TWI377598B - - Google Patents

Download PDF

Info

Publication number
TWI377598B
TWI377598B TW093133795A TW93133795A TWI377598B TW I377598 B TWI377598 B TW I377598B TW 093133795 A TW093133795 A TW 093133795A TW 93133795 A TW93133795 A TW 93133795A TW I377598 B TWI377598 B TW I377598B
Authority
TW
Taiwan
Prior art keywords
mode
value
regression
wafer
parameter
Prior art date
Application number
TW093133795A
Other languages
Chinese (zh)
Other versions
TW200520054A (en
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW200520054A publication Critical patent/TW200520054A/en
Application granted granted Critical
Publication of TWI377598B publication Critical patent/TWI377598B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection

Description

1377598 九、發明說明: 【發明所屬之技術領域】 本發明,係關於位置檢測方法、曝光方法、位置檢測 裝置、曝光裝置及兀件製造方法,進一步詳言t,係關於 用以檢測物體上所配置之複數個區劃區域之位置資訊的位 置檢測方法,使用該位置檢測方法之曝光方法,用以檢測 物體上所配置之複數個區劃區域之位置資訊的位置檢測裝 置,使用該位置檢測裝置之曝光裝置,以及使用此等曝光 方法及曝光裝置之元件製造方法。 【先前技術】 近年來,半導體元件等元件之製程,係使用步進重複 (step & repeat)方式、或步進掃描(step & scan)方式等之曝 光裝置、晶圓探針、或雷射修復裝置等。此等裝置,須將 配置j基板上之複數個照射區域,對用來規定基板移動位 置之靜止座標系(亦即’ α雷射干涉儀所規定之正交座標系) 内之既疋基準點(例如,各種裝置之加工處理點)進行極為 精密的位置對準(Alignment)。 … 尤其是曝光裝置,在將基板(半導體晶圓或玻璃板)對 準(alignment)光罩或標線片(以下,統稱為“標線片”)上 所形成之®案的投影位置時’為防止在製造階段之晶片產 生不良°〇所造成之良率降低,皆希望能隨時高精度的、且 安定的維持該位置對準的精度。 ° 曝光製程係在晶圓上重疊轉印10層以上 的電路圖案(科給u + (標線片圖案),各層間之重疊精度不良時,會 1377598 ::上之特性的不良情形。如此一來晶片將無法滿 足既疋特性,最壞的情形是該晶片成為不良品而導致良率 :降低。因此,曝光製程中,係在晶圓上之複數個照射區 域分別預先附設準標記,並檢測在載台座W之該標記的 4置(座標值)。之後’根據此標記資訊與已知標線片之位 置資訊(事先加以測定),進行將晶圓上之i個照射區對準 於標線片圖案的晶圓對準。 晶圓對準可大分為2種方式’一種是就晶圓上之每一 個照射區域檢測該對準標記以進行位置對準的晶片間(d/ D die by-die)對準方式。另-種則係檢測晶圓上之若干個 照射區域之對準標記來求出照射區域之排列規則性,據以 進行各照射區域之位置對準的全晶圓對準 方式目刖,在元件製造線,考量與生產率之配合,主要 係採用全晶圓對準方式。特別是,現在,在全晶圓對準方 式中,尤以統計方式精密特定出晶圓上曝光照射區域之排 列規則鏡的全晶圓對準(EGA)方式為主流(例如,參照專利 文藝1、專利文獻2等)。 EGA方式,首先’係實測晶圓上複數個曝光照射區域 (以下,亦稱“取樣照射(sample sh〇t)”)在載台座標系上之 位置座標。並使用回歸分析上的統計運算處理(例如最小平 方法),以該實侧值、與將被晶圓上照射區域之排列所規定 之排列座標系上之複數個(需3個以上、一般為7〜15個左 右)取樣照射之設計上的位置座標轉換為載台座標系上之位 置座標時所得之位置座標的匹配誤差盡可能小的方式求 1377598 出該轉換時所使用之定標(sca丨ing)、旋轉、偏置等誤差參 值進一步的,根據所求得之誤差參數之值所規定的 回歸模式,算出載台座標中各照射區域之位置座標。 為因應最近隨著元件圖案微細化而產生之照射區域重 疊精度的高度要求,就該EGA方式亦提出了各種改良方 法。例如,作為以上述誤差參數所規定之統計模式,已有 使用將照射區域内相對排列座標系之定標及旋轉等照射内 成分亦作為參數加以考慮之回歸模式的方法(參照專利文獻 3)、以及將晶圓上照射區域之排列的高次成分亦作為參數 加以考慮之回歸模式的方法(參照專利文獻4)。亦即,為 提咼照射區之重疊精度,EGA方式中之回歸模式,其參數 自由度增加而變得非常複雜。 然而,如EGA方式之回歸分析中,藉由增加參數自由 度可無限度的降低測量資料距回歸模式之餘數(學習誤 差)。但疋,一般來說,測量資料中包含測量誤差所導致的 雜sfl成分,上述回歸分析若過分增加參數之自由的話,對 該雜訊成分亦會進行匹配而變成過匹配(過度學習),以致 於產生了選擇與真模式不同之模式來作為最相似的模式之 情形。EGA方式,本來係從有限的取樣預測所有照射區域 之位置的方法’當選擇了參數自由度不必要的過大的回歸 模式時’將有可能反而造成取樣照射以外之照射區域的預 期位置、與實際的位置產生大的偏差。 承上所述’在EGA方式中應予以最小化的,並非上述 學習誤差,而應疋考慮所有照射區域時之模式誤差(一般化 1377598 誤差)’為了減小此一般化誤差,須適當設定模式之參數自 由度與取樣數》 再者’ EGA方式中,該回歸模式之參數自由度越大、 越須要增加用以使該回歸模式以良好之精度進行匹配的取 樣照射數’其結果取樣照射數之測量時間變長,導致生產 率的降低。 [專利文獻1]日本特開昭61 _ 44429號公報 [專利文獻2]日本特開昭62 一 84516號公報 [專利文獻3]曰本特開平6 — 349705號公報 [專利文獻4]曰本專利第3230271號公報 【發明内容】 本發明有鑒於上述情事,其第1目的,係提供一種能 以良好精度、或在短時間且以良好精度檢測物體上之複數 個區劃區域之位置資訊的位置檢測方法。 又’本發明之第2目的,係提供一種能在物體上之複 數個區劃區域,以良好精度、或在短時間且以良好精度形 成圖案的曝光方法。 又,本發明之第3目的,係提供一種能以良好精度、 或在短時間且以良好精度檢測物體上之複數個區劃區域之 位置資訊的位置檢測裝置。 又,本發明之第4目的,係提供一種能在物體上之複 數個區劃區域’以良好精度、或在短時間且以良好精度形 成圖案的曝光裝置》 又,本發明之帛5目的,係提供一種能提#元件生產 1377598 性之元件製造方法。 請求項1之發明,係一種位置檢測方法,用以檢測物 體(w)上所配置之複數個區劃區域(SAp)之位置資訊,其特 徵在於’包含:第丨製程,係根據既定座標系内該複數個 區劃區域中至少一部分區劃區域之位置資訊的實測值,來 決定與該複數個區難域之配置相關的模式;以及第2製 程係根據該決定之模式,算出該複數個區劃區域之位置 資訊。 根據此發明,係於第〗製程中,根據至少一部分區割 區域之位置資訊的實測值,I決定與複數個區劃區域之配 置相關的模式,第2製程,係根據所決定之模式,算出複 數個區劃區域之位置資訊。亦即,能根據實際之區劃區域 4置資訊,決足接近真的模式之模式,因此能根據該模 式以良好精度算出複數個區劃區域之位置資訊。 此時,如請求項2之位置檢測方法,該第丨製程,可 包含根據該至少一部分區劃區域之位置資m,來決定用以 測量該位置資訊之區劃區域的製程。 此時,如請求項3之位置檢測方法,該第】製程,係 根據該至少-部分區劃區域之位置資訊之實測值,來決定 該模式之參數的自由度’並根據該決定之模式之參數自由 度’來決定追加測量之區劃區域。 請求項4之發明,係一種位置檢測方法,用以檢測物 體(w)上所配置之複數個區劃區域(SPa)之1377598 IX. Description of the Invention: [Technical Field] The present invention relates to a position detecting method, an exposure method, a position detecting device, an exposure device, and a manufacturing method of a member, and further details t, relating to detecting an object a position detecting method for configuring position information of a plurality of divided areas, using an exposure method of the position detecting method, a position detecting device for detecting position information of a plurality of divided areas arranged on the object, and using the position detecting device for exposure A device, and a method of manufacturing an element using the exposure method and the exposure device. [Prior Art] In recent years, the process of components such as semiconductor components has been performed using an exposure apparatus such as a step & repeat method or a step & scan method, a wafer probe, or a thunder. Shooting repair devices, etc. These devices shall be provided with a plurality of illumination areas on the substrate j, and a reference point in the stationary coordinate system (ie, the orthogonal coordinate system defined by the 'α laser interferometer) for specifying the substrate movement position. (For example, processing points of various devices) perform extremely precise alignment. ... especially for exposure devices, when the substrate (semiconductor wafer or glass plate) is aligned with the projection position of the reticle or reticle (hereinafter collectively referred to as "the reticle") In order to prevent a decrease in yield due to defects in the wafer at the manufacturing stage, it is desirable to maintain the accuracy of the alignment with high precision and stability at all times. ° The exposure process is to superimpose and transfer 10 or more circuit patterns on the wafer (the yoke is given to u + (the reticle pattern). If the overlap accuracy between the layers is poor, the characteristics of 1377598: The wafer will not be able to meet the characteristics of the defect. In the worst case, the wafer becomes a defective product and the yield is reduced. Therefore, in the exposure process, a plurality of illumination areas on the wafer are pre-labeled and detected. The 4 marks (coordinate values) of the mark on the pedestal W. Then, based on the information of the mark and the position information of the known reticle (predetermined in advance), the i illumination areas on the wafer are aligned to the mark. Wafer pattern wafer alignment. Wafer alignment can be broadly divided into two ways 'one is to detect the alignment marks on each of the illuminated areas on the wafer for positional alignment between the wafers (d/D die by -die) alignment mode. Another type is to detect the alignment marks of several illumination areas on the wafer to determine the alignment regularity of the illumination area, and to perform the full wafer pair alignment of each illumination area. Quasi-method witnessing in component manufacturing The combination of consideration and productivity is mainly based on full-wafer alignment. In particular, now, in the full-wafer alignment mode, especially the statistically precise specification of the entire array of exposed areas on the wafer The wafer alignment (EGA) method is mainstream (for example, refer to Patent Literature 1, Patent Document 2, etc.). The EGA method first performs a plurality of exposure exposure areas on the wafer (hereinafter, also referred to as "sampled illumination (sample sh 〇t)") the position coordinates on the pedestal coordinate system. The statistical operation processing (for example, the least square method) on the regression analysis is used, and the real side value and the arrangement of the area to be irradiated on the wafer are specified. The matching coordinates of the position coordinates obtained when converting the design coordinates of the design to the position coordinates on the carrier coordinate system are as small as possible on the coordinate system (3 or more, generally 7 to 15 or so) The method of 1377598 is used to determine the error parameters such as scaling (sca丨ing), rotation, and offset used in the conversion, and the regression mode according to the value of the obtained error parameter is The position coordinates of each of the irradiation regions in the stage coordinates are calculated. In order to meet the height requirement of the overlapping accuracy of the irradiation region due to the recent miniaturization of the element pattern, various improvements have been proposed in the EGA method. For example, as the above error parameter In the predetermined statistical mode, there is a method of using a regression mode in which the internal components of the alignment coordinate and the rotation of the relative alignment coordinate system in the irradiation region are also considered as parameters (see Patent Document 3), and the irradiation region on the wafer. The high-order component of the arrangement is also a method of considering the regression mode as a parameter (see Patent Document 4). That is, in order to improve the superposition accuracy of the irradiation region, the regression mode in the EGA method increases the parameter degree of freedom. Very complicated. However, in the regression analysis of the EGA method, the remainder of the measurement data from the regression mode (learning error) can be reduced indefinitely by increasing the degree of parameter freedom. However, in general, the measurement data contains the impurity sfl component caused by the measurement error. If the above regression analysis excessively increases the parameter freedom, the noise component will also be matched and become over-matched (over-learning). The situation arises in which a mode different from the true mode is selected as the most similar mode. In the EGA mode, the method of predicting the position of all the illumination areas from a limited sampling 'when an excessively large regression mode with unnecessary parameter degrees of freedom is selected' will likely cause the expected position and actuality of the illumination area other than the sampled illumination. The position produces a large deviation. According to the above description, it should not be minimized in the EGA mode, but the above-mentioned learning error should be considered, and the mode error (generalized 1377598 error) should be considered in all the illumination areas. In order to reduce this generalization error, the mode must be appropriately set. The parameter degree of freedom and the number of samples. In the EGA mode, the greater the degree of parameter freedom of the regression mode, the more the number of sampled shots used to match the regression pattern with good precision is increased. The measurement time becomes longer, resulting in a decrease in productivity. [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a first object thereof is to provide a position detection capable of detecting position information of a plurality of division regions on an object with good precision or in a short time with good precision. method. Further, a second object of the present invention is to provide an exposure method capable of forming a pattern with good precision or in a short time and with good precision in a plurality of division regions on an object. Further, a third object of the present invention is to provide a position detecting device capable of detecting positional information of a plurality of division regions on an object with good precision or in a short time and with good precision. Further, a fourth object of the present invention is to provide an exposure apparatus capable of forming a pattern on a plurality of divisional regions on an object with good precision or in a short time and with good precision. Provided is a method for manufacturing a component capable of producing a component of 1377598. The invention of claim 1 is a position detecting method for detecting position information of a plurality of divisional regions (SAp) disposed on an object (w), characterized by 'including: a third process, which is based on an established coordinate system The measured value of the position information of at least a part of the plurality of divided areas determines a pattern related to the arrangement of the plurality of area difficult areas; and the second process calculates the plurality of divided areas according to the determined mode Location information. According to the invention, in the first process, based on the measured value of the position information of at least a part of the cut area, I determines a mode related to the arrangement of the plurality of divided areas, and the second process calculates the plural according to the determined mode. Location information of the zoning area. That is, it is possible to set the information according to the actual zone area 4, and to determine the mode close to the true mode, so that the position information of the plurality of zone regions can be calculated with good precision according to the mode. At this time, as in the position detecting method of claim 2, the third process may include determining a process for measuring the location area of the location information based on the location resource m of the at least a part of the zone. At this time, as in the position detecting method of claim 3, the first process determines the degree of freedom of the parameter of the mode based on the measured value of the position information of the at least part of the zoned area and the parameter according to the mode of the determining The degree of freedom' determines the zone of the additional measurement. The invention of claim 4 is a position detecting method for detecting a plurality of divisional regions (SPa) disposed on the object (w)

徵在於,包含:第1製程,係使用既定座標系内:複L 1377598 區劃區域中之若干個區劃區域之位置資訊的實測值,分別 就參數自由度各不相同之若干個關於該複數個區劃區域之 回歸模式’算出該模式之既定評價規範的值,根據該算出 結果,作為與該複數個區劃區域相關之回歸模式而選擇該 評價規範中被判斷為最佳的模式;以及第2製程,係根據 該選擇之回歸模式’算出該複數個區劃區域之位置資訊。 根據此發明,係於第1製程中,根據參數自由度分別 不同之若干個回歸模式相關之既定評價規範,將與物體上 之複數個區劃區域相關的一般化誤差小的回歸模式,選擇 為最適合的模式。據此,由於係選擇最接近真模式之模式, 因此,可於第2製程中以良好精度算出複數個區劃區域之 位置資訊。 如凊求項5之位置檢測方法,可進一步包含第3製程, 此製程係將該評價規範中作為最佳模式所選擇之回歸模式 的參數值,反映至與用來^定該回歸模式之係數相關的事 前知識;就形成該複數個區劃區域之複數個該物體,依序 變更作為位置資訊檢測對象之物體,一邊反覆該第1製程、 該第2製程、與該第3製程。 本說明書中,所謂r與規定回歸模式之係數相關 的事引知識」,係指包含過去所得之回歸模式之係數值等, 關於該係、數於事前所得之資訊。X,過去所得之回歸模式 ^係數值,包含以物體上各區劃區域之實測位置資訊所進 灯之回歸分析、根據模擬之回歸分析及其他以各種手段所 得者。 1377598 此時,如請求項6之位置檢測方法,該第 更新該各區劃區域之位署杳#香 &田^ 實側值的取樣數,俾使其成 - 評價作為該評價規範之最佳模式所選擇之广 的正確性程度所需之充分的數。 回知模式 心ΓΪΓ之位置檢測方法令’如請求項7之位置 =法:該第1製程,可從參數自由度為既定大小之第 模:二ί、參數自由度小於㈣1回歸模式之第2回歸 中,選擇該評價規範之最佳模式, 口歸模式 測方法’該第i製程,可在與參數自二項/之位置檢 彳你丹夢數自由度為既定大小之第 i =ΓΓ價規範之值相較,參數自由度小於該第 ,二模式…回歸模式的該評價規範之值較為良好之 :式在=㈣2回歸模式來作為該評價規範之最佳 模模式之該評價規範之值較該第2回歸 =式良好、且該第i回歸模式之概度較以值良好之情形 在;^選擇該第1回歸模式來作為該評價規範之最佳模式; 好第回㈣式之該評價規範之值較該第2回歸模式良 豸第1回歸模式之概度較既定值不 選擇參數自由度大於該坌,6 叶係 作為該評價規範之最佳模式。回帛式之第3回歸模式’來 如請求項8之位置檢測方法中,該第ι製程可在該 時回歸模式被選擇作為該評價規範之最佳模式之情形 區域之位追加測量對象之區劃區域’俾使該區劃 貝S測值的取樣數,成為用來評價該第3回 1377598 歸模式的正確性程度所需之充分的 劃區域之仿番次〜也 甘退订該遠加之區 之參數值。 异出該第3回歸模式 此時,如請求項 回歸模式、且該第3 該評價規範之值最為 規範之最佳模式。 10之位置檢測方法中’在選擇該第3 回歸模式有複數個之情形時,可選擇 良好的第3回歸模式’來作為該評價 上述明求項7至10中任—項之位置檢測方法中,可 將被預測在物體P ^ M M i > 體間之值的變動較大之回歸模式的係數,於 以1、第2、帛3回歸模式中作為參數;另—方面將 被預測在物體間之值的變動較小之回歸模式的係數㈣ 第卜第3回歸模式令作為參數,另一方面在第二回歸 模式中則作為根據該事前知識所決定之常數;將在所有物 體間、值被預測為大致相同之回歸模式之係數,於該第卜 第2回歸模式中作為根據該事前知識所決定之常數,另一 方面,在第3回歸模式中則作為參數。 此時,如請求項U之位置檢測方法中,可在作為位 置f訊檢測對象之複數個物體之該處理單位的處理數不滿 无疋數之Jf形時,將被預測為該處理單位間之值的變動較 大之係數,於該第1、帛3回歸模式中作為參數,另一方 面,於該第2回歸模式中則作為根據該事前知識所決定之 常數,在該處理數超過既定數之情形時,係將該係數於該 第第2 口歸模式中作為根據該事前知識所決定之常數, 另方面’於該第3回歸模式中則作為參數。 12 1377598 請求項13之發明係一種位置檢測 惯州方法,係將複數個 物體上所配置之複數個區劃區域之位署 正罝資訊,就各物體依 序進行檢測,其特徵在於,包含:在铳夂 社就各物體推定與該複 數個區劃區域相關之模式之係數時,根據已結束該模式之 係數推定之物體的該推定結果,來推定對象物體^模=之 係數的製程。 根據此發明,由於係根據過去已結束該模式之係數推 定之推定結果,來推定與物體上所配置之複數個區劃區域 相關之模式的係數’因此能在短時間且以良好精度檢測區 劃區域之位置資訊。 請求項14之發明係一種位置檢測方法,係將複數個 物體上所配置之複數個區劃區域之位置資訊,就各物體依 序進行檢測,其特徵在於,包含:第丨製程,係根據每次 依序檢測該物體之位置資訊所得之與該複數個區劃區域相 關之回~模式之係數相關的事前知識,與既定座標系中、 作為此次位置資訊檢測對象之複數個區劃區域中若干個區 劃區域之位置資訊實測值’並根據該回歸模式之既定評價 規範’使該回歸模式之參數之自由度最佳化;第2製程, 係根據具有該被最佳化參數之自由度的回歸模式,來算出 作為此次位置資訊檢測對象之物體的複數個區劃區域之位 置資訊;以及第3製程,係根據該被最佳化之參數的自由 度’來決定作為下一次位置資訊檢測對象之物體的各區劃 區域之位置資訊實測值的取樣數;就形成該複數個區劃區 域之複數個該物體,依序變更作為位置資訊檢測對象之該 13 1377598 物體邊反覆該第1製程、該第2製程、與該第31卜 根據此發明,係就複數個物體,依序變更作為檢測對 象之物體’-邊反覆實施第1製程、第2製程與第3製程。 並於第1 t帛+,根據每次依序檢測物體之位置資訊所得 之與複數個區劃區域相關之回歸模式之係數相關的事前知 識:與既定座標系中 '作為此次位置資訊檢測對象之複數 個區劃區域中若干個區劃區域之位置資訊實測值並根據 回歸模式之既定評價規範,使回歸模式之參數之自由度最 j化於第3製程中,根據被最佳化之參數的自由度,來 決定作為下一次位置資訊檢測對象之物體的各區劃區域之 位置資訊實測值的取樣數。採用此方式的話,由於能視被 最佳化之參數自由纟,動態的變更各區劃區域位置資訊實 測值的有效取樣數,因此能在維持高精度曝光的情形下, k昇生產率。 ^上述請求項4至14項中任一項之位置檢測方法中, 如明求項15之位置檢測方法,該各回歸模式之概度,可 根據自該回歸模式所得之該既定座標係中該各區劃區域之 位置資訊、與該位置資訊實測值的餘數,來加以推定。 此時,如請求項16之位置檢測方法中,作為該各回 歸模式之參數,可包含顯示該既定之座標系與被該複數個 區劃區域之配置所規定之排列座標系之偏差的丨次成分係 數、顯示偏離各區劃區域之成分之設計值的係數、與顯示 該複數個區劃區域之配置相關之高次成分的係數之至少一 部分。 ^ 1 川 如請求項P之… 檢測方法中, 有補償Γ , 檢測方法,可將該評價規範設為附加 自由戶广咖⑺之概度的準則,該補償係對應模式之參數 用於适說月曰中’所謂「補償(Penalty)」’係用來表示4 該回歸模式概度之方向的成分。因此,若設定力 數自由度來使該「補償」增減的話,即能修正模; :疋之偏差(選擇參數自由度較大之模式的傾向強),其與The levy consists of: the first process, which uses the measured values of the position information of several zoning areas in the zonal area of the complex coordinate system, and the plurality of zonings with different degrees of freedom of the parameters respectively. The regression pattern of the region 'calculates the value of the predetermined evaluation specification of the model, and based on the calculation result, selects the mode determined to be the best in the evaluation specification as the regression mode related to the plurality of division regions; and the second process, The position information of the plurality of division regions is calculated according to the regression mode of the selection. According to the invention, in the first process, according to the predetermined evaluation specifications related to the plurality of regression modes in which the parameter degrees of freedom are different, the regression mode having a small generalization error associated with the plurality of division regions on the object is selected as the most The right mode. According to this, since the mode closest to the true mode is selected, the position information of the plurality of division regions can be calculated with good precision in the second process. For example, the position detecting method of the item 5 may further include a third process, and the process reflects the parameter value of the regression mode selected as the optimal mode in the evaluation specification to the coefficient used to determine the regression mode. Related pre-knowledge; forming a plurality of the objects in the plurality of zoning regions, sequentially changing the object to be the position information detection target, and repeating the first process, the second process, and the third process. In the present specification, the term "r-related knowledge relating to the coefficient of the predetermined regression mode" refers to a coefficient value including a regression model obtained in the past, and information on the system and the number obtained beforehand. X, the regression model obtained in the past, the coefficient value, including the regression analysis of the measured position information of each zone on the object, the regression analysis according to the simulation, and other means obtained by various means. 1377598 At this time, as in the position detecting method of claim 6, the number of samples of the real side value of the 香#香和amp; field^ is updated in the respective zoning areas, so that the evaluation is the best as the evaluation specification. The mode is chosen to be a sufficient number of correctness levels. The position detection method of the confession mode is as follows: [If the position of the request item 7 = the law: the first process, the parameter degree of freedom can be the first mode of the predetermined size: 2, the parameter degree of freedom is less than (4) the 2nd of the 1 regression mode In the regression, choose the best mode of the evaluation specification, the oral return mode test method 'the i-th process, you can check the degree of freedom of the Dan dream number with the parameter from the second item / position to the i = ΓΓ price of the established size Compared with the value of the specification, the parameter degree of freedom is smaller than the first, second mode... The value of the evaluation specification of the regression mode is relatively good: the value of the evaluation specification in the = (four) 2 regression mode as the best mode mode of the evaluation specification Compared with the second regression = the formula is good, and the generality of the i-th regression mode is better than the value; ^ select the first regression mode as the best mode of the evaluation specification; good first (four) The value of the evaluation norm is better than the established value of the second regression model. The degree of freedom of the parameter is greater than the predetermined value, and the 6-leaf system is the best mode of the evaluation specification. The third regression mode of the response type is as follows. In the position detection method of claim 8, the ι process can be selected as the zoning of the measurement target in the case where the regression mode is selected as the best mode of the evaluation specification. The area '俾 俾 取样 该 S S S S S S S S S S S S S S S S S S S S S S S S S S S 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 Parameter value. The third regression mode is different. At this time, the request item regression mode and the value of the third evaluation specification are the most optimal mode. In the position detection method of 10, when a plurality of the third regression modes are selected, a good third regression mode can be selected as the position detection method for the evaluation of any of the above items 7 to 10. The coefficient of the regression mode predicted to have a large variation in the value between the objects P ^ MM i > can be used as a parameter in the 1, 2, and 3 regression modes; the other aspect will be predicted in the object. The coefficient of the regression mode with a small change in value (4) The third regression mode command is used as a parameter, and on the other hand, the second regression mode is used as a constant determined according to the prior knowledge; The coefficient predicted to be substantially the same regression mode is a constant determined based on the prior knowledge in the second regression mode, and is used as a parameter in the third regression mode. At this time, in the position detecting method of the request item U, when the number of processing units of the processing unit that is the object of the position detection is less than the Jf shape of the number of untwisted numbers, it is predicted to be between the processing units. The coefficient having a large change in value is used as a parameter in the first and third regression modes, and the second regression mode is a constant determined based on the prior knowledge, and the number of processes exceeds a predetermined number. In this case, the coefficient is used as the constant determined by the prior knowledge in the second port return mode, and the other is used as the parameter in the third regression mode. 12 1377598 The invention of claim 13 is a method for position detection of a state of the art, which is to detect the information of a plurality of zoning areas arranged on a plurality of objects, and sequentially detect each object, wherein: When the coefficient of the mode associated with the plurality of division regions is estimated for each object, the process of estimating the coefficient of the target object is estimated based on the estimation result of the object estimated by the coefficient of the mode. According to the invention, since the coefficient of the mode associated with the plurality of division regions arranged on the object is estimated based on the estimation result of the coefficient estimation of the mode in the past, the zone can be detected in a short time with good precision. Location information. The invention of claim 14 is a position detecting method for sequentially detecting the position information of a plurality of divided regions arranged on a plurality of objects, and wherein the method includes: the third process is performed according to each time. The pre-knowledge related to the coefficient of the back-mode associated with the plurality of zoning regions obtained by sequentially detecting the position information of the object, and the plurality of zonings in the plurality of zoning regions as the object of detecting the position information in the predetermined coordinate system The location information of the region is measured and the degree of freedom of the parameter of the regression mode is optimized according to the established evaluation specification of the regression mode; the second process is based on a regression mode having the degree of freedom of the optimized parameter. The position information of the plurality of division areas of the object to be detected by the position information is calculated; and the third process determines the object to be the object of the next position information detection based on the degree of freedom of the parameter to be optimized. The number of samples of the measured values of the location information of each zone; the plurality of objects forming the plurality of zones are formed, The order change is the object of the position information detection. The first process, the second process, and the 31st object according to the invention are used to sequentially change the object to be detected as the object to be detected. The first process, the second process, and the third process are repeatedly implemented. And in the first t帛+, the prior knowledge related to the coefficient of the regression mode related to the plurality of division regions obtained by sequentially detecting the position information of the object in sequence: and the predetermined coordinate system is used as the object of the position information detection The measured values of the position information of several zoning areas in a plurality of zoning areas are based on the established evaluation specifications of the regression mode, so that the degree of freedom of the parameters of the regression mode is maximized in the third process, and the degree of freedom according to the optimized parameters To determine the number of samples of the measured value of the position information of each of the division areas of the object to be detected by the next position information. In this way, since it is possible to dynamically change the parameter to be optimized and dynamically change the effective number of samples of the positional information of each zone, it is possible to increase the productivity while maintaining high-precision exposure. In the position detecting method according to any one of the above items 4 to 14, the position detecting method of the item 15 may be obtained according to the predetermined coordinate system obtained from the regression mode. The location information of each zone and the remainder of the measured value of the location information are estimated. In this case, in the position detecting method of the request item 16, the parameter of each of the regression modes may include a parameter indicating the deviation of the predetermined coordinate system from the alignment coordinate system defined by the arrangement of the plurality of division regions. The coefficient, a coefficient showing a design value deviating from a component of each of the zone regions, and at least a portion of a coefficient of a higher-order component relating to the arrangement of the plurality of zone regions. ^ 1 川如Request item P... In the detection method, there is compensation Γ, detection method, the evaluation specification can be set as the criterion of adding the degree of freedom of the household (7), and the compensation system is used for the parameter of the corresponding mode. In the New Moon, the so-called "Penalty" is used to indicate the composition of the direction of the regression mode. Therefore, if the degree of freedom of force is set to increase or decrease the "compensation", the mode can be corrected; the deviation of 疋 (the tendency to select a mode with a large degree of parameter freedom) is

:致被學習誤差左右,而能選擇可使—般化誤差小纪 椒式來作為最適合之模式。 此時’如請求帛18之位置檢測方法,可將該準則作 衫。池資訊量準則及貝氏資訊量準則中的任—者;以該值 模式作為良好的模式,或者如請求$ 19之位置檢 測方法T將該補償值設為相對於該回歸模式參數自由度 增加之概度變化的期待值、與該回歸模式參數自由度的 積,以該值較大的模式作為良好的模式。: It is caused by the learning error, and you can choose to make the generalized error Xiaoji pepper as the most suitable mode. At this time, the position detection method of the request 18 can be used as a shirt. Any one of the pool information criterion and the Bayesian information criterion; the value pattern is used as a good mode, or the position detection method T is requested to set the compensation value to be increased relative to the regression mode parameter. The expected value of the change in the degree of prominence and the product of the degree of freedom of the regression mode parameter are used as a good mode with a mode having a large value.

請求項20之發明係一種曝光方法’係將物體上所配 置之複數個區劃區域依序加以曝光,以在各區劃區域形成 既定圖案,其特徵在於,包含:以請求項1至a中任一 項之位置檢測方法’來檢測該複數個區劃區域之位置資訊 的製程;以及根據該檢測出之位置資訊,移動該物體以使 該各區劃區域曝光的製程。此時,由於係以請求項1至19 中任-項之位置檢測方法,α高精度檢測複數個區劃區域 之位置資訊,因此能實現高精度之重疊曝光、或在短時間 15 1377598 且高精度之重疊曝光。 ”月求項21之係一種元件製造方&,包含微影製程, 其特徵在於:該微影製程係使用請求$ Μ之曝光方法。 此時,由於係使用請求$ 20之曝光方法來進行曝光,而 能實現南精度之重眷暖伞 . 璺曝先、或在短時間且高精度之重疊曝 光,因此能提昇高積體度之元件的生產率。 μ求項22之發b月係、—種位置檢測裝置用以檢測物 ()上所配置之複數個區劃區域(SAp)之位置資訊,其特 徵在於*備.測量裝置(AS),係測量既定座標系内該複 數個區劃區域中甚C & — 干個Q劃區域之位置資訊;選擇裝置 (2〇) ’係使用該所測量之各區劃區域之位置資訊實測值, 分別就參數自由度各不相同之若干個關於該複數個區劃區 ^之回歸模式’算出該模式之既定評價規範的值,根據該 鼻出、。果作為該複數個區劃區域之回歸模式而選擇該評 :規範中的最佳模式;以及計算裝置(2〇),係根據該所選 擇之回歸棋式’算出該複數個區劃區域之位置資訊。 Τ據此發明’係以選擇裝置,根據參數自由度分別不 二干個與該複數個區劃區域相關之回歸模式的具有補 負之對數概度’來選擇最佳 悍取佳模式。據此,由於係選擇出最 接近針模式之模式,因此能 篡 此月&藉由算出裝置,以良好之精度 複數個區劃區域之位置資訊。 此時,如請求項23之位置檢測裝置,可其進具 模=憶裝置,係、用來儲存與規定該複數個區劃區域之; 讀式之係數相關的事前知識;以及更新裝置,係將該評 知規範中作為最佳模式所選擇之回歸模式之參數,反映至 以該記憶裝置所儲存之事前知識;該選擇裝據 記憶裝置所儲存之事前知識,設定該轉模式/、- 儲如請求们4之位置檢測裝置,該記憶裝置可 敌::’裝置所測量之該各區劃區域位置資訊實測值的 更新裝置,係、更新該評價規範中作為最佳模式 所選擇之回歸模式之儲存在該記憶裝置中的該各區劃區域 位置ί訊貫測值的取樣數。 凊求項25之發明係一種位置檢測裝置,係將複數個 物體上所配置之複數個區劃區域之位置資訊,就各物體依 序進行檢測’其特徵在於,具備:最佳化裝置係根據每 人依序檢測該物體之位置資訊所得之與該複數個區劃區域 相關之回歸模式之係數相關的事前知識,與既定座標系 中、作為此次位置資訊檢測對象之複數個區劃區域中若干 個區劃區之位f資訊實測冑,依據該回歸帛式之既定評 價規範,使該回歸模式之參數之自由度最佳化;算出裝置, 係根據具有該被最佳化參數之自由度的回歸模式,來算出 作為此次位置資訊檢測對象之物體的複數個區劃區域之位 置資訊;以及決定裝置,係根據該被最佳化之參數的自由 度’來決定作為下一次位置資訊檢測對象之物體的各區劃 區域之位置資訊實測值的取樣數。 根據此發明’最佳化裝置,係根據每次依序檢測物體 之位置資訊所得之與複數個區劃區域相關之回歸模式之係 數相關的事前知識,與既定座標系中、作為此次位置資訊 1377598 檢測對象之複數個區劃區域中若干個區劃區域之位置資訊 實測值,藉由被賦予補償(依回歸模式之參數自由度)之概 度,使回歸模式之參數之自由度最佳化。而決定裝置,根 據被最佳化之參數的自由度,來決定作為下一次位置資訊 檢測對象之物體的各區劃區域之位置資訊實測值的取樣 數。使用此裝置,依序以複數個物體為處理對象的話,由 於能依據各物體被最佳化之參數自由度來增減各區劃區域 位置資訊實測值的有效取樣數,因此能在維持高精度曝光 的情形下,提昇生產率。 請求項26之發明係一種曝光裝置,係將物體上所配 置之複數個區劃區域依序加以曝光,以在各區劃區域形成 既定圖案,其特徵在於,具備:位置檢測裝置,係請求項 22至25中任一項所記載者;以及轉印裝置,係根據該檢 測出之位置資訊’移動該物體以使該各區劃區域曝光。此 2,由於係以請求項22至25中任一項之位置檢測裝置, 向精度檢測複數個區劃區域之位置資訊,因此能實現高精 度之曝光、或短時間且高精度之重疊曝光。 凊求項27之發明係—種元件製造方法,包含微影製 程,其特徵在於:該微影製程係使用請求項26之曝光裝 1“此時,由於係使用請求項20之曝光裝置進行曝光, 能實現高精度之曝光、或短時間且高精度之重疊曝光,因 此能提昇高積體度元件之生產性。 【實施方式】 此照明系統10 ’係藉照明光IL以大致均一之照度來 18 1377598 照明繪有電路圖案等之標線片R上被標線片遮簾所規定之 狹缝狀照明區域(X軸方向之細長長方形狀的照明區域卜 此處,作為照明光IL,係使用KrF準分非子雷射光(波長 248nm)等之遠紫外光、ArF準分子雷射光(波長i93nm)、 或F2雷射光(波長157nm)等之真空紫外光。此外,亦可使 用發自超高Μ水銀燈之紫外帶之亮線(g線、丨線等)來作為 照明光IL。 於前述標線片载台rST上,例如以真空吸附方式固定 有標線片R。標線片載台RST,能藉由以線性馬達、音圈 馬達等作為驅動源之未圖示的標線片載台驅動部,在與照 明系統10之光軸(與後述投影光學系統PL之光轴Αχ 一致) 垂直的χγ平面内進行微驅動,且能在既定掃描方向(此處, 係6又為圖1中)以指定之掃描速度進行驅動。 標線片載台RST於載台移動面内之位置係以標線片雷 射干涉儀16(以下,簡稱為“標線片干涉儀”),透過移動 鏡15,例如以〇.5〜lnm程度之分解能力隨時加以檢測。 此處,實際上,於標線片載台RST上設有具備與γ轴方向 正交之反射面的移動鏡、及具備與X軸方向正交之反射面 的移動鏡,對應此等移動鏡設有標線片γ干涉儀與標線片 X干涉儀’但圖1中係代表性的顯示為移動鏡15、及標線 干涉儀16。此外,例如,將標線片載台RST之端面予以 鏡面加工來形成反射面(相當於移動鏡15之反射面)亦可。 此外,亦可取代標線片載台RST於掃描方向(本實施形態 中為Y軸方向)之位置檢測所使用之延伸於χ軸方向之反 1377598 射面而使用至少一個的角隅稜鏡型反射鏡(例如後向反射 鏡)。此處’標線片γ干涉儀與標線片X干涉儀之至少一 方’例如標線片γ干涉儀係具有2測長軸之2軸干涉儀。 根據此標線片γ干涉儀之測量值,除標線片載台RST之Y 位置外,亦能測量θ z方向(繞Z轴之旋轉方向)之旋轉量(偏 轉量)。來自標線片干涉儀16之標線片載台RST之位置資 訊(含偏轉量等之旋轉資訊)被供應至載台控制裝置19、及 透過此載台控制裝置19供應至主控制裝置20。載台控制 裝置19,根據來自主控裝置2〇之指示,依據載台控制裝 置19之位置資訊透過標線片載台驅動部(未圖示)進行標線 片載台RST之驅動控制。 標線片R的上方,於X軸方向相隔既定距離配置有一 對标線片對準檢測系統22(但圖1中未圖示圖面内側之標 線片對準檢測系統22)。各標線片對準檢測系統22,此處 雖未圖不,但分別包含以和照明光IL相同波長之照明光來 ’、、、月檢/則對象之標記的落射照明系統、與用來拍攝該檢測 對象之標記像的檢測系統。檢測系統包含成像光學系統與 攝影元件,此檢測系統之攝影結果(亦即,標線片對準檢測 系統22之標記的檢測結果)係供應至主控制系統20。此時, 用來將來自標線片R之檢測光導向標線片對準檢測系統22 之未圖示的偏向鏡係配置成移動自如,當曝光程序開始 時,依據來自主控制裝置2〇之指令,偏向鏡即藉由未圖 不之驅動裝置分別與標線片對準檢測系統22 一體的退出 至照明光IL的光路外。 20 1377598 前述投影光學系統PL,係配置在標線片载台RST之 圖1中下方,其光轴AX方向為z軸方向。作為投影光學 系統PL,係使用兩側遠心、具有既定縮小倍率(例如【/ $、 或1 / 4)之折射光學系統。因此,以來自照明系統丨〇之照 明光IL照射標線片R之照明區域時,即透過投影光學系 統PL將標線片R之電路圖案之照明區域部分的縮小線(部 分倒立像),投影至晶圓W上與該照明區域共軛之投影光 學系統視野内的投影區域,而轉印至晶圓表面的光阻層。 前述晶圓載台WST,係在投影光學系統PL之圖i的 下方,配置在未圖示之基座上。此晶圓載台WST上裝載 晶圓保持具25。於此晶圓保持具25上例如以真空吸附等 方式固定晶圓W。此晶圓載台WST,係可藉由圖丄之晶圓 載台驅動部24驅動於X、γ、ζ、θζ方向(繞z軸之旋轉 方向)、θχ方向(繞X軸之旋轉方向)、以及θγ方向(繞γ 軸之旋轉方向)之6自由度方向的單一載台。又,關於其餘 的θζ方向,可將晶圓載台WST(具體而言係晶圓保持具 25)構成為可旋轉,將此晶圓載台WST之偏轉誤差以標線 片載台RST侧之旋轉來加以修正亦可。 前述晶圓載台WST之側面,固定有用以反射來自晶 圓雷射干涉儀(以下,簡稱為“晶圓干涉儀,,)18之雷射光 束的移動鏡1 7,藉由配置在外部之晶圓干涉儀丨8,例如 以〇·5〜1 nm之分解能力隨時檢測晶圓載台WST之X方向、 Y方向及θζ方向(繞Z轴之旋轉方向)之位置。 此處,實際上,於晶圓載台WST上,設有X移動鏡(具 21 1377598 有與x方向正交·之反射面)與γ移動鏡(具有與丫方向正交 之反射面”與此對應的,晶圓干涉儀亦設有對χ移動鏡 照射雷射光以分別測量晶圓載台WST之X紅士 Α ^ Λ軸方向、γ抽 方向位置的X軸干涉儀、Υ軸干涉儀。 本實施形態中’ X軸及γ轴干涉儀係以具有複數個測 長軸之多軸干涉儀構成,除晶圓載台WST之χ Υ位置外, 亦能測量旋轉(yawing(繞ζ軸旋轉之02旋轉))、縱運動量 (pitching(繞X軸旋轉之θχ旋轉))、以及橫運動量 (rolling(繞Υ軸旋轉之0y旋轉))。 _ 雖如前所述分別設有複數個晶圓干涉儀、及移動鏡, 圖1中係代表性的顯示移動鏡17、及晶圓干涉儀18。此 外,例如對晶圓載台WST之端面進行鏡面加工,來形成 反射面(相當於移動鏡之反射面)亦可。 又,在晶圓載台WST上之晶圓w附近,固定有基準 標圮板FM。此基準標記板FM表面被設定為與晶圓表面同 高,該表面至少形成有一對標線片對準用基準標記、及對 準檢測系統AS之基準線測量用的基準標記。 馨 前述對準檢測系統AS,係配置在投影光學系統pL側 面之離轴方式對準感測。作為此對準檢測系統AS,係使用 影像處理方式之FIA(Field Image Alignment)系的感測器, 其係例如對對象標記照射不會使晶圓i <絲感&之寬頻 的檢測光束,使用攝影元件(CCD)等拍攝來自該對象標記 之反射光在受光面成像之對象標記之像、與未圖示之指標 之像,並輸出該等攝影訊號者。此外,當然不限於fia系, 22 1377598 亦0 °。蜀或適田組合使用對對象標記照射同調(⑶^咖)檢 測光债測從4對象標記發生之散射光或繞射光、或對發 自該對象標記之二個繞射光(例如同次數)進行干涉來加以 檢測的對準感測器。此對準檢測系統as之攝影結果透過 未圖不之對準訊號處理系統輸出至主控制裝置2〇。 控制系統,係由_ 1中之主控制裝置20及其支下屬 之載台控制裝置19等為主構成。主控制裝置20,包含由 cpu(中央處理裝置)、R0M(唯讀記憶體)、ram(隨機存取 記憶體)所構成之所謂的微電腦(或工作站),統籌控制裝置 全體。 〃於主控制裝置2G’例如外接有由鍵盤、滑鼠等點取元 件等構成之輸入裝置、CRT顯示器(或液晶顯示器)等顯示 裝置、以及 CD(C〇mpact Disc)、^寧咖 Disc)、MO(Megneto-0pticle disc)或叩⑺㈣卜 Disc)等資 訊記錄媒體之驅動裝置46、及由硬碟構成之記憶裝置 設定在驅動裝置46之資訊記錄媒體(以下,假設為cd)中, 圮錄有對應後述流程圖所示之晶圓對準及曝光動作時之處 理程序的程式(以下,為方便起見,稱“特定程式,,)、其 他程式、以及附屬於此等程式之資料庫等。 主控制裝置20,實施依據前述特定程式之處理,例如 控制標線片R與晶圓W之同步掃描、晶圓w之步進等, 以使曝光動作能正確的進行。 具體而言’前述主控制裝置20,例如在進行掃描曝光 時,係根據標線>1干擾儀16、晶圓干涉儀丨8測量值分別 23 1377598 透過未圖示之標線片載台驅動部、晶圓載台驅動部24,來 分別控制標線片载台RST、晶圓載台WST之位置及速度, 以使晶圓W能與標線片R透過標線片載台RST於+ γ方 向(或一Y方向)以速度VR=V之掃描同步,透過晶圓載台 WST對與刖述照明區域共輛之投影區域於一 γ方向(或+ γ 方向)以速度Vw=冷· v(/5為從標線板R對晶圓w之投影 倍率)進行掃描。又,於步進時,主控制裝置20根據晶圓 干涉儀18之測量值,透過晶圓載台驅動部24控制晶圓載 台WST之位置。 _ 進一步的’本實施形態之曝光裝置1〇〇具備斜入射方 式之多點焦點檢測系統,此多點焦點檢測系統係由未圖示 之照射系與受光系所構成,該照射系係對投影光學系統PL· 之最佳成像面、相對光軸AX方向從斜方向照射用以形成 複數個狹縫像的成像光束,該受光系係分別透過狹縫來感 光該成像光束在晶圓w表面之各反射光束。作為此多點焦 點檢測系統,例如係使用與日本特開平6 — 283403號公報 等所揭不者具有相同構成之物,此多點焦點檢測系統之輸 _ 出被供應至主控制系統20。主控制系統20,根據來自此 多點焦點檢測系統之晶圓位置資訊透過載台控制裝置19 及曰曰圓裁台驅動部24,將晶圓載台WST驅動於Z方向及 傾斜方向。 接著’就使用上述方式構成之本實施形態.之曝光裝置 〇對晶圓w進行第2層(second layer)以後之層之曝光 處理時的動作’依據圖3〜圖5之流程圖來說明主控制裝 24 "598 置20内CPU之處理步驟(依據圖2之晶圓#上面圖及上述 特定程式所實施者)。 作為前提,係假設設定於驅動裝置46之CD一 R〇M内 之特定程式及其他程式,係安裝在記憶裝置47。又,其中 之標線片對準及基準線測f處理之程式,係藉由主控制裝 置20内部之CPU從記憶裝置47擷取至主控制裂置“之 記憶體。 在第2層以後各層之曝光對象的晶圓|上,如圖2所 示’至前層為止之處理步驟中的複數個(例如N個)照射區 域SAP(P=1’ 2, 3...N),隔著相鄰照射區域間之1〇〇㈣寬 度左右的間隔(street line)形成為矩陣狀之配置,且在各照 射區域SAP的四角(間隔線上)形成有2維位置檢測用的晶 圓對準標記(晶圓標記)ΜΡ,κ(Κ=1,2, 3, 4卜設被照射區域 SAP之排列所規定之排列座標系之各軸為^軸(與χ軸大致 平行的轴)、沒軸(與Υ軸大致平行的軸),假設α軸與乂轴 完全-致、yS軸與Υ軸完全-致時,晶圓標記Μρ丨、、、 μρ,3、μρ,4之χ位置的平均值即與照射區域sAp(之中心’^) 之γ座標在設計上-致。亦即’設計上,可藉由各晶圓Ρχ 標記ΜΡ,Κ之X位置與γ位置,求出照射區域sa〆之中心 CP)之位置座標。 此場合’作為晶圓標記Μρκ,例如係使用彼此交又往 X軸U軸)方向及Υ軸(万軸)方向延伸之線所形成之十字 標記。作為此等標記’除十字標記外,亦可以是箱形桿吃, 或者以α軸方向為其排列方向之L/s圖案_ &:似 25 1377598 pattern)與以沒軸方向為其排列方向之s圖案的組合標 記。 此外’與上述晶圓W上之照射區域等相關之資訊(關 於照射數、照射尺寸、配置、對準標記之配置、種類等所 謂的照射圖(shot map)資料),係從微影系統之主電腦下載 至記憶裝置47。 如圖3所示,首先,於步驟3〇1中,透過未圖示之標 線片供料器將標線片裝載至標線片載台RST上。此標線片 之裝載結束後,在步驟303— 305中,主控制裝置2〇(更正 確的說’係CPU)依據前述標線片對準及基準線測量處理之 程式’以下述方式實施標線片對準及基準線測量。 亦即,主控制裝置20透過晶圓載台驅動部24將晶圓 載σ WST上之基準標記板FM,定位在投影光學系統孔 正下方之既定位置(以下,為求方便稱“基準位置”),使 用前述之—對標線片對準檢測系統22,來檢測基準標記板 FM上一對第1基準標記與對應之標線片R上一對標線片 對準標記的相對位置。然後,主控制裝置2〇將標線片對 準檢測系統22之檢測結果、與該檢測時干涉儀丨6,丨8之 測量值儲存至記憶體β接著,主控制裝置2〇 術:標線片載台謂分別沿γ軸方向、往相反 動既定距離,使用前述之一對標線片對準檢測系統Μ,來 檢測基準標記板FM上另一對第i基準標記與對應之標線 片R上另一對標線片對準標記的相對位置。然後,主控制 裝置20將標線片對準檢測系統22之檢測結果、與該檢測 26 :儀16,18之測量值儲存至記憶體。接著,亦可與上 b的’進—步測f基準標記板™上再-對第i基準 ^與對應之標線片R上再—對標線片對準標記的 夏關係。 接著,主控制裝置20使用以此方式所得之至少二對 =1基準標記與對應之標線片對準標記的相對位置關係資 儀、及各該測量軒涉儀16, 18之測量值,來求出以干涉 儀16之測長軸所規定之標線片載台座標系與以干涉儀18 之測長軸所規定之晶圓載台座標系(以下,簡稱為“載台座 標系”)的相對位置關係。據此,結束標線片之對準。 其次,於步驟305中,進行基準線之測量。具體而言, 使晶圓載纟WST回到前述的基準位置,從該基準位置移 動既定量、例如在XY S内僅移動基準線之設計值,使用 對準系統AS來檢測基準標記板FM上的2 主控制裝S 20’根據此時所得之對準檢測系統as之檢測 中心和第2基準標記之相對位置關係之資訊及先前將晶圓 載台wst定位在基準位置時所測量之一對第1基準標記 與對應之-對標線片對準標記的相對位置關係之資訊、與 各該測量時晶圓干涉儀18之測量值,來算出對準檢_ 統AS之基準線、亦即標線片圖案之投影中心、與對準檢測 系統AS之檢測中心(指標中心)間的距離(位置關係)。 結束則述一連串的準備作業後,主控制裝置20即從 記憶體取出前述標線片對準及基準線測量處理的程式,並 將該特定程式從記憶裝i 47裝載至記憶體。之後,依據 27 1377598 此7定程式,進行晶圓裝載、晶圓對準(此處係EGA方式 之曰曰圓對準)及對晶圓上各照射區域SAP之曝光。 、先於步驟307中,透過未圖示之晶圓供料器將晶 圓裝載至晶圓載台WST上之晶圓料具25上。此處,本 實%形釔中,係在晶圓之裝載前,以未圖示之預對準裝置 對曰曰圓載台WST實施以高精度調整晶圓w之旋轉偏差與 置偏差的所謂的預對準(pre-alignment),以使規定 曰曰圓載台WST之移動位置的載台座標系(XY座標系)、與 晶圓W上照射區域之排列所規定之座標系(圖2之邱座標 系以下,簡稱為“晶圓座標系”)一致到某種程度,而不 需要在裝載後進行晶圓w之旋轉偏差與中心位置偏差的所 口月的搜哥對準(search aiignment)。 接著,於子程式309中,進行晶圓對準處理。此晶圓 子準處理係推疋載台座標系中晶圓W上照射區域之排 列’便算出該排列、亦即算出全照射區域之中心位置。關 於此晶圓對準處理,留待後敘。 接著’於步驟3 11中’將顯示照射區域排列號碼的計 數器j設定為1,以最初的照射區域作為曝光對象區域。 其次’步驟313’係根據在後述圖5之步驟526中算 出之曝光對象區域之排列座標(各照射區域之中心位置), 透過載台控制裝置19、晶圓載台驅動部24來移動晶圓載 台WST ’以使晶圓w位於用來使晶圓W上之曝光對象區 域曝光的加速開始位置,並透過載台控制裝置19、標線片 载台驅動部(未圖示)來移動標線片載台RST,以使標線片 28 1377598 R位於加速開始位置。 於步驟315中,開始標線片載台RST與晶圓載台 之相對掃描。當兩載台達到各自的目標掃描迷度達到等 速同步狀態時,即以來自照明系統1〇之照明光江開始照 明標線片R之圖案區域,開始進行掃描曝光。然後,標線 片R之圖案區域的不同區域被照明光IL依序照明,對圖 案區域全面之照明結束,即結束掃描曝光。據此標線片 R之圖案透過投影光學系統PL被縮小轉印至晶圓^上之 曝光對象區域。 於步驟317中,參照計數器值j來判斷是否對所有照 射區域進行了曝光。此處,由於j=1,亦即僅對最初的照 射區域進行了曝光’因此在步驟317之判斷為否,而移至 步驟319。 於步驟31 9巾,增加計數器』之值(+ i ),以下一個照 射區域為曝光對象區域,回到步驟313。 後在乂驟317之判斷獲得肯定前,重複進行步驟 313-步驟315—步驟317〜步驟319之處理及判斷。 對曰曰圓W上所有照射區域之圖案的轉印結束後,步驟 317即獲得肯定的判斷,而移至步驟321。 7步驟321中,對未圖示之晶圓供料器下達晶圓W卸 載之才曰:。擄此’從晶圓保持具25上卸下晶目W後,藉 由未圖不之晶圓搬送系統,搬送至線上連接於曝光裝置刚 之塗布顯影裝置(未圖示)。 於下一㈣323 +,判斷批内所有晶圓之曝光是否已 29 1377598 結束。若獲得肯定的判斷,即結束曝光處理,若判斷為否 則回到步驟307。此處,由於僅結束對批内第一片晶圓w 之曝光’因此判斷為否,而回到步驟307。 之後’直到圖3之步驟323獲得肯定的判斷,以批内 之各晶圓作業處理對象’依序實施㈣3〇7(晶圓裝載卜 子程f 309(晶圓對準)—步驟311〜步驟319(步驟卜步驟 321(晶圓卸载)—步驟323(判斷該批結束)的處理。當步驟 323獲得肯定的判斷時,即結束一連串的處理。 亦即,上述曝光處理中,對批内之各晶圓,以依序被 、載;圓載D WST上之晶圓為處理對象,實施晶圓對 準處理、曝光處理。 《晶圓對準處理》 接著就子程式309之晶圓對準處理進行說明。此晶 圓對準處理係採用EGA方式,此處,首先說明ega方式。 圖2所不之形成於晶圓|之晶圓標記I實際的形 成位置,之所以偏離設計位置(亦即,照射區域%之形成 位置偏離设計位置)其原因在於用來規定晶圓載台WSt之 移動位置的載台座標系(X,Y)、與晶圓座標系(α,β)的不整 合’產生此不整合的主要原因,有以下4點。 曰曰圓W的旋轉.此係以晶圓座標系(α,β)對載台座標系 (X,Υ)之戎留旋轉誤差0來表示。 度:此係由於晶圓載台WST 之移動未正確的正交而產生, Β,载台座標系(X,γ)之正交 在X軸方向及γ軸方向 以正交度誤差W來表示。 30 1377598 .於晶圓座標系(α,方向及p轴方向的線性伸縮 二此Sealing):此係由於加工製程等所造成之整體的 伸縮。此伸縮量係就α轴方向㈣轴方向分別以晶圓定 標〜及sY來表示。惟’係設χ軸方向之晶圓定標Sx 為晶圓W上α方向2點間距離之實測值與設計值之比、 而γ轴方向之曰曰圓定標Sy則為p方向2點間距離之實 測值與設計值之比。 D.晶圓座標系(α’ β)相對載台座標系(χ,γ)之偏置:此係 由於晶圓w全體相對晶圓載台WST微量偏移所造成, 以X軸方向及γ軸方向之並進成分(偏置)〇χ,〇γ來表 示° 田加上剛述Α〜D之誤差主因時,應轉印至在晶圓座 標系(α,β)之設計上位置(DX,DY),實際上,可預測會位 於以下式求出之載台座標系(χ,γ)上的位置(Εχ,Εγ)。 [式1] rEX、 ’cos© -sin Θ、 '1 -tan『、 (DX\ 'Oc、 、sin0 cos© y 、〇 i > w+ .⑴The invention of claim 20 is an exposure method for sequentially exposing a plurality of zoning regions disposed on an object to form a predetermined pattern in each zoning region, characterized by comprising: any one of claims 1 to a a position detecting method of the item to detect a position information of the plurality of divided areas; and a process of moving the object to expose the respective divided areas according to the detected position information. At this time, since the position detection method of any one of the request items 1 to 19 is detected, α detects the position information of the plurality of division areas with high precision, so that high-precision overlapping exposure can be realized, or in a short time 15 1377598 and high precision Overlapping exposure. "Monthly Item 21 is a component manufacturer&> comprising a lithography process, characterized in that the lithography process uses an exposure method requesting $ 。. At this time, since the exposure method of requesting $ 20 is used Exposure, and the ability to achieve the southern precision of the warm umbrella. 璺 exposure, or in a short time and high-precision overlap exposure, so can improve the productivity of components with high integrated body. μ Item 22 of the b month, a position detecting device for detecting position information of a plurality of zone regions (SAp) disposed on the object (), wherein the measuring device (AS) is configured to measure the plurality of zone regions in the predetermined coordinate system Very C & - position information of the Q-zone; selection device (2〇) ' is the measured value of the position information of each zone area measured by the measurement, and several different degrees of parameter degrees are respectively related to the complex number The regression pattern of the zoning area ^ calculates the value of the established evaluation specification of the mode, and selects the best mode in the specification according to the regression pattern of the plurality of zoning regions; and the computing device ( 2〇) Calculating the position information of the plurality of divisional regions according to the selected returning chess style. According to the invention, the selection device is configured to perform a regression mode related to the plurality of divisional regions according to the degree of parameter freedom. The logarithmic approximation of the complement is used to select the best mode. According to this, since the mode that is closest to the pin mode is selected, it can be used to calculate the device and count the number with good precision. Position information of the zone; at this time, the position detecting device of claim 23 may be equipped with a mode=memory device for storing prior knowledge related to the coefficient of the read formula; And updating the device, the parameter of the regression mode selected as the best mode in the evaluation specification is reflected to the prior knowledge stored by the memory device; the selection is stored in the prior knowledge stored by the memory device, and the rotation is set The mode /, - is stored as the position detecting device of the requester 4, the memory device can be enemies:: the device for updating the measured value of the position information of each zone area measured by the device And updating, in the evaluation specification, the number of samples of the location values of the respective zone regions stored in the memory device as the best mode selected as the best mode. The invention of claim 25 is a position detecting device. The positional information of the plurality of divisional regions arranged on the plurality of objects is sequentially detected for each object. The characteristic device is that: the optimization device is based on the positional information of each of the objects in sequence. The pre-knowledge related to the coefficient of the regression mode associated with the plurality of zoning regions, and the information of the plurality of zoning regions in the plurality of zoning regions in the predetermined coordinate system as the object of the location information detection, according to the regression 帛a predetermined evaluation specification for optimizing the degree of freedom of the parameter of the regression mode; and the calculating means calculates the object to be the object of the position information detection based on the regression mode having the degree of freedom of the optimized parameter Position information of a plurality of zoning areas; and determining means are determined according to the degree of freedom of the optimized parameter The next number of samples of the position of each of the divisional areas of the object of the detection target location information is found. According to the invention, the 'optimization device' is based on the prior knowledge related to the coefficient of the regression mode associated with the plurality of division regions obtained by sequentially detecting the position information of the object, and the predetermined coordinate system as the position information 1377598 The measured position information of a plurality of the zoning areas in the plurality of zoning areas of the object is detected, and the degree of freedom of the parameters of the regression mode is optimized by the degree of compensation (parameter degree of freedom according to the regression mode). The determining means determines the number of samples of the measured position information of each of the divided areas of the object to be detected by the next position information based on the degree of freedom of the parameter to be optimized. When the device is used to process a plurality of objects in sequence, since the effective number of samples of the positional information of each zone region can be increased or decreased according to the parameter degree of freedom optimized for each object, high-precision exposure can be maintained. In the case of productivity. The invention of claim 26 is an exposure apparatus for sequentially exposing a plurality of divisional regions disposed on an object to form a predetermined pattern in each of the divisional regions, characterized by comprising: position detecting means, requesting item 22 to And the transfer device moves the object based on the detected position information to expose the respective zone regions. According to the position detecting device of any one of the claims 22 to 25, the position information of the plurality of divided regions is detected with accuracy, so that high-precision exposure or short-time and high-precision overlapping exposure can be realized. The invention of claim 27 is a method for manufacturing a component, comprising a lithography process, characterized in that the lithography process uses the exposure device 1 of claim 26 "At this time, exposure is performed by using the exposure device of claim 20 The high-precision exposure or the short-time and high-precision overlap exposure can be realized, so that the productivity of the high-accumulation component can be improved. [Embodiment] The illumination system 10' is illuminated by the illumination light IL with substantially uniform illumination. 18 1377598 Illumination is drawn with a slit-shaped illumination area defined by the reticle on the reticle R of the circuit pattern, etc. (the elongated rectangular illumination area in the X-axis direction is used here as the illumination light IL) KrF is a vacuum ultraviolet light such as far ultraviolet light, ArF excimer laser light (wavelength i93nm), or F2 laser light (wavelength 157nm) such as non-sub-field laser light (wavelength 248nm). The bright line (g line, twist line, etc.) of the ultraviolet light of the mercury lamp is used as the illumination light IL. On the aforementioned reticle stage rST, for example, the reticle R is fixed by vacuum suction. The reticle stage RST By line A reticle stage driving unit (not shown), which is a driving source, such as a motor or a voice coil motor, is immersed in a χ γ plane perpendicular to the optical axis of the illumination system 10 (which coincides with the optical axis 后 of the projection optical system PL to be described later). Driven, and can be driven at a specified scanning speed in a given scanning direction (here, in Figure 1 and in Figure 1.) The position of the reticle stage RST in the moving surface of the stage is ray laser interference The meter 16 (hereinafter, simply referred to as "the reticle interferometer") is detected by the moving mirror 15, for example, at a resolution of 〇5 to 1 nm. Here, actually, on the reticle stage RST a moving mirror having a reflecting surface orthogonal to the γ-axis direction and a moving mirror having a reflecting surface orthogonal to the X-axis direction are provided, and the moving mirror is provided with a reticle γ interferometer and a reticle X interference The apparatus 'is representatively shown in FIG. 1 as the moving mirror 15 and the reticle interferometer 16. Further, for example, the end surface of the reticle stage RST is mirror-finished to form a reflecting surface (corresponding to the moving mirror 15) Reflective surface) is also available. In addition, it can also replace the reticle stage RST At least one corner mirror (for example, a retroreflector) is used to detect the position of the scanning direction (the Y-axis direction in the present embodiment) and the surface of the reverse 1377598 extending in the x-axis direction. 'At least one of the reticle gamma interferometer and the reticle X interferometer', for example, a reticle gamma interferometer has a 2-axis interferometer with 2 length measuring axes. According to the measured value of the reticle gamma interferometer, In addition to the Y position of the reticle stage RST, the amount of rotation (the amount of deflection) in the θ z direction (the direction of rotation about the Z axis) can also be measured. The position information of the reticle stage RST from the reticle interferometer 16 (Rotation information including a deflection amount or the like) is supplied to the stage control device 19 and supplied to the main control device 20 through the stage control device 19. The stage control device 19 performs drive control of the reticle stage RST via the reticle stage drive unit (not shown) based on the position information from the stage control unit 19 in response to an instruction from the main unit 2〇. Above the reticle R, a pair of reticle alignment detecting systems 22 are disposed at a predetermined distance in the X-axis direction (although the reticle alignment detecting system 22 on the inside of the drawing is not shown in Fig. 1). Each of the reticle alignment detection systems 22, although not shown here, includes an illumination system that uses the illumination light of the same wavelength as the illumination light IL, and an indication of the monthly inspection/target object, and the A detection system that captures a mark image of the detection object. The detection system includes an imaging optical system and a photographic element, and the photographic results of the detection system (i.e., the detection results of the markings of the reticle alignment detection system 22) are supplied to the main control system 20. At this time, the deflecting mirror system for guiding the detection light from the reticle R to the reticle alignment detecting system 22 is configured to be freely movable, and when the exposure program starts, according to the main control device 2 In response to the command, the deflecting mirror is separated from the optical path of the illumination light IL by the unillustrated driving device and the reticle alignment detecting system 22, respectively. 20 1377598 The projection optical system PL is disposed below the reticle stage RST in Fig. 1, and its optical axis AX direction is the z-axis direction. As the projection optical system PL, a refractive optical system having a telecentricity on both sides and having a predetermined reduction ratio (for example, [/$, or 1/4) is used. Therefore, when the illumination region of the reticle R is irradiated with the illumination light IL from the illumination system, that is, the reduction line (partial inverted image) of the illumination region portion of the circuit pattern of the reticle R is projected through the projection optical system PL. The projection area in the field of view of the projection optical system conjugated to the illumination area on the wafer W is transferred to the photoresist layer on the surface of the wafer. The wafer stage WST is disposed below the drawing i of the projection optical system PL, and is disposed on a susceptor (not shown). The wafer holder WST is loaded on the wafer stage WST. The wafer W is fixed to the wafer holder 25 by, for example, vacuum suction or the like. The wafer stage WST can be driven by the wafer stage driving unit 24 in the X, γ, ζ, θ ζ directions (rotation directions around the z axis), the θ χ direction (rotation direction around the X axis), and A single stage in the direction of 6 degrees of freedom in the θγ direction (the direction of rotation about the γ axis). Further, in the remaining θζ direction, the wafer stage WST (specifically, the wafer holder 25) can be configured to be rotatable, and the deflection error of the wafer stage WST can be rotated by the reticle stage RST side. It can be corrected. The side surface of the wafer stage WST is fixed to reflect the laser beam from the wafer laser interferometer (hereinafter, simply referred to as "wafer interferometer") 18, by means of a mirror arranged on the outside. The circular interferometer 丨8 detects the X direction, the Y direction, and the θ ζ direction (the rotation direction around the Z axis) of the wafer stage WST at any time, for example, with a resolution of 〜·5 to 1 nm. Here, actually, The wafer stage WST is provided with an X-moving mirror (having a reflecting surface that is orthogonal to the x-direction in 21 1377598) and a gamma moving mirror (a reflecting surface having a direction orthogonal to the x-direction), and the wafer interferometer There is also an X-axis interferometer and a x-axis interferometer for illuminating the laser beam to measure the X-ray axis of the wafer stage WST, the Λ-axis direction, and the Υ-axis interferometer. In this embodiment, the 'X-axis and The γ-axis interferometer is composed of a multi-axis interferometer with a plurality of length measuring axes. In addition to the χ position of the wafer stage WST, it can also measure the rotation (yawing (02 rotation around the axis of rotation)) and the amount of vertical movement ( Pitching (the θ χ rotation around the X axis), and the amount of lateral motion (rolling ( 0y rotation of the x-axis rotation)) _ Although a plurality of wafer interferometers and moving mirrors are provided as described above, a representative display moving mirror 17 and a wafer interferometer 18 are shown in Fig. 1. For example, the end surface of the wafer stage WST may be mirror-finished to form a reflecting surface (corresponding to the reflecting surface of the moving mirror). Further, the reference label board FM is fixed in the vicinity of the wafer w on the wafer stage WST. The reference mark plate FM surface is set to be the same height as the wafer surface, and the surface is formed with at least a pair of reticle alignment reference marks and a reference mark for alignment line measurement of the alignment detecting system AS. The system AS is disposed in an off-axis mode alignment sensing on the side of the projection optical system pL. As the alignment detecting system AS, an image processing type FIA (Field Image Alignment)-based sensor is used, for example, The target mark illumination does not cause the detection beam of the wide-frequency detection of the wafer i < silk sense & and the image of the object mark imaged on the light-receiving surface by the reflected light from the target mark using a photographic element (CCD) or the like, and not shown Indicator The image is output and the image is output. In addition, it is of course not limited to the fia system, 22 1377598 is also 0 °. 蜀 or 适田 combination use the same mark on the object mark ((3) ^ coffee) detection light debt test from 4 object mark occurs Alignment sensor that detects scattered light or diffracted light, or interferes with two diffracted lights (for example, the same number of times) from the object mark. The photographic result of the alignment detection system as is not shown. The alignment signal processing system outputs to the main control unit 2. The control system is mainly composed of the main control unit 20 of the _1 and the stage control unit 19 of the subordinates. The main control device 20 includes a so-called microcomputer (or workstation) composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), and a ram (Random Access Memory), and integrates the entire control device. The main control device 2G' is externally connected with an input device such as a keyboard, a mouse, etc., a display device such as a CRT display (or a liquid crystal display), and a CD (C〇mpact Disc), and a Ningca Disc). The drive device 46 of the information recording medium such as MO (Megneto-0pticle disc) or 叩 (7) (4) (Dis), and the memory device composed of the hard disk are set in the information recording medium (hereinafter, assumed to be cd) of the drive device 46, A program for processing a wafer alignment and exposure operation as shown in the flowchart below (hereinafter, for convenience, a "specific program"), other programs, and a database attached to the programs are recorded. The main control device 20 performs processing according to the specific program described above, for example, controlling synchronous scanning of the reticle R and the wafer W, stepping of the wafer w, etc., so that the exposure operation can be performed correctly. For example, when performing scanning exposure, the main control device 20 transmits a measurement value of 23 1377598 according to the reticle > 1 jammer 16 and the wafer interferometer 分别8 through a reticle stage driving unit (not shown) and a wafer carrier. station The moving portion 24 controls the position and speed of the reticle stage RST and the wafer stage WST, respectively, so that the wafer W and the reticle R can pass through the reticle stage RST in the + γ direction (or a Y direction). The scanning synchronization of the speed VR=V, through the wafer stage WST, the projection area of the vehicle and the illumination area are in a γ direction (or + γ direction) at a speed Vw=cold·v (/5 is a reticle) The board R scans the projection magnification of the wafer w. Further, during stepping, the main control unit 20 controls the position of the wafer stage WST through the wafer stage driving unit 24 based on the measured value of the wafer interferometer 18. Further, the exposure apparatus 1 of the present embodiment includes a multi-point focus detection system of an oblique incident type, and the multi-point focus detection system is composed of an illumination system and a light receiving system (not shown), and the illumination system is for projection optics. The optimal imaging surface of the system PL· and the optical axis AX direction illuminate the imaging beam for forming a plurality of slit images from the oblique direction, and the light receiving system transmits the imaging beam to the surface of the wafer w through the slits respectively. Reflected beam. As this multi-point focus detection system, for example The same configuration as that disclosed in Japanese Laid-Open Patent Publication No. Hei 6-283403, etc. is used, and the output of the multi-point focus detection system is supplied to the main control system 20. The main control system 20 is based on the multipoint. The wafer position information of the focus detection system is driven by the stage control device 19 and the turn table driving unit 24 to drive the wafer stage WST in the Z direction and the tilt direction. Next, the present embodiment is configured as described above. The operation of the exposure apparatus 曝光 the exposure processing of the second layer after the second layer is performed. The processing steps of the CPU in the main control unit 24 " 598 20 will be described based on the flowcharts of FIGS. 3 to 5 . (Based on the wafer # of Figure 2 above and the implementation of the above specific program). As a premise, it is assumed that a specific program and other programs set in the CD-R of the drive device 46 are installed in the memory device 47. Moreover, the program for the alignment of the reticle and the processing of the reference line f is taken from the memory device 47 by the CPU inside the main control device 20 to the memory of the main control rupture. After the second layer, the layers are On the wafer of the exposure target, as shown in FIG. 2, a plurality of (for example, N) irradiation regions SAP (P=1' 2, 3...N) in the processing steps up to the front layer are interposed. A street line having a width of 1 〇〇 (four) between adjacent irradiation regions is arranged in a matrix, and a wafer alignment mark for two-dimensional position detection is formed at four corners (spaced lines) of each irradiation region SAP. (wafer mark) ΜΡ, κ (Κ = 1, 2, 3, 4) The axis of the alignment coordinate system defined by the arrangement of the irradiated area SAP is the ^ axis (axis substantially parallel to the x-axis), no axis (An axis substantially parallel to the x-axis), assuming an average of the α-axis and the 乂-axis, and the yS-axis and the Υ-axis, the average position of the wafer marks Μρ丨,,, μρ,3, μρ,4 The value is the same as the gamma coordinates of the illumination area sAp (the center '^). That is, 'design, can be marked by each wafer ΜΡ, Κ The X position and the γ position are used to find the position coordinates of the center of the irradiation area sa〆. In this case, 'the wafer mark Μρκ, for example, the U-axis with the X-axis and the axis of the X-axis. The cross mark formed by the line of extension. As such mark 'in addition to the cross mark, it may be a box-shaped rod to eat, or an L/s pattern in which the direction of the α-axis direction is arranged _ &: like 25 1377598 pattern) And a combination of the s pattern in which the direction of the axis is not aligned. In addition, the information related to the irradiation area on the wafer W (the number of irradiations, the size of the irradiation, the arrangement, the arrangement of the alignment marks, the type, etc.) The shot map data is downloaded from the main computer of the lithography system to the memory device 47. As shown in Fig. 3, first, in step 3〇1, the reticle feeder is not shown. Loading the reticle onto the reticle stage RST. After the loading of the reticle is completed, in steps 303-305, the main control unit 2 (more correctly, the 'system CPU) is based on the aforementioned reticle pair Quasi- and baseline measurement processing program 'in the following manner The reticle alignment and the reference line measurement are performed. That is, the main control device 20 positions the fiducial mark plate FM on the wafer σ WST through the wafer stage driving unit 24 at a predetermined position directly below the hole of the projection optical system (below For convenience of the "reference position", the reticle alignment detection system 22 is used to detect a pair of first fiducial marks on the fiducial mark plate FM and a pair of reticle lines on the corresponding reticle R The position of the sheet is aligned with the mark. Then, the main control device 2 aligns the detection result of the reticle alignment detection system 22 with the measurement value of the interferometer 丨6, 丨8 at the time of detection to the memory β. Control device 2: The reticle stage is said to be in the γ-axis direction and to the opposite distance, respectively, using one of the aforementioned pair of reticle alignment detection systems 来 to detect another pair of i-th on the reference mark board FM The relative position of the fiducial mark to the alignment mark of the other pair of reticle on the corresponding reticle R. Then, the main control unit 20 stores the detection result of the reticle alignment detection system 22 and the measurement value of the detection 26: the instrument 16, 18 to the memory. Then, the summer relationship with the reticle alignment mark can be further re-paired with the i-th reference ^ and the corresponding reticle R on the 'b-step-measurement f-reference mark board TM of the upper b. Next, the main control device 20 uses the relative positional relationship between the at least two pairs of fiducial marks obtained in this way and the corresponding reticle alignment marks, and the measured values of the respective sizing instruments 16, 18 The reticle stage pedestal system defined by the long axis of the interferometer 16 and the wafer pedestal system defined by the length measuring axis of the interferometer 18 (hereinafter, simply referred to as "carrier pedestal system") are obtained. Relative positional relationship. According to this, the alignment of the reticle is ended. Next, in step 305, the measurement of the baseline is performed. Specifically, the wafer carrier WST is returned to the aforementioned reference position, and the design value of the reference line is moved from the reference position by a predetermined amount, for example, within the XY S, and the alignment system AS is used to detect the reference mark plate FM. 2 The main control device S 20 ′ is based on the information on the relative positional relationship between the detection center and the second reference mark of the alignment detection system as obtained at this time, and one of the first measurements when the wafer stage wst is previously positioned at the reference position. The reference mark and the corresponding positional relationship of the corresponding reticle alignment mark and the measured value of the wafer interferometer 18 at each measurement are used to calculate the reference line of the alignment inspection AS, that is, the reticle The distance between the projection center of the sheet pattern and the detection center (index center) of the alignment detection system AS (positional relationship). When the series of preparation operations are completed, the main control unit 20 takes out the program of the reticle alignment and the reference line measurement processing from the memory, and loads the specific program from the memory device 47 to the memory. Thereafter, wafer loading, wafer alignment (here, the alignment of the EGA method) and exposure of the respective irradiation areas SAP on the wafer are performed according to the 7 1377 program. Next, in step 307, the wafer is loaded onto the wafer tool 25 on the wafer stage WST through a wafer feeder (not shown). Here, in the present embodiment, the wafer carrier WST is subjected to a so-called adjustment of the rotation deviation and the deviation of the wafer w with high precision by a pre-alignment device (not shown) before loading the wafer. Pre-alignment, which is a coordinate system defined by the arrangement of the stage coordinate system (XY coordinate system) that defines the movement position of the wafer stage WST and the arrangement of the irradiation area on the wafer W (Fig. 2 The coordinates below (abbreviated as "wafer coordinate system") are consistent to some extent, and do not require a search aiignment of the mouth of the wafer w after the loading. Next, in the subroutine 309, wafer alignment processing is performed. This wafer quasi-processing system pushes the arrangement of the irradiation areas on the wafer W in the stage coordinate system, and calculates the arrangement, that is, calculates the center position of the total irradiation area. This wafer alignment process is left for later. Next, in step 311, the counter j displaying the irradiation area arrangement number is set to 1, and the first irradiation area is used as the exposure target area. Next, the 'step 313' moves the wafer stage through the stage control device 19 and the wafer stage drive unit 24 based on the arrangement coordinates (the center position of each irradiation area) of the exposure target area calculated in step 526 of FIG. 5 which will be described later. WST' moves the reticle by moving the wafer w to an acceleration start position for exposing the exposure target area on the wafer W, and passing through the stage control device 19 and the reticle stage driving unit (not shown). The stage RST is placed such that the reticle 28 1377598 R is at the acceleration start position. In step 315, the relative scanning of the reticle stage RST and the wafer stage is started. When the two stages reach the respective target scanning ambiguity to reach the isochronous synchronization state, the scanning area is started by illuminating the pattern area of the reticle R from the illumination light from the illumination system. Then, different areas of the pattern area of the reticle R are sequentially illuminated by the illumination light IL, and the illumination of the entire area of the pattern area ends, that is, the scanning exposure is ended. According to this, the pattern of the reticle R is reduced and transferred to the exposure target area on the wafer through the projection optical system PL. In step 317, it is judged whether or not all of the illumination areas have been exposed by referring to the counter value j. Here, since j = 1, that is, only the first irradiation area is exposed", the determination in step 317 is NO, and the process proceeds to step 319. In step 31, the value of the counter is increased (+ i ), and the next illumination area is the exposure target area, and the flow returns to step 313. After the determination in step 317 is affirmative, the processing and judgment of step 313 - step 315 - step 317 - step 319 are repeated. After the transfer of the pattern of all the irradiation areas on the circle W is completed, the step 317 is affirmative, and the process proceeds to step 321. In step 321 , the wafer W is unloaded to the wafer feeder (not shown): After removing the crystal grain W from the wafer holder 25, it is transported to a coating and developing apparatus (not shown) which is connected to the exposure apparatus by a wafer transfer system which is not shown. In the next (four) 323 +, determine whether the exposure of all wafers in the batch has ended at 29 1377598. If an affirmative judgment is obtained, the exposure processing is ended, and if the determination is negative, the flow returns to step 307. Here, since only the exposure to the first wafer w in the batch is ended, the determination is NO, and the process returns to step 307. Then 'until step 323 of FIG. 3, an affirmative judgment is obtained, and each wafer job processing object in the batch is sequentially implemented (4) 3〇7 (wafer loading sub-process f 309 (wafer alignment)-step 311 to step 319 ( Step 321 (wafer unloading) - step 323 (determining the end of the batch) processing. When step 323 obtains a positive judgment, the series of processing ends. That is, in the above exposure processing, each crystal in the batch is processed. The circle is sequentially loaded and loaded; the wafer on the D WST is processed as a processing object, and wafer alignment processing and exposure processing are performed. "Wafer alignment processing" Next, the wafer alignment processing of the subroutine 309 will be described. This wafer alignment processing system adopts the EGA method. Here, the ega method will be described first. The actual formation position of the wafer mark I formed on the wafer is not deviated from the design position (ie, irradiation). The reason why the formation position of the area % deviates from the design position) is that the stage coordinate system (X, Y) for specifying the moving position of the wafer stage WSt and the unconformity with the wafer coordinate system (α, β) generate this. The main reasons for unconformity are as follows: The rotation of the circle W. This is expressed by the retention error of the wafer coordinate system (α, β) to the carrier coordinate system (X, Υ). Degree: This is due to the movement of the wafer stage WST Incorrectly orthogonal, Β, the orthogonality of the stage coordinate system (X, γ) is represented by the orthogonality error W in the X-axis direction and the γ-axis direction. 30 1377598 . In the wafer coordinate system (α, Linear expansion and contraction in the direction and the p-axis direction. This is the overall expansion and contraction caused by the machining process, etc. This amount of expansion and contraction is represented by wafer calibration ~ and sY in the α-axis direction (four) axis direction. 'The wafer calibration Sx is the ratio of the measured value of the distance between the two points in the α direction on the wafer W to the design value, and the rounding scale Sy in the γ axis direction is between the two points in the p direction. The ratio of the measured value to the designed value of the distance D. The offset of the wafer coordinate system (α' β) relative to the carrier coordinate system (χ, γ): this is due to the slight offset of the wafer w relative to the wafer stage WST The result is a parallel component (offset) 〇χ in the X-axis direction and the γ-axis direction, and 〇 γ is used to indicate the error main cause of the field plus the 误差~D. To the design position (DX, DY) of the wafer coordinate system (α, β), in fact, it is predicted that the position (Εχ, Ε γ) on the stage coordinate system (χ, γ) obtained by the following equation can be obtained. [Formula 1] rEX, 'cos© -sin Θ, '1 -tan『, (DX\ 'Oc, sin0 cos© y , 〇i > w+ .(1)

一般而言,正交度誤差w及殘留旋轉誤差〇係被視為 微量,藉由將上述式丨之三角函數以一次近似加以表示之 下式來決定設計上之轉印位置(DX,DY)與預測轉印位置 (EX,EY)之關係。 [式2]In general, the orthogonality error w and the residual rotational error 被 are regarded as trace amounts, and the transfer position (DX, DY) of the design is determined by expressing the trigonometric function of the above formula 一次 by a similar approximation. Relationship with predicted transfer position (EX, EY). [Formula 2]

V EX、 ,Sx 、办·Θ -Sx (阶+ Θ))( DX、 DY,V EX, , Sx , Θ Θ -Sx (order + Θ)) (DX, DY,

…(2) 31 1377598 又,晶圓座標系之α軸對χ軸之旋轉成分係設為r 晶圓座標系之β轴對Y軸之旋轉成分係設為R X、 y 此外,將 殘留旋轉誤差Θ直接對應對X軸之旋轉成分Rx、正六产誤 差W對應Ry — Rx時,即能將上式(2)轉換成下式。 、 [式3](2) 31 1377598 The rotation component of the α-axis to the χ axis of the wafer coordinate system is r. The rotational component of the β-axis to the Y-axis of the wafer coordinate system is RX and y. When 旋转 directly corresponds to the rotation component Rx of the X-axis and the error W of the positive six production corresponds to Ry_Rx, the above equation (2) can be converted into the following equation. , [Formula 3]

SxSx

\°y) -(3) 進一步的’將定標Sx、Sy代換為1 + Sx、J + Sy,Sx\°y) -(3) Further 'Substitute Sx, Sy for 1 + Sx, J + Sy, Sx

Ry=Sy · Rx与0的話,即能將上式(3)轉換成下 [式4]Ry=Sy · Rx and 0, can convert the above formula (3) into the following [Equation 4]

Ί + & (〇χ\ …(4) 上述式(4)疋EGA方式中最一般化之線性模式的模式 公式,此公式中,晶圓定標Sx,Sy、晶圓旋轉Rx,Ry、、偏 置〇x,〇y為公式的係數(所謂6個EGA參數)。 又,實際的轉印位置與設計位置之偏差的主要原因, 除上述載台座標系與晶圓座標系之偏差所造成之誤差原因 外,亦有其他各種誤差原因。例如,亦包含照射區域 本身的誤差成分(例如,包含投影光學系統pL之投影倍率 誤差(此會造成照射區域大小的改變)、以及標線片載台 上圖案本身對掃描方向之旋轉誤差等。以下,簡稱為“照 射内成分”),有時亦無法忽視該誤差成分的影響。 上述照射内成分,可藉由形成在照射區域SAP四角的 B曰圓‘圯MP κ之位置來加以觀測。假設一以照射區域sAp 32 1377598 内之中心cP為原點之照射内座標系,設晶圓標記在 該座標系之設計上位置為(晶圓標記mx 曰 ,K iiiyp,K)、曰曰圓 標記MP K因上述照射内成分影響之預測轉印位置為 (mxP,K’、myPK’)的話’該等之關係可定義如下式。 [式5] (\ + sx ~ry^\ ’似以、 \ rx l^-sy) ,myP^ …(5)Ί + & (〇χ\ ...(4) The above formula (4) 模式 EGA mode is the most general linear mode formula, in this formula, wafer calibration Sx, Sy, wafer rotation Rx, Ry, , offset 〇x, 〇y is the coefficient of the formula (so-called 6 EGA parameters). The main reason for the deviation between the actual transfer position and the design position is the deviation of the above-mentioned stage coordinate system from the wafer coordinate system. In addition to the cause of the error, there are other various causes of error. For example, it also includes the error component of the illumination area itself (for example, the projection magnification error including the projection optical system pL (which causes the change in the size of the illumination area), and the reticle The rotation error of the pattern itself on the stage in the scanning direction, etc. Hereinafter, simply referred to as "intra-emitter component"), the influence of the error component may not be neglected. The composition of the above-mentioned irradiation may be formed at the four corners of the irradiation area SAP. B曰circle '圯MP κ position is observed. Suppose that the center cP in the irradiation area sAp 32 1377598 is the internal coordinate system of the origin, and the wafer mark is placed on the design of the coordinate system (wafer) When the predicted transfer position of the mark mx 曰, K iiiyp, K) and the round mark MP K is (mxP, K', myPK') due to the influence of the internal component of the above irradiation, the relationship can be defined as follows. 5] (\ + sx ~ry^\ 'like, \ rx l^-sy) , myP^ ...(5)

此處,sx,sy係表示照射内座標系對載台座標系定標 成分(shot scaling成分),rx,ry係分別表示照射内座標系 對載台座標系之旋轉成分(照射旋轉成分)。 根據以上說明’在載台座標系統系之取樣照射SAp之 各晶圓標記MP,K之預測位置(MXP K’、 MYP κ,),可以下式 表示。 [式6]Here, sx, sy means the irradiation internal coordinate system to the stage coordinate system calibration component (shot scaling component), and rx, ry is the rotation component (irradiation rotation component) of the irradiation internal coordinate system to the carrier coordinate system. According to the above description, the predicted positions (MXP K', MYP κ) of the wafer marks MP and K of the sample irradiation SAp of the stage coordinate system are expressed by the following equation. [Equation 6]

rl + Sx t Rx 1 +办爪Rl + Sx t Rx 1 + handle claw

…(6) 此處’(DXP,DYP)係照射區域SAP之中心CP的設計座 標。 EGA方式’係將照射區域之設計上位置(DXp,DYp)代 入上述式(4)之公式(DX,DY),求出照射區域之設計上位置 (EX,EY),將該位置視為在載台座標系之照射區域SAp的 中心位置。為此,只要求出上述式(4)之模式中之係數Sx,Sy, Rx,Ry, Ox,Oy之值即可。然而’由於此係數Sx, Sy,Rx,Ry, Ox, Oy之值’係根據若干點之晶圓標記MP,K之實際位置 33 1377598 來加以算出,因此須考慮上述照射内成分。因此本實施 形態中’為求該等係數之值,係實際測量若干個照射區域 3Αί(ϋ 2, 3’·.·,η)中所附設之若干個(例如“固)晶圓標記 Mi,K在載台座標系之位置(MXi K,Μγ; κ),使用取樣照射s Α( 設計上位置(DXi,叫、與h個實測之晶圓標記在照射内 座標系之設計上位置(mXiK,myiK),根據同時考慮了上述 式⑹所示之照射成分之模範式,實施統計性處理(例如最 小平方法),來求出下式所示之評價函數£值為最小之上述 式(6)中的係數 Sx,Sy,RX,Ry,0x,〇y,% % % 之值。 又,下式中’係將欲測量之各晶圓標#己之實測位置分 別設為(MXg,MXg)(g=1,2, ...,h)、所求得之係數 ,Ry,〇χ,〇y,sx,sy,rx,ry之值代入上式(6)所求得欲測 量之各晶圓標記Mi,k之預測位置分別設為(MXg, Μχ [式 7] g, g。(6) where '(DXP, DYP) is the design coordinate of the center CP of the irradiation area SAP. In the EGA method, the design position (DXp, DYp) of the irradiation area is substituted into the formula (DX, DY) of the above formula (4), and the design position (EX, EY) of the irradiation area is obtained, and the position is regarded as The center position of the irradiation area SAp of the stage coordinate system. For this reason, the values of the coefficients Sx, Sy, Rx, Ry, Ox, and Oy in the mode of the above formula (4) may be obtained. However, since the values of the coefficients Sx, Sy, Rx, Ry, Ox, and Oy are calculated based on the actual positions 33 1377598 of the wafer marks MP and K at a plurality of points, the above-described internal components of the irradiation must be considered. Therefore, in the present embodiment, in order to determine the values of the coefficients, a plurality of (for example, "solid" wafer marks Mi attached to the plurality of irradiation regions 3Αί(ϋ 2, 3'·.·, η) are actually measured. K is at the position of the stage coordinate system (MXi K, Μγ; κ), using the sampled illumination s Α (designed position (DXi, called, and h measured wafer marks in the design position of the illumination internal coordinate system (mXiK , myiK), based on the model formula of the irradiation component shown in the above formula (6), and performing a statistical process (for example, the least squares method) to obtain the above formula (6) in which the evaluation function value of the following formula is the smallest. In the equations, the values of the coefficients Sx, Sy, RX, Ry, 0x, 〇y, % % %. In the following equation, the measured positions of the wafers to be measured are set to (MXg, MXg). ) (g = 1, 2, ..., h), the coefficient obtained, the values of Ry, 〇χ, 〇y, sx, sy, rx, ry are substituted into the above equation (6) to be measured. The predicted positions of the wafer marks Mi, k are set to (MXg, Μχ [Expression 7] g, g, respectively.

亦即,此評價函數,係將以上式(6)求出之欲測量之各 晶圓標記Mi,k之預測位置(MXg,,Μ、,)與該位置 (MXg,叫)之餘數的平方和’除以晶圓標 h(即餘數平方和之平均)所得i Q取樣數 又’此處’㈣化i係依序(例如測量順序)賦予之 取樣號、g係實際測量之晶圓標記號碼。 又,EGA方式中,雖然晶圓標記I之取樣數h越多、 34 1377598 較對準精度的觀點而言是較為理想,但相反的,就效率的 觀點而言,晶圓標記之取樣數h則是越少越好。再者, 此晶圓標記Mu之取樣數h,受EGA之公式中未知數(參 數)之數量的限制。例如,若將上述式(6)中之1〇個係數That is, the evaluation function is the square of the remainder of the predicted position (MXg, Μ, ,) of each wafer mark Mi, k to be measured by the above formula (6) and the position (MXg, nickname). And the number of i Q samples obtained by dividing by the wafer mark h (ie, the average of the sum of squares) is 'here' (four). The i-series is sequentially assigned (for example, the measurement order) to the sample number, and the g is the actual measured wafer mark. number. Further, in the EGA method, although the number of samples h of the wafer mark I is larger, and 34 1377598 is preferable from the viewpoint of alignment accuracy, on the contrary, the number of samples of the wafer mark h is from the viewpoint of efficiency. The less the better. Furthermore, the number of samples h of the wafer mark Mu is limited by the number of unknowns (parameters) in the EGA formula. For example, if one of the above equations (6) is used

Sy’ Rx’ Ry’ 〇x’ 〇y,sx’ sy,Γχ,ry)全部設為未知數(參數)之 情形時,由於每一軸之參數數目分別為5個,因此2維位 置檢測用之晶圓標記Mik之取樣數h,至少需要6(=5+” 以上(若係1維位置檢測用之晶圓標記的話,每軸需6取樣 以上),上述式(6)之係數中,例如若設sx,sy,Γχ,7為常 數的話,該公式之各軸的參數數目為3, 2維位置檢測用 之晶圓標記^之取樣數h,可以是4(=3+1)。亦即,舰 方式中,越增加模範式之參數、即越須增加晶圓標記 之取樣數h,因此在效率卜县τ本丨λα *料上是不利的。因此,本實施形離 :進行模式之參數自由度及晶圓標記Μ·)之取樣數 ==降低對準精度,盡可能的減少上述式⑷所示 :範式之參數,並盡可能的減少晶圓標記I之取樣數卜 中上述晶圓標記M…樣數卜最終, S己中,例如以不致選擇1直線上配置之3個標記的方式 所抽出之對導出參.數有效之測量標記的取樣數。" 又,為實施上述式⑹所示之模範式之參數自 樣數之最佳化,本實施形態中’ 又取 係數,係從經驗所得之各係數值Μ述式(6)所示模範式之 般預先將各係數加以分類。 丨)專,如下述 本實施形態中’係將上述式 模範式之係數分類 35 1377598 如下。 a、 就各晶圓進行推定,根據此次的取樣照射(之晶圓標 之測量值,必定變更之、亦即作為參數的係數; b、 就各晶圓進行推定,用來判斷是作為根據此次的 照射(之晶圓標記)之測量值來推定的參數、或作為從 知識所得值(常數)的係數; 爭别 c、 就每一批進行衫,根據此次的取樣照射(之晶圓桿 之:i量值,必定作為參數加以變[但在批内,則係使用 從事前知識所得值(常數)的參數; d、 就每一批進行推定,用來判斷是作為根據此次的取樣 照射(之晶圓標記)之測量值來推定的參數、或作為從事前 知識所得值(常數)的係數,但在批内,則係使用從事前知 識所得值(常數)的參數; e原則上,將值固定為常數,視需要推定為參數,而變更 值的係數; :處,所謂事前知識係指與上述式(6)之模範式各係數 ==知識广,係模擬、或過去實際求出之模範式 此,從事前知識所得之值’係指從過去求出 :各係數之值來預測之係數的值。又,此事前知識中各係 數之預設值,例如,可以是記憶在記憶裝£ Ο中。此: 可使用前批之事前知識之值’亦可使用料值(可 觀察之模範式各係數值的變動,由於可分別 觀察出某種程度之不會的傾向’因此可根據該傾向來將各 36 1377598 係數加以分類。以了’顯示該分類之例。例如,由於晶圓 之偏置成分0x’ 〇y、旋轉成分Rx,Ry,係因晶圓被裝載在 日曰圓載〇 WST之前所實施之預對準結果之不肖而產生不 均,因此就每-晶圓逐-加以推定較為妥當,而分類為a. 之係數較佳。又’由於晶圓定標Sx,Sy對曝光裝置之特性 及製程的依存度大於對晶圓之依存度,因此經相同製程以 相同曝光裝置加以曝光之同_批内之晶圓間的變動量不會 太大,但由於在同一批内晶圓間之值亦可能多少有些變 動因此刀類為b.之係數較為妥當。又,關於照射内成分 之係數(sx,sy,rx,ry)之值,若基本上視為不會變動時,分 類為C·之係數較佳。 又’上述EGA之模範式(式6))各係數之分類,並不限 定於此分類例’可採用各種分類模式。例如,可將照射内 成分之係數(sx,Sy,rx,ry)分類為d之係數。不過,此處係 假設進行上述例之分類,進行以下之說明。 -又,此模範式係數分類之指定,已由操作員透過未圖 不之輸入裝置進行,其指定内容已儲存在記憶裝置47中。 以下,沿著圖4、圖5所示之子程式3〇9之流程圖說 1¾圓對準處理。X ’如前所述’此子程式3G9係在更換 每一片處理對象之晶圓時,對該晶圓實施—次。因此,以When Sy' Rx' Ry' 〇x' 〇y, sx' sy, Γχ, ry) is all set to an unknown number (parameter), since the number of parameters of each axis is 5, the crystal for 2-dimensional position detection is used. The number of samples h of the circle mark Mik needs to be at least 6 (=5+) or more (if it is a wafer mark for one-dimensional position detection, it takes 6 samples or more per axis), and the coefficient of the above formula (6) is, for example, If sx, sy, Γχ, and 7 are constant, the number of parameters of each axis of the formula is 3, and the number of samples of the wafer mark ^ for 2-dimensional position detection is 4 (= 3 + 1). In the ship mode, the more the parameter of the model is increased, that is, the more the number of samples of the wafer mark h must be increased, so it is disadvantageous in the efficiency of the τ 丨 丨 α α α α α α α α α α α α α α α α α Parameter degree of freedom and number of samples of wafer mark Μ·) == Decrease the alignment accuracy, reduce the parameters of the above formula (4) as much as possible: the parameters of the paradigm, and reduce the number of samples of the wafer mark I as much as possible. The circle mark M... the sample number is finally obtained, for example, in a manner of not selecting the three marks arranged on the straight line. The number of samples of the measurement mark that is valid for the derivation of the reference number. " In addition, in order to implement the optimization of the parameter number of the model expression shown in the above formula (6), in the present embodiment, the coefficient is taken from the experience. Each of the coefficient values is classified into a class in the equation (6), and the coefficients are classified in advance. 丨) Specifically, in the following embodiment, the coefficient of the above-described formula is classified as 35 1377598 as follows. Each wafer is estimated, and according to the current sampled irradiation (the measured value of the wafer target, the coefficient that is necessarily changed, that is, the coefficient as a parameter; b, the estimation of each wafer is used to determine that it is based on this The measured value of the measured value of the wafer mark, or the coefficient obtained from the knowledge (constant); the competition c, the shirt for each batch, according to the sampling exposure (the wafer rod :i magnitude, must be changed as a parameter [but in the batch, the parameters obtained by the pre-knowledge (constant) are used; d. Presumption is performed for each batch, which is used to judge the irradiation according to this sampling. Wafer mark The measured value is the estimated parameter, or the coefficient obtained as the value (constant) obtained from the pre-knowledge, but in the batch, the parameter obtained by the pre-knowledge value (constant) is used; e, in principle, the value is fixed to The constant, which is estimated as a parameter as needed, and the coefficient of the changed value; :, the so-called prior knowledge refers to the model of the above formula (6), each coefficient == knowledge is broad, is the simulation, or the actual empirical formula obtained in the past The value obtained from the pre-knowledge refers to the value of the coefficient that is derived from the past: the value of each coefficient is predicted. Moreover, the preset value of each coefficient in the prior knowledge, for example, may be remembered in memory. This: The value of the prior knowledge of the previous batch can be used. It is also possible to use the material value (the change in the value of each coefficient of the observable model, since a tendency to observe a certain degree is not observed separately) The 36 1377598 coefficients are classified. In order to show the classification. For example, since the offset component 0x' 〇y and the rotational component Rx, Ry of the wafer are uneven due to the pre-alignment result of the wafer being loaded before the sunburst, the WST is generated, so each - The wafer is presumed to be more appropriate, and the coefficient classified as a. is better. 'Because of the wafer calibration Sx, Sy depends on the characteristics and process of the exposure device more than the dependence on the wafer, so the variation between the wafers in the same batch exposed by the same exposure device in the same process It won't be too big, but since the value between the wafers in the same batch may change somewhat, the coefficient of the knife is b. Further, when the values of the coefficients (sx, sy, rx, ry) of the components in the irradiation are basically regarded as not to be changed, the coefficient classified as C· is preferable. Further, the classification of each coefficient of the above-described EGA model (Equation 6) is not limited to this classification example, and various classification modes can be employed. For example, the coefficient (sx, Sy, rx, ry) of the component within the illumination can be classified as a coefficient of d. However, here, it is assumed that the classification of the above examples is carried out, and the following description is made. - Again, the designation of this exemplary coefficient classification has been performed by the operator through an input device not shown, and the specified content has been stored in the memory device 47. Hereinafter, the circular alignment processing will be described along the flowchart of the subroutine 3〇9 shown in Figs. 4 and 5 . X ’ is as described above. This subroutine 3G9 performs the wafer once when replacing the wafer of each processing target. Therefore,

下之說明中,首先說明以一批中之第一 H τ <弟片晶圓作為處理對 象時之處理流程’接著依序說明以第二 第二片、…作 為處理對象時之處理流程。 晶圓作為處理對象時之 首先,說明以一批中之第一片 37 丄J / / 處理流程例。於圖4牛 v驟402中,判斷此次處理對象之 被裝载在晶圓裁台u ,^ ..u 上之s日圓,是否為該批之前m(例 如為5)片以内之晶圓w。 右此判斷為肯定的話,即進至步 称404,若為否定的每 * ,則進至步驟418。此處,由於被 裝載在日曰圓載台WST上之b β . ^ 上之明0疋一批中的第一片晶圓w, 因此此判定為肯定而進至步驟4〇4。 於步驟4〇4,來昭兮b m ΛΙ, > & ^ …,,、这日日圓w之取樣資訊。EGA處理中, 月J斤述係從晶圓w上之照射區域A中選擇若干個照 射區域來作為取樣照射%,從附設於該取樣照射%之 晶圓標記Μ; u中,屯,丨旦人^丨, ,k Ψ 測里合计h個晶圓標記之位置(MXg, MYg)(g L 2,〜,h)。所謂取樣資訊,係指關於此被測量之 晶圓標記之數量及配置的資訊。本實施形態中,雖然隨著 模範式參數之最佳化,亦進行取樣數之最佳化,但在此階 段,由於一批中前面的晶圓w為處理對象,尚未進行模範 式之最佳化’因此’在此時間點之測量對象之晶圓標記Mi>k 的數量及配置,必須是滿足在將上式(6)之模範式各係數全 4作為參數之情形時,為求出該參數所需之有效取樣數的 數量及配置。具體而言,由於式(6)之模範式之最大參數自 由度於每一軸為5 ’因此此處之取樣數須為6以上。此處, 滿足此種有效取樣數之晶圓標記Mi k的數量及配置,假設 已儲存在記憶裝置47,此處,係從記憶裝置47取得該預 設之取樣資訊’保持於記憶體以參照該資訊。又,此處, 作為預設之取樣資訊,係指定取樣數h = 3 〇。 於下一步驟406,一邊在XY平面内移動晶圓載台 38 1377598 WST,以使該取樣資訊中被指定為取樣照射之照射區域SA; 中所附設之晶圓標記Mi k中的h個晶圓標記,能根據被該 取樣資訊指定之測量順序,在對.準檢測系統AS之檢測視 野内依序移動,一邊以對準檢測系統AS拍攝晶圓標記In the following description, the processing flow when the first H τ <the wafer wafer in the batch is processed as the processing object will be described first. Then, the processing flow when the second and second chips are used as the processing target will be described in order. When the wafer is to be processed, the first example of the processing of the first piece of the 37 丄J / / is described. In FIG. 4, in the step 402, it is determined whether the s yen of the processing object loaded on the wafer cutting table u, ^..u is the wafer within the m (for example, 5) chip before the batch. w. If the right judgment is affirmative, the process proceeds to step 404, and if it is negative, it proceeds to step 418. Here, since the first wafer w in one of the batches of b β . ^ on the sundial stage WST is loaded, the determination is affirmative and proceeds to step 4〇4. In step 4〇4, the sampling information of the Japanese yen w, 兮b m ΛΙ, >& ^ ...,,. In the EGA process, the month J is selected from the irradiation area A on the wafer w to select a plurality of irradiation areas as the sampling irradiation %, from the wafer mark Μ attached to the sampling irradiation %; u, 屯, 丨The person ^丨, , k Ψ measures the position of the h wafer marks (MXg, MYg) (g L 2, ~, h). The so-called sampling information refers to the information on the quantity and configuration of the measured wafer marks. In the present embodiment, although the number of samples is optimized along with the optimization of the model parameters, at this stage, since the wafer w in the front of the batch is the processing target, the model is not optimal. The number and arrangement of the wafer marks Mi>k of the measurement object at this point in time must be such that when the coefficients of the model of the above formula (6) are all 4 as parameters, The number and configuration of the number of valid samples required for the parameter. Specifically, since the maximum parameter degree of freedom of the exemplary expression of equation (6) is 5 ′ for each axis, the number of samples here must be 6 or more. Here, the number and arrangement of the wafer marks Mi k satisfying such an effective number of samples are assumed to have been stored in the memory device 47. Here, the predetermined sampling information is obtained from the memory device 47 'held in the memory for reference. The information. Also, here, as the preset sampling information, the number of samples is specified as h = 3 〇. In the next step 406, the wafer stage 38 1377598 WST is moved in the XY plane so that the sampling information is designated as the irradiation area SA of the sample illumination; h wafers in the wafer mark Mi k attached thereto The mark can sequentially move in the detection field of the inspection system AS according to the measurement order specified by the sampling information, and take the wafer mark with the alignment detection system AS.

Mi,k’同時從晶圓干涉儀18之測量值求出此時晶圓載台wsT 之位置。由於從對準檢測系統As會送出該拍攝視野内之 晶圓標I己% k的位置資訊,因此可從晶圓標記之位置 資訊、晶圓干涉儀18之測量值、基準線,來求出載台座 標系中該晶圓標記Mi,k之位置的實測值。所求出之晶圓標 記Mi,k之實測值被保持在記憶體中。以此方式,取得被指 定為取樣資訊之照射區域叭中所附設之晶圓標記〜之 位置的實測值(MXg,MYg>。 於下-步g 4G8 ’將被分類為e之係數作為以事 識加以決疋之常數後,根據所取得之晶圓標記之位置的1 =值,,來算出被分類為a.〜d.之係、數之值。首先,參照ί 子::隱裝置47中之事前知識,取得被分類為e.之係』 理冑此處’由於仍係以該批内之第-片晶圓為》 理對象’因此被分類发 . 為·係數之事前知識之值為〇。亦即! 此處’係Hi⑷之模範式之係數,設定U =Mi, k' simultaneously finds the position of the wafer stage wsT at this time from the measured value of the wafer interferometer 18. Since the position information of the wafer mark I in the photographing field of view is sent from the alignment detecting system As, the position information of the wafer mark, the measured value of the wafer interferometer 18, and the reference line can be obtained. The measured value of the position of the wafer mark Mi, k in the stage coordinate system. The measured values of the obtained wafer marks Mi, k are held in the memory. In this way, the measured value (MXg, MYg> of the position of the wafer mark ~ attached to the irradiation area designated as the sampling information is obtained. The next step g 4G8 'is classified as the coefficient of e as a matter of fact. After knowing the constant of the decision, the value of the system and the number classified as a. to d. is calculated based on the 1 = value of the position of the obtained wafer mark. First, refer to the ί:: hidden device 47 In the case of prior knowledge, the classification is classified as e." Here, 'because it is still based on the first wafer in the batch', it is classified as the value of the pre-knowledge of the coefficient. It is 〇. That is! Here is the coefficient of the model of Hi(4), set U =

ry=〇後’根據記憶體由锉产 A 測值(MXg,MY ), 伞子之曰曰圓標§己Mi,k之位置1 評價函數為最:、亦法來求出使上述式⑺所示之 0y之值。 亦尸滿足下式之參數sx,Sy,Rx,Ry,〇x,After ry=〇'' according to the memory, the measured value of A (MMg, MY), the circle of the umbrella, the position of the §Mi, the position of the k, the evaluation function is the most: the method is also used to find the above formula (7) The value of 0y shown. Also the corpse satisfies the following parameters sx, Sy, Rx, Ry, 〇x,

[式8J 39 1377598[Formula 8J 39 1377598

dE__ dE _dE dE dEdE__ dE _dE dE dE

dE dSx dSy dRx d^~dO^ = ^; = 0 -(8) 其次,於步驟410中,將所求得之EGA參數設定為上 述之6)之係數’將所測量之晶圓標記〜在照射内座標係 之议δ十位置(mXi,k,myi,k)代入(mxP,《c,myp,k)、將取樣照射SAi 之中心q之設計位置(DXi,DY)代入(DXp,DYp),求出預 料之晶圓標記Mi>k之位置(MXik’,MYj,k,)。然後,將所求 付之位置(MW,MYi,k’)作為(MXg,,MYg,)、將晶圓標記位 置之實測值(MXi k,MY; k)作為(MXg, MYg)代入上述式(7), 求出其值(餘數)。 進一步的,於步驟412中,算出上述模式(以分類為a. 〜d.之之係數為參數、分類為e.之係數為根據事前知識之 值(常數)的統計模式Μ(第1回歸模式))之AIC(赤池資訊量 準則、Akaike’s Information Criterion)。 接著’簡單說明此AIC。藉由測量獲得模式μ時,作 為表示此模式Μ是否與真的模式一致之尺度之將對該模式 之誤差作為正規分佈時之對數概度的量,有KuUbaek_dE dSx dSy dRx d^~dO^ = ^; = 0 - (8) Next, in step 410, the determined EGA parameter is set to the coefficient of 6) above, and the measured wafer is marked~ The δ position (mXi, k, myi, k) of the inner coordinate system is substituted (mxP, "c, myp, k), and the design position (DXi, DY) of the center q of the sampled illumination SAi is substituted (DXp, DYp). ), the position of the expected wafer mark Mi > k (MXik', MYj, k,) is obtained. Then, the position (MW, MYi, k') to be paid is taken as (MXg, MYg,), and the measured value (MXi k, MY; k) of the wafer mark position is substituted as (MXg, MYg) into the above formula. (7) Find the value (residual). Further, in step 412, the above-mentioned mode (the statistical mode in which the coefficient classified as a. to d. is a parameter and the coefficient classified as e. is based on the value (constant) of prior knowledge Μ (first regression mode) is calculated. )) AIC (Akaike's Information Criterion). Next, simply explain this AIC. When the mode μ is obtained by measurement, as the amount of the logarithm of the normal distribution when the error indicating the mode is the same as the true mode, KuUbaek_

Leibler訊息量(KLI)。KLI資料數(此處所謂之取樣照射之 數h)之、將隨著表現模式之參數數量增加之偏差加以修正 後之推定值(的2倍)即為AIC。統計模式Μ之AIC係以下 式表示。 [式9] AIC(m) = -2 · log z, + 2 · i/ ...(9) 此處’ logL係與統計模式M相關之最大對數概度,d 係統計模式Μ之參數(未知數)的數量、L為概度,例如, 1377598 依據上述式(7)所示之評價函數E,係使用L=(1/E)。亦 即,由於在該模式之評價函數(餘數)之值越小、該概度[ 越大’因此該模式之妥當性越高,其結果AIC之值越小。 又,2d之項,係相對參數增加之補償項,參數之數量越增 加該項之值即越大。亦gp,相對餐數自由度之增加,心 一定以上概度之提昇的話,參數自由度大的模式即不會被 選擇。此外,AIC雖係赤池資訊量準則之簡稱,但在上述 式(9)中,亦作為該資訊量準則之函數名來使用。 亦即,若將AIC作為模式之正確性程度之指標的話, 參數自由度大的模式被選擇之傾向即會受到抑制,不選擇 縮小作為學线數的料,而能選擇料—般化誤 差之模式。 、 承上所述,步驟412,係於上述式⑺中代入此次算出 =應評價函數(餘數)EtlGgL值、與未知參數數d之值, 來鼻出AIC(M)之值。又,μ、+•办批 、 上述係數之为類例中,由於係將 吉y,Rx,Ry,Ox,0y作為參數、將sx,sy,rx,作為根 據事前知識之m切之參數數u 6β 下-步驟414巾,係算出將根據上述式⑷之 以的料模式料模式M,U2_㈣ a. C.之係數作為參數、被 刀頰為 前知識之值(常數、、拉 .之係數作為根據事 識之值(常數))時之評價函數 從記憶裝置47取得上述式(6)之係、數中之§ "體而吕’ ry之事前知識,將根據所取 5 sx, sy, ΓΧ, 於·^、 所取侍之事前知識決定之值,w ;式(6)。然後,根據在上述步驟4 »疋 汀篁列之h個晶圓標 41Leibler message volume (KLI). The number of KLI data (herein referred to as the number h of sampled illumination) is the AIC which is corrected by the deviation of the number of parameters in the performance mode. The statistical mode AIC is expressed by the following formula. [Equation 9] AIC(m) = -2 · log z, + 2 · i/ (9) where 'logL is the maximum logarithm of the correlation with the statistical mode M, d is the parameter of the system mode ( The number of unknowns and L are approximate. For example, 1377598 uses L=(1/E) according to the evaluation function E shown in the above formula (7). That is, since the value of the evaluation function (remainder) in this mode is smaller, and the degree of approximation is "larger", the validity of the mode is higher, and the value of the result AIC is smaller. In addition, the item of 2d is the compensation item with the increase of the relative parameter, and the larger the number of parameters, the larger the value of the item. Also, gp, the increase in the degree of freedom of the meal, if the heart is more than the increase in the degree of accuracy, the mode with a large degree of parameter freedom will not be selected. In addition, although AIC is an abbreviation for the Akaike Information Standard, it is also used as a function name of the information amount criterion in the above formula (9). That is, if AIC is used as an indicator of the degree of correctness of the model, the tendency to select a mode with a large degree of freedom of parameter is suppressed, and the material that is the number of lines is not selected to be reduced, and the error of the generalized error can be selected. mode. As described above, in step 412, the value of the EIC (G) value is calculated by substituting the value of the EtlGgL value of the evaluation function (residue) and the number of unknown parameters d in the above equation (7). In addition, in the case of μ, +•, and the above-mentioned coefficients, since ji, y, Rx, Ry, Ox, 0y are used as parameters, sx, sy, rx are used as the parameter number of m according to prior knowledge. 6β 下-Step 414, the coefficient of the material pattern M, U2_(four) a. C. according to the above formula (4) is calculated as the parameter, and the value of the pre-knowledge (constant, pull) is used as the coefficient. According to the value of the matter (constant), the evaluation function obtains the pre-existing knowledge of the § "body and ly'ry of the above formula (6) from the memory device 47, based on the acquired 5 sx, sy, ΓΧ, 于·^, the value of the pre-knowledge decision of the service, w; (6). Then, according to the above steps 4 » 篁 篁 之 h h wafer mark 41

I jyQ 記位置的實測值,算出 亦即, 以最小 亦即滿 的值。 刀頸马a. c.之係數的值0 將各晶圓標記Mi,k之位置的實 .^ 罝旳貫測值代入上述式(6), 千方法來求出使上述式门 所之評價函數為最小、 足下式之破分類為a. c係 你数(參數)Rx,Ry,〇χ,〇y •(10) dRx dRy dOx ~ 射内㈣4()6中測量之晶圓標記%在昭 =:座標係之設計位置(,〜 :在照 取樣照射SA之中 p’k yw)、將 DY } φ ^之6又计位置⑴义,DYi)代入(Dx DYP)未出預料之晶圓標記〜之 ( 將所求得之仞番心V , ',k,MYi,k’), 標記位置之實測值二,MYi,k’)作為(MXg,,MV)、將晶圓 置之實測值(Mxi,k,MYik)作為(Mxg,MYg)代= 式(7) ’未出其值(餘數) 上述 之值中,算出上述統計模式M,之AIC… 參“ 了例中,由於係將Rx,Ry,〇x,〇yh 數n ^,&quot;,㈣為根據事前知識之值以 數)因此模4 M,之參數數d為4。 (常 桓犬tr·欠,於圖5之步冑5G2,比較在步驟412所求得之 之AIC(M)值、與在步驟416所求得之模式M,$ 值,判斷是否琴,)&lt;AIC(M)e 疋的話’即進至步驟504,若判斷為否定的話,則進 =510。又,此處’係以-批之前面(第一片)的晶圓w為 處對象,以事前知識決定其值的係數,作為實際與晶圓 42 1377598 相關之式(6)所示模範式之係數一致的可能性並不一定大β 因此,此處’係假設AIC(M,)之值大於AIC(M)之值,判斷 為否定’而進至步驟510來進行以下之說明。 於步驟510中,比較在統計模式Μ之評價函數(餘數)E 之值與既定值,以判斷E是否小於既定值。若此判斷為肯 定的話即進至步驟512,若此判斷為否定的話則進至步驟 516。此處,由於被分類為6之係數之事前知識之值(預設 值)’與處理對象之該批前面之晶圓並不一致,因此模式m 之評價函數(餘數)E之值大於既定值,判斷為否定,而進 鲁 至步驟516來進行以下之說明。 步驟5 1 6後之步驟’係進行將到此為止之式所示模 式之所有係數皆作為參數時之處理。首先,於步驟516中, 參照儲存在記憶體之取樣資訊,判斷是否需要追加取樣照 射°若此判斷為肯定的話即進至步驟518,若為否定的話 則進至步驟522。此處,如前所述,由於在步驟404中取 侍之儲存在記憶體之取樣資訊中預設之有效取樣數(h二 3〇) ’充分的大於將被分類為a.〜e•之係數作為所有參數時 鲁 該參數之自由度(每一軸為5),因此,由於並不需要特別 進行取樣照射之追加測量,因此判斷為否定,而進至步驟 522 » 於步驟522中,在將被分類為a•〜e.之係數全部作為 參數後,根據步驟406中測量之h個晶圓標記位置之實測 值’算出被分類為a.〜e.之係數之值。亦即,將各晶圓標 °己k之位置實測值代入上述式(6),以最小平方法來求出 43 1377598 為最小、亦即滿足 sy,ΓΧ,ry 之值。 下式之參 使上述式(7)所示之評價函數E 數 Sx,Sy,Rx,Ry,〇x,〇y,sx, [式 11] = —= ~-_a£ dE dE dE dE λγ eSx 吻 dRx ⑽ 所求得之被分類為a·〜e.之係數(參數)之值, 用在後述曝光處理’因此保持於記憶體 由於係 伐^考 於步驟 中,將被分類為b.〜e.之參數值,作為兄 忭馮事則知識儲存 憶裝置47。其次,步驟526,係將步驟524中求出、仏。己 於記憶體之係數值’設定為上述式⑷各係'數值,將全= 區域SAP之設計位置(DXp,DYp)分別代入上述式(4)之⑽ DY),以算出全照射區域SAp之中心cp之位置(基準位 置)(EXP,EXP) ’將該算出結果儲存於記憶裝置47 ^步驟5M 結束後,即結束子程式309。 其次,說明以一批内之第二片晶圓w作為處理對象時 子程式309之處理流程例。首先,於圖4之步驟402中, 判斷處理對象之晶圓W是否為該批之m(例如為5)片以内 之晶圓。此處,由於還只是第二片晶圓W,因此此判定為 肯定而進至步驟404。 步驟406,係參照儲存在記憶體之取樣資訊,並掌摄 該取樣資訊中所含之取樣照射數及配置。儲存在記憶體中 之取樣資訊(取樣數及取樣照射之晶圓標記之配置、有效取 樣數),在前次的子程式309中’由於尚未從儲存在記憶裝 置47之預設的取樣資訊加以更新,因此,此處亦仍然是 ^/7598 參照預設的取樣資訊。 其-人’於步驟408中,根據所取得之晶圓標記μ 仅置實測值,與前次之子程式·同樣的,將被分類為 \ d.之係數作為參數,將被分㈣e之係料為 =決定之常數之模…、被分類為一係數: ^之值,以將上述式(8)作為條件式之最小平方法來加以 =出,於步驟彻中,算出該時之餘數E,於步驟化 鼻出AIC(M)e在此時間點,作為被分類為e之係數之事十 之:數I二之子程式309之步驟524(參照圖5)中所儲存 ㈣值m批前頭之晶圓之職處 值’係儲存在記憶裝置47,此處,仍可將二 識之6.之係數值作為此次的純加以使用。 八類Γ—步驟414中,係、將EGA之統計模式,作為以被 之係數作為參數、被分類為b.d, ,知識之值(常數)時之式(6)之模範式之模式m,,以上 進行最小平方法,來算出被分類為… 以並异出評價函數(餘數)E之值,於 :算出在該模式M,之,之值。在此時點,作為二: 524fl之絲Μ事前知識,於前次之子程式3G9之步驟 5:(參照圖5)中儲存於記憶裝置47&lt;b、d.:驟 亦即,在—拙於_s 。 .&lt;係數值, 係储存在記憶裝置=處理中所求得之係數值, d.、e·之係數值料此\ ^ 作為該事前知識之b·、 #為此次之b.、d.、e·之係數加以使用。 、-人’於圖5之步請中’比較以此次之步驟412 45 1377598 所求得之模式Μ之AIC(M)值、與以此次之步驟416所求 付之模式M,之AIC(M’)值,判斷是否AIC(M,)&lt;AIC(M)。 此處’伖然是AIC(M’)2AIC(M),判斷為否定,而進至步 驟510來進行以下之說明。 步驟5 10,係判斷在模式IV[之評價函數(餘數)E是否 小於既定值❶此處,由於在前次之子程式3〇9之一批前頭 之s曰圓w之處理中,於該批内,係求出被預測為幾乎無值 之變動之被分類為e.之各係數,將該係數用以模式m,因 此餘數E之值小於既定i,而獲得肯定之判斷,進至步驟 512進行以下之說明。 其次之步驟512’係選擇模式M,為進行此次之晶圓 W曝光處理’而將該模式M之係數保持於記憶體。 其次之步驟’係判斷此次處理對象之晶圓w是否I jyQ records the measured value of the position, which is calculated as the minimum or full value. The value of the coefficient of the knife neck ac is 0. Substituting the actual value of the position of each wafer mark Mi, k into the above equation (6), and obtaining the evaluation function of the above-mentioned gate is minimized by a thousand method. The sub-type break is classified as a. c is your number (parameter) Rx, Ry, 〇χ, 〇 y • (10) dRx dRy dOx ~ inside shot (four) 4 () 6 measured wafer mark % in Zhao =: The design position of the coordinate system (, ~: p'k yw in the sampled irradiation SA), the position (1) of the DY } φ ^6, and the undesired wafer mark of the DYi) (Dx DYP) (The measured value of V, ', k, MYi, k'), the measured value of the marked position 2, MYi, k') as (MXg, MV), the measured value of the wafer ( Mxi,k, MYik) as (Mxg, MYg) = = (7) 'No value (residual). In the above values, the above statistical mode M is calculated, and the AIC is... "In the example, since the system is Rx , Ry, 〇x, 〇yh number n ^, &quot;, (d) is based on the value of prior knowledge by the number) Therefore modulo 4 M, the number of parameters d is 4. (often the dog tr· owed, in Figure 5胄5G2, comparing the AIC(M) obtained in step 412 With the mode M, $ value obtained in step 416, it is judged whether or not the piano, and <AIC(M)e '' proceeds to step 504, and if the determination is negative, then proceeds to 510. Again, this The wafer w is the object of the front side (the first piece) of the batch, and the coefficient of the value is determined by the prior knowledge, which is the same as the coefficient of the model formula shown by the formula (6) related to the wafer 42 1377598. The probability is not necessarily large β. Therefore, here, the value of AIC (M,) is assumed to be greater than the value of AIC (M), and it is judged as negative. Then, the process proceeds to step 510 to perform the following description. In step 510, The value of the evaluation function (residual) E in the statistical mode 与 is compared with the predetermined value to determine whether E is smaller than the predetermined value. If the determination is affirmative, the process proceeds to step 512. If the determination is negative, the process proceeds to step 516. Here, since the value (predetermined value) of the prior knowledge classified as the coefficient of 6 does not coincide with the wafer preceding the batch of the processing object, the value of the evaluation function (residual) E of the mode m is larger than the predetermined value. The determination is negative, and the process proceeds to step 516 to perform the following description. The step after 5 1 6 is a process of taking all the coefficients of the mode shown so far as parameters. First, in step 516, referring to the sampling information stored in the memory, it is determined whether additional sampling illumination is required. ° If the determination is affirmative, proceed to step 518. If the determination is negative, proceed to step 522. Here, as previously described, since the storage in step 404 is preset in the sampling information of the memory. The number of valid samples (h 2 3 〇) 'sufficiently greater than the coefficient that will be classified as a.~e• as the parameter, the degree of freedom of the parameter (5 per axis), therefore, because no special sampling is required The additional measurement of the illumination, so the determination is negative, and proceeds to step 522. In step 522, after all the coefficients to be classified as a•~e. are taken as parameters, the h wafer mark positions measured in step 406 are determined. The measured value 'calculates the value of the coefficient classified as a. to e. That is, the measured value of the position of each wafer mark is substituted into the above formula (6), and the minimum value of 43 1377598 is determined by the least square method, that is, the value of sy, ΓΧ, ry is satisfied. The following equations give the evaluation function E number Sx, Sy, Rx, Ry, 〇x, 〇y, sx, [Expression 11] = -= ~-_a£ dE dE dE dE λγ eSx of the above equation (7). The value of the coefficient (parameter) that is obtained by the kiss dRx (10) is classified as a·~e., and is used in the exposure processing described later. Therefore, the memory is classified as b. e. The parameter value, as a brother and sister, the knowledge storage device 47. Next, in step 526, the step 524 is obtained. The coefficient value of the memory is set to the value of each line of the above formula (4), and the design position (DXp, DYp) of the full = region SAP is substituted into (10) DY of the above formula (4), respectively, to calculate the total irradiation area SAp. Position of the center cp (reference position) (EXP, EXP) 'The calculation result is stored in the memory device 47. After the step 5M is completed, the subroutine 309 is ended. Next, an example of the processing flow of the second wafer w in a batch as the processing target subroutine 309 will be described. First, in step 402 of Fig. 4, it is judged whether or not the wafer W to be processed is a wafer of m or less (e.g., 5) in the lot. Here, since it is only the second wafer W, the determination is affirmative and proceeds to step 404. In step 406, the sampling information stored in the memory is referred to, and the number of sampling illuminations and the configuration contained in the sampling information are taken. The sampling information stored in the memory (the number of samples and the configuration of the wafer mark for sampling the irradiation, the number of valid samples) is in the previous subroutine 309 'because the sampling information stored in the memory device 47 has not been used yet. Update, therefore, here is still ^/7598 with reference to the preset sampling information. In step 408, according to the obtained wafer mark μ, only the measured value is set, and the same as the previous subroutine, the coefficient classified as \d. is used as a parameter, and will be divided into four (4) e materials. The modulus of the constant determined by = is classified as a coefficient: the value of ^, which is obtained by using the above formula (8) as the least squares method of the conditional expression, and in the step, the remainder E of the time is calculated. At the time point of the step of the nasal discharge AIC (M) e, as the coefficient classified as e: the number of the first (four) value stored in step 524 of the sub-program 309 of the number I (refer to FIG. 5) The job value of the wafer is stored in the memory device 47. Here, the coefficient value of the second knowledge can still be used as the pureness of this time. In the eight types of Γ-step 414, the statistical mode of the EGA is used as the mode m of the model expression of the formula (6) when the coefficient is classified as bd, and the value of the knowledge (constant) is The least-flat method is used to calculate the value classified as ... and the evaluation function (residual) E, and the value in the mode M is calculated. At this point, as the second: 524fl pre-existing knowledge, in the previous sub-program 3G9 step 5: (refer to Figure 5) stored in the memory device 47 &lt; b, d.: that is, in - _ s. . &lt; coefficient value, is stored in the memory device = processing coefficient value obtained, d., e · coefficient value is expected this ^ ^ as the prior knowledge b ·, # is the current b., d ., the coefficient of e· is used. - The person's step in Figure 5 compares the AIC(M) value of the mode obtained by the step 412 45 1377598 and the mode M of the M which is requested by the step 416 of this time. The value of (M') is judged whether or not AIC(M,) &lt;AIC(M). Here, 'AIC (M') 2 AIC (M) is judged as negative, and the process proceeds to step 510 to carry out the following description. Step 5 10, judging whether the evaluation function (residual) E in the mode IV is less than a predetermined value, here, because in the processing of the s曰 circle w of the head of the previous subroutine 3〇9, in the batch Then, each coefficient which is classified as e. which is predicted to be almost worthless is obtained, and the coefficient is used as the mode m. Therefore, the value of the remainder E is smaller than the predetermined i, and a positive judgment is obtained, and the process proceeds to step 512. Carry out the following instructions. Next, the step 512' selects the mode M, and the coefficient of the mode M is held in the memory for performing the wafer W exposure process for the current time. The next step is to determine whether the wafer w of the processing object is

前頭之m(=5)片以内。此處’由於此次之晶圓W 為批之第二片,因此判斷為肯定,從步驟524進至步驟 562。步驟524中,將模式 迸芏,驟 _ _ •〜e.之係數值儲存於記 憶裝置47。於步驟526,則传算屮邮 ' 心位置、儲存至記憶裝置47。步_ &amp; 4 之中 程式^ 步驟…結束後,即結束子 其次,說明以一批内之第三 程式309之處理流程例。首先^ 0aB1作為處理對象時子 因此此判定為肯定而進 斷處理對象之晶圓w是否為該批之圖^之步驟402令’判 此處,由於還只是第三片晶w,-5)片以内之晶圓 至步驟404。 46 步驟404’係參照記憶體上之取 樣數及取樣照射之晶圓標記之g 取樣貢訊(取 .m } 在前次的子程式309 中亦t被更新,因此,此處亦仍然是參照預設的取樣資訊。 為e.之係數決定為常數的模式)根前知識將被分類 置實測值,算出被分類一之晶圓標記之位 驟41〇巾,算出此時之餘數E 〆數)之值’於步 此處,亦可根據作為事前知識财7 412算出就㈤。 肀引知識儲存於記憶裝置47之祧分 類為e.之係數值,例如仍可將前&amp; 妁佶,田你生A ,、再刖一次之值的平 均值帛作為此次被分類為e.之係數值。 其次’步驟414’係將職之統計模式,作為以被分 ❹為參數 分類為b、d…之係數作 為根據事前知識之值丰 ’、 M,,以最式()之模範式所表現的模範 千方法算出被分類4 a.、c.之係數 價函數(餘數)E之值,於步驟416 :數值以异出汗 此時間點,於前次、# ()之值。在 照圖5)中更新之匕H 子私式3〇9之步驟524(參 作為被分類Γ:、·:= 此事前知識之b、/之係數之事前知識,此處,可將 H之係H 1•之係數之平均值,㈣為此次之b.、 所求2二5之步&quot;502中,比較以此次之步称-得之模式…二二C(M)值、與以此次之步驟416所求 此處,依據被分類為jd==M,)&lt;AIC(M)。 •.之係數之事剛知識之值,會聚 47 1377598 於真的模式之係數,判斷獲得肯定,而進至步驟5〇4來進 行以下之說明。 於下一步驟504,為進行此次之晶圓取曝光處理,而 將該模式Μ之係數保持於記憶體。 〃-人,於步驟5 〇 6 ,判斷此次處理對象之晶圓w是否 在該批刖頭之m( = 5)片以内。此處,由於此次之晶圓w 為該批之第三片’因此判斷為肯定,進至步驟524。步驟 524中,將模式M,之b.〜e2係數值作為事前知識儲存於 記憶裝置47。於步驟526 ’則係算出所有照射區域%之 4置並儲存至圮憶裝置47,之後,結束子程式3〇9 之處理。 :之後’在實施子程式3〇9時,係直到處理對象之晶圓 為該批之第m+1(=6)片之晶圓為止,亦即,直到步驟術 之判斷成為“否”為止,進行步驟4〇4〜步驟416之處理, 判斷圖5之步驟502。當處理對象晶圓1之照射區域之排 列,顯示出與過去之處理對象晶圓w之照射區域之排列相 :的傾向時,| AIC(M’)&lt;AIC(M)’判斷即獲得肯定,於 m4中將模式m,之係數保持於記憶體上,實施步驟 6(條件判斷當然為肯定),於其後之步驟524中,將a、 c.之係數(參數)值、與根據b、d 作為事前知識健存於記7,.造事:知識之係數值’ 結束子程式3。”當處二置象二-步實施步驟526而 瘦干出… 象晶圓W之照射區域之排列, 向二:處理對象晶圓之照射區域之排列不同的傾 C(MgAIC(M)而得到否定的判斷,進至步驟別。 48 ^377598Within the first m (= 5) slices. Here, since the wafer W of this time is the second piece of the lot, it is judged as positive, and the process proceeds from step 524 to step 562. In step 524, the coefficient values of the mode 迸芏, __•~e. are stored in the memory device 47. In step 526, the heart position is stored and stored in the memory device 47. In the step _ &amp; 4, the program ^ step... ends, that is, the end of the sub-step, and the processing flow of the third program 309 in a batch is explained. First, when 0aB1 is used as the processing target, the determination is affirmative, and whether or not the wafer w of the processing target is the step 402 of the batch is determined to be "there is only the third wafer w, -5". The wafer is within the slice to step 404. 46 Step 404' refers to the number of samples on the memory and the g-sampling of the wafer mark of the sampled illumination (taken .m } is also updated in the previous subroutine 309, so it is still referred to here. Preset sampling information. The mode in which the coefficient of e. is determined to be constant.) The pre-root knowledge will be classified into actual measured values, and the position of the wafer mark of the classified one will be calculated, and the remainder E 〆 will be calculated. The value of 'in the step here, can also be calculated according to the prior knowledge 7 412 (5). The knowledge stored in the memory device 47 is classified as the coefficient value of e. For example, the average value of the values of the former & 妁佶, 田你生 A, and then 刖 is still classified as e The coefficient value. Secondly, 'Step 414' is the statistical mode of the job, which is classified as b, d... by the classification of the parameters as the value of the prior knowledge, ', M, and the model of the most () The model thousand method calculates the value of the coefficient valence function (residual) E of the classified 4 a., c., and at step 416: the value is sweated at this time point, the value of the previous time, # (). Step 524 of updating H sub-private 3〇9 in Figure 5) (refer to the pre-knowledge of the coefficients of b, / which are classified as:,::= beforehand, here, H The average value of the coefficient of H 1•, (4) is the current b., the step of 2 2 5 is required, and 502 is compared with the step of this step - the mode obtained... the value of 22 C (M), And here, as determined by step 416 of this time, it is classified as jd==M,) &lt;AIC(M). • The coefficient of the factor just the value of knowledge, convergence 47 1377598 The coefficient of the true mode, the judgment is affirmative, and proceed to step 5〇4 to make the following explanation. In the next step 504, in order to perform the current wafer exposure processing, the coefficient of the mode is held in the memory. 〃-人, in step 5 〇 6, to determine whether the wafer w of the processing object is within the m (= 5) slice of the batch. Here, since the wafer w of the current time is the third slice of the batch, the determination is affirmative, and the process proceeds to step 524. In step 524, the mode M, the b. to e2 coefficient values are stored in the memory device 47 as prior knowledge. At step 526', all the areas of the illumination area are calculated and stored in the memory device 47, after which the processing of the subroutine 3〇9 is ended. : After 'in the implementation of subroutine 3〇9, until the wafer to be processed is the m+1th (=6)th wafer of the batch, that is, until the judgment of the step becomes "No" The processing of steps 4〇4 to 416 is performed, and step 502 of FIG. 5 is determined. When the arrangement of the irradiation areas of the target wafer 1 is processed to show the tendency to align with the irradiation area of the wafer w to be processed in the past, | AIC(M') &lt;AIC(M)' is judged , in m4, the mode m, the coefficient is kept on the memory, the implementation of step 6 (conditional judgment is of course affirmative), in the subsequent step 524, the coefficient (parameter) value of a, c., and according to b , d as the pre-existing knowledge is stored in the note 7, the creation: the coefficient value of knowledge 'end subroutine 3. In the second step, the second step is performed in step 526, and the thinning is performed... The arrangement of the irradiation areas of the wafer W is obtained by the tilting C (MgAIC (M) of the irradiation area of the processing target wafer. Negative judgment, go to the step. 48 ^377598

又,在步驟510中模式M之餘數E ,.ΆίΓ π j &amp;既疋值時,選擇模 式Μ作為最佳模式,於步驟512 . 保持模式Μ之係數 值,於步驟524中作業事前知識 U. , Λ/ί 巾什%。己憶裳置47,但在 模式Μ之餘數ε大於既定值時, 4丨此、土伽 ^進订步驟516(否定的 判斷)—步驟522之處理,將被分 仝缸, 刀m馬a.〜e之係數值作為 參數重新加以求出並保持於記憶體,於步驟524中’將係 數值作為事前知識儲存於記憶裝置47。 ' 如前所述’本實施形態,在一批之前—片之前, 係將重點置於模式最佳化之處理,在模式之係數之事前知 識之值,收歛至該批之真的模式之係數值附近為止,係在 將有效取樣數維持在預設數(例# h=3〇)的狀態下進行 EGA。於該處理中,被分類為值幾乎不變動之e之照射内 成之係數值,在笛一 Η曰圓, ^ 隹第片曰曰圓之處理時加以求出,而在進 行第·-片、第二片…晶圓之處理中,被分類為b·〜d.之係 數值之事前知識,收歛為真的模式之係數值,而選擇參數 自由度較小的模式M,。此外,若第四片以後之晶圓之排列 狀也與第 第三片晶圓之排列狀態大致相同的話,在 處理該晶圓時之子程式3G9中,雖恆選擇模式M,,但若第 四j以後之晶圓之排列狀態’與第一〜第三片晶圓之排列 有若干差異之情形時,將會選擇模式M,成為參數之模式 Μ的b.d.e.之係數將作為新的事前知識而被累積儲存至記 隐裝置47。又,第四片以後之晶圓之排列狀態,與第_ 第三片晶圓之排列狀態顯著的不同時,將重新求取b 之係數’作為新的事前知識累積財至記憶裝置47。 49 i377598 然後,當處理對象之晶圓為批内之第六片時,於子程 式309中,步驟402為否定之判斷,而進至步驟418。於 步驟418,參照該晶圓之取樣資訊。由於儲存在記憶體中 之取樣資訊仍為預設的狀態,因此係取得預設的取樣資 訊。 於次步驟420,與步驟4G6同樣的,係、依序測量該取 樣資訊中作為取樣照射所指定之照射區域%中所附設之 晶圓標記…中,作為測量對象之h個晶圓標記之位置。 於人V驟422 t ’將模式M作為以被分類為&amp;.、b之 :數作為參數、以被分類為e.、d.、e之係數作為以事前 t識所決^之常數的模式,根據所取得之晶圓標記之位置 =使用最小平方法’算出被分類為a、b之係數值, 圓;:驟424,將求得之係數值重新代人上述式⑷,求出晶 3 =測位置’將求得之預測位置、與晶圓標記位置 之實測值代入上述式之 推—“ 飞()之㈣函數E ’求出該值(餘數)。 進—步的,於步驟426 ,算出上 b.之係數作為參數、以被分 、^ 分類為a·、 事前知識之麵料6.之係數作為根據 的統4模式μ)之AIC(M)。 於次一步驟428,將EGA之統 上述式⑹之模式之a.之係數作為參數、(以 作為根據事前知識之值時的模式)之參數二最〜:之係數值 乂求^算出在模式M,之評價函數(餘數)E之值。方法加 之值ΤΙ步驟43G中,算出上述統計模式M,之Aic()M, 50 變更所:’如上述分類般,在有就每一批進行推定、 之來數自由戶 被分類為c.、d.之係數時,模式M,M, 之參數自由度,在到該批前頭之第m片與其後之各片… =的,第…片之後者’係被設定為各模式之自由: 接著,於圖5之步驟50”’就步驟似所求出之模 =之AIC(M)值、與步驟伽所求出之模式M,之AIC(m,、) 對=較:斷是否,&lt;AIC(M)。此處,若處理 對象曰曰圓之排列、與過去所處理之晶圓之排列大致相同的 '卩為AIC(M )&lt; AIC(M)而獲得肯定的判斷,進至步驟 5〇4,選擇模式M,,將其係數保持於記憶體上。 於次,506,由於係第6片晶圓,因此為否定的 而進至步驟508 °步驟5〇8,係更新記憶體上之取 樣資2。到此階段時,被分類為b.〜e之係數之事前知識 的可靠性增加’而能判斷為已達模式M,被選擇的狀態,因 此可將有效取樣數(h = 3〇),從預設的較大取樣數,減少至 例如僅將被分類為a.之係數作為參數時,能充分確保高精 度之對準精度的數量。例如,此時,將被分㈣a.之係數 設為晶圓之偏置成“x,〇y、旋轉成分Rx,Ry的話,由 於各軸之參數自由;&amp; 1 m 又為2 ’因此能就每一軸設定有效取樣Moreover, in step 510, the remainder of the mode M, E., ΆίΓ π j &amp; when the value is 疋, the mode 选择 is selected as the best mode, and in step 512. The coefficient value of the mode 保持 is maintained, and the pre-knowledge U is operated in step 524. . , Λ/ί towel%. I have remembered to set 47, but when the remainder ε of the mode 大于 is greater than the predetermined value, the processing of step 516 (negative judgment) - step 522 will be divided into the same cylinder, the knife m horse a The coefficient value of .e is re-determined as a parameter and held in the memory. In step 524, the coefficient value is stored in the memory device 47 as prior knowledge. 'As mentioned above', in the previous embodiment, before a batch of films, the focus is placed on the process of pattern optimization, the value of the knowledge before the coefficient of the mode, and the coefficient of the true mode of the batch In the vicinity of the value, the EGA is performed while maintaining the effective number of samples at a preset number (example #h=3〇). In this process, the coefficient value of the illumination which is classified as the value of e which hardly changes is determined by the processing of the flute, the circle of the ^ 隹, and the first slice. In the second piece of wafer processing, the prior knowledge of the coefficient values classified as b·~d. is converged to the coefficient value of the true mode, and the mode M having a small parameter degree of freedom is selected. Further, if the arrangement of the wafers after the fourth sheet is substantially the same as the arrangement of the third wafer, the subroutine 3G9 in the processing of the wafer always selects the mode M, but the fourth When there are some differences between the arrangement state of the wafers after j and the arrangement of the first to third wafers, the mode M will be selected, and the coefficient of the bde which becomes the parameter mode will be regarded as new prior knowledge. The accumulation is stored to the stealing device 47. Further, when the arrangement state of the wafers after the fourth sheet is significantly different from the arrangement state of the third wafer, the coefficient "b" is newly obtained as the new prior knowledge to the memory device 47. 49 i377598 Then, when the wafer to be processed is the sixth slice in the batch, in the subroutine 309, the determination in step 402 is negative, and the process proceeds to step 418. At step 418, reference is made to the sampling information of the wafer. Since the sampling information stored in the memory is still in a preset state, the preset sampling information is obtained. In the next step 420, in the same manner as in the step 4G6, the position of the h wafer marks as the measurement target in the wafer mark included in the sample area specified as the sampled illumination in the sample information is sequentially measured. . In the case of the human V step 422 t 'the mode M is taken as the parameter classified as &amp;., b: the number, and the coefficient classified as e., d., e is used as the constant determined by the prior t The mode calculates the coefficient value classified as a and b according to the position of the obtained wafer mark = using the least square method, and the circle is obtained by repeating the above-mentioned formula (4) to obtain the crystal. 3 = Measured position 'Substitute the predicted position and the measured value of the wafer mark position into the above formula - "Four () function E ' to find the value (residual). Step by step, in step 426, the coefficient of the upper b. is calculated as a parameter, and the coefficient of the fabric is classified as a·, and the coefficient of the fabric of the prior knowledge is used as the AIC(M) of the system 4 model μ). In the next step 428, EGA is the coefficient of a. of the above formula (6) as a parameter, (as a mode based on the value of prior knowledge), the parameter 2 is the most: the coefficient value is required to calculate the evaluation function in mode M ( The remainder is the value of E. The method plus the value ΤΙ in step 43G, the above statistical mode M is calculated, and the Aic() M, 50 is changed: ' In the same way, when there are estimates for each batch, and the number of free households is classified as the coefficient of c., d., the parameter degrees of freedom of the mode M, M, are in the mth piece before the batch and then Each of the slices... =, after the ... slice is set to the freedom of each mode: Next, in step 50 of Figure 5, the AIC(M) value and the step of the mode are determined. The mode M obtained by gamma, the AIC(m,,) pair = comparison: whether or not, &lt;AIC(M). Here, if the arrangement of the processing target circle and the arrangement of the wafers processed in the past are substantially the same as AIC(M)&lt;AIC(M), an affirmative determination is obtained, and the process proceeds to step 5〇4. Select mode M and keep its coefficients on the memory. At the next time, 506, because it is the sixth wafer, it is negative and proceeds to step 508 ° step 5〇8, which updates the sample 2 on the memory. At this stage, the reliability of the prior knowledge classified as the coefficient of b. to e is increased, and it can be judged that the mode M has been reached, and the selected state, so the number of valid samples (h = 3〇) can be When the predetermined larger number of samples is reduced to, for example, only the coefficient classified as a. as a parameter, the number of high-precision alignment precision can be sufficiently ensured. For example, at this time, if the coefficient of (4) a. is set to the offset of the wafer as "x, 〇y, the rotational component Rx, Ry, the parameters of each axis are free; &amp; 1 m is 2' Set effective sampling for each axis

數(若是2維標記的# p A 的話即為3個,1維標記的話為6個)。 不過,此處,笛‘ μ 片乂後之晶圓之排列,亦有可能與過去 之晶圓之排列不同’本實施形態為因應該種情形,係與模 式之AIC(M )一起亦算出模AIC(M)。因此,此處係考 51 ^77598 慮若干的餘裕,將有效取樣數就模式Μ各軸之參數3再加 上1 ’而就各軸設為4以上(例如16)。又,此處,在1〜3〇 之各有效取樣數之應測量之晶圓標記之數量及配置係預先 推定為最大概度,儲存於記憶裝置47,在有效取樣數被更 新時’在該自由度之資訊(晶圓標§己數及配置)從記情、事置 4 7被讀出至記憶體,將記憶體上之資訊更新為該資訊。 如别所述’第(m + 1)片以後之晶圓W,係就處理對象 之晶圓W實施步驟418〜步驟430之處理,判斷圖5之步 驟502。然後’在處理對象晶圓之照射區域之排列,顯示 出與過去之處理對象晶圓W之照射區域之排列相同的傾向 時’為AIC(M,)&lt;AIC(M) ’判斷即獲得肯定,而實施步驟 5〇4(模式M’之選擇)—步驟5〇6(條件判斷為否定)〜步驟 5〇8’進一步的將取樣資訊,以不致於小於模式μ之參數 自由度+ 1為限度,減少有效取樣數。然後,於步驟524 中,將根據事前知識b.〜d.之係數值,作為事前知識儲存 於記憶裝置47。 另一方面,在處理對象晶圓W之照射區域之排列,與 過去處理對象晶圓w之照射區域之排列不同時, ^AIC(M)為否定之判斷,而進至步驟51〇。步驟Η。中, 在模式Μ之餘數小於既定值之情形時,選擇模式μ作為 最佳模式,在步驟508係更新取樣資訊以使有效取樣數稍 微增加,於步驟524中,將該模式Μ中被分類為a.、b.之 係數(參數)值,作為新的事前知識與其他係數(常數)值一起 儲存至C憶裝置47(被分類為e之係數值原本即係根據事 52 1377598 前知識之值)〇另— 大於既定值時,進行於步驟510中,模式M之餘數 類為a〜e,在奴 6〜步驟524之處理,將被分 日二 ·'、數值作為新的參數重新求出,作為此次之 明圓之模式之係數保持於記憶體,而將被;: 係數值作為新的事前知識儲存至記憶裝置:一 ^外纟進仃步鄉516〜步驟522之處理 憶體上取樣數中之古^ ^ ^田於》己 數為參數時之樣數,係使模式(僅以a.、b.之係 取樣數,因此須將,有:自由度具有若干餘裕程度之小的 .、、“有效取樣數更新為對應以a.〜e.之係 数為參數時之模放 ,τ 驟516得到肯定的判的數1此,在步 樣資m,… 於步驟518巾,將記憶體上之取 數自由产d對應以3•〜之係數為參數時之模式之參 3〇)。6以上)的有效取樣數(例如與預設相同之 於下一步驟520中,麻媸张s纪 加取樣昭&amp;㈣ #所更新之取樣資訊’測量追 圓標記之位置實測值求出被分類一據所測量之晶 數反映二 將此次所求得之被分類為….之係 、於事别知識。進一步於步驟526巾 域之基準位置、儲存至記悻裝 王.,'、·品 之處理。 ^裝置47’之後結束子程式3〇9 行含二分別以批内之各晶圓為處理對象,依序進 直二St之步驟3〇7〜步心的循環處理, 步驟323中獲得肯定之判斷為止。在此期間, 53 1377598 程式309中,視處理對象晶圓之排列狀態,適當的、 ^每處理’動$的將模式之參數自由度及有效取樣數予 以最佳化6 又’本實施形態中所說明之以第一片、第二片、第一 二之晶圓為處理對象之子㈣期之處理流程僅為_例: 當該晶圓之排列良好的依據事前知識時,在以第一片晶圓 為處理對象時’亦能在步驟502、步驟510中得到肯定的 判斷。既有選擇模式M、M’之情形,亦有在以第二片晶圓 為處理對象時,步驟502之判斷為肯定、或步驟51〇之判 斷為否定之情形,或在以第三片晶圓為處理對象時,步驟 502之判斷為否定、或步驟5 1〇之判斷為肯定之情形。無 任何情形,本實施形態中,皆會在依序處理晶圓之過程中 累積事前知識’實現模式參數自由度之最佳化。 又,本實施形態中’雖係設m = 5 ’但可任意設定此值。 此m,最好是設定成能充分的獲得該批之模式M,之係數的 事前知識《例如,假設一次即能充分取得該等之事前知識 的話’亦可以是m = 1。 又’本實施形態中’在到批内之第m片為止,是不進 行有效取樣數之最佳化’但亦可省略步驟506之判斷,而 在批内第m片以内亦能進行有效取樣數之更新。 又’本實施形態,於子程式309中’係藉由判斷作為 第1回歸模式之模式Μ之餘數是否小於既定值,來決定是 否選擇第1回歸模式、或以上述式(6)之所有係數作為參數 之第3回歸模式的任一者,但不進行此判斷,而一併算出 54 1377598 第3回歸模式之AIC,與模式Μ之AIC加以比較,並選擇 其值較小者亦可。不過,此時,由於必須將圓標記之有效 取樣數,設為對應參數自由度較大之第3回歸模式的自由 度,而有使參數數量變大的傾向,因此,仍以進行上述程 式3 0 9較佳。 又,本實施形態中,係將作為事前知識所得之該係數 過去值的平均值’設定為該係數之代表值,但將處理前一(或 前數片)晶圓處理時之係數值作為代表值直接加以使用亦 可。將處理複數片晶圓時之係數值,反映至此次係數值的 情形時’可將該係數值分別予以加權處理。例如,將對最 近之事前知識之值進行最大的加權、或將對餘數小之晶圓 的事前知識之值進行最大的加權皆可。 由以上之說明可知,本實施形態,係由主控制裝置 之記憶裝置47及記憶體來構成記憶裝置。此外,本實施 形態中,主控制裝置20,係對應本發明之位置檢測裝置之 選擇裝置、算出裝£、更新裝置、最佳化裝置、及決定裝 置。亦即’藉由主控制裝置20之CPU所進行之步驟術 〜步驟430(圖4)及步驟502、步驟504、步驟51〇、步驟Η】、 步驟522(圖5)之處理實現選擇裝置之功能,藉由步驟 526(圖5)之處理實現算出裝置之功能,藉由步騾%%'、步 驟508、步騾5U〜步驟“ο、步驟524(圖”之處理實現 更新裝置之功能《並藉由步驟4〇2〜步驟43〇(圖4)、步驟 5〇2〜步驟504、步驟51〇、步驟512、步驟522、步驟似(圖 5)之處理實現最佳化裝置之功能,藉由步驟5〇6、步驟5M、 55The number is 3 for the # p A of the 2D mark and 6 for the 1D mark. However, here, the arrangement of the wafers after the flutes may be different from the arrangement of the wafers in the past. This embodiment is based on the case where AIC(M) is also calculated. AIC (M). Therefore, in this case, a certain margin is considered, and the number of effective samples is increased by 1 ’ in the mode Μ parameter 3 of each axis, and each axis is set to 4 or more (for example, 16). Here, the number and arrangement of the wafer marks to be measured for each of the effective number of samples 1 to 3 are presumed to be the most approximate, and are stored in the memory device 47, when the number of valid samples is updated. The information on the degree of freedom (the number of wafers and the configuration) is read from the memory and the event to the memory, and the information on the memory is updated to the information. The wafer W after the (m + 1)th sheet is subjected to the processing of steps 418 to 430 for the wafer W to be processed, and the step 502 of Fig. 5 is determined. Then, 'when the arrangement of the irradiation areas of the processing target wafers shows the same tendency as the arrangement of the irradiation areas of the wafer W to be processed in the past, 'AIC(M,) &lt;AIC(M)' is judged. And step 5〇4 (selection of mode M')—step 5〇6 (conditional judgment is negative)~step 5〇8' further sample information so as not to be less than the parameter μ parameter degree of freedom + 1 Limit, reduce the number of valid samples. Then, in step 524, the coefficient values based on the prior knowledge b. to d. are stored in the memory device 47 as prior knowledge. On the other hand, when the arrangement of the irradiation areas of the processing target wafer W is different from the arrangement of the irradiation areas of the processing target wafer w in the past, ^AIC(M) is judged as negative, and the process proceeds to step 51. Step Η. In the case where the remainder of the mode 小于 is less than the predetermined value, the mode μ is selected as the optimal mode, and in step 508, the sampling information is updated to increase the number of valid samples slightly. In step 524, the mode is classified as The coefficient (parameter) value of a., b. is stored as a new prior knowledge with other coefficient (constant) values to the C memory device 47 (the value of the coefficient classified as e is originally based on the value of the knowledge before 52 1377598) 〇 — — — 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于 大于As the mode of the bright circle of this time, the coefficient is kept in the memory, and will be:; the coefficient value is stored as a new prior knowledge to the memory device: a ^ outside the 仃 仃 乡 乡 516 ~ 522 522 processing memory In the number of samples, the number of samples in the number of samples is the number of samples, which is the number of samples (only a., b. is the number of samples, so it must be, there are: the degree of freedom has a small margin ., "The number of valid samples is updated to correspond to the a.~e. When the number is a parameter, the τ step 516 is affirmed by the number of 1, and in the step sample m, ... in step 518, the memory on the memory is freely produced corresponding to the coefficient of 3•~ The number of valid samples of the parameter at the time of the parameter (3)) (6 or more) (for example, the same as the preset in the next step 520, the 媸 媸 s 加 加 取样 sampling &amp; (4) # updated sampling information 'measurement The measured position of the position of the round mark is used to determine the number of crystals measured by the classified data. The second part of the rounded mark is classified into the system of the item, and the knowledge of the item is further classified. Save to the memory of the king., ', · the processing of the product. ^ After the device 47', the end of the subroutine 3〇9 line containing two of the wafers in the batch for processing, sequentially into the second step St 3 〇7~step cycle processing, step 323 obtains a positive judgment. During this period, 53 1377598 program 309, depending on the arrangement state of the processing target wafer, appropriate, ^ per processing 'moving $' mode Parameter freedom and effective number of samples are optimized 6 and described in the present embodiment The processing flow of the first, second, and first wafers for the processing object (fourth) is only _example: when the wafer is well-arranged based on prior knowledge, the first wafer is processed. In the case of the object ', the positive judgment can be obtained in step 502 and step 510. In the case of selecting the mode M, M', and when the second wafer is to be processed, the determination in step 502 is affirmative, or If the determination in step 51 is negative, or when the third wafer is to be processed, the determination in step 502 is negative, or the determination in step 5 1 is affirmative. In any case, in this embodiment, In the process of processing the wafers in sequence, the pre-existing knowledge is accumulated to optimize the degree of freedom of the parameter parameters. Further, in the present embodiment, 'm = 5 ' is set, but this value can be arbitrarily set. Preferably, m is set to be sufficient to obtain the prior knowledge of the coefficient of the pattern M of the batch (for example, if it is assumed that the prior knowledge can be fully obtained at one time), m = 1. Further, in the present embodiment, 'the number of valid samples is not optimized until the mth slice in the batch', but the judgment of step 506 can be omitted, and effective sampling can be performed within the mth slice in the batch. The number is updated. Further, in the present embodiment, in the subroutine 309, it is determined whether or not the first regression mode or all the coefficients of the above equation (6) are selected by determining whether or not the remainder of the mode as the first regression mode is smaller than a predetermined value. As the third regression mode of the parameter, the AIC of the third regression mode of 54 1377598 is calculated together, and the AIC of the mode is compared with the AIC of the mode, and the value is smaller. However, at this time, since it is necessary to set the number of effective samples of the circle mark to the degree of freedom of the third regression mode having a large degree of parameter freedom, the number of parameters tends to increase, so that the above program 3 is still performed. 0 9 is preferred. Further, in the present embodiment, the average value of the past values of the coefficient obtained as the prior knowledge is set as the representative value of the coefficient, but the coefficient value at the time of processing the previous (or previous) wafer processing is represented. Values can also be used directly. When the coefficient value when processing a plurality of wafers is reflected to the current coefficient value, the coefficient values can be weighted separately. For example, the value of the most prior knowledge can be weighted the most, or the value of the prior knowledge of the remaining small wafer can be maximized. As apparent from the above description, in the present embodiment, the memory device is constituted by the memory device 47 of the main control device and the memory. Further, in the present embodiment, the main control device 20 corresponds to the selection device of the position detecting device of the present invention, the calculation device, the updating device, the optimization device, and the determining device. That is, the processing by the CPU of the main control device 20 to step 430 (FIG. 4) and step 502, step 504, step 51, step 、, step 522 (FIG. 5) realizes the selection device. Function, the function of the calculating device is realized by the processing of step 526 (Fig. 5), and the function of updating the device is realized by the steps of %%', step 508, step 5U~step "o, step 524 (picture)" And performing the functions of the optimization device by the processes of step 4〇2 to step 43〇 (FIG. 4), steps 5〇2 to 504, step 51〇, step 512, step 522, and step (FIG. 5), By step 5〇6, step 5M, 55

由度分別不同之若干個 正確模式之規準的AIC,根據參數 個回歸模式(模式Μ、M’等)之AIC, 就晶圓W上複數個照射區域SAP之排列,選擇最像正確的 回歸模式。據此,由於能選出最接近真的模式之模式,因 此旎以良好精度算出複數個照射區域SAP之中心位置的位 置資訊。 又’根據本實施形態,在將複數個晶圓W依序作為檢 測對象時,係就每一晶圓反覆實施子程式3〇9之模式參數 及有效取樣數的最佳化。此外,於子程式309中,根據與 回歸模式(上述式(6),係與每次依序檢測晶圓w之照射區 域SAP之位置資訊所得之複數個照射區域SAp的回歸模式) 之係數相關的事前知識,與載台座標中、作為此次位置資 訊檢測對象之晶圓W之複數個照射區域SAP中附設於若 干個照射區域SAi之晶圓標記Mi k之位置資訊實測值(h 個)’根據對應回歸模式之參數自由度的AIC,將回歸模式 之參數自由度予以最佳化。並根據被最佳化之參數自由 度’決定作為下次之位置資訊檢測對象之晶圓w中附設於 各照射[^域SAP之bb圓彳示s己之實測值的有效取樣數β如此, 由於能根據被最佳化之參數自由度進行晶圓標記Mi,k之位 56 1377598 置實測值之有效取樣數的增減,因此能在短時間内、且以 良好之精度檢測各照射區域SAP之基準位置。 又’根據本實施形態之曝光裝置100,由於係以高精 度檢測出原步驟之複數個照射區域SAP的基準位置,因此 能實現短時間、高精度的重疊曝光。 又,上述實施形態’係在參數自由度不同之模式的比 較上使用AIC ’但亦可使用其他準則,例如亦可使用貝氏 資訊量準則(Bayesian Information Criterion : BIC)。上述統 計模式Μ之BIC,係以下式表示。 [式 12] ' -2 * logZ + d - logw - (12) 如此式所示,BIC之補償項的第2項,是不同於Aic。 亦即,AIC之第2項為2d,相對於此,眺則為d·— n 係有效取樣數。因此,肖AIC相較,BIC是被設^為補償 較大,设定成能降低選擇參數數量多之統計模式的傾向。 此外’AIC與BIC皆是在正則模式中取樣數充分大時, 作為模式對母集團之一般化誤差、或漸近於對數概度所導 出者。由於線性回歸模式為正則模式,因此使用此等評價 規範可以說是妥當的。 不過,上述實施形態中,為兼顧產能,因此用以進行 :2分析之取樣數小,因此上述漸進論之適用並不一定是 二田的。是以最好是能將上述AIC及mc之一般化的具補 員之對數概度定義如下式,並選擇以此為最佳之模式。 [式 13] 57 1377598 PL = logL-P(m〇delnyd 调 此處,PL係具補償之對數概According to the AIC of several correct modes with different degrees, according to the AIC of the parameter regression mode (mode Μ, M', etc.), the arrangement of the plurality of illumination areas SAP on the wafer W is selected to select the most correct regression mode. . According to this, since the mode closest to the true mode can be selected, the position information of the center position of the plurality of irradiation areas SAP is calculated with good precision. Further, according to the present embodiment, when a plurality of wafers W are sequentially detected, the mode parameters and the number of effective samples of the subroutine 3〇9 are successively optimized for each wafer. Further, in the subroutine 309, according to the coefficient of the regression mode (the above equation (6), the regression pattern of the plurality of irradiation regions SAp obtained by sequentially detecting the position information of the irradiation region SAP of the wafer w) The pre-existing knowledge, and the measured position value (h) of the wafer mark Mi k attached to the plurality of irradiation areas SAi in the plurality of irradiation areas SAP of the wafer W as the object of the position information detection in the stage coordinates 'The parameter freedom of the regression mode is optimized according to the AIC of the parameter degree of freedom corresponding to the regression mode. And determining the effective number of samples β attached to each of the illuminations of the wafer w to be the next position information detection target according to the optimized parameter degree of freedom, such as the measured value of the measured value of the bb circle of the SAP field. Since the wafer mark Mi, k bit 56 1377598 can be used to increase or decrease the effective number of samples according to the optimized parameter degree of freedom, it is possible to detect each irradiation area SAP in a short time and with good precision. The base position. Further, according to the exposure apparatus 100 of the present embodiment, since the reference position of the plurality of irradiation areas SAP in the original step is detected with high precision, it is possible to realize superimposed exposure with short time and high precision. Further, in the above embodiment, AIC' is used for comparison of modes having different degrees of parameter freedom, but other criteria may be used. For example, Bayesian Information Criterion (BIC) may be used. The BIC of the above statistical model is expressed by the following formula. [Expression 12] ' -2 * logZ + d - logw - (12) As shown in this equation, the second term of the compensation term of BIC is different from Aic. That is, the second item of AIC is 2d, whereas 眺 is the effective number of samples of d·-n. Therefore, compared with the Xiao AIC, the BIC is set to have a large compensation, and is set to a tendency to reduce the statistical mode in which the number of selection parameters is large. In addition, both 'AIC and BIC are derived as a generalization error or asymptotic logarithm of the pattern to the parent group when the number of samples is sufficiently large in the regular mode. Since the linear regression model is a regular pattern, it is appropriate to use these evaluation specifications. However, in the above embodiment, since the throughput is small, the number of samples used for the analysis of 2 is small. Therefore, the application of the above-mentioned gradual theory is not necessarily the second. It is preferable to define the logarithmic generality of the complement of the above-mentioned AIC and mc as follows, and select the best mode. [Equation 13] 57 1377598 PL = logL-P (m〇delnyd tune here, the logarithm of the compensation of the PL system)

與BIC相反之原因,係 …項之符戒在AIC ’、i式為用以評價PL較大者為戸 好之故。PL·之第2項,总A 权八有為良 -崎以d丨、 ,、、AIC^BIC同樣的為補償項, 右設冷(model,n)= 2 ίΛ红… 2的話,PL即為AIC,若設 = logn的話,即為BIC。 P、加丨,η) 、 点之值可藉由模擬等來加以決定, 亦可視需要設為依存於拍^ 樣數(亦即種類(亦即则昶1)與取 ^(亦Ρ η)的函數。作為此函數之—例,可採用 參數增大之餘數變化量的如炷 ' 里的期#值。例如,在比較第1回歸 模式與第3回歸模式時,取將 ^ 畜為6.之係數作為根據 事剛知識之值時之模式的餘數、與將被分類為^传數亦 作為參數時之餘數的差值的期望值,將該值作為万即可。 如此,最適合的模式中,該餘數較其前後之模式的餘數極The reason for the opposite of BIC is that the symbol of the item is AIC ’, and the formula i is used to evaluate the larger PL. The second item of PL·, the total A right, eight is good, the other is the same as d丨, ,, and AIC^BIC, and the right is cold (model, n) = 2 ίΛ红... 2, PL is For AIC, if = logn, it is BIC. P, 丨, η), the value of the point can be determined by simulation, etc., and can also be set as dependent on the number of shots (ie, type (ie, 昶1) and take ^(also η η). As a function of this function, the period # value in the remainder of the parameter increase amount can be used. For example, when comparing the first regression mode and the third regression mode, take the animal as 6 The coefficient is the expected value of the difference between the mode based on the value of the knowledge and the remainder of the parameter that is classified as the number of passes, and the value is 10,000. Thus, the most suitable mode In the remainder of the pattern before and after

端的小,上述差之期望值有可能在負側為極大,^ K 之值變大,該模式即容易被選擇之故。此外,線性回歸模 式雖為正貝I但此係在評價自自度較大之模式肖,欲追加 之參數的順序(優先順位)已預先決定之情形。雖有取樣數 小的問題,但為了保證使用AIC,BIC的妥當性,上述實施 形態令,係預先決定欲追加之參數的順序。能自由的更換 欲追加之參數的情形時,回歸模式為非正則,Aic MG即 失去其妥當性,但在使用具補償之對數概度時,若使用合 於非正則性之万的話,即不須特別的指定參數之優先^ 位0 不之評 又,上述實施形態中,係將餘數以上述式(7)所 58 1377598 價函數E、亦即以誤差平方除以取樣數來加以表現,但本 發明並不限於此《例如,餘數是依常態分佈時從取樣數減 去參數自由度所得之餘數分散的不偏估算值,或是非誤差 平方本身(由於誤差平方本身會根據取樣數增減因此並不 適當)、適合用來表現餘數者之任一皆可。 又,上述實施形態中,雖係就在一批内之模式參數最 佳化作了說明’但經過同一製程之複數批中,#有模範式 係數之事前知識亦是可能的。例如’在處理經過同一、製^ ^复數批的情形時,將與前次所處理之批相關之參數的事 前知識儲存於記憶裝置47 ’將其用於此批之參數之 事前知識即可。 ’ 又,上述實施形態中,作為某一模式(模式⑷之基準, 係藉由比較參數自由度小於該模式之模式、與大於該 :模式的3個模式之確定程度,來選擇最佳的模式 ::不限於此’亦可進行4個模式以上之比較。例如, =以上模式分別算出AIC之值,選擇該值最小的模式 凡5τ,隹能週 — &lt;棋式的情形時,盘 施形態同樣的,將參數自由 旰與上述實 2小的模式設為模式M,將;=模式設為模式M’、第 模式,來進行模式之最佳IS複^ 式存在複數個,因此在步驟51。之判:,由於第3回歸模 數個第3回歸模式分別求出aic之值二疋時,就該複 式即可。 選擇該值最小的模 59 1377598 又’上述實施形態,係就在6點EGA參數外,再加上 同時考慮了照射成分之模範式所作的最佳化,但本發明並 不限於此模範式。例如,亦可適用於不僅考慮照射區域排 列的1次成分’亦同時考慮了 2次以上之高次成分的模式。 此模式,係將上述式(4)之(DX. DY)置換為下式之(dx,,DY,) 的模式。 [式 14] rDX'^ rDX + α, · (DX)2 + α2 (DX DY)2 + α3 · (DY)2 + · ·N 、沉 + A ·(似O2 + A ·(狀· Dr)2 + 爲.(训)2 + … …(14) 上述模式中,除前述6個EGA參數外,係數αι,%, α3,…’ β1} β2,β3,…為未知參數。由於此參數,一般來 說被認為在批内之變動亦較小,因此最好是能將其分類為 d ·或 e · 〇 承上所述’高次成分亦加以考慮時,可將含上述高次 成分之模式、與考慮上述實施形態所使用之照射内成分的 佛教’或將含高次成分與照射内成分雙方的模式,分設為 第3回歸模式。 又,上述實施形態中’ EGA之回歸模式雖係依據上述 式(6)之模式,但亦可以是依據上述式(4)之模式。除此之外, 亦可以是依據以正交度誤差W及殘留旋轉誤差Θ等作為係 數之上述式(2)之模式。此時,雖然殘留旋轉誤差Θ最好是 能被分類為a.,但由於正交度誤差W係依存於以那一個曝 光裝置來使原製程之層曝光,而被認為在批内之變動少, 因此以分類為C·或d·較為妥當。 60 時,在選擇了以此正交度誤差…作為係數之模式 參數值顯著的不同時,將此標記之測量所得之 性=:曝:裝置、與過去晶圓之曝光裝置不同的可能 產二:述高次成分、及照射内成分亦有可能 作為參數亦可。如此,視传數=關之係數,無條件的 與其他係數之變化的關連有該係數之變化 話,生非*冰者,若利用該關連性的 活,此使模式參數之最佳化更為有效率。 怜^’47上述實施形態中’雖係將作為事前知識儲存在記 ^之係數值的平均值,S定為㈣數之值,但並 :最此好:可從過去所得在該係數之若干個參數值之變 :(最…低通處理等加以平滑化)等,來預測在此次 處理對象晶圓之係數值。 龙 i述實施形態中’雖係使用所有h個晶圓標記來 ,GA模式之係數,但對於h個晶圓標記中、t位置可 ::的視為偏離照射排列模式者,可將該標記之實測值從 結果中加以排除。然而,在排除後,晶圓標記之有效 =樣數,當然是須大於模式之參數自由度。作為排除實測 值之方法,雖可使用各種方法,亦可適用使用上述㈣之 方法。再者’完全不排除測量值,而考慮顯示各測量值之 ^常值分佈的機率密度分佈函數、或顯示異常值分佈之機 率达'度分佈函數的線性結合所構成之混合分佈模式,一邊 考慮測量值之正常度、異常度,-邊實行上述最佳化亦可。 13775卯 上迷實施形態中 八 B 你很骒上述準則(具補償之對双 概度)來判斷疋選擇模式Μ與描々 ^丨丨定换 與模式Μ’之何者。依據此準則 之判疋,雖可說是根據統 準中最重要的一點,是盡2之“性的判定,但晶圓對 ^ ^ 〇此的提尚對準精度、亦即以盡 可此的縮小餘數為最終目 式M,之情形時,亦可在”二例如即使是在選擇模 朗值,/ P ^ 在以模式M之評價函數£之值設定 闕值在E大於該值時,谁一 ^ .Λ , Έ. Θ 進步進行取樣照射之晶圓照射 之追加測1,重新進行模式Μ與料Μ,之_,或 可設定與模式Μ及模式Μ, 一 ^ _ _ ,Β _ 』之新的模式’在新的模式 下進灯根據具補償對數概度的評價、餘數之判定。 祀據二上:實施形態中’係從參數自由度相異之模式中, 根據各棋式之具補償的對數概度,選擇最佳的模式, 不限於此。將模式之各係數 —並 Γ 所得之值,衫為該模式之係數值亦^ 式-之該係數之事前知識之值= 二與根據在模 .,以 AIC(M)與 AIC(M,)之 =之比予以加權平均所得之值,作為該係數之值。亦即,If the end is small, the expected value of the above difference may be extremely large on the negative side, and the value of ^ K becomes large, and the mode is easy to be selected. In addition, although the linear regression mode is the positive shell I, this is a mode in which the self-sufficiency mode is evaluated, and the order of the parameters to be added (priority order) is determined in advance. Although there is a problem that the number of samples is small, in order to ensure the validity of the use of the AIC and the BIC, the above-described embodiment order determines the order of the parameters to be added in advance. When the parameter to be added can be freely changed, the regression mode is non-regular, and the Aic MG loses its validity. However, when using the logarithm of the logarithm with compensation, if the use of the non-regularity is used, In particular, in the above embodiment, the remainder is expressed by the price function E of 58 1377598 in the above equation (7), that is, by dividing the square of the error by the number of samples, but The present invention is not limited to this. For example, the remainder is an unbiased estimate of the remainder of the parameter deviation obtained by subtracting the parameter degrees of freedom from the number of samples, or the non-error square itself (since the square of the error itself increases or decreases according to the number of samples) Inappropriate), suitable for any of the remainder. Further, in the above-described embodiment, although the mode parameters in one batch are optimized, it is explained that, in the plural batches of the same process, it is also possible to know that there is a model coefficient. For example, when the processing is performed through the same batch, the prior knowledge of the parameters associated with the batch previously processed is stored in the memory device 47' for prior knowledge of the parameters of the batch. Further, in the above embodiment, as a reference to the mode (4), the optimum mode is selected by comparing the mode whose parameter degree of freedom is smaller than the mode and the degree of determination of the three modes larger than the mode. :: It is not limited to this. It is also possible to compare more than four modes. For example, = above mode calculates the value of AIC, and selects the mode with the smallest value of 5τ, 隹 can week - &lt; chess type, when In the same manner, the parameter free 旰 and the mode smaller than the real 2 are set to the mode M, and the == mode is set to the mode M' and the mode, and the optimal IS complex mode of the mode is plural, so in the step 51. Judgment: Since the third regression mode of the third regression modulus finds the value of aic two, respectively, the complex can be used. Select the model with the smallest value of 59 1377598 and the above embodiment is In addition to the 6-point EGA parameter, and the optimization of the model of the illumination component is considered, the present invention is not limited to this model. For example, it can be applied to not only the primary component of the irradiation region arrangement but also Considered more than 2 times at the same time The mode of the higher order component. This mode is a mode in which (DX. DY) of the above formula (4) is replaced by (dx, DY,) of the following formula. [Expression 14] rDX'^ rDX + α, · (DX)2 + α2 (DX DY)2 + α3 · (DY)2 + · · N, sink + A · (like O2 + A · (form · Dr) 2 + is . (train) 2 + ... ( 14) In the above mode, except for the above six EGA parameters, the coefficients αι,%, α3,...'β1} β2,β3,... are unknown parameters. Because of this parameter, it is generally considered that the variation within the batch is also It is small, so it is preferable to classify it as d · or e · When considering the above-mentioned high-order component, the mode containing the above-mentioned high-order component and the irradiation used in consideration of the above embodiment can be used. The composition of Buddhism's or the pattern containing both the high-order component and the irradiated component is divided into the third regression mode. In the above embodiment, the EGA regression mode is based on the above formula (6), but It may be a mode according to the above formula (4). Alternatively, it may be a mode according to the above formula (2) which uses the orthogonality error W and the residual rotation error Θ as coefficients. In this case, although the residual rotation error Θ is preferably classified as a., since the orthogonality error W is dependent on the exposure device to expose the layer of the original process, it is considered to be within the batch. The change is small, so it is more appropriate to classify it as C· or d· 60. When the value of the mode parameter with this orthogonality error... as the coefficient is significantly different, the measured value of this mark =: exposure : The device and the exposure device of the past wafer are different. The high-order component and the internal component of the irradiation may also be used as parameters. Thus, the number of passes = the coefficient of the off, unconditionally related to the change of other coefficients, the change of the coefficient, the non-* iceer, if the correlation is used, this optimizes the mode parameters. Efficient. Pity ^'47 In the above embodiment, 'the average value of the coefficient value stored as the prior knowledge, S is the value of the (four) number, but: the best: the number of the coefficient that can be obtained from the past The change of the parameter values: (most... smoothing by low-pass processing, etc.), etc., to predict the coefficient value of the wafer to be processed at this time. In the embodiment, the coefficient of the GA mode is used for all h wafer marks, but for the h wafer marks, the t position can be regarded as deviating from the illumination arrangement pattern, and the mark can be used. The measured values are excluded from the results. However, after exclusion, the effective number of wafer marks = the number of parameters must be greater than the parameter's degree of freedom. As a method of excluding the actual measurement value, various methods can be used, and the method of the above (4) can also be applied. Furthermore, 'the measurement value is not excluded at all, and the probability distribution function showing the constant value distribution of each measurement value or the mixed distribution pattern showing the linear combination of the probability distribution of the degree distribution function is considered. The normality of the measured value, the degree of abnormality, and the above optimization may be performed. 13775卯 In the above embodiment, VIII B. You are very embarrassed by the above criteria (with the compensation of the double degree) to judge the choice mode and the description of the mode and the mode. According to the judgment of this criterion, although it can be said that it is the most important point in the standard, it is the "sexual judgment" of the 2, but the wafer is correct to the accuracy of the alignment. The reduced remainder is the final objective M. In the case of the second, for example, even if the modulus value is selected, /P ^ is set at the value of the evaluation function £ in the mode M. When the value of E is greater than the value, Whoever ^ .Λ , Έ. 进步 Improve the additional measurement of the wafer irradiation by sampling and irradiation, re-execute the mode Μ and Μ, _, or can be set with the mode Μ and mode Μ, a ^ _ _ , Β _ The new mode of 'in the new mode is based on the evaluation of the logarithm of the compensation logarithm and the remainder. According to the second paragraph: in the embodiment, the mode is selected from the mode of the parameter degrees of freedom, and the optimal mode is selected according to the logarithm of the compensation of each chess type, and is not limited thereto. The coefficients of the mode—and the value obtained, the value of the coefficient of the model is also the value of the pre-knowledge of the coefficient of the formula = two and according to the modulo., AIC (M) and AIC (M,) The ratio of the ratio of the weighted average is taken as the value of the coefficient. that is,

此^ ’可將該係數之值,視為將根據事前知識之值,根據 此次取樣照射之晶圓標記之測量值加以修正者。又,^艮據 步求出在使心此加$㈣W 餘數E,並算出在μ—、— 數值式時的 桓h 在該模式之伙,與模式Μ,之AIC(M,h = '之广㈤加以比較,選擇3個模式中最佳的模: 數的各1夕,進仃上述加權之情形時’為因應各晶圓之參 變化’最好是能使用對參數增加之補償變化較小 62 1377598 的準則。關於此點,使用AIC較使用bic為佳β 又,上述實施形態中,威將EGA方式之模式之係數分 類為a.〜e.,但並不限於此。例如,亦可分類為就各製程 推定及變化之係數、就製品種類推定及變化之係數、或定 期的推定及變化之係數等各種範嘴。又,將分類為相同範 t之參數之間亦賦予優先順位,以該順序慢慢的進行參數 自由度之增減亦可。此外,不特別的將EGA方式之模範式 之係數加以分類,而對所有係數賦予優先順位,以該順序 2行參數自由度之增減當然亦是可以的…在決;此優 先順位時,若其係數亦包含高次成分時,最好是次數越高 者其優先順位越後(設定為易於使用事前知識)。 又,本發明’係以待評價模式之參數自由度 適當的有效取樣數,來測量取樣照射之晶圓標記,上述實 施形態,係就參數自由度相異之複數個模式,求出 據各⑷由度所對應之有效取樣數的取樣照射之:圓標 5己數里及配置,將其儲存至記憶裝置47, u* _L. n± «選擇最像正確 之模式夺,即從記憶裝置47,讀取滿足該 ^ ^ # A ^ ^ /模式之參數自由 度所對應之適古之有效取樣數的取樣 量及配置相關μ $ 耵之日日圓標記的數 里及配置相關的資訊’將所讀取之内容 以更新記憶體上之取樣資訊。 。己隐體上,據 與根據既定有效取樣數之晶圓標記 資訊的作成方法 Β 置及配置相關 貝凡珉方法,是可採用各種方法的。 施形態般,如圖2所干s ',如上述實 所不之曰曰圓’存I 4個晶 個晶圓標記中,選擇h個晶圓標記時之組圓標心此4 馬4NCh。因此, 63 、’。之各個推定全照射區域之重疊誤差的期待值及標 分散,將該推定值良好(最小)的組合,作為在該有效取 數之取樣照射的數量及配置亦可。&amp;,此全照射區域之 疊誤差的期待值及標本分散,雖須求出在所選擇之模式 之^係數的最高概度推定值,但模式之各係數之最高概度 推疋值’可使用該晶圓標記之設計位置、和依經驗所求出 ,該晶圓#記之設計與實測位置之差之誤差分佈的標 準偏差,根據以最小平方法下之評價函數為最小之條件式 所作成之所謂的正規方程式來加以求出。 上述實施形態中,係在進行曝光動作之前,將取樣照 射之數量及配置以上述方法等來加以求出,但在上述曝光 動作中之子程式309中,實施前述最高概度推定方法,即 時進行取樣照射之數量及配置的最佳化亦可。 又,上述實施形態中,作為對準系統AS係使用FIA 方式之對準感測器,如前所述,將雷射光照射於晶圓w上 之點線狀對準標記,使用因該標記而繞射或散射之光來檢 測標記位置的LSA(Laser Step Alignment)方式的對準感 測,以及將此對準感測器與上述FIA方式適當加以組合的 對準感測器,亦是可適用於本發明。此外,例如將同調的 檢測光照射於被檢測面之標記,將從該標記產生的2個繞 射光(例如同次數)加以干涉來進行檢測之對準感測器,單 獨或與上述FIA方式、LSA方式等適當的加以組合之對準 感測器,當然亦是可以適用於本發明。 又’對準感測器亦可以是轴上(on_axis)方式(例如 64 1377598 TTL(Thr〇Ugh The Lens)方式等)。再者,對準檢測系統並 不限於使對準標記大致靜止在對準系統之檢測視野内的狀 態下進行其檢測者,亦可以是使對準檢測系統照射之檢測 光、與對準標記相對移動之方式(例如前述之LSA系、以 及零差式(h〇m〇dyne)LIA系等)^在使用使檢測光與對準標 記相對移動之方式時,最好是能使該相對移動方向、與檢 測前述各對準標記時之晶圓載台WST之移動方向為同一 方向。 又,上述實施形態,雖係就本發明使用於步進掃描(以邛 &amp; Scan)方式之掃描型曝光裝置的情形作了說明但本發明 之適用範圍當然並限於此。亦即,亦是非常適合使用於步 進重複方(Step &amp; Repeat)方式、步進接合(Step &amp; Stitch)方 式、反射鏡投影、對準器(Aligner)、及光學複製機(ph〇t〇 repeator)等。此外,投影光學系統PL,可以是折射系、折 反射系、及反射系之任一者。 又’本發明所使用之曝光裝置之光源,雖係KrF準分 子雷射及ArF準分子雷射' &amp;雷射等,但亦可以是其他真 空紫外線區域之脈衝雷射光源。除此之外,作為曝光用照 明光’亦可使用將自DFB半導體雷射或光纖雷射振盈之紅 外區域或可視區域之單一波長雷射,以例如摻雜铒(或鉢與 紀兩者)之光纖放大器加以放大,且使用非線性光學結晶波 長轉換為紫外光之高次諧波。 又’將由複數片逸鏡構成之照明光學系統、投影光學 系統、以及對準檢測系統AS組裝至曝光裝置本體,進行 65 光學調整,並將由多數個機械零件組成之標線片載台、晶 圓載台安裝至曝光裝置本體後進行線路及管路之連接,進 一步進行綜合調整(電氣調整、動作確認等),即能製造上 述實施形態之曝光裝置。此外,曝光裝置之製造,最好是 月b在m•度及潔淨度受到管理之無塵室中進行。 又,本發明不僅能應用於製造半導體元件之曝光裝置, 亦忐應用於包含液晶顯示元件等顯示器之製造時,所使用 之將元件圖案轉印至玻璃基板上之曝光裝置&quot;冬製造薄膜 磁頭時所使用之元件圖案轉印至陶瓷晶圓上之曝光裝置, 以及用以製造攝影元件(CCD等)、有機EL、微機器及DNA 晶片等之曝光裝置。此外,不僅是製造半導體元件等之微 兀件,為製造光曝光裝置、EUV曝光裝置、χ光曝光裝置、 及電子束曝光裝置等所使用之標線片或光罩,而將電路圖 案轉印至玻璃基板或矽晶圓等之曝光裝置亦能適用本發 明。此處,使用DUV(深紫外線)或vuv(真空紫外線)光等 之曝光裝置一般係使用透射型標線片,作為標線片基板, 係使用石英玻璃、摻雜了氟之石英玻璃、螢石、或水晶等。 又,近接方式之X光曝光裝置、或電子束曝光裝置等,則 係使用透射型光罩(模板光罩(stencil mask)、薄膜光罩 (membrane mask)) ’作為光罩基板係使用矽晶圓等。 又’本發明之位置檢測方法,不限於曝光裝置,只要 是有需要從物體上形成之某種複數個標記中,選出若干個 標§己並加以檢測的裝置的話,皆可適用。 《元件製造方法》 接著’說明在微影製程使用上述曝光裝置1〇〇之元件 66 1377598 之製造方法之實施形態。 jgj 6 ’係顯示元件(1C或LSI等的半導體晶片、 板、CCD、菹脱 成明面 一 4膜磁頭、微機器等)之製造例之流程圖。如圖 6所示,首生 ® 目无,於步驟601(設計步驟)中,進行元件之 (例如+導體元件之電路設計等),並進行 現該功能之m由 疋灯用以實 圖案設計。接著,於步驟602(光罩製造步驟) 心成有所設計之電路圖案之光罩。另一方面,於 ,驟^ (曰曰圓製造步驟),使用矽等材料製造晶圓。 ; 〜接考,於步驟604(基板處理步驟)中,使用在步驟6〇1 技:Π3所準備的光罩與晶圓’如後述般地,藉由微影 ^ ,實際電路形成於晶圓上。然後,於步驟605(元件 ,裝步驟)中’使用在步驟604戶斤處理之晶圓進行元件組 、。此步冑605中,視需要包含有切割製程、結合製程、 及封裝製程(晶片封裝)等製程。 最後’於步驟606(檢查步驟)中,進行在步驟6〇5所作 成的疋件之動作確認測試、耐久測試等的檢查。經過如此 之製程後即完成元件而可出貨。 。圖7,係顯示半導體元件時,上述步驟604之詳細流 ,之-例。圖7中,於步驟611(氧化步驟)係使晶圓表面氧 二於步驟612(CVD步驟)中’係於晶圓表面形成絕緣膜。 雷=驟613(電極形成步驟)中,係藉由蒸鑛於晶圓上形成 和。於步驟614(離子植入步驟),係將離子植入晶圓。 1上=各步驟611〜步驟614,構成晶圓處理之各階段的前 理,程,於各階段中視所需之處理來選擇實施。 於晶圓製程的各階段中,當結束上述前處理製程,即 67 1377598 以下述方式實施後處理製程。該後處理製程,t先,於步 驟615(光阻形成步驟)中,將感光劑塗佈於晶圓。接著, 於步驟6叫曝光步驟)中,藉由以上說明之微影系統(曝光 裝置)及曝光方法將光罩之電路圖案轉印於晶圓上。其次, 於步驟617(顯像步驟)中,將己曝光之晶圓加以顯影,於 步驟618(㈣步驟)中,藉由㈣來除去殘留有光阻部份 之以外部份的露㈣件。接著,於㈣619(光崎去步轉) 中’去除己ϋ刻完成不須之光阻。 藉由重覆此等前處理製程與後處理製程,於晶圓上形 成多重電路圖案。 若使用以上說明之本實施形態之元件製造方法的話, 由於在曝光製程(步驟616)中係、使用能適用上述實施形態 之位置檢測方法的曝光裝置1〇〇,因此能實現高精度之曝 光。其結果,能製造積體度更高的元件。 本發明之位置檢測方法及裝置,非常適合用來進行物 體之位置對準之位置資訊的檢測。此外,本發明之曝光裝 方法非吊適合用來製造半導體元件、液晶顯示元件 等之微影製程。再者,本發明之元件製造方法,非常適合 微元件之生產。 【圖式簡單說明】 第1圖’係概略顯示本發明第1實施形態之曝光裝置 之構成的圖。 第2圖’係顯示晶圓上之照射區域及附設於此之晶圓 標記之配置例的圖。 第3圖’係顯示本發明一實施形態之曝光裝置在進行 68 曝光處理時、主 第4圖,係置之⑽之處理步輝的流程圖。 第5圖,係對準處理的流程圖(其υ。 第6圖,係用不曰曰圓對準處理的流程圖(其小 態的流程圖。、Μ明本發明之元件製造方法之實施形 圖 第7圖 ,係顯示第6圖之步驟 【主要 元件符號說明】 10 照明系統 15, 17 移動鏡 16 標線片干涉儀 18 晶圓干涉儀 19 載台控制裝置 20 主控制裝置(選擇裝置 22 24 最佳化裝置、決定裝. 標線片對準檢測系統 晶圓栽台驅動部 25 晶圓保持具 46 驅動裝置 47 記憶裝置 100 曝光裴置 AS 對準檢測系統(測量裝 FM 基準標記板 IL 照明光 % ' 69 1377598 Μρ,κ 晶圓標記 PL 投影光學系統 R 標線片 RST 標線片載台 SAP 照射區域 W 晶圓(物體) WST 晶圓載台This ^' can be regarded as a value that will be corrected based on the value of the prior knowledge and based on the measured value of the wafer mark irradiated by the sample. In addition, ^艮 is determined by adding the $(four)W remainder E to the heart, and calculating the 桓h in the mode of the μ-, -- numerical formula, and the pattern Μ, the AIC (M, h = ' Wide (5) to compare, choose the best mode among the three modes: the number of each of the 1st, when the above weighting is taken, 'in response to the change of the parameters of each wafer', it is better to use the compensation variation of the parameter increase. The criterion of small 62 1377598. In this regard, the use of AIC is better than the use of bic. In the above embodiment, the coefficient of the mode of the EGA mode is classified as a. to e., but is not limited thereto. For example, It can be classified into various factors such as the coefficient of estimation and change of each process, the coefficient of estimation and change of the product type, or the coefficient of periodic estimation and change. In addition, priority is given to the parameters classified into the same norm t. In this order, the parameter degrees of freedom may be slowly increased or decreased. In addition, the coefficients of the EGA mode norm are not specifically classified, and all coefficients are given priority order, and the order is 2 rows of parameter degrees of freedom. Of course, it is also possible to increase or decrease. In the case of a position, if the coefficient also includes a high-order component, it is preferable that the higher the number of times, the higher the priority is (the setting is easier to use the prior knowledge). Moreover, the present invention is effective in the parameter degree of freedom of the mode to be evaluated. The number of samples is used to measure the wafer mark of the sampled illumination. In the above embodiment, the sampling of the effective number of samples corresponding to each degree (4) is obtained for a plurality of modes in which the degrees of freedom of the parameters are different: the circle 5 Number and configuration, save it to the memory device 47, u* _L. n± «Select the most correct mode, that is, read from the memory device 47, the parameter degree of freedom satisfying the ^ ^ # A ^ ^ / mode Corresponding to the appropriate sampling quantity of the appropriate number of samples and the number of configuration-related μ $ 日 day mark and configuration related information 'will read the content to update the sampling information on the memory. In the above, according to the method of forming and configuring the related wafer mark information according to the established effective number of samples, various methods can be employed. In the same manner, as shown in FIG. 2, the above embodiment No In the circular 'storage I 4 wafer mark, the group circle mark when h wafer marks are selected is 4 horse 4NCh. Therefore, the expectation value and the mark of the overlap error of each of the estimated total irradiation areas are 63. Disperse, the combination of the estimated value is (small) as the number and arrangement of the sampled irradiation in the effective number. &amp;, the expected value of the stacking error in the total irradiation area and the dispersion of the specimen, The highest probability estimation value of the coefficient of the selected mode, but the highest approximate value of each coefficient of the mode can be obtained by using the design position of the wafer mark and empirically determined. The standard deviation of the error distribution between the design and the measured position is determined by a so-called normal equation which is formed by the conditional expression in which the evaluation function is the smallest under the least squares method. In the above embodiment, the number and arrangement of the sampled illumination are obtained by the above method before the exposure operation. However, in the subroutine 309 in the exposure operation, the highest estimation method is performed, and the sampling is performed immediately. The number of illuminations and the configuration can be optimized. Further, in the above-described embodiment, the alignment sensor AS is an FIA-type alignment sensor, and as described above, the laser beam is irradiated onto the dot-line alignment mark on the wafer w, and the mark is used. An alignment sensor that detects the LSA (Laser Step Alignment) mode of the mark position by diffracting or scattering light, and an alignment sensor that appropriately combines the alignment sensor with the FIA method described above is also applicable. In the present invention. Further, for example, the alignment sensor that irradiates the detected light to the detected surface, and the two diffracted lights (for example, the same number of times) generated by the mark interfere with each other to detect the alignment sensor alone or in combination with the FIA method described above. An alignment sensor that is suitably combined, such as the LSA method, is of course also applicable to the present invention. Further, the alignment sensor may be an on-axis (e.g., 64 1377598 TTL (Thr〇Ugh The Lens) method, etc.). Furthermore, the alignment detecting system is not limited to the detection of the alignment mark substantially stationary in the detection field of the alignment system, or the detection light irradiated by the alignment detection system may be opposite to the alignment mark. The manner of movement (for example, the aforementioned LSA system, and the homodyne (H〇m〇dyne) LIA system, etc.) ^ When using the method of moving the detection light and the alignment mark relatively, it is preferable to enable the relative movement direction. The direction of movement of the wafer stage WST when detecting each of the alignment marks is the same direction. Further, in the above embodiment, the present invention has been described in the case of a scanning type exposure apparatus of a step-and-scan type, but the scope of application of the present invention is of course limited thereto. That is, it is also very suitable for use in Step &amp; Repeat mode, Step & Stitch mode, Mirror projection, Aligner, and optical copying machine (ph〇 T〇repeator) and so on. Further, the projection optical system PL may be either a refractive system, a refractive system, or a reflective system. Further, the light source of the exposure apparatus used in the present invention is a KrF quasi-molecular laser and an ArF excimer laser &amp; laser, but may be a pulsed laser light source of other vacuum ultraviolet regions. In addition, as the illumination light for exposure, a single-wavelength laser which is an infrared region or a visible region from the DFB semiconductor laser or the laser laser oscillation may be used, for example, doped 铒 (or 钵 纪 两者The fiber amplifier is amplified and converted to the higher harmonics of the ultraviolet light using a nonlinear optical crystallographic wavelength. In addition, an illumination optical system, a projection optical system, and an alignment detection system AS composed of a plurality of mirrors are assembled to the exposure apparatus body, and optical adjustment is performed 65, and a reticle stage and a wafer carrier composed of a plurality of mechanical parts are mounted. The stage is attached to the main body of the exposure apparatus, and the line and the piping are connected, and further comprehensive adjustment (electrical adjustment, operation confirmation, etc.) is performed, that is, the exposure apparatus of the above embodiment can be manufactured. Further, the manufacture of the exposure apparatus is preferably carried out in a clean room in which the monthly b is managed in m•degrees and cleanliness. Further, the present invention can be applied not only to an exposure apparatus for manufacturing a semiconductor element, but also to an exposure apparatus for transferring a component pattern onto a glass substrate, which is used in the manufacture of a display including a liquid crystal display element, and the like. An exposure device for transferring a component pattern used on a ceramic wafer, and an exposure device for manufacturing a photographic element (CCD, etc.), an organic EL, a micromachine, and a DNA wafer. Further, not only a micro device for manufacturing a semiconductor element or the like, but also a circuit pattern or a photomask used for manufacturing a photo-exposure device, an EUV exposure device, a calender exposure device, and an electron beam exposure device, and transferring the circuit pattern The present invention is also applicable to an exposure apparatus such as a glass substrate or a tantalum wafer. Here, an exposure apparatus using DUV (deep ultraviolet ray) or vuv (vacuum ultraviolet ray) light or the like generally uses a transmission type reticle, and as a reticle substrate, quartz glass, fluorine-doped quartz glass, fluorite is used. , or crystal, etc. Further, in the X-ray exposure apparatus or the electron beam exposure apparatus of the proximity type, a transmissive mask (stencil mask, membrane mask) is used as the mask substrate. Round and so on. Further, the position detecting method of the present invention is not limited to the exposure apparatus, and any one of a plurality of types of marks which are required to be formed from an object, and a plurality of means for detecting and detecting them can be applied. <<Element Manufacturing Method>> Next, an embodiment of a manufacturing method of the element 66 1377598 using the above-described exposure apparatus 1 in the lithography process will be described. Jgj 6 ' is a flowchart showing a manufacturing example of a display element (a semiconductor wafer such as 1C or LSI, a board, a CCD, a 菹-deposited film, a micro-machine, etc.). As shown in Fig. 6, the first student is in the first step. In step 601 (design step), the component (for example, the circuit design of the +conductor component) is performed, and the function is performed by the xenon lamp for real pattern design. . Next, in step 602 (mask manufacturing step), a reticle with a designed circuit pattern is formed. On the other hand, in the step (manufacturing step), a wafer is produced using a material such as tantalum. ~ In the step 604 (substrate processing step), using the mask and wafer prepared in step 6〇1: Π3, as described later, the actual circuit is formed on the wafer by lithography on. Then, in step 605 (component, mounting step), the component group is processed using the wafer processed in step 604. In this step 605, a process such as a cutting process, a bonding process, and a packaging process (chip package) are included as needed. Finally, in step 606 (inspection step), the inspection of the action confirmation test, the endurance test, and the like of the component made in step 6〇5 is performed. After such a process, the components are completed and can be shipped. . Fig. 7 is a detailed flow of the above-described step 604 when a semiconductor element is shown, an example of which. In Fig. 7, in step 611 (oxidation step), the wafer surface oxygen is formed in the step 612 (CVD step) to form an insulating film on the surface of the wafer. In Ray = 613 (electrode forming step), a sum is formed on the wafer by steaming. In step 614 (ion implantation step), ions are implanted into the wafer. 1 Upper = Each of steps 611 to 614 constitutes a pre-processing of each stage of the wafer processing, and the process is selected and implemented in accordance with the required processing in each stage. In each stage of the wafer fabrication process, when the above pre-treatment process is completed, that is, 67 1377598, the post-treatment process is carried out in the following manner. The post-treatment process, t first, in step 615 (resistance forming step), applying a sensitizer to the wafer. Next, in step 6, the exposure step, the circuit pattern of the photomask is transferred onto the wafer by the lithography system (exposure device) and the exposure method described above. Next, in step 617 (development step), the exposed wafer is developed, and in step 618 (step (4)), the exposed portion (4) remaining outside the photoresist portion is removed by (d). Then, in (4) 619 (Kawasaki's step-by-step), remove the unnecessary photoresist. Multiple circuit patterns are formed on the wafer by repeating these pre-processing and post-processing processes. According to the element manufacturing method of the present embodiment described above, since the exposure apparatus 1 to which the position detecting method of the above-described embodiment is applied is used in the exposure process (step 616), high-precision exposure can be realized. As a result, it is possible to manufacture an element having a higher degree of integration. The position detecting method and apparatus of the present invention are very suitable for detecting positional information of positional alignment of an object. Further, the exposure mounting method of the present invention is not suitable for the lithography process for manufacturing a semiconductor element, a liquid crystal display element or the like. Furthermore, the component manufacturing method of the present invention is very suitable for the production of microcomponents. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing the configuration of an exposure apparatus according to a first embodiment of the present invention. Fig. 2 is a view showing an arrangement example of an irradiation region on a wafer and a wafer mark attached thereto. Fig. 3 is a flow chart showing the processing steps of (10) when the exposure apparatus according to the embodiment of the present invention performs the 68 exposure processing and the main fourth diagram. Figure 5 is a flow chart of the alignment process (hereafter. Fig. 6 is a flow chart of the process of the circle alignment process (the flow chart of the small state thereof), the implementation of the component manufacturing method of the present invention Figure 7 shows the steps of Figure 6 [Main component symbol description] 10 Lighting system 15, 17 Moving mirror 16 Screen interferometer 18 Wafer interferometer 19 Stage control device 20 Main control device (Selection device 22 24 Optimisation device, decision loading. Marking line alignment detection system Wafer stage drive unit 25 Wafer holder 46 Drive unit 47 Memory unit 100 Exposure unit AS Alignment detection system (Measurement FM reference mark board) IL Illumination% ' 69 1377598 Μρ,κ Wafer Marking PL Projection Optical System R Marking Sheet RST Marking Line Stage SAP Irradiation Area W Wafer (Object) WST Wafer Stage

7070

Claims (1)

1377598 ψ年】5取择Μ替換頁 额无j 申請專利範圍: 數個巴mV置檢測方法’係用以檢測物體上所配置之複 數個&amp;劃區域之位置資訊,其特徵在於,包含·· 第1襄程,係根據既定座捍系 至少一卹八Γ·〜 疋厘係系内該複數個區劃區域中 〇p刀區劃區域之位置資1认a 數個巴*… ❿置貧訊的貫測值,來決定與該複 數個,劃區域之配置相關的模式;以及 第2製程,係根據該办 F+ v 髁茨决疋之模式,算出該複數個區劃 區域之位置資訊; 資%二1製程,包含根據該至少-部分區劃區域之位置 L之以值,來決定用以測量該位置資訊之區劃區域且 =模式之參數的自由度,並根據該決定之模式之參數 , 度,來決定追加測量之區劃區域的製程。 係用以檢測物體上所配置之複 其特徵在於,包含: 2· 一種位置檢測方法 數個區劃區域之位置資訊, 第1製程,係使用既定座標系内該複數個區劃區域中 之若干個區劃區域之位置資訊的實職,分別就參數自由 度各不相同之若干個關於該複數個區劃區域之回歸模式, 算出該模式之既定評價規範的值,根據該算出結果,作為 與該複數個區劃區域相^回歸模式而選擇該評價規範中 被判斷為最佳的模式;以及 第2製私’係根據該選擇之回歸模式,算出該複數個 區劃區域之位置資訊。 3 ·如申請專利範圍第2項之位置檢測方法,其中,進 -步包含帛3製程’此製程係將該評價規範中作為最佳模 71 ^77598 100年5月2〇曰修正替換頁 反映至與用來規定該回歸 式所選擇之回歸模式的參數值 模式之係數相關的事前知識; 就形成該複數個區劃區域之複數個該物體,依序變更 作為位置資訊檢測對象之物體一邊反覆該第1製程、該 第2製程、與該第3製程。1377598 ψ年】5Selection ΜReplacement page amount No j Patent application scope: Several bar mV detection method' is used to detect the position information of multiple &amp; · The first course is based on the established coordinates of at least one shirt. 〜 疋 疋 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 刀 刀 刀 刀 刀 刀 刀 刀 刀 刀The measured value is used to determine the mode associated with the configuration of the plurality of zones; and the second process is to calculate the location information of the plurality of zones according to the mode of the F+ v 疋 疋; The two-first process includes determining, according to the position L of the at least-partially-divided area, a degree of freedom for determining a parameter of the location information of the position information and a mode, and according to the parameter of the determined mode, To determine the process of adding the measured zone area. The utility model is characterized by detecting a complex configuration on an object, comprising: 2. a position detection method, position information of a plurality of division areas, and a first process, using a plurality of divisions in the plurality of division areas in the established coordinate system The actual position of the location information of the region is calculated for each of the plurality of zoning regions with different degrees of freedom of the parameter, and the value of the predetermined evaluation specification of the model is calculated, and the calculation result is used as the plurality of zoning regions. In the regression mode, the mode determined to be the best in the evaluation specification is selected; and the second system is based on the regression mode of the selection to calculate the position information of the plurality of division regions. 3 · As in the position detection method of the second application patent scope, wherein the step-by-step process includes the 帛3 process, the process is reflected in the evaluation specification as the best mode 71 ^ 77598 100 May 2 correction replacement page a prior knowledge related to a coefficient of a parameter value pattern for specifying a regression mode selected by the regression equation; forming a plurality of the objects in the plurality of division regions, and sequentially changing the object as the position information detection object The first process, the second process, and the third process. 如申明專利範圍第3項之位置檢測方法,其中,该 &quot; 製%係更新該各區劃區域之位置資訊實侧值的取樣 數’俾使其成為用來評價作為該評價規範之最佳模式所選 擇之回歸模式的正確性程度所需之充分的數。 如T滑專利範圍第3項 第1製程’係從參數自由度為既定大小之第i回歸模式 參數自由度小於該第i回歸模式之第2回歸模式、與來1 自由f大於該第1回歸模式之第3回歸模式中,選擇該; 價規範之最佳模式。 x ° • 口甲請專利範圍第3項之位置檢測方法, 第1製程,在與參數自 '、 〜 該評價規範之值相較,i 、式的 早乂參數自由度小於該第1回歸描 第2回歸模式的該 口知杈式之 平饧規範之值較為良好之情形時,俜 ^ 、工來作為該評價規範之最佳模式; 在該第1回歸模式之該 式良好、且該第i回錡握…6 值敉°亥第2回歸模 係選擇該第1回歸槿斗A L m艮对之情形時, 在令第1⑴ 該評價規範之最佳模式; &quot; ^莫式之該評價規範之值較該第2 式良好、且該第!回 茨第2回歸模 口如棋式之概度較既定值不良 72 1377598 1〇〇年5月2D曰修正替換頁 〆 一„ 丁 j,受正朁換頁 來:::數:由度大於该弟1回歸模式之第3回歸模式, 來作為S亥坪價規範之最佳模式。 7·如申請專利範圍第6項之位置檢挪方法盆 第1製程,在該第3回歸模式被 ’、 VA ^ ^ 坷棋式被選擇作為該評價規範之最 土模式之情形時,係更進一步 祕施,士 / J延加測罝對象之區劃區 域’俾使該區劃區域之位置資 來έ 置貝訊只測值的取樣數,成為用 來―第3回歸模式的正確性程度所需之充分的數. =行該追加之區劃區域之位置資訊實測值之測量 後舁出该第3回歸模式之參數值。 、 :·如申料利範圍第7項之位置檢測方法,其中,在 時二搜3回料式、且該第3回歸模式有複數個之情妒 時,係選擇該評價規笳夕 ^ ^ 作為”… 為良好的第3回歸模式,來 作為该坪價規範之最佳模式。 、术 9·如申請專利範圍第5項之位置檢測方法 將被預測在物體間之值的 〃、,係 此w殳勒杈大之回歸模式 該第1、第2、第3嗔式巾㈣數;…係數’於 將被預測在物體間之值的變動較小之 數,於該第卜第3回歸模式中作為參數,另—方面1係 2回歸模式中則作為根據該事前知識所決定之常數;第 將在所有物體簡、、Μ ’ .^ 間值被預測為大致相同之回歸 係數,於該hi、歸模式中作為根據式之 定之常數,另-方面,在第… 據。亥事别知識所决 在第3回知模式中則作夂 〇·如申請專利範圍第9項之位置檢法&gt; 。 在作為位置資訊檢測對象 、)方法,其中, 對象之複數個物體之處理單位的處理 73 ^//^98 ^//^98 100年5月2D曰修正替換頁 數不滿既定數之情形時,將被預測為該處理單位間之值的 變動較大之係數,於該第卜第3回歸模式中作為來數,另 -方面,於該第2回歸模式中則作為根據該事 定之常數; 明成 在該處理數超過既定數之情形時,係將該係數於 卜第2回歸模式中作為根據該事前知識所決定之常數,另 -方面,於該第3回歸模式令則作為參數。 η·如中請專利範圍第2項之位置檢測方法,其中, 該各回歸模式之概度,伤轵诚6 #根據自相歸模式所得之該既定 座4示係中該各區書彳區域之/罢咨 北域之位置資訊、與該位置資訊實測值 的餘數,來加以推定。 12·如中請專利範圍第u項之位置檢測方法,其中, 為該各口知扠式之參數’包含顯示該既定之座標系 :複數個區劃區域之配置所規定之排列座標系之偏差的i =成^、數、顯示偏離各區劃區域之成分之設計值的係 數之:顯不該複數個區劃區域之配置相關之高次成分的係 數之至少一部分❶ ι τ' =如巾請專職圍第2項之位置檢測方法,其中, =切價規範設“加有補償之概度的準則, 對應模式之參數自由度。 彳員係 伟將請專利範㈣13項之位置檢測方法,其中, 係將該準則作為赤池眘 -者.以… 準則及貝氏資訊量準則中的任 ,亥值較小的模式作為良好的模式。 15·如申請專利範圍第13項之位置檢測方法,盆中 74 1377598 係將該補 度變化的 較大的模 16 · 複數個區 特徵在於 第1 得之與該 前知識, 複數個區 根據該回 自由度最 償值设為相對於該回錄y Α Λ ^x口知杈式參數自由度增加之概 J待值、與該回歸槿式 ^ ^ ^ 俱式參數自由度的積;以該值 式作為良好的模式。 -種位置檢測方法,係將複數個物體上所配置之 劃區域之位置資訊,就各物體依序進行檢測,其 ,包含: 製程,係根據每次依序檢測該物體之位置資訊所 複數個區劃區域相關之回歸模式之係數相關的事 /、无定座钴系中、作為此次位置資訊檢測對象之 畫:J區域中若干個區劃區域之位置資訊實測值,並 歸模式之既定評價規範,使該回歸模式之參數之 佳化; * 1第2製程,係根據具有該被最佳化參數之自由度的回 V模式’來算出作為此次位置資訊檢測對象之物體的複數 個區劃區域之位置資訊;以及 第3氣程,係根據該被最佳化之參數的自由度,來決 乍為下-人位置資訊檢測對象之物體的各區劃區域之位鲁 置為貫測值的取樣數; 、就开/成4複數個區劃區域之複數個該物體,依序變更 作為位置資訊檢測對象之該物體…邊反覆該帛1製程、 6亥第2製程、與該第3製程。 17 .如申请專利範圍第16項之位置檢測方法,其中, °玄各回歸模式之概度’係根據自該回歸模式所得之該既定 座標系中該各區劃區域之位置資訊、與該位置資訊實測值 75 丄J / / 的餘數,來加以推定。 100年5月曰修正替換頁 1 8 ·如申請專利範 作為該各回歸模式之I圍數第Π項之位置檢測方法,其中, 该複數個區劃區域之 之座標系與破 -4m 所規定之排列座標系之偏差的】 :成刀係數、顯示偏離各區二! 數、與顯示該複數個區割巴诗夕里成刀之〇十值的係 數之至少-部分。 &amp;域之配置相關之高次成分的係 将如申5月專利範圍第16項之位置檢測方法,豆中 ^評價規範設為附加有補償之概度的準則,該補償係 對應模式之參數自由度。 及補•係 2〇 ·如申請專利範圍第19項之位置檢測方法,並中 係1 字該準則作為赤池資訊量準則及貝氏資訊量準則中的 者,以該值較小的模式作為良好的模式。 如申請專利範圍第19項之位置檢測方法,其中’ ㈣4補償值設為相對於該回歸模式參數自由度增加之 鲁 度變化的期待值、與該回歸模式參數自由度的積’·以該值 較大的模式作為良好的模式。 。22 · 一種曝光方法,係將物體上所配置之複數個區劃 區戍依序加以曝光,以在各區劃區域形成既定圖案其 徵在於,包含: 以申。月專利|巳圍第1、2、16項中任-項之位置檢測方 法,來檢測該複數個區劃區域之位置資訊的製程;以及 根據該檢測出之位置資訊,移動該物體以使該各區劃 區域曝光的製程。 76 1377598 100年5月日修正替換百 23 · —種元件製造方法, 管換頁 於: '、包含微影製程,其特徵在 該微影製程係使用申請糞 $乾圍第22項之曝异方、土 24 · —種位置檢測裝置 法。 複數個區劃區域之位置資訊,甘、用以檢測物體上所配置之 特徵在於,呈備: 測量裝置,係測量既定座炉$ 八備 若干個區劃區域之位置資訊;示糸内該複數個區劃區域中 選擇裝置,係使用該所測旦 音、目丨庶 χ 、里之各區劃區域之位置資訊 貫測值’分別就參數自由度夂 貝Λ 侗F者丨r a 相同之若干個關於該複數 個£晶^之回歸模式,算㈣模式之 值,根據該鼻出結果,作為該 ^ 而選擇該評價規範中的最佳模式;以及 '式 計算裝置,係根據該所選擇之回歸模式,算出 個區劃區域之位置資訊。 复數 25·如申請專利範圍第24項之位 進一步具備: 八Τ 呂己憶裝置,係用來儲存金楣 仔,、規疋忒禝數個區劃區域之回 細模式之係數相關的事前知識;以及 ’係㈣評價規範中作為最佳模式所選擇之 回㈣式之參數,反映至以該記憶裝置所館存之 該選擇裝置,係根據該記憶裝置所儲存之事前知識,, 設定該回歸模式。 ’別*識 26 ·如申請專利範圍帛25帛之位置檢測裝置,其中, 該記憶裝置係儲存該測量裝置所測量之該各區劃區域位置 77 丄J/ 100年5月2〇曰修正替換頁 貢訊實測值的取樣數;該 ^ λ - ^ 吏新裝置,係更新該評價規範中 =核式所選擇之回歸模式之儲存在該記憶裝置中的 ^各Q劃區域位置資訊實測值的取樣數。 複數種位置檢測裝置,係將複數個物體上所配置之 =劃區域之位置資訊,就各物體依序進行檢測 将徵在於,具備: &quot; 取:化裝i ’係根據每次依序檢測該物體之位置資訊 事 該複數:區劃區域相關之回歸模式之係數相關的 月』知、,與既定座標系中、作為此次位置資訊檢 個區劃區域中若干個區劃區域之位置資訊實測值, 自::=之既定評價規範,使該回歸模式之參數之 异出裝置,係根據具有該被最佳化參數之 Π =算出作為此次位置資訊檢測對象之物體的複數 個&amp; 3彳£域之位置資訊;以及 決定裝置,係根據該被最佳化之參數的自由度,來決 定作為下一次位置資訊檢測對象之物體的各區劃I域之: 置資訊實測值的取樣數。 。28 · -種曝光裝置’係將物體上所配置之複數個區劃 區域依序加以曝光,以在各區劃區域形成既 徵在於,具備: ㈣,其特 位置檢測裴置,係申請專利範圍第24或27 者;以及 胃 轉印裝置,係根據該檢測出之位置資訊,移動該物體 78 1377598 100年8月丨丨日修正替換頁 以使該各區劃區域曝光。 29·—種元件製造方法,係包含微影製程,其特徵在 於: 該微影製程係使用申請專利範圍第28項之曝光裝置。 3〇 ·—種位置檢測方法,係檢測物體上所配置之複數 個區劃區域之位置資訊’其特徵在於,包含: 第1製程,係測量該物體上之該複數個區割區域中, 被指定之複數個區劃區域之位置資訊; 第2製程,係在該第1製程後進行既定處理動作;以 及 第3製程,係在該第2製程後,測量該物體 數個區劃區域中,未在呤笙,由丨 设 區域之位置資訊; 製程中被測量之複數個區劃. 最佳程係根據該第1製程之測量結果,進行探索 最佳模式之處理動作以作為盘 ΛΑ Α 勹一 °茨物體上之複數個區劃區域 相關的回歸模式,且為探旁 家4最佳模式而進一步進 區劃區域之位置資訊之必要性的處理動作丨 〜別 :第3製程’係根據在該第2製程之處理 判斷需要更進一步之位 被 置身Λ之區劃區域的位置資 3 1 · —種位置檢測梦署 r , 置’仙以檢測物體上所配置之 複數個區劃區域之位置資訊,其特徵在於,具備:置之 里裝置’係測量該物體上之該複數個區劃 被才曰疋之複數個區劃區域之位置資訊;以&amp; , 處理裝置’係在該測晋萝罟 J里裝置之測量後進行既定處理動 79 ^77598 100年8月丨丨曰修正替換頁 作; 該測量裝置,係在該處理裝置所進行之該處理動作 後,測量該物體上之該複數個區劃區域中,在該測量動作 時未被測量之複數個區劃區域之位置資訊; 〇处理裝置係根傳%列置农1之敢初的測量結果,这 最佳模式之處理動作以作為與該物體上之複數㈣ 行判別區劃區域之位置”之該取佳模式而進, 兮日 要性的處理動作; . 測$裝置,係根據在該處理梦署夕別 夏被判斷需要更進-步之位置^置之㈣處理,來浪 訊。 貝訊之區劃區域的位置賓 、圖式: 如次頁 80For example, the position detecting method of the third item of the patent scope, wherein the % system updates the number of samples of the real side value of the position information of each of the divisional areas, so that it is used to evaluate the best mode as the evaluation specification. A sufficient number of correctness levels for the selected regression model. For example, the third process of the T-slip patent scope is the first process of the ith parameter model whose parameter degree of freedom is a predetermined size, and the degree of freedom of the i-th regression mode is smaller than the second regression mode of the i-th regression mode, and the 1 free f is greater than the first regression. In the third regression mode of the mode, select the best mode of the price specification. x ° • The mouth position requires the position detection method of item 3 of the patent scope, the first process, in comparison with the value of the parameter from ', ~ the evaluation specification, the degree of freedom of the early parameter of the formula i is smaller than the first regression In the case where the value of the flat-type specification of the second regression mode is relatively good, 俜^ and gong are the best modes of the evaluation specification; the formula of the first regression mode is good, and the i 锜 锜 ... 6 6 6 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 亥 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The value of the specification is better than the second formula, and the number is! The second regression model of the backs is like the chess type. The general value is worse than the established value. 72 1377598 1〇〇 May 2D曰 Correction replacement page „ „ j j, by 朁 朁 : : : : : : : : : : : : : : : : The third regression model of the 1st regression model is the best model for the S Hai Ping price specification. 7·If the position detection method of the sixth application of the patent scope is the first process, the third regression mode is ', When VA ^ ^ 坷 式 is selected as the most common mode of the evaluation specification, it is further secretive, and the zoning area of the / / J 延 罝 罝 俾 俾 俾 俾 俾 俾 俾 俾 俾The number of samples of the measured value only becomes a sufficient number for the degree of correctness of the third regression mode. = The measured value of the positional information of the added zoned area is measured and the third regression mode is extracted. Parameter value: , : · If the position detection method of item 7 of the application scope is in the case of the second item, and the third regression mode has a plurality of cases, the evaluation rule is selected. Xi ^ ^ as "... for a good 3rd regression model, come Floor price for the best mode of specification. , 9: If the position detection method of item 5 of the patent application scope is predicted to be the value of the value between the objects, the regression pattern of the first, second, and third styles (4) The number; the coefficient 'is a small number of changes in the value to be predicted between objects, and is used as a parameter in the third regression mode, and the other is based on the prior knowledge. The constant will be predicted in all objects Simplified, Μ '. ^ value is roughly the same regression coefficient, in the hi, the return mode as a constant according to the formula, the other side, in the .... In the third round of knowledge, it is decided to do 〇 如 如 如 如 如 如 如 如 申请 申请 申请 申请 申请 位置 。 。 。 。 。 。 。 。 。 。 。 。 In the method of detecting a position information, the processing unit of the plurality of objects of the object 73 ^//^98 ^//^98 100 May 2D 曰 correction replacement page number is not satisfied with the predetermined number, The coefficient that is predicted to be a large change in the value between the processing units is used as the number in the third regression mode, and the other is the constant determined according to the second regression mode; When the number of processes exceeds a predetermined number, the coefficient is used as a constant determined based on the prior knowledge in the second regression mode, and the third regression mode command is used as a parameter. η· The position detection method of the second item of the patent scope is as follows, wherein the probabilities of the regression modes, the injury 6 6 6 according to the self-conversion mode, the predetermined seat 4 shows the area of the area The position information of the North Coast and the remainder of the measured value of the location information are estimated. 12. The method of position detection according to item u of the patent scope, wherein the parameter "for the respective fork type" includes a deviation indicating an alignment coordinate system defined by the configuration of the predetermined coordinate system: the plurality of division regions i = a number, a number, a coefficient showing a design value deviating from the components of each zone: at least a part of the coefficient of the higher-order component associated with the configuration of the plurality of zone regions ❶ ι τ' = The position detection method of item 2, wherein the = quotation specification sets "the criterion for adding the probability of compensation, and the parameter degree of freedom of the corresponding mode." The faculty system will request the position detection method of the 13th patent (4), among which The criterion is taken as the Chichi Shen-Zhe. In the... and the Bayesian Information Criterion, the mode with a smaller value is used as a good model. 15·If the position detection method of the 13th article of the patent application, the basin 74 1377598 is a larger modulo 16 that varies the complement. The plurality of regions are characterized by the first and the prior knowledge, and the plurality of regions are set according to the maximum degree of freedom of the back degree with respect to the record y Α Λ ^x 杈 杈 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数The position information of the area arranged on the object is detected in sequence, and the method includes: a process, which is based on the coefficient of the regression mode associated with the plurality of division areas according to the position information of the object in sequence. In the case of the non-fixed cobalt system, as the object of the position information detection: the measured value of the position information of several zoning areas in the J area, and the established evaluation specification of the mode, so that the parameters of the regression mode are good. *1 The second process calculates the position information of the plurality of division regions of the object to be detected by the position information based on the return V mode ' having the degree of freedom of the optimized parameter; and the third air path According to the degree of freedom of the parameter to be optimized, the number of samples of each zone of the object to be detected by the lower-person position information is set to the number of samples of the measured value; / A plurality of the objects in the plurality of divisional regions, and the object to be detected as the position information is sequentially changed, and the 帛1 process, the 6th second process, and the third process are repeated. 17 . The position detecting method of item 16, wherein the approximate degree of the regression mode of the singularity is based on the position information of the zoning area in the predetermined coordinate system obtained from the regression mode, and the measured value of the position information is 75 丄 J / The remainder of / is to be presumed. The 100-year May 曰 correction replacement page 1 8 · If the patent application is used as the position detection method of the I-th circumference of each regression mode, wherein the coordinates of the plurality of divisional regions Deviation from the coordinate system defined by the broken -4m]: The forming factor and the display deviate from the two zones! The number, and at least part of the coefficient showing the ten values of the plurality of districts. The higher-order component related to the configuration of the &amp; domain will be the position detection method of the 16th patent scope of the application in May, and the evaluation criterion of the bean is set to the criterion with the probability of compensation, and the compensation system corresponds to the parameter of the mode. Degree of freedom. And the supplemental system 2〇·If the position detection method of the 19th article of the patent application is applied, and the 1st word of the standard is used as the Akaike information standard and the Bayesian information standard, the mode with the smaller value is good. Mode. For example, in the position detecting method of claim 19, the '(4)4 compensation value is set as an expected value of the degree of change in the degree of freedom of the parameter of the regression mode parameter, and a product of the degree of freedom of the parameter of the regression mode'. The larger mode is a good mode. . 22 · An exposure method is to sequentially expose a plurality of zoning regions arranged on an object to form a predetermined pattern in each zoning region, and includes: The method for detecting the position information of the plurality of divisional areas by the position detection method of the first and second items of the first, second, and sixth items; and moving the object according to the detected position information to make the respective The process of zoning area exposure. 76 1377598 May 2014 Correction Replacement No. 23 23—The manufacturing method of the components, the page is changed to: ', including the lithography process, which is characterized by the use of the application of the feces in the lithography process. , soil 24 · a type of position detection device method. The location information of a plurality of zoning areas, the feature configured on the object to be detected is: a measuring device for measuring the position information of a plurality of zoning areas of the predetermined locomotive; the plurality of zonings within the 糸In the area, the device is selected to use the measured position of the measured sound, the target, and the location information of each of the divisions in the region, respectively, and the number of degrees of freedom of the parameter 夂 Λ 侗F 丨ra are respectively the same a regression model of £ crystal^, calculating the value of the (four) mode, selecting the best mode in the evaluation specification as the ^ according to the nose result; and calculating the device according to the selected regression mode Location information of the zoning area. Plural 25. If the patent application scope is in the 24th position, it further has: 八Τ 吕己忆装置, which is used to store the gold 楣仔, and to regulate the prior knowledge of the coefficients of the refinement mode of several zoning areas; And the parameter of the back (fourth) type selected as the best mode in the "fourth" evaluation specification is reflected to the selection device stored in the memory device, and the regression mode is set according to the prior knowledge stored by the memory device. . 'Do not know 26 · If the application scope is 帛25帛, the memory device stores the position of the division area measured by the measurement device 77 丄J/ 100 May 2〇曰Replacement page The number of samples of the measured value of the Gongxun; the new device of the λ - ^ , is a sample of the measured value of the position information of each Q-zone stored in the memory device in the regression mode selected in the evaluation specification = nucleus number. A plurality of position detecting devices are configured to detect the position information of the area in the plurality of objects, and to detect each object in sequence, and have: &quot; fetch: i" is based on each sequential detection The position information of the object is the complex number: the month-related knowledge of the coefficient of the regression mode related to the zone, and the measured value of the position information of several zone zones in the zone of the location information in the established coordinate system, ::= The established evaluation specification, such that the parameter of the regression mode is based on the 最佳 = having the optimized parameter, and the plurality of objects that are the object of the position information detection are calculated. The position information; and the determining means determine the number of samples of the information I measured as the object of the next position information detection according to the degree of freedom of the optimized parameter. . 28 · - Type of exposure device' exposes a plurality of zoning areas arranged on the object in order to form a zoning in each zoning area, and has: (4), its special position detection device, the patent application scope is 24 Or 27; and a gastric transfer device, according to the detected position information, moving the object 78 1377598 Aug. 100, 100 days to correct the replacement page to expose the respective zone regions. 29. A method of manufacturing a component, comprising a lithography process, characterized in that: the lithography process uses an exposure device of claim 28 of the patent application. 3 〇 — 种 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置 位置The position information of the plurality of division areas; the second process is to perform the predetermined processing operation after the first process; and the third process is to measure the number of the area of the object after the second process, not in the process笙, the position information of the area is set; the plurality of divisions measured in the process. The optimal process is based on the measurement result of the first process, and the processing action for exploring the best mode is performed as a disk ΛΑ 勹 勹 茨 物体 object The processing mode related to the plurality of zoning regions, and the necessity to further enter the location information of the zoning region for the best mode of the circumstance 4 别~3: The third process is based on the second process The processing judges that the position of the zoning area that needs to be further located is 3 1 · The position detection dream system r, set the sage to detect the plurality of objects arranged on the object The location information of the area is characterized in that: the device in which the device is located is a position information of a plurality of zone regions in which the plurality of zones on the object are measured; and the device is disposed in the &amp; After measuring the measurement of the Jinluoji J device, the predetermined processing is performed. The measurement device is used to measure the object after the processing operation performed by the processing device. In the plurality of zoning regions, the position information of the plurality of zoning regions that are not measured during the measuring operation; the 〇 processing device is the root of the % 置 农 农 农 1 1 1 1 1 1 1 1 1 1 In the preferred mode of determining the position of the zoning area with the plural (four) lines on the object, the processing action of the next day is performed; the measuring device is determined according to the needs of the processing dream The position of the further step-by-step (4) is processed, and the wave is sent. The location of the zone of Beixun is the guest, the schema: as shown in the next page 80
TW093133795A 2003-11-07 2004-11-05 Position detection method, exposure method, position detection device, exposure device, and device-manufacturing method TW200520054A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378229 2003-11-07

Publications (2)

Publication Number Publication Date
TW200520054A TW200520054A (en) 2005-06-16
TWI377598B true TWI377598B (en) 2012-11-21

Family

ID=34567168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093133795A TW200520054A (en) 2003-11-07 2004-11-05 Position detection method, exposure method, position detection device, exposure device, and device-manufacturing method

Country Status (3)

Country Link
JP (1) JP4596166B2 (en)
TW (1) TW200520054A (en)
WO (1) WO2005045364A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1744217B1 (en) * 2005-07-12 2012-03-14 ASML Netherlands B.V. Method of selecting a grid model for correcting grid deformations in a lithographic apparatus and lithographic assembly using the same
JP4873230B2 (en) * 2006-05-19 2012-02-08 株式会社ニコン Exposure method, exposure apparatus, measurement method, and measurement apparatus
KR101664962B1 (en) * 2012-05-29 2016-10-11 에이에스엠엘 네델란즈 비.브이. A method to determine the usefulness of alignment marks to correct overlay, and a combination of a lithographic apparatus and an overlay measurement system
JP6271922B2 (en) 2013-09-10 2018-01-31 キヤノン株式会社 Method for determining position, exposure method, exposure apparatus, and article manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669017B2 (en) * 1985-10-08 1994-08-31 株式会社ニコン Alignment method
JP3230271B2 (en) * 1991-08-30 2001-11-19 株式会社ニコン Alignment method, alignment apparatus, exposure method and exposure apparatus
JPH11295056A (en) * 1998-04-15 1999-10-29 Nikon Corp Position detecting method, positioning method, and exposing method
WO2000019497A1 (en) * 1998-09-30 2000-04-06 Nikon Corporation Alignment method and method for producing device using the alignment method
JP2002324756A (en) * 2001-02-26 2002-11-08 Nikon Corp Position measuring apparatus, aligner, exposure system and device manufacturing method

Also Published As

Publication number Publication date
WO2005045364A1 (en) 2005-05-19
JP4596166B2 (en) 2010-12-08
TW200520054A (en) 2005-06-16
JPWO2005045364A1 (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US10866524B2 (en) Method and system for overlay control
JP3997068B2 (en) Lithographic projection apparatus calibration method and apparatus to which such a method can be applied
CN109863456A (en) The method for determining the correction of patterning process
TW201708985A (en) Recipe selection based on inter-recipe consistency
CN104049468B (en) System and method for implementing photoetching process in being manufactured in semiconductor devices
CN101006555A (en) Alignment information display method, program thereof, alignment method, exposure method, device manufacturing method, display system, display device, program, and measurement/inspection device
US6803592B2 (en) Position detection method and position detector, exposure method and exposure apparatus, and device and device manufacturing method
KR20010109212A (en) Estimating method, position detecting method, exposure method and method of manufacturing device, and exposure apparatus
TWI451201B (en) Device and method for transmission image sensing
KR102293144B1 (en) Automatic selection of measurement target measurement recipes
US10031429B2 (en) Method of obtaining position, exposure method, and method of manufacturing article
TWI228266B (en) Management system, management method and apparatus, and management apparatus control method
JP4448770B2 (en) Position determination method, overlay optimization method, device manufacturing method, and lithographic projection apparatus
TWI377598B (en)
US6934930B2 (en) Generating an optical model for lens aberrations
KR20050118309A (en) Selection method, exposure method, selection device, exposure device, and device manufacturing method
JP2006148013A (en) Positioning method and exposing method
CN111480119A (en) Method for controlling a manufacturing apparatus and associated apparatus
US20240111221A1 (en) A method of determining a measurement recipe and associated metrology methods and apparatuses
TWI754249B (en) Method of determining a set of metrology points and methods of determining a model for fitting measurements
JP2004087562A (en) Position detection method and apparatus thereof, exposure method and apparatus thereof, and device manufacturing method
JP2006108533A (en) Position detection method and exposure method
JP2005064369A (en) Optimization method, exposure method, optimization device, exposure device, manufacturing method for device and program therefor, and information recording medium therefor
JPWO2002033352A1 (en) Shape measuring method, shape measuring apparatus, exposure method, exposure apparatus, control program, and device manufacturing method
WO2023186440A1 (en) Method for determining a spatial distribution of a parameter of interest over at least one substrate or portion thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees