TW201015817A - Electronic consumption control system and operation method thereof - Google Patents

Electronic consumption control system and operation method thereof Download PDF

Info

Publication number
TW201015817A
TW201015817A TW97146961A TW97146961A TW201015817A TW 201015817 A TW201015817 A TW 201015817A TW 97146961 A TW97146961 A TW 97146961A TW 97146961 A TW97146961 A TW 97146961A TW 201015817 A TW201015817 A TW 201015817A
Authority
TW
Taiwan
Prior art keywords
temperature
subsystem
power consumption
management module
detector
Prior art date
Application number
TW97146961A
Other languages
Chinese (zh)
Other versions
TWI376855B (en
Inventor
Ming-Kuang Lu
Original Assignee
Cqi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cqi Inc filed Critical Cqi Inc
Priority to TW97146961A priority Critical patent/TWI376855B/en
Publication of TW201015817A publication Critical patent/TW201015817A/en
Application granted granted Critical
Publication of TWI376855B publication Critical patent/TWI376855B/en

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

The present invention provides an electronic consumption control system and operation method thereof. The system controls the total electronic consumption of an electronic apparatus under a first degree. A user can evaluates a budget for electronic consumption. The electronic consumption budget is set in the electronic consumption control module. The control module may arrange the electronic consumption based on the electronic consumption budget.

Description

201015817 - 九、發明說明: . 【發明所屬之技術領域】 本發明是有關於-種控制系統及其操作方法,且特別 是有關於-種用以控制用電量之系統及其操作方法。 【先前技術】 由於全球油電及各項原物料價格齊m近年來因 ㈣暖化造成的天氣異常,促使各國政府政策均朝向降低 © 溫室氣體排放的方向制定,「節能」、「減碳」以及「省錢」 成為全人類追尋之目標。 尤其當電價高漲佔據大部分生產作業成本時,若可於 肖電之前先行計晝用電結構,並可進行動態調整分配用電 支出,對各企業追求成本之合理化與最小化將有莫大之助 益。 【發明内容】 D 因此本發明的主要目的就是在提供一種可期前計畫之 用電控制系統與方法,使用者可於用電之前,根據一用電 總量先行規劃用電結構,以極大化用電效益。 本發明的另一目的就是在提供一種可動態調整之用電 控制系統與方法,可根據外在環境條件隨時變化用電狀態。 根據一實施例’本發明之一種用電量管控系統,係用 以控制一用電系統在一時間點之總用電量於一第一度數之 下’其中該用電系統包括複數個子系統,每一該些子系統 控制一室内區域並具有一調整溫度開關以及一偵測器,該 201015817 - 用電量管控系統至少包含:動態溫度管理模組,當該總用 - 電量大於該第一度數時,將至少一子系統之調整溫度開關 調升一第一度數’以及當該總用電量小於該第一度數,將 該至少一子系統之調整溫度開關調降一第二度數;一運轉 排程管理模組,排列該些子系統之調整溫度順序;一閒置 空間管理模組’當該至少一子系統之偵測器偵測到無人使 用該子系統時,將該至少一子系統之調整溫度開關關閉; 一外氣引進管理模組,當該至少一子系統之偵測器偵測到 β 該室内區域溫度高於一室外溫度時,引進該室外空氣,以 及當該至少一子系統之偵測器偵測到該室内區域溫度低於 該室外溫度時’停止引進該室外空氣;一熱源監測管理模 組’當該至少一子系統之偵測器偵測到一設施之溫度高於 該室内區域溫度時,隔離該設施;以及一即時洩漏管理模 組’當該至少一子系統之偵測器偵測到一室外溫度高於該 室内區域溫度’且該至少一子系統之偵測器偵測到該室内 區域之一門窗設施未關閉達一第一時間後’將該至少一子 系統之調整溫度開關調—第三度數。 根據一實施例’其中該用電系統為一空調系統,該空 調系統具有一冰水主機’該空調系統更包括一系統效率管 理模組,用以設定該冰水主機之出水溫度,其中當該總用 電量大於該第一度數時,調升該冰水主機之出水溫度。 根據一實施例’其中該用電系統為一空調系統,該空 調系統具有第一與第二冰水主機,該空調系統更包括一系 統效率管理模組,用以設定該第一舆第二冰水主機之出水 溫度’其中先開啟該第一冰水主機,以及當該空調系統提 201015817 " 供之溫度該於一要求溫度時,開啟該第二冰水主機。 - 根據一實施例’其中該熱源監測管理模組通知一使用 者隔離該設施。 根據一實施例,其中隔離該設施為關閉該設施電源。 根據一實施例,其中隔離該設施為關閉門窗。 根據一實施例’其中該偵測器包括一溫度感測器、一 門窗感測器、一移動感測器。 根據一實施例,其中該偵測器更包括一 C02濃度感測 ® 器。其中當該至少一子系統之該C02濃度感測器偵測到該 室内區域之C02濃度高於一預設值時,該外氣引進管理模 組引進該室外空氣至對應該至少一子系統之室内區域》 根據一實施例,其中該預設值之設定為當該C02濃度 高於1200ppm該外氣引進管理模組引進外氣,以及當該 C02濃度低於lOOOppm外氣引進管理模組關閉外氣。 根據一實施例,其中該預設值之設定為當該C02濃度 高於1500ppm該外氣引進管理模組引進外氣,及當該C02 ® 濃度低於1200ppm該外氣引進管理模組關閉外氣。 根據一實施例,其中該預設值之設定為當該C02濃度 高於2000ppm該外氣引進管理模組引進外氣,及當該C02 濃度低於1500ppm該外氣引進管理模組關閉外氣。 根據一實施例,更包括一設定模組用以設定該第一用 電度數。 根據一實施例’更包括一模擬分析模組用以模擬在該 第一用電度數下,該時間點之用電狀況。 根據一實施例,其中該動態溫度管理模組更包括設定 201015817 , 該些子系統控制之對應室内區域舒適度要求之優先順序。 - 根據一實施例,其中該動態溫度管理模組根據該舒適 度要求優先順序調整該些子系統之調整溫度開關。 根據一實施例’本發明更提供一種用電量管控方法, 係用以控制一用電系統在一時間點之總用電量於一第一度 數之下,其中該用電系統包括複數個子系統以及一第—冰 水主機,每一該些子系統控制一室内區域並具有一調整溫 度開關以及一偵測器,該用電量管控方法至少包含:設定 ® 該第一用電度數;排列該些子系統之調整溫度順序;當該 總用電量大於該第一度數時,將至少一子系統之調整溫度 開關調升一第一度數’以及當該總用電量小於該第一度 數’將該至少一子系統之調整溫度開關調降一第二度數; 當該至少一子系統之偵測器偵測到無人使用該子方法時, 將該至少一子系統之調整溫度開關關閉;當該至少一子系 統之^貞測裔^貞測到該室内區域溫度高於一室外溫度時,弓丨 進該室外空氣’以及當該至少一子系統之偵測器偵測到該 G 室内區域翠度低於該室外溫度時,停止引進該室外空氣; 當該至少一子系統之偵測器偵測到一設施之溫度高於該室 内區域溫度時’隔離該設施;當該至少一子系統之<貞測器 偵測到一室外溫度高於該室内區域溫度,且該至少一子系 統之偵測器偵測到該室内區域之一門窗設施未關閉達一第 一時間後’將該至少一子系統之調整溫度開關調升一第三 度數;以及設定該第一冰水主機之出水溫度,其中當該總 用電量大於該第一度數時,調升該第一冰水主機之出水溫 度。 201015817 【實施方式】 第1圖鳍'示了根據本發明一較佳實施例之電量控管系 統概略圖示《根據一較佳實施例,此電量控管用電系統1〇〇 包括· S免定目標節能金額或電度模組1〇1、模擬分析模組 102以及用電量控管模組1〇3。其中用電量控管模組1〇3更 包括七個管理模組,分別為動態溫度管理模組丨〇3丨、運轉 排程管理模組1032、間置空間管理模組丨033、外氣引進管 理模組1034、熱源監測管理模組1〇35、即時洩漏管理模組 1036以及系統效率管理模組1〇37。值得注意的是,在其他 實施例中,亦可根據不同之控管系統增加其他不同功能之 管理模組。本發明可根據歷史、即時與預測的資訊,幫助 用戶精密地調配每一段時期的空調用電量,讓用戶可訂定 每月或每季或一年的期望用電金額,若超出用戶期望的空 調用電預算時,電腦便根據負載優先順序進行系統端與負 載端空調設施之參數線性調整,甚至調整負載舒適度等, 避免空調用電超出用戶期望金額。 根據本發明一實施例,設定目標節能金額或電度模組 101’其主要是用以提供一使用者設定目標節能金額或用電 度數。例如,對一企業用戶,用電量或用電金額亦為成本 管控之一環,用電量或用電金額減少即能間接增進獲利或 可調降終端商品售價,提高競爭度。此企業用戶可先行精 算在一單位週期下,例如以一季或一個月為單位,合理之 用電度數或用電費用,並透過本發明之設定目標節能金額 201015817 或電度模組+ i 曰 矸此0理之用電度數或用電量設定在用電 量控管模組1G3中。此時用電量控管模組1()3即會透過所 屬之七個管理模組’根據設定之用電度數或用電量之預 算,在一單位週期下’針對此企業用戶之用電結構進行動 態調整分配。利用期前之用電預算管控,可將用電量作最 合理之配置並避免用電之浪費。201015817 - IX. INSTRUCTIONS: 1. Field of the Invention The present invention relates to a control system and an operation method thereof, and more particularly to a system for controlling power consumption and a method of operating the same. [Prior Art] Due to the abnormal weather caused by the global oil and electricity and various raw materials prices in recent years due to (4) warming, the policies of all governments have been formulated to reduce the emission of greenhouse gases, "energy saving" and "carbon reduction". And "saving money" has become the goal of all human pursuit. Especially when the electricity price is high and the majority of the production cost is occupied, if the electricity structure can be calculated before the Xiaodian, and the power consumption can be dynamically adjusted, it will be of great help to rationalize and minimize the cost of each enterprise. beneficial. SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a power control system and method for a pre-planning project. The user can plan the power structure according to the total amount of power before using the power. Use electricity benefits. Another object of the present invention is to provide a dynamically adjustable power control system and method that can vary the state of power at any time based on external environmental conditions. According to an embodiment of the present invention, a power consumption control system for controlling a total power consumption of a power system at a time point below a first degree 'where the power system includes a plurality of subsystems Each of the subsystems controls an indoor area and has an adjustment temperature switch and a detector. The 201015817 - the power consumption control system includes at least: a dynamic temperature management module, when the total usage - the amount of electricity is greater than the first At the time of the degree, the at least one subsystem's adjusted temperature switch is raised by a first degree ' and when the total power consumption is less than the first degree, the at least one subsystem's adjusted temperature switch is lowered by a second a running schedule management module that aligns the temperature adjustment sequences of the subsystems; an idle space management module 'when the detector of the at least one subsystem detects that no one is using the subsystem, the at least The adjustment temperature switch of a subsystem is turned off; an external air introduction management module is configured to introduce the outdoor air when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature When the detector of the at least one subsystem detects that the indoor temperature is lower than the outdoor temperature, 'stops introducing the outdoor air; a heat source monitoring management module' detects when the at least one subsystem detector detects Isolating the facility when the temperature of the facility is higher than the temperature of the indoor zone; and an immediate leak management module 'when the detector of the at least one subsystem detects an outdoor temperature higher than the temperature of the indoor zone' and the at least The detector of a subsystem detects that the door and window facilities of the indoor area are not closed for a first time, and then adjusts the temperature adjustment switch of the at least one subsystem to a third degree. According to an embodiment, wherein the power system is an air conditioning system, the air conditioning system has an ice water host. The air conditioning system further includes a system efficiency management module for setting the water temperature of the ice water host. When the total power consumption is greater than the first degree, the water temperature of the ice water host is raised. According to an embodiment, wherein the power system is an air conditioning system, the air conditioning system has first and second ice water hosts, and the air conditioning system further includes a system efficiency management module for setting the first and second ice. The water outlet temperature of the water main unit first opens the first ice water main unit, and when the air conditioning system raises the temperature of the required temperature, the second ice water main unit is turned on. - According to an embodiment wherein the heat source monitoring management module notifies a user to isolate the facility. According to an embodiment, wherein the facility is isolated to power off the facility. According to an embodiment, wherein the facility is isolated, the doors and windows are closed. According to an embodiment, wherein the detector comprises a temperature sensor, a window sensor, and a motion sensor. According to an embodiment, the detector further includes a C02 concentration sensing device. When the CO 2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor area is higher than a preset value, the external air introduction management module introduces the outdoor air to correspond to at least one subsystem. According to an embodiment, wherein the preset value is set to be when the CO 2 concentration is higher than 1200 ppm, the external air introduction management module introduces external air, and when the CO 2 concentration is lower than 1000 ppm, the external gas introduction management module is closed. gas. According to an embodiment, the preset value is set to be when the CO 2 concentration is higher than 1500 ppm, the external air introduction management module introduces external air, and when the C02 ® concentration is lower than 1200ppm, the external air introduction management module turns off the external air. . According to an embodiment, the preset value is set such that when the CO 2 concentration is higher than 2000 ppm, the external air introduction management module introduces external air, and when the CO 2 concentration is lower than 1500 ppm, the external air introduction management module turns off the external air. According to an embodiment, a setting module is further included for setting the first power consumption number. According to an embodiment, an analog analysis module is further included to simulate the power usage status at the time point of the first power usage. According to an embodiment, the dynamic temperature management module further includes setting 201015817, and the priority order of the corresponding indoor area comfort requirements controlled by the subsystems. - According to an embodiment, wherein the dynamic temperature management module adjusts the adjusted temperature switches of the subsystems according to the comfort requirements. According to an embodiment, the present invention further provides a power consumption control method for controlling a total power consumption of a power system at a time point below a first degree, wherein the power system includes a plurality of The system and a first-ice water host, each of the subsystems controlling an indoor area and having an adjustment temperature switch and a detector, the power consumption control method comprising at least: setting the first power consumption number; Adjusting the temperature sequence of the subsystems; when the total power consumption is greater than the first power, increasing the temperature adjustment switch of at least one subsystem by a first degree ' and when the total power consumption is less than the first One degree 'reducing the adjusted temperature switch of the at least one subsystem to a second degree; when the detector of the at least one subsystem detects that the sub-method is not used, adjusting the temperature of the at least one subsystem The switch is turned off; when the at least one subsystem detects that the indoor temperature is higher than an outdoor temperature, the bow enters the outdoor air' and when the detector of the at least one subsystem detects The G indoor area When the Cuizhou is lower than the outdoor temperature, the introduction of the outdoor air is stopped; when the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor region, the facility is isolated; when the at least one subsystem The detector detects that an outdoor temperature is higher than the indoor temperature, and the detector of the at least one subsystem detects that one of the indoor and outdoor areas is not closed for a first time Adjusting the temperature switch of at least one subsystem to a third degree; and setting a water outlet temperature of the first ice water host, wherein when the total power consumption is greater than the first degree, raising the first ice water host The outlet temperature. [Four Embodiments] FIG. 1 shows a schematic diagram of a power control system according to a preferred embodiment of the present invention. According to a preferred embodiment, the power control system 1 includes: The target energy saving amount or electricity module 1〇1, the simulation analysis module 102, and the power consumption control module 1〇3 are fixed. The power control module 1〇3 further includes seven management modules, namely, a dynamic temperature management module 丨〇3丨, an operation scheduling management module 1032, an inter-space management module 丨033, and an external air. The management module 1034, the heat source monitoring management module 1〇35, the instant leak management module 1036, and the system efficiency management module 1〇37 are introduced. It is worth noting that in other embodiments, management modules of other different functions may be added according to different control systems. The invention can help the user to precisely allocate the power consumption of the air conditioner for each period according to historical, real-time and predicted information, so that the user can set the expected amount of electricity for each month or quarter or year, if the user exceeds the expectation of the user. When the air-conditioning electricity budget is used, the computer will linearly adjust the parameters of the air-conditioning facilities at the system end and the load end according to the load priority order, and even adjust the load comfort, etc., to avoid the air-conditioning power consumption exceeding the user's expected amount. According to an embodiment of the invention, the target energy saving amount or electricity module 101' is set to provide a user to set a target energy saving amount or power consumption. For example, for a business user, the amount of electricity used or the amount of electricity used is also a loop of cost control. The reduction in electricity consumption or electricity consumption can indirectly increase the profitability of the profitable or adjustable terminal goods and increase the competition. The enterprise user can perform actuarial calculation in a unit period, for example, in a season or a month, a reasonable amount of electricity or electricity, and through the set target energy saving amount 201015817 or electric module + i 本 of the present invention The power consumption or the power consumption is set in the power consumption control module 1G3. At this time, the power control module 1()3 will use the power of the seven management modules according to the set power consumption or the budget of the power consumption. The structure is dynamically adjusted and assigned. By using the pre-existing power budget control, the power consumption can be optimally configured and waste of electricity can be avoided.

此外,用電量控管模組!〇3在開始執行前,會先透過 模擬分析模組1G2進㈣電管控之模擬,剌電結構先行 呈現出來,讓使用者知道根據其設定之用電度數或用電量 預算下,所規劃出之用電結構並可進行微調。例如,對一 企業用戶而言,在—單位職τ,其設定之㈣電量為嶋 度,本發明之模擬分析模組1G2可考量歷史用電資料、環 境變數’例如溫度、濕度,以及該企業用戶在此時間週期 門之排程σ十畫’模擬出一用電結構,例如用電分配為下午 可支用之度數高於上午可支用之度數丨度,而此企業用戶 亦可對此模擬結果進行微調,例如調整上、下午間之可支 用度數,或對某一特定日進行用電度數之調整。 本發明用電量控管模組103中包括七個管理模組,以 下將以管理一空調之用電量為例,分述此七個管理模組之 功能。此外,纟其他之實施例中,此七個管理模組亦可用 於管理其他不同之用電裝置。 動態溫度管理模組1031,主要用來進行空調溫度之管 控’藉由即時調整空調之設定溫度’來達到總用電^之管 控。動態溫度管理模組1031,可依照用戶所訂定的目標用 電金額,隨時調整空調之設定溫度。空調設定溫度是^響 201015817 * 空調設施運作與舒適度最重要的因子,隨著不同的環境狀 _ 態改變,應該對應不同的設定溫度,才不會有過度使用或 無效運轉的情形發生。本發明之動態溫度管理模組1031可 以隨著環境的變化機動調整空調溫度,兼顧用戶舒適度與 能源高效使用。此外’若某些時段因熱負載過高或設定溫 度過低’而導致空調系統側供不應求,造成壓縮機(或冰水 閥)持續開啟無法關閉,動態溫度管理模組1031能夠機動 地調整到適當的設定溫度’或是暫時關閉壓縮機(或冰水 〇 閥),讓空調系統進入較低負載的運作狀態。 在一實施例中,動態溫度管理模組1031之管控程序如 • 第2圖所示,先提供給使用者以區域為單位進行舒適度要 ’ 求之設定。例如,提供三個等級,“重要”、“普通”、 “不重要”,讓使用者設定各區域舒之適度要求。例如, 辦公室舒適度可設定為重要,事務間舒適度可設定為普 通,電梯口舒適度可設定為不重要。而在其他實施例中, 舒適度要求之等級不以三個等級為限。接著,使用者定義 © 各區域舒適度調整之優先順序,例如,分為最高、高、中、 低等級。舒適度優先順序低者,當超過無法達到節能目標 門檻時,首先調整設定溫度;舒適度優先順序中者次之; 舒適度優先順序高者最後調整;而舒適度優先順序最高 者’以舒適度為主,不因節能需求改變舒適度或設定溫度。 以上調整週期以每15(視狀況調整之)分鐘重新設定一次。 接著即可進行動態調整,動態溫度管理模組1031會隨 時計算已使用之空調電費:根據空調設施使用之電度乘以 該時段之每度電費(含平均基本電費),累積一段期間之金 11 201015817 額。並記錄使用者空調平均每天使用時間(小時)之數據,此 數據可每天記錄做為未來調整的參考,另系統亦可參考氣 象單位預報當曰天氣狀況作為操取資料庫中類似天氣狀況 的依據。自動產生月、胃、日各時段之各區域之可用電費 分配比例。系統將使用者希望之目標電費分12個月各別 填入,系統自動根據月、周、日各時段之分配用電比例產 生目標電費。使用者也可進人各月份進人調整各週別(如週 一和週六Μ票電費可能不巧)目標電#,.或設定特定假日的 目標電費。在一實施例中,使用者亦可進入單日調整各時 段之目標電費。 例如早上7點到11點每小時之目標電費分配可能與 早上11點到下午2點每小時之目標電費分配不同。每個 小時内切分為60等份(每1分鐘)’即1/6〇。動態能源使用 管理系統每1分鐘累積一次已用電費,若該時間點之累積 電費已低於目標電費,則設定溫度保持在標準適中的舒適 度範圍’或是由使用者自訂設定溫度為主;若該時間點已 用電費超過目標電費’則啟用動態溫度節能管理功能,第 一次提高用戶側設定溫度比前15分鐘之平均回風溫度高 攝氏1度並同時提高風速,若仍無法低於目標電費,則再 提高攝氏0.5度以此類推,最高至調至攝氏3〇度,以達 到目標電費。 運轉排程管理模組1032係用以建立完整的空調運轉 排程,節省許多開關設備電源時間不精確所造成的浪費(例 如k早開、延後關)’也能夠利用半夜涼爽的室外空氣,在 便宜的離峰時段電價,以風扇來進行因假日空調未運轉所 12 201015817 形成的室内蓄熱做排除,避免次日利用空調在尖峰電價時 段,花費較高的電費,將蓄熱置換至建築物之外。例如早 上7點建築物内溫度未達預設溫度時,可在7:25前運轉排 程管理模組1032先開啟空調降溫,至7:25關閉空調,上 班時間再將空調開啟,如此便不需要消耗多餘的冷卻量將 蓄熱排出。對於有建置外氣引進系統之建築物,運轉排程 管理模組1032更能在半夜或清晨將戶外清新低溫的空氣引 進’根本不需要開啟空調也能達到排除建築物隔夜蓄熱的 效果’讓使用者一早進辦公室便能享受舒適宜人的溫度, 也不會出現「用戶一早把空調溫度設最低,但過一整天卻 無人調整回來」等現象,這樣一來一回便節省了許多不必 要的用電。此外,運轉排程管理可結合電子行事曆系統(例 如Microsoft 0utlook行事曆)做為用電控管策略判斷依據, 系統能夠更智慧化的協助用戶制定符合其舒適與節能需求 之運轉排程設定。 閒置空間管理模組1033,使用效率提升,是一切能源 管理的根本。空調與照明設施在無人時仍開啟,佔了建築 物中浪費因素中的38%,換句話說,就算系統的運作效率 再佳’只要用戶端使用效率不好,依然造成無謂的能源損 失,因此「避免浪費」以及「合理化操作」才能釜底抽薪 的降低用電量《建築物内獨立隔間環境,如小辦公室、會 議至、房間、廁所等,或是飯店之客房,利用移動感測器 偵測環境是否閒置無人使用,來決定設施運作狀態可以 知省許多不必要的浪費。例如使用者離開辦公室後,移動 感測器馬上可以通知閒置空間管理模組1〇33將該環境中空 13 201015817 調設施關閉’或疋將環境舒適度(给值)提高、將空調改變為 - 送風模式等。 外氣引進管理模組1034,因為空調使用有27〇/〇的負荷 是來自外氣,因此在動態的外氣變化下「適時適量」的引 進外氣,對控管空調用電有莫大的幫助。 在一實施例中,外氣引進管理模組1〇34每1〇分鐘計 算一次空調區域之所有溫度感測器之平均值,當室外溫度 比室内溫度平均值低3度以上,且室外焓值屬於舒適範圍 ® 或比室内焓值低,外氣幻進管理模組1034引進外氣。此外 為避免頻繁的切換開關,可設定超過3度以上引進外氣, 2度以内關閉外氣。當室外溫度非比室内溫度平均值低3 度以上時,則關閉外氣,除非所對應空調區域内任一之C〇2 感測器濃度所測得之C02濃度超過所設定之上限時才引進 外氣,低於下限時關閉外氣。其中c〇2感測器濃度之上、 下限預設定義為:依使用者定義之舒適度(與動態溫度管理 同樣設定)有不同設定。例如,“重要”為1200ppm開啟外 氣,lOOOppm關閉外氣、“普通”為15〇〇ppm開啟外氣, 1200Ppm關閉外氣、“不重要,,為2〇〇〇ppm開啟外氣, 1500ppm關閉外氣。外氣引進管理模組1〇34可供使用者 重新輸入參數。 熱源監測管理模組1035,建築物周圍發生的太陽輻射 熱交換,也是常見的傳輸損失,因此若能在建築物外加裝 遮陽板曰光強烈時拉上窗簾、或是在建築物内部周園設 计風簾或加裝出風口,便能減少輻射熱交換所造成的損失。 但環境是不斷動態變化的,在炎熱的氣候下,上述情形確 201015817 相反的,在寒冷的氣候下,原本為熱源的玻璃卻 為冷源’建築物内部周圍之空調還可能因玻璃與牆壁傳 之冷工氣而降低負荷。在—實施例中,熱源監測管理模 組^’每1()分鐘計算—次削貞測熱源之溫度感測器所 1應設施之所有回風溫度錢器之平均值,當熱源溫度感 須•器之讀值比平均回風溫度高或低於一特定溫度之上時, 則根據3又疋改變設施狀態。例如,開啟或關閉窗簾。 即時^漏管理模組1〇36,係用以根據環境是否產生茂 =來決定設施之運作狀態,並同時發出告警給用戶。空調 管線鴻漏為大樓所有能源浪費原因中的首要項目。浪漏損 失的發生,有可能發生於傳輸管道之間,也有可能發生於 用戶環境,例如門窗該關未關,造成冷⑹氣大量流失。在 一實施例中,即時洩漏管理模組1036每1〇分鐘計算一次 ::窗感測器所對應設施之所有回風溫度感測器之平均值, 若至外概度較咼且門窗開啟一段時間後,便發出告警或改 變工調運作n如提高設定溫度或進人送風模式等。 2統效率管理模組1037,其主要功能是根據負載需求 來決定系統主機開啟的數量’讓冰水主機可以維持在高效 率運轉狀態。因為’若以—台冰水主機便能提供足夠的負 載需求量,便不需要同時開啟兩台冰水主機,如此便能夠 /1^ , L 〆、、丄. σ’水水主機以及冷卻水泵與冷卻水塔可觀的運轉電 力;2一實施例中當用戶端冰水主機只有單台時,系統 效率理模組1037可將初始出水溫度設定值為7度C,每 一刀鐘調整一次出水溫度,例如出水溫度最低為7度C, 最n為15度C,使所對應空調設施之舒適度維持在該設定 15 201015817 i之下限邊緣’若單位時間使用金額已超出預算,則以調 .彳出水溫度為優先’再調升負载端空調溫度。在另一實施 例中,若用戶端之冰水主機為兩台並連控制時,系統效率 管理模組1G37可以採逐漸開啟之方式先開第—台,初始 出水溫度設定值為7度匸,每15分鐘調整-次出水溫度, 使所對應空調設施之舒適度維持在該設定值之下限邊緣。 當無法滿足舒適度超過3〇分鐘時,再開啟第二台冰水主 冑’且需單位時間之使用金額不得超過預算之情况下才能 開啟。兩台冰水主機同時設定為7度(:,每15分鐘調整一 次第二台冰水主機出水溫度,使所對應空調設施之舒適度 維持在該設定值之下限邊緣。當第二台冰水主機溫度設定 已到達15度C時,開始調升第一台水主機設定溫度,若 調升至10度C後15分鐘仍可使所對應空調設施之舒適 度維持在該設定值之下限邊緣,則關閉第二台冰水主機, 或單位時間之使用金額超過預算時也關閉,第一台冰水主 機設定溫度調回7度C。若用戶端有三台冰水主機並聯控 〇 制,控制邏輯則以此類推。值得注意的是上述僅為本發明 之一實施例’在其他之實施例中亦可以其他之方式進行控 制。 參閱第2圖所示為本發明之用電量控制流程圏。其中 於步驟201〜206為用戶設定流程,其主要目的是讓用戶進 行用電量之設定、用電控制群組之設定以及舒適度與優先 權設定。首先於步驟201進入設定流程。步驟202,提供用 戶進行基本資料設定,例如統一編號之設定等,藉以於後 續進行搜尋時可依此編號進行維護。步驟203,提供用戶進 201015817 • 行用電量之設定,亦即用戶設定用電之預算。步驟204提 . 供用戶進行用電控制群組之設定,由於一楝大樓單位很 多,用戶可將數個性質相同之單位合為一群組,共同進行 管理,藉以避免重複設定之麻煩。步驟205提供用戶進行 舒適度與優先權設定。當設定完後即進入本發明之動態用 電管控系統300進行用電之管控。 其中於設定管理功能之步驟301中,本發明會根據用 戶所進行之設定結果,於步驟302中進行模擬,並產生一 ® 模擬結果圖表,其中會顯示出空調用電之金額(步驟3021 ) 以及可能造成用電浪費之原因(步驟3022)。根據此模擬之 結果,用戶可參考並選擇是否回到設定步驟201進行重新 設定。 於步驟303中,將用戶於步驟204中所設定之用電控 制群組載入動態用電管控系統300中。於步驟304將用戶 於步驟205中所設定之舒適度與優先權載入動態用電管控 系統300中。於步驟306將用戶於步驟202中所設定之基 〇 本資料載入動態用電管控系統300中。以及於步驟307中, 會將用戶於步驟203中所設定之用電量載入動態用電管控 系統300中。 當載入完成後,進入步驟305根據載入動態用電管控 系統300中之各項資料並搭配前述之七個管理模組進行用 電之管理。其中係包括七個管理步驟,分別為動態溫度管 理步驟3051、運轉排程管理步驟組3053、閒置空間管理步 驟3057、外氣引進管理步驟3052、熱源監測管理步驟 3054、即時洩漏管理步驟3055以及系統效率管理步驟 17 201015817 3056。運轉排程管理步驟組3053更包括設備排程設定步驟 30531,用以排列設備開啟之先後順序。動態能源使用功能 排程設定步驟30532,其係用以排列設備用電量升降之順 序。舒適度與優先權排程設定30533,用以排程舒適度之優 先權。 以下將以一實施例說明應用本發明用電管控流程於一 空調系統之應用。首先’一使用者先於步驟2〇1中,在系 統上輸入基本資料(步驟202)、每個月的空調目標用電金 額(步驟203 )、設施群組設定(步驟2〇4)以及各區域的 舒適度與優先權(步驟205),當設定完成後,系統將此設 定值載入用電管控系統中,並便根據設定值與對應的用電 管理策略進行每月空調用電目標。 在一實施例中,本發明之運轉排程管理模組會在早上 7點至7點半之間’利用離+電價將大樓内f熱排除。而在 冰水主機的設定上,本發明之緖效率㈣餘會機動調In addition, use the power control module! Before starting the implementation, 〇3 will first enter the (4) electric control simulation through the analog analysis module 1G2, and the 剌 electric structure will be presented first, letting the user know that the power consumption or power consumption budget is set according to the set. The electrical structure can be fine-tuned. For example, for a business user, in the unit job τ, the set (4) power is a degree, the analog analysis module 1G2 of the present invention can consider historical power data, environmental variables 'such as temperature, humidity, and the enterprise. The user's schedule of the time period gate σ draws 'simulation of a power structure, such as electricity distribution for the afternoon can be used more than the degree of the morning can be used, and this enterprise user can also The simulation results are fine-tuned, such as adjusting the availability of the upper and the afternoon, or adjusting the power usage for a particular day. The power control module 103 of the present invention includes seven management modules, and the functions of the seven management modules are described below by taking the power consumption of an air conditioner as an example. In addition, in other embodiments, the seven management modules can also be used to manage other different electrical devices. The dynamic temperature management module 1031 is mainly used for controlling the temperature of the air conditioner to control the total power consumption by immediately adjusting the set temperature of the air conditioner. The dynamic temperature management module 1031 can adjust the set temperature of the air conditioner at any time according to the target power amount set by the user. The air conditioning set temperature is ^ loud. 201015817 * The most important factor in the operation and comfort of air-conditioning facilities, as different environmental conditions change, should correspond to different set temperatures, so there will be no overuse or ineffective operation. The dynamic temperature management module 1031 of the present invention can maneuver the air conditioning temperature as the environment changes, taking into account user comfort and energy efficient use. In addition, 'if some time period is too high or the set temperature is too low', the supply side of the air conditioning system is in short supply, causing the compressor (or ice water valve) to continuously open and cannot be closed, and the dynamic temperature management module 1031 can be adjusted to the appropriate The set temperature 'either temporarily shuts down the compressor (or ice water valve), allowing the air conditioning system to enter a lower load operating state. In one embodiment, the control program of the dynamic temperature management module 1031, as shown in Fig. 2, first provides the user with the comfort level to be set in units of regions. For example, three levels are provided, "important", "normal", and "not important", allowing the user to set appropriate requirements for each area. For example, office comfort can be set to be important, inter-office comfort can be set to normal, and elevator comfort can be set to be unimportant. In other embodiments, the level of comfort requirements is not limited to three levels. Next, the user defines the priority order of comfort adjustment for each area, for example, the highest, highest, medium, and low levels. If the comfort priority is lower, when the energy saving target threshold is exceeded, the set temperature is first adjusted; the comfort priority is second; the comfort priority is higher, and the comfort priority is the highest. Mainly, do not change comfort or set temperature due to energy saving needs. The above adjustment period is reset once every 15 minutes (adjusted by the situation). Then, the dynamic adjustment can be performed. The dynamic temperature management module 1031 will calculate the used air-conditioning electricity fee at any time: multiply the electricity consumption of the air-conditioning facility by the electricity cost per hour (including the average basic electricity tariff), and accumulate the gold for a period of time. 201015817 amount. It also records the average daily usage time (hours) of the user's air conditioner. This data can be recorded as a reference for future adjustments. The system can also refer to the meteorological unit to forecast the weather conditions as the basis for similar weather conditions in the operation database. . The percentage of available electricity bills for each region of the month, stomach, and day is automatically generated. The system fills in the user's desired electricity tariffs in 12 months. The system automatically generates the target electricity bill based on the proportion of electricity allocated during the month, week and day. Users can also enter the month to adjust the weekly (such as Monday and Saturday, the electricity bill may be unfortunate) target electricity #,. or set the target electricity tariff for a specific holiday. In one embodiment, the user may also enter a single day to adjust the target electricity rate for each time period. For example, the target electricity rate allocation from 7:00 to 11:00 in the morning may be different from the target electricity rate allocation from 11:00 am to 2:00 pm. Each hour is divided into 60 equal parts (every 1 minute), which is 1/6 inch. The dynamic energy usage management system accumulates the electricity usage fee every 1 minute. If the accumulated electricity rate at this time point is lower than the target electricity rate, the set temperature is maintained within the standard comfort range or the user-defined temperature is the main If the electricity bill exceeds the target electricity bill at that time, the dynamic temperature energy management function is enabled. The first time the user side set temperature is higher than the average return air temperature of the first 15 minutes by 1 degree Celsius and the wind speed is increased at the same time. At the target electricity bill, increase the Celsius by 0.5 degrees and so on, up to 3 degrees Celsius to reach the target electricity bill. The operation scheduling management module 1032 is used to establish a complete air conditioning operation schedule, which saves waste caused by inaccurate power supply time of the switchgear (for example, k early opening, delay closing), and can also utilize the cool outdoor air in the middle of the night. In the cheap off-peak period electricity price, the fan is used to eliminate the indoor heat storage formed by the holiday air conditioner 12 201015817, to avoid using the air conditioner for the next day, during the peak electricity price period, and to spend a higher electricity bill to replace the heat storage to the building. outer. For example, when the temperature in the building does not reach the preset temperature at 7:00 in the morning, the schedule management module 1032 can be turned on before 7:25 to first turn on the air conditioner to cool down, and the air conditioner is turned off at 7:25, and the air conditioner is turned on again during the working hours. It is necessary to consume excess cooling to discharge the heat storage. For buildings with built-in external air introduction system, the operation scheduling management module 1032 can introduce outdoor fresh and low-temperature air in the middle of the night or in the early morning. 'There is no need to turn on the air conditioner at all, and it can eliminate the effect of building overnight heat storage.' Users can enjoy comfortable and pleasant temperatures when they enter the office early, and there will be no such phenomenon as "the user sets the air conditioner temperature to a minimum in the morning, but no one adjusts it after a whole day", which saves a lot of unnecessary time. Use electricity. In addition, the operation schedule management can be combined with an electronic calendar system (for example, the Microsoft Calendar calendar) as the basis for the use of the electronic control strategy, and the system can more intelligently assist the user in formulating the operation schedule that meets the requirements of comfort and energy saving. The idle space management module 1033, which uses efficiency improvement, is fundamental to all energy management. Air conditioning and lighting facilities are still open when no one is present, accounting for 38% of the waste factor in the building. In other words, even if the system is operating efficiently, as long as the user is not efficient, it still causes unnecessary energy loss. "Avoid waste" and "reasonable operation" can reduce the amount of electricity used at the bottom of the line. "Independent compartment environment in buildings, such as small offices, conferences, rooms, toilets, etc., or rooms in hotels, using mobile sensors to detect Whether the environment is idle or not, to determine the state of operation of the facility can save a lot of unnecessary waste. For example, after the user leaves the office, the mobile sensor can immediately notify the idle space management module 1〇33 to close the environment, or adjust the environmental comfort (value), change the air conditioner to - supply air Mode, etc. The external air introduction management module 1034, because the air conditioner uses 27 〇 / 〇 of the load is from outside air, so under the dynamic external air changes, "in a timely and appropriate amount" of the introduction of external air, the control of air conditioning power is of great help . In one embodiment, the external air introduction management module 1〇34 calculates the average value of all the temperature sensors of the air conditioning area every 1 minute, and when the outdoor temperature is lower than the indoor temperature average by more than 3 degrees, and the outdoor depreciation It belongs to the comfort range® or is lower than the indoor depreciation. The external gas magic management module 1034 introduces external air. In addition, in order to avoid frequent switching, it is possible to set more than 3 degrees to introduce outside air and 2 degrees to close outside air. When the outdoor temperature is not more than 3 degrees lower than the average indoor temperature, the external air is turned off, unless the C02 concentration measured by any C〇2 sensor concentration in the corresponding air-conditioning area exceeds the set upper limit. Outside air, when the temperature is lower than the lower limit, the outside air is turned off. The c〇2 sensor concentration above and the lower limit are defined by default: there are different settings according to user-defined comfort (same setting as dynamic temperature management). For example, “important” is 1200ppm to open the outside air, lOOOOppm to shut off the outside air, “normal” to 15〇〇ppm to open the outside air, 1200Ppm to close the outside air, “not important, open air for 2〇〇〇ppm, 1500ppm off External air. The external air introduction management module 1〇34 can be used to re-enter parameters. The heat source monitoring and management module 1035, the solar radiation heat exchange around the building is also a common transmission loss, so if it can be added to the building When the visor is strong, when the curtain is strong, or the curtain is designed in the interior of the building, or the air outlet is installed, the loss caused by the radiant heat exchange can be reduced. However, the environment is constantly changing, in the hot In the climate, the above situation is indeed 201015817. Conversely, in cold climates, the glass that was originally a heat source is a cold source. The air conditioner around the interior of the building may also be reduced in load due to the cold work of glass and walls. In the example, the heat source monitoring management module ^' is calculated every 1 () minutes - the average value of all the return air temperature devices of the temperature sensor of the secondary heat source is 1 when the heat source temperature When the reading value of the sensor is higher than the average return air temperature or lower than a certain temperature, the state of the facility is changed according to 3, for example, opening or closing the curtain. Instant management module 1〇36, It is used to determine the operational status of the facility according to whether the environment generates or not, and at the same time issue an alarm to the user. The air-conditioning pipeline is the primary item in the building's energy waste. The occurrence of leakage loss may occur in the transmission pipeline. In the meantime, it may happen in the user environment, for example, the door and window are not closed, causing a large loss of cold (6) gas. In one embodiment, the instant leak management module 1036 is calculated every 1 minute:: the window sensor corresponding facilities The average value of all the return air temperature sensors, if the external appearance is relatively low and the doors and windows are opened for a period of time, an alarm is issued or the work adjustment is changed, such as increasing the set temperature or entering the air supply mode. Module 1037, its main function is to determine the number of system host open according to the load demand 'allow the ice water host to maintain high efficiency operation. Because 'if the ice water main It can provide enough load demand, so it is not necessary to open two ice water mainframes at the same time, so that it can operate the power of the water main unit and the cooling water pump and the cooling water tower. In an embodiment, when the user-side ice water host has only a single unit, the system efficiency module 1037 can set the initial outlet water temperature to 7 degrees C, and adjust the outlet water temperature once per knife clock, for example, the outlet water temperature is at least 7 degrees C. The most n is 15 degrees C, so that the comfort of the corresponding air-conditioning facilities is maintained at the lower limit of the setting of 2010 20101717 i. If the amount of use per unit time has exceeded the budget, the water temperature is prioritized and the load is increased. In another embodiment, if the ice water host at the user end is connected in parallel, the system efficiency management module 1G37 can start the first stage in a gradually opening manner, and the initial water temperature setting value is 7. At the same time, the temperature of the secondary water outlet is adjusted every 15 minutes to maintain the comfort of the corresponding air conditioning facility at the lower limit of the set value. When it is not possible to meet the comfort level of more than 3 minutes, turn on the second ice water main 胄' and the amount of use per unit time must not exceed the budget. The two ice water hosts are set to 7 degrees at the same time (:, the water temperature of the second ice water main unit is adjusted every 15 minutes, so that the comfort of the corresponding air conditioning facilities is maintained at the lower limit of the set value. When the second ice water When the host temperature setting has reached 15 degrees C, the temperature setting of the first water main unit is started to rise. If the temperature is raised to 10 degrees C, the comfort level of the corresponding air conditioning facility can be maintained at the lower limit of the set value. Then turn off the second ice water host, or turn off the unit time when the usage amount exceeds the budget. The first ice water host sets the temperature back to 7 degrees C. If the user has three ice water hosts in parallel control system, the control logic It is to be noted that the above is only one embodiment of the present invention. In other embodiments, it may be controlled in other ways. Referring to FIG. 2, the power consumption control process of the present invention is shown. The steps are set in the steps 201 to 206 for the user, and the main purpose is to let the user set the power consumption, set the power control group, and set the comfort and priority. First, enter the setting in step 201. In step 202, the user is provided with basic data setting, such as setting of a unified number, etc., so that the maintenance can be performed according to the number in the subsequent search. Step 203, providing the user into 201015817 • setting of the power consumption, that is, the user Set the budget for power consumption. Step 204: For the user to set the power control group, because there are many units in the building, the user can combine several units of the same nature into one group and manage them together to avoid duplication. The setting is troublesome. Step 205 provides the user with the comfort and priority setting. When the setting is completed, the dynamic power management system 300 of the present invention is used for power control. In the step 301 of setting the management function, the present invention According to the setting result performed by the user, the simulation is performed in step 302, and a simulation result graph is generated, in which the amount of air conditioning electricity is displayed (step 3021) and the reason that the power consumption may be caused (step 3022). As a result of this simulation, the user can refer to and select whether to return to the setting step 201 for resetting. The power control group set by the user in step 204 is loaded into the dynamic power management system 300. In step 304, the comfort and priority set by the user in step 205 are loaded into the dynamic power management system 300. In step 306, the user-set data set in step 202 is loaded into the dynamic power management system 300. In step 307, the power consumption set by the user in step 203 is loaded into the dynamics. In the power management system 300. After the loading is completed, the process proceeds to step 305, according to the data stored in the dynamic power management system 300 and matched with the seven management modules described above for power management. The management steps are dynamic temperature management step 3051, operation scheduling management step group 3053, idle space management step 3057, external air introduction management step 3052, heat source monitoring management step 3054, immediate leak management step 3055, and system efficiency management step 17 201015817 3056. The operation scheduling management step group 3053 further includes a device scheduling setting step 30531 for arranging the sequence in which the devices are turned on. Dynamic Energy Usage Function Schedule setting step 30532 is used to arrange the order of power consumption of the equipment. Comfort and priority scheduling is set at 30533 for priority in scheduling comfort. The application of the electric control process of the present invention to an air conditioning system will be described below with reference to an embodiment. First, a user first enters the basic data (step 202), the monthly air conditioning target power amount (step 203), the facility group setting (step 2〇4), and each in step 2〇1. The comfort and priority of the area (step 205), when the setting is completed, the system loads the set value into the power management and control system, and performs the monthly air conditioning power target according to the set value and the corresponding power management strategy. In one embodiment, the operational schedule management module of the present invention removes heat from the building by using a price difference of + from 7:00 am to 7:30 am. In the setting of the ice water host, the efficiency of the invention (4) will be adjusted.

整冰水主機設定溫度’除非某天特別炎熱,一台冰水主機 出水溫度設定再低都無法滿足㈣度時,系統才會再開啟 第—台主機。 叩隹辦公罜 工:β丈疋上,本發明之動您溫度管理模 進行機動調整旦當系統計算出累積用電金額超出 事别設定值時,便會依據優先值的設定, :與辦公室的設定溫度會依序慢慢提高,直到 調用電又回到設定值以下為止β X樓累積工 模组在Π"二季節中’可利用本發明之外氣引進管理 將讀的外氣^大樓内,空調的負荷大為降低; 201015817 2夏:時:除非二氧化碳濃度超過上限,才會啟動外氣 二、—氧化碳漠度降低時,便會立即關閉外氣,以免 :溫的外氣進入加重空調的負擔。而對於門窗管理上,本 :之即時洩漏管理模組會發出警告冷氣外洩的情形,甚 會將浪費的能源列表出來,藉以加強管理,避免許多 不必要的浪費。The whole ice water host sets the temperature ‘ unless the day is particularly hot, and the ice water temperature setting of one ice water host can not meet the (four) degree, the system will turn on the first host again.叩隹 Office Completion: On the 疋 疋 ,, the temperature management module of the present invention performs maneuver adjustment. When the system calculates that the accumulated power consumption amount exceeds the set value of the event, The set temperature will be gradually increased in order, until the callback is returned to the set value. The beta X building accumulating module is in the 二"two seasons. Inside, the load of air conditioner is greatly reduced; 201015817 2Summer: Hours: Unless the concentration of carbon dioxide exceeds the upper limit, the external air will be activated. 2. When the carbon dioxide is reduced, the external air will be shut off immediately to avoid the entry of warm outside air. Increase the burden of air conditioning. For the management of doors and windows, this: the instant leak management module will issue a warning of cold air leakage, and will even list the wasted energy to strengthen management and avoid unnecessary waste.

Q 另外,本發明之熱源監測管理模組會通知使用者何時 ^該將窗簾打開或關上’讓辦公室空調負荷降低。當使用 者因為會議而暫時離開座位,本發明之間置 =,在使用者離開座位後,若是上班時段,會將空調改變 為送風m是下班時段,會將辦公室空調關閉。 此外本發明亦可根據預測之資訊做為用電控管策略之 依據’例如結合氣象局未來一週之氣象預測,電量控管系 統可藉此預估未來用電量之增減趨勢,自動重新調整目標 用電量。舉例而言’若未來_週天氣轉涼則空調用電應 有降低之空間’電量控管系統可根據目前之用電情形調降 下—週的目標用電設定值,幫助用戶設定最佳之用電目 標所節省下來的預算,也可做為未來天氣轉熱所 需較咼空調費用之預備金使用。 載另-實施例中’亦可結合行事層資訊進行排程運轉 管理。例如,以Microsoft 〇utl〇〇k行事曆為例,用戶於行 事層中登記之排程’可做為電量控管系統運轉排程管理設 定參考。若用戶於早上9點到中午12點登記了會議室的行 事曆,則會議室該時段可自動轉變為「啟用間置空間管 理J ’右有人進入開會則會開啟,若該時段無人進入開會, 19 201015817 . 空調會照明設施也不會啟用;同時,會議室該時段之空調 • 溫度設定,可依據登記者喜愛之舒適度進行設定,讓用戶 操作介面更智慧、更貼心。 此外,在舒適度設定之實施方式上,電量控管系統可 提供用戶操作介面,對於授權之個別用戶可透過介面回饋 對於該區域舒適度之感受,例如「希望温暖點」或「希望 涼快點」,當用戶回饋時,系統自動記錄當時之環境溫、溼 度資訊,並建立對照表’未來電量控管系統便依照對照表 © 内容比對當時環境溫、溼度,自動提供用戶希望之舒適環 境。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 ❹ 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖繪示了根據本發明一較佳實施例之電量控管系 統概略圖示。 第2圖所示為根據本發明一較佳實施例之用電量控制 流程圖》 【主要元件符號說明】 20 201015817 - 100電量控管用電系統 . 101設定目標節能金額或電度模組 102模擬分析模組 103用電量控管模組 1031動態溫度管理模組 1032運轉排程管理模組 1033閒置空間管理模組 1034外氣引進管理模組 ❹ 1035熱源監測管理模組 1036即時洩漏管理模組 1037系統效率管理模組 201設定 202用戶基本資料設定 203用電目標設定 204設施群組設定 205舒適度與優先權設定 Ο 206動態能源使用管理功能列表 300動態用電管控系統 301設定管理功能 302圖表分析 3021空調用電金額比較圖 3022電源浪費原因分佈圖 303設施群組管理 304舒適度與優先權管理 305動態用電管控策略 21 201015817 • 306用戶基本資料管理 . 307用電目標管理 3051動態溫度管理設定 3052外氣引進管理設定 3053運轉排程管理設定 3054熱源監測管理設定 3055即時洩漏管理設定 3056系統效率管理設定 ❹ 3057閒置空間管理設定 30531設備排程設定 30532動態能源使用功能排程設定 30533舒適度與優先權排程設定 22In addition, the heat source monitoring management module of the present invention notifies the user when to open or close the curtains to reduce the air conditioning load of the office. When the user temporarily leaves the seat due to the meeting, the present invention sets between =, after the user leaves the seat, if it is during the working hours, the air conditioner is changed to the air supply m is the off-hours, and the office air conditioner is turned off. In addition, the present invention can also be based on the predicted information as the basis for the electronic control strategy. For example, in conjunction with the weather forecast of the weather bureau for the next week, the power control system can estimate the future power consumption increase and decrease trend and automatically readjust. Target usage. For example, if the weather turns cold in the future, the air-conditioning power should have a reduced space. The power control system can adjust the target power setting value according to the current power consumption situation to help users set the best use. The budget saved by the electricity target can also be used as a reserve for the air conditioning costs in the future. In the other embodiment, the scheduling operation management can also be performed in conjunction with the information of the transaction layer. For example, taking the Microsoft 〇utl〇〇k calendar as an example, the schedule registered by the user in the transaction layer can be used as a reference for the operation control scheduling of the power control system. If the user registers the calendar of the conference room from 9:00 am to 12:00 noon, the conference room can be automatically changed to "Enable Inter-Space Management J". If someone enters the meeting, it will be opened. If no one enters the meeting during that time, 19 201015817 . The air-conditioning lighting facilities will not be activated. At the same time, the air-conditioning and temperature settings of the conference room during the period can be set according to the comfort level preferred by the registrant, so that the user interface is smarter and more intimate. In the implementation mode of the setting, the power control system can provide a user operation interface, and the authorized individual user can feedback the feeling of comfort in the area through the interface, such as "hope for warmth" or "hope for cool", when the user returns The system automatically records the environmental temperature and humidity information at that time, and establishes a comparison table. 'The future power control system will automatically provide the user's desired comfortable environment according to the temperature and humidity of the environment according to the comparison table. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic diagram of the power control system of the embodiment. 2 is a flow chart of power consumption control according to a preferred embodiment of the present invention. [Main component symbol description] 20 201015817 - 100 power control power system. 101 Set target energy saving amount or power module 102 Analog analysis module 103 power control module 1031 dynamic temperature management module 1032 operation scheduling management module 1033 idle space management module 1034 external gas introduction management module ❹ 1035 heat source monitoring management module 1036 instant leak management module Group 1037 System Efficiency Management Module 201 Settings 202 User Basic Data Settings 203 Power Target Settings 204 Facilities Group Settings 205 Comfort and Priority Settings Ο 206 Dynamic Energy Use Management Function List 300 Dynamic Power Management System 301 Settings Management Function 302 Chart Analysis 3021 Air Conditioning Power Consumption Comparison Figure 3022 Power Supply Waste Cause Distribution Diagram 303 Facility Group Management 304 Comfort and Priority Management 305 Dynamic Power Management Strategy 21 201015817 • 306 User Basic Data Management. 307 Power Target Management 3051 Dynamic Temperature Management Settings 3052 External Gas Introduction Management Setting 3053 Operation Schedule Management Setting 3054 Heat Source Monitoring Management 3055 given instant leakage management system efficiency management setting 3056 is set dead space management settings ❹ 3057 30531 30532 Dynamic Device schedule set energy function based on schedule 30533 comfort and scheduling priority setting 22

Claims (1)

201015817 十、申請專利範園: 1. 一種用電量管控系統,係用以控制一用電系統在一 時間點之總用電量於一門檻值之下,其中該用電系統包括 複數個子系統’每一該些子系統控制一室内區域並具有一 調整溫度開關以及一偵測器,該用電量管控系統至少包含: φ 動態溫度管理模組’當該總用電量大於該門檻值時, 將至少一子系統之調整溫度開關調升一第一溫度,以及當 該總用電量小於該第一度數,將該至少一子系統之調整溫 度開關調降一第二溫度。 2. 如申請專利範圍第1項所述之用電量管控系統,更 包括:一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序。 Q 3. 如申請專利範園第1項所述之用電量管控系統,更 包括一閒置空間管理模組,當該至少一子系統之偵測器偵 測到無人使用該子系統時,調整該至少一子系統之運作狀 態。 4.如申請專利範圍第1項所述之用電量管控系統,更 包括外氣弓丨進管理模組,當該至少一子系統之偵測器偵 測到該至内區域溫度高於一室外溫度時,引進該室外空 23 201015817 _ 氣’以及當該至少一子系統之偵測器偵測到該室内區域溫 . 度低於該室外溫度時,停止引進該室外空氣。 5.如申請專利範圍第1項所述之用電量管控系統,更 包括一熱源監測管理模組,當該至少一子系統之偵測器偵 測到一設施之溫度高於該室内區域溫度時,隔離該設施或 調整該子系統之運作狀態。 β 6.如申請專利範圍第i項所述之用電量管控系統,更 包括一即時茂漏管理模組,當該至少一子系統之偵測器偵 測到一室外溫度高於該室内區域溫度,且該至少一子系蛛 之偵測器偵測到該室内區域之一門窗設施未關閉達一第一 時間後,調整該子系統之運作狀態。 7. 如申請專利範圍第1項所述之用電量管控系統,更 包括一運轉排程管理模組,排列該些子系統之調整溫度順 〇 序以及運作狀態順序;以及一閒置空間管理模組,當該至 少一子系統之偵測器偵測到無人使用該子系統時,調整該 至少一子系統之運作狀態。 8. 如申請專利範圍第1項所述之用電量管控系統,更 包括一運轉排程管理模組’排列該些子系統之調整溫度順 序以及運作狀態順序;以及一外氣引進管理模組,當該至 少一子系統之偵測器偵測到該室内區域溫度高於一室外溫 度時,引進該室外空氣’以及當該至少一子系統之偵測器 24 201015817 . 偵測到該室内區域溫度低於該室外溫度時,停止引進該室 . 外空氣。 9.如申請專利範圍帛1項所述之用電量管控系統,更 包括-運轉排程管理模組,排列該些子系統之調整溫度順 序以及運作狀態順序;以及一熱源監測管理模組,當該至 少一子系統之偵測器偵測到一設施之溫度高於該室内區域 溫度時’隔離該設施或調整該子系統之運作狀難。 10·如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;以及一即時洩漏管理模組,當該 至少一子系統之偵測器偵測到一室外溫度高於該室内區域 溫度,且該至少一子系統之偵測器偵測到該室内區域之一 門窗設施未關閉達一第一時間後,調整該子系統之運作狀 態。 ❹ 11. 如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一間置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態;以及一外氣引進管理模組,當該 至少一子系統之偵測器偵測到該室内區域溫度高於一室外 溫度時,引進該室外空氣,以及當該至少一子系統之偵測 器偵測到該室内區域溫度低於該室外溫度時,停止弓丨進該 25 201015817 室外空氣。 12. 如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一間置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態;以及一即時洩漏管理模組,當該 至少一子系統之偵測器偵測到一室外溫度高於該室内區域 © 溫度,且該至少一子系統之偵測器偵測到該室内區域之一 門窗設施未關閉達一第一時間後,調整該子系統之運作狀 態。 13. 如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一閒置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 © 少一子系統之運作狀態;以及一熱源監測管理模組,當該 至少一子系統之偵測器偵測到一設施之溫度高於該室内區 域溫度時,隔離該設施或調整該子系統之運作狀態。 14. 如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一閒置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態;一熱源監測管理模組,當該至少 26 201015817 一子系統之偵測器偵測到一設施之溫度高於該室内區域溫 度時’隔離該設施或調整該子系統之運作狀態;以及一即 時洩漏管理模組,當該至少一子系統之偵測器偵測到一室 外溫度高於該室内區域溫度,且該至少一子系統之偵測器 偵測到該室内區域之一門窗設施未關閉達一第一時間後, 調整該子系統之運作狀態。 15. 如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一間置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態;一熱源監測管理模組,當該至少 一子系統之偵測器偵測到一設施之溫度高於該室内區域溫 度時,隔離該設施或調整該子系統之運作狀態;以及一外 氣引進管理模組,當該至少一子系統之偵測器偵測到該室 内區域溫度高於一室外溫度時,引進該室外空氣,以及當 該至少一子系統之偵測器偵測到該室内區域溫度低於該室 外溫度時,停止引進該室外空氣。 16. 如申請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程管理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一間置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態;—即時洩漏管理模組,當該至少 -子系統之制器偵測到—室外溫度高於該室内區域溫 27 201015817 ' 纟,且該至少—子系統之制器彳貞測到該室内區域之-門 . 窗設施未關閉達—第-時間後’調整該子系統之運作狀 態;以及一外氣引進管理模組,當該至少一子系統之偵測 器偵測到該室内區域溫度高於一室外溫度時,引進該室外 空氣’以及當該至少-子系統之備測器制到該室内區域 溫度低於該室外溫度時,停止引進該室外空氣。 17· &gt;中請專利範圍第1項所述之用電量管控系統, 更包括一運轉排程官理模組,排列該些子系統之調整溫度 順序以及運作狀態順序;一閒置空間管理模組,當該至少 一子系統之偵測器偵測到無人使用該子系統時,調整該至 少一子系統之運作狀態,一即時洩漏管理模組,當該至少 一子系統之偵測器偵測到一室外溫度高於該室内區域溫 度,且該至少一子系統之偵測器偵測到該室内區域之一門 窗設施未關閉達一第一時間後,調整該子系統之運作狀 態,一外氣引進管理模組,當該至少一子系統之偵測器偵 測到該室内區域溫度高於一室外溫度時,引進該室外空 氣,以及當該至少一子系統之偵測器偵測到該室内區域溫 度低於該室外溫度時,停止引進該室外空氣;以及一熱源 監測管理模組,當該至少一子系統之偵測器偵測到一設施 之溫度高於該室内區域溫度時,隔離該設施或調整該子系 統之運作狀態。 18·如申請專利範圍第1項所述之用電量管控系統, 其中該用電系統為一空調系統’該空調系統具有一冰水主 28 201015817 • 機’該空調系統更包括一系統效率管理模組,用以設定該 * 冰水主機之出/回水溫度,其中當該總用電量大於該第一度 數時,調升該冰水主機之出/回水溫度。 19. 如申請專利範圍第1項所述之用電量管控系統, 其中該用電系統為一空調系統,該空調系統具有第一與第 二冰水主機,該空調系統更包括一系統效率管理模組,用 以設定該第一與第二冰水主機之出/回水溫度,其中先開啟 ® 該第一冰水主機,以及當該空調系統提供之溫度該於一要 求溫度時,開啟該第二冰水主機。 20. 如申請專利範圍第1項所述之用電量管控系統, 其中該門檀值為一總用電度數。 21. 如申請專利範圍第1項所述之用電量管控系統, 其中該門檻值為一總用電費用。 22. 如申請專利範圍第5項所述之用電量管控系統, 其中該熱源監測管理模組更包括通知一使用者隔離該設 施〇 23.如申凊專利範圍第22項所述之用電量管控系 統’其中_該設施為關閉該設施電源。 2如申清專利範圍第5項所述之用電量管控系統, 29 201015817 • 其中該熱源監測管理模組,當該至少一子系統之偵測器偵 - 測到一設施之溫度高於該室内區咸溫度時,更包括將該至 子系統之調整溫度開關調整一第四溫度。 25·如申請專利範圍第24項所述之用電量管控系 統’其中該偵測器包括一溫度感測器、一門窗感測器、一 移動感測器。 © 26.如申請專利範圍第25項所述之用電量管控系 統’其中該偵測器更包括一 C〇2濃度感測器。 27.如申請專利範圍第26項所述之用電量管控系 統,其中當該至少一子系統之該C〇2濃度感測器偵測到該 室内區域之C02濃度高於一第一預設值時,該外氣引進管 理模組引進該室外空氣至對應該至少一子系統之室内區 域,以及當該至少一子系統之該c〇2濃度感測器偵測到該 © 室⑽域之C02辕度低於—第二預設值時,該外氣引進管 理模組停止引進該室外空氣至對應該至少一子系統之室内 區域。 28. 如申請專利範圍第丨項所述之用電量管控系統, 更包括一設定模組用以設定該第一用電度數。 29. 如申請專利範圍第丨項所述之用電量管控系統, 更包括一模擬分析模組用以模擬在該第一用電度數下該 30 201015817 時間點之用電狀況。 30.如申請專利範圍第2項所述之用電量管控系統, 其中該動態溫度管理模組更包括設定該些子系統控制之對 應室内區域舒適度要求之優先順序。 31·如申請專利範圍第30項所述之用電量管控系 統,其中該動態溫度管理模組根據該舒適度要求優先順序 © 調整該些子系統之調整溫度開關。 32. 如申請專利範圍第2項所述之用電量管控系統, 其中該一運轉排程管理模組係根據行事曆資訊排列該些子 系統之調整溫度順序以及運作狀態順序。 33. 如申請專利範圍第1項所述之用電量管控系統, 其中係根據一預測資訊改變該門檻值。 ❹ 34. —種用電量管控方法’係用以控制一用電系統在一 時間點之總用電量於一門檻值之下,其中該用電系統包括 複數個子系統以及一第一冰水主機,每一該些子系統控制 一室内區域並具有一調整溫度開關以及一偵測器,該用電 量管控方法至少包含: 設定該門檻值;' 排列該些子系統之調整溫度順序以及運作狀態順序; 當該總用電量大於該第一度數時,將至少一子系統之 31 201015817 調整孤度開關調升一第—溫度,以及當該總用電量小於該 第一度數’將該至少一子系統之調整溫度開關調降一第二 溫度》 35.如申請專利範圍第34項所述之用電量管控方 法’更包括:當該至少一子系統之偵測器偵測到無人使用 該子系統時,調整該至少一子系統之運作狀態。 36·如申請專利範圍第34項所述之用電量管控方 法’更包括:當該至少—子系統之偵測器偵測到該室内區 域溫度高於一室外溫度時,引進該室外空氣,以及當該至 &gt; 一子系統之偵測器偵測到該室内區域溫度低於該室外溫 度時,停止引進該室外空氣。 37.如申請專利範圍第34項所述之用電量管控方 法’更包括··當該至少一子系統之偵測器偵測到一設施之 溫度高於該室内區域溫度時,隔離該設施或調整該子系統 之運作狀態。 38·如申請專利範圍第34項所述之用電量管控方 法’更包括.當該至少一子系統之偵測器偵測到一室外溫 度高於該室内區域溫度,且該至少一子系統之偵測器偵測 到該室内區域之一門窗設施未關閉達一第一時間後,調整 該子系統之運作狀態。 32 201015817 39.如申請專利範圍第34項所述之用電量管控方 法’更包括:設定該第一冰水主機之出/回水溫度,其中當 該總用電量大於該門檻值時,調升該第一冰水主機之出/回 水溫度。 40. 如申請專利範圍第34項所述之用電量管控方 法’其中該門檻值為一總用電度數。 41. 如申請專利範圍第34項所述之用電量管控方 法’其中該門檻值為一總用電費用。 42. 如申請專利範圍第34項所述之用電量管控方 法,該用電系、统更包括一第二冰水主機,該方法更包括先 開啟該第一冰水主機’以及當該用電系統提供之溫度該於 一要求溫度時,開啟該第二冰水主機。 43. 如申請專利範圍第34項所述之用電量管控方 法,更包括通知一使用者隔離該設施。 44. 如申請專利範圍第34項所述之用電量管控方 法,其中隔離該設施為關閉該設施電源。 、45·如申請專利範圍第34項所述之用電量管控方 法,其中當該至少一子系統之偵測器偵測到一設施之溫度 同於該至内區域溫度時,更包括將該子系統之調整溫度開 33 201015817 ' 關調整一第四溫度。 V 46·如申請專利範圍第34項所述之用電量管控方 法’其中該偵測器包括一溫度感測器、一門窗感測器、一 移動感測器。 47. 如申請專利範圍第46項所述之用電量管控方 法’其中該偵測器更包括一 C02濃度感測器。 ❹ 48. 如申請專利範圍第47項所述之用電量管控方 法,其中當該至少一子系統之該C〇2濃度感測器偵測到該 室内區域之C02濃度高於一第一預設值時,引進該室外空 氣至對應該至少一子系統之室内區域,以及當該至少一子 系統之該C02濃度感測器偵測到該室内區域之c〇2濃度低 於一第二預設值時,該外氣引進管理模組停止引進該室外 空氣至對應該至少一子系統之室内區域。 ❹ 49. 如申請專利範圍第34項所述之用電量管控方 法,更包括設定該些子系統控制之對應室内區域舒適度要 求之優先順序。 50·如申請專利範圍第34項所述之用電量管控方 法,更包括根據該舒適度要求優先順序調整該些子系統之 調整溫度開關。 34 201015817 ❹201015817 X. Applying for a patent park: 1. A power consumption control system for controlling the total power consumption of a power system at a point in time, wherein the power system includes a plurality of subsystems. Each of the subsystems controls an indoor area and has an adjustment temperature switch and a detector. The power consumption control system includes at least: φ dynamic temperature management module 'when the total power consumption is greater than the threshold value And adjusting the temperature adjustment switch of the at least one subsystem to a first temperature, and when the total power consumption is less than the first degree, adjusting the temperature adjustment switch of the at least one subsystem to a second temperature. 2. The power consumption control system described in claim 1 further includes: an operation scheduling management module that arranges the temperature adjustment sequence and the operational status sequence of the subsystems. Q 3. If the power consumption control system described in the first application of the patent garden is further included, an idle space management module is provided, and when the detector of the at least one subsystem detects that the subsystem is not used, the adjustment is performed. The operational status of the at least one subsystem. 4. The power consumption control system according to claim 1 of the patent application, further comprising an external air bow expansion management module, wherein the detector of the at least one subsystem detects that the temperature in the inner region is higher than one At outdoor temperature, the outdoor air is introduced, and when the detector of the at least one subsystem detects that the indoor temperature is lower than the outdoor temperature, the introduction of the outdoor air is stopped. 5. The power consumption control system according to claim 1, further comprising a heat source monitoring management module, wherein the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor area Isolation of the facility or adjustment of the operational status of the subsystem. β. The power consumption control system described in claim i, further comprising an instant leak management module, wherein the detector of the at least one subsystem detects an outdoor temperature higher than the indoor area The temperature, and the at least one child spider detects that the door and window facilities of the indoor area are not closed for a first time, and adjusts the operating state of the subsystem. 7. The power consumption control system described in claim 1 further includes an operation scheduling management module, arranging the adjustment temperature sequence of the subsystems and the operating state sequence; and an idle space management module And, when the detector of the at least one subsystem detects that the subsystem is not used, adjusting the operating state of the at least one subsystem. 8. The power consumption control system according to item 1 of the patent application scope further includes an operation schedule management module arranging the adjustment temperature sequence and the operation status sequence of the subsystems; and an external gas introduction management module When the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, the outdoor air is introduced and the detector of the at least one subsystem is 24 201015817. The indoor area is detected. When the temperature is lower than the outdoor temperature, stop introducing the chamber. Outside air. 9. The power consumption control system as described in claim 1 of the patent application, further comprising: an operation scheduling management module, arranging the temperature adjustment sequence and the operational status sequence of the subsystems; and a heat source monitoring management module, When the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor zone, it is difficult to isolate the facility or adjust the operation of the subsystem. 10. The power consumption control system according to item 1 of the patent application scope, further comprising an operation scheduling management module, arranging the temperature adjustment order and the operation status sequence of the subsystems; and an instant leakage management module, When the detector of the at least one subsystem detects that the outdoor temperature is higher than the temperature of the indoor area, and the detector of the at least one subsystem detects that the door and window facilities of the indoor area are not closed for a first time After that, adjust the operating status of the subsystem. ❹ 11. For example, the power consumption control system described in item 1 of the patent application includes an operation scheduling management module, arranging the temperature adjustment sequence and the operation status sequence of the subsystems; and a space management module And adjusting, when the detector of the at least one subsystem detects that the subsystem is not used, adjusting an operation state of the at least one subsystem; and an external air introduction management module, when the at least one subsystem is detected When the temperature of the indoor area is detected to be higher than an outdoor temperature, the outdoor air is introduced, and when the detector of the at least one subsystem detects that the temperature of the indoor area is lower than the outdoor temperature, stopping to enter the 25 201015817 Outdoor air. 12. The power consumption control system described in claim 1 further includes an operation scheduling management module, arranging the temperature adjustment sequence and the operational status sequence of the subsystems; and a space management module, Adjusting the operating state of the at least one subsystem when the detector of the at least one subsystem detects that the subsystem is not used; and detecting the detection of the at least one subsystem The operating state of the subsystem is adjusted after an outdoor temperature is higher than the indoor temperature, and the detector of the at least one subsystem detects that the door and window facilities of the indoor area are not closed for a first time. 13. The power consumption control system described in claim 1 further includes an operation scheduling management module, arranging the temperature adjustment order and the operation status sequence of the subsystems; and an idle space management module, when The detector of the at least one subsystem detects that the operating state of the subsystem is less than when the subsystem is not used; and a heat source monitoring management module, when the detector of the at least one subsystem detects When the temperature of a facility is measured to be higher than the temperature of the indoor zone, the facility is isolated or the operational state of the subsystem is adjusted. 14. The power consumption control system as described in claim 1 further includes an operation scheduling management module, arranging the temperature adjustment order and the operation status sequence of the subsystems; and an idle space management module, when The detector of the at least one subsystem detects an operating state of the at least one subsystem when the subsystem is not used; and a heat source monitoring management module, when the at least 26 201015817 one subsystem detects the detector 'Isolating the facility or adjusting the operating state of the subsystem when the temperature of the facility is higher than the temperature of the indoor zone; and an instant leak management module, when the detector of the at least one subsystem detects an outdoor temperature After the indoor zone temperature is detected, and the detector of the at least one subsystem detects that the door and window facilities of the indoor zone are not closed for a first time, the operating state of the subsystem is adjusted. 15. The power consumption control system described in claim 1 further includes an operation scheduling management module, arranging the temperature adjustment order and the operational status sequence of the subsystems; and a space management module, Adjusting the operating state of the at least one subsystem when the detector of the at least one subsystem detects that the subsystem is not used; a heat source monitoring management module detects when the detector of the at least one subsystem detects When the temperature of the facility is higher than the temperature of the indoor zone, isolating the facility or adjusting the operating state of the subsystem; and an external air introduction management module, when the detector of the at least one subsystem detects the temperature of the indoor zone When the outdoor air is higher than an outdoor temperature, the outdoor air is introduced, and when the detector of the at least one subsystem detects that the indoor temperature is lower than the outdoor temperature, the introduction of the outdoor air is stopped. 16. The power consumption control system described in claim 1 further includes an operation scheduling management module, arranging the temperature adjustment sequence and the operational status sequence of the subsystems; and a space management module, Adjusting the operating state of the at least one subsystem when the detector of the at least one subsystem detects that the subsystem is not used; - the instant leak management module, when the at least - subsystem controller detects - The outdoor temperature is higher than the indoor temperature 27 201015817 ' 纟, and the at least - the subsystem of the subsystem measures the indoor area - the door. The window facility is not closed up - after - time 'adjust the operation of the subsystem a state; and an external air introduction management module, when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, introducing the outdoor air 'and when the at least-subsystem is ready for testing When the temperature of the indoor area is lower than the outdoor temperature, the introduction of the outdoor air is stopped. 17· &gt; The power consumption control system described in item 1 of the patent scope further includes an operation scheduling official management module, arranging the temperature adjustment order and the operational status sequence of the subsystems; and an idle space management module, When the detector of the at least one subsystem detects that the subsystem is not used, adjusting the operating state of the at least one subsystem, and an instant leakage management module, when the detector of the at least one subsystem detects An outdoor temperature is higher than the temperature of the indoor area, and the detector of the at least one subsystem detects that the door and window facilities of the indoor area are not closed for a first time, adjusting the operating state of the subsystem, and an external air Introducing a management module, when the detector of the at least one subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, introducing the outdoor air, and detecting the indoor when the detector of the at least one subsystem detects When the regional temperature is lower than the outdoor temperature, the introduction of the outdoor air is stopped; and a heat source monitoring management module, when the detector of the at least one subsystem detects that the temperature of a facility is higher than the indoor zone In the case of domain temperature, isolate the facility or adjust the operational status of the subsystem. 18. The power consumption control system according to claim 1, wherein the power system is an air conditioning system, the air conditioning system has an ice water main 28 201015817 • the air conditioning system further includes a system efficiency management The module is configured to set an exit/return water temperature of the *ice water host, wherein when the total power consumption is greater than the first degree, the outlet/return water temperature of the ice water host is raised. 19. The power consumption control system according to claim 1, wherein the power system is an air conditioning system, the air conditioning system has first and second ice water hosts, and the air conditioning system further includes a system efficiency management a module for setting an outlet/return water temperature of the first and second ice water hosts, wherein the first ice water main unit is first turned on, and when the temperature provided by the air conditioning system is at a required temperature, the module is turned on The second ice water host. 20. The power consumption control system of claim 1, wherein the threshold value is a total power consumption. 21. The power consumption control system of claim 1, wherein the threshold is a total electricity cost. 22. The power consumption control system of claim 5, wherein the heat source monitoring management module further comprises notifying a user to isolate the facility. 23. The power consumption as recited in claim 22 The quantity control system 'where _ the facility is to power off the facility. 2 The power consumption control system described in claim 5 of the patent scope, 29 201015817 • The heat source monitoring management module, when the detector of the at least one subsystem detects that the temperature of a facility is higher than the When the indoor zone is at a salt temperature, the adjustment temperature switch to the subsystem is further adjusted to a fourth temperature. 25. The power consumption control system of claim 24, wherein the detector comprises a temperature sensor, a window sensor, and a motion sensor. © 26. The power consumption control system described in claim 25, wherein the detector further comprises a C〇2 concentration sensor. 27. The power consumption control system of claim 26, wherein the C〇2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor area is higher than a first preset. In the value, the external air introduction management module introduces the outdoor air to an indoor area corresponding to at least one subsystem, and when the c〇2 concentration sensor of the at least one subsystem detects the © room (10) domain When the C02 temperature is lower than the second preset value, the outside air introduction management module stops introducing the outdoor air to an indoor area corresponding to at least one subsystem. 28. The power consumption control system of claim 3, further comprising a setting module for setting the first power consumption number. 29. The power consumption control system of claim 3, further comprising an analog analysis module for simulating the power usage status of the 30 201015817 time point at the first power usage level. 30. The power usage control system of claim 2, wherein the dynamic temperature management module further comprises prioritizing the comfort requirements of the corresponding indoor areas controlled by the subsystems. 31. The power consumption control system of claim 30, wherein the dynamic temperature management module prioritizes the comfort level according to the comfort level © adjusting the temperature adjustment switches of the subsystems. 32. The power consumption control system of claim 2, wherein the operation scheduling management module arranges the adjusted temperature sequence and the operational status sequence of the subsystems according to the calendar information. 33. The power consumption control system of claim 1, wherein the threshold value is changed according to a predicted information. ❹ 34. A power consumption control method is used to control the total power consumption of a power system at a time point below a threshold value, wherein the power system includes a plurality of subsystems and a first ice water a host, each of the subsystems controlling an indoor area and having an adjustment temperature switch and a detector, the power consumption control method comprising at least: setting the threshold value; 'arranging the temperature adjustment sequence and operation of the subsystems State sequence; when the total power consumption is greater than the first degree, the 31 201015817 adjustment solitude switch of at least one subsystem is raised to a first temperature, and when the total power consumption is less than the first degree Adjusting the temperature switch of the at least one subsystem to a second temperature. 35. The method for controlling the power consumption as described in claim 34 of the patent application includes: detecting the detector of the at least one subsystem When no one uses the subsystem, adjust the operational status of the at least one subsystem. 36. The method for controlling power consumption as described in claim 34, further comprising: introducing the outdoor air when the detector of the at least-subsystem detects that the temperature of the indoor area is higher than an outdoor temperature, And when the detector to the subsystem detects that the indoor temperature is lower than the outdoor temperature, the introduction of the outdoor air is stopped. 37. The method for controlling power consumption as described in claim 34, further comprising: isolating the facility when the detector of the at least one subsystem detects that the temperature of a facility is higher than the temperature of the indoor region Or adjust the operating status of the subsystem. 38. The method for controlling power consumption as described in claim 34, further comprising: when the detector of the at least one subsystem detects that an outdoor temperature is higher than a temperature of the indoor region, and the at least one subsystem The detector detects that the door and window facilities of the indoor area are not closed for a first time, and adjusts the operating state of the subsystem. 32 201015817 39. The method for controlling power consumption according to claim 34 of the patent application scope further includes: setting an exit/return water temperature of the first ice water host, wherein when the total power consumption is greater than the threshold value, Raise the outlet/return water temperature of the first ice water main unit. 40. The power consumption control method described in claim 34 of the patent application wherein the threshold is a total power consumption. 41. The power consumption control method described in claim 34 of the patent application wherein the threshold is a total electricity cost. 42. The method for controlling power consumption according to claim 34, wherein the power system further comprises a second ice water host, the method further comprising: first opening the first ice water host and when When the temperature provided by the electrical system is at a desired temperature, the second ice water host is turned on. 43. The power consumption control method described in claim 34 of the patent application also includes notifying a user to isolate the facility. 44. The method of power consumption control as described in claim 34, wherein isolating the facility is to power off the facility. The method of power consumption control according to claim 34, wherein when the detector of the at least one subsystem detects that the temperature of a facility is the same as the temperature of the inner region, The temperature of the subsystem is adjusted to 33. 201015817 'Off adjusts the fourth temperature. V 46. The power consumption control method of claim 34, wherein the detector comprises a temperature sensor, a window sensor, and a motion sensor. 47. The method for controlling power consumption as described in claim 46, wherein the detector further comprises a C02 concentration sensor. ❹ 48. The method of power consumption control according to claim 47, wherein the C〇2 concentration sensor of the at least one subsystem detects that the C02 concentration of the indoor area is higher than a first pre- When the value is set, the outdoor air is introduced to an indoor area corresponding to at least one subsystem, and when the CO2 concentration sensor of the at least one subsystem detects that the indoor area has a concentration of c〇2 lower than a second pre- When the value is set, the outside air introduction management module stops introducing the outdoor air to an indoor area corresponding to at least one subsystem. ❹ 49. The power consumption control method described in claim 34 of the patent application also includes prioritizing the comfort requirements of the corresponding indoor areas controlled by the subsystems. 50. The method of power consumption control as described in claim 34 of the patent application, further comprising adjusting the temperature adjustment switches of the subsystems according to the comfort requirement. 34 201015817 ❹ 51·如申請專利範園第34項所述之用電量管控方 法’其中更包括根據行事曆資訊排列該些子系統之調整溫 度順序以及運作狀態順序。 52·如申請專利範圍第1項所述之用電量管控系統, 其中更包括-預測資訊改變該門檻值。 3551. The power consumption control method described in claim 34 of the patent application gardens includes the arrangement of the temperature adjustment order and the operational status sequence of the subsystems according to the calendar information. 52. The power consumption control system described in claim 1 of the patent application, which further includes - predicting information to change the threshold. 35
TW97146961A 2008-10-13 2008-12-03 Electronic consumption control system and method thereof TWI376855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146961A TWI376855B (en) 2008-10-13 2008-12-03 Electronic consumption control system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW97139230 2008-10-13
TW97146961A TWI376855B (en) 2008-10-13 2008-12-03 Electronic consumption control system and method thereof

Publications (2)

Publication Number Publication Date
TW201015817A true TW201015817A (en) 2010-04-16
TWI376855B TWI376855B (en) 2012-11-11

Family

ID=44830193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146961A TWI376855B (en) 2008-10-13 2008-12-03 Electronic consumption control system and method thereof

Country Status (1)

Country Link
TW (1) TWI376855B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477722B (en) * 2012-08-09 2015-03-21 Univ Ishou Intelligent air conditioning energy management system and its intelligent air conditioning energy management equipment
TWI502197B (en) * 2011-01-28 2015-10-01 Chin Rong Lin Integrated intelligent low carbon monitoring and evaluation system
TWI565174B (en) * 2012-09-14 2017-01-01 行政院原子能委員會核能研究所 Apparatus of controlling loads in high-performance micro-grid
TWI742662B (en) * 2020-05-15 2021-10-11 中華電信股份有限公司 Smart water supplement method and smart water supplement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659384B (en) * 2017-11-29 2019-05-11 國立中山大學 Double-looped requirement control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502197B (en) * 2011-01-28 2015-10-01 Chin Rong Lin Integrated intelligent low carbon monitoring and evaluation system
TWI477722B (en) * 2012-08-09 2015-03-21 Univ Ishou Intelligent air conditioning energy management system and its intelligent air conditioning energy management equipment
TWI565174B (en) * 2012-09-14 2017-01-01 行政院原子能委員會核能研究所 Apparatus of controlling loads in high-performance micro-grid
TWI742662B (en) * 2020-05-15 2021-10-11 中華電信股份有限公司 Smart water supplement method and smart water supplement device

Also Published As

Publication number Publication date
TWI376855B (en) 2012-11-11

Similar Documents

Publication Publication Date Title
CN101833310B (en) Power consumption management control system and method
Xing et al. Analysis of energy efficiency retrofit scheme for hotel buildings using eQuest software: A case study from Tianjin, China
Escrivá-Escrivá Basic actions to improve energy efficiency in commercial buildings in operation
CN104101050B (en) A kind of energy-saving management system of central air conditioner
CN108039710B (en) Step characteristic-based air conditioner load-participating power grid day-ahead scheduling method
Carpino et al. Behavioral variables and occupancy patterns in the design and modeling of Nearly Zero Energy Buildings
US10083408B2 (en) Energy conservation unit and system of a building by way of interactive learning
CN101929721B (en) Predicting method of central air conditioner energy-conservation control autoregressive (AR) model load predicting system
Littlefair et al. A simulation of solar shading control on UK office energy use
KR20160023094A (en) Method and apparatus for controlling temperature
Guillemin et al. Experimental results of a self-adaptive integrated control system in buildings: a pilot study
Lin et al. A study on the characteristics of nighttime bedroom cooling load in tropics and subtropics
Krarti Evaluation of occupancy-based temperature controls on energy performance of KSA residential buildings
JP2004301505A (en) Air-conditioning controller
TW201015817A (en) Electronic consumption control system and operation method thereof
JP2012100427A (en) Power management system, power management method and power management program
JPH0942737A (en) Air conditioner controller
Ling et al. Simulation and optimization of the operation strategy of ASHP heating system: A case study in Tianjin
Brambilla et al. Comfort analysis applied to the international standard “Active House”: The case of RhOME, the winning prototype of Solar Decathlon 2014
Rosiek et al. Reducing a solar-assisted air-conditioning system’s energy consumption by applying real-time occupancy sensors and chilled water storage tanks throughout the summer: A case study
Kyritsis et al. Energy improvement of office buildings in Southern Europe
Cheng et al. Economic and energy consumption analysis of smart building–MEGA house
Ma et al. Diverse heating demands of a household based on occupant control behavior of individual heating equipment
Motamed et al. Eight-month experimental study of energy impact of integrated control of sun shading and lighting system based on HDR vision sensor
Garzia et al. Co-benefits of building automation and control systems: an analysis of smart office buildings

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees