TWI376855B - Electronic consumption control system and method thereof - Google Patents

Electronic consumption control system and method thereof Download PDF

Info

Publication number
TWI376855B
TWI376855B TW97146961A TW97146961A TWI376855B TW I376855 B TWI376855 B TW I376855B TW 97146961 A TW97146961 A TW 97146961A TW 97146961 A TW97146961 A TW 97146961A TW I376855 B TWI376855 B TW I376855B
Authority
TW
Taiwan
Prior art keywords
temperature
subsystem
power consumption
management module
detector
Prior art date
Application number
TW97146961A
Other languages
Chinese (zh)
Other versions
TW201015817A (en
Inventor
Mingkuang Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW97146961A priority Critical patent/TWI376855B/en
Publication of TW201015817A publication Critical patent/TW201015817A/en
Application granted granted Critical
Publication of TWI376855B publication Critical patent/TWI376855B/en

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 【先前技術】 由於全球油電及各項原物料價格齊澡,以及近年來因 全球暖化造成的天氣異常,促使各國政府政策均朝向降低 溫室氣體排放的方向制定,「節能」、「減碳」以及「省錢」 成為全人類追尋之目標。 尤其當電價高漲佔據大部分生產作業成本時,若可於 用電之前先行計晝用電結構’並可進行動態調整分配用電 支出’對各企業追求成本之合理化與最小化將有莫大之助 益〇 【發明内容】 因此本發明的主要目的就是在提供一種可期前計畫之 用電控制系統與方法’使用者可於用電之前’根據一用電 總量先行規劃用電結構,以極大化用電效益。 本發明的另一目的就是在提供一種可動態調整之用電 控制系統與方法’可根據外在環境條件隨時變化用電狀態。 根據一實施例,本發明之一種用電量管控系統,係用 以控制一用電系統在一時間點之總用電量於一第一度數之 下’其中該用電系統包括複數個子系統,每一該些子系統 控制一室内區域並具有一調整溫度開關以及一偵測器’該 1376855 用電量管控系統至少包含:動態溫度管理模組,當該總用 電量大於該第一度數時,將至少一子系統之調整溫度開關 調升一第一度數,以及當該總用電量小於該第一度數,將 該至少—子系統之調整溫度開關調降一第二度數;一運轉 排程管理模組,排列該些子系統之調整溫度順序;一閒置 空間管理模組,當該至少一子系統之偵測器偵測到無人使 用該子系統時’將該至少一子系統之調整溫度開關關閉; —外氣引進管理模組’當該至少一子系統之偵測器偵測到 該室内區域溫度高於一室外溫度時,引進該室外空氣,以 及當該至少一子系統之偵測器偵測到該室内區域溫度低於 該室外溫度時’停止引進該室外空氣;一熱源監測管理模 組’當該至少一子系統之偵測器偵測到一設施之溫度高於 d亥至内區域溫度時,隔離該設施;以及一即時洩漏管理模 組,當該至少一子系統之偵測器偵測到一室外溫度高於該 至内區域溫度,且該至少一子系統之偵測器偵測到該室内 區域之一門窗設施未關閉達一第一時間後,將該至少一子 系統之調整溫度開關調升一第三度數。 根據一實施例,其中該用電系統為一空調系統,該空 調系統具有_冰水主機,該空調系統更包括—系統效率管 理模組,用JX設定該冰水主機之出水溫度,其巾當該總用 電量大於該第一度數時,調升該冰水主機之出水溫度。 根據一實施例,其中該用電系統為一空調系統,該空 調系統具有第一與第二冰水主機該空調系統更包括一系 =效率管理模組’用以狀該第—與第二冰水主機之出水 /皿度’其中先開啟該第-冰水主機,以及t該空調系統提 6 1376855 供之溫度該於一要求溫度時,開啟該第二冰水主機β 根據一實施例’其十該熱源監測管理模組通知一使用 者隔離該設施。 根據一實施例’其中隔離該設施為關閉該設施電源。 根據一實施例,其中隔離該設施為關閉門窗。 根據一實施例,其中該偵測器包括一溫度感測器、一 門窗感測器、一移動感測器。 根據一實施例’其中該偵測器更包括一 C〇2濃度感測 器。其中當該至少一子系統之該C02濃度感測器偵測到該 室内區域之C02濃度高於一預設值時,該外氣引進管理模 組引進該室外空氣至對應該至少一子系統之室内區域。 根據一實施例,其中該預設值之設定為當該C02濃度 高於1200ppm該外氣引進管理模組引進外氣,以及當該 C02濃度低於1 OOOppm外氣引進管理模組關閉外氣。 根據一實施例,其中該預設值之設定為當該C02濃度 高於1500ppm該外氣引進管理模組引進外氣,及當該c〇2 濃度低於1200ppm該外氣引進管理模組關閉外氣。 根據一實施例’其中該預設值之設定為當該C02濃度 高於2000ppm該外氣引進管理模組引進外氣,及當該C02 濃度低於1500ppm該外氣引進管理模組關閉外氣。 根據一實施例’更包括一設定模組用以設定該第一用 電度數。 根據一實施例,更包括一模擬分析模組用以模擬在該 第一用電度數下,該時間點之用電狀況。 根據一實施例,其中該動態溫度管理模組更包括設定 7 1376855 該些子系統控制之對應室内區域舒適度要求之優先順序。 根據一實施例,其中該動態溫度管理模組根據該舒適 度要求優先順序調整該些子系統之調整溫度開關。 根據一實施例’本發明更提供一種用電量管控方法, 係用以控制一用電系統在一時間點之總用電量於一第一度 數之下’其中該用電系統包括複數個子系統以及一第一冰 水主機’每一該些子系統控制一室内區域並具有一調整溫 度開關以及一偵測器,該用電量管控方法至少包含:設定 該第一用電度數;排列該些子系統之調整溫度順序;當該 總用電直大於該第一度數時,將至少一子系統之調整溫度 開關調升一第一度數,以及當該總用電量小於該第一度 數,將該至少一子系統之調整溫度開關調降一第二度數; 當該至少一子系統之偵測器偵測到無人使用該子方法時, 將該至少一子系統之調整溫度開關關閉;當該至少一子系 統之偵測器偵測到該室内區域溫度高於一室外溫度時,引 進該室外空氣,以及當該至少一子系統之偵測器偵測到該 室内區域溫度低於該室外溫度時,停止引進該室外空氣; 當該至少一子系統之偵測器偵測到一設施之溫度高於該室 内區域溫度時’隔離該設施;當該至少一子系統之偵測器 偵測到一室外溫度高於該室内區域溫度,且該至少—子系 統之偵測器偵測到該室内區域之一門窗設施未關閉達一第 一時間後’將該至少一子系統之調整溫度開關調升一第二 度數;以及設定該第一冰水主機之出水溫度,其中卷該= 用電量大於該第一度數時’調升該第一冰水主樁x… ’ <出水溫 度0 8 1376855 【實施方式】 第1圖繪不了根據本發明一較佳實施例之電量控管系 統概略圖不。根據-較佳實施例,此電量控管用電系統_ 包括··設定目標節能金額或電度模組1G1、模擬分析模組 102以及用電量控官模組i 〇3。其中用電量控管模組⑻更 包括七個^理模組,分別為動態溫度管理模組^州運轉 排程管理模組1032、間置空間管理模組1〇33、外氣引進管 理模組1034、_監測管理模组聰、㈣泡漏管理模組 1036以及系統效率管理模組1〇37。值得注意的是,在其他 實施例中,亦可根據不同之控管系統增加其他不同功能之 管理模組。本發明可根據歷史、即時與預測的資訊,幫助 用戶精密地調配每一段時期的空調用電量,讓用戶可訂定 每月或每季或一年的期望用電金額,若超出用戶期望的空 調用電預算時,電腦便根據負載優先順序進行系統端與負 載端空調設施之參數線性調整,甚至調整負載舒適度等, 避免空調用電超出用戶期望金額。 根據本發明一實施例,設定目標節能金額或電度模組 101 ’其主要是用以提供一使用者設定目標節能金額或用電 度數。例如,對一企業用戶,用電量或用電金額亦為成本 管控之一環’用電量或用電金額減少即能間接增進獲利或 可調降終端商品售價,提高競爭度。此企業用戶可先行精 算在一單位週期下,例如以一季或一個月為單位,合理之 用電度數或用電費用,並透過本發明之設定目標節能金額 =模組1〇1’將此合理之用電度數或用電量設定在用電 “果?0…此時用電量控管模組103即會透過所 七個管理模組’根據設定之用電度數或用電量之預 離調=單位㈣下’針對此企業用戶之用電結構進行動 :調整分配。利用期前之用電預算管控,可將用電量作最 口理之配置並避免用電之浪費。 此外,用電量控管模組103在開始執行前,會先透過 模擬分析模組1G2進行用電管控之模擬,將用電結構先行 呈,出來’讓使用者知道根據其設定之用電度數或用電量 =算下,所規劃出之用電結構並可進行微調。例如,對一 企業用戶而言’在—單位週期下,其蚊之總用電量為1000 度,本發明之模擬分析模組102可考量歷史用電資料、環 境變數’例如溫度、濕度,以及該企業用戶在此時間週期 間之排程計畫’模擬出一用電結構,例如用電分配為下午 可支用之度數高於上午可支用之度數丨度,而此企業用戶 亦"T對此模擬結果進行微調,例如調整上、下午間之可支 用度數,或對某一特定日進行用電度數之調整。 本發明用電量控管模組103中包括七個管理模組,以 下將以管理一空調之用電量為例,分述此七個管理模組之 功能。此外,在其他之實施例中,此七個管理模組亦可用 於管理其他不同之用電裝置。 動態溫度管理模組103 1,主要用來進行空調溫度之管 控’藉由即時調整空調之設定溫度,來達到總用電量之管 控。動態溫度管理模組103 1,可依照用戶所訂定的目標用 電金額,隨時調整空調之設定溫度。空調設定溫度是影響 1376855 空調設施運作與舒適度最重要的因子,隨著不同的環境狀 態改變,應該對應不同的設定溫度,才不會有過度使用或 無效運轉的情形發生。本發明之動態溫度管理模組1031可 以隨著環境的變化機動調整空調溫度,兼顧用戶舒適度與 能源高效使用。此外,若某些時段因熱負載過高或設定溫 度過低,而導致空調系統側供不應求,造成壓縮機(或冰水 閥)持續開啟無法關閉,動態溫度管理模組1〇31能夠機動 地調整到適當的設定溫度,或是暫時關閉壓縮機(或冰水 閥)’讓空調系統進入較低負載的運作狀態。 在一實施例中’動態溫度管理模組丨03 i之管控程序如 第2圖所示,先提供給使用者以區域為單位進行舒適度要 求之設定。例如,提供三個等級,“重要”、“普通”、 不重要’讓使用者設定各區域舒之適度要求。例如, 辦公室舒適度可設定為重要,事務間舒適度可設定為普 通,電梯口舒適度可設定為不重要。而在其他實施例中, 舒適度要求之等級不以三個等級為限。接著,使用者定義 各區域舒適度調整之優先順序,例如,分為最高、高、中、 低等級。舒適度優先順序低者,當超過無法達到節能目標 門檻時,首先調整設定溫度;舒適度優先順序中者次之; 舒適度優先順序高者最後調整;而舒適度優先順序最高 者,以舒適度為主,不因節能需求改變舒適度或設定溫度。 以上調整週期以每15(視狀況調整之)分鐘重新設定一次。 接著即可進行動態調整,動態溫度管理模組1〇31會隨 時計算已使用之空調電費:根據空調設施使用之電度乘以 該時段之每度電費(含平均基本電費),累積一段期間之金 1376855 額。並1錄㈣者空調平均每天使料間(小時)之數據,此 數據可&記錄做為未來調整的參考,另系統亦可參考氣 =預=天氣狀況作為擷取資料庫中類似天氣狀況 的依據。自動產生月、周、 日各時奴之各區域之可用電費 分配比例。系統將使用者希望 叩主(目標電費分12個月各別 填入,系統自動根據月、周、 Π日各時段之分配用電比例產 生目標電費。使用者也可逸入久日 J進入各月份進入調整各週別(如週 一和週六目標電費可能不同、目拷Nine, invention description: [Technical field of invention] [Prior technology] Due to the global oil and electricity and the price of raw materials, as well as the weather anomalies caused by global warming in recent years, the government policies are all toward reducing greenhouse gases. In the direction of emissions, "energy saving", "carbon reduction" and "saving money" have become the goal of all humanity. Especially when the electricity price rises and takes up most of the production operation cost, if the electricity structure can be calculated before the electricity is used, and the power consumption expenditure can be dynamically adjusted, it will greatly help the rationalization and minimization of the cost of each enterprise.益〇[Abstract] Therefore, the main object of the present invention is to provide a power control system and method for pre-planning, 'the user can plan the power structure according to the total amount of electricity before using the power, Maximize electricity efficiency. Another object of the present invention is to provide a dynamically adjustable power control system and method that can vary the state of power at any time in accordance with external environmental conditions. According to an embodiment, a power consumption control system of the present invention is for controlling a total power consumption of a power system at a time point below a first degree. The power system includes a plurality of subsystems. Each of the subsystems controls an indoor area and has an adjustment temperature switch and a detector. The 1368855 power consumption control system includes at least: a dynamic temperature management module, when the total power consumption is greater than the first degree Counting, adjusting the temperature switch of at least one subsystem to a first degree, and when the total power consumption is less than the first degree, lowering the at least one subsystem's adjusted temperature switch by a second degree a running schedule management module for arranging the temperature adjustment sequences of the subsystems; an idle space management module, when the at least one subsystem detector detects that no one is using the subsystem The temperature adjustment switch of the subsystem is turned off; - the external air introduction management module 'injects the outdoor air when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, and when When the detector of the less than one subsystem detects that the indoor temperature is lower than the outdoor temperature, 'stops introducing the outdoor air; a heat source monitoring management module' detects when a detector is detected by the at least one subsystem Isolating the facility when the temperature is higher than the temperature range from the dH to the inner zone; and an instant leak management module, when the detector of the at least one subsystem detects an outdoor temperature higher than the temperature of the inner region, and the The detector of the at least one subsystem detects that the door and window facilities of the indoor area are not closed for a first time, and then adjusts the temperature adjustment switch of the at least one subsystem to a third degree. According to an embodiment, the power system is an air conditioning system, the air conditioning system has a _ ice water host, and the air conditioning system further includes a system efficiency management module, and the water temperature of the ice water host is set by JX. When the total power consumption is greater than the first degree, the water temperature of the ice water host is raised. According to an embodiment, wherein the power system is an air conditioning system, the air conditioning system has first and second ice water hosts, and the air conditioning system further includes a system = efficiency management module for using the first and second ice The water outlet/water level of the water main unit, wherein the first ice water main unit is first turned on, and the air conditioning system provides a temperature of 6 1376855 for the required temperature, the second ice water host β is turned on according to an embodiment The heat source monitoring management module notifies a user to isolate the facility. According to an embodiment, wherein the facility is isolated, the facility is powered off. According to an embodiment, wherein the facility is isolated, the doors and windows are closed. According to an embodiment, the detector comprises a temperature sensor, a window sensor, and a motion sensor. According to an embodiment, wherein the detector further comprises a C〇2 concentration sensor. When the CO 2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor area is higher than a preset value, the external air introduction management module introduces the outdoor air to correspond to at least one subsystem. Indoor area. According to an embodiment, wherein the preset value is set to be when the CO 2 concentration is higher than 1200 ppm, the external air introduction management module introduces external air, and when the C02 concentration is lower than 10,000 ppm, the external air introduction management module turns off the external air. According to an embodiment, the preset value is set to be when the CO 2 concentration is higher than 1500 ppm, the external air introduction management module introduces external air, and when the c〇2 concentration is lower than 1200ppm, the external air introduction management module is closed. gas. According to an embodiment, wherein the preset value is set to be when the CO 2 concentration is higher than 2000 ppm, the external air introduction management module introduces external air, and when the CO 2 concentration is lower than 1500 ppm, the external air introduction management module turns off the external air. According to an embodiment, a setting module is further included for setting the first power consumption number. According to an embodiment, an analog analysis module is further included to simulate the power usage status at the time point of the first power consumption. According to an embodiment, the dynamic temperature management module further includes setting a priority order of the corresponding indoor area comfort requirements controlled by the subsystems. According to an embodiment, the dynamic temperature management module adjusts the adjusted temperature switches of the subsystems according to the comfort requirement. According to an embodiment, the present invention further provides a power consumption control method for controlling a total power consumption of a power system at a time point below a first degree, wherein the power system includes a plurality of The system and a first ice water host each of the subsystems control an indoor area and has an adjustment temperature switch and a detector, the power consumption control method at least comprising: setting the first power consumption number; arranging the Adjusting the temperature sequence of the subsystems; when the total power is directly greater than the first degree, adjusting the temperature adjustment switch of the at least one subsystem to a first degree, and when the total power consumption is less than the first a degree, the adjusted temperature switch of the at least one subsystem is lowered by a second degree; when the detector of the at least one subsystem detects that the sub-method is not used, the at least one subsystem adjusts the temperature switch Turning off; when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, introducing the outdoor air, and detecting that the indoor area is low when the detector of the at least one subsystem detects At the outdoor temperature, the introduction of the outdoor air is stopped; when the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor region, the device is isolated; when the at least one subsystem is detected The device detects that an outdoor temperature is higher than the indoor temperature, and the at least one subsystem detects that the door and window facilities of the indoor area are not closed for a first time after the at least one subsystem Adjusting the temperature switch to raise a second degree; and setting the water temperature of the first ice water host, wherein the volume = the power consumption is greater than the first degree 'up and raise the first ice water main pile x... ' < The water discharge temperature is 0 8 1376855. [Embodiment] FIG. 1 is a schematic view showing a power control system according to a preferred embodiment of the present invention. According to a preferred embodiment, the power control system _ includes setting a target energy saving amount or power module 1G1, an analog analysis module 102, and a power consumption controller module i 〇 3. The power control module (8) further includes seven control modules, namely, a dynamic temperature management module, a state operation scheduling management module 1032, an interspersed space management module, and an external air introduction management module. The group 1034, the monitoring management module Cong, the (4) bubble management module 1036, and the system efficiency management module 1〇37. It is worth noting that in other embodiments, management modules of other different functions may be added according to different control systems. The invention can help the user to precisely allocate the power consumption of the air conditioner for each period according to historical, real-time and predicted information, so that the user can set the expected amount of electricity for each month or quarter or year, if the user exceeds the expectation of the user. When the air-conditioning electricity budget is used, the computer will linearly adjust the parameters of the air-conditioning facilities at the system end and the load end according to the load priority order, and even adjust the load comfort, etc., to avoid the air-conditioning power consumption exceeding the user's expected amount. According to an embodiment of the invention, the target energy saving amount or energy module 101' is set to provide a user to set a target energy saving amount or power consumption. For example, for a business user, the amount of electricity used or the amount of electricity used is also one of the cost controls. The reduction in electricity consumption or the amount of electricity used can indirectly increase the profitability of the profitable or adjustable terminal goods and increase the competition. This enterprise user can perform actuarial calculations in a unit period, for example, in one season or one month, with reasonable power consumption or electricity consumption, and through the set target energy saving amount of the invention = module 1〇1' The power consumption or the power consumption is set in the power consumption "fruit? 0... At this time, the power consumption control module 103 will pass through the seven management modules" according to the set power consumption or the power consumption pre-dissociation Adjustment = unit (four) under 'Actions for the electricity structure of this enterprise user: adjust the allocation. Use the electricity budget control before the period, you can use the power consumption as the most reasonable configuration and avoid the waste of electricity. Before the power control module 103 starts to execute, it will first simulate the power control through the analog analysis module 1G2, and then present the power structure first, and let the user know the power consumption or power according to the setting. Quantity = calculation, the planned power structure can be fine-tuned. For example, for a business user, the total power consumption of the mosquito is 1000 degrees under the unit cycle, the simulation analysis module of the present invention 102 can consider historical electricity data, ring Variables 'such as temperature, humidity, and the schedule of the enterprise user during this time period' simulate a power structure, such as electricity distribution for the afternoon can be used more than the amount of the morning can be used And the enterprise user also fine-tune the simulation result, for example, adjusting the availability of the upper and the afternoon, or adjusting the power consumption for a specific day. The power control module of the present invention The management module of the air conditioner is used as an example to describe the functions of the seven management modules. In addition, in other embodiments, the seven management modules can also be used. To manage other different electrical devices. The dynamic temperature management module 103 1 is mainly used for the control of the air conditioning temperature. The control of the total power consumption is achieved by adjusting the set temperature of the air conditioner in real time. The dynamic temperature management module 103 1. The set temperature of the air conditioner can be adjusted at any time according to the target electricity amount set by the user. The air conditioner set temperature is the most important factor affecting the operation and comfort of the 1368855 air-conditioning facility, with different The state of the environment changes, and should correspond to different set temperatures, so that there is no overuse or inefficient operation. The dynamic temperature management module 1031 of the present invention can adjust the air conditioner temperature with the change of the environment, taking into account user comfort and energy. Efficient use. In addition, if the heat load is too high or the set temperature is too low in some time periods, the air supply system side is in short supply, causing the compressor (or ice water valve) to continuously open and cannot be closed, and the dynamic temperature management module 1〇31 can Motorized to the appropriate set temperature, or temporarily shut down the compressor (or ice water valve) 'to let the air conditioning system into a lower load operating state. In an embodiment, the dynamic temperature management module 丨 03 i control program As shown in Figure 2, the user is first provided with the comfort level setting in units of areas. For example, three levels are provided, "important", "normal", and not important" to allow the user to set the appropriate level of each area. Claim. For example, office comfort can be set to be important, inter-office comfort can be set to normal, and elevator comfort can be set to be unimportant. In other embodiments, the level of comfort requirements is not limited to three levels. Next, the user defines the priority order of comfort adjustment for each area, for example, the highest, highest, medium, and low levels. If the comfort priority is lower, when the energy saving target threshold is exceeded, the set temperature is first adjusted; the comfort priority is second; the comfort priority is higher; the comfort priority is the highest, the comfort is the highest. Mainly, do not change comfort or set temperature due to energy saving needs. The above adjustment period is reset once every 15 minutes (adjusted by the situation). Then, the dynamic adjustment can be performed. The dynamic temperature management module 1〇31 will calculate the used air-conditioning electricity fee at any time: multiply the electricity consumption of the air-conditioning facility by the electricity cost per hour (including the average basic electricity tariff), and accumulate a period of time. Gold 1376855 amount. And 1 (4) the average daily air conditioning data (hours), this data can be & records as a reference for future adjustments, and the system can also refer to the gas = pre-weather conditions as a similar weather conditions in the database Basis. Automatically generate the proportion of available electricity bills for each region of the slaves of the month, week, and day. The system will use the user's hope that the target electricity fee will be filled in separately for 12 months. The system will automatically generate the target electricity fee according to the proportion of electricity allocated in each period of the month, week and the next day. The user can also enter the long-term J to enter each The month enters the adjustment week (such as Monday and Saturday, the target electricity fee may be different, copying

月匕个丨J)目標電費,或設定特定假日的 目標電費。在一實施例中,你用去 便用者亦可進入單日調整各時 段之目標電費。 例如早上7點到U點每小時之目標電費分配可能與 早上11點到下午2點每小時之目標電費分配不同。每個 f時内切分為6G等份(每1分鐘),即_。動態能源使用 #理系統每!分鐘累積-次已用電費,若該時間點之累積 電費已低於目標電費,則設定溫度保持在標準適中的舒適 度範圍,或是由使用者自訂設定溫度為主;若該時間點已 • 帛電費超過目標電費,則啟用動態溫度節能管理功能,第 一次提高用戶側設定溫度比前15分鐘之平均回風溫度高 攝氏1度並同時提高風速,若仍無法低於目標電費,則再 提高攝氏0.5度以此類推,最高至調至攝氏3〇度,以達 到目標電費。 運轉排程管理模組1〇32係用以建立完整的空調運轉 排程’節省許多開關設備電源時間不精確所造成的浪費(例 如提早開、延後關),也能夠利用半夜涼爽的室外空氣,在 便宜的離峰時段電價,以風扇來進行因假日空調未運轉所 12 1376855 形成的室内蓄熱做排除,避免次日利用空調在尖峰電價時 段’花費較高的電費,將蓄熱置換至建築物之外。例如早 上7點建築物内溫度未達預設溫度時,可在7:25前運轉排 程管理模組1032先開啟空調降溫,至7:25關閉空調,上 班時間再將空調開啟,如此便不需要消耗多餘的冷卻量將 蓄熱排出。對於有建置外氣引進系統之建築物,運轉排程 管理模組1032更能在半夜或清晨將戶外清新低溫的空氣引 進’根本不需要開啟空調也能達到排除建築物隔夜蓄熱的 效果’讓使用者一早進辦公室便能享受舒適宜人的溫度, 也不會出現「用戶一早把空調溫度設最低,但過一整天卻 無人調整回來」等現象’這樣一來一回便節省了許多不必 要的用電。此外,運轉排程管理可結合電子行事曆系統(例 如Microsoft Out丨ook行事曆)做為用電控管策略判斷依據, 系統能夠更智慧化的協助用戶制定符合其舒適與節能需求 之運轉排程設定。 閒置空間管理模組1033 ’使用效率提升,是一切能源 管理的根本。空調與照明設施在無人時仍開啟,佔了建築 物中浪費因素中的38%,換句話說,就算系統的運作效率 再佳,只要用戶端使用效率不好,依然造成無謂的能源損 失,因此「避免浪費」以及「合理化操作」才能釜底抽薪 的降低用電量。建築物内獨立隔間環境,如小辦公室、會 議室、房間、廟所等’或是飯店之客房,移動感測器 偵測環境是否閒置無人使用,來決定設施運作狀態,可以 節省許多不必要的浪費。例如使用者離開辦公室後,移動 感測器馬上可以通知間置空間管理模組1〇33將該環境中空 13 1376855 調設施關閉,或是將環境舒適度(给值)提高、將空調改變為 '送風模式等。 外氣引進管理模組1034,因為空調使用有27%的負荷 . 是來自外氣,因此在動態的外氣變化下「適時適量」的引 進外氣,對控管空調用電有莫大的幫助。 在一實施例中,外氣引進管理模組1〇34每1〇分鐘計 算一次空調區域之所有溫度感測器之平均值當室外溫度 比室内溫度平均值低3纟以上’且室外捨值屬於舒適範圍 • 或比室内焓值低,外氣引進管理模組1〇34引進外氣。此外 為避免頻繁的切換開關,可設定超過3度以上引進外氣, 2度以内關閉外氣。當室外溫度非比室内溫度平均值低3 度以上時,則關閉外氣,除非所對應空調區域内任一之C 〇 2 感測器濃度所測得之C02濃度超過所設定之上限時才引進 外氣,低於下限時關閉外氣。其中c〇2感測器濃度之上、 下限預設定義為:依使用者定義之舒適度(與動態溫度管理 同樣設定)有不同設定。例如,“重要”為12〇〇ppm開啟外 • 氣,1〇〇〇pPm關閉外氣、“普通,,為1500Ppm開啟外氣, 1200PPm關閉外氣、“不重要’,為2〇〇〇ppm開啟外氣, 1500PPm關閉外氣。外氣引進管理模組1034可供使用者 重新輸入參數。 熱源監測管理模組1〇35,建築物周圍發生的太陽輻射 熱交換,也是常見的傳輸損失,因此若能在建築物外加裝 遮陽板、曰光強烈時拉上窗簾、或是在建築物内部周圍設 計風簾或加裝出風口,便能減少輻射熱交換所造成的損失。 但環境是不斷動態變化的,在炎熱的氣候下,上述情形確 1376855 是如此#反的’在寒冷的氣候下原本為熱源的玻璃卻 成為冷源’建築物内部周圍之空調還可能因玻璃與牆壁傳 導之冷工氣而降低負荷。在一實施例中,熱源監測管理模 035母1〇分鐘計算一次該偵測熱源之溫度感測器所 對應„又施之所有回風溫度感測器之平均值,當熱源溫度感 測器之讀值比平均回風溫度高或低於—特定溫度之上時, 則根據設定改變設施狀態。例如,開啟或關閉窗簾。 即時洩漏官理模組1〇36,係用以根據環境是否產生洩 ^來決定設施之運作狀態,並同時發出㈣給用戶。空調 管線茂漏為大樓所有能源浪費原因中的首要項目。线漏損 失的發生有可能發生於傳輸管道之間,也有可能發生於 用戶環境’例如門窗該關未關,造成冷(暖)氣大量流失。在 一實施例中,即時洩漏管理模組1036每10分鐘計算一次 門囪感測器所對應設施之所有回風溫度感測器之平均值, 右室外溫度較高且門窗開啟一段時間後,便發出告警或改 變玉調運作H如提高設定溫度或進人送風模式等。 、^統效率管理模組則,其主要功能是根據負載需求 =決疋系統主機開啟的數量,讓冰水主機可以維持在高效 率運轉狀態。因為’若以一台冰水主機便能提供足夠的負 載需求量,便不需要同時開啟兩台冰水主機,如此便能夠 減〆0冰水主機以及冷卻水泵與冷卻水塔可觀的運轉電 力在一實施例中,當用戶端冰水主機只有單台時,系統 效率S理模組1037可將初始出水溫度設定值為7度C,每 15&amp;分鐘調整一次出水溫度,例如出水溫度最低為7度C, 最同為15度c,使所對應空調設施之舒適度維持在該設定 IS1 ^76855 值之下限邊緣,若單位時間使用金額已超出預算則以調 升出水溫度為優先,再調升負載端空調溫度。在另一實施 例中,若用戶端之冰水主機為兩台並連控制時,系統效率 管理模組1037可以採逐漸開啟之方式,先開第一台,初始 出水溫度設定值為7度C,每15分鐘調整一次出水溫度, 使所對應空調設施之舒適度維持在該設定值之下限邊緣。 當無法滿足舒適度超過30分鐘時,再開啟第二台冰水主 機,且需單位時間之使用金額不得超過預算之情況下才能 開啟。兩台冰水主機同時設定為7度c,每15分鐘調整一 次第二台冰水主機出水溫度,使所對應空調設施之舒適度 維持在該設定值之下限邊緣。當第二台冰水主機溫度設定 已到達15度C時,開始調升第一台水主機設定溫度,若 調升至10度C後15分鐘仍可使所對應空調設施之舒適 度維持在該設定值之下限邊緣,則關閉第二台冰水主機, 或單位時間之使用金額超過預算時也關閉,第一台冰水主 機設定溫度調回7度C。若用戶端有三台冰水主機並聯控 制’控制邏輯則以此類推。值得注意的是上述僅為本發明 之一實施例’在其他之實施例中亦可以其他之方式進行控 制。 參閱第2圖所示為本發明之用電量控制流程圖。其中 於步驟201〜206為用戶設定流程,其主要目的是讓用戶進 行用電量之設定、用電控制群組之設定以及舒適度與優先 權設定。首先於步驟201進入設定流程。步驟202,提供用 戶進行基本資料設定,例如統一編號之設定等,藉以於後 續進行搜尋時可依此編號進行維護。步驟203,提供用戶進 16 [S1 1376855 行用電量之設定,亦即用戶設定用電之預算。步驟204提 供用戶進行用電控制群组之設定,由於一楝大樓單位很 多,用戶可將數個性質相同之單位合為一群組,共同進行 管理,藉以避免重複設定之麻煩。步驟2〇5提供用戶進行 舒適度與優先權設定當設定完後即進入本發明之動態用 電管控系統300進行用電之管控。 其中於設定管理功能之步驟3〇1中,本發明會根據用 戶所進行之設定結果,於步驟3〇2中進行模擬並產生一 模擬結果圖表,其中會顯示出空調用電之金額(步驟3021) 以及可能造成用電浪費之原因(步驟3〇22)。根據此模擬之 結果,用戶可參考並選擇是否回到設定步驟2〇1進行重新 設定。 於步驟303中,將用戶於步驟2〇4中所設定之用電控 制群組載入動態用電管控系統3〇〇中。於步驟將用戶 於步驟205令所設定之舒適度與優先權載入動態用電管控 系統300中。於步驟3〇6將用戶於步驟2〇2中所設定之基 本資料載入動態用電管控系統中。以及於步驟3〇7中, 會將用戶於步驟203中所設定之用電量載入動態用電管控 系統300中。 當載入完成後,進入步驟3〇5根據載入動態用電管控 、、 中之各項資料並搭配前述之七個管理模組進行用 電之管理。其中係包括七個管理步驟,分別為動態溫度管 理步驟305卜運轉排程管理步驟組3Q53、間置空間管理步 驟3〇57、外氣引進管理步驟3〇52、熱源監測管理步驟 3054、即時茂漏管理步驟3〇55以及系統效率管理步驟 17 1376855 3056。運轉排程管理步驟組3053更包括設備排程設定步驟 30531 ’用以排列設備開啟之先後順序。動態能源使用功能 排程設定步驟30532,其係用以排列設備用電量升降之順 序。舒適度與優先權排程設定30533,用以排程舒適度之優 先權。 以下將以一實施例說明應用本發明用電管控流程於一 空調系統之應用。首先’一使用者先於步驟201中,在系 統上輸入基本資料(步驟202)、每個月的空調目標用電金 額(步驟203 )、設施群組設定(步驟204)以及各區域的 舒適度與優先權(步驟205),當設定完成後,系統將此設 定值載入用電管控系統中,並便根據設定值與對應的用電 管理策略進行每月空調用電目標。 在一實施例中,本發明之運轉排程管理模組會在早上 7點至7點半之間,利用離峰電價將大樓内蓄熱排除。而在 冰水主機的設定上,本發明之系統效率管理模組會機動調 整冰水主機設定溫度,除非某天特別炎熱,一台冰水主機 出水溫度設定再低都無法滿足舒適度時,系統才會再開啟 第二台主機。 而在辦公室之空調設定上,本發明之動態溫度管理模 組會進行機動調整,m糾算出累積用電金額超出 事前設定值時,便會依據優先值的設定,公共區域、事務 間與辦公室的設定溫度會依序慢慢提高,直到大樓累積空 調用電又回到設定值以下為止。 在春、秋、冬季節中,可利用本發明之外氣引進管理 模組,將涼爽的外氣引人大樓内,空調的負荷大為降低; 18 系統,A時除非二氧化碳濃度超過上限,才會啟動外氣 H,虽二氧化碳濃度降低時,便會立即關閉外氣,以免 =溫的外氣進入加重空調的負擔。而對於門窗管理上本 明之即m管理模組會發出警告冷氣㈣的情形,甚 也會將浪費的能源列表出來,藉以加強管理避免許多 不必要的浪費。 另外,本發明之熱源監測管理模組 ;該將窗簾打開或關上,讓辦公室空調負荷降低= 因為會議而暫時離開座位,本發明之閒置空間管理模 =、在使用者離開座位後,若是上班時段,會將空調改變 -、送風模式’若是下班時段,會將辦公室空調關閉。 此外本發明亦可根據預測之資訊做為用電控管策略之 依據’例如結合氣象局未來一週之氣象預測,電量控管系 統可,此預估未來用電量之增減趨勢,自動重新調整目標 用電量。舉例而言’若未來一週天氣轉涼,則空調用電應 有降低之空間’電量控管系統可根據目前之用電情形調降 下-週的目標用電設定值,幫助用戶設定最佳之用電目 標’,期間所節省下來的預算’也可做為未來天氣轉熱所 需較向空調費用之預備金使用。 載另實施例中’亦可結合行事曆資訊進行排程運轉 管理。例如’以MiCrosoft〇utl〇〇k行事層為例,用戶於行 =曆中登記之排程’可做為電量控管系統運轉排程管理設 疋參考。右用戶於早上9點到中午12點登記了會議室的行 事磨’則會議室該時段可自動轉變為「啟關置空間管 理」’若有人進人開會則會開啟1該時段無人進入開會, 1376855 空調會照明設施也不會啟用;同時,會議室該時段之空調 溫度設定,可依據登記者喜愛之舒適度進行設定,讓用戶 • 操作介面更智慧、更貼心。 • 此外,在舒適度設定之實施方式上,電量控管系統可 • 提供用戶操作介面,對於授權之個別用戶可透過介面回饋 對於該區域舒適度之感受’例如「希望溫暖點」或「希望 涼快點」’當用戶回饋時,系統自動記錄當時之環境溫、溼 度資訊’並建立對照纟,未來電量控f系統便依照對照表 • β容比對當時環境溫、渔度,自動提供用戶希望之舒適環 境。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’所附圖式之詳細說明如下: 第1圖繪不了根據本發明一較佳實施例之電 統概略圖示。 工 ^ 第2圖所示為根據本發明一較佳實施例之用電量控制 【主要元件符號說明】 1376855 100電量控管用電系統 101設定目標節能金額或電度模組 102模擬分析模組 103用電量控管模組 1031動態溫度管理模組 1032運轉排程管理模組 1033閒置空間管理模組 1034外氣引進管理模組 1035熱源監測管理模組 1036即時洩漏管理模組 1037系统效率管理模組 201設定 202用戶基本資料設定 203用電目標設定 204設施群組設定 205舒適度與優先權設定 206動態能源使用管理功能列表 300動態用電管控系統 301設定管理功能 302圖表分析 3021空調用電金額比較圖 3022電源浪費原因分佈圖 303設施群組管理 304舒適度與優先權管理 305動態用電管控策略 21 1376855 306用戶基本資料管理 307用電目標管理 • 3051動態溫度管理設定 . 3052外氣引進管理設定 3053運轉排程管理設定 3054熱源監測管理設定 3055即時洩漏管理設定 3056系統效率管理設定 • 3057閒置空間管理設定 30531設備排程設定 30532動態能源使用功能排程設定 30533舒適度與優先權排程設定Month 丨 丨 J) Target electricity bill, or set the target electricity bill for a specific holiday. In one embodiment, the user who uses the user can also enter the one-day adjustment of the target electricity fee for each time period. For example, the target electricity rate allocation from 7:00 am to U-hour hour may be different from the target electricity rate allocation from 11:00 am to 2:00 pm. Each f is internally divided into 6G aliquots (every 1 minute), ie _. Dynamic energy use #理系统每! Minute accumulates - the used electricity fee. If the accumulated electricity bill at this point in time is lower than the target electricity bill, the set temperature is maintained within the standard comfort range, or the user sets the set temperature as the main; if the time point has been • If the electricity bill exceeds the target electricity bill, the dynamic temperature energy management function is enabled. For the first time, the user-side set temperature is increased by 1 degree Celsius above the average return air temperature of the previous 15 minutes and the wind speed is increased. If the target electricity bill cannot be lower than the target electricity bill, Increase the Celsius by 0.5 degrees and so on, up to 3 degrees Celsius to reach the target electricity bill. The operation scheduling management module 1〇32 is used to establish a complete air conditioning operation schedule, which saves a lot of waste caused by inaccurate power supply time of the switchgear (such as early opening and delaying), and can also use the cool outdoor air in the middle of the night. In the case of a cheap off-peak time, the fan is used to eliminate the indoor heat storage formed by the holiday air conditioner 12 1376855, so as to avoid using the air conditioner for the next day, the high electricity cost is charged during the peak electricity price period, and the heat storage is replaced by the building. Outside. For example, when the temperature in the building does not reach the preset temperature at 7:00 in the morning, the schedule management module 1032 can be turned on before 7:25 to first turn on the air conditioner to cool down, and the air conditioner is turned off at 7:25, and the air conditioner is turned on again during the working hours. It is necessary to consume excess cooling to discharge the heat storage. For buildings with built-in external air introduction system, the operation scheduling management module 1032 can introduce outdoor fresh and low-temperature air in the middle of the night or in the early morning. 'There is no need to turn on the air conditioner at all, and it can eliminate the effect of building overnight heat storage.' Users can enjoy comfortable and pleasant temperatures when they enter the office early, and there will be no such phenomenon as "the user sets the air conditioner temperature to a minimum in the morning, but no one adjusts it after a whole day". This saves a lot of unnecessary time. Use electricity. In addition, the operation schedule management can be combined with an electronic calendar system (such as the Microsoft Out丨ook calendar) as the basis for the use of the electronic control strategy, the system can more intelligently assist the user to develop operational schedules that meet their comfort and energy saving needs. set up. The use of the idle space management module 1033's efficiency is fundamental to all energy management. Air conditioning and lighting facilities are still open when no one is present, accounting for 38% of the waste factor in the building. In other words, even if the system is operating at a better efficiency, as long as the user is not efficient, it still causes unnecessary energy loss. "Avoid waste" and "reasonable operation" can reduce the amount of electricity used. In a separate compartment environment in a building, such as a small office, conference room, room, temple, etc., or a hotel room, the mobile sensor detects whether the environment is idle or not, to determine the operation status of the facility, which can save many unnecessary waste. For example, after the user leaves the office, the mobile sensor can immediately notify the inter-space management module 1〇33 to turn off the environment 13 13376855, or increase the environmental comfort (value) and change the air conditioner to ' Air supply mode, etc. The external air introduction management module 1034 has a 27% load due to the use of air conditioners. It is from outside air. Therefore, the introduction of external air in a timely and appropriate amount under dynamic external air changes is of great help to the control of air conditioning. In one embodiment, the external air introduction management module 1〇34 calculates the average value of all the temperature sensors of the air-conditioned area every 1 minute, when the outdoor temperature is lower than the indoor temperature average by more than 3纟' and the outdoor regression value belongs to Comfort range • Or lower than indoor devaluation, the introduction of external air into the management module 1 〇 34 to introduce outside air. In addition, in order to avoid frequent switching, it is possible to set more than 3 degrees to introduce outside air and 2 degrees to close outside air. When the outdoor temperature is not more than 3 degrees lower than the average indoor temperature, the external air is turned off, unless the C02 concentration measured by any C 〇 2 sensor concentration in the corresponding air conditioning area exceeds the set upper limit. Outside air, when the temperature is lower than the lower limit, the outside air is turned off. The c〇2 sensor concentration above and the lower limit are defined by default: there are different settings according to user-defined comfort (same setting as dynamic temperature management). For example, “important” is 12 〇〇ppm to open external gas, 1 〇〇〇pPm to turn off external air, “normal, open air for 1500Ppm, external gas for 1200PPm, “not important”, 2〇〇〇ppm Turn on the outside air and turn off the outside air at 1500PPm. The external air introduction management module 1034 allows the user to re-enter parameters. The heat source monitoring management module 1〇35, the solar radiation heat exchange around the building is also a common transmission loss, so if you can install a sun visor outside the building, pull the curtains when the light is strong, or inside the building. The design of the air curtain or the installation of the air outlet can reduce the loss caused by the radiant heat exchange. However, the environment is constantly changing. In the hot climate, the above situation is indeed 1378855. The anti-theft of the glass that was originally a heat source in a cold climate has become a cold source. The air conditioner around the interior of the building may also be due to glass and The wall conducts cold work and reduces the load. In one embodiment, the heat source monitoring management module 035 calculates the average value of all the return air temperature sensors corresponding to the temperature sensor of the detecting heat source once a minute, when the heat source temperature sensor is When the reading is higher than or lower than the average return air temperature, the state of the facility is changed according to the setting. For example, the curtain is opened or closed. The immediate leaking government module 1〇36 is used to generate emissions according to the environment. ^ to determine the operational status of the facility, and at the same time issued (four) to the user. Air conditioning pipeline leakage is the primary item of all energy waste in the building. Line leakage losses may occur between transmission pipelines, and may occur in the user environment 'For example, the door and window are not closed, causing a large loss of cold (warm) gas. In one embodiment, the instant leak management module 1036 calculates all the return air temperature sensors of the facility corresponding to the door sensor every 10 minutes. The average value, when the right outdoor temperature is high and the doors and windows are opened for a period of time, an alarm is issued or the jade adjustment operation H is changed, such as increasing the set temperature or entering the air supply mode. The rate management module, its main function is to make the ice water host can maintain high efficiency according to the load demand = the number of system host open, because 'if you have a chilled water host, you can provide enough load demand. Therefore, it is not necessary to open two ice water main engines at the same time, so that the ice water main machine and the running power of the cooling water pump and the cooling water tower can be reduced. In an embodiment, when the user-side ice water host has only a single unit, the system The efficiency S module 1037 can set the initial outlet water temperature to 7 degrees C, and adjust the outlet water temperature every 15 &amp; minutes, for example, the outlet water temperature is at least 7 degrees C, and the most is 15 degrees c, so that the corresponding air conditioning facilities are comfortable. The degree is maintained at the lower limit of the value of the set IS1 ^76855. If the amount of use per unit time has exceeded the budget, the temperature of the outlet water is prioritized, and the temperature of the load terminal air conditioner is increased. In another embodiment, if the ice of the user end When the water main unit is connected in parallel, the system efficiency management module 1037 can be opened gradually, the first unit is opened first, and the initial water temperature setting is 7 degrees C every 15 minutes. Adjust the temperature of the outlet water to maintain the comfort level of the corresponding air conditioning facility at the lower limit of the set value. When the comfort level cannot be satisfied for more than 30 minutes, turn on the second ice water main unit, and the amount of use per unit time must not exceed The budget can only be turned on. The two ice water hosts are set to 7 degrees c at the same time, and the water temperature of the second ice water main unit is adjusted every 15 minutes, so that the comfort of the corresponding air conditioning facility is maintained at the lower limit of the set value. When the temperature setting of the second ice water host has reached 15 degrees C, the temperature setting of the first water main unit is started to be raised. If the temperature is raised to 10 degrees C for 15 minutes, the comfort of the corresponding air conditioning facility can be maintained. When the lower limit edge of the set value is closed, the second ice water main unit is turned off, or the unit time is used when the usage amount exceeds the budget. The first ice water host sets the temperature back to 7 degrees C. If the user has three ice water hosts in parallel control control logic, and so on. It is to be noted that the above is only one embodiment of the present invention' and may be controlled in other ways in other embodiments. Referring to Fig. 2, there is shown a flow chart of the power consumption control of the present invention. The steps 201 to 206 are used to set the flow for the user, and the main purpose is to let the user set the power consumption, set the power control group, and set the comfort and priority. First, in step 201, the setting process is entered. In step 202, the user is provided with basic data setting, such as setting of a unified number, so that the maintenance can be performed according to the number when the search is continued. Step 203, providing the user to enter [S1 1376855 line power setting, that is, the user set the power budget. Step 204 provides the user with the setting of the power control group. Since there are many units in the building, the user can combine several units of the same nature into one group and manage them together to avoid the trouble of repeated setting. Step 2〇5 provides the user with the comfort and priority setting. When the setting is completed, the dynamic power management system 300 of the present invention is used to control the power consumption. In the step 3〇1 of the setting management function, the present invention performs simulation in step 3〇2 according to the setting result performed by the user and generates a simulation result chart, in which the amount of air conditioning electricity is displayed (step 3021). And the cause of possible waste of electricity (steps 3〇22). Based on the results of this simulation, the user can refer to and select whether to return to the setting step 2〇1 for re-setting. In step 303, the user's power control group set in step 2〇4 is loaded into the dynamic power management system 3〇〇. In the step, the comfort and priority set by the user in step 205 are loaded into the dynamic power management system 300. In step 3〇6, the basic data set by the user in step 2〇2 is loaded into the dynamic power management and control system. And in step 3〇7, the power consumption set by the user in step 203 is loaded into the dynamic power management system 300. After the loading is completed, proceed to step 3〇5 to manage the power consumption based on the data of the dynamic power control, and the seven management modules. The system includes seven management steps, namely dynamic temperature management step 305, operation scheduling management step group 3Q53, inter-space management step 3〇57, external gas introduction management step 3〇52, heat source monitoring management step 3054, instant ma Leak management step 3〇55 and system efficiency management step 17 1376855 3056. The operation scheduling management step group 3053 further includes a device scheduling setting step 30531' for arranging the order in which the devices are turned on. Dynamic Energy Usage Function Schedule setting step 30532 is used to arrange the order of power consumption of the equipment. Comfort and priority scheduling is set at 30533 for priority in scheduling comfort. The application of the electric control process of the present invention to an air conditioning system will be described below with reference to an embodiment. First, a user first enters the basic data (step 202), the monthly air conditioning target power amount (step 203), the facility group setting (step 204), and the comfort of each area in the step 201. And priority (step 205), when the setting is completed, the system loads the set value into the power management and control system, and performs the monthly air conditioning power target according to the set value and the corresponding power management strategy. In an embodiment, the operation scheduling management module of the present invention uses the off-peak electricity price to exclude heat storage in the building between 7 am and 7:30 am. In the setting of the ice water host, the system efficiency management module of the present invention will manually adjust the set temperature of the ice water host, unless the day is particularly hot, and the ice water temperature setting of one ice water host can not meet the comfort level, the system The second host will be turned on again. In the air conditioning setting of the office, the dynamic temperature management module of the present invention performs maneuver adjustment, and when m calculates the accumulated power consumption amount exceeds the pre-set value, it will be set according to the priority value, the public area, the office and the office. The set temperature will increase slowly in sequence until the building accumulates air conditioning power and returns to below the set value. In the spring, autumn and winter seasons, the outside air introduction management module of the present invention can be used to introduce the cool outside air into the building, and the load of the air conditioner is greatly reduced; 18 system, when the carbon dioxide concentration exceeds the upper limit, The external air H will be activated. When the carbon dioxide concentration is lowered, the external air will be immediately turned off, so as to avoid the burden of the warm external air entering the aggravated air conditioner. For the door and window management, the m management module will issue a warning (4), and will even list the wasted energy to strengthen management and avoid unnecessary waste. In addition, the heat source monitoring management module of the present invention; the curtain is opened or closed to reduce the air conditioning load of the office = temporarily leaving the seat due to the meeting, the idle space management mode of the present invention =, after the user leaves the seat, if the working time is The air conditioner will be changed - and the air supply mode will be turned off if the office hours are off. In addition, the present invention can also be based on the predicted information as the basis for the electric control strategy. For example, in conjunction with the weather forecast of the weather bureau for the next week, the power control system can estimate the future increase and decrease of the power consumption, and automatically re-adjust Target usage. For example, if the weather turns cold in the next week, there should be room for reduction in air-conditioning power. The power control system can adjust the target power setting value of the next-week according to the current power consumption situation to help users set the best use. The electricity target ', the budget saved during the period' can also be used as a reserve for air conditioning costs in the future. In another embodiment, the scheduling operation can also be performed in conjunction with the calendar information. For example, taking the MiCrosoft 〇utl〇〇k transaction layer as an example, the user's schedule registered in the row = calendar can be used as a reference for the operation control scheduling of the power control system. The right user registered the action of the conference room from 9:00 am to 12:00 noon. Then the conference room can be automatically changed to "open space management". If someone enters a meeting, it will open 1 and no one will enter the meeting. 1376855 Air-conditioning lighting facilities will not be activated; at the same time, the air-conditioning temperature setting of the conference room during this time can be set according to the comfort level preferred by the registrant, making the user interface more intelligent and intimate. • In addition, in the implementation of the comfort setting, the power control system can provide a user interface, and the individual users who are authorized can feedback the feeling of comfort in the area through the interface. For example, “Hope warmth” or “Hurry to cool down” "" When the user returns, the system automatically records the current environmental temperature and humidity information' and establishes a control 纟. In the future, the power control f system will automatically provide the user's hope according to the comparison table and the β-volume ratio. Comfortable environment. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic diagram of the electrical system. 2 is a power consumption control according to a preferred embodiment of the present invention. [Main component symbol description] 1376855 100 power control power system 101 sets a target energy saving amount or power module 102 analog analysis module 103 power consumption control module 1031 dynamic temperature management module 1032 operation scheduling management module 1033 idle space management module 1034 external gas introduction management module 1035 heat source monitoring management module 1036 instant leakage management module 1037 system efficiency management Module 201 setting 202 user basic data setting 203 power target setting 204 facility group setting 205 comfort level and priority setting 206 dynamic energy use management function list 300 dynamic power management system 301 setting management function 302 chart analysis 3021 air conditioning power Amount comparison chart 3022 power waste reason distribution diagram 303 facility group management 304 comfort level and priority management 305 dynamic power management strategy 21 1376855 306 user basic data management 307 power target management • 3051 dynamic temperature management setting. 3052 external gas introduction Management Settings 3053 Operation Schedule Management Settings 3054 Heat Source Monitoring Management Settings 3055 Instant Leakage Tube Setting 3056 System Efficiency Management Settings • 3057 Idle Space Management Settings 30531 Device Scheduling Settings 30532 Dynamic Energy Usage Function Scheduling Settings 30533 Comfort and Priority Scheduling Settings

Claims (1)

13768551376855 換頁] 十、申請專利範圍: 1. 一種用電量管控系統,係用以控制一用電系統在一 時間點之總用電量於一門檻值之下,其中該用電系統包括 複數個子系統,每一該些子系統控制一室内區域並具有一 調整溫度開關以及一偵測器,該用電量管控系統至少包含: 一運轉排程管理模組,排列該些子系統之調整溫度順 序;以及 一動態溫度管理模組,當該總用電量大於該門檻值 時,根據該調整溫度順序將至少一子系統之調整溫度開關 調升一第一溫度,以及當該總用電量小於該門檻值,根據 該調整溫度順序將該至少一子系統之調整溫度開關調降一 第二溫度。 2.如申請專利範圍第1項所述之用電量管控系統,更 包括一閒置空間管理模組,當該至少一子系統之偵測器偵 測到無人使用該子系統時,調整該至少一子系統之運作狀 態。 3.如申請專利範圍第1項所述之用電量管控系統,更 包括一外氣引進管理模組,當該至少一子系統之偵測器偵 測到該室内區域溫度高於一室外溫度時,引進該室外空 氣,以及當該其少一子系統之偵測器偵測到該室内區域溫 23 度低於該室外溫度時 停止$丨 進該室外空氣。 年月日修正 ____jni_7 1 rv 主菅谀ff 4. 如申請專利範圍第 項所述之用雷吾这 包括一熱源監測管理模組,卷1 g控糸統,更 測到一設施之溫度高於哕…+ 少一千系統之偵測器偵 μ至内區域溫度昧 調整該子系統之運作狀態。 ,隔难該設施或 5. 如申請專利範圍第 所述之用旦 包括一即時洩漏管理模組火▲ 里官控系統,更 測到一室外溫度高於該室内F 3 v 一千糸統之偵測器偵 區域溫度,且坊;P丨、 之偵測器偵測到該室内區试 οχ ^'一子系統 . 之—門窗設施夫關P弓;Λ* 時間後,調整該子系統之運作狀態。&quot;未關閉達-第-包括-運轉排程管理模組,排列::;;=控系統’更 小^ 序乂及-閒置空間管理模組,當該至 π子糸統之偵測器偵測到無人使用; 至少-子系統之運作狀態“時,调㈣ 7.如申請專利範圍第1項所述之用電量管控系統,更 包括-運轉排程管理模組,#列該些子系統之調整溫度順 序以及運作狀態順序;以及__外氣引進管理模組,當該至 ν —子系統之偵測器偵測到該室内區域溫度高於一室外溫 度時’引進該室外空氣,以及當該至少—子系統之偵測器 偵測到該室内區域溫度低於該室外溫度時’停止引進該室 24 1376855Page change] X. Patent application scope: 1. A power consumption control system is used to control the total power consumption of a power system at a time point below a threshold, wherein the power system includes a plurality of subsystems. Each of the subsystems controls an indoor area and has an adjustment temperature switch and a detector. The power consumption control system includes at least: an operation scheduling management module that arranges the temperature adjustment sequences of the subsystems; And a dynamic temperature management module, when the total power consumption is greater than the threshold value, adjusting the temperature adjustment switch of the at least one subsystem to a first temperature according to the adjusted temperature sequence, and when the total power consumption is less than the The threshold value is adjusted, and the adjusted temperature switch of the at least one subsystem is adjusted to a second temperature according to the adjusted temperature sequence. 2. The power consumption control system according to claim 1, further comprising an idle space management module, when the at least one subsystem detector detects that no one is using the subsystem, adjusting the at least The operational status of a subsystem. 3. The power consumption control system described in claim 1 further includes an external air introduction management module, wherein the detector of the at least one subsystem detects that the indoor temperature is higher than an outdoor temperature The outdoor air is introduced and the outdoor air is stopped when the detector of the lesser subsystem detects that the indoor temperature is lower than the outdoor temperature by 23 degrees. Year, month and day correction ____jni_7 1 rv main ff 4. As described in the scope of patent application, the use of Lei Wu includes a heat source monitoring management module, volume 1 g control system, and even measured the high temperature of a facility Yu Yu... + One thousand systems of detectors detect the internal temperature of the system to adjust the operating state of the subsystem. The difficulty of the facility or 5. If the application of the scope of the patent application includes an instant leak management module fire ▲ inside the official control system, it is measured that an outdoor temperature is higher than the indoor F 3 v thousand The detector detects the temperature of the area, and the detector detects the indoor area test οχ ^' a subsystem. The door and window facilities close the P bow; Λ * after the time, adjust the subsystem Operational status. &quot;Unclosed----including-run schedule management module, arrangement::;;=control system 'smaller ^ sequence and - idle space management module, when the detector to the π sub-system Detecting no one to use; At least - the operating state of the subsystem "hours, adjustment (4) 7. The power consumption control system described in the first application of the patent scope, including the - operation scheduling management module, #列列The temperature adjustment sequence of the subsystems and the sequence of operating states; and the __ external gas introduction management module, when the detector of the ν-subsystem detects that the indoor temperature is higher than an outdoor temperature, 'introducing the outdoor air And when the at least-subsystem detector detects that the indoor zone temperature is lower than the outdoor temperature, 'stops introducing the chamber 24 1376855 外空氣。 8.如申諳專利範圍第1項所述之用電量管控系統,更 :括-運轉排程管理模.组’排列該些子系統之調整溫度順 丨以及運作狀態順序;以及一熱源監測管理模組當該至 〆子系統之伯測器偵測到一設施之溫度高於該室内區域 溫度時’隔離該設施或調整該子系統之運作狀態。 9.如申請專利範圍第1項所述之用電量管控系統, 更〇括it轉排程官理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;以及一即時洩漏管理模組,當該 :少-子系統之偵測器偵測到一室外溫度高於該室内區域 溫度’且該至少一子系統之偵測器偵測到該室内區域之一 門窗設施未關閉達-第一時間後,調整該子系統之運作狀 10.如申請專利範圍第&quot;員所述之用電量管控系統, 更包括-運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;—閒置空間管理模組,當該至少 -子系統之偵測器偵測到無人使用該子系統時調整該至 v子系,.·先之運作狀態;以及-外氣引進管理模組,當該 至少一子系统之偵測器偵測到該室内區域溫度高於一 ^ 溫度時,引進該室外空^,以及當該至少一子系統之偵測 器偵測到該室内區域溫度低於該室外溫度時停止引進該 室外空氣。 ^ 25 更 11. 如申請專利範圍第 1項 所述 之 用 電 量 管控 系 絲 9 包括 —運 轉排程 管 理模 組 ,排 列該 些 子 糸 统 之調 整 溫 度 順 序以 及運 作狀態 順 序; — 間置 空間 管 理 模 組 ,當 該 至 少 子系 統之 偵測器 偵 測到 益 人使 用該 子 系 統 時 ,調 整 該 至 少 一子 系統 之運作 狀 態; 以 及一 即時 洩 漏 管 理 模組 去 該 至 少一 子系 統之偵 測 器偵 測 到一 室外 溫 度 尚 於 該室 内 田 區 域 溫 度, 且該 至少一 子 系統 之 偵測 器偵 測 到該 室 内區 域 之 門 態 窗設 0 施未 關閉達 — 第一 時 間後 ’調 整 該 子 系 統之 運 作 狀 12.如申請專利範圍第i項所述之用電量管控系統, 更包括-運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一閒置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時調整該至 少一子系統之運作狀態;以及一熱源監測管理模組,當該 至少一子系統之偵測器偵測到一設施之溫度高於該室内區 域溫度時,隔離該設施或調整該子系統之運作狀態。 13 ·如申請專利範圍第1項所述之用電量管控系統, 更匕括運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一閒置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時調整該至 少一子系統之運作狀態;一熱源監測管理模組,當該至少 一子系統之偵測器偵測到一設施之溫度高於該室内區域溫 26 1376855 _ _rjjg (I!正 度時’隔離該設施或調整該子系統之運作狀態;以及-即 時洩漏管理模|且’當該至少一子系統之偵測器值測到一室 外溫度高於該室内區域溫度,且該至少_子系統之偵測器 谓測到该室内區域之_門f設施未關閉達 調整該子系統之運作狀態。 %間後, 14, 更包括 順序以 一子系 少一子 一子系 度時, 氣引進 内區域 該至少 外溫度 如申请專利範圍第 一運轉排程管理模組 及運作狀態順序;— 統之偵測器偵測到無 系統之運作狀態;一 統之偵測器偵測到一 隔难該設施或調整該 官理模組,當該至少 溫度高於一室外溫度 子系統之偵測器偵 時,停止引進該室外 1項所述之用 ,排列該些子 閒置空間管理 人使用該子系 熱源監測管理 設施之溫度高 子系統之運作 一子系統之谓 時’引進該室 測到該室内區 空氣。 電量管控系統, 系統之調整溫度 才莫組,當該至少 ,统時,調整該至 模組,當該至少 於該室内區域溫 狀態;以及一外 測器偵測到該室 外空氣,以及當 域溫度低於該室 15 ·如申請專利範圍笸1适所-七七 更包括-運轉排广圍第1項所4之用電量管控系統’ 順序以及運作妝能 —子糸、、充之調整溫度 連作狀態順序;一間置空間 一子系統之偵測&amp; 、,且,S該至少 價測杰伯測到無人使用該 少一子系鉼之運从u 卞糸.、·先時,调整該至 狀態;一即時洩漏管 一子系統之偵測哭佔 ®理杈組,當該至少 、、〗》。偵测到—室外溫 度,且該至少么 人冋於該至内區域溫 子糸統之偵測器偵_該室内區域之一門 27 窗設施未關閉達-第-時間後,調整該子系統之運作狀 態’以及-外氣引進管理模组,當該至 器偵測到該室内區d ^ 一从 糸統之偵測 至M匕域皿度尚於一室外溫度時,引進該室外 空氣’以及當該至少-子系統之制器谓測到該室内區域 溫度低於該室外溫度時,停止引進該室外空氣。 I6.如申請專利範圍第1項所述之用電量管控系統, 更包括-運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一閒置空間管理模組,當該至少 —子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態;一即時洩漏管理模組,當該至少 一子系統之偵測器偵測到一室外溫度高於該室内區域溫 度,且該至少一子系統之偵測器偵測到該室内區域之一門 窗設施未關閉達一第—時間後,調整該子系統之運作狀 態;一外氣引進管理模組,當該至少一子系統之偵測器偵 測到該室内區域溫度高於一室外溫度時引進該室外空 氣,以及當該至少—子系統之偵測器偵測到該室内區域溫 度低於該室外溫度時,停止引進該室外空氣;以及一熱源 監測管理模組,當該至少一子系統之偵測器偵測到一設施 之/皿度冋於該室内區域溫度時,隔離該設施或調整該子系 統之運作狀態。 17.如申凊專利範圍第1項所述之用電量管控系統, 其中S玄用電系統為一空調系統,該空調系統具有一冰水主 機,該空調系統更包括—系統效率管理模組,用以設定該 28 1376855 叙 Vff, UIL 年 7 月 冰水主機之出/回水溫度,其中當該總用電量大於該第一度 數時,調升該冰水主機之出/回水溫度。 1 8.如申請專利範圍第1項所述之用電量管控系統, 其中該用電系統為一空調系統,該空調系統具有第一與第 二冰水主機,該空調系統更包括一系統效率管理模組,用 以設定該第一與第二冰水主機之出/回水溫度,其中先開啟 該第一冰水主機,以及當該空調系統提供之溫度該於一要 求溫度時,開啟該第二冰水主機。 19. 如申請專利範圍第1項所述之用電量管控系統, 其中該門檻值為一總用電度數。 20. 如申請專利範圍第1項所述之用電量管控系統, 其中該門檻值為一總用電費用。 21. 如申請專利範圍第4項所述之用電量管控系統, 其中該熱源監測管理模組更包括通知一使用者隔離該設 施。 22. 如申請專利範圍第2 1項所述之用電量管控系 統,其中隔離該設施為關閉該設施電源。 23. 如申請專利範圍第4項所述之用電量管控系統, 其中該熱源監測管理模組,當該至少一子系統之偵測器偵 29 1376855 - 年月日修正替換hI 7 t i 3 4 日佟i£#拯!;_ 測到一設施之溫度高於該室内區域溫度時,更包括將該至 少一子系統之調整溫度開關調整一第三溫度。 • 24.如申請專利範圍第23項所述之用電量管控系 • 統,其中該偵測器包括一溫度感測器、一門窗感測器、一 移動感測器。 25. 如申請專利範圍第24項所述之用電量管控系 統,其中該偵測器更包括一 C02濃度感測器。 26. 如申請專利範圍第25項所述之用電量管控系 統,其中當該至少一子系統之該C02濃度感測器偵測到該 室内區域之C02濃度高於一第一預設值時,該外氣引進管 理模組引進該室外空氣至對應該至少一子系統之室内區 域,以及當該至少一子系統之該C02濃度感測器偵測到該 室内區域之C02濃度低於一第二預設值時,該外氣引進管 理模組停止引進該室外空氣至對應該至少一子系統之室内 區域。 27. 如申請專利範圍第1項所述之用電量管控系統, 更包括一設定模組用以設定該門檻值。 28. 如申請專利範圍第1項所述之用電量管控系統, 更包括一模擬分析模組用以模擬在該門檻值下,該時間點 之用電狀況。 30 1376855 L月曰修正替換 L ιοί ΰ).ι午—月丨4 29·如申請專利範圍第1項所述之用電量管控系統, 〃中。玄動悲溫度管理模組更包括設定該些子系統控制之對 應室内區域舒適度要求之優先順序。 30. 如申請專利範圍第29項所述之用電量管控系 統,其中該動態溫度管理模組根據該舒適度要求優先順序 5周整邊些子系統之調整溫度開關。 31. 如申請專利範圍第1項所述之用電量管控系統, 中&quot;玄運轉排私管理模組係根據行事磨資訊排列該些子系 統之調整溫度順序以及運作狀態順序。 32. 如申請專利範圍第1項所述之用電量管控系統, 其中係根據一預測資訊改變該門檻值。 33. —種用電量管控方法,係用以控制一用電系統在一 時間點之總用電量於一門檻值之.下,其中該用電系統包括 複數個子系統以及一第一冰水主機,每一該些子系統控制 一室内區域並具有一調整溫度開關以及一偵測器,該用電 量管控方法至少包含: 設定該門插值; 排列該些子系統之調整溫度順序以及運作狀態順序; 當該總用電量大於該門檻值時,根據該調整溫度順序 將至少一子系統之調整溫度開關調升一第—溫度以及备 3! 1376855 1贪月7日 1 修1f替換頁i 該總用電量小於該門檻值,根據該調整溫度順序將該至少 一子系統之調整溫度開關調降一第二溫度。 34. 如申請專利範圍第33項所述之用電量管控方 法,更包括:當該至少一子系統之偵測器偵測到無人使用 該子系統時,調整該至少一子系統之運作狀態。 35. 如申請專利範圍第33項所述之用電量管控方 法,更包括:當該至少一子系統之偵測器偵測到該室内區 域溫度高於一室外溫度時,引進該室外空氣,以及當該至 少一子系統之偵測器偵測到該室内區域溫度低於該室外溫 度時,停止引進該室外空氣。 36. 如申請專利範圍第33項所述之用電量管控方 法,更包括:當該至少一子系統之偵測器偵測到一設施之 溫度高於該室内區域溫度時,隔離該設施或調整該子系統 之運作狀態。 37. 如申請專利範圍第33項所述之用電量管控方 法,更包括:當該至少一子系統之偵測器偵測到一室外溫 度高於該室内區域溫度,且該至少一子系統之偵測器偵測 到該室内區域之一門窗設施未關閉達一第一時間後,調整 該子系統之運作狀態。 3 8.如申請專利範圍第33項所述之用電量管控方 32 1376855Outside air. 8. The power consumption control system as described in item 1 of the patent scope of the application, further includes: the operation scheduling management module. The group 'arranges the temperature adjustment order of the subsystems and the operating state sequence; and a heat source monitoring The management module 'isolated the facility or adjusts the operational state of the subsystem when the detector of the subsystem detects that the temperature of the facility is higher than the temperature of the indoor zone. 9. The power consumption control system as described in claim 1 of the patent application, further including an it-turn scheduling official management module, arranging the temperature adjustment order and the operational status sequence of the subsystems; and an instant leakage management module, When the:-sub-system detector detects that an outdoor temperature is higher than the indoor area temperature' and the detector of the at least one subsystem detects that the door and window facilities of the indoor area are not closed up - first After the time, adjust the operation of the subsystem. 10. The power consumption control system described in the scope of the patent application, and the operation scheduling management module, arrange the temperature adjustment sequence and operation of the subsystems. State sequence; the idle space management module, when the at least-subsystem detector detects that no one is using the subsystem, adjusts the v-subsystem, the first operational state; and - the external gas introduction management module a group, when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than a temperature, introducing the outdoor space, and detecting the temperature of the indoor area when the detector of the at least one subsystem detects Below the room The introduction of the outside air temperature when stopped. ^ 25更11. The power consumption control wire 9 as described in item 1 of the patent application includes an operation scheduling management module, which arranges the temperature adjustment order and the operational status sequence of the sub-systems; a management module, when the detector of the at least subsystem detects that the beneficial person uses the subsystem, adjusts an operating state of the at least one subsystem; and an instant leak management module detects the at least one subsystem The device detects that an outdoor temperature is still in the indoor field temperature, and the detector of the at least one subsystem detects that the door state window of the indoor area is not closed - after adjusting the child after the first time The operation mode of the system 12. The power consumption control system described in item i of the patent application scope further includes an operation scheduling management module, arranging the temperature adjustment order of the subsystems and the operation state sequence; and an idle space management a module, when the detector of the at least one subsystem detects that no one is using the sub Adjusting the operating state of the at least one subsystem; and a heat source monitoring management module, when the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor region, isolating the facility or adjusting The operational status of the subsystem. 13 · The power consumption control system described in item 1 of the patent application scope, further includes an operation scheduling management module, arranging the temperature adjustment order and the operation status sequence of the subsystems; an idle space management module, when The detector of the at least one subsystem detects an operating state of the at least one subsystem when the subsystem is not used; a heat source monitoring management module, when the detector of the at least one subsystem detects a facility The temperature is higher than the indoor zone temperature 26 1376855 _ _rjjg (I! isolating the facility or adjusting the operating state of the subsystem when I is positive; and - instant leak management mode | and 'when the at least one subsystem detector The value of the outdoor temperature is higher than the temperature of the indoor area, and the detector of the at least _ subsystem detects that the indoor area of the door is not closed to adjust the operating state of the subsystem. In addition, when the order is one sub-system, one sub-system, the gas introduction inner region, the at least external temperature, such as the first operational scheduling management module and the operational state sequence of the patent application scope; Detecting the operating state of the system; the unified detector detects that the facility is difficult to adjust or adjusts the official module, and when the detector whose temperature is higher than an outdoor temperature subsystem detects, the introduction is stopped. For the use of the outdoor item, the sub-systems of the sub-system heat source monitoring and management facilities are used to calculate the operation of the sub-system. The introduction of the room to measure the indoor area air. System, the system adjusts the temperature of the group, when the system is at least adjusted, when the temperature is at least in the indoor area; and an external detector detects the outdoor air, and when the temperature is low In this room 15 · If the scope of application for patents 适 1 - 7-7 includes - the power consumption control system of the first item of the operation of the line 4 'sequence and operation makeup - sub-糸,, charge adjustment temperature continuous State sequence; a space-to-subsystem detection &amp;, and, S, at least the price of Jaber detected that no one uses the lesser sub-system to transfer from u 卞糸., · first, adjust the To state; one When the leaking tube is detected by a subsystem, the crying controller group, when the at least, is detected, the outdoor temperature is detected, and the at least one person is in the inner region of the temperature detector. Detecting _ one of the indoor areas of the door 27 window facilities is not closed up to - the first time, adjust the operating state of the subsystem 'and - the external gas introduction management module, when the device detects the indoor area d ^ a slave When the system detects that the M-zone is still at an outdoor temperature, the outdoor air is introduced, and when the at least-subsystem device detects that the indoor temperature is lower than the outdoor temperature, the introduction is stopped. Outdoor air. I6. The power consumption control system described in item 1 of the patent application scope further includes an operation scheduling management module, and the order of adjusting the temperature and the sequence of operating states of the subsystems; an idle space management module a group, when the at least-subsystem detector detects that no one is using the subsystem, adjusting an operating state of the at least one subsystem; an instant leak management module, when the at least one subsystem detects Measured an outdoor The temperature is higher than the temperature of the indoor area, and the detector of the at least one subsystem detects that the door and window facilities of the indoor area are not closed for a first time, and adjusts the operating state of the subsystem; a module that introduces the outdoor air when the detector of the at least one subsystem detects that the indoor zone temperature is higher than an outdoor temperature, and when the at least one subsystem detects that the indoor zone temperature is low Stopping the introduction of the outdoor air at the outdoor temperature; and a heat source monitoring management module, isolating the facility when the detector of the at least one subsystem detects a temperature of the facility/the temperature of the indoor zone Or adjust the operating status of the subsystem. 17. The power consumption control system according to claim 1, wherein the S-Xuan system is an air-conditioning system, the air-conditioning system has an ice water host, and the air-conditioning system further includes a system efficiency management module. , to set the 28 1376855 Vff, UIL July ice water host out / return water temperature, wherein when the total power consumption is greater than the first degree, raise the ice water host out / back water temperature. 1 . The power consumption control system according to claim 1 , wherein the power system is an air conditioning system, the air conditioning system has first and second ice water hosts, and the air conditioning system further includes a system efficiency a management module, configured to set an exit/return water temperature of the first and second ice water hosts, wherein the first ice water host is first turned on, and when the temperature provided by the air conditioning system is at a required temperature, the The second ice water host. 19. The power consumption control system of claim 1, wherein the threshold is a total power consumption. 20. The power consumption control system of claim 1, wherein the threshold is a total electricity cost. 21. The power usage control system of claim 4, wherein the heat source monitoring management module further comprises notifying a user to isolate the facility. 22. The power consumption control system of claim 21, wherein the facility is isolated to power off the facility. 23. The power consumption control system according to claim 4, wherein the heat source monitoring management module, when the at least one subsystem of the detector detects 29 1376855 - the date of the month is corrected to replace the hI 7 ti 3 4日佟i£#月! ;_ When it is determined that the temperature of a facility is higher than the temperature of the indoor zone, the adjustment temperature switch of at least one subsystem is further adjusted to a third temperature. 24. The power consumption control system of claim 23, wherein the detector comprises a temperature sensor, a window sensor, and a motion sensor. 25. The power consumption control system of claim 24, wherein the detector further comprises a C02 concentration sensor. 26. The power consumption control system of claim 25, wherein when the CO 2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor area is higher than a first preset value The external air introduction management module introduces the outdoor air to an indoor area corresponding to at least one subsystem, and when the CO2 concentration sensor of the at least one subsystem detects that the indoor area has a C02 concentration lower than a first When the preset value is two, the external air introduction management module stops introducing the outdoor air to an indoor area corresponding to at least one subsystem. 27. The power consumption control system described in claim 1 further includes a setting module for setting the threshold. 28. The power consumption control system of claim 1 further includes an analog analysis module for simulating the power usage at the time point at the threshold. 30 1376855 L 曰 曰 替换 L L L L ι ι ι ι 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 · · · · The sinister temperature management module further includes prioritizing the comfort requirements of the corresponding indoor areas controlled by the subsystems. 30. The power consumption control system of claim 29, wherein the dynamic temperature management module prioritizes the adjustment of the temperature switches of the subsystems for 5 weeks according to the comfort requirement. 31. For example, in the power consumption control system described in item 1 of the patent application, the “manual operation and privacy management module” arranges the temperature adjustment order and the operational status sequence of the subsystems according to the information of the operation. 32. The power consumption control system of claim 1, wherein the threshold value is changed according to a predicted information. 33. A power consumption control method for controlling a total power consumption of a power system at a point in time, wherein the power system includes a plurality of subsystems and a first ice water a host, each of the subsystems controlling an indoor area and having an adjustment temperature switch and a detector, the power consumption control method comprising at least: setting the gate interpolation; arranging the adjusted temperature sequence and the operation state of the subsystems Sequence; when the total power consumption is greater than the threshold value, according to the adjusted temperature sequence, the adjustment temperature switch of at least one subsystem is raised to a temperature--time and standby 3! 1376855 1 greedy month 7 day 1 repair 1f replacement page i The total power consumption is less than the threshold value, and the adjusted temperature switch of the at least one subsystem is adjusted to a second temperature according to the adjusted temperature sequence. 34. The method for controlling power consumption as described in claim 33, further comprising: adjusting a working state of the at least one subsystem when the detector of the at least one subsystem detects that the subsystem is not used by the subsystem . 35. The method for controlling power consumption according to claim 33, further comprising: introducing the outdoor air when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, And when the detector of the at least one subsystem detects that the temperature of the indoor area is lower than the outdoor temperature, stopping the introduction of the outdoor air. 36. The method for controlling power consumption according to claim 33, further comprising: isolating the facility when the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor region; Adjust the operational status of the subsystem. 37. The method for controlling power consumption according to claim 33, further comprising: when the detector of the at least one subsystem detects that an outdoor temperature is higher than a temperature of the indoor region, and the at least one subsystem The detector detects that the door and window facilities of the indoor area are not closed for a first time, and adjusts the operating state of the subsystem. 3 8. The power consumption control party mentioned in item 33 of the patent application scope 32 1376855 7. 曰梦正夺換匙 法,更 該總用 水溫度 39. 法,其 40. 法,其 41. 法,該 開啟該 一要求 42. 法,更 43. 法,其 44. 法,其, 南於該 關調整 ji^ei 7 /] 4 u 包括:設定該第一冰水主機之出/回水溫度,其中當 電量大於該門檻值時,調升該第一冰水主機之出/回 如申請專利範圍第3 3項所述之用電量管控方 中該門檻值為一總用電度數。 如申請專利範圍第33項所述之用電量管控方 中該門檻值為一總用電費用。 如申請專利範圍第3 3項所述之用電量管控方 用電系統更包括一第二冰水主機,該方法更包括先 第一冰水主機,以及當該用電系統提供之溫度該於 溫度時,開啟該第二冰水主機。 如申請專利範圍第3 3項所述之用電量管控方 包括通知一使用者隔離該設施。 如申請專利範圍第3 3項所述之用電量管控方 中隔離該設施為關閉該設施電源。 如申請專利範圍第3 3項所述之用電量管控方 中當該至少一子系統之偵測器偵測到一設施之溫度 室内區域溫度時,更包括將該子系統之調整溫度開 一第三溫度。 33 1376855 年月曰修正替換頁 1併:…-7:. 4.3- 45.如申請專利範圍第33項所述之用電量管控方 法,其中該偵測器包括一溫度感測器、一門窗感測器、一 移動感測器。 4 6.如申請專利範圍第45項所述之用電量管控方 法,其中.該偵測器更包括一 C02濃度感測器。 47. 如申請專利範圍第46項所述之用電量管控方 法,其中當該至少一子系統之該C02濃度感測器偵測到該 室内區域之C02濃度高於一第一預設值時,引進該室外空 氣至對應該至少一子系統之室内區域,以及當該至少一子 系統之該C02濃度感測器偵測到該室内區'域之C02濃度低 於一第二預設值時,該外氣引進管理模組停止引進該室外 空氣至對應該至少一子系統之室内區域。 48. 如申請專利範圍第33項所述之用電量管控方 法,更包括設定該些子系統控制之對應室内區域舒適度要 求之優先順序。 49. 如申請專利範圍第33項所述之用電量管控方 法,更包括根據該舒適度要求優先順序調整該些子系統之 調整溫度開關。 50. 如申請專利範圍第33項所述之用電量管控方 34 f 1376855 -—-, • - 法,其中更包括根據行事曆資訊排列該些子系統之調整溫 度順序以及運作狀態順序。 • 5 1.如申請專利範圍第33項所述之用電量管控方法, ' 其中更包括根據一預測資訊改變該門檻值。 357. The nightmare is changing the key method, and the total water temperature is 39. The law, its 40. method, the 41. method, the opening of the requirement 42. The law, the 43. method, the 44. method, its, South adjustment of the ji^ei 7 /] 4 u includes: setting the exit/return water temperature of the first ice water host, wherein when the power is greater than the threshold, the first ice water host is raised/returned For example, in the power consumption control party described in Item 3 of the patent application, the threshold is a total power consumption. For example, in the power consumption control party mentioned in item 33 of the patent application, the threshold is a total electricity consumption fee. The power consumption control power system as described in claim 3, further includes a second ice water host, the method further comprising first the first ice water host, and when the temperature provided by the power system is At the temperature, the second ice water host is turned on. The power consumption controller as described in item 3 of the patent application includes notifying a user to isolate the facility. The power supply control party described in item 3 of the patent application scope isolates the facility from powering down the facility. For example, when the detector of the at least one subsystem detects the temperature of the indoor temperature region of the facility, the power consumption controller of the third aspect of the patent application includes the adjustment temperature of the subsystem. Third temperature. 33 1376855 曰 曰 替换 替换 替换 并 : ... ... ... 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 用 用 用 用 用 用 用 用 用 用 用Sensor, a mobile sensor. 4. The power consumption control method described in claim 45, wherein the detector further comprises a C02 concentration sensor. 47. The method for controlling power consumption according to claim 46, wherein when the CO 2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor region is higher than a first preset value Introducing the outdoor air to an indoor area corresponding to at least one subsystem, and when the CO 2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor area is lower than a second preset value The external air introduction management module stops introducing the outdoor air to an indoor area corresponding to at least one subsystem. 48. The power consumption control method described in claim 33 of the patent application also includes prioritizing the comfort requirements of the corresponding indoor areas controlled by the subsystems. 49. The method of power consumption control as described in claim 33, further comprising adjusting the temperature adjustment switches of the subsystems according to the comfort requirements. 50. The power consumption controller 34 f 1376855---, - method as described in claim 33, which further includes the order of adjustment temperature and the order of operation of the subsystems according to the calendar information. • 5 1. The method of power consumption control as described in claim 33, 'which further includes changing the threshold based on a predicted information. 35
TW97146961A 2008-10-13 2008-12-03 Electronic consumption control system and method thereof TWI376855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146961A TWI376855B (en) 2008-10-13 2008-12-03 Electronic consumption control system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW97139230 2008-10-13
TW97146961A TWI376855B (en) 2008-10-13 2008-12-03 Electronic consumption control system and method thereof

Publications (2)

Publication Number Publication Date
TW201015817A TW201015817A (en) 2010-04-16
TWI376855B true TWI376855B (en) 2012-11-11

Family

ID=44830193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146961A TWI376855B (en) 2008-10-13 2008-12-03 Electronic consumption control system and method thereof

Country Status (1)

Country Link
TW (1) TWI376855B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659384B (en) * 2017-11-29 2019-05-11 國立中山大學 Double-looped requirement control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502197B (en) * 2011-01-28 2015-10-01 Chin Rong Lin Integrated intelligent low carbon monitoring and evaluation system
TWI477722B (en) * 2012-08-09 2015-03-21 Univ Ishou Intelligent air conditioning energy management system and its intelligent air conditioning energy management equipment
TWI565174B (en) * 2012-09-14 2017-01-01 行政院原子能委員會核能研究所 Apparatus of controlling loads in high-performance micro-grid
TWI742662B (en) * 2020-05-15 2021-10-11 中華電信股份有限公司 Smart water supplement method and smart water supplement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659384B (en) * 2017-11-29 2019-05-11 國立中山大學 Double-looped requirement control system

Also Published As

Publication number Publication date
TW201015817A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
CN101833310B (en) Power consumption management control system and method
Zhou et al. Achieving energy efficient buildings via retrofitting of existing buildings: a case study
Xing et al. Analysis of energy efficiency retrofit scheme for hotel buildings using eQuest software: A case study from Tianjin, China
CN108039710B (en) Step characteristic-based air conditioner load-participating power grid day-ahead scheduling method
US10083408B2 (en) Energy conservation unit and system of a building by way of interactive learning
TWI376855B (en) Electronic consumption control system and method thereof
CN101929721B (en) Predicting method of central air conditioner energy-conservation control autoregressive (AR) model load predicting system
Littlefair et al. A simulation of solar shading control on UK office energy use
Lu et al. Operational optimization of district heating system based on an integrated model in TRNSYS
WO2012129675A1 (en) A computer implemented electrical energy hub management system and method
Guillemin et al. Experimental results of a self-adaptive integrated control system in buildings: a pilot study
Balaras et al. Assessment of energy and natural resources conservation in office buildings using TOBUS
JP2012100427A (en) Power management system, power management method and power management program
Ling et al. Simulation and optimization of the operation strategy of ASHP heating system: A case study in Tianjin
Kiliccote et al. Dynamic controls for energy efficiency and demand response: Framework concepts and a new construction study case in New York
Cheng et al. Economic and energy consumption analysis of smart building–MEGA house
Chebotarova et al. Comparative analysis of efficiency energy saving solutions implemented in the buildings
Wang et al. A framework for retrofitting existing houses to nearly zero energy buildings: Development and a real-life case study
Krarti Performance of PV integrated dynamic overhangs applied to US homes
Rashid et al. Performance analysis and investigation for the development of energy efficient building
Kamali et al. Effect of building management system on energy saving
US20230221691A1 (en) Energy Savings Quantification Measurement And Budget Control System
KR20210115412A (en) Bidirectional stratified thermal storage system
CN107563547B (en) Comprehensive energy management and control method for optimizing depth of energy consumption of user side
Deru et al. Analysis of the design and energy performance of the Pennsylvania department of environmental protection Cambria office building

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees