該晶圓上積體電路 (ICs)之測試結果反向經由該探針卡18至該測試頭8以利回 傳至該測試控制器4。當測試完成時,該晶圓分切為個別 之積體電路(ICs)。 由s玄測試控制器4所提供之測試資料被劃分進入該個 別的測試器通道,其由該纜線6所提供且在該測試頭8中分 開’故每個通道連通至該等探針16中之一個別探針。來自 該測試頭8之通道藉由連接器24連接至該探針卡18。該連 接器24可為零插入作用力(zip)之柔軟纜線連接器彈簧接 針(P〇g〇 pin)或其他型式之連接器。之後該探針卡18將每 個通道連接至該等探針16中之一個別探針。 圖2顯示該探針卡18元件之剖示圖。該探針卡18被組 態以提供與該晶圓直接接觸之彈性探針16所需之電子通路 及機械支撐。該探針卡電子通路係藉由一印刷電路板 (PCB)30,一内插板32及一空間變壓器34所構成。來自該 PI-47023-AM-SPCL-120326 1378245 —------------爹9讎23-號-申儀酬書象!^-------------------------孤油腳 測試頭8之測試資料由柔軟纜線連接器24所提供,該連接 器24通常環繞著該印刷電路板(pcB)3〇連接。通道傳輸線 40將來自該連接器24之信號水平分配進入該印刷電路板 (PCB)30至該印刷電路板(PCB)3〇上之接觸墊片,以配合該 空間變壓器34上墊片之繞線間距(r〇uting pitch)。該内插板 32包含一基板42,其彈性探針電子觸點44配置在兩側邊。 該内插板32電子連接該印刷電路板(PCB)30上之個別塾 片’在該空間變壓器34上形成一基板柵格陣列(LGA)。該 基板栅格陣列(LGA)墊片連接一般以正規多排圖樣予以配 置。該空間變壓器34的一基板45中之傳輸線46將來自該基 板柵格陣列(LGA)之信號線以陣列方式分配至彈性探針 16。具有嵌入式電氣回路、探針及連揍點之該空間變壓器 基板45被稱為一探針頭。 因一晶圓上欲測試之元件通常是在一相當高的頻率下 操作’故提供該電子通路支撐之元件機械特性係藉由電子 需求加以說明。此一基板之機械支撐應包括下列: 1.該空間變壓器基板45之偏斜及應力控制。 2·空間變壓器基板45之侧向位置控制。 3·空間變壓器基板45之精密度整平。 4·在空間變壓器基板45及印刷電路板(pcb)30之間建立 電氣連通之内插板32電氣接點之機械壓縮控制。 5 ·所有獨特及排列式電氣回路結構之電氣絕緣。 —驅動板/背板50、支架(探針頭支架)52、内部機架 (探針頭機架)54、内插板32及葉片彈簧56提供該電子元件 P1-47023-AM-SPCL-120326 - 8 - 1378245 修正日期:101.03.26. 第94103223號申請案說明書修正頁 機械支撐該驅動板/背板50位於該印刷電路板(pCB)3〇 側邊該支架52利用螺絲釘59附接並位於另一側邊。該 等葉片彈簧56藉由螺絲釘58附接至該支架52。該内插板32 含有兩對位於對角線相對角落之對準接針41及43。位於該 内插板底部之對準接針43與該機架54中之精確對準孔對 邊位於頂部之對準接針與印刷電路板(pcB)3〇中之精確 對準孔對齊。該内插板接針41及43之位置及該印刷電路板 (PCB)3G及機架54t對準孔控制著該側向運動,以及因此 經由j内插板彈簧44使基板45上的基板柵格陣列(LGA)接 觸墊片對準該印刷電路板(PCB)3〇上之接觸墊片。該機架 54另包含水平延伸部6〇,用以支撐位於其内側壁部中之該 空間變壓器34。環繞著該空間變壓器34之外側邊緣配傷的 該支架52及機架54維持側向位置控制。之後在該機架娜 接支撐著該等葉片彈簧56時,該内插板32之探針彈簧44產 生一機械作用力而將該印刷電路板(pCB)3〇及空間變壓器 34分開。 整平用途之機械元件包括四個銅球體(兩個標示為66 及68),其在各邊角附近與該空間變壓器34接觸。該銅球 體在該空間變壓器34之基板栅格陣列(LGA)周邊外侧提供 一點接觸,以保持與電子元件絕緣。藉由推進稱為整平接 針之螺絲釘(圖中繪示兩個整平接針/螺絲釘62及6句來調整 這些球體,即可達成該基板之整平。該整平接針/螺絲釘 62及64係螺旋轉動經過位於該驅動板/背板5〇中及該印刷 電路板(PCB)30兩側邊之支撐物65。 PI-47023-AM-SPCL-! 20326 1378245 第94103223號申請案說明書修正f 修正日斯:ι〇ι 〇3 26 整平接針/螺絲釘62及64係可調整而推動該空間變壓 器34以整平該空間變壓器基板,以及可能補償一非平面或 彎曲之基板。就整平而言,當在該空間變壓器基板45 一側 邊上之多個彈性探針16與晶圓之間施加過大作用力時該 整平接針/螺絲釘62及64在基板45上之推進將防止輕微齊 平偏差,以避免造成該空間變壓器基板45另一側邊上的多 個彈性探針16與晶圓捿觸。對於非平面、弯曲或變形基 板,藉由整平接針/螺絲釘62及64之推進可用來補償變 形。對具有彼此非平行或平坦表面之空間變壓器而言該 整平接針/螺絲釘62及64經調整使含有該探針之表面與該 晶圓表面平行。對彎曲之空間變壓器基板而言整平接針 /螺絲釘62及64在該基板邊緣處之推進可協助該彎曲形狀 到達某種程度的平直。因較大之基板更可能彎曲,其需提 供支撐能力較佳之結構以補償該彎曲,例如名稱為"用於 一半導體接觸器之使平坦化工具"(Planarizer f〇r a Semiconductor Contactor)之美國第 6,509 751號專利所示, 其以引用方式併入本文中。 過去之晶圓尺寸較小且一空間變壓器上之彈性探針數 量受到限制。因&,一"探測器"須使該晶圓重新定位而產 生多個至該探針之觸點,故該晶圓上之所有積體電路(ics) 皆可受測試。晶圓探針卡構造中使用之一般空間變麼器基 板相當的堅硬(高撓曲強度),且利用圖2中所示之該探針卡 結構能夠控制該變形及應力。 由於具有較大表面積及較多接針的空間變遷器需要較 PI-47023-AM-SPCL-120326 1378245 修正日期:101.03.26. 第94103223號申請案說明書修正頁 少的觸碰即可測試較大的晶圓,該空間變壓器基板可能因 该内插板所施加的作用力或探測所產生之彎曲作用力而破 裂或呈一歪斜之表面。典型空間變壓器基板45係由相當堅 硬之多層陶瓷所建構而成。利用例如圖2中所示之該内插 板32、整平接針/螺絲釘62和64及機架54等元件其所達 成之整平係利用這些具有有限應力之堅硬陶瓷基板。該機 架54防止該基板因内插板32而撓曲,但郤未應付探測所造1378245 Application No. 94103223, Amendment Date, Revision Date: ι〇ι 〇3, IX, EMBODIMENT DESCRIPTION OF THE INVENTION [Technical Field] The present invention generally relates to a test system for testing an integrated circuit on a wafer. configuration. More particularly, the present invention relates to a probe card mechanical support configuration for a probe card having a low mechanical flexural strength circuit. [Prior Art] Due to the increased wafer size, the size and complexity of the test system probe card used to test the wafer is relatively increased. Considering the larger size of the wafer, the probe card substrate in the wafer test system is usually larger in size and designed to support more probes or reed contacts (Spring c〇ntacts) to connect Test and test more integrated circuits (ICs) on the wafer. This larger probe card with additional probes typically creates a large bending load on the probe card. Although..., the larger size of the 曰S circle results in a larger probe card configuration with a higher probe density, but it still tends to use probe cards with low flexural strength materials. The reason for using a probe card of a low flexural strength material is that the complexity of the semiconductor device is increased and the density of the integrated circuit (ICs) to be tested per unit area on the wafer is increased, and the electronic performance of the pin card needs to be improved. In order to achieve electronicity, the material and manufacturing technology of the space-changing substrate used as a floor probe will form a thinner and lower-strength configuration. When the probe card has more contacts, the number of probes (load) increased due to the density of the integrated circuit (1C) further causes the probe card substrate to have a large curvature. . > Figure 1 shows a test of a semiconductor wafer PM7023-AM-SPCL-120326 1378245 using a probe card. Revision date: 101.03.26. Test of integrated circuits (ICs) on the revised page of Application No. 94103223 A simplified block diagram of the system. The test system includes a test controller 4 coupled to a test head 8 via a communication cable 6. The test system further includes a detector 1A consisting of a platform 12 for mounting a wafer 14 to be tested, the platform 12 being movable to utilize a probe 16 on a probe card 18 and the Wafer 14 is in contact. The detector 1A includes a probe card 18 that supports a probe 16 that is in contact with integrated circuits (ICs) on the wafer 14. In the test system, the test data generated by the test controller 4 is used for the communication. The cable 6, the test head 8, the probe card 18, the probe 16, and finally the integrated circuits (ICs) on the wafer 14. The test results from the integrated circuits (ICs) on the wafer are then reversed via the probe card 18 to the test head 8 for feedback to the test controller 4. When the test is complete, the wafer is diced into individual integrated circuits (ICs). The test data provided by the sinus test controller 4 is divided into the individual tester channels, which are provided by the cable 6 and separated in the test head 8 so that each channel is connected to the probes 16 One of the individual probes. The channel from the test head 8 is connected to the probe card 18 by a connector 24. The connector 24 can be a zero-plug zip soft cable connector spring pin (P〇g〇 pin) or other type of connector. The probe card 18 then connects each channel to one of the probes 16 of the probes. Figure 2 shows a cross-sectional view of the probe card 18 component. The probe card 18 is configured to provide the electronic path and mechanical support required for the resilient probe 16 in direct contact with the wafer. The probe card electronic path is formed by a printed circuit board (PCB) 30, an interposer 32 and a space transformer 34. From the PI-47023-AM-SPCL-120326 1378245 —------------爹9雠23-号-Shenyi reward book like! ^------------------------- The test data of the lone oil test head 8 is provided by a flexible cable connector 24, which is usually Connected around the printed circuit board (pcB). The channel transmission line 40 distributes the signal level from the connector 24 into the contact pads of the printed circuit board (PCB) 30 to the printed circuit board (PCB) 3 to match the winding of the spacer on the space transformer 34. R〇uting pitch. The interposer 32 includes a substrate 42 with resilient probe electrical contacts 44 disposed on both sides. The interposer 32 is electronically coupled to individual dies on the printed circuit board (PCB) 30 to form a substrate grid array (LGA) on the space transformer 34. The substrate grid array (LGA) pad connections are typically configured in a regular multi-row pattern. A transmission line 46 in a substrate 45 of the space transformer 34 distributes the signal lines from the substrate grid array (LGA) to the elastic probe 16 in an array. The space transformer substrate 45 having embedded electrical circuits, probes, and junctions is referred to as a probe head. Since the component to be tested on a wafer is typically operated at a relatively high frequency, the mechanical properties of the component providing the electronic via support are illustrated by the electronic requirements. The mechanical support of the substrate should include the following: 1. Deflection and stress control of the space transformer substrate 45. 2. Lateral position control of the space transformer substrate 45. 3. The precision of the space transformer substrate 45 is leveled. 4. Mechanical compression control of the electrical contacts of the interposer 32 that establish electrical communication between the space transformer substrate 45 and the printed circuit board (pcb) 30. 5 · Electrical insulation of all unique and arranged electrical circuit structures. - Driver board/backplane 50, bracket (probe head bracket) 52, internal frame (probe head frame) 54, interposer 32 and leaf spring 56 provide the electronic component P1-47023-AM-SPCL-120326 - 8 - 1378245 Amendment date: 101.03.26. Application No. 94103223, Amendment page, mechanical support, the driver board/backplane 50 is located on the side of the printed circuit board (pCB) 3〇. The bracket 52 is attached and located by screws 59 The other side. The leaf springs 56 are attached to the bracket 52 by screws 58. The interposer 32 includes two pairs of alignment pins 41 and 43 located at opposite corners of the diagonal. The alignment pins 43 at the bottom of the interposer are aligned with the alignment pins on the top of the precision alignment holes in the frame 54 that are aligned with the precise alignment holes in the printed circuit board (pcB). The position of the interposer pins 41 and 43 and the printed circuit board (PCB) 3G and the frame 54t alignment holes control the lateral movement, and thus the substrate grid on the substrate 45 via the j interposer spring 44 A grid array (LGA) contact pad is aligned with the contact pads on the printed circuit board (PCB). The frame 54 further includes a horizontal extension 6〇 for supporting the space transformer 34 located in the inner side wall portion thereof. The bracket 52 and the frame 54 that are wound around the outer edge of the space transformer 34 maintain lateral position control. The probe springs 44 of the interposer 32 then generate a mechanical force to separate the printed circuit board (pCB) 3 and the space transformer 34 when the blade springs support the leaf springs 56. The mechanical component for leveling purposes includes four copper spheres (two labeled 66 and 68) that are in contact with the space transformer 34 near each corner. The copper spheres provide a point of contact outside the perimeter of the substrate grid array (LGA) of the space transformer 34 to maintain insulation from the electronic components. The flattening of the substrate can be achieved by advancing a screw called a flattening pin (two flattening pins/screws 62 and 6 are shown) to achieve the leveling of the substrate. The flattening pin/screw 62 And the 64-series spirally rotates through the support 65 located in the driving board/backplane 5A and on both sides of the printed circuit board (PCB) 30. PI-47023-AM-SPCL-! 20326 1378245 Application No. 94103223 Correction f Correction: ι〇ι 〇3 26 The leveling pins/screws 62 and 64 can be adjusted to push the space transformer 34 to level the space transformer substrate and possibly compensate for a non-planar or curved substrate. In the case of leveling, the advancement of the flattening pins/screws 62 and 64 on the substrate 45 when an excessive force is applied between the plurality of elastic probes 16 on one side of the space transformer substrate 45 and the wafer Preventing slight flush deviation to avoid causing multiple elastic probes 16 on the other side of the transformer substrate 45 to be in contact with the wafer. For non-planar, curved or deformed substrates, by leveling the pins/screws 62 And the advancement of 64 can be used to compensate for the deformation. For a spatial transformer of parallel or flat surface, the flattening pins/screws 62 and 64 are adjusted such that the surface containing the probe is parallel to the surface of the wafer. Flattening pins/screws 62 for a curved space transformer substrate And the advancement of the 64 at the edge of the substrate assists the curved shape to a certain degree of flatness. Since the larger substrate is more likely to bend, it is desirable to provide a structure with better support to compensate for the bend, such as the name " It is shown in U.S. Patent No. 6,509,751, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in the the the the the the the the the The number of flexible probes on the upper limit is limited. Because &, a "detector" has to reposition the wafer to create multiple contacts to the probe, so all the integrated circuits on the wafer ( All of them can be tested. The general space transformer substrate used in the wafer probe card construction is quite hard (high flexural strength) and can be controlled by the probe card structure shown in Figure 2. The deformation and stress. Since the space changer with a large surface area and a large number of pins needs to be compared with PI-47023-AM-SPCL-120326 1378245, the date of revision: 101.03.26. The correction page of the application specification No. 94103223 is less touched. It is possible to test a larger wafer which may be broken or has a skewed surface due to the force exerted by the interposer or the bending force generated by the detection. The typical space transformer substrate 45 is quite hard. The multilayer ceramic is constructed. These flattening systems, such as the interposer 32, leveling pins/screws 62 and 64, and the frame 54 shown in Fig. 2, utilize these rigid ceramic substrates with limited stress. The frame 54 prevents the substrate from being deflected by the interposer 32, but does not cope with the detection.
成之彎曲作用力,因為該空間變壓器基板45在探測該晶圓 時已被推離該機架54。若基板較柔軟,其需提供較多的支 撐以防止因内插板作用力及探測過程中所施加之彎曲作用 力所造成之彎曲。 在未來例如有機薄層板或薄膜之較柔軟基板可運用 於相當低或相對無撓曲硬度之探針卡中。其需提供一種用 於探針卡基板之機械支撲組態,使這些低撓曲硬度/強度 之基板能夠在未承受過大變形或應力之情況下支撐。 【發明内容】 根據本發明’一種用於一探針卡之機械支撐組態提供 一低撓曲硬度/強度基板之較大支撐。 五種元件根據本發明加以改良以提供該探針頭較多的 機械支撐及整平,且能使用低撓曲硬度/強度之基板。該 五種π件包括:⑴-具有較大水平延伸部長度之機架; ⑺具有f曲部之葉片彈#,使該等葉片彈簣可垂直伸展及 接合較靠近該等彈性探針的該内側機架;(3)一隔離撓性薄 膜’或-裝置於該探針頭機架中之負載支撑構件,其被附 PM7023-AM-SPCL-120326 1378245 第94103223號申請案說明書修正頁 - y. 修正曰期:101.03.26 加以接合較遠離其邊緣的該空間變壓器基板;(4)例如整平 接針之附加支撐結構,其提供該空間變壓器基板中心附近 的支撐,及(5) —位於該探針及一較低撓曲強度空間變壓器 基板之間的高硬度介面微磚。 第一個改良是增加自該機架處水平延伸部之長度,該 增加後之長度使向外伸展超出該空間變壓器基板之金屬支 撐大於先前之機架伸展。該增加後之水平延伸部降低了施 加在該空間變壓器基板邊緣上之作用力,將該作用力分散 在該空間變壓器基板上以防止一較大基板之破*或變形。 第二個改良是該等葉片彈簣,且包含在該等葉片彈菁 中之多個f曲部,使其可自該支架處垂直伸展。運用該彎 曲部,利用螺絲釘附接至該支架之該等葉片彈簧一尾端之 臂曲部,使该等葉片彈簧之另一端在機架上較垂直靠近該 等彈性探針之處形成彈性接觸。該f曲部使該支架自機架 處凹陷’故用於固持該等葉片彈簧之螺絲釘不會垂直伸展 靠近該等彈性探針。使料葉片彈簧垂直伸展之彎曲部進 -步讓所施加之彈性作用力遠離該空間變壓器之邊緣而朝 向該基板之中^,以防止較大空間變壓器基板之變形或破 裂。 第一個改良是利用撓性薄膜,或在該機架之水平伸展 上提供-負載支撐構件’使該機架在施加之作用力遠離該 空間變壓器基板邊緣時與該空間變壓器基板接合,以防止 較大基板之變形或破裂。該水平伸展之目的是在該内插板 彈簧施加作用力至該探針頭底部上之主要區域正上方支樓 PI-47023-AM-SPCL-120326 1378245 修正日期:101.03.26. 第94103223號申請案說明書修正頁The bending force is formed because the space transformer substrate 45 has been pushed away from the frame 54 while the wafer is being probed. If the substrate is relatively soft, it needs to provide more support to prevent bending due to the force of the interposer and the bending force applied during the detection. In the future, softer substrates such as organic thin sheets or films can be used in probe cards of relatively low or relatively low flexural hardness. It is desirable to provide a mechanical baffle configuration for the probe card substrate that enables these low flexural/strength substrates to be supported without excessive deformation or stress. SUMMARY OF THE INVENTION A mechanical support configuration for a probe card according to the present invention provides a large support for a low flexural hardness/strength substrate. The five components are modified in accordance with the present invention to provide more mechanical support and leveling of the probe tip, and to use a substrate of low flexural hardness/strength. The five π-pieces include: (1) a frame having a larger horizontal extension length; (7) a blade spring having a curved portion, such that the blade magazine can vertically extend and engage the elastic probe closer to the elastic probe An inner frame; (3) an isolating flexible film 'or a load supporting member mounted in the probe head frame, which is attached to the PM7023-AM-SPCL-120326 1378245 No. 94103223 Application Manual Revision Page - y Correction period: 101.03.26 to join the space transformer substrate farther from its edge; (4) an additional support structure such as a leveling pin that provides support near the center of the space transformer substrate, and (5) - located The probe and a low-hardness-space transformer substrate between the high-hardness interface micro-bricks. The first improvement is to increase the length of the horizontal extension from the frame, the increased length such that the metal support extending outward beyond the space transformer substrate is greater than the previous frame extension. The increased horizontal extension reduces the force applied to the edge of the space transformer substrate, dispersing the force on the space transformer substrate to prevent breakage or deformation of a larger substrate. A second modification is the blade magazines and includes a plurality of f-curves in the blade springs such that they can extend vertically from the bracket. Applying the bending portion to the arm curved portion of the blade spring of the bracket by using a screw, so that the other end of the leaf spring forms elastic contact on the frame closer to the elastic probe. . The f-curved portion causes the bracket to be recessed from the frame so that the screws for holding the leaf springs do not extend vertically adjacent to the elastic probes. The bending portion that vertically extends the blade spring advances the applied elastic force away from the edge of the space transformer toward the substrate to prevent deformation or breakage of the large space transformer substrate. The first improvement is to utilize a flexible film or to provide a -load support member on the horizontal extent of the frame to engage the space transformer substrate with the applied force away from the edge of the space transformer substrate to prevent Deformation or cracking of a larger substrate. The purpose of the horizontal extension is to apply a force to the main area of the probe head on the bottom of the probe head directly above the PI-47023-AM-SPCL-120326 1378245. Revision date: 101.03.26. Application No. 94103223 Procedural amendment page
著該基板,使該空間變壓器基板夾在該内插板彈簧及已伸 展之機架堅硬支撐之間。該撓性薄膜位於該空間變壓器基 板及機架之間’以有效的形成一可變負載支撐構件故該 機架在遠離該空間變壓器基板周邊一點處與之接觸。利用 不同尺寸之薄膜使該負載支撐之接觸位置易於移動或調 整,以便在最小之彎曲作用力施加至該空間變壓器基板位 置處定位該負載支撐之接觸區域。該撓性薄膜另由一聚合 物材料製成,以利在該金屬機架及空間變壓器基板上電子 元件之間提供電氣絕緣。該負载支撐構件可裝置於該機架 中,但5亥電氣絕緣特性及利用該撓性薄膜而改變負載支撲 接觸位置之彈性將不存在。 對第四個改良而言,附加之支撐結構配置於該空間變 壓器基板中心附近,在該基板中心提供額外的支撐以防止 彎曲或變形。該附加之支撐結構利用例如整平接針之支撐 接針’其具有直接與該基板接觸之gimble球體,或利用將 一彈性體墊片附接至該基板之類似支撐接針,或與一附接 至忒空間變壓器基板之高強度金屬支稽構件接觸之支樓接 針。為避免該中央支撐結構與空間變壓器基板上基板柵格 陣列(LGA)墊片之間的電氣接觸,該空間變壓器中繞線已 改良,使中央支撐與該空間變壓器接觸之區域中無基板拇 格陣列(LGA)墊片。在一具體實施例中,例如隔離電容器 之分離元件配置於基板柵格陣列(LGA)墊片移除之位置。 爲配合該等移除之基板柵格陣列(LGA)墊片,該内插板經 改良而具有彈簧觸點,其被重新排列成對應於該空間變壓 PI-47023-AM-SPCL-120326 1378245 ―第-94-103223號:申首案說明書修正頁..... a ^ :T〇T 03 26~ 器基板上新的基板栅格陣列(LGA)墊片位置。該内插板進 一步改良含有多個開口 ’使中央支撐接針可穿過該内插板 與該空間變壓器基板接觸。該中央支撐結構可補償—空間 變壓器基板之彎曲,且進一步在晶圓測試過程中支標著該 基板之背部,以避免該空間變壓器因承受探針作用力而彎 曲或破裂。 對第五個改良而言,一相當堅硬之介面微碑配置於該 探針與一較低撓曲強度空間變壓器基板之間。若無該堅硬 之介面微磚’僅一低撓曲強度之空間變壓器基板,當該探 針因過大之負載使探針壓入該基板中時會造成”浮動"接 觸。該相當堅硬之微磚分散該探針負載,防止此一低撓曲 強度之空間變壓器基板受損。該堅硬之微磚含有連接該等 探針觸點至該空間變壓器之直線饋給貫穿孔,而且在該低 硬度之空間變壓器中配備水平繞線。 【實施方式】 圖3為一用於一晶圓測試系統之探針卡之剖視圖,其 根據本發明改良以提供低撓曲硬度/強度基板所需之額外 機械支撐。圖3所示之該探針卡之元件提供類似於圖2該傳 統探針卡之電氣通路,包括一印刷電路板(PCB)3〇a、一内 插板32A及一空間變壓器34A。圖3所示之該探針卡另具有 類似於圖2之該傳統探針卡且用於該電子元件之機械支 撐’包括一驅動板/背板50A、機架(探針頭機架)54A、支 架(探針頭支架)52及葉片彈簧56A。圖2所示之元件具有與 圖3類似之編號,惟圖3所示之改良後元件數字標示含有字 PI-47023-AM-SPCL-120326 14 1378245 修正日期:101.03.26. 第94103223號申請案說明書修正頁 母” A,,。 本發明探針卡之改良欲使空間變壓器基板具有限定之 撓曲強度,並非特別關注於基板在檢驗上之硬度,而是基 板將變形之探針負載。探測過程t須在該基板上反覆的施 加負載,其可導致該基板内線跡疲勞時電氣失效。適當之 線路基板包含聚合物材料,例如聚醯亞胺、Br樹脂、FR_ 4 BCB、%乳树脂或此項技術中吾人已知的其他有機材 料基板亦可包含鋁所組成之陶瓷材料、氮化石夕、低溫陶 瓷共燒及例如鍵盤板夾心(C〇pper_inVar_C〇pper)之絕緣金屬 核心材料。 第一個改良包含相對於該水平延伸部60增加機架54a 上水平延伸部60A之長度,如圖3所示。該長度增加之水平 延伸部60 A提供一金屬支撐,其向外伸展超出該空間變壓 器基板45A之程度大於先前之機架54。該長度增加之水平 延伸部使施加在該空間變壓器基板45A邊緣上之作用力變 小,將該作用力分散至該空間變壓器基板45A外,以防止 一較大基板之變形或破裂。傳統之水平延伸部覆蓋該空間 變壓器基板少於10%的區域,圖3改良後之水平延伸部6〇a 宜覆蓋該空間變壓器基板70%或更多的區域。 第二個改良是該等葉片彈簧56A含有彎曲部71及73。 該等彎曲部71及73使該等葉片彈簣56A自該支架52處垂直 及水平伸展。由於此彎曲部71及73,該等葉片彈簧56A 一 %利用螺絲釘5 8附接至該支架5 2,且該彎曲部使該等葉片 彈簧56A另一端與該機架μα上一位置75彈性接觸,該位 PI-47023-AM-SPCL-120326 1378245 --第一94103223號申請案說賓書修正頁 置較圖3中接觸區域77更垂直靠近該等彈性探針16。該彎 曲部71及73使該支架52自該機架54A處凹陷,故附接該等 葉片彈簧56A之該螺絲釘58未垂直伸展靠近該等彈性探針 16。該彎曲部71及73使該等葉片彈簧56A垂直伸展而進一 步使彈簀作用力施加至該機架5 4 A,故所施加之作用力進 一步运離該空間變壓器基板45A邊緣,以防止較大基板之 變形或破裂。 在一具體實施例中,第三個改良包含在該機架54A上 配置一負載支撐構件70。該負載支撐構件7〇自該機架54A 之水平延伸部60A處伸展而在所施加作用力遠離該基板 45A周邊一位置處與該空間變壓器基板45A接觸,以防止 較大基板之變形或破裂。 在另一具體實施例中,第三個改良利用位於該空間變 壓器基板45八及機架548之間的撓性薄膜80及82,如圖4所 不。由圖3沿用至圖4之其他元件在圖4中具有類似之編號 “示。該撓性薄膜80及82有效地形成圖3之該負載支樓構 件70,使該機架54B在遠離其邊緣一位置處與該空間變壓 器基板45A接觸。一第一薄膜8〇之輪廓配合該機架54B之 水平延伸部60A之形狀’而該第二薄膜82具有一受到較多 限制之尺寸,以有效的提供圖3該負载支撐構件7〇。該第 二薄膜82附接至該第一薄膜80以利支撐。利用不同尺寸之 該第二薄膜82,使該負載支撐之位置易於移動或調整’以 便該負載支撐位於作用力使該空間變壓器34A變形最少的 位置。 PI-47023-AM-SPCL-120326 16 丄378245 第94103223號申請案說明書修正 修正日期:101.03.26. 根據本發明—具體實施例,該撓性薄臈80及82由聚合 ㈣膜材料所製成,以利在該金屬機架54B及該空間變愿 °° 土板4 5A上電子兀件之間提供電氣絕緣。做為隔離薄膜 +替代达擇 單—薄膜可藉由接合兩層較薄之聚合物 薄膜層80及82在-起而形成,使該薄膜表面之内側部位厚 度大於外侧部位。做為另-替代選擇,可使用-含有該薄 膜80的單一薄膜82。 利用聚合物薄膜提供該基板45A與金屬機架54b電氣 絕緣。因圖3該負載支揮構件觀置於該金屬機架54b中, 其無法提供電氣絕緣特徵及利用不同尺寸撓性薄膜82而改 變該負載支撐區域之彈性。然而,在一具體實施例中,若 该薄膜為非必要的,該撓性薄膜8〇及82係用以決定圖^該 金屬負載支撐構件70之位置。爲決定該金屬負載支撐構件 之最佳位置,其利用不同尺寸之撓性薄膜82且分別量測該 基板45 A之撓性。當選定一最佳之薄膜82時,其位置係用 以決定該金屬負載支撐構件70配置於圖3該機架54A中之位 置。 對第四個改良而言,額外的支撐結構接觸該空間變壓 器基板中心附近,提供該基板中心内額外的支撐,以防止 變形或彎曲。在一具體實施例中,該額外的支撐係利用兩 附加之支撐接針/螺絲釘72及74以及球體76及78(材質可能 是銅)接觸該空間變壓器基板45A中心附近。雖然所示之支 撐接針/螺絲釘72及74以及球體76及78是分離的,在_具 體實施例中其可結合以形成具有圓狐端之支撐接針。做為 PI-47023-AM-SPCL-120326 17- 1378245 _ _ — 一 — __ — — — — — _ _ _.—— — -— —- ————-——----— 第94103223號申請案說明書修正頁 修正曰期:101.03.56. 另一替代選擇,該支撐接針/螺絲釘72及74可具有平坦 端,此時一與該空間變壓器基板接觸之gimble點並不重 要。 為防止該等球體76及78與該空間變壓器基板45 A上基 板柵格陣列(LGA)墊片之間的接觸,傳輸線46A在該空間 變壓器34A中之繞線已相對於圖2加以改良,故在兩個附加 球體76及78接觸之區域中無墊片。同樣的,該内插板32A 經改良而具有對應至該空間變壓器基板上新墊片位置之彈 簧觸點44A。該内插板32A進一步改良含有開口,使該兩 支撐接針/螺絲釘72及74可穿過該内插板32A中心接觸該等 球體76及78至空間變壓器基板45A。 實際上,可能先利用周邊整平接針/螺絲釘62及64來 調整該空間變壓器34A之平面性,藉此執行該探針卡之組 裝及整平。一旦該空間變壓器基板45A為平面的,中央支 撐接針/螺絲釘72及74向前移動而與該基板45 A接觸,以對 應該探針負載使該空間變壓器34A呈穩定狀態。該支撐接 針/螺絲釘72及74之調整進一步可補償該基板之任何彎 曲。 移除該空間變壓器中央附近之基板栅格陣列(LGA)墊 片以提供該中央支撐接針/螺絲釘72及74,使該基板具有 額外的分離元件75。爲提昇該探針卡總成之性能,該分離 元件75宜為去耦合電容器。去耦合電容器用以補償該測試 器與探針之間的線路電容,線路電容造成信號延遲,以及 透過探針往返於晶圓提供之測試信號中的雜訊。 PM7023-AM-SPCL-120326 -18- 修正日期:101.03.26. 第94103223號申請案說明書修正頁 利用去耦合電容器,將該電容器至探針之設定距離最 小而使性能提昇。圖7顯示該空間變壓器34上去耦合電容 器75與探針16之間的距離"d"最小將提昇性能但可能使 該基板強度降低。當該距離"d"變短時,在裝載該探針16 之過程中,由中央支撐接針/螺絲釘72及74所提供之背面 支樓係有必要。 圖5為圖3該探針卡元件之爆炸組合圖,圖6為圖4該探 針卡元件之爆炸組合圖。圖6之組態是改良自圖5,其包含 兩層溥膜80及82。圖5之探針卡利用一配置於該機架54八中 之負載支撐構件70(面向下且圖5中未顯示),而非薄膜8〇及 82 〇 參見圖5及6,如圖所示,驅動板/背板5〇A利用兩個螺 絲釘59附接至該印刷電路板(pcB)3〇A及支架兄。包含整平 接針/螺絲釘62及64之整平螺絲釘穿過驅動板/背板5〇A及 印刷電路板(PCB)30A,在靠近該空間變壓器34人邊角附近 位置處到達包含球體66及68之四個球體。注意圖3及4之剖 不圖係非均勻切割,而非通過圖5及6之線性平面,以顯示 兩邊角整平接針/螺絲釘62及64,以及在該空間變壓器34A 中央附近位置處提供給接觸球體76及78之新增中央支撐接 針/螺絲釘72及74。如圖5及6所示,該中央支撐接針/螺絲 釘72及74穿過驅動板/背板5〇A及印刷電路板(pcB)3〇A,其 不同於整平接針/螺絲釘62及64穿過該内插板32Λ中一開 口。圖5所示之該機架54A直接位於該空間變壓器34A上 方’且接合在該支架52中。雖然外加的螺絲釘58(圖中未 PI-47023-AM-SPCL-120326 -19- 1378245 a c: 101.03.26. 194103223-號申-請案說明書-修正i… 顯示)配置於整個周邊以附接該等葉片彈菁56A,惟所示之 兩個螺絲釘58係參考之用。圖6中機架34A藉由該薄膜⑼及 82與該空間變壓器基板隔開。 雖然圖3至6顯示-具體實施例之背面支樓由一或多個 支撐接針/螺絲釘72及74所提供,惟圖8八至犯顯示其他有 效之具體實施例。圖8八之具體實施例含有一支撐接針84, 其可為該驅動板/背板5〇及印刷電路板(pcB)3〇中貫穿之螺 絲釘以推進一 gimble球體86。之後該等球體86與位於一高 密度彈性體塾片9G上方之金屬板88形成—旋轉觸點,該彈 性體墊片90再與位於該空間變壓器34上方之分離元件乃接 觸。该彈性體墊片9〇使該元件75自該金屬板88處絕緣。利 用圖8 A所示之支撐組態,一單一整平接針84可將作用力傳 遞至該金屬板88,以利在該空間變壓器34一較大區域上提 供一整平作用力。此外,雖然該彈性體墊片直接與該空間 變壓器基板接觸,若分離元件75非必要,圖8A之該彈性體 墊片確保該分離元件75之絕緣。 圖8B顯示包含一支撐接針84之支撐結構另一具體實施 例’該支撐接針84可為該驅動板/背板5〇及印刷電路板 (PCB)30中貫穿之螺絲釘以推進一 gimble球體86,之後該 等球體86與一附接至空間變壓器34背面之堅硬支撐構件92 接觸。如圖所示’該支撐構件92具有配合例如電容器之分 離兀件75之開口,或為一無此類開口之平板。該高硬度構 造92之材質可為金屬或陶瓷材料。該高強度結構92可用以 防止該等彈性探針16與一晶圓接觸所產生之過大負載造 PI-47023-AM-SPCL-120326 •20- 1378245 第觸3223號申請案說明書修正頁 修正日期:⑼.随 成由低撓曲強度材料所製成之該空間變壓器機械損壞。當 該探針16與一晶圓接觸時,該支撐接針糾可調整以進一步 • 補償該支撐構件92上彈性探針負載。 雖然圖3至6亦揭示利用一具有彈簧觸點之内插板32, 惟其他不同之構造亦可用於將該空間變壓器34電氣連接至 該印刷電路板(PCB)30,如圖9及1〇所示。圖9顯示另一彈 簧接針94將該印刷電路板(PCB)30連接至該空間變壓器34 之配置。該彈簧接針94承受彈性負載且位於一基板96兩侧 邊,以類似於前述圖式中該内插板32之功能。雖然顯示在 兩側邊上,該彈簧接針94可位於該基板96 —側邊上,其他 非彈性連接器位於另一側邊上,或彈簧接針可配置在其他 組態中,例如圖10另顯示彈簧接針98在無中間基板的情況 下將該印刷電路板(PCB)3〇連接至該空間變壓器34。 圖11顯示根據本發明之第五個改良,其改變圖4該探 針卡結構,而包含一位於該探針16及一較低撓曲強度空間 Φ 變壓器基板45B之間的堅硬介面微磚100。在無該介面微磚 100的情況下,若探針負載過大時造成"浮動"觸點,有效 地將該探針16壓入該空間變壓器基板45B。該高硬度介面 微磚100分散探針負載,防止此一低撓曲強度空間變壓器 基板之機械損壞。製造一低撓曲強度空間變壓器基板之材 料範例包含例如FR4之有機材料,或一低溫共燒陶瓷 (LTCC)。用於該堅硬介面微磚1〇()一較高撓曲強度材料之 範例包含一高溫共燒陶瓷(HT(:C)。 該高硬度介面微磚1〇〇含有將該探針電氣連接至該空 PI-47023-AM-SPCL-120326 -21 · 1378245 -----第-94103223號卞請案說明書修正―頁一 T〇T;03:26^ 間變壓器之直線饋給貫穿孔道102。該孔道102藉由銲錫珠 104加以附接’以類似該空間變壓器基板45Β中之傳輸線。 銲錫珠104另將該介面微磚1〇〇附接至該空間變壓器基板 45Β,之後水平繞線藉由傳輸線46Α配置於該低硬度空間 變壓器基板45Β中而連接至該内插板32Α。雖然以圖4該探 針卡組態顯示該咼硬度介面微磚1〇〇,惟該堅硬介面微磚 100可類似用於圖3之組態或其他本文所揭示之其他組態。 雖然本發明以特定項目揭示於前文,其僅係教導熟習 本項技藝者如何製造及利用本發明。許多額外之改良將在 本發明後述申請專利之範疇中。 【圖式簡單說明】 本發明藉由附圖之協助而能進一步的詳述,其中·· 圖1顯示一典型晶圓測試系統之元件方塊圖; 圖2為用於圖!晶圓測試系統—傳統探針卡之剖視圖; 、圖3為根據本發明用於-晶圓测試系統之-探針卡之剖 視圖; 彈性支撐薄n針卡之剖視圖; 圖5為圖3探針卡元件之爆炸組合圖; 圖6為圖4探針卡元件之爆炸組合圖; 圖7為一探針卡具有隔離電容器 變堡15基板厚度T如何影響絕緣; 圖8A顯示另一探針卡組離, m.〜八中央支撑利用一彈性炉 片配置於一空間變壓器; ^ m PI-47023-AM.SPCL-I20326 -22- 1378245 第94103223號申請案說明書修正頁 ^ „ 修正日期:101.03.26. 圖8B顯示另一探針卡 ^ ^ ^ 丫开又撐為—附接至該空 間邊壓益之堅硬中央支撐結構; 圖9為另-探針卡組態之剖視圖,其利用代替—内插板 之基板兩側邊處之彈簧測試針; 圖1〇顯示另—探針卡組態,其彈簀測試針將該印刷電路 板(PCB)直接連接至該空間變壓器;及 圖11顯示一改良自圖4之探針卡之剖視圖,以包含一位The substrate is placed such that the space transformer substrate is sandwiched between the interposer spring and the rigid support of the extended frame. The flexible film is positioned between the space transformer substrate and the frame to effectively form a variable load support member such that the frame is in contact therewith at a point away from the periphery of the space transformer substrate. The contact positions of the load support are easily moved or adjusted using different sized films to position the contact area of the load support with minimal bending force applied to the space transformer substrate. The flexible film is additionally made of a polymeric material to provide electrical insulation between the electronic components on the metal frame and the space transformer substrate. The load supporting member can be installed in the frame, but the electrical insulation property of 5 hai and the elasticity of changing the contact position of the load slap using the flexible film will not exist. For the fourth modification, an additional support structure is disposed adjacent the center of the space transformer substrate to provide additional support at the center of the substrate to prevent bending or deformation. The additional support structure utilizes a support pin, such as a flattening pin, which has a gimble ball that is in direct contact with the substrate, or a similar support pin that attaches an elastomeric pad to the substrate, or The connection to the branch of the high-strength metal bearing member of the space transformer substrate is connected. In order to avoid electrical contact between the central support structure and the substrate grid array (LGA) pad on the space transformer substrate, the winding in the space transformer has been improved so that there is no substrate thumb in the area where the central support is in contact with the space transformer. Array (LGA) gasket. In a specific embodiment, the discrete components of the isolation capacitor, for example, are disposed at a location where the substrate grid array (LGA) pads are removed. To accommodate the removed substrate grid array (LGA) pads, the interposer is modified to have spring contacts that are rearranged to correspond to the spatial transformer PI-47023-AM-SPCL-120326 1378245 ―第-94-103223: Application for amendment of the first instruction manual..... a ^ :T〇T 03 26~ The position of the new substrate grid array (LGA) spacer on the substrate. The interposer is further modified to include a plurality of openings </ RTI> such that the central support pin can be in contact with the space transformer substrate through the interposer. The central support structure compensates for the bending of the space transformer substrate and further supports the back of the substrate during the wafer testing process to prevent the space transformer from bending or breaking due to the force of the probe. For the fifth improvement, a relatively hard interface micro-trace is placed between the probe and a lower flexural strength space transformer substrate. Without the rigid interface micro-brick 'only a low-flexural strength space transformer substrate, when the probe is pressed into the substrate due to excessive load, it will cause "floating" contact. The rather hard micro The brick disperses the probe load to prevent damage to the space transformer substrate of the low flexural strength. The rigid micro-brick includes a linear feed through-hole that connects the probe contacts to the space transformer, and at the low hardness A horizontal winding is provided in the space transformer. [Embodiment] FIG. 3 is a cross-sectional view of a probe card for a wafer testing system, which is modified according to the present invention to provide additional mechanical equipment for a low flexural hardness/strength substrate. Support. The components of the probe card shown in FIG. 3 provide electrical access similar to the conventional probe card of FIG. 2, including a printed circuit board (PCB) 3A, an interposer 32A, and a space transformer 34A. The probe card shown in FIG. 3 further has a conventional probe card similar to that of FIG. 2 and the mechanical support for the electronic component includes a driver board/backplane 50A and a chassis (probe head frame) 54A. Bracket (probe head bracket) 52 and leaf spring 56A. The components shown in Fig. 2 have similar numbers to those of Fig. 3, but the modified component numbers shown in Fig. 3 contain the word PI-47023-AM-SPCL-120326 14 1378245. Revision date: 101.03.26 Application No. 94103223 amends the page mother "A,,. The improvement of the probe card of the present invention is intended to provide a limited flexural strength to the space transformer substrate, and is not particularly concerned with the hardness of the substrate in inspection, but rather the probe load on which the substrate will deform. The probing process t must be applied repeatedly on the substrate, which can result in electrical failure when the traces in the substrate are fatigued. Suitable circuit substrates include polymeric materials such as polyimide, Br resin, FR 4 BCB, % milk resin or other organic material substrates known to the art as well as ceramic materials composed of aluminum, nitride. In the evening, low temperature ceramic co-firing and an insulating metal core material such as a keyboard plate sandwich (C〇pper_inVar_C〇pper). The first modification includes increasing the length of the horizontal extension 60A on the frame 54a relative to the horizontal extension 60, as shown in FIG. The increased length horizontal extension 60A provides a metal support that extends outward beyond the spatial transformer substrate 45A to a greater extent than the previous frame 54. The horizontal extension portion of the length increases the force applied to the edge of the space transformer substrate 45A, and the force is dispersed outside the space transformer substrate 45A to prevent deformation or cracking of a larger substrate. The conventional horizontal extension covers an area of the space transformer substrate of less than 10%, and the modified horizontal extension 6〇a of Fig. 3 should cover 70% or more of the space transformer substrate. The second improvement is that the leaf springs 56A contain curved portions 71 and 73. The curved portions 71 and 73 cause the blade magazines 56A to extend vertically and horizontally from the bracket 52. Due to the curved portions 71 and 73, the leaf springs 56A are attached to the bracket 52 by screws 5, and the bending portion elastically contacts the other end of the leaf springs 56A with a position 75 on the frame μ? , PI-47023-AM-SPCL-120326 1378245 - The first application of the No. 94103223 claims that the correction page is placed closer to the elastic probes 16 than the contact area 77 of FIG. The bent portions 71 and 73 cause the bracket 52 to be recessed from the frame 54A, so that the screw 58 to which the leaf springs 56A are attached is not vertically extended adjacent to the elastic probes 16. The curved portions 71 and 73 vertically extend the leaf springs 56A to further apply the spring force to the frame 54A, so that the applied force is further removed from the edge of the space transformer substrate 45A to prevent a larger Deformation or cracking of the substrate. In a specific embodiment, a third modification includes disposing a load support member 70 on the frame 54A. The load supporting member 7 is extended from the horizontal extending portion 60A of the frame 54A to come into contact with the space transformer substrate 45A at a position where the applied force is away from the periphery of the substrate 45A to prevent deformation or cracking of the larger substrate. In another embodiment, a third modification utilizes flexible films 80 and 82 located between the spatial transformer substrate 45 and the frame 548, as shown in FIG. The other components that are used in Fig. 3 to Fig. 4 have the same reference numerals in Fig. 4. The flexible films 80 and 82 effectively form the load stratum member 70 of Fig. 3 such that the frame 54B is away from its edge. A position is in contact with the space transformer substrate 45A. A first film 8 is contoured to match the shape of the horizontal extension 60A of the frame 54B, and the second film 82 has a size that is more limited to be effective. The load supporting member 7 is provided in Fig. 3. The second film 82 is attached to the first film 80 for support. With the second film 82 of different sizes, the position of the load support is easily moved or adjusted. The load support is located at a position where the force minimizes the deformation of the space transformer 34A. PI-47023-AM-SPCL-120326 16 丄 378245 Application No. 94103223 Revision Amendment Date: 101.03.26. According to the present invention - The flexible webs 80 and 82 are made of a polymeric (tetra) film material to provide electrical insulation between the metal frame 54B and the electronic components on the space 45°. Alternative order - thin It can be formed by joining two thin layers of polymer film layers 80 and 82 such that the inner portion of the surface of the film is thicker than the outer portion. Alternatively, instead, a single film containing the film 80 can be used. Film 82. The substrate 45A is electrically insulated from the metal frame 54b by a polymer film. The load-bearing member is placed in the metal frame 54b as shown in Fig. 3, which cannot provide electrical insulation characteristics and utilize flexible films of different sizes. The elasticity of the load support region is varied 82. However, in one embodiment, the flexible film 8A and 82 are used to determine the position of the metal load support member 70 if the film is not necessary. To determine the optimum position of the metal load support member, it utilizes flexible films 82 of different sizes and separately measure the flexibility of the substrate 45 A. When an optimal film 82 is selected, its position is used to determine the The metal load support member 70 is disposed in the position of the frame 54A of Figure 3. For the fourth modification, an additional support structure contacts the vicinity of the center of the space transformer substrate to provide additional Supported to prevent deformation or bending. In one embodiment, the additional support contacts the center of the space transformer substrate 45A with two additional support pins/screws 72 and 74 and balls 76 and 78 (which may be copper). In the vicinity, although the support pins/screws 72 and 74 and the balls 76 and 78 are shown as separate, they may be combined in a specific embodiment to form a support pin having a rounded fox end. As PI-47023-AM -SPCL-120326 17- 1378245 _ _ — 一 — __ — — — — — _ _ _. — — — — — — — — — — — — — — — — — — — — — — — — — Cycle: 101.03.56. Alternatively, the support pins/screws 72 and 74 can have flat ends, in which case a gimble point in contact with the space transformer substrate is not critical. In order to prevent contact between the balls 76 and 78 and the substrate grid array (LGA) pad on the space transformer substrate 45 A, the winding of the transmission line 46A in the space transformer 34A has been improved relative to FIG. 2, There is no spacer in the area where the two additional spheres 76 and 78 are in contact. Similarly, the interposer 32A is modified to have a spring contact 44A corresponding to the new shim position on the space transformer substrate. The interposer 32A is further modified to include openings such that the two support pins/screws 72 and 74 can centrally contact the balls 76 and 78 through the interposer 32A to the space transformer substrate 45A. In practice, it is possible to first adjust the planarity of the space transformer 34A by means of peripheral flattening pins/screws 62 and 64, thereby performing assembly and leveling of the probe card. Once the space transformer substrate 45A is planar, the central support pins/screws 72 and 74 move forward to contact the substrate 45A to stabilize the space transformer 34A in response to the probe load. Adjustment of the support pins/screws 72 and 74 further compensates for any bending of the substrate. Substrate grid array (LGA) pads near the center of the space transformer are removed to provide the central support pins/screws 72 and 74 such that the substrate has additional discrete elements 75. To enhance the performance of the probe card assembly, the separation element 75 is preferably a decoupling capacitor. The decoupling capacitor is used to compensate for the line capacitance between the tester and the probe, the line capacitance causes signal delay, and the noise in the test signal supplied to and from the wafer through the probe. PM7023-AM-SPCL-120326 -18- Revised: 101.03.26. Amendment Page 94103223 Application Note Using decoupling capacitors, the capacitor to probe set distance is minimized for improved performance. Figure 7 shows that the distance between the decoupling capacitor 75 and the probe 16 on the space transformer 34 "d" minimal will improve performance but may reduce the strength of the substrate. When the distance "d" is shortened, the backrest provided by the central support pins/screws 72 and 74 is necessary during loading of the probe 16. Figure 5 is an exploded combination view of the probe card component of Figure 3, and Figure 6 is an exploded combination of the probe card component of Figure 4. The configuration of Figure 6 is modified from Figure 5, which includes two layers of enamel films 80 and 82. The probe card of Figure 5 utilizes a load support member 70 (facing downward and not shown in Figure 5) disposed in the frame 54 instead of the membranes 8 and 82. See Figures 5 and 6, as shown The driver board/backplane 5A is attached to the printed circuit board (pcB) 3A and the bracket brother by means of two screws 59. The flattening screws including the flattening pins/screws 62 and 64 pass through the driving board/backplane 5A and the printed circuit board (PCB) 30A, and reach the sphere 66 at a position near the human corner of the space transformer 34 and The four spheres of 68. Note that Figures 3 and 4 are non-uniform cuts, rather than through the linear planes of Figures 5 and 6, to show the two corner flattening pins/screws 62 and 64, and provided at a location near the center of the space transformer 34A. New central support pins/screws 72 and 74 are provided for contact balls 76 and 78. As shown in Figures 5 and 6, the central support pins/screws 72 and 74 pass through the drive/backplane 5A and the printed circuit board (pcB) 3A, which are different from the flattening pins/screws 62 and 64 passes through an opening in the interposer 32. The frame 54A shown in Figure 5 is directly above the space transformer 34A and is engaged in the bracket 52. Although the additional screw 58 (not shown in the figure PI-47023-AM-SPCL-120326 -19- 1378245 ac: 101.03.26. 194103223 - number application - please refer to the description - correction i ... display) is deployed throughout the perimeter to attach the The blade is shown as 56A, but the two screws shown in the figure are for reference. The frame 34A of Figure 6 is separated from the space transformer substrate by the membranes (9) and 82. Although Figures 3 through 6 show that the backrest of the embodiment is provided by one or more support pins/screws 72 and 74, Figures 8-8 show other effective embodiments. The embodiment of Figure 8 includes a support pin 84 which can be a threaded pin extending through the drive/backplane 5 and the printed circuit board (PCB) to advance a gimble ball 86. The balls 86 then form a rotational contact with a metal plate 88 located above a high density elastomeric web 9G, which in turn is in contact with a separate component located above the space transformer 34. The elastomeric spacer 9 is such that the component 75 is insulated from the metal plate 88. Using the support configuration illustrated in Figure 8A, a single leveling pin 84 can impart force to the metal plate 88 to provide a leveling force over a larger area of the space transformer 34. Moreover, although the elastomeric spacer is in direct contact with the space transformer substrate, the elastomeric spacer of Figure 8A ensures insulation of the separation element 75 if the separation element 75 is not necessary. 8B shows a support structure including a support pin 84. Another embodiment of the support pin 84 can be a drive pin/back plate 5 and a screw inserted in a printed circuit board (PCB) 30 to advance a gimble sphere. 86. The balls 86 are then in contact with a rigid support member 92 attached to the back of the space transformer 34. As shown, the support member 92 has an opening that fits, for example, a separating member of the capacitor, or a flat plate that has no such opening. The material of the high-hardness structure 92 may be a metal or ceramic material. The high-strength structure 92 can be used to prevent the excessive load generated by the elastic probes 16 from contacting a wafer. PI-47023-AM-SPCL-120326 • 20-1378245 No. 3223 Application Manual Amendment Page Revision Date: (9). Mechanical damage to the space transformer made of low flexural strength material. When the probe 16 is in contact with a wafer, the support pin can be adjusted to further compensate for the elastic probe load on the support member 92. Although Figures 3 through 6 also disclose the use of an interposer 32 having spring contacts, other different configurations can be used to electrically connect the space transformer 34 to the printed circuit board (PCB) 30, as shown in Figures 9 and 1 Shown. Figure 9 shows a configuration in which another spring pin 94 connects the printed circuit board (PCB) 30 to the space transformer 34. The spring contacts 94 are resiliently loaded and are located on either side of a substrate 96 to function similarly to the interposer 32 of the previous figures. Although shown on both sides, the spring pin 94 can be located on the side of the substrate 96, the other inelastic connectors are on the other side, or the spring pin can be configured in other configurations, such as Figure 10. Also shown is a spring pin 98 that connects the printed circuit board (PCB) 3 to the space transformer 34 without an intermediate substrate. Figure 11 shows a fifth modification of the present invention which changes the probe card structure of Figure 4 and includes a rigid interface micro-brick 100 between the probe 16 and a lower flexural strength space Φ transformer substrate 45B. . In the absence of the interface micro-brick 100, if the probe load is too large, a "floating" contact is made to effectively press the probe 16 into the space transformer substrate 45B. The high-hardness interface micro-brick 100 disperses the probe load to prevent mechanical damage to the transformer substrate of this low flexural strength space. Examples of materials for fabricating a low flexural strength space transformer substrate include organic materials such as FR4, or a low temperature co-fired ceramic (LTCC). An example of a high flexural strength material for the hard interface micro-brick 1() comprises a high temperature co-fired ceramic (HT(:C). The high hardness interface microbrick 1〇〇 electrically connects the probe to The empty PI-47023-AM-SPCL-120326-21 · 1378245 ----- No. -94103223 卞 Request for Proposal Correction - Page 1 T〇T; 03: 26^ The linear line of the transformer is fed to the through hole 102. The via 102 is attached by a solder bead 104 to resemble a transmission line in the space transformer substrate 45. The solder bead 104 additionally attaches the interface micro-brick 1 to the space transformer substrate 45Β, after which horizontal winding is performed by The transmission line 46 is disposed in the low-hardness space transformer substrate 45A and is connected to the interposer 32. Although the probe card configuration of FIG. 4 shows the crucible interface micro-brick, the hard interface micro-brick 100 can be Similar to the configuration of Figure 3 or other configurations disclosed herein. Although the present invention has been disclosed in the foregoing, it is merely taught by those skilled in the art how to make and utilize the present invention. Many additional improvements will occur. The invention is described in the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described in detail with the aid of the accompanying drawings in which: Figure 1 shows a block diagram of a typical wafer test system; Figure 2 shows a diagram for a wafer test system - conventional FIG. 3 is a cross-sectional view of a probe card for a wafer testing system according to the present invention; a cross-sectional view of a resiliently supported thin n-pin card; FIG. 5 is an exploded combination of the probe card component of FIG. Figure 6 is a combination of the explosion of the probe card component of Figure 4; Figure 7 is a probe card with an isolation capacitor, the thickness of the substrate 15 affects the insulation; Figure 8A shows another probe card group, m. The eight central supports are arranged in a space transformer using a resilient furnace piece; ^ m PI-47023-AM.SPCL-I20326 -22- 1378245 No. 94103223 Application note amendment page ^ „ Revision date: 101.03.26. Figure 8B shows another A probe card ^ ^ ^ 丫 open and support - attached to the space side of the pressure of the hard central support structure; Figure 9 is a cross-sectional view of the other - probe card configuration, which uses instead of - the substrate of the interposer Spring test pin at the side; Figure 1〇 shows another - probe card configuration , the magazine test pin directly connects the printed circuit board (PCB) to the space transformer; and FIG. 11 shows a cross-sectional view of the probe card modified from FIG. 4 to include a bit
於該探針及一低撓曲強度空間變壓器基板之間的堅硬介面 微碑。 【主要元件符號說明】 4 控制器 6 通訊纜線 8 測試頭 10 探測器 12 平台 14 晶圓 16 探針 18 探針卡 24 連接器 30, 30Α 印刷電路板 32, 32Α 内插板 34, 34Α 空間變壓器 40, 46, 46Α 傳輸線 41,43 接針 PI-47023-AM-SPCL-120326 •23· 1378245_____ — 第94103223號申請案說明書修正頁 42, 45, 45A, 45B, 96 44, 44A 50, 50A 52 54, 54A, 54B 56, 56A 58, 59 60, 60A 62, 64 65 66, 68, 76, 78, 86 70 71,73 72, 74 84, 94, 98 75 77 80, 82 88 90 92 100 102 104 修正日期:101.03.26. 基板 探針彈簧 驅動板/背板 支架 機架 葉片彈簧 螺絲釘 延伸部 整平接針/螺絲釘 支撐物 球體 負載支撐構件 彎曲部 支撐接針/螺絲釘 接針 去耦合電容器 接觸區域 薄膜 金屬板 墊片 支撐構件 微磚 孔道 録錫珠 PI-47023-AM-SPCL-120326 -24-A hard interface between the probe and a low deflection strength space transformer substrate. [Main component symbol description] 4 Controller 6 Communication cable 8 Test head 10 Detector 12 Platform 14 Wafer 16 Probe 18 Probe card 24 Connector 30, 30Α Printed circuit board 32, 32Α Interposer 34, 34Α Space Transformer 40, 46, 46Α Transmission line 41, 43 Pin PI-47023-AM-SPCL-120326 • 23· 1378245_____ — Amendment No. 94103223, page 42, 45, 45A, 45B, 96 44, 44A 50, 50A 52 54, 54A, 54B 56, 56A 58, 59 60, 60A 62, 64 65 66, 68, 76, 78, 86 70 71,73 72, 74 84, 94, 98 75 77 80, 82 88 90 92 100 102 104 Revision date: 101.03.26. Substrate probe spring drive board / back plate bracket frame leaf spring screw extension flattening pin / screw support ball load support member bending support pin / screw pin decoupling capacitor contact area Thin film metal plate gasket support member micro-tile hole recording tin beads PI-47023-AM-SPCL-120326 -24-