TWI377684B - Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same - Google Patents

Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same Download PDF

Info

Publication number
TWI377684B
TWI377684B TW097141202A TW97141202A TWI377684B TW I377684 B TWI377684 B TW I377684B TW 097141202 A TW097141202 A TW 097141202A TW 97141202 A TW97141202 A TW 97141202A TW I377684 B TWI377684 B TW I377684B
Authority
TW
Taiwan
Prior art keywords
film
type
layer
substrate
induced
Prior art date
Application number
TW097141202A
Other languages
Chinese (zh)
Other versions
TW201017895A (en
Inventor
jian yang Lin
Wei Chin Hung
ting yu Yang
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW097141202A priority Critical patent/TWI377684B/en
Publication of TW201017895A publication Critical patent/TW201017895A/en
Application granted granted Critical
Publication of TWI377684B publication Critical patent/TWI377684B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

1377684 九、發明說明: 【發明所屬之技術領域】 本創作係為一種薄膜式太陽電池,特別關於一種具多 晶鍺薄膜之矽鍺薄膜之太陽電池。 【先前技術】 由於能源成本之大量攀升,及全球油價及資源愈來愈 欠缺下’世界主要先進國家曾經紛紛積極的投人研發再生 能源的開#,以取代對石油等天然資源的依賴,再加上近 年來全球溫室效應的問題越來越嚴重,由於人類大量的排 放溫室氣體(e.g.」氧化碳),讓全世界的環境、氣候變的 相當異常,為了避免此現象日益惡化,綠色能源已經慢慢 被人們所重視與推廣,有鑑於此,開發新的替代能源更是 刻不容緩。 …替代能源主要包括太陽能、@力、水力、地熱及生物 此等’其+,太陽能更是取之不盡 '用之不竭。太陽電池 已經在電力 '通訊、電子產品及交通運輸等方自,占有舉 足輕重的地位’尤其在太空及部分偏遠地區,更是扮演無 可取代的角色。 太陽電池在製作材料上,大體可區分為晶體矽與化合 物半導體及有機材料三大類,化合物半導體多為三五族及 ^六族之化合物,效率雖然較高,但價格昂貴,於民生市 琢上不易曰及’適用於太空發展之應用。有機材料太陽電 池效率職’目前還無法商品化。晶體矽太陽電池的開發 6 1377684 為目月j市毎之主流,其效率雖然略低於化合物半導體太陽 電池,但價格較能被市場所接受。 然而目前石夕原料短缺之情形嚴重,短期内無法解決, 唯有開發節省石夕#粗# a e i ηβ & $ 7原科使用之太陽電池,甚至改用其他的原 料取而代之,故客曰蚀墙 夕日曰鍺潯膜太陽電池則可解決此問題,用 來與原本的發薄胺彡士人 ^ , 、、’Ό s,更可改善長波長光的吸收,其厚 度大約在 2 U m ,、告ϊ μ , μ 遠小於一般塊材式矽太陽電池之 300〜350μm 〇1377684 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a thin film type solar cell, and more particularly to a solar cell having a tantalum film of a polycrystalline germanium film. [Prior Art] Due to the rising cost of energy and the increasing shortage of global oil prices and resources, 'the world's major advanced countries have actively invested in research and development of renewable energy to replace the dependence on natural resources such as oil. In addition, the problem of global greenhouse effect has become more and more serious in recent years. Due to the large amount of greenhouse gas emissions (eg, carbon monoxide) emitted by human beings, the environment and climate in the world have become quite abnormal. In order to avoid the deterioration of this phenomenon, green energy has already In view of this, it is urgent to develop new alternative energy sources. ... Alternative energy sources mainly include solar energy, @力,水力, geothermal, and biological, etc., and its solar energy is inexhaustible. Solar cells have taken a pivotal role in power, communications, electronics and transportation, especially in space and in remote areas. In terms of materials, solar cells can be roughly divided into three categories: crystalline germanium, compound semiconductors and organic materials. Compound semiconductors are mostly compounds of the three-five and six-group compounds. Although the efficiency is high, they are expensive, and they are used in Minsheng City. Not easy to use and 'applicable to space development applications. Organic materials solar cell efficiency jobs are currently not commoditized. The development of crystal germanium solar cells 6 1377684 is the mainstream of the market, but its efficiency is slightly lower than that of compound semiconductor solar cells, but the price is more acceptable to the market. However, the current situation of shortage of raw materials in Shixi is serious and cannot be solved in the short term. Only the solar cells used in the original science of saving Shi Xi #粗# aei ηβ & $ 7 are used, and even other materials are used instead, so the guest eroded the wall. The solar cell solar cell can solve this problem, and it can be used to improve the absorption of long-wavelength light with the original thin amine gentleman ^, ,, 'Ό s, and its thickness is about 2 U m , Advise μ , μ is much smaller than the 300~350μm of the general block type solar cell.

一般薄膜太陽電池可利用PE_CVD、hw cvd、cat CVD、VHF-CVD等設備製作,這些設備皆需利用到昂貴氣Generally, thin film solar cells can be fabricated by using PE_CVD, hw cvd, cat CVD, VHF-CVD, etc., all of which require expensive gas.

SiH4 ΒΖΗ6以及phs等氣體,且也有毒性及爆炸 之危險性。 【發明内容】 本發明乃利用金屬引誘結晶法製備多晶錯薄膜,除了 φ :需要使甩昂貴且高危險性之氣體以外,更具有製裎簡 單 '低溫、大面積化之優點。 針對前述技術問題及發明目的,本發明係提供—種具 多晶鍺薄膜之矽鍺薄膜太陽電池之製作方法,其步驟勺' 含: 八 匕 基板備置,係選用一基板,並在基板上形成—第一 極層; 沉積誘發金屬薄膜,係於該第一電極層表面,以物理 氣相沉積製程鍍製形成一誘發金屬層; 7 1377684 沉積鍺薄膜,係於該誘發金屬層表面,以物理氣相沉 積製程鍍製一丨型半導體鍺薄膜; 誘發結晶,將表面依序形成該第一電極層、該誘發金 屬層、該丨型半導體鍺薄膜之基材進行熱處理,使該丨型 半導體鍺薄膜形成一 P型鍺層; 去除誘發金屬,係以蝕刻方式將形成於該卩型鍺層之 該誘發金屬層去除; 沉積I型矽薄膜,係於該P型鍺層表面,以物理氣相 沉積製程鍍製一丨型矽薄膜; 沉積N型矽薄膜,係於該丨型矽薄膜表面,以物理氣 相沉積製程鍍製一 N型矽薄膜;以及 形成第二電極,係於該N型矽薄膜表面,形成一第二 電極層。 其中,該基板備置步驟係選用一玻璃基板,並形成透 明導電之第一電極層於該玻璃基板表面,其中,該透明導 電之第一電極層係以物理氣相沉積製程錄製。 其中,該沉積誘發金屬薄膜係以物理氣相沉積一鋁金 屬層。 其中,該沉積丨型鍺薄膜步驟係以物理氣相沉積形成 非晶之該丨型半導體鍺薄膜。 其中,該誘發結晶步驟係為以高溫爐管對完成該丨型 半導體錯薄膜之基材進行加熱退火,使該丨型半導體鍺薄 膜受到該誘發金制之誘發產生結晶,錢該誘發金屬層 與該丨型半導體鍺相互置換,再形成該P型鍺層。SiH4 ΒΖΗ6 and phs and other gases, and also have toxicity and explosion hazard. SUMMARY OF THE INVENTION In the present invention, a polycrystalline film is prepared by a metal-induced crystallization method, and in addition to φ: a gas which is expensive and high-risk is required, it has the advantages of simple low temperature and large area. In view of the foregoing technical problems and the object of the invention, the present invention provides a method for fabricating a tantalum thin film solar cell having a polycrystalline germanium film, the step of which includes: an eight-ply substrate preparation, a substrate is selected, and formed on the substrate a first electrode layer; a deposition-inducing metal film attached to the surface of the first electrode layer and formed by an physical vapor deposition process to form an induced metal layer; 7 1377684 depositing a germanium film on the surface of the induced metal layer to physically Forming a germanium-type semiconductor germanium film by a vapor deposition process; inducing crystallization, sequentially forming a surface of the first electrode layer, the inducing metal layer, and the germanium-type semiconductor germanium film by heat treatment to make the germanium semiconductor germanium Forming a P-type ruthenium layer; removing the induced metal, removing the induced metal layer formed on the ruthenium-type ruthenium layer by etching; depositing a type I ruthenium film on the surface of the P-type ruthenium layer, and adopting a physical gas phase a deposition process for plating a tantalum-type tantalum film; depositing an N-type tantalum film on the surface of the tantalum-type tantalum film, and plating an N-type tantalum film by a physical vapor deposition process; A second electrode, based on the N-type silicon film surface, forming a second electrode layer. The substrate preparation step selects a glass substrate and forms a transparent conductive first electrode layer on the surface of the glass substrate, wherein the transparent conductive first electrode layer is recorded by a physical vapor deposition process. Wherein, the deposition inducing metal film is a physical vapor deposition of an aluminum metal layer. Wherein, the step of depositing the ruthenium-type ruthenium film is to form an amorphous bismuth-type semiconductor ruthenium film by physical vapor deposition. Wherein, the inducing crystallization step is to heat-anneal the substrate on which the 丨-type semiconductor erroneous film is completed by a high-temperature furnace tube, so that the 丨-type semiconductor ruthenium film is induced to be crystallized by the induced gold, and the metal layer is induced. The germanium-type semiconductor germanium is replaced with each other to form the p-type germanium layer.

S 1377684 其中,該誘發金屬層之厚度為300〜7〇〇nm,該f型 。半導體鍺厚度為500nm,而該誘發結晶步驟之溫度大於 °C ’處理時間大於2小時。 '、中該丨型矽薄膜之厚度大於P型鍺層及該N型矽 薄膜。 本發明再提供-種具多晶錯薄膜之石夕錯薄膜太陽電 池,其包含: 一基材;S 1377684 wherein the thickness of the induced metal layer is 300 to 7 〇〇 nm, the f-type. The semiconductor germanium has a thickness of 500 nm, and the temperature of the induced crystallization step is greater than °C' processing time by more than 2 hours. The thickness of the ruthenium-type ruthenium film is larger than that of the P-type ruthenium layer and the N-type ruthenium film. The invention further provides a solar photovoltaic solar cell having a polycrystalline film comprising: a substrate;

一第一電極層,係形成於該基材; P型鍺層,係以誘發結晶方式形成多晶之P型鍺層, 其形成於該第一電極層; 丨型矽薄膜,係形成於該p型鍺層表面 N型石夕薄膜,係形成於該丨型矽薄膜表 一金屬電極層,係形成於該N型矽薄膜。 面;以及 其中,該基材為一 導電氧化物。 玻璃基材’該第一電極層為__透明a first electrode layer is formed on the substrate; a P-type germanium layer is formed by inducing crystallization to form a polycrystalline P-type germanium layer formed on the first electrode layer; and a germanium-type germanium film is formed thereon The N-type smectic film on the surface of the p-type enamel layer is formed on the surface of the ruthenium-type ruthenium film-metal electrode layer, and is formed on the N-type ruthenium film. And wherein the substrate is a conductive oxide. Glass substrate' the first electrode layer is __transparent

其中’該第-電極層為丨τ〇、|z〇 ' AZ〇或Zn〇。 /中,該丨型矽薄膜厚度大於該p型鍺潛以及該N型 石夕薄膜。 藉此,本發明可以利用相對簡單、低溢及安全的物理 氣相沉積製程,完成本發明各種半導體層的製作,且以金 屬誘導結晶方式完& P型鍺層,達到簡化製程及降低製程 溫度等諸多優點。 9 137/084 . 【實施方式】 ·· 冑參考第-圖以及第二圖,為本發明之具多晶鍺薄膜 ^錯薄膜太陽電池及其製作方法的較佳實施例其中, #玄具多晶鍺薄膜之矽鍺薄膜太陽電池之製作方法如第一圖 之,程圖所示,其步驟包含:基板備置(71)、沉積誘發金 屬薄臈(72)、沉積鍺薄膜(73)、誘發結晶(74)、去除誘發金 屬(5) /儿積丨型;5夕薄膜(76)、沉積N型石夕薄膜a?)以及形 成第_電極(78)。 i基板備置(71)步驟中,係先選擇一耐高溫(約>5〇〇<^ ) 的基板(12)’該基板(12)可為透光(如麵)或非透光基板(如 金屬基板、可撓曲金屬薄片體…等)。選擇基板(12)之後, 於》亥基板(12)之一面形成一第一電極層(14),該第一電極 層(14)可以利用物理氣相沉積的方式形成於該基板(⑺表 面本較佳實施例之基板(12)係為一玻璃基板(如c〇rnjng E2000) ’該第—電極層(14)則為形成於基板(12)表面的透 籲明導電薄膜(如銦錫氧化物(丨τ〇)'銦鋅氧化物(丨z〇)'鋁鋅 氧化物(AZ0)或氧化鋅(Zn〇)等)。 • 為了確保於6玄基板(12)薄膜品質,於製作厚度鍵膜之 前,可先執行清洗程序,例如,可先將基板(12)利用丙酮 震 '十刀4里,去除基板(12)上之有機物質,接著再用乙醇 震洗十分鐘,以去除丙酮殘留,最後再用去離子水震洗十 刀鐘去除乙醇殘留,之後再用氮氣搶吹乾,最後利用烤 箱將該基板(12)烘烤1〜2分鐘,將基板(12)上的水分子徹 底供乾。 1377684 該沉積誘發金屬薄膜(72)步驟中,係於該第一電極層 (14)之表面,以物理氣相沉積方法(例如egun、 熱阻絲蒸度...等)形成—金屬層,該金屬層之材質可為链州 等可以與非晶緒屋生共晶反應而誘發非晶緒結晶之金屬, 本較佳實施例係利用熱阻絲蒸錢裝置,將铭形成於該第一 電極層(14)表面,其製程過程及參數之範例如下述:先粗 抽至5M0-2 t0「「,再細抽至8 6χ1〇.6 在蒸鑛過程當 :,需注意沉積速率不可過快(例如低於5 A/sec),以避免 溥膜之緻密性*佳。且製造過程巾,該基材(12)可持續旋 轉,㈣薄膜均句财基板(12)之第—f極層(14)之表面。 該沉積丨型鍺薄獏(73)步驟中,係於完成前一步驟(72) ,基板(12),於該誘發金屬層表面,以—物理氣相沉積製 ▲將非B曰之I型半導體鍺薄膜形成於該誘發金屬比面, 本較佳實;例係將—丨型半導體鍺之乾材以減鑛(SPutter) 的方式形成- I型半導體錯薄膜於該誘發金屬層表面,本 步驟的製程參數範例如下述:先粗抽至5χΐ〇·3 (〇「「,再換 細!^ 5x10.6torr,即可開始職鑛錯薄膜,製程環境係通 入風'(A〇= 4Gsc:cm之電i氣體,王作壓力為1Q⑺丁, 漉鑛功率&彻W,而最後沉積形成之鍺I型半導體錯薄 膜厚度為50〇nm。 誘發結晶(74)步驟中,係以熱處理之方式,將完成 月卜乂驟之基板(1 2)進行特定溫度的加熱退火,例如可以Wherein the first electrode layer is 丨τ〇, |z〇 'AZ〇 or Zn〇. / In the middle, the thickness of the ruthenium-type ruthenium film is larger than the p-type 锗 锗 potential and the N-type 夕 薄膜 film. Therefore, the present invention can complete the fabrication of various semiconductor layers of the present invention by using a relatively simple, low-overflow and safe physical vapor deposition process, and complete the P-type germanium layer by metal induced crystallization to simplify the process and reduce the process. Temperature and many other advantages. 9 137/084 . [Embodiment] · 第 第 以及 第二 第二 第二 第二 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 多 多 多 多 多 较佳 较佳 较佳The method for fabricating the germanium thin film solar cell is as shown in the first figure, and the steps include: substrate preparation (71), deposition-induced metal thinning (72), deposition of germanium film (73), induction Crystallization (74), removal of induced metal (5) / enthalpy type; 5 eve film (76), deposition of N-type slab film a?) and formation of the _ electrode (78). In the step of preparing the substrate (71), a substrate (12) having a high temperature resistance (about > 5 Å < ^) is selected. The substrate (12) may be a light transmissive (such as a surface) or a non-transparent substrate. (such as metal substrates, flexible metal sheets, etc.). After the substrate (12) is selected, a first electrode layer (14) is formed on one side of the substrate (12), and the first electrode layer (14) can be formed on the substrate by physical vapor deposition ((7) surface The substrate (12) of the preferred embodiment is a glass substrate (e.g., c〇rnjng E2000). The first electrode layer (14) is a transparent conductive film (such as indium tin oxide) formed on the surface of the substrate (12). (丨τ〇) 'indium zinc oxide (丨z〇)' aluminum zinc oxide (AZ0) or zinc oxide (Zn), etc.) • In order to ensure the film quality of the 6 Xuan substrate (12), in the thickness Before the bond film, the cleaning process can be performed first. For example, the substrate (12) can be shaken with acetone for 10 knives to remove the organic matter on the substrate (12), and then washed with ethanol for ten minutes to remove the acetone. Residue, and finally use deionized water to wash the ten-knife clock to remove the ethanol residue, then use nitrogen to blow dry, and finally use the oven to bake the substrate (12) for 1-2 minutes to remove the water molecules on the substrate (12). Thoroughly supplied. 1377684 The deposition inducing metal film (72) is in the first electrode (14) The surface is formed by a physical vapor deposition method (for example, egun, thermal resistance wire steaming, etc.) to form a metal layer, and the material of the metal layer may be a eutectic reaction with Amorpha In the preferred embodiment, the heat-resistant silk evaporation device is used to form the surface of the first electrode layer (14). The process and parameters of the process are as follows: 5M0-2 t0 "", then finely pumped to 8 6χ1〇.6 In the steaming process:: It should be noted that the deposition rate should not be too fast (for example, less than 5 A/sec) to avoid the compactness of the film. And manufacturing the process towel, the substrate (12) can be continuously rotated, and (4) the surface of the first-f-pole layer (14) of the thin film substrate (12). After completing the previous step (72), the substrate (12) is formed on the surface of the induced metal layer by a physical vapor deposition method to form a non-B-type I-type semiconductor germanium film on the induced metal specific surface. In fact, the dry material of the 丨-type semiconductor 形成 is formed by means of SPutter - a type I semiconductor erroneous film in the induced gold The surface of the layer, the process parameters of this step are as follows: first rough pumping to 5 χΐ〇 · 3 (〇 "", then change fine! ^ 5x10.6torr, you can start the faulty film, the process environment is in the wind' ( A 〇 = 4Gsc: cm of electric i gas, Wang Zuo pressure is 1Q (7) ding, bismuth ore power & thoroughly W, and finally deposited 锗 type I semiconductor wrong film thickness is 50 〇 nm. Induced crystallization (74) step , in a heat treatment manner, the substrate (12) of the completion of the moon is heated and annealed at a specific temperature, for example,

使用南溫爐管、換技勒、P 型丰…退火腔體…等方式,將已經鍍製有丨 W導體鍺、誘發金屬層之基材(12)進行加熱,使該丨型 1377684 半導體錯受到該誘發金屬層之誘發產生結晶,並使該誘發 同時因為部分的綉發 金屬層殘存在於形成複晶t丨型半導體層内,其相當於摻 雜而使該13^導體形成_ P⑽錯層(22)而附著於二第一 電極層(14)表面。其中,決^該P型鍺層(22)之性質良蕊, 係與該誘發金屬層、丨&半導體鍺層之厚度比率關係、熱 處理溫度…等有關。 例如第四(aHd)圖所示,其為採用不同厚度關係的誘 發金屬層及丨型半導體鍺層於固定退火溫度為45(rc、時 間6小時處理後之SEM觀察結果,誘發金屬層及丨型半導 體鍺層之厚度比如下: (a) : Al= 300nm、Ge = 500nm (3 : 5); (b): Al = 400nm、Ge = 500nm (4 : 5); (c): Al = 500nm、Ge = 500nm (1 : ”; (d): Al = 700nm、Ge =500nm (7 : 5) ° 其中,在退火溫度45(TC,退火時間6小時已經產生 不同的置換效果,如第四(c)圖所對應的參數則在所述的製 程環境下具有最佳的置換效果。 下列表一〜八為以不同熱處理溫度與時間、不同誘發 金屬層與半導體鍺層厚度關係之各種材料分析試驗結果: 表一不同Al/Ge厚度於(450°C,6hrs)熱處理之EDS分析結果 改變條件(Al /Ge 厚度) (300 / 500) Am (400/500) nm (500/500) nm (700/500) nm 元素 Element Atomic% Atomic% Atomic% Atomic% 12 1377684 鋁Al K 73.85 71.36 82.14 80.74 鍺GeL 26.15 28.64 17.86 19.26 表二不同Al/Ge厚度於(450°C ’ 4hrs)熱處理之EDS分析結果 改變條件(Al/Ge 厚度) (100/ 500) nm (300/ 500) nm (400/ 500) nm (500/ 500) nm (700/ 500) nm 元素 Element Atomic% Atomic% Atomic% Atomic% Atomic% 銘Al K 46.72 76.95 78.48 46.53 76.12 錯Ge L 53.28 23.05 21.52 53.47 23.88. 表三不同Al/Ge厚度於(550°C,4hrs)熱處理之EDS分析結果 改變條件(Al /Ge 厚度) (300/500) nm (400 / 500) nm (500 / 500) nm (700/500) nm 元素 Element Atomic% Atomic% Atomic% Atomic% 鋁Al K 59.06 61.67 84.76 82.81 鍺Ge L 40.94 38.33 15.24 17.19 表四Al/Ge厚度(1 : 1)、於550°C下之不同熱處理時間之EDS分析結果 改變條件(Al /Ge 厚度) 2hrs 4hrs 6hrs 8hrs 元素 Element Atomic% Atomic% Atomic% Atomic% 鋁Al K 59.45 84.76 66.77 64.11 錯Ge L 40.55 15.24 33.23 te.89 表五不同溫度下之熱處理後,Ge/AI各相結晶表現(相對強度大於40者) Ge(111) Al(111) Ge(220) Ge(311) Ge(331) As-deposited ◎ 400°C ◎ ◎ 13 1377684The base material (12) which has been plated with the 锗W conductor 锗 and the induced metal layer is heated by using a south temperature furnace tube, a replacement technique, a P type abundance, an annealing chamber, etc., so that the 137 type 1378684 semiconductor is wrong. The crystallization is induced by the induced metal layer, and the induction is caused by the partial embroidered metal layer remaining in the formation of the polycrystalline t-type semiconductor layer, which is equivalent to doping to form the _P(10) layer. (22) attached to the surfaces of the two first electrode layers (14). Among them, the properties of the P-type tantalum layer (22) are related to the thickness ratio of the induced metal layer, the tantalum & semiconductor layer, the heat treatment temperature, and the like. For example, as shown in the fourth (aHd) diagram, the induced metal layer and the germanium-type semiconductor germanium layer having different thickness relationships are subjected to a fixed annealing temperature of 45 (rc, SEM observation after 6 hours of treatment, induced metal layer and germanium). The thickness of the semiconductor layer is as follows: (a): Al = 300 nm, Ge = 500 nm (3: 5); (b): Al = 400 nm, Ge = 500 nm (4: 5); (c): Al = 500 nm , Ge = 500nm (1 : ”; (d): Al = 700nm, Ge = 500nm (7 : 5) ° where, at an annealing temperature of 45 (TC, annealing time of 6 hours has produced different displacement effects, such as the fourth ( c) The parameters corresponding to the figure have the best replacement effect in the process environment. The following Tables 1 to 8 are various materials analysis tests for different heat treatment temperature and time, different induced metal layer and semiconductor germanium layer thickness. Results: Table 1 EDS analysis results of different Al/Ge thicknesses at (450 ° C, 6 hrs) heat treatment conditions (Al / Ge thickness) (300 / 500) Am (400/500) nm (500/500) nm (700 /500) nm Element Element Atomic% Atomic% Atomic% Atomic% 12 1377684 Aluminum Al K 73.85 71.36 82.14 80.74 锗GeL 26.15 28.64 17.86 19.26 Table 2 EDS analysis results of different Al/Ge thicknesses at (450 °C ' 4hrs) heat treatment conditions (Al/Ge thickness) (100/500) nm (300/500) nm (400/500) nm ( 500/ 500) nm (700/ 500) nm Element Element Atomic% Atomic% Atomic% Atomic% Atomic% Ming Al K 46.72 76.95 78.48 46.53 76.12 False Ge L 53.28 23.05 21.52 53.47 23.88. Table 3 Different Al/Ge Thickness at (550 °C, 4hrs) EDS analysis results of heat treatment Change conditions (Al / Ge thickness) (300/500) nm (400 / 500) nm (500 / 500) nm (700/500) nm Element Element Atomic% Atomic% Atomic% Atomic% Al Al 59 59.06 61.67 84.76 82.81 锗Ge L 40.94 38.33 15.24 17.19 Table 4 Al/Ge thickness (1:1), EDS analysis results at different heat treatment times at 550 °C (Al / Ge thickness) 2hrs 4hrs 6hrs 8hrs Element Element Atomic% Atomic% Atomic% Atomic% Aluminum Al K 59.45 84.76 66.77 64.11 False Ge L 40.55 15.24 33.23 te.89 Table 5 Crystallization of Ge/AI phases after heat treatment at different temperatures (relative intensity greater than 40 Ge) (111) Al(111) Ge(220) Ge(311) Ge(331) As-deposited ◎ 400°C ◎ ◎ 13 1377684

如上列表格,經過EDS、XRD進行材料量測分析後, 可以歸納出在退火溫度55CTC,退火時間4小時,厚度匹 配為AI(誘發金屬層)= 500nm’Ge(丨型半導體鍺層)= 5〇〇nm (1 : 1)所得到的置換效果是最明顯,其XRD之量測結果如 第五圖所示。 該去除誘發金屬(75)步驟中,係以乾式或濕式蝕刻方 式將誘發金屬層去除’本較佳實施例係選用碟酸當作主要 • 之蝕刻液成份,因為磷酸蝕刻鋁材料之效果良好;同時, 加入不同比例的确酸、醋酸至磷酸中,因為,其姓刻機制 乃是利用硝酸與銘反應形成氧化鋁,再與磷酸反應形成水 溶性的填酸紹’醋酸在此作為緩衝液,其功用主要防止石肖 酸在水中解離而改變钮刻率。其中,硝酸雖只佔蝕刻液 1〜3〇/〇 ’但肩負將紹氧化的工作;其次,因蝕刻液對溫度反 應靈敏,故鋁蝕刻加熱的溫度約在35〜50°C左右,溫度越 向Ί4刻速率越快’選疋合適的製程溫度,對姓刻率及均勾 度穩定有相當幫助。 14 1377684 —該沉積I型石夕薄膜(76)步驟中,係以物理氣相製程將 丨型矽溥膜(24)沉積製程於完成前述各步驟之試片表面, =之,由於步驟(75)已經將該誘發金屬層移除,故本步 之4丨型妙薄膜(24)係鍍製於該p型鍺層(叫表面。本 佳實施例係利用減鍍機沉積I型石夕薄膜(24),且製程工 =條件可為··粗抽5咐6丨。心通人氬氣為他咖,滅 鍍工作麼力為10 m丁orr,功率為⑽w。其中丨型 :薄膜(24)之厚度約於_左右。其中,該丨㈣薄膜㈣ 略大於該P型錯層(22)層,其係、因依半導體物理之理論, 在P + n結構之太陽電池中,由於!·層對於㈣接面之遷移 Q域,存在有很大的内建電場,可以抑制載子之復合產生, 即可增加太陽電池之光電流’故I層需比…層來的厚 許多。 該沉積Ν型㈣臈(77)步驟巾,係於該,㈣薄膜(24) 表面,再形成-Ν”薄臈(26),可以物理氣相沉積完成, 本較佳實施例係以濺鐘方式將厚度約〇 5叫之ν型石夕薄膜 (26)鍍製於該丨型矽薄膜(24)表面。 該形成第一電極(78)步驟中,係於該Ν型矽薄膜, 以氣相沉積或塗附或貼合等方式’將一第二電極層㈣形 成於6亥Ν型碎薄膜(26)表面,本較佳實施例係將—銀膠塗 佈於該Ν型矽薄膜(26)之表面。 【圖式簡單說明】 第一圖為本發明較佳實施例之流程圖。 15 1377684 施例之層狀結4 知例局部之電 第二圖為本發明較佳實 示意圖。 =顯微鏡(SEM) 處理後之電子 L X光繞射# 第二圖為本發明較佳實 觀察結果圖^ ' 第四(a)~(d)圖為本發明較佳實施例之資 顯微鏡觀察結果圖。 第五圖為本發明較佳實施例之熱處理後 測結果圖。 【主要元件符號說明】 (1 2)基板 (14)第一電極層 (22)P型鍺層 (24)丨型矽薄膜 (26)N型矽薄膜 (32)第二電極層As shown in the above table, after EDS and XRD material measurement analysis, it can be summarized at annealing temperature 55CTC, annealing time 4 hours, thickness matching is AI (induced metal layer) = 500nm 'Ge (丨-type semiconductor germanium layer) = 5 The displacement effect obtained by 〇〇nm (1:1) is the most obvious, and the measurement result of XRD is as shown in the fifth figure. In the step of removing the induced metal (75), the induced metal layer is removed by dry or wet etching. The preferred embodiment uses the dish acid as the main etchant component because the phosphoric acid etched aluminum material has a good effect. At the same time, different ratios of acid and acetic acid to phosphoric acid are added, because the mechanism of the surname is to form alumina by reaction with nitric acid and then react with phosphoric acid to form a water-soluble acid-filling acid as a buffer. Its function mainly prevents the dissociation of tartaric acid in water and changes the buttoning rate. Among them, nitric acid only accounts for 1~3〇/〇 of the etching solution, but the work of oxidizing is carried out. Secondly, since the etching solution is sensitive to temperature, the temperature of aluminum etching heating is about 35~50°C, and the temperature is higher. The faster the rate is, the better the process temperature is selected, which is quite helpful for the stability of the surname and the stability of the hook. 14 1377684 - In the step of depositing the type I stone film (76), the ruthenium-type ruthenium film (24) is deposited by a physical vapor phase process to complete the surface of the test piece of the foregoing steps, = due to the step (75) The inducing metal layer has been removed, so the 4th type film (24) of this step is plated on the p-type germanium layer (called a surface. The preferred embodiment uses a de-plating machine to deposit a type I stone film) (24), and the process workers = conditions can be · · rough pumping 5 咐 6 丨. Xintong people argon for his coffee, the work of extinguishing the plating is 10 m Ding orr, the power is (10) w. Among them: 丨 type: film ( 24) The thickness is about _. Among them, the 丨(4) film (4) is slightly larger than the P-type layer (22) layer, which is based on the theory of semiconductor physics, in the P + n structure of the solar cell, due to! · For the migration Q domain of the (four) junction, there is a large built-in electric field, which can suppress the composite generation of the carrier, which can increase the photocurrent of the solar cell. Therefore, the I layer needs to be much thicker than the layer. Depositing a Ν type (4) 臈 (77) step towel, on the surface of the film (24), and then forming a Ν Ν thin 臈 (26), which can be physically vapor deposited In the preferred embodiment, the thickness of about 〇5 石 石 薄膜 film (26) is plated on the surface of the ruthenium-type ruthenium film (24) by a splashing clock. The step of forming the first electrode (78) And forming a second electrode layer (4) on the surface of the 6-inch-type broken film (26) by vapor deposition or coating or bonding, and the preferred embodiment is Silver paste is applied to the surface of the ruthenium-type ruthenium film (26). BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a flow chart of a preferred embodiment of the present invention. 15 1377684 Layered junction of the example 4 The second figure is a better schematic diagram of the present invention. = Electron LX light diffraction after microscopy (SEM) processing. The second figure is a better observation result of the present invention. The fourth (a) to (d) figure is Fig. 5 is a diagram showing the results of microscopic observation of a preferred embodiment of the present invention. Fig. 5 is a diagram showing the results of heat treatment after a preferred embodiment of the present invention. [Description of main components] (1) substrate (14) first electrode layer (22) P-type tantalum layer (24) tantalum-type tantalum film (26) N-type tantalum film (32) second electrode layer

1616

Claims (1)

1377684 1〇1年07月替換頁 十、申請專利範圍: 1 . 一種具多晶鍺薄膜之矽鍺薄膜太陽電池之製作方 法,其步驟包含’· 基板備置,係選用一基板,並在基板上形成一第一電 極層; 沉積誘發金屬薄犋,係於該第一電極層表面,以物理 氣相沉積製程锻製形成一誘發金屬層; 沉積錯薄膜,係於該議發今凰主二 ,, 、办兩%食屬層表面,以物理氣相沉 積製程鍍製一丨型半導體鍺薄膜; 誘發結晶,將該第—電極層、該誘發金屬層、該丨型半 導體錯薄膜之基材進行轨處理,伸兮丨荆#值μ a 一 ”,、处往便該丨型+導體鍺薄膜形成 一 P型鍺層; 去除誘發金屬,係'以㈣方式將形成於該p型錯層之 該誘發金屬層去除; ,沉積I财薄膜,係.於該P型鍺層表面,以物理氣相沉 積製程鍛製一丨型;5夕薄膜; 沉積N型矽薄膜’係於該丨型矽薄膜表面,以物理氣 相’儿積製程錢製一 N型石夕薄膜; 形成第二電極,係於該N型石夕薄膜表面形成一第二 電極層; 其中’該誘發金屬層之厚度為3〇〇〜7〇〇_,該!型半 導體鍺厚度為500nm ’而該誘發結晶步驟之溫度大於彻 C,處理時間大於2小時。 2 .如申請專利範圍第1 π吓处之具多晶鍺溥膜之矽鍺 薄膜太陽電池之製作方法, 基板,並形成透明導電之第 其中,該透明導電之第一恭 101 年 07 月 05 日替-~ 該基板備置步驟係選 —電極層於該玻璃基板表面, 極層係以物理氣相沉積製程錢 3 .如申請專利範圍 薄膜太陽電池之製作項所述之具多晶鍺㈣之石夕錯 氣相沉積-銘金屬層。沉積誘發金屬薄膜係以物理 薄膜4太陽7請專利1⑼第1項所述之具多晶鍺薄膜之石夕鍺 .,达, 决,该沉積丨型鍺薄膜步驟係以物理 虱相沉積形成非晶之該丨刑*、#^ 抑理 豕丨型+導體鍺薄膜。 5 ·如申請專利範囹筮 、 β 項所述之具多晶鍺薄臈之石夕鍺 》專膜太%電池之製作方沐—4 — 方法,该誘發結晶步驟係為以高溫擴 官對完成該丨型半導體鍺菹 爐 ’ 4膜之基材進行加熱退火,侍兮I 型半導體鍺薄膜受到哕嗦旅人s Η ^ 1 、又引"亥誘發金屬層之誘發產生結晶,並 該誘發金屬層與該丨型半導俨 土千导體鍺相互置換,再形成該Ρ型鍺 層。 項所述之具多晶鍺薄 丨型石夕薄膜之厚度大 6 .如申請專利範圍第]至5任一 骐之矽鍺薄膜太陽電池之製作方法,該 於Ρ型鍺層及該Ν型矽薄膜。 7. —種具多晶鍺薄膜之石夕鍺薄膜太陽電池,其包含 一基材; 一第一電極層,係形成於該基材; 一電極層上形 一 Ρ型鍺層,係以誘發結晶方式於該第 成多晶之一 Ρ型鍺層; 18 _型妙薄膜,係形成於該ρ型錯ViVT 〜 —N型矽薄膜,係形成於該丨型矽薄膜表面; —金屬電極層,係形成於該N型矽薄臈表面; 其中,該丨型矽薄膜厚度大於該p 矽薄獏。 主筠層以及泫NI型 '專膜太陽電池 透明導電氧化物 / Β日网碍膜之矽 ,該基材為一玻璃基材,該第一電極層為 勿。 …Ή請專㈣圍第8項所述之具多晶錯薄膜之 薄膜太陽電池,該第一電極層為銦錫氧化物0丁〇)、銦鋅, 化物(ΙΖΟ)、鋁鋅氧化物(ΑΖ〇)或氧化鋅(Ζη〇)β 乳 十一、圖式: 如次頁。 191377684 1 07 1 July replacement page X. Patent application scope: 1. A method for manufacturing a silicon thin film solar cell with a polycrystalline germanium film, the steps of which include '· substrate preparation, using a substrate and on the substrate Forming a first electrode layer; depositing a metal thin raft, attached to the surface of the first electrode layer, and forging an organic metal layer by a physical vapor deposition process; depositing a wrong film, which is attached to the phoenix And performing a two-dimensional layer of the food layer, and plating a silicon-type semiconductor germanium film by a physical vapor deposition process; inducing crystallization, performing the first electrode layer, the inducing metal layer, and the substrate of the germanium-type semiconductor wrong film The rail treatment, the value of the # 兮丨 # 值 值 值 值 值 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + The induced metal layer is removed; and the I-rich film is deposited on the surface of the P-type ruthenium layer, and the ruthenium type is formed by a physical vapor deposition process; the 5 夕 film; the deposited N-type ruthenium film is attached to the 矽 type 矽Membrane surface 'Children's process to make an N-type stone film; forming a second electrode, forming a second electrode layer on the surface of the N-type stone film; wherein 'the thickness of the induced metal layer is 3〇〇~7〇〇 _, the semiconductor semiconductor has a thickness of 500 nm' and the temperature of the induced crystallization step is greater than C, and the treatment time is more than 2 hours. 2. The polycrystalline tantalum film of the first π scare according to the patent application scope The manufacturing method of the solar cell, the substrate, and the formation of the transparent conductive one, the transparent conductive first Christine, July 5, 2011 - the substrate preparation step is selected - the electrode layer on the surface of the glass substrate, the polar layer The physical vapor deposition process money 3. As described in the patented scope of the film solar cell production item, the polycrystalline silicon (4) is a stone-vapor-deposited metal layer. The deposition-induced metal film is a physical film 4 solar 7 Please refer to the polycrystalline tantalum film described in the first item of Patent 1 (9). The method of depositing the ruthenium-type ruthenium film is based on the physical 虱 phase deposition to form amorphous 丨 、, #^豕丨 type + conductor 锗 film. 5 For example, in the patent application, the polycrystalline enamel thin 臈 石 锗 锗 专 专 太 太 太 太 太 太 太 太 专 专 专 专 专 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发The substrate of the 丨-type semiconductor crucible '4 film is heat-annealed, and the 兮-type semiconductor 锗 film is subjected to crystallization induced by the metal layer induced by the shovel, and the induced metal layer is induced. And the 丨-type semi-conductive 千 千 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 锗 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A method for fabricating a tantalum film solar cell, the tantalum layer and the tantalum film. 7. A polycrystalline silicon solar cell having a polycrystalline germanium film, comprising: a substrate; a first electrode layer formed on the substrate; and an electrode layer formed on the electrode layer to induce The crystallization method is in the first polycrystalline one Ρ type 锗 layer; the 18 _ type film is formed on the p type VVT ~N type 矽 film, which is formed on the surface of the 矽 type 矽 film; — the metal electrode layer Formed on the surface of the N-type tantalum crucible; wherein the thickness of the tantalum-type tantalum film is greater than the thickness of the p-type tantalum. The main layer and the 泫NI type 'special film solar cell transparent conductive oxide / Β 网 碍 矽 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ... Ή 专 四 四 四 四 四 四 四 四 四 四 四 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜ΑΖ〇) or zinc oxide (Ζη〇) β milk eleven, schema: as the next page. 19
TW097141202A 2008-10-27 2008-10-27 Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same TWI377684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097141202A TWI377684B (en) 2008-10-27 2008-10-27 Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097141202A TWI377684B (en) 2008-10-27 2008-10-27 Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same

Publications (2)

Publication Number Publication Date
TW201017895A TW201017895A (en) 2010-05-01
TWI377684B true TWI377684B (en) 2012-11-21

Family

ID=44831005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097141202A TWI377684B (en) 2008-10-27 2008-10-27 Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same

Country Status (1)

Country Link
TW (1) TWI377684B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927318B2 (en) 2011-06-14 2015-01-06 International Business Machines Corporation Spalling methods to form multi-junction photovoltaic structure

Also Published As

Publication number Publication date
TW201017895A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
CN101866963B (en) Silicon-based multijunction multi-laminated PIN thin film solar cell with high conversion rate and production method thereof
CN101421851A (en) Solar cell and manufacture method thereof
KR20120030780A (en) Graphene structure, method of the same and transparent electrode using the graphene structure
CN105206695B (en) Flexible solar battery with back of the body protective layer and preparation method thereof
CN101017858A (en) A back contact solar battery and its making method
CN102800745A (en) Method for producing rear passivation double-sided solar cell
CN101820007A (en) High-conversion rate silicon and thin film compound type multijunction PIN solar cell and manufacturing method thereof
TW201135827A (en) Method for single side texturing
TW201240123A (en) Method of manufacturing transparent conductive film, and method of manufacturing thin-film solar cell
Oh et al. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates
TW201243869A (en) Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same
Hsu et al. A new p-Ni1− xO: Li/n-Si heterojunction solar cell fabricated by RF magnetron sputtering
Lee et al. Improved surface passivation using dual-layered a-Si: H for silicon heterojunction solar cells
CN101820006B (en) High-conversion rate silicon-based unijunction multi-laminate PIN thin-film solar cell and manufacturing method thereof
CN105449016A (en) Graphene silicon solar cell and manufacturing method
TWI377684B (en) Si-ge thin-film solar cells with poly-germanium thin film and method for performing the same
CN102394258B (en) Preparing method of high-conductivity front electrode of thin film solar cell
CN103426976B (en) A kind of method utilizing reusable substrate to prepare polysilicon membrane
Liu et al. Current improvement in substrate structured Sb2S3 solar cells with MoSe2 interlayer
JP5764016B2 (en) CIGS film manufacturing method and CIGS solar cell manufacturing method using the same
Nakada et al. Silicon heterojunction solar cells with high surface passivation quality realized using amorphous silicon oxide films with epitaxial phase
CN101894871A (en) High-conversion rate silicon crystal and thin film compound type unijunction PIN (Positive Intrinsic-Negative) solar battery and manufacturing method thereof
CN103400893A (en) Method for preparing copper zinc tin sulfide optoelectronic film
CN104485367A (en) Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure
Dai et al. Electronic properties of the SnSe–metal contacts: First-principles study

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees