TWI374549B - - Google Patents
Download PDFInfo
- Publication number
- TWI374549B TWI374549B TW096143466A TW96143466A TWI374549B TW I374549 B TWI374549 B TW I374549B TW 096143466 A TW096143466 A TW 096143466A TW 96143466 A TW96143466 A TW 96143466A TW I374549 B TWI374549 B TW I374549B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- layer portion
- solar cell
- semiconductor material
- substrate
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
1374549 場 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池,特別是指—種具有 低表面反射、高入射光量的太陽能電池。 【先前技術】 參閱圖1’目前太陽能電池的結構大致包括一層基材、 一層蟲晶成長在該基材上的半導體材料層、一層連接在該 • 半導體材料層上的抗反射層,及一組與該半導體材料層電 # 連接的電極單元。該抗反射層減少光的反射,而使光盡可 能地入射至該半導體材料層中,光進入該半導體材料層後 被吸收產生電子-電洞的分開而產生光電流(即光伏特效應 (photovoltaic effect)),而由該電極單元將光電流導離該太 陽能電池輸出供後續的應用。 由於半導體材料與空氣之間的折射率的差異,會造成 太陽光在照射到太陽能電池表面時約有3〇%的入射光反射 損失因此,如何降低光反射比率、提高入射至該半導體 • #料層中的光量,-直太陽能電池的發展重點之一。 ' 目前,抗反射層普遍是採單層或是多層的鍍膜設計, 纟材f多半是㈣氧切(Si02)、氧化鈦(Ti〇2)、氮化石夕 (SiNx)、氧化钽(),及/或是彼此的組合,透過單一 膜層本身與空氣的折射率差值,或是多層膜層彼此的疊合 後的折射率改變,而可獲得針對某—波長範圍的光有一極 低^射率值,進而提高總入射光量;然而此法主要缺點是 僅能針對單一、極窄波長範圍的光才能獲得低反射率值, 5 1374549 而無法適用於較寬頻帶的光,尤其是在可見光的波長範圍 ,無法獲得低的反射率值。 另外,進行表面粗化也是降低表面反射所普遍採用的 技術之一,文獻「『Characterization of random reactive ion etched-textured silicon solar cells』,S.H.Zaidi,D.S.Ruby, and J.M.Gee 5 IEEE Transactions on Electron Devices, Vol. 48, ρ·1200(2001)提出利用濕式蝕刻方式自表面形成規則/不 規則排列的金字塔錐,從而使光線藉此等金字塔錐產生二 次(以上)的折射而增加入射光量;之後,也有人提出搭 配黃光製程蝕刻出各式例如倒金字塔錐進行表面粗化,從 而增加入射光量。然而,此方式雖然確實可以藉著使入射 光產生多次折射而增加入射光量,但是在製程上,一來必 須先行製作出抗反射層後,再進行蝕刻粗化表面的步驟, 二來,蝕刻過程所採用的各式溶液、氣體不但極容易破壞 暨成的半導體材料層結構,也會對環境造成污染破壞。 因此,如何降低太陽能電池的光反射率、提高入射光 量,仍是學界、業界努力研究的重點。 【發明内容】 因此,本發明之目的,即在提供一種低光反射率、高 入射光量的太陽能電池。 於是,本發明的太陽能電池,包含一層基材、一層半 導體材料層、一層抗反射層,及一電極單元。 該層半導體材料層在光進入後以光伏特效應產生光電 流,具有一與該基材連接的底面,及一相反於該底面的頂 6 曰^層抗反射層主要以氧化鋅為材料並自該頂面異質屋 s日成長形成,並配合前驅物及 而秘庄丨1 展程壞境參數的選擇 而控制成長出表®呈現奈米級 媸,Β々ε 卜十正微結構的晶體結 成長的晶體結構頂端界定出—不連續的入射面光 導體材料層。構發生至少一次的折射進入該半 該電極單元與該半導體材料層電連接將光電流輸出。 本發明的功效在於:以異質蟲晶技術直接自半導體材 =頂,成長出高度參^均介於奈米尺度的氧化辞蟲晶 結構’错由氧化辞本身的晶體結構頂端形成不連續的光入 射面’同時利用晶體結構本身使光產生至少—次的折射, 從而將低光反射率,增加人射光量,提昇太陽能電池的效 率。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 乂下配5參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容巾,類似的元件是以相同的編號來表示。 參閲圖2、圖3,本發明太陽能電池的一較佳實施例, 包含一層基材、一層半導體材料層、一層抗反射層,及一 組電極單元。 该基材是選自於摻雜載子濃度1χ1〇ι8〜lxl〇i9cm_3的η + 1374549 型呼化鎵構成。其他例如石夕、靖化姻、填化鎵、鍺,或此 些材料的組合,也都可以用作基材的構成材料。 該半導體材料層是在光進入後以光伏特效應產生光電BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell, and more particularly to a solar cell having low surface reflection and high incident light amount. [Prior Art] Referring to FIG. 1 'The current solar cell structure generally comprises a substrate, a layer of semiconductor material on which a layer of insect crystals grows, an anti-reflection layer attached to the layer of semiconductor material, and a set of An electrode unit connected to the semiconductor material layer. The anti-reflective layer reduces the reflection of light, and causes the light to be incident into the layer of semiconductor material as much as possible. After entering the layer of semiconductor material, the light is absorbed to generate an electron-hole separation to generate a photocurrent (ie, photovoltaic effect). Effect)), and the photocell is guided away from the solar cell output by the electrode unit for subsequent applications. Due to the difference in refractive index between the semiconductor material and the air, about 30% of the incident light is reflected by the sunlight when it is irradiated onto the surface of the solar cell. Therefore, how to reduce the light reflection ratio and increase the incidence to the semiconductor The amount of light in the layer, one of the development priorities of the direct solar cell. At present, anti-reflective coatings are generally designed with single or multi-layer coatings. Most of the coffins are (4) oxygen cut (SiO 2 ), titanium oxide (Ti〇 2 ), nitride nitride (SiNx), and antimony oxide (). And/or a combination of each other, through a difference in the refractive index of the single film layer itself and air, or a change in the refractive index of the superposed layers of the plurality of film layers, it is possible to obtain a very low light for a certain wavelength range ^ The rate value, which in turn increases the total amount of incident light; however, the main disadvantage of this method is that low reflectance values can only be obtained for a single, very narrow range of wavelengths, 5 1374549 and not for a wider band of light, especially in visible light. The range of wavelengths cannot be obtained with low reflectance values. In addition, surface roughening is one of the techniques commonly used to reduce surface reflection. "Characterization of random reactive ion etched-textured silicon solar cells", SHZaidi, DSRuby, and JMGee 5 IEEE Transactions on Electron Devices, Vol. 48, ρ·1200 (2001) proposes to form a regular/irregular pyramid cone from the surface by wet etching, so that the light generates a secondary (above) refraction by the pyramid cone to increase the amount of incident light; It has also been proposed to use a yellow light process to etch various types such as inverted pyramid cones to roughen the surface, thereby increasing the amount of incident light. However, although this method can increase the incident light amount by causing the incident light to be refracted multiple times, in the process First, the anti-reflection layer must be fabricated first, and then the step of etching the roughened surface is performed. Second, the various solutions and gases used in the etching process are not only easy to destroy the structure of the semiconductor material layer, but also The environment causes pollution damage. Therefore, how to reduce the light reflectivity of solar cells and improve the efficiency The amount of light is still the focus of research in the academic community and the industry. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a solar cell having low light reflectance and high incident light amount. Thus, the solar cell of the present invention comprises a layer. a substrate, a layer of semiconductor material, an antireflection layer, and an electrode unit. The layer of semiconductor material generates a photocurrent by a photovoltaic effect after light enters, has a bottom surface connected to the substrate, and a reverse The top 6 曰^ layer anti-reflection layer of the bottom surface is mainly formed by zinc oxide as the material and grows from the top surface of the heterogeneous house, and is controlled by the choice of precursors and the boundary parameters of the Zhuangzhuang 丨1 exhibition. ® exhibits a nanoscale 媸, Β々 ε 卜 正 微 微 microstructure of the crystal structure of the growth of the top end of the crystal structure defines a discontinuous incident surface photoconductor material layer. The structure occurs at least once into the half of the electrode unit and the The semiconductor material layer is electrically connected to output the photocurrent. The effect of the invention is that the heterogeneous insect crystal technology directly grows from the semiconductor material to the top, and the height is increased. The meter-scale oxidized crystal structure of the rice scale is formed by the apex of the crystal structure itself forming a discontinuous light incident surface while using the crystal structure itself to generate at least-order refraction of light, thereby increasing the low light reflectivity and increasing the human light. The above-mentioned and other technical contents, features and effects of the present invention will be clearly described in the detailed description of a preferred embodiment of the reference frame of the present invention. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figures 2 and 3, a preferred embodiment of the solar cell of the present invention comprises a substrate, a layer of semiconductor material, an antireflective layer, and a set of electrode units. The substrate is composed of η + 1374549-type gallium arsenide selected from the group consisting of doping carrier concentrations of 1χ1〇ι8~lxl〇i9cm_3. Others such as Shi Xi, Jing Hua, gallium, niobium, or a combination of these materials can also be used as a constituent material of the substrate. The semiconductor material layer generates photovoltaics by photovoltaic effect after light enters
机’具有一與該基材連接的底面’及一相反於該底面的頂 面;更詳加細分,該半導體材料層包括依序向上成長且選 擇性地分別經過摻雜的一緩衝層部(buffer layer )、一背面 電場層部(back surface field layer )、一基極層部(base layer )、一射極層部(emitter layer )、一窗 口層部(wind〇w layer ),及一接觸層部(c〇ntact iayer ),該緩衝層部是砷化 鎵構成,該背面電場層部是厚度〇1〜〇 m、摻雜載子濃 ,5xl〇i7〜5xl〇18cm-3的n型Ga〇5ln〇5p構成,該基極層部 是厚度在3〜4"m、摻雜載子濃度1χ1〇π〜5xl〇17cm_3的n 型砷化鎵構成,該射極層部是厚度在〇 3〜〇 6//m、摻雜載 =濃度1X1G18〜5xlGl8em_3的p型坤化鎵構成,該窗口層部 是厚度在0.03〜0.1#m、摻雜載子濃度1χ1〇,8〜5><1〇18咖_3 的P型Gawiru構成,該接觸層部是厚度在〇 〇5〜〇2_ 、摻雜載子濃度5xl0,8〜3xl〇19cm_3的p+型砷化鎵構成,該 些層部彼此配合吸收入射的光子產生電子電洞的分開,進 而產生光電流’由於此等結構並非本發明的創作重點所在 ,且已為此項技術領域中具有普通知識人士所皆知,故在 此不再對此等層部多作贅述。The machine 'haves a bottom surface connected to the substrate' and a top surface opposite to the bottom surface; and more specifically subdivided, the semiconductor material layer includes a buffer layer portion which is sequentially grown upward and selectively doped respectively ( Buffer layer ), a back surface field layer, a base layer, an emitter layer, a window layer, and a contact a layer portion (c〇ntact iayer), the buffer layer portion is made of gallium arsenide, and the back surface electric field layer portion is an n-type having a thickness of 〇1 to 〇m, a doped carrier is concentrated, and 5xl〇i7~5xl〇18cm-3 Ga〇5ln〇5p is composed of n-type gallium arsenide having a thickness of 3 to 4"m and a doping carrier concentration of 1χ1〇π~5xl〇17cm_3, and the thickness of the emitter layer is 〇 3~〇6//m, doping load=concentration 1X1G18~5xlGl8em_3 p-type kungarium gallium, the thickness of the window layer is 0.03~0.1#m, the doping carrier concentration is 1χ1〇, 8~5><< 1〇18咖_3 P-type Gawiru, the contact layer is a p+ type with a thickness of 〇〇5~〇2_, a doping carrier concentration of 5x10, 8~3xl〇19cm_3 Gallium arsenide, which cooperates with each other to absorb incident photons to create separation of electron holes, thereby generating photocurrents. Since such structures are not the focus of the present invention, and have been generally known in the art. As everyone knows, there is no longer a detailed description of these layers.
該層抗反射層主要以氧化辞為材料並推雜至少一種瓜_ A族元素,摻雜濃度是1χ1〇18〜i 2Q „ a xl° cm ,自該半導體材 料層頂面以有機金屬化學氣相沉積法(M0CVD)異^晶 8 成長形成,厚度不小於〇.l//m,表面粗度值大於50nm,成 長的晶體結構頂端界定出一不連續的入射面,而使光通過 時減少反射的機率,且光通過該入射面後,藉著晶體結構 會發生至少一次的折射而進入該半導體材料層中,大幅增 加光入射量。 在本例中,抗反射層的生長是採用DEZn (二乙基辞, Diethylzinc)作為鋅來源的前驅物(流量10〜200 seem,怪 溫槽溫度0〜3 0°C,瓶壓100〜760 torr),氧的來源則採用氧 氣(流量500〜5000 seem),生長所需的載流氣體採用氬氣 (流量1000-20000 seem ),並選擇摻雜的III-A族元素是鋁 ,前驅物採用TMA1 (三甲基銘,Trimethylaluminum ),流 量1〜100 seem,恒溫槽溫度-20〜10°C,瓶壓100〜760 torr, 磊晶溫度300〜700°C,腔體壓力10〜760 torr,參閱圖4,由 原子力顯微鏡(AFM )量測得知,抗反射層的實際微結構 是呈現柱狀型態,且表面粗度值(方均根root-mean-square, RMS )約 86·8 nm。 該電極單元與該半導體材料層電連接而將光電流輸出 〇 類似地,本發明太陽能電池在照光時,同樣地藉該抗 反射層減少光的反射,而使光盡可能地入射至該半導體材 料層中,光進入該半導體材料層後被吸收產生電子-電洞的 分開而產生光電流’再由該電極早元將光電流導離該太陽 能電池輸出供後續的應用。 參閱圖5,特別的是,本發明太陽能電池的抗反射層是 1374549 直接蟲晶成長形成,藉著絲的晶體結構頂端界定出不連 續的入射面,而使光通過時減少反射的機率,且光通過該 入射面後’藉著晶體結構會發生至少—次的折射而進入該 半導體材料層巾’所以可以大幅地減少光反射率、掸加入 射至該板導體材料層的光入射量,由目5光反射“比較 可知,本發明太陽能電池的光反射率在可 魏低至聰《下,確實有效地提高先 ’提昇太陽能電池的效率。 另外要說明的是,本發明太陽能電池可以搭配其他結 構的半導體材料層,例如,基材是摻雜載子濃度成p+型石申 化鎵,配合該半導體材料層的背面電場層部是p型 Ga〇.5In().5P、該基極層部是摻雜載子濃度ΐχΐ〇η〜ki〇i7cm_3 =p型砷化鎵、該射極層部摻雜載子濃度1χ1〇18〜5xi〇Mcm 的η型砷化鎵' 該窗口層部是摻雜載子濃度ixiy8〜& 10 cm的n型GaoJno.sP構成,及該接觸層部是摻雜載子 濃度5x10吧3xl〇19cm-3的一型砷化鎵構成。 參閱圖6’又例如該半導體材料層的結構包括—自該基 材向上成長的緩衝層體、-與該緩衝層體連接的底層接面 、一上層接面、一夾設在該底層接面與上層接面之間的穿 隧二極體,及一設在該上層接面上的接觸層體,該底層接 面與上層接面類似地也分別具有依序向上成長且選擇性地 :別經過摻雜的一背面電場層部、一基極層部、一射極層 \及-窗口層部。更細節地,該基材是換雜載子濃度k 1x10 cm的11型砷化鎵構成,該缓衝層體是砷化鎵 10 1374549 構成,該穿隧二極體的厚度在〇 〇3〜〇 〇5…由n+型及p + 型珅化鎵、且摻雜載子濃度8xl〇l8〜2xl〇19cm_3所構成,該 接,層體是厚度〇.G5〜G.2“m、摻雜載子濃度5χΐ〇18士 10 cm的P型石申化鎵構成,該底層接面的背面電場層部 是厚度0.1〜〇.3心、摻雜載子濃度5χ1〇17〜5xi〇1W3的n 型Ga^InwP構成、基極層部是厚度3〜4"m、摻雜載子濃 度lxlO17〜5xl〇iW^ n型神化鎵構成、該射極層部是厚 度〇.3〜〇.Wm、摻雜載子濃度1χ1〇18〜5xi〇18cm_3的p型砷 化鎵構成,及該窗口層部是厚度〇 〇3〜〇1心、摻雜載子濃 度1X1018〜5Xl〇1W3的P型Ga0.5ln〇.5P構成,該上層接面 的月面電%層部是厚度0.1〜0.3em、摻雜載子濃度1χ 的η型A1GaInp構成、該基極層部是厚度 3〜4 e m、摻雜載子濃度1 X 1〇17〜5 X 1017cm - 3的n型 Ga0‘5In<).5P構成、該射極層部是厚度〇 3〜〇 6心、摻雜載子 濃度ΐχίο18〜5Xl〇iw3的p型GaG5i^p構成及該窗口 層部是厚度0.03〜〇.i#m、穆雜載子濃度5><1〇17〜ixi〇i8cm_3 的尘^1〇·5Ιη().5Ρ構成;或是該基材是摻雜載子濃度ΐχ 10〜1x10 cm的P+型砷化鎵構成,該緩衝層體是砷化鎵 構成’該穿隨二極體的厚度在〇〇3〜〇〇5Vm,& n+型及+ 型砷化鎵摻雜載子濃度8xl〇18〜2xl〇19cm_3所構成,該接: 層體疋厚度0.05〜0.2/z m、摻雜載子濃度5χ1〇,8〜ΐχι〇、η_3 的η型石申化鎵構成,該底層接面的背面電場層部是厚产 〇.卜0.3^、摻雜載子濃度5χ1〇17〜5xl〇18cm_3的^The anti-reflective layer of the layer mainly uses oxidation as a material and pushes at least one kind of melon-group A element, and the doping concentration is 1χ1〇18~i 2Q „ a xl° cm , and the organic metal chemical gas is from the top surface of the semiconductor material layer. The phase deposition method (M0CVD) is formed by the growth of the heterocrystal 8 with a thickness of not less than 〇.l//m and a surface roughness value of more than 50 nm. The top of the grown crystal structure defines a discontinuous incident surface, which reduces the passage of light. The probability of reflection, and after the light passes through the incident surface, at least one refraction occurs through the crystal structure to enter the semiconductor material layer, greatly increasing the amount of light incident. In this example, the growth of the anti-reflective layer is DEZn ( Diethylzinc, a precursor of zinc source (flow 10~200 seem, strange temperature of 0~3 0 °C, bottle pressure 100~760 torr), oxygen source (flow 500~5000) Seem), the carrier gas required for growth is argon gas (flow rate 1000-20000 seem), and the selected group III-A element is aluminum, and the precursor is TMA1 (Trimethylaluminum), flow rate 1~ 100 seem, constant temperature bath temperature -20~10 ° C, bottle Pressure 100~760 torr, epitaxial temperature 300~700°C, cavity pressure 10~760 torr, see Figure 4, the atomic force microscope (AFM) measurement shows that the actual microstructure of the anti-reflection layer is columnar State, and the surface roughness value (root-mean-square, RMS ) is about 86·8 nm. The electrode unit is electrically connected to the semiconductor material layer to output photocurrent 〇 similarly, when the solar cell of the invention is illuminated, Similarly, the anti-reflection layer reduces the reflection of light, and causes light to be incident into the layer of semiconductor material as much as possible. After the light enters the layer of semiconductor material, it is absorbed to generate electron-hole separation to generate photocurrent. The electrode conducts the photocurrent away from the solar cell output for subsequent applications. Referring to Figure 5, in particular, the anti-reflective layer of the solar cell of the present invention is formed by direct growth of 1374549, which is defined by the top end of the crystal structure of the filament. a discontinuous incident surface that reduces the probability of reflection when the light passes, and the light passes through the incident surface and enters the semiconductor material layer by at least one refraction of the crystal structure. The light reflectivity can be greatly reduced, and the amount of light incident on the conductive material layer of the plate can be greatly increased. The light reflection from the light source of the present invention can be seen from the comparison of the light reflectance of the solar cell of the present invention. Improve the efficiency of the solar cell first. In addition, the solar cell of the present invention can be combined with a semiconductor material layer of other structures. For example, the substrate has a doping carrier concentration of p+ type gallium arsenide, and the back surface electric field layer portion of the semiconductor material layer is p-type. Ga 〇 5 5 5 5 5 5 5 Mcm's n-type gallium arsenide' The window layer is composed of n-type GauJno.sP with doping carrier concentration ixiy8~& 10 cm, and the contact layer is doped carrier concentration 5x10 bar 3xl〇19cm-3 A type of gallium arsenide is formed. Referring to FIG. 6', for example, the structure of the semiconductor material layer includes: a buffer layer body grown upward from the substrate, an underlying junction connected to the buffer layer body, an upper bonding surface, and an underlying interface a tunneling diode between the upper layer and a contact layer disposed on the upper layer, the bottom layer and the upper layer also have sequential growth upwards and selectively: A back surface electric field layer portion, a base layer portion, an emitter layer layer, and a window layer portion are doped. In more detail, the substrate is composed of a type 11 gallium arsenide having a carrier concentration of k 1×10 cm, and the buffer layer is composed of gallium arsenide 10 1374549, and the thickness of the tunneling diode is 〇〇3~ 〇〇5... consists of n+ type and p + type gallium arsenide, and doped carrier concentration 8xl 〇l8~2xl 〇19cm_3, the layer is thick 〇.G5~G.2"m, doped The P-type stellite gallium having a carrier concentration of 5 χΐ〇 18 ± 10 cm is formed, and the back electric field layer portion of the underlying junction is a thickness of 0.1 〇.3 core, and the doping carrier concentration is 5χ1〇17~5xi〇1W3. The structure of the type Ga^InwP, the thickness of the base layer is 3~4"m, the concentration of the doping carrier is lxlO17~5xl〇iW^n type gallium, and the thickness of the emitter layer is 〇.3~〇.Wm, The p-type gallium arsenide is doped with a carrier concentration of 1χ1〇18~5xi〇18cm_3, and the window layer portion is a P-type Ga0 having a thickness of 〇〇3~〇1 and a doping carrier concentration of 1×1018~5×1〇1W3. 5ln〇.5P, the moon layer electric layer portion of the upper layer is composed of an n-type A1GaInp having a thickness of 0.1 to 0.3em and a doping carrier concentration of 1χ, and the base layer portion is a thickness of 3 to 4 em, and is doped. Carrier concentration 1 X 1〇17~5 X 1 017cm -3 of n-type Ga0'5In<).5P, the emitter layer portion is a thickness 〇3~〇6 core, a doping carrier concentration ΐχίο18~5Xl〇iw3 p-type GaG5i^p and the window layer The portion is composed of a dust having a thickness of 0.03 to 〇.i#m, a concentration of a miscellaneous carrier of 5<1<1〇17 to ixi〇i8cm_3, or a doping carrier; or the substrate is a doped carrier The concentration of ΐχ 10~1x10 cm is composed of P+ type gallium arsenide, and the buffer layer body is composed of gallium arsenide. The thickness of the punctured diode is 〇〇3~〇〇5Vm, & n+ type and + type arsenic The concentration of gallium-doped carrier is 8xl〇18~2xl〇19cm_3, and the connection is: η-type granitic gallium arsenide with layer thickness 0.05 0.05~0.2/zm, doping carrier concentration 5χ1〇, 8~ΐχι〇, η_3 The bottom surface electric field layer portion of the underlying surface is thickly produced. 0.3 0.3^, doping carrier concentration 5χ1〇17~5xl〇18cm_3 ^
Ga〇.5InQ.5P構成、該基極層部是厚度在3〜4"阳、摻雜載子 11 1374549 濃度lxio17〜5xl017cm-3的p型石申化鎵構成、該射極層部是 厚度0.3〜0.6/zm、摻雜載子濃度1χ1〇18〜5><1〇18咖_3的。= 坤化鎵構成,及該窗口層部是厚度在'推 子濃度1X10,8〜5Xl〇1W3的η型Ga〇.5ln〇.5P構成’該上層 接:的背面電場層部是厚度0.K3⑼、摻雜載子濃度ix 1〇18〜5xl(^cm-3的卩型AIGaInp構成、該基極層部是厚产 在3〜4"m、摻雜載子濃度ΐχΐ〇,7〜5xi〇i7cm_3的p =Ga〇.5InQ.5P is composed of a p-type stellite gallium having a thickness of 3 to 4 "positive, doping carrier 11 1374549 concentration lxio17~5xl017cm-3, and the thickness of the emitter layer is thickness 0.3~0.6/zm, doping carrier concentration 1χ1〇18~5><1〇18 coffee_3. = 坤化镓, and the window layer is thick at the 'fader concentration 1X10, 8~5Xl〇1W3 η-type Ga〇.5ln〇.5P constitutes the upper layer: K3 (9), doping carrier concentration ix 1 〇 18~5xl (^cm-3 卩 type AIGaInp composition, the base layer is thick in 3~4" m, doping carrier concentration ΐχΐ〇, 7~5xi 〇i7cm_3 p =
Ga〇.5In0.5P構成、該射極層部是厚度在〇 3〜⑺ 子漢度IxH)18〜5xl0iW^ n切ra τ n 抒雜載 孓Ga〇.5In〇 5p構成,及該窗 =部:厚度在0.03〜〇.一、摻雜載子濃度Μ。% 10 ⑽―的 Αι〇5ΐη〇5ρ 構成。 參_ 7’,又例如該半導體材料層的結構包括—自該基 體與二:的緩衝層體、一中層接面、-夾設在該緩衝層 :;曰接面之間的下穿隧二極體、—上層接面、一夾設 在5亥中層接面與上層接面之間的 ^ a 工牙隧一極體,及一設在 有接觸層體’該中層接面與上層接面分別具 部、序=長且選擇性地分別經過推雜的-背面電場層 基材;=部、一射極層部,及一窗口層部,其中,該 丞材疋摻雜載子濃度5χ〗0丨7〜lxlol9e 緩衝層體是厚度03〜05//m I 々P线構成’該The composition of the Ga〇.5In0.5P is such that the thickness of the emitter layer is 〇3~(7) sub-degree IxH)18~5xl0iW^n-cut ra τ n-no-load 孓Ga〇.5In〇5p, and the window= Part: Thickness is 0.03~〇. I. Doped carrier concentration Μ. 10ι〇5ΐη〇5ρ of % 10 (10)―. In addition, the structure of the semiconductor material layer includes, for example, a buffer layer body from the substrate and the second layer, a middle layer junction surface, and a buffer layer disposed between the buffer layer: a pole body, an upper layer joint, a pole body between the 5th middle layer interface and the upper layer joint surface, and a contact layer body 'the middle layer joint surface and the upper layer joint surface Each having a portion, a sequence, a length, and a selectively excimer-back surface electric field layer substrate; a portion, an emitter layer portion, and a window layer portion, wherein the crucible is doped with a carrier concentration of 5 χ 〖0丨7~lxlol9e The buffer layer is thicker 03~05//m I 々P line constitutes 'this
“m、摻雜载子滚度5Xl0L1X m 的n型砷化鎵構成,兮下空 〇.〇3^〇 〇c + μ下穿隧二極體的厚度在 • # m,疋由η型及ρ+型砷化铉% # ,〜祕⑺、成,該上穿隨二=雜载子濃度8Χ , θ ^ + +牙丨逐一極體的厚度在0.03〜0.05 疋η型及Ρ型砷化鎵摻雜载子濃度8x10L2x 12 1374549 10' km—3構成,該接觸層體是厚度在〇 〇5〜〇 2wm、 子濃度 5xl018〜lxl019cm~3 摻雜載 的n+型砷化鎵構成,該中層接面 的背面電場層部是厚度〜〇.3”、摻雜載子濃度lx 10 5x10 cm的P型Ga〇.5In〇.5P構成、該基極層部是厚 度在3〜4;^、摻雜載子濃度1χ1〇】7〜5xl〇,W3的p型坤 化鎵構成、該射極層部是厚度在〇3〜〇6…摻雜載子濃 度lxlO18〜5xl〇i8cm-3的n型砷化鎵構成,及該窗口層部是 厚度在0.03〜(U"m、摻雜載子濃度1χ1〇18〜5xi〇18cm_3的n"m, doped carrier roll 5Xl0L1X m of n-type gallium arsenide, under the armpit. 〇3 ^ 〇〇 c + μ under the thickness of the tunneling diode in • # m, 疋 by η type and ρ+ type arsenic bismuth% #,~秘(7),成, the upper wear with the second = miscellaneous carrier concentration 8 Χ, θ ^ + + gingival one-pole thickness of 0.03~0.05 疋η type and Ρ type arsenic The gallium doped carrier concentration is 8x10L2x 12 1374549 10' km-3, and the contact layer is composed of n+ type gallium arsenide doped with a thickness of 〇〇5~〇2wm and a subconcentration of 5xl018~lxl019cm~3, the middle layer The back surface electric field layer portion of the junction is composed of P-type Ga〇.5In〇.5P having a thickness of ~3. 3" and a doping carrier concentration of lx 10 5x10 cm, and the thickness of the base layer portion is 3 to 4; The doping carrier concentration is 1χ1〇]7~5xl〇, W3 is formed by p-type niobium gallium, and the emitter layer is thick in the range of 〇3~〇6...doped carrier concentration lxlO18~5xl〇i8cm-3 The composition of the gallium arsenide, and the thickness of the window layer is 0.03~(U"m, doping carrier concentration 1χ1〇18~5xi〇18cm_3
型Ga^In^P構成,該上層接面的背面電場層部是厚度 〇·1〜〇.3"m、摻雜載子濃度1χ1〇,8〜5xl〇i8cm_3的p型A type of Ga^In^P is formed, and the back electric field layer portion of the upper layer is a p-type having a thickness of 〇·1~〇.3"m, a doping carrier concentration of 1χ1〇, 8~5xl〇i8cm_3
AlGalnP構成、該基極層部是厚度在3〜4以爪、摻雜載子濃 f ixio17〜5xiol7cm-3的卩型Ga〇5ln〇5P構成、該射極層部 是厚度在0.3〜0.6//m、摻雜載子濃度1χ1〇18〜5><1〇%爪_3的 η型Ga〇.5ln〇.5P構成’及該窗口層部是厚度在〇.03〜0·1/ζηι 、擦雜載子濃度5χ1〇ΐΜχ10%-3的η型A1〇5ln〇5p構成 〇 此外,還要再進-步說明的是,本發明太陽能電池可 進—步地在異質磊晶形成該抗反射層的過程中,調變各項 製裎參數以成型出不同的以氧化鋅為主成分的晶體結構, 例如調變磊晶溫度、壓力與辞/氧比的相互搭配,可以成型 出晶體結構是不規則的錐狀、纏繞的鈕結狀,或是不規則 的堆積針柱狀等,但無論成長的晶體結構為何,此等不平 整微結構均可以形成不連續的入射面讓光通過時減少反射 的機率,且在光通過該入射面後,藉著晶體結構會發生至 13 1374549 的折射而進入該半導體材料層中,達到大幅地減少 光反射率、%λ B a 射至該半導體材料層的光入射量,提昇 太陽能電池效率的目的。The AlGalnP is composed of a 卩-type Ga〇5ln〇5P having a thickness of 3 to 4 and a doped carrier concentration of hexio 17 to 5 xiol 7 cm-3, and the thickness of the emitter layer is 0.3 to 0.6/ /m, doping carrier concentration 1χ1〇18~5><1〇% claw_3 η-type Ga〇.5ln〇.5P constitutes 'and the window layer is thick at 〇.03~0·1/ Ζηι, η-type A1〇5ln〇5p having a dopant concentration of 5χ1〇ΐΜχ10%-3 constitutes 〇 In addition, it is further explained that the solar cell of the present invention can further form the heteroepitaxial formation in the heterogeneous layer. In the process of anti-reflection layer, the various enthalpy parameters are modulated to form different crystal structures with zinc oxide as the main component, for example, the modulation of epitaxial temperature, pressure and rhythm/oxygen ratio can be combined to form crystals. The structure is irregularly tapered, entangled button-shaped, or irregularly stacked needle-like columns, etc., but regardless of the crystal structure that grows, such uneven microstructures can form discontinuous incident surfaces for light to pass through. Reduces the probability of reflection, and after the light passes through the incident surface, it will enter the refraction of 13 1374549 by the crystal structure. The layer of semiconductor material, to achieve greatly reduced light reflectance,% λ B a quantity of emitted light incident to the layer of semiconductor material, the purpose of enhancing the efficiency of the solar cell.
Ί上述說明可知,本發明主要是提供—種太陽能電 /、仏反射層疋利用有機金屬氣相沉積技術,以氧化 為材料直接於半導體材料層上異質$晶成長形成,藉由 其晶體結構本身界定出不連續的人射面讓光通過時減少 射的機率,同時在光通過該人射面後藉晶體結構發生至 .人的折射而直接進入該半導體枯料層中,達到大幅地 減/光反射率、增加人射至該半導體材料層的光入射量, 提昇太陽能電池效率的目的;相較於目前均錢刻作為表 面粗化的手段崎減射率的製㈣言,本發明確實可以 較簡單、容易、且可靠的製程製作出具有低光反射率的太 陽能電池,達到本發明的創作目的。 准以上所述者,僅為本發明之較佳實施例而已,當不As can be seen from the above description, the present invention mainly provides a solar electric/anthrish reflective layer which is formed by heterogeneous crystal growth directly on a semiconductor material layer by using an organic metal vapor deposition technique, by oxidation, by the crystal structure itself. Defining a discontinuous human face to reduce the probability of shooting when passing through the light, and at the same time, after the light passes through the human face, the crystal structure is generated to the human refraction and directly enters the semiconductor waste layer, achieving a substantial reduction/ Light reflectivity, increasing the amount of light incident on the semiconductor material layer, and improving the efficiency of the solar cell; compared with the current method of reducing the rate of radiation as a means of surface roughening, the present invention can indeed A simple, easy, and reliable process for producing a solar cell having low light reflectance achieves the inventive object of the present invention. The above is only the preferred embodiment of the present invention, when not
能以此限定本發明實施之範圍 範圍及發明說明内容所作之簡 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 ’即大凡依本發明申請專利 單的等效變化與修飾,皆仍 圖1是一賴示意圖’說明一般的太陽能電池; 圖2是一剖視示意圖,說明本發明太陽能電池的一較 佳實施例; 圖3是-局部放大圖,輔助圖2說明本發明太陽能電 池的一抗反射層的結構; 14 1374549 圖4是一原子力顯微鏡(AFM)量測圖,輔助圖2說 明本發明太陽能電池的抗反射層的結構; 圖5是一光反射率曲線圖,說明圖2本發明太陽能電 池的光反射率; 圖6是—剖視示意圖,說明本發明太陽能電池的另— 種細部結構態樣;及 圖7是—剖視示意圖,說明本發明太陽能電池的又一 種細部結構態樣。The scope of the invention and the scope of the invention are intended to be within the scope of the invention. [Simple description of the drawings] 'Equivalent changes and modifications of the patent application form according to the present invention are still shown in FIG. 1 to illustrate a general solar cell; FIG. 2 is a schematic cross-sectional view showing the solar cell of the present invention. 3 is a partial enlarged view, and FIG. 2 is an explanatory view showing the structure of an anti-reflection layer of the solar cell of the present invention; 14 1374549 FIG. 4 is an atomic force microscope (AFM) measurement chart, and FIG. FIG. 5 is a light reflectance graph illustrating the light reflectance of the solar cell of the present invention; FIG. 6 is a cross-sectional view showing another embodiment of the solar cell of the present invention. A detailed structural view; and FIG. 7 is a cross-sectional view showing still another detailed structural aspect of the solar cell of the present invention.
15 137454915 1374549
【主要元件符號說明】 2 太陽能電池 33 21 基材 331 22 半導體材料層 332 221 底面 333 222 頂面 334 223 缓衝層部 34 224 背面電場層部 35 225 基極層部 4 226 射極層部 41 227 窗口層部 42 228 接觸層部 421 23 抗反射層 422 23 1 入射面 423 232 晶體結構 424 24 電極單元 43 3 半導體材料層 44 31 缓衝層體 441 32 底層接面 442 321 背面電場層部 443 322 基極層部 444 323 射極層部 45 324 窗口層部 46 上層接面 背面電場層部 基極層部 射極層部 窗口層部 穿隧二極體 接觸層體 半導體材料層 缓衝層體 中層接面 背面電場層部 基極層部 射極層部 窗口層部 下穿隧二極體 上層接面 背面電場層部 基極層部 射極層部 窗口層部 上穿隧二極體 接觸層體 16[Main component symbol description] 2 Solar cell 33 21 Substrate 331 22 Semiconductor material layer 332 221 Bottom surface 333 222 Top surface 334 223 Buffer layer portion 34 224 Back surface electric field layer portion 35 225 Base layer portion 4 226 Emitter layer portion 41 227 window layer portion 42 228 contact layer portion 421 23 anti-reflection layer 422 23 1 incident surface 423 232 crystal structure 424 24 electrode unit 43 3 semiconductor material layer 44 31 buffer layer body 441 32 underlying surface 442 321 back surface electric field layer portion 443 322 base layer portion 444 323 emitter layer portion 45 324 window layer portion 46 upper layer surface back surface electric field layer portion base layer portion emitter layer portion window layer tunneling diode contact layer body semiconductor material layer buffer layer body Middle layer back surface electric field layer base layer portion emitter layer portion window layer lower tunneling diode upper layer interface back surface electric field layer portion base layer portion emitter layer portion window layer portion tunneling diode contact layer body 16
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096143466A TW200924214A (en) | 2007-11-16 | 2007-11-16 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096143466A TW200924214A (en) | 2007-11-16 | 2007-11-16 | Solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200924214A TW200924214A (en) | 2009-06-01 |
TWI374549B true TWI374549B (en) | 2012-10-11 |
Family
ID=44728915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096143466A TW200924214A (en) | 2007-11-16 | 2007-11-16 | Solar cell |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200924214A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110232730A1 (en) | 2010-03-29 | 2011-09-29 | Solar Junction Corp. | Lattice matchable alloy for solar cells |
US9214580B2 (en) | 2010-10-28 | 2015-12-15 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
US8962991B2 (en) * | 2011-02-25 | 2015-02-24 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
WO2015120169A1 (en) | 2014-02-05 | 2015-08-13 | Solar Junction Corporation | Monolithic multijunction power converter |
US20170110613A1 (en) | 2015-10-19 | 2017-04-20 | Solar Junction Corporation | High efficiency multijunction photovoltaic cells |
US10930808B2 (en) | 2017-07-06 | 2021-02-23 | Array Photonics, Inc. | Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells |
WO2019067553A1 (en) | 2017-09-27 | 2019-04-04 | Solar Junction Corporation | Short wavelength infrared optoelectronic devices having a dilute nitride layer |
US11211514B2 (en) | 2019-03-11 | 2021-12-28 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
-
2007
- 2007-11-16 TW TW096143466A patent/TW200924214A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200924214A (en) | 2009-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI374549B (en) | ||
JP6670377B2 (en) | Stacked photoelectric conversion device and method of manufacturing the same | |
TWI355752B (en) | Solar cell | |
Lin et al. | Highly efficient CdS-quantum-dot-sensitized GaAs solar cells | |
JP2009283886A (en) | High performance optoelectronic device | |
WO2008062685A1 (en) | Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate | |
Taube et al. | Efficiency enhancement of silicon solar cells with silicon nanocrystals embedded in PECVD silicon nitride matrix | |
Duerinckx et al. | Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells | |
Feldrapp et al. | Thin‐film (25.5 μm) solar cells from layer transfer using porous silicon with 32.7 mA/cm2 short‐circuit current density | |
Kuzma‐Filipek et al. | Efficiency (> 15%) for thin‐film epitaxial silicon solar cells on 70 cm2 area offspec silicon substrate using porous silicon segmented mirrors | |
JP4789131B2 (en) | Solar cell and method for manufacturing solar cell | |
KR20090078275A (en) | Solar cell having uneven insulating layer and method for manufacturing the same | |
CN109699193A (en) | Photodetector and manufacturing method | |
Martínez‐Duart et al. | Photodetectors and solar cells based on porous silicon | |
JPS59123279A (en) | Manufacture of photoelectric conversion device | |
JP5357632B2 (en) | Photoelectric conversion device | |
KR102253547B1 (en) | A colorless transparent crystalline silicon substrate, and method of preparing the same | |
JP5542038B2 (en) | Thin film solar cell and method for manufacturing the same, thin film solar cell module | |
Bouadia et al. | Enhancing the efficiency of the gallium indium nitride (InGaN) solar cell by optimizing the effective parameters | |
JP6209682B2 (en) | Method for producing silicon substrate for solar cell | |
TW201937747A (en) | Nano-textured SIO2 layer as anti-reflection surface for high-efficient light in-coupling in solar cells | |
Sun | Recent progress in anti-reflection layer fabrication for solar cells | |
Davidson | Strategies for high efficiency silicon solar cells | |
JP2010080672A (en) | Photoelectric conversion device and method for manufacturing photoelectric conversion device | |
Kang | High-efficiency thin-film crystalline solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |