TWI375727B - A molecular beam source for use in accumulation of organic thin-films - Google Patents

A molecular beam source for use in accumulation of organic thin-films Download PDF

Info

Publication number
TWI375727B
TWI375727B TW94123938A TW94123938A TWI375727B TW I375727 B TWI375727 B TW I375727B TW 94123938 A TW94123938 A TW 94123938A TW 94123938 A TW94123938 A TW 94123938A TW I375727 B TWI375727 B TW I375727B
Authority
TW
Taiwan
Prior art keywords
molecular
heater
guide
molecular discharge
film
Prior art date
Application number
TW94123938A
Other languages
Chinese (zh)
Inventor
Osamu Kobayashi
Tateo Saito
Original Assignee
Choshu Industry Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choshu Industry Company Ltd filed Critical Choshu Industry Company Ltd
Priority to TW94123938A priority Critical patent/TWI375727B/en
Application granted granted Critical
Publication of TWI375727B publication Critical patent/TWI375727B/en

Links

Description

1375727 (1) 九、發明說明 【發明所屬之技術領域】 本發明係於基板的固體成膜面上,加熱欲形成薄膜的 材料’使成膜材料溶融、蒸發,在固體表.面上產生用來使 薄膜成長的薄膜堆積用分子線源,特別是有關一種適用於 在基板等固體成膜面上堆積有機物薄膜的有機物薄膜堆積 用分子線源。 【先前技術】 近年來,在有機半導體、有機電激發光(EL)中具有 代表性的有機薄膜元件,深受矚目。這些薄膜元件在真空 中,藉著加熱有機材料、將蒸氣噴在基板上,使之冷卻, 而固體化以及黏合。般是使用放入有以鎢等高融點材料來 製作有機材料的坩鍋裡,再利用加熱器加熱坩鍋周圍,來 加熱成膜的材料,使其之蒸氣產生,再將蒸氣噴於基板上 籲的方法。 然而,由於成膜材料即有機材料大多熱傳導性差,因 此如以前述蒸發手段,無法均勻加熱成膜材料,而導致於 蒸氣的產生產生不均勻的缺點。可知爲了提升生產力而大 量將有機材料收容於坩鍋時,該缺點將引起大的問題。 因此,如下述專利文獻1所記載,藉著將熱及化學性 穩定且熱傳導性比成膜材料更優良的材料,與成膜材料同 時收容到坩鍋中,謀求該問題的解決。 另外,有機物成膜材料的蒸發手段的其他問題點,由 -4 - ⑧ (2)1375727 於有機物成膜材料蒸氣壓高,在低溫下產生蒸氣,因此若 僅將材料放入坩堝且放置於真空中,將導致成膜材料產生 蒸氣,如此一來將招致污染基板的弊端。針對這問題,如 下述專利文獻2之記載,提案有一種將坩堝設爲密閉構造 ,藉由針形閥來調整蒸氣量的案子。 【特許文獻1】日本開2 003-2778號公報 【特許文獻2】日本開2003-95787號公報 【發明內容】 [發明所欲解決之課題〕 於本發明者的檢討中, 良的材料共同收容於坩堝中 判斷在大型基板的成膜面上 ,蒸鍍源與基板之間必需取 效率更惡化。又,針形閥的 氣的放出以及放出停止的控 放出口狹窄且近於點狀,因 的均勻形成薄膜,產生問題 又,有機物成膜材料雖 蒸氣,藉由溫度降低而容易 附近,使成膜材料的蒸氣與 壁面將析出有機物成膜材料 分子放出口閉塞,使基板的 的障礙。此外,於分子放出 藉著將成膜材 ,可產生均勻 ,要形成均一 得大的間距, 分子放出口的 制上雖然優良 此導致在大型 然蒸氣壓高、 再凝固。因此 壁面接觸,當 。結果,因分 成膜效率降低 口上再凝固的 料與熱傳導率優 的蒸氣。但是, 的有機物的薄膜 將使材料的利用 遮蔽,在材料蒸 ,但由於分子的 基板的成膜面上 且於低溫下發生 ,在分子放出口 其之溫度降低, 子放出口狹窄或 ,或者導致成膜 有機物成膜材料 ⑧ -5- (3) 1375727 從壁面剝落形成塵埃,飛散到真空中,塵埃附著於成膜面 的機會大增》因此,所形成的膜也容易產生缺陷。 本發明係有鑑於前述的以往之有機物薄膜堆積用分子 線源,目的在於提供一種特別檢討分子放出口的分子的放 出部份的構造,其檢討結果:於大型基板的成膜面上可形 成均勻的薄膜,並且改善於成膜材的分子放出口不析出成 膜材料,不易引起放出口的狹窄、或閉塞的有機物薄膜堆 Φ積用分子線源。 〔用以解決課題之手段〕 針對上述課題,本發明者等發現以如下的方法可獲得 解決。首先,即使在低溫下,爲防止蒸氣壓的昂貴材料之 蒸氣漏洩,可將閥放置於蒸氣的通路,以遮斷放出的蒸氣 。此時,藉著關閉閥,使蒸氣不漏洩,可進行材料加熱, 在蒸氣產生源側以因應材料溫度的壓力,達到平衡壓。藉 ®此,在蒸氣產生源側可完全保持均勻的壓力。 再者,爲了使成膜材料汽化,不只加熱成膜材料的蒸 發部分,在蒸氣容易凝固的分子放出口側也配置加熱器, 防止於分子放出口附近之蒸發材料的析出。藉此,防止因 爲分子放出口側的狹窄而產生閉塞。 亦即,本發明的有機物薄膜堆積用分子線源,於將蒸 氣產生源所產生的成膜材料的分子,朝向成膜面放出的分 子放出口側,設置加熱所放出的成膜材料的分子。更具體 而言’於分子放出口側設置:具有傾斜狀的導引壁之外導 -6- (4) 1375727 引;和設置於該外導引的內側,具有傾斜狀的導引壁的內 導引,於此等外導引與內導引之間,朝向分子的放出方向 形成具有直徑漸漸增大的傾斜之分子放出路》加熱器係分 別設置於外導引與內導引,藉此,在分子放出路的外側與 內側設置加熱器。 在這種有機物薄膜堆積用分子線源中,在容易使蒸氣 再凝固的分子放出口配置加熱器,藉由防止在分子放出口 φ附近的蒸發材料的吸出,不會產生因爲蒸氣的再凝固導致 分子放射口的狹窄或閉塞。藉此可穩定的放出蒸氣。 又,藉由與支持外導引與內導引的支持構件鄰接而貫 通分子放出路的方式,設置加熱器,在貫通分子放出路的 支持構件中,可確實防止蒸氣的再凝固產生,藉此,可確 實防止到達分子放射口之前的分子放出路的狹窄或閉塞。 然後,藉由從蒸氣產生源到分子放出口之間配置閥, 在蒸發開始時關閉閥,使蒸氣不漏出,可進行材料加熱, 春因此在蒸氣產生源側以因應材料溫度的壓力,可容易維持 平衡壓,在該狀態下,在蒸氣產生源側可保持完全均勻的 壓力。 此外,設置於分子放出口側的加熱器,與蒸氣產生源 側的加熱器相比,每一單位面積的發熱量變大,而使捲線 密度變密。藉此,可確實防此分子放出口之蒸氣的再凝固 又,使外導引與內導引與朝向成膜面側的方向上可互 相移動。藉此,可較寬或較窄地調整分子放出口的-開口部 (5) 1375727 。又,由於可使分子放出口的開口部之中心位置變動,因 此因應形成薄膜的成膜面的面積之大小等,可任意設定分 子的放射狀態。 〔發明的效果〕 如以上所述,在本發明的有機物薄膜堆積用分子線源 中,防止來自蒸氣產生源之無預定的蒸氣的放出,由於在 ®穩定的正常狀態下可放出蒸氣,因此在基板的成膜面上可 穩定的形成薄膜,藉此,即使是大型的基板也可以均勻的 形成薄膜。再者,藉由在蒸氣放出口側設置加熱器,可防 止成膜材料的蒸氣於蒸氣放出口再凝固,而析出成膜材料 。藉此,使分子放出口的狹窄或閉塞不容易引起,長期來 說可以穩定的放出分子,藉此可穩定的成膜。 【實施方式】 在本發明中,於蒸氣的路徑上放置閥,可以遮斷所放 出的蒸氣。又’在蒸氣容易凝固的分子放出口側配置加熱 器,防止在分子放出口附近的蒸發材料的析出。 以下,參照圖面,舉出具體例,詳細說明本發明的實 施例。 〔實施例〕 第】圖是昇華或蒸發成膜材料a而放射的分子線源胞1 ⑧ (6) 1375727 該分子線源胞1的加熱材料收納部3,具有由SUS的金 屬之高熱傳導材料所構成的圓筒狀的蒸氣產生源31,在該 • 坩鍋31中收納有加熱材料a ’該加熱材料a如第6圖所示, 以粒狀的傳熱媒體c爲芯’於其表面覆蓋成爲膜的主成分 的成膜材料b而設置’將該加熱材料a收納於前述的加熱材 料收納部3的坩鍋31。 又’取代於傳熱媒體c的表面覆蓋成膜材料b,以適當 •的比例均勻的混合傳熱媒體c與成膜材料b的狀態下,加熱 材料收納部3的坩鍋31亦可。將傳熱媒體c與成膜材料b收 納在內的容積比,以7 0 % : 3 0 %前後較適當。 傳熱媒體〇是以熱性、且化學性穩定,而且比成膜材 料b熱傳導率高的物質來製作。例如:傳熱媒體c是由熱裂 解氮化硼(Pyrolytic Boron Nitride,PBN)、碳化砂或氮 化鋁等高熱傳導材料所做成。 由第1圖.所示’在增鍋31的周圍配置加熱器32,其外 鲁側是以液體氮等來冷卻的護罩39加以包圍。設置在±甘鍋3 j 的熱電對等的溫度測定手段(如圖所示),來控制加熱器 32的發熱量,藉由加熱坩鍋31的加熱材料a,使丨甘鍋31內 的成膜材料b昇華或蒸發,來產生其分子。又,停止加% 器32的發熱,以護罩39冷卻坩鍋31的內部,使加熱材料a 冷卻,停止成膜材料的昇華或蒸發。 在加熱時’藉由傳熱媒體c加熱成膜材料b。傳熱媒體 b由於熱傳導率高於成膜材料b,僅以成膜材料b無法 傳導至坩鍋31的中央時,藉由傳熱媒體c將熱傳導至±甘_1375727 (1) Nine, the invention belongs to the technical field of the invention. The invention is applied to the solid film-forming surface of the substrate, and heats the material to be formed into a film, so that the film-forming material is melted and evaporated, and is produced on the surface of the solid surface. A molecular line source for film deposition for growing a thin film, in particular, a molecular line source for depositing an organic thin film which is suitable for depositing an organic thin film on a solid film-forming surface such as a substrate. [Prior Art] In recent years, a representative organic thin film element among organic semiconductors and organic electroluminescence (EL) has been attracting attention. These thin film elements are solidified and bonded in a vacuum by heating an organic material, spraying a vapor onto the substrate, cooling it. Generally, a crucible in which an organic material is formed by using a high melting point material such as tungsten is used, and a heater is used to heat the film forming material to heat the film forming material to generate a vapor, and then the vapor is sprayed on the substrate. The method of appealing. However, since the film-forming material, that is, the organic material, is often inferior in thermal conductivity, the film forming material cannot be uniformly heated by the above-described evaporation means, which causes a disadvantage that unevenness in generation of vapor occurs. It is known that this disadvantage causes a big problem when a large amount of organic material is contained in the crucible in order to increase productivity. Therefore, as described in the following Patent Document 1, a material which is more stable in thermal and chemical properties and more thermally conductive than a film-forming material is accommodated in a crucible at the same time as a film-forming material, and this problem is solved. In addition, the other problem of the evaporation means of the organic film-forming material is that the vapor pressure of the organic film-forming material is high by -4 - 8 (2) 1375727, and steam is generated at a low temperature, so that only the material is placed in the crucible and placed in a vacuum. In this case, the film forming material will generate vapor, which will lead to the disadvantage of contaminating the substrate. In order to solve this problem, as described in the following Patent Document 2, there has been proposed a case in which the crucible is used as a closed structure and the amount of vapor is adjusted by a needle valve. [Patent Document 1] Japanese Patent Publication No. 2 003-2778 [Patent Document 2] Japanese Patent Application Laid-Open No. 2003-95787 [Draft of the Invention] [Problems to be Solved by the Invention] In the review by the inventors, good materials are collectively accommodated. It is judged in the middle of the film formation surface of the large substrate that the efficiency between the vapor deposition source and the substrate is deteriorated. In addition, the gas release of the needle valve and the control discharge port for stopping the discharge are narrow and close to the dot shape, and the film is uniformly formed, which causes a problem. The organic film-forming material is easily vaporized by the temperature, and is easily formed in the vicinity. The vapor and the wall surface of the membrane material occlude the organic material-forming material molecule discharge port to block the substrate. Further, in the molecular release, the film-forming material can be produced uniformly, and a uniform pitch is formed, and the molecular discharge port is excellent in the production, so that the vapor pressure is high and the coagulation is large. Therefore the wall is in contact, when. As a result, the re-solidified material on the mouth and the vapor having excellent thermal conductivity are lowered due to the film formation efficiency. However, the film of the organic substance will shield the material from being used, and the material will be steamed, but due to the film formation surface of the molecular substrate and occurring at a low temperature, the temperature at the molecular discharge port is lowered, the sub-discharge port is narrowed, or Film-forming organic material film-forming material 8 -5- (3) 1375727 The dust is peeled off from the wall surface and scattered into a vacuum, and the chance of dust adhering to the film-forming surface is greatly increased. Therefore, the formed film is also prone to defects. The present invention has been made in view of the above-described molecular source for depositing organic thin film, and it is an object of the present invention to provide a structure for specifically examining a molecule releasing portion of a molecular discharge port, and as a result of the review, uniformity can be formed on a film formation surface of a large substrate. The film is improved in that the molecular discharge port of the film-forming material does not precipitate a film-forming material, and it is difficult to cause a narrowing of the discharge port or a molecular line source for occluding the organic film stack. [Means for Solving the Problems] The present inventors have found that the above problems can be solved by the following methods. First, even at low temperatures, in order to prevent vapor leakage of expensive materials of vapor pressure, a valve can be placed in the passage of the vapor to block the discharged vapor. At this time, by closing the valve so that the vapor does not leak, the material can be heated, and the equilibrium pressure is reached on the side of the vapor generation source in response to the pressure of the material temperature. By this, a uniform pressure can be maintained completely on the source side of the vapor generation. Further, in order to vaporize the film-forming material, not only the evaporation portion of the film-forming material but also the heater is disposed on the side of the molecule discharge port where the vapor is easily solidified, thereby preventing the deposition of the evaporation material in the vicinity of the molecular discharge port. Thereby, clogging due to stenosis on the side of the molecule discharge port is prevented. In other words, the molecular line source for depositing an organic thin film of the present invention is a molecule on which a molecule of a film forming material generated by a vapor generating source is discharged toward a film discharge surface, and a film forming material is heated. More specifically, 'on the side of the molecular discharge port: a guide wall having a slanted guide -6-(4) 1375727; and an inner side of the outer guide having an inclined guide wall Guided between the outer guide and the inner guide, forming a molecular discharge path having a gradually increasing diameter toward the direction in which the molecules are emitted. The heaters are respectively disposed on the outer guide and the inner guide. A heater is disposed on the outer side and the inner side of the molecular discharge path. In such a molecular line source for organic film deposition, a heater is disposed in a molecular discharge port which is easy to re-solidify the vapor, and by preventing the evaporation of the evaporation material in the vicinity of the molecular discharge port φ, no re-solidification of the vapor occurs. Stenosis or occlusion of the molecular radiation port. Thereby, the vapor can be stably discharged. Further, by providing a heater so as to penetrate the molecular discharge path adjacent to the support member for supporting the outer guide and the inner guide, the support member passing through the molecular discharge path can surely prevent re-solidification of the vapor. It can surely prevent the narrowing or occlusion of the molecular release path before reaching the molecular radiation port. Then, by arranging a valve from the vapor generation source to the molecular discharge port, the valve is closed at the start of evaporation so that the vapor does not leak out, and the material can be heated, so that the spring can be easily applied to the source side of the vapor at a pressure corresponding to the temperature of the material. The equilibrium pressure is maintained, and in this state, a completely uniform pressure can be maintained on the side of the vapor generation source. Further, the heater provided on the side of the molecular discharge port has a larger calorific value per unit area than the heater on the side of the vapor generation source, and the density of the winding is made dense. Thereby, it is possible to surely prevent re-solidification of the vapor of the molecular discharge port, and to move the outer guide and the inner guide and the direction toward the film formation surface side. Thereby, the opening/opening portion (5) 1375727 of the molecular discharge port can be adjusted wider or narrower. Further, since the center position of the opening portion of the molecular discharge port can be changed, the radiation state of the molecule can be arbitrarily set in accordance with the size of the area of the film formation surface on which the film is formed. [Effects of the Invention] As described above, in the molecular source source for depositing an organic thin film of the present invention, unpredictable vapor release from the vapor generation source is prevented, and since vapor can be released in a stable normal state, A film can be stably formed on the film formation surface of the substrate, whereby the film can be uniformly formed even on a large substrate. Further, by providing a heater on the side of the vapor discharge port, it is possible to prevent the vapor of the film forming material from being solidified again at the vapor discharge port to precipitate a film forming material. Thereby, the narrowing or occlusion of the molecular discharge port is not easily caused, and the molecule can be stably released in the long term, whereby the film formation can be stably performed. [Embodiment] In the present invention, by placing a valve on the path of the vapor, the discharged vapor can be blocked. Further, a heater is disposed on the side of the molecular discharge port where the vapor is easily solidified, and precipitation of the evaporation material in the vicinity of the molecular discharge port is prevented. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. [Example] The figure is a molecular line source cell which is sublimated or evaporated to form a film material a 8 (6) 1375727 The heating material accommodating portion 3 of the molecular line source cell 1 has a metal high heat conductive material made of SUS The cylindrical steam generating source 31 is configured to store the heating material a in the crucible 31. The heating material a is as shown in Fig. 6, and the granular heat transfer medium c is cored on the surface thereof. The crucible 31 in which the heating material a is housed in the heating material storage unit 3 described above is provided so as to cover the film forming material b which is the main component of the film. Further, in place of the film forming material b instead of the surface of the heat transfer medium c, the crucible 31 of the material accommodating portion 3 may be heated in a state where the heat transfer medium c and the film forming material b are uniformly mixed in an appropriate ratio. The volume ratio in which the heat transfer medium c and the film forming material b are contained is preferably about 70%: 30%. The heat transfer medium 制作 is made of a material which is thermally and chemically stable and which has a higher thermal conductivity than the film-forming material b. For example, the heat transfer medium c is made of a highly heat conductive material such as Pyrolytic Boron Nitride (PBN), carbonized sand or aluminum nitride. As shown in Fig. 1, a heater 32 is disposed around the pottery 31, and the outer side is surrounded by a shield 39 which is cooled by liquid nitrogen or the like. The thermoelectric equivalent temperature measuring means (as shown in the figure) provided in the ±3 pot is used to control the amount of heat generated by the heater 32, and the heating material a of the crucible 31 is heated to make the inside of the pot 39 The membrane material b sublimes or evaporates to produce its molecules. Further, the heat generation of the sterilizer 32 is stopped, and the inside of the crucible 31 is cooled by the shield 39 to cool the heating material a, and the sublimation or evaporation of the film forming material is stopped. When heated, the film forming material b is heated by the heat transfer medium c. Since the heat transfer medium b is higher than the film forming material b, only when the film forming material b cannot be conducted to the center of the crucible 31, the heat is conducted to the heat by the heat transfer medium c.

-9- (7) 1375727 31的中央,也加熱位於該坩鍋31的中央的成膜材料b並使 之溶融蒸發。藉此,收納於坩鍋31的成膜材料b被加熱、 . 溶融並蒸發。 又’傳熱媒體c由於是以PBN、碳化矽或氮化鋁等具有 熱性、化學性的穏定材料所製作,因此即使藉加熱器32加 熱至可蒸發成膜材料b的程度,也無法溶融或蒸發。因而 ,在從坩鍋31的蒸氣放出口 2放射出來的蒸發分子中,不 #包含形成傳熱媒體b的分子,對於結晶成長的膜之組成沒 有影響。 此外,當成膜材料b爲具有EL發光能的有機低分子或 有機高分子材料時,其氣化溫度與銅等金屬等相比甚低, 大部分爲200 °C以下。另外,耐熱溫度也比較低,在前述 的有機低分子和有機高分子材料的蒸發中,必須加熱至氣 化溫度以上,耐熱溫度以下的溫度。 在放置坩鍋31的成膜材料的分子側設置有閥33。該閥 # 33爲針形閥’具有:尖銳的針3 4;和藉由嵌入該針34的前 端,關閉流路或流路剖面積的分子通過孔之閥座35。前述 針3 4係經由風箱37,藉由伺服馬達36所導入的線性運動而 移動到其中心軸方向。 如第1圖所示,藉由該閥33關閉的閥座35的分子通過 孔’是經由導入路21通行到分子放出部11。該分子放出部 11是具有圓筒形的分子加熱室]2,在該分子加熱室12的周 圍設置有加熱器15。該分子加熱器12是經由導入至分子加 熱室12側的導入路21,使已蒸發的分子與前述的閥33側連 -10- (8) 1375727 絡’從前述閥3 3側漏出,經由導入路2 1到達至分子放出部 11的成膜材料的分子,在該分子加熱室12內藉由加熱器15 . 再加熱至所要的溫度,從分子放出口 14朝向設置於真空糟 中的基板放射。 在第2圖與第3圖詳細表示該分子線源胞1的前端即分 子放出部1 1。 分子加熱室12的前端周邊部與分子放出口】4之間設置 φ有外導引13。在該外導引13的內面,從分子加熱室12的前 端周邊部側,朝向分子放出口 14,形成直徑漸漸變大的傾 斜狀的導引面。 再者’於該外導引13的內側設置有內導引16,如第3 圖所示,該內導引16的外面形成導引面,該導引面與從前 述外導引1 3的內面之導引面相同的濃度梯度的傾斜,亦即 從分子加熱室12的前端周邊部側朝向分子放出口 14,直徑 漸漸變大成傾斜狀。該內導引16的導引面與外導引面13的 ®導引面之間形成從前述分子加熱室12的前端周邊部側到分 子放出口 14的分子放出路17。 內導引16與外導引13之間的分子放出路17,以45°間 隔放射狀插入有支持部23,圖示的實施例的支持部23,是 由內導引16與外導引13的圓周方向保有間隔的兩片板狀的 構件所構成。在此等支持部23中插入縲絲24,支持部23藉 由此等縲絲24固定內導引16與外導引13。藉由此等支持部 23或縲絲24等作爲主要構成構件的支持構件的支持構造, 使內導引1 6與外導引1 3中心軸一致的方式,以同心狀配置-9- (7) The center of the 1375727 31 also heats the film forming material b located in the center of the crucible 31 and melts and evaporates. Thereby, the film formation material b accommodated in the crucible 31 is heated, melted, and evaporated. Further, since the heat transfer medium c is made of a thermally or chemically-determined material such as PBN, tantalum carbide or aluminum nitride, it cannot be melted even if it is heated by the heater 32 to the extent that the film-forming material b can be evaporated. Or evaporate. Therefore, in the evaporating molecules emitted from the vapor discharge port 2 of the crucible 31, the molecules forming the heat transfer medium b do not contain any influence on the composition of the crystal grown film. Further, when the film-forming material b is an organic low molecular or organic polymer material having EL light-emitting energy, the vaporization temperature is extremely low compared with metals such as copper, and most of them are 200 ° C or lower. Further, the heat-resistant temperature is also relatively low, and it is necessary to heat the above-mentioned organic low molecular weight and organic polymer material to a temperature equal to or higher than the vaporization temperature and lower than the heat-resistant temperature. A valve 33 is provided on the molecular side of the film forming material in which the crucible 31 is placed. The valve #33 is a needle valve' having a sharp needle 34; and a valve seat 35 for closing the flow passage or the passage passage of the molecular passage hole by the front end of the needle 34. The needle 3 4 is moved to the center axis direction thereof by the linear motion introduced by the servo motor 36 via the bellows 37. As shown in Fig. 1, the molecular passage hole ' of the valve seat 35 closed by the valve 33 passes through the introduction path 21 to the molecular discharge portion 11. The molecular discharge portion 11 has a cylindrical molecular heating chamber 2, and a heater 15 is provided around the molecular heating chamber 12. The molecular heater 12 is introduced into the introduction path 21 on the side of the molecular heating chamber 12, and the evaporated molecules are connected to the valve 33 side -10- (8) 1375727 ' ' leaking from the side of the valve 3 3 and introduced through the introduction The molecules of the film forming material reaching the molecular discharge portion 11 by the path 21 are heated in the molecular heating chamber 12 by the heater 15 to a desired temperature, and are emitted from the molecular discharge port 14 toward the substrate disposed in the vacuum. . The front end of the molecular line source cell 1, i.e., the molecular discharge unit 11 is shown in detail in Figs. 2 and 3. φ has an outer guide 13 between the peripheral end portion of the front end of the molecular heating chamber 12 and the molecular discharge port. On the inner surface of the outer guide 13, a tilting guide surface having a gradually increasing diameter is formed from the front end peripheral side of the molecular heating chamber 12 toward the molecular discharge port 14. Further, an inner guide 16 is disposed on the inner side of the outer guide 13, and as shown in FIG. 3, the outer surface of the inner guide 16 forms a guide surface which is guided from the outer guide 13 The inclination of the concentration gradient of the same inner guiding surface, that is, from the front end side of the molecular heating chamber 12 toward the molecular discharge port 14, the diameter gradually becomes large and inclined. A molecular discharge path 17 is formed between the guide surface of the inner guide 16 and the guide surface of the outer guide surface 13 from the front end peripheral portion side of the molecular heating chamber 12 to the molecular discharge port 14. The molecular discharge path 17 between the inner guide 16 and the outer guide 13 is radially inserted with a support portion 23 at a 45° interval. The support portion 23 of the illustrated embodiment is guided by the inner guide 16 and the outer guide 13 It is composed of two plate-like members that are spaced apart in the circumferential direction. A twisting wire 24 is inserted into the support portion 23, and the support portion 23 fixes the inner guide 16 and the outer guide 13 by means of the twisted wire 24. The support structure of the support member as the main constituent member such as the support portion 23 or the twisted wire 24 is arranged in a concentric manner such that the inner guide 16 and the outer guide 13 are aligned with each other.

-11 - 1375727 上 向 方 的 面 膜 成 的 板 基 之 膜 薄 膜 成 向 朝 在 是 6 11 弓 。 導 定內 固 並 T, β ^ ^ β向*二從 意 f 是 任 T , 在3±置 可3H位 爲第的 成在16 是引 向導 方內 對的的 相16示 13引表 引導線 導內鎖 外該點 以動兩 , 移以 可,導 。 中內 定圖的 固 上 3 16線導 引虛外 導點近 內兩接 當於面 。 位引 置13導 位引的 的導狀 側外斜 11與傾 部,即 出時面 放置 子位 分的 到示 退表 後線內 ,鎖, 置點比 位兩相 的以置 16於位 引位的 外 的 6 H 弓 導 ^3ffl 即第 面於 內位 的16 3 丨 1 弓 引導 面 中 使 窄態 變狀 17的 路時 出置 放位 子現 分表 !線 實 以 內 圖 係.丨 圖 4 , 第又 第 ,是內導引16在第3圖中,位於以兩點差線表現的位置時 的狀態。如此,內導引16在第3圖的上下方向爲可移動, 且在任意的位置上可被固定。 外導引13外側配置有加熱器18與冷卻器12的冷熱單元 21。外導引13藉由該冷熱單元21包圍。冷熱單元21的冷卻 ®器22藉由水或液體氮等冷卻水,使外導引13從周圍開始冷 卻。又,冷熱單元21的加熱器18例如使用微加熱器,從周 圍開始加熱外導引】3,藉此,加熱其內側的分子放出路1 7 ◊冷熱單元21的加熱器18的發熱量密度,也就是每一單位 面積所產生的熱量,是比設置在分子加熱室12周圍的加熱 器15的發熱量密度大。因此加熱器18的卷線密度是比分子 加熱室1 2的加熱器]5的卷線密度還要密。 再者,於內導引1 6組裝加熱器1 9,該加熱器1 9例如使 用電熱器,從內導引1 6開始內側加熱,加熱其外側的分子 -12- ⑧ (10) 1375727 外出路17,內導引16的加熱器19的發熱量密度,也就是每 —單位面積所產生的熱量,是比設置在分子加熱室12的周 圍的加熱器15的發熱量密度大,因此加熱器19的卷線密 度是比分子加熱室1 2的加熱器卷線密度還要密。 在內導引16與外導引13的分子放出路17,貫通加熱器 20而配線。該加熱器20插入至前述支持部23的螺絲24,並 且在插入至支持部23中的狀態下,貫通分子放出路17,與 φ 支持部23以及其中的螺絲24接近。貫通分子放出路17的加 熱器2 0,是利用使分子放出路1 7的外側的加熱器1 8與內側 的加熱器1 9連接的加熱器中間線較佳,但亦可使加熱器20 與此等加熱器18和加熱器19各自獨立而設置》 如此,在蒸氣容易再凝固的分子放出口附近,具體而 言就是分別在分子放出路1 7的外側與內側配置加熱器1 8、 19之外,另藉由貫通分子放出路口的方式設置加熱器20, 可以確實防止在分子放出口 Μ附近的蒸發材料的析出。藉 φ此,不產生因爲蒸氣的再凝固而引起分子放出口的狹窄或 閉塞。特別是,由於當加熱器20與插入前述支持部23的螺 絲24—起插入到支持部23中的狀態下,貫通該分子放出路 17,因此在貫通設置該分子放出路17而設置支持部23或螺 絲24等的支持部材中,可確實防止產生蒸氣的再凝固。 第7圖與第8圖是在實際的分子放出試驗中,除了分子 加熱室12側的加熱器15之外,另外設置外導引13側的加熱 器18與內導引16側的加熱器19,而加熱分子放出路17時, 測定內導引16之壁面的溫度的結果。第7圖是與接近內導 (11) 1375727 引1 6的壁面分子放出口 1 4前端側做爲測溫點來測定的結果 。第8圖是與接近支持部23的分子加熱室12的基部側做爲 測溫點而測定結果》—邊以加熱器1 5加熱分子加熱室1 2側 ,一邊在200至40(TC的範圍內,改變該分子加熱室12的壁 面溫度,並加以測定。也包含沒有設置外導引1 3側的加熱 器18與內導引16側的加熱器19的情況,使用數種分子放出 口 14側的加熱器的卷線密度不同者,進行測定。加熱器18 #及19的卷線密度以分子加熱室12與加熱器15的比來表示。 外導引13或內導引16或固定此等的支持部材,由於面 向放出分子的外側,因此,因爲輻射熱而容易使溫度下降 ,當從分子放出口 14放出的成膜材料的分子與外導引13與 內導引16接觸時,在此熱將容易被奪走或再度凝固。 在此,藉由於外導引1 3側設置加熱器1 8,使其卷線密 度成爲分子加熱室12側的加熱器15的卷線密度的4倍以上 ,使內導引16的壁面溫度接近分子加熱室12的壁面溫度。 ®更於內導引16側設置加熱器19,藉由使雙方的加熱器的]8 ’ 19的卷線密度成爲分子加熱室12側的加熱器15的卷線密 度的12倍,可以將內導引1 6的壁面溫度維持在分子加熱室 12的壁面溫度以上。再者’與貫通貫通分子放出路17的螺 絲24同時將加熱器20插入至支持部23中,因此,貫通分子 放出路1 7而設置的支持部23或螺絲24等的部材,也可以維 持同等的溫度。 【圖式簡單說明】-11 - 1375727 The film of the upper side of the mask is formed into a film with a 6-11 bow. Describe the internal solid and T, β ^ ^ β to * two care f is any T, in the 3 ± set 3H position as the first in the 16 is the guide of the phase of the phase 16 shows 13 lead guide The point outside the guide lock is moved by two, and it can be moved. In the middle of the fixed map, the 3 16-line guide imaginary outer guide point is close to the inner two. The lead-side exotropy 11 and the tilting portion of the 13-position lead are placed, that is, the sub-position of the sub-position is placed in the line after the retreat, and the lock is placed at a position of 16 points. The outer 6 H bow guide ^3ffl of the orientation is the 16 3 丨1 bow guide surface of the inner plane. The narrow state of the curve is set to the position of the position of the line. The line is in the inner map. Fig. 4, the second and fourth, is the state in which the inner guide 16 is located at the position represented by the two-dot line in Fig. 3. Thus, the inner guide 16 is movable in the up and down direction of Fig. 3 and can be fixed at any position. The heat exchanger unit 21 of the heater 18 and the cooler 12 is disposed outside the outer guide 13. The outer guide 13 is surrounded by the cold heat unit 21. The cooling unit 22 of the cold heat unit 21 cools the outer guide 13 from the surroundings by cooling water such as water or liquid nitrogen. Further, the heater 18 of the cold/hot unit 21 uses, for example, a micro-heater to heat the outer guide 3 from the periphery, thereby heating the heat generation density of the heater 18 of the molecular discharge path 1 7 ◊ the thermal unit 21 inside. That is, the amount of heat generated per unit area is larger than the amount of heat generated by the heater 15 disposed around the molecular heating chamber 12. Therefore, the winding density of the heater 18 is denser than the winding density of the heater] 5 of the molecular heating chamber 12. Furthermore, the heater 1 9 is assembled internally, and the heater 19 is heated, for example, from the inner guide 16 by using an electric heater, and heats the molecules -12-8 (10) 1375727 on the outside. 17. The heat generation density of the heater 19 of the inner guide 16, that is, the heat generated per unit area, is greater than the heat generation density of the heater 15 disposed around the molecular heating chamber 12, so the heater 19 The coil line density is more dense than the heater coil density of the molecular heating chamber 12. The molecular discharge path 17 of the inner guide 16 and the outer guide 13 is passed through the heater 20 to be wired. The heater 20 is inserted into the screw 24 of the support portion 23, and is inserted into the support portion 23, penetrates the molecular discharge path 17, and is close to the φ support portion 23 and the screw 24 therein. The heater 20 that penetrates the molecular discharge path 17 is preferably a heater intermediate line that connects the heater 18 outside the molecular discharge path 17 to the inner heater 19, but the heater 20 may be These heaters 18 and heaters 19 are provided independently of each other. Thus, in the vicinity of the molecular discharge port where the vapor is easily resolidified, specifically, the heaters 18, 19 are disposed on the outer side and the inner side of the molecular discharge path 17 respectively. Further, by providing the heater 20 so as to penetrate the intersection of the molecules, it is possible to surely prevent the deposition of the evaporation material in the vicinity of the molecular discharge port. By φ, there is no stenosis or occlusion of the molecular discharge port due to re-solidification of the vapor. In particular, when the heater 20 is inserted into the support portion 23 together with the screw 24 inserted into the support portion 23, the molecular discharge path 17 is penetrated. Therefore, the molecular discharge path 17 is provided through the support portion 23. In the support member such as the screw 24, it is possible to surely prevent re-solidification of the generated steam. Fig. 7 and Fig. 8 show that in the actual molecular release test, in addition to the heater 15 on the side of the molecular heating chamber 12, the heater 18 on the outer guide 13 side and the heater 19 on the inner guide 16 side are additionally provided. When the molecular release path 17 is heated, the temperature of the wall surface of the inner guide 16 is measured. Fig. 7 is a result of measurement as a temperature measurement point near the front end side of the wall molecular discharge port 1 4 of the inner guide (11) 1375727. Fig. 8 is a measurement result of the base side of the molecular heating chamber 12 close to the support portion 23 as a temperature measuring point" - heating the molecular heating chamber 1 2 side with the heater 15 and 200 to 40 (TC range) The wall surface temperature of the molecular heating chamber 12 is changed and measured, and the heater 18 having the outer guide 13 side and the heater 19 on the inner guide 16 side are not provided, and a plurality of molecular discharge ports 14 are used. The winding density of the heaters on the side is different, and the winding density of the heaters 18 # and 19 is expressed by the ratio of the molecular heating chamber 12 to the heater 15. The outer guide 13 or the inner guide 16 or the fixed Since the supporting member is oriented toward the outside of the molecule, the temperature is easily lowered due to radiant heat, and when the molecules of the film forming material discharged from the molecular discharge port 14 are in contact with the outer guide 13 and the inner guide 16, The heat is easily taken away or re-solidified. Here, the heater 18 is provided by the outer guide 13 side so that the winding density becomes four times or more the winding density of the heater 15 on the side of the molecular heating chamber 12. So that the wall surface temperature of the inner guide 16 is close to the molecular heating chamber 12 The wall temperature is further set on the inner guide 16 side by setting the winding density of the 8' 19 of the heaters to 12 times the winding density of the heater 15 on the side of the molecular heating chamber 12, The wall surface temperature of the inner guide 16 can be maintained above the wall surface temperature of the molecular heating chamber 12. Further, the heater 20 is inserted into the support portion 23 simultaneously with the screw 24 penetrating the molecular discharge path 17, and therefore, the through molecule The member such as the support portion 23 or the screw 24 provided to release the road 17 can maintain the same temperature. [Simplified description of the drawing]

-14- (12) 1375727 第I圖係本發明之有機物薄膜堆積用分子線源的一實 施例的縱剖側面圖。 第2圖係該有機物薄膜堆積用分子線源的分子放出的 正面圖。 第3圖係該有機物薄膜堆積用分子線源的分子放出部 與配置於其外側的冷熱單元的主要部份放大縱剖側面圖。 第4圖係表示藉由該有機物薄膜堆積用分子線源成膜 φ 於基板的狀態的主要部份放大縱剖側面圖。 第5圖係於該有機物薄膜堆積用分子線源中,使內導 引從第4圖的位置偏移的位置上,成膜於基板的狀態的主 要部份放大縱剖側面圖。 第6圖係收納於前述有機物薄膜堆積用分子線源的坩 鍋的加熱構件的縱剖側面圖。 第7圖係表示於該有機物薄膜堆積用分子線源中,除 了使分子加熱室側,在分子放出口側設置加熱器,而放出 •分子時的分子加熱室側與分子放出口側的溫度的圖表。 第8圖係表示於該有機物薄膜堆積用分子線源中,除 了使分子加熱室側,在分子放出口側設置加熱器,而放出 分子時的分子加熱室側與分子放出口側的溫度的圖表。 【主要元件符號說明】 1 分子線源胞 1 1 分子放出部 12 分子加熱部 -15- (13) (13)1375727 14 分子放出口 13 外導引 16 內導引 17 分子放出路 1 8 加熱器 19 加熱器 20 加熱器 23 支持部 2 4 螺絲-14- (12) 1375727 Fig. 1 is a longitudinal sectional side view showing an embodiment of a molecular line source for depositing an organic thin film of the present invention. Fig. 2 is a front view showing the release of molecules of the molecular line source for depositing the organic thin film. Fig. 3 is an enlarged longitudinal sectional side view showing the main part of the molecular discharge unit of the molecular line source for organic film deposition and the cold heat unit disposed outside. Fig. 4 is a partially enlarged longitudinal sectional side view showing a state in which a film of φ is formed on a substrate by a molecular line source for depositing an organic thin film. Fig. 5 is an enlarged longitudinal sectional side view showing a main portion of the state in which the inner guide is displaced from the position of Fig. 4 in the molecular line source for depositing the organic thin film. Fig. 6 is a longitudinal sectional side view showing a heating member of a crucible housed in a molecular line source for depositing an organic thin film. Fig. 7 is a view showing the temperature of the molecular heating chamber side and the molecular discharge port side when the molecule is heated, and the heater is provided on the molecular discharge chamber side in the molecular heating source side of the organic material film. chart. Fig. 8 is a graph showing the temperature of the molecular heating chamber side and the molecular discharge port side when the molecule is discharged on the molecular discharge chamber side, and the molecular heating source side and the molecular discharge port side are released. . [Main component symbol description] 1 Molecular line source cell 1 1 Molecular emission part 12 Molecular heating part -15- (13) (13) 1375727 14 Molecular discharge port 13 External guide 16 Inner guide 17 Molecular release path 1 8 Heater 19 heater 20 heater 23 support 2 4 screws

-16-16

Claims (1)

1375727 丨‘〉ί年ι月6日修正本 第094123938號專利申請案中文申請專利範圍修正本 民國101年2月16 日修正 十、申請專利範圍 1·—種分子束源’用於蒸發有機材料和在供形成薄 膜的基板上堆積該有機材料的薄膜,該分子束源包含: 蒸汽產生源,用於產生該有機材料的分子,該蒸汽產 生源包括用於容納該有機材料的坩鍋、設置在該坩鍋附近 φ 用於加熱及蒸發該有機材料的第一加熱器、和用於控制已 蒸發之該有機材料至分子排放室之流率的閥;該閥包括具 有分子通過開口的閥座、和用於規制已蒸發之該有機材料 經過該分子通過開口至引入通道之流動的柱塞,該引入通 道被設置成正交於該坩鍋: 分子排放室,其和該引入通道相連通,該分子排放室 包括連通於該引入通道的圓筒形分子加熱器室、和設置在 該分.子加熱器室周圍的第二加熱器,該第二加熱器用於;加 • 熱通過該分子加熱器室之已蒸發的該有機材料之分子; 外部引導件,設置在該分子排放室的末端,該外部引 導件包括內壁,當該內壁延伸遠離該分子排放室且終止於 分子排放開口時,該內壁逐漸向外成推拔; 內部引導件,設置在該外部引導件的對面’該內部引 導件具有外壁表面,該外壁表面具有和該外部引導件之該 內壁表面相同的斜度,該內部引導件的該外壁表面和該外 部引導件的該內壁表面之間形成分子排放通道,該分子排 放通道從該分子加熱器室延申至該分子排放開口’且該內 1375727 部引導件可相對於該外部引導件調整定位,以調整該分子 排放開口的尺寸; 冷卻/加熱單元,設置在該外部引導件的外側,該冷 卻/加熱單元包括用於加熱該外部引導件及該分子排放通 道的第三加熱器、和用於冷卻該外部引導件的冷卻器; 第四加熱器,設置在該內部引導件內,用於加熱該內 部引導件及該分子排放通道,該第四加熱器比該第二加熱 器具有較高的纏繞密度;和 第五加熱器,設置在該分子排放通道內,且在該內部 引導件和該外部引導件之間延伸,用於加熱該分子排放通 道。 -2-1375727 丨'> 年 〉 年 ι ι ι ι 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 094 And depositing a thin film of the organic material on a substrate for forming a film, the molecular beam source comprising: a steam generating source for generating molecules of the organic material, the steam generating source comprising a crucible for accommodating the organic material, setting a first heater for heating and evaporating the organic material near the crucible, and a valve for controlling a flow rate of the evaporated organic material to the molecular discharge chamber; the valve including a valve seat having a molecular passage opening And a plunger for regulating the flow of the evaporated organic material through the opening of the molecule through the opening to the introduction passage, the introduction passage being disposed orthogonal to the crucible: a molecular discharge chamber in communication with the introduction passage, The molecular discharge chamber includes a cylindrical molecular heater chamber connected to the introduction passage, and a second heater disposed around the sub-heater chamber, the second a heater for: heating the molecules of the organic material that has evaporated through the molecular heater chamber; an outer guide member disposed at an end of the molecular discharge chamber, the outer guide member including an inner wall extending away from the inner wall When the molecular discharge chamber terminates in the molecular discharge opening, the inner wall is gradually pushed outward; the inner guide is disposed opposite the outer guide. The inner guide has an outer wall surface, and the outer wall surface has the outer portion a slope of the inner wall surface of the guide member, a molecular discharge passage is formed between the outer wall surface of the inner guide member and the inner wall surface of the outer guide member, and the molecular discharge passage is extended from the molecular heater chamber to The molecular discharge opening 'and the inner 1375727 guide can be adjusted relative to the outer guide to adjust the size of the molecular discharge opening; a cooling/heating unit disposed outside the outer guide, the cooling/heating unit a third heater for heating the outer guide and the molecular discharge passage, and a cooler for cooling the outer guide a fourth heater disposed in the inner guide for heating the inner guide and the molecular discharge passage, the fourth heater having a higher winding density than the second heater; and a fifth heater And disposed within the molecular discharge passage and extending between the inner guide and the outer guide for heating the molecular discharge passage. -2-
TW94123938A 2005-07-14 2005-07-14 A molecular beam source for use in accumulation of organic thin-films TWI375727B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94123938A TWI375727B (en) 2005-07-14 2005-07-14 A molecular beam source for use in accumulation of organic thin-films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94123938A TWI375727B (en) 2005-07-14 2005-07-14 A molecular beam source for use in accumulation of organic thin-films

Publications (1)

Publication Number Publication Date
TWI375727B true TWI375727B (en) 2012-11-01

Family

ID=48087789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94123938A TWI375727B (en) 2005-07-14 2005-07-14 A molecular beam source for use in accumulation of organic thin-films

Country Status (1)

Country Link
TW (1) TWI375727B (en)

Similar Documents

Publication Publication Date Title
JP5705734B2 (en) Vaporizer for organic materials
US6559065B2 (en) Vapor deposition method and vapor deposition apparatus for forming organic thin films
US20080173241A1 (en) Vapor deposition sources and methods
US20050000427A1 (en) Gas supplying apparatus for atomic layer deposition
TW200932943A (en) Raw material gas supply system and film deposition apparatus
US8027574B2 (en) Vaporization of thermally sensitive materials
JP2011256427A (en) Method for evaporating/sublimating evaporation material in vacuum deposition apparatus and crucible device for vacuum deposition
CN107217236A (en) A kind of cryogenic vacuum evaporation source
TW200927964A (en) Device for generating vapor of organic materials, film forming source and film forming device
KR20210151151A (en) Source arrangement, deposition apparatus and method for depositing source material
JP5270165B2 (en) Control of adhesion of vaporized organic materials
TW201033400A (en) Vacuum deposition sources having heated effusion orifices
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP2004315898A (en) Evaporation source in vapor deposition system
JP5144268B2 (en) Method and apparatus for controlling vaporization of organic materials
JP2003095787A (en) Molecular beam source cell for depositing thin film
TWI375727B (en) A molecular beam source for use in accumulation of organic thin-films
US7369758B2 (en) Molecular beam source for use in accumulation of organic thin-films
JP4435523B2 (en) Deposition method
KR101784202B1 (en) Evaporating source having cold lip structure
KR101094001B1 (en) A molecular beam source for use in accumulation of organic thin-films
JP4830847B2 (en) Vacuum deposition equipment
JP2005048244A (en) Molecular beam source for depositing organic thin film
JP4171365B2 (en) Vapor deposition equipment
JP2004533910A (en) Integrated phase separator for ultra-high vacuum systems

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees