TWI374197B - Plasma uniformity control by gas diffuser curvature - Google Patents
Plasma uniformity control by gas diffuser curvature Download PDFInfo
- Publication number
- TWI374197B TWI374197B TW95119776A TW95119776A TWI374197B TW I374197 B TWI374197 B TW I374197B TW 95119776 A TW95119776 A TW 95119776A TW 95119776 A TW95119776 A TW 95119776A TW I374197 B TWI374197 B TW I374197B
- Authority
- TW
- Taiwan
- Prior art keywords
- plate
- gas
- cathode cavity
- downstream side
- diffuser plate
- Prior art date
Links
Description
1374197 時,對於大面積之電漿加強化學氣相沈積的膜層厚度與性 質均勻性會變得更有問題。注意到的均勻性問題之實例包 括有更高的沈積速度,以及對於一些高沈積速度氮化矽與 a-Si膜層而言,大基材之中心區域中更可壓縮的膜層。基 材中的厚度均勻性似乎為「圓頂狀」或「中心厚」,其膜層 在中心區域是比在邊緣區域更厚。更大的基材具有更差的 中心厚均勻性問題。At 1374197, film thickness and uniformity of properties for chemical vapor deposition of large areas of plasma will become more problematic. Examples of uniformity issues noted include higher deposition rates and, for some high deposition rates, tantalum nitride and a-Si film layers, a more compressible film layer in the central region of the large substrate. The thickness uniformity in the substrate appears to be "dome-like" or "central thickness", and the film layer is thicker in the central region than in the edge region. Larger substrates have a worse center thickness uniformity problem.
因此,有一改善了氣體分散板組件之需求,該氣體分 散板組件可以對於薄膜層(尤其是氮化矽與α-Si )改善膜 層沈積厚度與膜層性質之均勻性,其中該膜層是在PECVD 腔室中被沈積在大基材上。 【發明内容】Therefore, there is an improvement in the need for a gas dispersion plate assembly that can improve the uniformity of film deposition thickness and film properties for a film layer (especially tantalum nitride and α-Si), wherein the film layer is It is deposited on a large substrate in a PECVD chamber. [Summary of the Invention]
本發明提供了用於在製程腔室中散佈氣體之一氣體分 散板的實施例。在一實施例中,一用於一電漿製程腔室之 氣體分散板組件至少包含一散佈器板,該散佈器板具有一 上游側與一下游側、穿過散佈器板之上游側與下游側之間 的氣體通道、與位於該些氣體通道之下游側的中空陰極腔 穴。該散佈器板之下游側具有一彎曲性,以改善藉由 PECVD沈積的薄膜層之厚度均勻性與膜層性質均勻性。在 一態樣中,散佈器之中空陰極腔穴體積密度、表面積密度、 或中空陰極腔穴密度係由散佈器之中心增加至邊緣。在另 一態樣中,氣體散佈器板之下游側被分割成複數個同心區 塊,其中在每一區塊中之氣體通道是相同的,且在每一區 10 1374197 塊中之氣體通道之中空陰極腔穴的密度、體積或表面積係 由散佈器板之中心漸進地增加至邊緣。The present invention provides an embodiment of a gas dispersing plate for dispersing a gas in a process chamber. In one embodiment, a gas dispersion plate assembly for a plasma processing chamber includes at least one diffuser plate having an upstream side and a downstream side, upstream and downstream of the diffuser plate. a gas passage between the sides and a hollow cathode cavity on the downstream side of the gas passages. The downstream side of the diffuser plate has a bend to improve the thickness uniformity of the film layer deposited by PECVD and the uniformity of the film properties. In one aspect, the hollow cathode cavity bulk density, surface area density, or hollow cathode cavity density of the diffuser is increased from the center of the diffuser to the edge. In another aspect, the downstream side of the gas diffuser plate is divided into a plurality of concentric blocks, wherein the gas channels in each block are the same, and the gas channels in each block 10 1374197 The density, volume or surface area of the hollow cathode cavity is progressively increased from the center of the diffuser plate to the edge.
在另一實施例中,一種電漿製程腔室,至少包含一散 佈器板,該散佈器板具有一上游側、一下游側、穿過散佈 器板之上游侧與下游側之間的氣體通道、與位於該些氣體 通道之下游侧的中空陰極腔穴。該散佈器板之下游側具有 一彎曲性,以改善藉由 PECVD沈積的薄膜層之厚度均勻 性與膜層性質均勻性。在一態樣中,散佈器之中空陰極腔 穴體積密度、中空陰極腔穴表面積密度、或中空陰極腔穴 密度係由散佈器之冲心增加至邊緣。 在另一態樣中,一種製造用於一電漿製程腔室之一氣 體散佈器的方法至少包含:藉由加熱來軟化散佈器板;以 一彎曲退火固定件來彎曲散佈器板至一彎曲性;以及加工 氣體通道至散佈器板中。 在另一態樣中,一種製造用於一電漿製程腔室之一氣 體散佈器的方法至少包含加工一彎曲性至一實質上平坦的 散佈器板中且加工氣體通道至散佈器板中。In another embodiment, a plasma processing chamber includes at least one diffuser plate having an upstream side, a downstream side, and a gas passage between the upstream side and the downstream side of the diffuser plate. And a hollow cathode cavity located on the downstream side of the gas passages. The downstream side of the diffuser plate has a bend to improve the thickness uniformity and film property uniformity of the film layer deposited by PECVD. In one aspect, the hollow cathode cavity bulk density of the diffuser, the hollow cathode cavity surface area density, or the hollow cathode cavity density is increased from the center of the diffuser to the edge. In another aspect, a method of fabricating a gas spreader for a plasma processing chamber includes at least: softening the diffuser plate by heating; bending the diffuser plate to a bend with a curved annealing fixture And the processing gas channel into the diffuser plate. In another aspect, a method of making a gas spreader for use in a plasma processing chamber includes at least processing a bend into a substantially flat diffuser plate and processing a gas passage into the diffuser plate.
在另一態樣中,一種沈積一薄膜層於一基材上之方 法,該方法至少包含:置放一基材於一具有氣體散佈器板 之製程腔室内,該氣體散佈器板具有一彎曲性、一上游側 與一下游側、穿過散佈器板之上游侧與下游側之間的氣體 通道、與位於該些氣體通道之下游侧的中空陰極腔穴;將 製程氣體流動通過氣體散佈器板而朝向被支撐在一基材支 撐件上的基材;建立一電漿於介於在該散佈器板與該基材In another aspect, a method of depositing a film layer on a substrate, the method comprising: placing a substrate in a process chamber having a gas diffuser plate, the gas diffuser plate having a bend , an upstream side and a downstream side, a gas passage between the upstream side and the downstream side of the diffuser plate, and a hollow cathode cavity located on a downstream side of the gas passages; flowing the process gas through the gas diffuser a plate facing the substrate supported on a substrate support; establishing a plasma between the diffuser plate and the substrate
CC 11 1374197 支撐件之間;以及沈積一薄膜層於位於該製程腔室内之該 基材上。在一態樣中,散佈器板中心之氣體通道的中空陰 極腔穴體積密度、中空陰極腔穴表面積密度、或中空陰極 腔穴密度係小於在散佈器板邊緣之氣韹通道的相同參數。 【實施方式】CC 11 1374197 between the supports; and depositing a film layer on the substrate within the process chamber. In one aspect, the hollow cathode cavity volume density, hollow cathode cavity surface area density, or hollow cathode cavity density of the gas channel in the center of the diffuser plate is less than the same parameters of the gas channel at the edge of the diffuser plate. [Embodiment]
本發明大致上提供一種用於在製程腔室内提供氣體輸 送之氣體散佈組件。本發明以下將根據一用以處理大面積 基材的電漿加強化學氣相沈積系統來進行描述,例如由美 國加州 Santa Clara 之 Applied Materials, Inc.分部 AKT 所 獲得之電漿加強化學氣相沈積(PEC VD )系統。然而,必 須瞭解的是’本發明可以應用在其他結構上(例如蝕刻系 統)、其他化學氣相沈積系統、與其他需要在製程腔室内散 佈氣體之系統’包括有處理圓形的基材之系統。SUMMARY OF THE INVENTION The present invention generally provides a gas distribution assembly for providing gas delivery within a process chamber. The invention will now be described in terms of a plasma enhanced chemical vapor deposition system for processing large area substrates, such as plasma enhanced chemical vapor phase obtained from AKT, Applied Materials, Inc., Santa Clara, California, USA. Deposition (PEC VD) system. However, it must be understood that 'the invention can be applied to other structures (such as etching systems), other chemical vapor deposition systems, and other systems that require gas to be dispersed within the process chamber' including systems that process circular substrates. .
對於氮化矽膜層而言,中心厚均勻性問題已經藉由改 變在PECVD氣體散佈器板之下游表面上的陰極腔穴之尺 寸與/或分佈來解決。陰極腔穴增強了在PECVD腔室中之 電漿離子化。因為氮化矽膜層厚度與膜層性質均勻性是強 烈地相依於PECVD腔室中之區域電漿密度,對於大基材 而言,在散佈器板之表面上改變中空陰極腔穴之深度、直 徑、表面積與/或密度可以消除中心厚均勻性問題。此技術 既所謂的中空陰極梯度(hollow cathode gradient )或HCG 方法,且以下將參考第6A、8圖更加詳述之。HCG方法之 一完整描述係被提供於前述Choi等人於西元20 04年7月For tantalum nitride film layers, the problem of center thickness uniformity has been addressed by changing the size and/or distribution of the cathode cavities on the downstream surface of the PECVD gas diffuser plate. The cathode cavity enhances plasma ionization in the PECVD chamber. Since the thickness of the tantalum nitride film layer and the uniformity of the film properties are strongly dependent on the regional plasma density in the PECVD chamber, for large substrates, the depth of the hollow cathode cavity is changed on the surface of the diffuser plate, Diameter, surface area and/or density can eliminate center thickness uniformity issues. This technique is known as the hollow cathode gradient or HCG method and will be described in more detail below with reference to Figures 6A and 8. A complete description of the HCG method is provided by Choi et al. in July 20, 2004.
CC 12 1374197CC 12 1374197
速、11000瓦特射頻電漿功率、2.7托耳腔室壓力、與340 °C (内基材加熱器)與360°C (外基材加熱器)基材溫度。 PECVD之構件將於第5圖描述得更詳細,其包括有氣體散 佈器板、基材支撐件、與電極間隔。除了 SiH4之其他含矽 氣體,例如Si2H6,可以被用於在PECVD腔室中沈積a-Si 膜層。請再參閱第2圖,儘管使用了一併入有HCG之氣體 散佈器板,非晶矽膜層之膜層厚度均勻性依然會有中心厚 效應,而在基材邊缘具有差的均勻性與膜層性質。膜層均 勻性曲線之基材中心區域2 03顯示出可接受的膜層性質與 均勻性,而邊緣區域204與205顯示出差的均勻性與膜層 性質。其顯示出HCG是有某效應。Speed, 11000 watt RF plasma power, 2.7 Torr chamber pressure, and 340 °C (inner substrate heater) and 360 °C (outer substrate heater) substrate temperature. The PECVD components will be described in more detail in Figure 5, which includes a gas diffuser plate, a substrate support, and an electrode spacing. In addition to other helium-containing gases of SiH4, such as Si2H6, it can be used to deposit an a-Si film layer in a PECVD chamber. Referring again to Figure 2, despite the use of a gas diffuser plate incorporating HCG, the film thickness uniformity of the amorphous tantalum film layer still has a central thickness effect and poor uniformity at the edge of the substrate. Film properties. The substrate center region 203 of the film uniformity curve exhibits acceptable film properties and uniformity, while the edge regions 204 and 205 exhibit poor uniformity and film properties. It shows that HCG has an effect.
在較窄的電極間隔,可以改善在邊緣處之非晶矽膜層 之厚度均勻性,但是這會被在大基材之中心的差膜層均勻 性所抵銷。第3與4圖係顯示在一 2200 mm寬度玻璃基材 上之一非晶矽膜層之厚度曲線,其電極間隔分別為 0.650 英吋與0.550英吋。在第3圖中,膜層厚度曲線301與302 顯示了基材中心區域3 03之均勻性惡化,以及邊緣區域3 04 與305之厚度均勻性稍微改善。除了 0.650英吋之較窄電 極間隔之外,所量測而用於第3圖之a - S i膜層係與所量測 而用於第2圖之cx-Si膜層被沈積在一相同的PECVD腔室 中且在相同的製程狀況下。第4圖係嗱示如同第2與3圖 膜層被沈積在相同製程狀況下之a-Si膜層之膜層厚度曲線 401與402,除了電極間隔為0.550英吋之外。膜層厚度曲 線401與402係顯示了中心區域403之進一步均勻性惡At narrower electrode spacings, the thickness uniformity of the amorphous tantalum film layer at the edges can be improved, but this can be offset by poor film uniformity at the center of the large substrate. Figures 3 and 4 show the thickness curves of an amorphous tantalum film layer on a 2200 mm wide glass substrate with electrode spacings of 0.650 inches and 0.550 inches, respectively. In Fig. 3, the film thickness curves 301 and 302 show that the uniformity of the substrate center region 303 is deteriorated, and the thickness uniformity of the edge regions 304 and 305 is slightly improved. Except for the narrower electrode spacing of 0.650 inches, the a-S i film layer measured for Figure 3 is deposited in the same way as the cx-Si film layer measured for Figure 2 In the PECVD chamber and under the same process conditions. Figure 4 is a graph showing the film thickness curves 401 and 402 of the a-Si film layer as shown in Figures 2 and 3 in the same process conditions except that the electrode spacing is 0.550 inches. Film thickness curves 401 and 402 show further uniformity of the central region 403.
14 1374197 化,且邊緣區域404與405之顯著改善厚度均勻性。是故, 第2、3與4圖所顯示的資料係指出,電極間隔會比中空陰 極梯度效應更強烈地影響α-Si膜層。14 1374197, and edge regions 404 and 405 significantly improve thickness uniformity. Therefore, the data shown in Figures 2, 3 and 4 indicate that the electrode spacing affects the α-Si film more strongly than the hollow cathode gradient effect.
如同第2、3與4圖所顯示者,當沈積α-Si膜層於大 基材時,藉由使用HCG氣體散佈器板於不同的電極間隔, 膜層厚度均勻性問題會被改變但不會被消除。大體而言, 較窄的電極間隔可以改善邊緣厚度均勻性,且較寬的間隔 可以改善t心厚度均勻性。但是,沒有單一電極間隔在這 些製程狀況下可以允許在cx-Si膜層之中心與邊緣區域有可 接受的厚度均勻性。As shown in Figures 2, 3 and 4, when the α-Si film layer is deposited on a large substrate, the film thickness uniformity problem is changed by using the HCG gas diffuser plate at different electrode spacings. Will be eliminated. In general, a narrower electrode spacing improves edge thickness uniformity and a wider spacing improves t-thickness uniformity. However, the absence of a single electrode spacing allows for acceptable thickness uniformity in the center and edge regions of the cx-Si film layer under these process conditions.
在具有HCG氣體散佈器板時,除了電極間隔之外,可 以調整其他製程參數以達到α-Si膜層之可接受厚度均勻 性。然而,該方式之一嚴重缺失即是需要依靠一小的製程 視窗以產生可接受α-Si膜層。一製程視窗為所有製程參數 (例如基材溫度或氣體流速)之變化範圍,其依然產生可 接受的結果。藉由一窄的製程視窗,製程參數中小的(有 時候是無法偵測)變化會致使最终產品中大改變。這些變 化可以為隨機的波動,其在基材製程期間總是存在的,或 是製程腔室構件磨損或量測裝置失去精確性時之隨著時間 漸漸的、長期的趨勢。這意謂著,以一 PECVD腔室而產 生可接受膜層之相同製程參數設定可能不是作用在一名義 上相同的 PECVD腔室上,且每一腔室之製程參數可能需 要被微調。或者,當製程參數必須操作在一小的製程視窗 内時,一正在沈積可接受膜層於基材上之PECVD腔室更 15 1374197 可能隨著時間開始沈積不可接受膜層。是故,此方法對於 基材之大量處理是不實際的。因此,使用一僅具有HCG之 氣體散佈器板無法解決沈積在大基材上之氮化矽與a_Si膜 層的厚度均勻性問題。 示範的PECVD腔室 第5圖為一電聚加強化學氣相沈積系統500之截面 圖,其係可以由本發明獲益。PECVD系統.500係由美國加 州 Santa Clara 之 Applied Materials, Inc.分部 AiCT 所押 得。系統500大致上包括一製程腔室5 02,製程腔室502 耗接至一氣體源504。製程腔室502具有壁506與-底部 5〇8,其定義出一製程空間512。製程空間512典型地是可 以經由一在壁5 06中之埠(未顯示)來存取,該埠是有助 於基材540移動進入與送出該製程腔室5〇2。壁與底 部508可以由單一塊體之铭或其他與製程相容之材料所製 成。壁506支撐住一蓋組件51〇 ,該組件51〇包含一唧筒 抽吸之容室5丨4,該哪筒抽吸之容室514係將製程空間 =至:排其包括不…筒抽吸構件,未顯示)。 ^ 排亂*(未顯示)係被設置在製程腔室502之底 板中,且製程空間512不需要-哪筒抽吸之容室514底 一溫度控制之基耔± β 土材支撐件組件538係被中 製程腔室502内。支擋杜4 Τ地狄置在 又得件組件5 3 8係在製未5如„ ±认 玻璃基材540。在—眘廿襄程期間支撐住一 貫施例中,基材支樘 包含一鋁本體524 ,鋁太 ,.且件538至少 站本體524係包圍住s小一咖+ 熱器532。設置在支撐件 ^ 一内嵌的加 件組件538内之加熱器532 (例如電 (§: 16 1374197 蓋組件510係對製程空間512提供了一上界線。在一 實施例中,蓋組件5 1 0係由鋁所製成。蓋組件5 1 0包括一 形成於其内的唧筒抽吸之容室514,該唧筒柚吸之容室514 耦接至一外部的唧筒抽吸之系統(未顯示)。唧筒抽吸之容 室5 1 4係用以自製程空間5 1 2均勻地導引氣體與製程副產 物且排出製程腔室5 02。In the case of an HCG gas diffuser plate, in addition to the electrode spacing, other process parameters can be adjusted to achieve acceptable thickness uniformity of the a-Si film layer. However, one of the serious drawbacks of this approach is the need to rely on a small process window to produce an acceptable alpha-Si film layer. A process window is a range of variations for all process parameters (such as substrate temperature or gas flow rate), which still produces acceptable results. With a narrow process window, small (and sometimes undetectable) changes in process parameters can cause large changes in the final product. These variations can be random fluctuations that are always present during the substrate process, or a gradual, long-term trend over time as the process chamber components wear out or the measurement device loses accuracy. This means that the same process parameter settings for producing a acceptable film layer with a PECVD chamber may not be applied to a nominally identical PECVD chamber, and the process parameters for each chamber may need to be fine tuned. Alternatively, when the process parameters must be manipulated in a small process window, a PECVD chamber that is depositing an acceptable film layer on the substrate may begin to deposit an unacceptable film layer over time. Therefore, this method is not practical for a large amount of processing of the substrate. Therefore, the use of a gas diffuser plate having only HCG cannot solve the problem of thickness uniformity of the tantalum nitride and a_Si film deposited on a large substrate. Exemplary PECVD Chamber Figure 5 is a cross-sectional view of an electro-convex-enhanced chemical vapor deposition system 500 that may benefit from the present invention. The PECVD system .500 was obtained from AiCT, Division of Applied Materials, Inc., Santa Clara, California. System 500 generally includes a process chamber 502 that is consuming a gas source 504. The process chamber 502 has a wall 506 and a bottom 5〇8 that define a process space 512. The process space 512 is typically accessible via a port (not shown) in the wall 506 that facilitates the movement of the substrate 540 into and out of the process chamber 5〇2. The wall and bottom portion 508 can be formed from a single block or other process compatible material. The wall 506 supports a cap assembly 51A, which includes a cartridge suction chamber 5丨4, which barrel suction chamber 514 is used to process space = to: Component, not shown). ^ Excavation* (not shown) is disposed in the bottom plate of the process chamber 502, and the process space 512 does not need to be - the bottom of the chamber 514 is a temperature-controlled base β ± β soil support assembly 538 It is inside the process chamber 502. The support member 4 is placed in the assembly member 5 3 8 in the system 5, such as „± 认 玻璃 基材 基材 540 。 。 。 支撑 支撑 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄 廿襄The aluminum body 524, aluminum too, and the member 538 at least the station body 524 surrounds the s small coffee + heat 532. The heater 532 is disposed in the support member 538 embedded in the support member (for example, electricity (§ A cover assembly 510 provides an upper limit to the process space 512. In one embodiment, the cover assembly 510 is made of aluminum. The cover assembly 510 includes a cartridge suction formed therein. The chamber 514 is coupled to an external cylinder suction system (not shown). The cylinder suction chamber 5 1 4 is used for self-contained space 5 1 2 evenly. The gas and process by-products are introduced and discharged into the process chamber 502.
蓋組件510典型地包括一輸入埠580,由氣體源504 提供之製程氣.體可以被導入穿過輸入埠5 80進入製程腔室 5 02。輸入埠5 8 0亦耦接至一清潔源5 8 2。清潔源5 82典型 地提供一清潔試劑(例如解離之氟),該清潔試劑係被導入 製程腔室 502以自製程腔室硬體(包括氣體分散板組件 5 1 8 )移除沈積副產物與膜層。The lid assembly 510 typically includes an input port 580 through which a process gas supplied by a gas source 504 can be introduced through the input port 580 into the process chamber 502. The input port 580 is also coupled to a cleaning source 5 8 2 . The cleaning source 5 82 typically provides a cleaning reagent (e.g., dissociated fluorine) that is introduced into the processing chamber 502 to remove deposition by-products from the self-contained chamber hardware (including the gas dispersion plate assembly 5 1 8). Membrane layer.
氣體分散板組件 5 1 8耦接至蓋組件 5 1 0之一内側 5 20。氣體分散板組件518之形狀典型地被建構成符合玻璃 基材之周圍,例如對於大面積平面面板基材為多邊形且對 於晶圓為圓形。氣體分散板組件518包括一穿孔區域516, 由氣體源5 04所供給之製程與其他氣體係被輸送穿過穿孔 區域5 1 6至製程空間5 1 2。氣體分散板組件5 1 8之穿孔區 域516係被建構以提供均勻分佈的氣體,該均勻分佈的氣 體係通過氣體分散板組件518進入製程腔室内502。由本 發明獲益之氣體分散板係被描述於共同受讓之Keller等人 於西元 2001 年 8月 8日申請的美國專利申請案號 09/922,219、Yim等人於西元2002年5月6曰申請的美國 專利申請案號1 0/1 40,324、Blonigan等人於西元2003年1 18 1374197 月7曰申請的美國專利申請案號1 0/33 7,483、西元2002 年1 1月12曰授予White等人美國專利案號6,477,980、Choi 等人於西元2003年4月16曰申請的美國專利申請案號 10/417,592、Choi等人於西元2004年4月12曰申請的美 國專利申請案號1 0/823,347 t,其在此係被併入本文以作 為參考》The gas dispersion plate assembly 5 1 8 is coupled to one of the inner sides of the cover assembly 5 1 0 5 20 . The shape of the gas dispersion plate assembly 518 is typically constructed to conform to the periphery of the glass substrate, such as being polygonal for a large area planar panel substrate and circular for a wafer. The gas dispersion plate assembly 518 includes a perforated region 516 through which the process supplied by the gas source 504 and other gas systems are conveyed through the perforated region 516 to the process space 5 1 2 . The perforated region 516 of the gas dispersion plate assembly 518 is configured to provide a uniformly distributed gas that enters the process chamber 502 through the gas dispersion plate assembly 518. A gas dispersing plate which is beneficial to the present invention is described in U.S. Patent Application Serial No. 09/922,219, filed on Aug. 8, 2001, by Keller et al. US Patent Application No. 1 0/1 40,324, Blonigan et al., US Patent Application No. 1 0/33 7,483, filed on January 1, 2011 U.S. Patent No. 6,477,980, to the name of U.S. Patent Application Serial No. 10/417,592, filed Apr. t, which is incorporated herein by reference.
氣體分散板組件518典型地包括一散佈器板(或分散 板)558’其是懸掛自一懸板560»散佈器板558與懸板5 60 可或者地包含單一構件。複數個氣體通道562係形成穿過 散佈器板558以允許一預設的氣體分佈通過氣體分散板組 件518且進入製程空間512。一容室564係形成在介於懸 板560、散佈器板558、與蓋組件510之内表面520之間》 容室564允許氣體流動通過蓋組件510以均勻地在散佈器 板558之寬度均勻地散佈,從而使氣體可以均勻地被提供 於中心穿孔區域516上方且以均勻分佈方式流動通過氣體 通道562。The gas dispersion plate assembly 518 typically includes a diffuser plate (or dispersing plate) 558' that is suspended from a suspension plate 560»the diffuser plate 558 and the suspension plate 560 or may comprise a single member. A plurality of gas passages 562 are formed through the diffuser plate 558 to allow a predetermined gas distribution to pass through the gas dispersion plate assembly 518 and into the process space 512. A chamber 564 is formed between the suspension plate 560, the diffuser plate 558, and the inner surface 520 of the lid assembly 510. The chamber 564 allows gas to flow through the lid assembly 510 to evenly spread across the width of the diffuser plate 558. The ground is spread such that gas can be uniformly distributed over the central perforated region 516 and flow through the gas passage 562 in a uniformly distributed manner.
散佈器板558 *型地是由不銹鋼、鋁、鎳或其他尺^ 導電材料所製成。散佈器板558可以被澆鑄、以黃銅製成、 錄鑄、熱等壓地壓製、或燒结。在一實施例中,散器板是 由無裝飾的非電鍍之鋁所製成。一用於散佈器板558之非 電鍍之鋁表面已被顯示為可以減少在其上形成微粒,其中 該些微粒會後續地污染在PECVD系統500中所處理之基 材。此外,當散佈器板558沒有被電鍍時,可以減少其製 造成本。一適當的用於散佈器板558而無裝飾之鋁表面大Disperser plate 558 * The ground is made of stainless steel, aluminum, nickel or other conductive materials. Disperser plate 558 can be cast, made of brass, cast, hot isostatically pressed, or sintered. In one embodiment, the diffuser plate is made of undecorated electroless aluminum. A non-electroplated aluminum surface for the diffuser plate 558 has been shown to reduce the formation of particulates thereon which will subsequently contaminate the substrate being processed in the PECVD system 500. In addition, when the diffuser plate 558 is not plated, its manufacturing cost can be reduced. A suitable aluminum plate surface for the diffuser plate 558 without decoration
(C 19 1374197 體上不含有刮傷與毛邊,在使用前係被化學地清潔以消除 不希望的污染’且可以被機械研磨或電研磨。一可以獲益 自本發明的非電鍍之鋁散佈器板係被描述於共同受讓之美 國專利案號6,182,603中,其是shang等人於西元1998年 7 月 13 日申請而標題為「Surface-Treated Shower Head For U s e I n a S u b s t r a t e P r o c e s s i n g C h a m b e r j。散佈器板 5 5 8 之(C 19 1374197 does not contain scratches and burrs on the body, is chemically cleaned to eliminate undesired contamination before use' and can be mechanically ground or electropolished. One can benefit from the non-plated aluminum dispersion of the present invention. The slab is described in commonly-assigned U.S. Patent No. 6,182, 603, filed on Jan. 13, 1998 by shang et al., entitled "Surface-Treated Shower Head For U Se I na S ubstrate P rocessing C Hamberj. Disperser board 5 5 8
厚度是介於約0.8英吋至約2.0英吋之間。散佈器板558 可以為圓形以用於半導體晶圓製造,或是多邊形(例如矩 形)以用於平面面板顯示器製造。The thickness is between about 0.8 inches and about 2.0 inches. Disperser plate 558 can be circular for semiconductor wafer fabrication, or polygonal (e.g., rectangular) for flat panel display fabrication.
散佈器板558為實質上平坦且平行於基材5 40,並且 相同的氣體通道562之分佈在散佈器板558之表面上為均 勻的’這些都是在此技藝中已經為標準實務。這樣的散佈 器558之結構已經提供了適當的氣體流與製程空間512中 電漿密度均勻性以沈積膜層於小於1200000 mm2之基材 上。是故,當在PECVD腔室内沈積氮化矽、α-Si與其他 薄的膜層於小於1 200000 mm2之基材上時,厚度均勻性與 膜層性質均勻性僅能藉由改變製程參數(例如製程氣體流 速、電槳功率、基材溫度、與製程腔室.壓力)來達到於所 沈積臈層上。然而,當基材之尺寸增加時’所沈積膜層(尤 其是氮化矽與a- S i )之均勻性已經變得更困難維持。具有 均勻分佈的氣體通道5 62 (其具有一致之尺寸與形狀)之 平面散器板558通常是無法沈積可接受厚度與膜層性質均 勻性之臈層至大面積基材上。 中空陰極梯度 20 1374197 對於PEC VD膜層而言,當沈積在較大基材上時(亦 即至少約1000 mm X 1200 mm),膜層厚度與膜層性質之 均勻性變革更困難維持。對於氮化矽膜層’基材上之厚度 會呈現「圓頂狀」,膜層在中心區域是比邊緣區域更厚。此 效應在更大基材上之更惡化的。The diffuser plate 558 is substantially flat and parallel to the substrate 540, and the distribution of the same gas passages 562 is uniform across the surface of the diffuser plate 558. These are standard practice in the art. The structure of such a diffuser 558 has provided a suitable gas flow and plasma density uniformity in the process space 512 to deposit a film on a substrate of less than 1200000 mm2. Therefore, when yttrium nitride, α-Si and other thin films are deposited on a substrate of less than 1 200 000 mm2 in a PECVD chamber, thickness uniformity and film property uniformity can only be changed by changing process parameters ( For example, process gas flow rate, paddle power, substrate temperature, and process chamber pressure are achieved on the deposited layer. However, the uniformity of the deposited film layer (especially tantalum nitride and a-S i ) has become more difficult to maintain as the size of the substrate increases. A planar diffuser plate 558 having a uniformly distributed gas passage 5 62 (which has a uniform size and shape) is generally not capable of depositing a layer of tantalum to a large area substrate of acceptable thickness and uniformity of film properties. Hollow Cathode Gradient 20 1374197 For PEC VD film layers, when deposited on a larger substrate (i.e., at least about 1000 mm X 1200 mm), the uniformity of film thickness and film properties is more difficult to maintain. For the tantalum nitride film layer, the thickness on the substrate will be "dome-shaped", and the film layer is thicker in the central region than the edge region. This effect is worse on larger substrates.
已經顯示的是,對於所沈積在PECVD腔室内大於約 1 200000 mm2的基材上之氮化矽膜層而言,膜層厚度與膜 層性質均勻性可以藉由使用一中空陰極梯度(hollow cathode gradient)或HCG來改善。HCG方法於以下會被 描述而參照第6A與8圖及前述標題為「Plasma Uniformity Control By Gas Diffuser Hole Design」之美國專利申請案 號10/889,683。一具有HCG之氣體分散版558可以藉由改 變製程空間512内電漿分佈而改善氮化矽膜層厚度與膜層 性質之均勻性。這是因為藉由PECVD之膜層沈積係實質 上依據主動電漿來源而定。因此,製程空間中512的非均 勻電漿分佈會導致基材540上差的膜層均勻性。It has been shown that for a tantalum nitride film deposited on a substrate having a thickness greater than about 120,000 square meters in a PECVD chamber, film thickness and film property uniformity can be achieved by using a hollow cathode gradient (hollow cathode) Gradient) or HCG to improve. The HCG method is described below with reference to Figures 6A and 8 and the aforementioned U.S. Patent Application Serial No. 10/889,683, entitled "Plasma Uniformity Control By Gas Diffuser Hole Design". A gas dispersion plate 558 having HCG can improve the uniformity of the thickness of the tantalum nitride film layer and the properties of the film layer by changing the plasma distribution in the process space 512. This is because the film deposition by PECVD is essentially dependent on the source of the active plasma. Thus, a non-uniform plasma distribution of 512 in the process space can result in poor film uniformity on the substrate 540.
密集的化學反應性電楽可以因為中空陰極效應而被產 生在PECVD系統500之製程空間512中,在此請參閱第6 圖而將描述。對於一帶負電荷之RF電極601之中空陰極 放電的RF產生,其驅動力量為跨過在RF電極6〇1處空間 故電遮蔽或壁遮蔽602a或6〇2b之頻率調整DC電壓Vs, 即所謂的自我偏壓。第6A圖係顯示出_ rf中空陰極,以 及在相對的空間電荷遮蔽602a與602b之排斥電場603 a 與603b之間的電子“e”震盪移動。空間電荷遮蔽6〇2汪與 21 1374197The dense chemically reactive electric enthalpy can be produced in the process space 512 of the PECVD system 500 due to the hollow cathode effect, which will be described herein with reference to Fig. 6. For the RF generation of a hollow cathode discharge of a negatively charged RF electrode 601, the driving force is to adjust the DC voltage Vs across the frequency of the electrical shielding or wall shielding 602a or 6〇2b at the RF electrode 6〇1, so-called Self-biased. Figure 6A shows the _rf hollow cathode and the electronic "e" oscillating movement between the repulsive electric fields 603a and 603b of the opposing space charge shields 602a and 602b. Space charge obscuration 6〇2 Wang and 21 1374197
602b之厚度等於“δ”。電子“e”係由陰極壁放射出,在此例 中為RF電極601,其可以為鄰近於製程空間512之氣體通 道562的壁。氣體通道562與製程空間512係顯示於第5 與8圖中。請再參閲第6A圖,電子“e”是被電場603a加速 而通過空間電荷遮蔽6 0 2 a。由於相對的空間電荷遮蔽6 0 2 a 與602b之排斥場,電子“e’’沿著路徑60 5穿過RF電極60 1 之壁的内空間而震盪。電子“e”藉由與製程氣體碰撞而損失 能量,並且產生更多離子。所產生之離子可以被加速至RF 電極 601,藉此增強二次電子之放射,其中二次電子可以 產生額外的離子。整體而言,陰極壁之間的腔穴會增強電 子放射與氣體的離子化。陰極壁中之截頭圓錐形特徵(例 如當形成在散佈器板内的氣體通道之氣體入口直徑小於氣 體出口直徑時)會比圓枉形壁對於將氣體離子化更有效 率。一截頭圓錐形陰極腔穴之實例係被更詳細地描述而參 照第8圖。由於氣體入口與氣體出口之間的離子化效率之 差異,產生了電位Ez。The thickness of 602b is equal to "δ". The electron "e" is emitted from the cathode wall, in this case the RF electrode 601, which may be the wall of the gas passage 562 adjacent to the process space 512. Gas passage 562 and process space 512 are shown in Figures 5 and 8. Referring again to Figure 6A, the electron "e" is accelerated by the electric field 603a and is shielded by space charge 6 0 2 a. The electron "e'' oscillates along the inner space of the wall of the RF electrode 60 1 along the path 60 5 due to the relative space charge obscuring the repelling field of 60 2 a and 602 b. The electron "e" collides with the process gas The energy is lost and more ions are generated. The generated ions can be accelerated to the RF electrode 601, thereby enhancing the emission of secondary electrons, wherein the secondary electrons can generate additional ions. Overall, between the cathode walls The cavity enhances the ionization of electrons and gases. The frustoconical features in the cathode wall (for example, when the gas inlet diameter of the gas passage formed in the diffuser plate is smaller than the diameter of the gas outlet) will be better than the rounded wall Ionization of the gas is more efficient. An example of a frustoconical cathode cavity is described in more detail with reference to Figure 8. The potential Ez is produced due to the difference in ionization efficiency between the gas inlet and the gas outlet.
對於散佈器板558,中空陰極腔穴是位在氣體通道562 之下游端上,並且鄰近於製程空間512。已經顯示出的是, 藉由改變氣體通道5 62之陰極腔穴的壁或中空陰極腔穴的 密度與配置之設計,氣體離子化可以被變更以控制電漿密 度,與因此所沈積氮化矽膜層的膜層厚度與性質均勻性。 證明該現象之方法與結果係被描述於前述參照之美國專利 申請案號 10/889,683,其標題為「Plasma Uniformity Control By Gas Diffuser Hole Design」。一鄰近於製程空間 22 1374197 512之中空陰極腔穴的實例為第8圖之第二凹孔812。中空 陰極效應主要是發生在面對製程空間512的第二凹孔812 之截頭圓錐形區域中。第8圖設計僅是做為一實例之用。 本發明可以被應用至其他型式之中空陰極腔穴設計。中空 陰極腔穴設計之其他實例包括但不限定於第6B-6G圖所顯 示的設計。藉由改變中空陰極腔穴(即第二凹孔 812)之 體積與/或表面積,則可以改變電漿離子化率。For the diffuser plate 558, the hollow cathode cavity is located on the downstream end of the gas passage 562 and adjacent to the process space 512. It has been shown that by varying the density and configuration of the walls of the cathode cavity or hollow cathode cavity of the gas channel 5 62, gas ionization can be altered to control the plasma density, and thus the deposited tantalum nitride. Film thickness and property uniformity of the film layer. The method and the result of demonstrating this phenomenon are described in the aforementioned referenced U.S. Patent Application Serial No. 10/889,683, entitled "Plasma Uniformity Control By Gas Diffuser Hole Design". An example of a hollow cathode cavity adjacent to the process space 22 1374197 512 is the second recess 812 of FIG. The hollow cathode effect occurs primarily in the frustoconical region of the second recess 812 facing the process space 512. The design of Figure 8 is only used as an example. The invention can be applied to other types of hollow cathode cavity designs. Other examples of hollow cathode cavity designs include, but are not limited to, the designs shown in Figures 6B-6G. The plasma ionization rate can be varied by varying the volume and/or surface area of the hollow cathode cavity (i.e., the second recess 812).
第8圖為一示範的散佈器板558之部份截面圖,其可 以獲益自本發明,且被描述於西元2003年4月16曰申請 之共同受讓之美國專利申請案號10/417,5 92中,標題為 「Gas Distribution Plate Assembly for Large Area PlasmaFigure 8 is a partial cross-sectional view of an exemplary diffuser plate 558, which may be derived from the present invention and is described in commonly assigned U.S. Patent Application Serial No. 10/417, filed on Apr. 16, 2003. , 5 92, entitled "Gas Distribution Plate Assembly for Large Area Plasma
Enhanced Chemical Vapor Deposition j,其在此被併入本文 以作為參考。Enhanced Chemical Vapor Deposition j, which is incorporated herein by reference.
散佈器板558包括一面對蓋組件510之第一或上游側 802與一面對支撐件組件5 3 8而相對的第二或下游側8〇4β 每一氣體通道562是被一第一凹孔810所定義,一開孔814 將該第一凹孔810耦接至第二凹孔812,其結合以形成一 穿過氣體分散板558之流體路徑。第一凹孔810由氣體分 散板5W之上游側8〇2延伸一第一深度830至底部818。 第一凹孔810之底部818可以被變細' 成斜面、去角或圓 化’以當氣體由第一凹孔流動浸入開孔8丨4時能減少流動 限制。第一凹孔810通常具有約〇 〇93至約0.218英时之 直徑,且在一實施例中為約〇. 1 5 6英叶。 第一凹孔812是形成在散佈器板558中,且由下游側 23 1374197The diffuser plate 558 includes a first or upstream side 802 facing the cap assembly 510 and a second or downstream side 8〇4β opposite the facing support assembly 528. Each gas passage 562 is a first recess As defined by the aperture 810, an aperture 814 couples the first recess 810 to the second recess 812 which combine to form a fluid path through the gas dispersion plate 558. The first recess 810 extends from the upstream side 8〇2 of the gas dispersing plate 5W by a first depth 830 to a bottom 818. The bottom 818 of the first recess 810 can be tapered 'beveled, chamfered or rounded' to reduce flow restriction as the gas flows into the opening 8丨4 from the first recess. The first recess 810 typically has a diameter of from about 〇93 to about 0.218 inches, and in one embodiment is about 156. The first recess 812 is formed in the diffuser plate 558 and is downstream by the side 23 1374197
(或端)8 04延伸約Ο . 1 0英吋至約2.0英吋之深度8 3 2。 較佳者,深度8 3 2是介於約0 · 1英吋至約1 · 0英吋之間。 第二凹孔8 12之開口直徑8 3 6大致上約0.1英吋至約1.0 英吋之間,且能夠以約1 0度至約5 0度之間的角度8 1 6呈 喇°八形展開。較佳者,開口直徑8 3 6是介於約0.1英吋至 約0.5英吋之間,且喇叭形角度8 1 6是介於約2 0度至約 40度之間。第二凹孔812之表面積是介於約0.05平方英 吋至約1 0平方英吋之間,並且較佳是介於約0.0 5平方英 吋至約5平方英吋之間。第二凹孔8 12之直徑係指相交於 下游表面8 04之直徑。一用以處理1870 mm X 2200 mm基 材的散佈器板之實例具有直徑 0.302英吋與喇。八形角度 816約22度之第二凹孔812。相鄰的第二凹孔812之環緣 8 2 2之間距離8 8 0為介於約0英吋至約0.6英吋之間,較 佳是介於約〇英吋至約〇. 4英吋之間。第一凹孔8 1 0之直 徑通常但不限定於至少等於或小於第二凹孔8 1 2之直徑。 第二凹孔812之底部820可以被變細、成斜面、去角或圓 化,以減少氣體流出開孔8 1 4且進入第二凹孔8 1 2之壓力 損失。再者,因為開孔814附近至下游側804可用以減少 第二凹孔812與面對基材的下游側804之暴露表面積,可 以減少暴露至氟之散佈器板558下游面積,藉此減少發生 所沈積膜層之氟污染,其中氟是在腔室清潔期間所被提供。 開孔814大體上是耦接第一凹孔810之底部818與第 二凹孔812之底部820。開孔814大致上具有介於約0.01 英吋至約0.3英吋(較佳是約0.0 1英吋至約0.1英吋)的 24 1374197(or end) 8 04 extends approximately 1 1 10 inches to a depth of approximately 2.0 inches 8 3 2 . Preferably, the depth 8 3 2 is between about 0 · 1 inch and about 1 · 0 inches. The second recessed hole 8 12 has an opening diameter of 8 3 6 which is substantially between about 0.1 inch and about 1.0 inch, and can be in the shape of an angle of between about 10 degrees and about 50 degrees. Expand. Preferably, the opening diameter 836 is between about 0.1 inches and about 0.5 inches, and the flare angle 816 is between about 20 degrees and about 40 degrees. The surface area of the second recess 812 is between about 0.05 square inches to about 10 square inches, and preferably between about 0.05 square feet and about 5 square inches. The diameter of the second recessed hole 8 12 means the diameter intersecting the downstream surface 804. An example of a diffuser plate for processing a 1870 mm X 2200 mm substrate has a diameter of 0.302 inches and a la. The octagonal angle 816 is about 22 degrees of the second recess 812. The distance between the rims 8 2 2 of the adjacent second recessed holes 812 is between about 0 inches and about 0.6 inches, preferably between about 〇 吋 and about 〇. 4 inches. Between 吋. The diameter of the first recessed hole 810 is usually, but not limited to, at least equal to or smaller than the diameter of the second recessed hole 821. The bottom 820 of the second recess 812 can be tapered, beveled, chamfered or rounded to reduce the pressure loss of gas flowing out of the opening 8 1 4 and into the second recess 8 1 2 . Moreover, because the vicinity of the opening 814 to the downstream side 804 can be used to reduce the exposed surface area of the second recess 812 and the downstream side 804 facing the substrate, the area of the downstream of the diffuser plate 558 exposed to fluorine can be reduced, thereby reducing occurrences. Fluorine contamination of the deposited film layer, where fluorine is provided during chamber cleaning. The opening 814 is generally coupled to the bottom 818 of the first recess 810 and the bottom 820 of the second recess 812. The opening 814 has substantially 24 1374197 of between about 0.01 inches and about 0.3 inches (preferably about 0.01 to about 0.1 inch).
直徑,且典型地具有約〇. 02英吋至約1 · 0英吋(較佳是約 0.02英吋至約0.5英吋)的長度。開孔814之長度834與 直徑(或其他幾何屬性)是容室564中之背壓力的主要來 源,其促使了氣體在氣體分散板558之上游側802的均勻 分佈。開孔814典型地是被建構成在複數個氣體通道562 之間是一致的;然而,穿過開孔8 1 4之限制可以被建構成 在該些氣體通道562之間是不同的,以促使更多氣體相對 於氣體分散板5 5 8之其他區域通過一區域。例如,開孔8 1 4 可以具有一較大直徑與/或一較短長度於氣體分散板 558 之該些氣體通道562中,較鄰近於製程腔室502之壁506, 因此更多氣體會流動通過穿孔區域516以增加在玻璃基材 周圍之沈積速度。散佈器板之厚度是介於約0.8英吋至約 3 _ 0英吋之間,較佳是介於約0 · 8英吋至約2.0英吋之間。The diameter, and typically has a length of from about 〇2. 02 inches to about 1.00 inches (preferably from about 0.02 inches to about 0.5 inches). The length 834 and diameter (or other geometrical attributes) of the opening 814 are the primary source of back pressure in the chamber 564 which promotes uniform distribution of gas on the upstream side 802 of the gas dispersion plate 558. The opening 814 is typically constructed to be uniform between the plurality of gas passages 562; however, the restriction through the opening 8 14 can be constructed to be different between the gas passages 562 to facilitate More gas passes through a region relative to other regions of the gas dispersion plate 5 58 . For example, the opening 8 1 4 may have a larger diameter and/or a shorter length in the gas passages 562 of the gas dispersion plate 558, adjacent to the wall 506 of the process chamber 502, so that more gas will flow. The perforated region 516 is passed to increase the deposition rate around the glass substrate. The thickness of the diffuser plate is between about 0.8 inches to about 3 _0 inches, preferably between about 0. 8 inches to about 2.0 inches.
第二凹孔(或中空陰極腔穴)812之體積可以藉由改 變直徑“D”(或第8圖中之開口直徑836 )、深度“d”(或第 8圖中之長度832)與喇叭形角度“oc”(或第8圖中之喇叭 形角度816)而被改變,如第7圖所示。改變直徑、深度 與/或喇叭形角度也會改變第二凹孔8 1 2之表面積。所相信 的是,更高的電漿密度可能是在基材5 40的中心(請見第 5圖)更高沈積速度之原因。藉由減少散佈器板之邊緣至 中心的凹孔深度、直徑、喇叭形角度、或這些三個參數的 一組合,基材中心區域之電漿密度可以被減少以改善膜層 厚度與膜層性質之均勻性。顯示出該現象之方法與結果係 被描述於前述美國專利申請案號 1 0/889,683中,標題為 25 1374197 器孔洞是相同的。區塊可以是方形、矩形或圓形。由 1至區塊N,中空陰極腔六之尺寸(體積與/或表面積 漸地增加。該增加可以藉由增加中空陰極腔穴之直徑 度、喇八形角度、或這些參數之組合來達成。 中空陰極腔穴之直徑與/或長度由散佈器板之中 邊緣的增加不需要適用於所有的第二凹孔812,只要 每單位下游散佈器板表面積的中空陰極腔穴尺寸(體彡 或表面積)有一聱體増加即可。例如,一些第二凹孔 可以在整個散佈器板中被保持相同,而其他第二凹孔 具有中空陰極腔穴尺寸(體積與/或表面積)的漸進轉 在另一實例中’第二凹孔812具有中空陰極腔穴尺彳 積與/或表面積)的漸進增加,而也有一些小的中空陰· 穴C1位於散佈器板之邊緣處以進一步地增加每單位 散佈器板表面積之整體中空陰極腔穴體積與/或表面彩 實例係顯示於第9B圖,其為一散佈器板之底視圖。 另一實施例中。大部份中空陰極腔六在散佈器板中是 的,而朝向散佈器板之邊緣存在有一些較大的中空陰 穴C2’如第9C圖所示之一散佈器底視圖。 電聚與製程非均勻性可以藉由自散佈器板的中心 至邊緣區域漸進地增加中空陰極腔穴之體積或表面積 兩者組合來改善。 另一種變化膜層沈積厚度與性質均勻性之方式是 改變在散佈器板上之散佈器孔洞密度,而維持散佈器 是相同的。散佈器孔洞之密度是藉由將相交於下游側 區塊 )Μ 、長 心裏 對於 賣與’ 8 1 2 812 加。 (體 極膝 下游 .〇此 在又 /致 極脏 區威 成其 藉由 孔洞 27 804 1374197The volume of the second recess (or hollow cathode cavity) 812 can be changed by changing the diameter "D" (or the opening diameter 836 in Fig. 8), the depth "d" (or the length 832 in Fig. 8) and the horn. The angle "oc" (or the flare angle 816 in Fig. 8) is changed as shown in Fig. 7. Changing the diameter, depth and/or flare angle also changes the surface area of the second recess 8 1 2 . It is believed that higher plasma density may be responsible for the higher deposition rate at the center of substrate 540 (see Figure 5). By reducing the depth to the center of the diffuser plate to the center, the diameter, the flare angle, or a combination of these three parameters, the plasma density in the central region of the substrate can be reduced to improve film thickness and film properties. Uniformity. The method and results showing this phenomenon are described in the aforementioned U.S. Patent Application Serial No. 10/889,683, the disclosure of which is incorporated herein by reference. Blocks can be square, rectangular or circular. From 1 to block N, the size of the hollow cathode cavity six (volume and/or surface area is gradually increased. This increase can be achieved by increasing the diameter of the hollow cathode cavity, the angle of the octagonal shape, or a combination of these parameters. The increase in the diameter and/or length of the hollow cathode cavity by the edge of the diffuser plate does not need to be applicable to all of the second recessed holes 812 as long as the hollow cathode cavity size (body or surface area) per unit downstream of the diffuser plate surface area There is a sputum addition. For example, some of the second recesses may be kept the same throughout the diffuser plate, while the other second recesses have a progressive transition of the hollow cathode cavity size (volume and/or surface area). In one example, 'the second recess 812 has a progressive increase in the hollow cathode cavity sag and/or surface area, while some small hollow cathode C1 is located at the edge of the diffuser plate to further increase the per unit spreader. The overall hollow cathode cavity volume and/or surface color of the plate surface area is shown in Figure 9B, which is a bottom view of a diffuser plate. In another embodiment. Most of the hollow cathode cavities 6 are in the diffuser plate, and there are some larger hollow cavities C2' toward the edge of the diffuser plate as shown in Fig. 9C. Electropolymerization and process non-uniformity can be improved by progressively increasing the volume or surface area of the hollow cathode cavity from the center to the edge region of the diffuser plate. Another way to vary the thickness and uniformity of film deposition is to change the density of the diffuser holes on the diffuser plate while maintaining the spreader the same. The density of the diffuser holes is obtained by intersecting the downstream side block Μ, the long heart for the sale and the '8 1 2 812 plus. (The lower part of the body is in the lower part of the knee. In this case, it is also in the extremely dirty area. It is made by the hole 27 804 1374197
的凹孔812之孔洞的總表面積除以散佈器板之下 的總表面積來計算。散佈器孔洞之密度可以由约 至約100%,且較佳是由約30%變化至約100%。 氮化矽膜層之「圓頂狀」或中央厚問題,散佈器 應該在中心區域被降低(相對於外部區域),以減 域之電漿密度。如前所述關於體積密度與表面積 化,陰極腔室密度自内部區域至外部區域應該是 平順的,以確保一致且平順的沈積及膜層性質曲 圖係顯示散佈器孔洞密度自中心(區域A )為低至 域B )為高的漸進變化。在中心區域中散佈器孔 密度會減少中心區域之電漿密度且減少氮化矽膜 頂狀j問題。第9D圖中散佈器孔洞之配置僅是 自中心至邊緣的漸增之孔洞密度。本發明適用於 器孔洞配置與圖案。密度變化概念也可以與散佈 計變化結合,以改善中心至邊緣均勻性。當氣體 度被改變以達到電漿均勻性時,中空陰極腔室在 間隔可以超過0.6英吋。 具有彆曲性之氣體散佈器 如同前述關於第2、3與4圖之討論,當沈 層於大基材上時,一中空陰極梯度氣體散佈器板 能無法消除膜層厚度均勻性問題。這是相對於氮 均勻性問題,其對於大於1 200000 mm2之基材可 用一實施有HCG之氣體散佈器板而被消除。由j 4圖,可以看出的是,由PEC VD沈積之一非晶矽 游側804 10%變化 為了減少 孔洞密度 少内部區 密度之變 漸進的且 線。第9D -邊緣(區 洞之較低 層之「圓 用以示範 任何散佈 器孔洞設 通道之密 下游端之 積α-Si膜 之使用可 化矽膜層 以藉由使 ί 2、3 與 膜層的厚 28 1374197 度曲線反而是被電極間隔所強烈地影響,改變電極間隔自 0.800英吋至 0.550英吋係改變了曲線自在中心具有良好 膜層性質之中心厚至邊緣厚且在中心之差膜層性質。請參 閱第5與8圖,電極間隔是被定義為散佈器板558之下游 側804與基材540之間的距離。對於在大基材上之α-Si膜 層,所相信的是,在基材處理期間,對於較大電極間隔而 言電漿密度在靠近PECVD腔室之中心會增加,因此改變 了膜層厚度與膜層性質曲線。The total surface area of the holes in the recess 812 is calculated by dividing the total surface area below the diffuser plate. The density of the diffuser holes can vary from about 100%, and preferably from about 30% to about 100%. For the "dome" or central thickness of the tantalum nitride film layer, the diffuser should be lowered (relative to the outer region) in the central region to reduce the plasma density. As described above with respect to bulk density and surface area, the cathode chamber density should be smooth from the inner region to the outer region to ensure consistent and smooth deposition and film property plots showing diffuser hole density from the center (region A ) is as low as the domain B) is a high progressive change. The density of the diffuser in the central region reduces the plasma density in the central region and reduces the problem of the tantalum nitride film. The arrangement of the diffuser holes in Figure 9D is only the increasing hole density from the center to the edge. The invention is applicable to the hole configuration and pattern of the device. The density change concept can also be combined with scatter variation to improve center-to-edge uniformity. When the gas level is changed to achieve plasma uniformity, the hollow cathode chamber can be spaced more than 0.6 inches apart. Gas Disperser with Distortion As with the discussion of Figures 2, 3 and 4 above, a hollow cathode gradient gas diffuser plate cannot eliminate the problem of film thickness uniformity when sinking on a large substrate. This is a problem with respect to nitrogen uniformity, which can be eliminated for substrates having greater than 1 200,000 mm2 using a gas diffuser plate with HCG. From the diagram of Fig. 4, it can be seen that 10% change of the amorphous side 804 from the PEC VD deposition in order to reduce the density of the holes and the density of the internal regions is progressive and linear. The 9D-edge (the lower circle of the hole is used to demonstrate the use of the α-Si film of the dense downstream end of any diffuser hole to make the ruthenium film layer by making ί 2, 3 and film The thickness of the layer of 28 1374197 degrees is strongly influenced by the electrode spacing. Changing the electrode spacing from 0.800 inches to 0.550 inches changes the center of the curve from the center of the layer with good film properties to the edge thickness and the difference between the centers. Film properties. Referring to Figures 5 and 8, the electrode spacing is defined as the distance between the downstream side 804 of the diffuser plate 558 and the substrate 540. For the alpha-Si film layer on a large substrate, it is believed At the time of substrate processing, the plasma density increases toward the center of the PECVD chamber for larger electrode spacing, thus changing the film thickness and film properties.
因為一在 PECVD腔室t之較窄電極間隔形成了一非 晶矽膜層而在基材邊緣具有較佳的性質,且一相當寬電極 間隔形成了一膜層而在基材中心具有較佳的性質,因此一 結合了兩間隔益處之散佈器板係被提供。這是藉由併入較 寬與較窄間隔至電極本身來達到,亦即電極是適用以在基 材之中心區域提供一較寬電極且在基材邊緣提供一較窄電 極。因此,大於1 200000 mm2之基材可以被沈積有在整個 基材上具有可接受厚度與膜層性質均性之非晶矽膜層。這 是藉由將散佈器板/電極在下游或製程空間側建構以一彎 曲性,其不是實質上平的且平行於所處理基材。藉由併入 較寬與較窄間隔於電極本身,α-Si之製程視窗可以被明顯 地改善。 第10圖係繪示一具有彎曲性之氣體散佈器板1001實 施例的截面圖,其可以適用於PECVD腔室中。圖上沒有 顯示氣體通道56係為了簡單化。散佈器板1001之下游側 804具有一彎曲性,並且在此實施例中,散佈器板1001之 29 1374197 上游側802為實質上平坦的。 3者散佈裔板1〇〇ι + 側802也可以具右一掛A g υυΐ之上游 、有彎曲性,例如當散佈器1〇〇1是# 用一彎曲退火固定株央 疋错由使 疋件來形成時,其將在以下被描 第12與U圖。圖上也顯示出下游側8〇 ‘”、 假想平坦下游側_之表面之間的最大位移。表面與- 如刖所述,基γ 基备 為了改善氮化矽膜層之均勻性,對 陰極梯度,是有靈盈音始力 > 二 1…:佈器表面上中空陰極腔Since an amorphous tantalum film layer is formed at a narrower electrode spacing of the PECVD chamber t and has better properties at the edge of the substrate, and a relatively wide electrode spacing forms a film layer and is preferred at the center of the substrate. The nature of the diffuser plate is therefore provided by a combination of two spacing benefits. This is achieved by incorporating a wider and narrower spacing into the electrode itself, i.e., the electrode is adapted to provide a wider electrode in the central region of the substrate and a narrower electrode at the edge of the substrate. Thus, a substrate greater than 120000 mm2 can be deposited with an amorphous tantalum film layer having an acceptable thickness and uniformity of film properties throughout the substrate. This is by bending the diffuser plate/electrode on the downstream or process space side, which is not substantially flat and parallel to the substrate being processed. By incorporating a wider and narrower spacing from the electrode itself, the process window of α-Si can be significantly improved. Figure 10 is a cross-sectional view showing an embodiment of a flexible gas diffuser plate 1001 that can be adapted for use in a PECVD chamber. The gas passage 56 is not shown in the figure for the sake of simplicity. The downstream side 804 of the diffuser plate 1001 has a bend, and in this embodiment, the upstream side 802 of the diffuser plate 1001 is substantially flat. 3 people scattered on the board 1 〇〇 ι + side 802 can also have the right one hanging A g υυΐ upstream, there is flexibility, for example when the spreader 1 〇〇 1 is # with a bending annealing fixed strain When the pieces are formed, they will be described in the following 12th and Uth drawings. The figure also shows the maximum displacement between the surface of the downstream side 8〇'" and the imaginary flat downstream side. The surface is - as described in 刖, the base γ is prepared to improve the uniformity of the tantalum nitride layer, to the cathode Gradient, there is a singular sound force > 2 1...: hollow cathode cavity on the surface of the cloth
八體積达、度 '中空陰極表面區域密度、與/或申空腔穴密度 之漸進變&。這避免了氮化矽膜層因為製程空間中電漿密 度之突,然變化所造成之非均句性,其中該突,然變化是由— 太大的中空陰極梯度所造成。所相信的是,同樣原理也應 用在用於經由一電極/散佈器板來改善非晶矽膜層之膜層 厚度與膜層性質均勻性,其中該電極/散饰器板具有—在基 材上方之變化的電極間隔。因此,自在基材邊緣上方之窄 的間隔區域至在基材中心上方之稍微較寬的間隔區域之過 渡是較佳地平順且漸進的。是以,散佈器1 〇〇 1之下游側 804較佳是實質上内凹的,亦即在邊緣是相對較靠近於基 材且平順地過渡至基材中心上方之高點或頂點1 〇 〇 5。 下游側804之彎曲性大致上為一具有頂點1 005之弧, 該頂點1 0 0 5是大約位於基材中心點的上方。頂點1 〇 〇 5定 義了下游側804之彎曲表面與假想平坦下游側804a之表面 之間的最大位移,如第1 〇圖所示。在較佳實施例中,該弧 具有對應於圓或橢圓之一區段的彎曲性,如第1〇圖所示。 這確保了電極間隔由散佈器之邊緣至中心的平順過渡’且 % 30 1374197 允許該形狀容易地被量化。在其他實施例中,描述彎曲下 ;:則804之不同方法可以被使用。在-態樣中,一線區段 从描述弧,如第10A圖所示。在此態樣中, 5仍然是實質上位於基材中…上散:,: 藉:由散佈器之邊緣增加至中心。在其他態樣+,弧可以 除了線、圓或橢圓之其他數學函數而被描述 次 二Eight volumes up to the degree 'the density of the hollow cathode surface area, and / or the progressive density of the cavity density & This avoids the non-uniformity of the tantalum nitride film layer due to the sudden change of the plasma density in the process space, wherein the change is caused by a too large hollow cathode gradient. It is believed that the same principle is also applied to improve the film thickness and film property uniformity of an amorphous tantalum film layer via an electrode/disperser plate having - in the substrate The electrode spacing changes above. Thus, the transition from a narrow spaced area above the edge of the substrate to a slightly wider spaced area above the center of the substrate is preferably smooth and progressive. Therefore, the downstream side 804 of the diffuser 1 〇〇 1 is preferably substantially concave, that is, the edge is relatively close to the substrate and smoothly transitions to a high point or apex above the center of the substrate 1 〇〇 5. The curvature of the downstream side 804 is substantially an arc having a vertex 1 005 that is approximately above the center point of the substrate. The vertex 1 〇 〇 5 defines the maximum displacement between the curved surface of the downstream side 804 and the surface of the imaginary flat downstream side 804a, as shown in Fig. 1. In a preferred embodiment, the arc has a curvature corresponding to a segment of a circle or ellipse, as shown in Figure 1. This ensures a smooth transition of the electrode spacing from the edge of the diffuser to the center' and % 30 1374197 allows the shape to be easily quantified. In other embodiments, a description will be made under bending;: 804 different methods may be used. In the -state, the one-line segment is from the description arc, as shown in Figure 10A. In this aspect, 5 is still substantially in the substrate... on the dispersion:,: Borrow: increased from the edge of the spreader to the center. In other aspects +, the arc can be described in addition to other mathematical functions of lines, circles or ellipses.
次、正弦、雙曲線或其他幾何函數 例如指 在所有 並且電Secondary, sinusoidal, hyperbolic or other geometric functions, for example, at all and
態樣由相 幽级 ’頂點1〇〇5是實質上位於基材中心點上方 4隔由散佈器之邊緣增加至中心。 性在另-組態中,下游側8〇4之整個表面不具有一-曲 〜實如第10B圖所示。散佈器1〇〇3之下游側8〇4包括有 明質上平坦的區域1007於散佈器1003邊緣。對於本發 之其他組態,下游側8〇4之彎曲區段1〇〇7&可以由線、 :離橢圓或其他上述數學函數之一區段來描述。與前述其 4樣一樣,頂點1005是實質上位於基材中心點上方並 電極間隔由散佈器之邊緣增加至中心。 面彎曲下游側804之表面與一假想平坦下游側8〇4a之表 的之間的最大位移之大小相對於散佈器板i 〇〇【尺寸是小 度。在一態樣中,最大位移1〇〇4是不超過散佈器之特徵長 :的約3%,較佳是介於約〇 〇1%至約〇 3〇%。為了比較位 柙1004與一矩形或圓形散佈器,特徵長度被視為「等效半 」。對於一圓形散佈器,等效半徑等於該散佈器之半徑。 =於一方形或矩形散佈器’等效半徑為對角線的二分之 是以’在2200 mm X 1 870 mm之散佈器情況中,等效 31 1374197 半徑為1440 mm,並且自假想平坦下游側804a的彎曲下游 側804之最大希望位移1004約4.3 mm。The pattern consists of a phase apex 1 〇〇 5 which is substantially above the center point of the substrate 4 is increased from the edge of the diffuser to the center. In the other configuration, the entire surface of the downstream side 8〇4 does not have a one-curve~ as shown in Fig. 10B. The downstream side 8〇4 of the diffuser 1〇〇3 includes a region 1057 that is plain and flat on the edge of the diffuser 1003. For other configurations of the present invention, the curved section 1〇〇7& of the downstream side 8〇4 can be described by a line, an ellipse or one of the other mathematical functions described above. As in the previous 4, the apex 1005 is substantially above the center point of the substrate and the electrode spacing is increased from the edge of the diffuser to the center. The magnitude of the maximum displacement between the surface of the face curved downstream side 804 and the surface of an imaginary flat downstream side 8〇4a is relative to the diffuser plate i [size is small. In one aspect, the maximum displacement of 1〇〇4 is no more than about 3% of the characteristic length of the diffuser: preferably from about 〇1% to about 〇3%. To compare position 柙1004 with a rectangular or circular spreader, the feature length is considered to be "equivalent half". For a circular diffuser, the equivalent radius is equal to the radius of the diffuser. = in a square or rectangular diffuser 'equivalent radius is the diagonal of the two-way is 'in the case of 2200 mm X 1 870 mm spreader, the equivalent 31 1374197 radius is 1440 mm, and from the imaginary flat downstream side The maximum desired displacement 1004 of the curved downstream side 804 of 804a is about 4.3 mm.
值得注意的是,下游側804之彎曲性不需要精確地相 稱於有益於沈積非晶矽膜層的製程之一特定 PECVD腔 室;不管電極形狀為何,其他製程參數之製程調整是有需 要的,以將一膜層之膜層厚度與膜層性質的均勻性最佳 化。使用一具有彎曲下游側之電極的優點在於,這會對a - S i 膜層性質顯著地增加製程視窗,使得在大基材上行程高品 質非晶矽膜層變為更容易,且對大量製造更為可靠。在一 些情況中,一具有彎曲性之電極是需要的,以使形成可接 受α-Si膜層更為可能。It is worth noting that the flexibility of the downstream side 804 does not need to be precisely commensurate with one of the specific PECVD chambers that are beneficial for depositing the amorphous tantalum film layer; process adjustment of other process parameters is desirable regardless of the electrode shape, The film layer thickness of one film layer and the uniformity of the film layer properties are optimized. The advantage of using an electrode having a curved downstream side is that this significantly increases the process window for the a-S i film layer properties, making it easier to stroke a high quality amorphous tantalum film layer on a large substrate, and for mass production. More reliable. In some cases, a bendable electrode is needed to make it more likely to form an acceptable alpha-Si film layer.
在另一實施例中,在分散器中心區域中的較寬電極間 隔是透過基材支撐件之彎曲性來達到。在一態樣中,如第 10C圖所示,散佈器板 1010具有一實質上平坦的下游側 804,且基材支撐件1011具有一具最大位移1001之彎曲 性。對於基材支撐件1 0 1 1,最大位移1 004係被定義為基 材支撐件彎曲表面 1 〇 1 2與一假想平坦基材支撐件表面 1 0 1 2 a之間距離,如第1 0 C圖所示。本發明之此態樣對於 使用一實質上平坦的散佈器板時,允許了寬的中心區域間 隔與窄的邊緣區域間隔,以期望被用於沈積α-Si膜層在另 一態樣中,散佈器板與基材支撐件之每一者可以具有彎曲 性,其中使用該些彎曲性可以達到所希望之寬中心區域間 隔與窄邊緣區域間隔。此態樣係顯示於第1 0D圖中。散佈 器板1013之彎曲下游表面1016具有比基材支撐件1014 32 1374197 °由於此原 L電極間隔 彎曲性時, 面1015有更顯著之彎曲性In another embodiment, the wider electrode spacing in the central region of the disperser is achieved by the flexibility of the substrate support. In one aspect, as shown in Figure 10C, the diffuser plate 1010 has a substantially flat downstream side 804 and the substrate support 1011 has a bend with a maximum displacement of 1001. For the substrate support 1 0 1 1, the maximum displacement of 1 004 is defined as the distance between the substrate support curved surface 1 〇1 2 and an imaginary flat substrate support surface 1 0 1 2 a, such as the 1 0 Figure C shows. This aspect of the invention allows for a wide central region spacing and a narrow edge region spacing when using a substantially flat diffuser plate, as desired to be used to deposit an alpha-Si film layer in another aspect, Each of the diffuser plate and the substrate support may have flexibility, wherein the desired wide central region spacing and narrow edge region spacing may be achieved using the bendability. This aspect is shown in the 10D plot. The curved downstream surface 1016 of the diffuser plate 1013 has a more pronounced curvature than the substrate support 1014 32 1374197 ° due to the bending of the original L electrode.
當散佈器板與基材支撐件兩者具有 之基材支撐件彎曲表面 因,中心 1018。是以,奩勘佑突士 所希望的寬中心區域間隔與窄邊緣區域間隔 第U圖係顯示使用具有一具最大位移丨。:為達二 央叶之彎曲性的散佈器板時,在一 2200 mm寬度的玻璃基 材上一非晶梦膜層之厚度曲線1101與1102。沈積該膜層 時,電極間隔為0.650英吋。沈積該膜層期間之製程狀況 為:10000 Sccm SiH4氣體流速、36000 sccm h2氣體流速、 10〇〇〇瓦特射頻電漿功率、2.5托耳腔室壓力、與34〇<t (内 基材加熱器)至36(TC (外基材加熱器)之基材溫度。橫 座標代表沿著2200 mm長度基材之輪廓的每一厚度量測之 位置’單位為毫米。縱座標代表非晶矽膜層沈積在基材上 之沈積速度,單位為人/min »兩資料組係繪製於第i 1圖, 資料組11 0 1為方形,資料組i丨02為鑽石形。資料組丨丨〇 j 與11 〇 2代表沿著基材每一對角線所量測之沈積速度曲 線。此兩曲綠之差異是可以忽略的,其意謂著在散佈器長 度上是怪定的厚度曲線。 第11圖之膜層厚度曲線相對於第2、3與4圖之曲線 的—定性比較係顯示出厚度均勻性之明顯改善,當使用一 在實質上平坦HCG散佈器上具有彎曲性之HCG散佈器 時。此改善係被定量於表1中。 表1沈積在基材上之a-Si膜層的厚度均勻性量測 (§: 33 1374197 圖 彎曲 間隔 (英吋) 沈積速度 (A/min) 厚度均 勻性(%) 1 5mm邊緣 排除 20mm邊緣 排除 2 無 0.800 1497 27.3 23.4 3 益 0.650 1583 25.0 2 1.0 4 益 0.550 1906 16.3 16.3 11 有 0.650 0889 12.1 8.1When the diffuser plate and the substrate support both have a substrate support curved surface, the center 1018. Therefore, the wide center area interval and the narrow edge area interval desired by the 佑 佑 突 突 第 第 第 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U : A thickness curve 1101 and 1102 of an amorphous dream film layer on a 2200 mm wide glass substrate for the curved diffuser plate of the second central leaf. When the film was deposited, the electrode spacing was 0.650 inches. The process conditions during deposition of the film were: 10000 Sccm SiH4 gas flow rate, 36000 sccm h2 gas flow rate, 10 watts of RF plasma power, 2.5 Torr chamber pressure, and 34 〇 <t (inner substrate heating) The temperature of the substrate to 36 (TC (outer substrate heater). The abscissa represents the position of each thickness measured along the 2200 mm length of the substrate. The unit is mm. The ordinate represents the amorphous enamel film The deposition rate of the layer deposited on the substrate, in units of human/min. The two data sets are plotted on the i i 1th, the data set 11 0 1 is a square, and the data set i丨02 is a diamond. The data set 丨丨〇j And 11 〇2 represents the deposition velocity curve measured along each diagonal of the substrate. The difference between the two curved greens is negligible, which means a strange thickness curve over the length of the spreader. The qualitative comparison of the film thickness curve of Figure 11 with respect to the curves of Figures 2, 3 and 4 shows a significant improvement in thickness uniformity when using a HCG spreader with flexibility on a substantially flat HCG spreader. The improvement is quantified in Table 1. Table 1 is deposited on the substrate. Thickness uniformity measurement of a-Si film layer (§: 33 1374197 Figure bending interval (inch) deposition speed (A/min) thickness uniformity (%) 1 5mm edge exclusion 20mm edge exclusion 2 no 0.800 1497 27.3 23.4 3 benefit 0.650 1583 25.0 2 1.0 4 benefit 0.550 1906 16.3 16.3 11 with 0.650 0889 12.1 8.1
相對於以一平坦之散佈器板所沈積膜層而言,以一具有彎 曲性之散佈器所沈積的膜層具有一高沈積速度與具有改善 的均勻性。The film deposited by a diffusing diffuser has a high deposition rate and improved uniformity with respect to the film deposited with a flat diffuser plate.
在一態樣中,一 PECVD氣體散佈器具有一彎曲的下 游側且沒有中空陰極梯度。該散佈器改善了所沈積在大於 約1 200000 mm2基材上a-Si膜層之膜層厚度均勻性與膜層 性質均勻性。在另一態樣中,一 PECVD氣體散佈器具有 一彎曲的下游側與一中空陰極梯度。該散佈器可被用以處 理氮化矽或α-Si膜層《這減少了 PECVD腔室之製造成本, 且增加了腔室適用性,亦即腔室可用於沈積氮化矽或a-Si 膜層而不需要改變氣體散佈器板。 製造方法 用於處理大於約1000 mm X 1200 mm之基材的散佈 器板是難以可重複地製造。所希望的形狀與/或散佈器至散 佈器可能會有明顯變化。對於不是實質上平坦的散佈器板 (例如具有一彎曲下游表面之散佈器)尤其如此。對於一 34 1374197 些薄膜層(例如α-Si)’因為祺層厚度均勻性與膜層性質均 勻性係強烈地相依於電極間隔,減少可能在一散佈器板在 製造後最终彎曲性與所希望形狀之間的變化是很重要的。 減少不同(但名義上相同)腔室之間的變化也是很重要的。 方法係被提供以允許以一可重複且成本低廉方式來製造用 於一 PECVD腔室之彎曲散佈器。In one aspect, a PECVD gas diffuser has a curved downstream side and no hollow cathode gradient. The spreader improves film thickness uniformity and film property uniformity of the a-Si film layer deposited on substrates greater than about 120,000 square meters. In another aspect, a PECVD gas diffuser has a curved downstream side and a hollow cathode gradient. The spreader can be used to treat tantalum nitride or an α-Si film layer. This reduces the manufacturing cost of the PECVD chamber and increases chamber suitability, ie the chamber can be used to deposit tantalum nitride or a-Si The film layer does not need to change the gas diffuser plate. Manufacturing Method Disperser plates for processing substrates larger than approximately 1000 mm X 1200 mm are difficult to reproducibly manufacture. The desired shape and/or spreader to diffuser may vary significantly. This is especially true for diffuser plates that are not substantially flat (e.g., spreaders having a curved downstream surface). For a 34 1374197 film layer (eg α-Si)' because the thickness uniformity of the ruthenium layer and the uniformity of the film properties are strongly dependent on the electrode spacing, reducing the final bendability and hope in a diffuser plate after manufacture The change between shapes is very important. It is also important to reduce the variation between different (but nominally identical) chambers. The method is provided to allow a bend spreader for a PECVD chamber to be fabricated in a repeatable and cost effective manner.
在一實施例中’氣體散佈器板之下游側的所希望彎曲 性係藉由一熱製程來形成’其中在該熱製程中,散佈器板 係被彎曲以符合於一彎曲退火固定件之形狀。該彎曲退火 固定件是一被加工至所希望彎曲性的金屬板,且被用以彎 曲許多散佈器。 第12圖係繪示使用一彎曲退火固定件而用於散佈器 退火製程1 200以彎曲一散佈器板至所希望彎曲性之流程 圖0 疋件上。散佈器之下游側應該接觸於退火固定件。In one embodiment, the desired bend on the downstream side of the gas diffuser plate is formed by a thermal process in which the diffuser plate is bent to conform to the shape of a curved annealed fastener. . The bend annealed fastener is a metal sheet that is machined to the desired bend and is used to bend many spreaders. Fig. 12 is a flow chart showing the use of a bend annealing fixture for the spreader annealing process 1 200 to bend a spreader plate to the desired bendability. The downstream side of the diffuser should be in contact with the annealing fixture.
在步驟1202,散佈器板之表面被一保護材料所覆蓋 住,以避免來自退火重物之損壞與污$。保護材料必須是 ^潔的、相當有彈性的且抗熱的。能使用之保護塗層之一 實例為一電鍍的鋁薄片。 在步驟1203’散佈器板被裝裁有需要用以在退火製程 4間將散佈器可塑地變备 ^ 變氷之適田重物。該重物必須被分佈 佈盗上’從而使在退火劁寇教 入认你 退火氟程期間,散佈器板完全地符 0;腎曲退火固定件之形狀。大 办狀大致上而言,重物應該先被 35 1374197 度不超過每小時2 5 °C。 在步驟1207,在散佈器板達到室溫之後,重物則被移 除。At step 1202, the surface of the diffuser plate is covered by a protective material to avoid damage and contamination from the annealed weight. The protective material must be clean, quite flexible and resistant to heat. One example of a protective coating that can be used is an electroplated aluminum foil. At step 1203' the diffuser plate is loaded with a field weight that is required to plastically deform the spreader during the annealing process 4. The weight must be distributed onto the fabric so that the diffuser plate is completely zero during the annealing process and the shape of the kidney annealing fixture. In general, the weight should be 35 1374197 degrees and not more than 25 ° C per hour. At step 1207, the weight is removed after the diffuser plate reaches room temperature.
在一態樣中,散佈器板不具有中空陰極梯度,且氣體 通道與中空陰極腔穴是實質上相同的。在另一態樣中,散 佈器板具有一彎曲下游表面與中空陰極梯度兩者。在任一 情況中,氣體通道之加工(其對於一實質上平坦的表面是 被顯著地簡化)較佳地是在退火製程前被執行。雖然大致 上並非節省成本的,氣體通道之加工也可以在退火/彎曲製 程之後被執行。氣體通道之加工可以為手動或數值控制 (numerically controlled, NC )的,但是因為大散佈器板 上具有許多氣體通道,較佳地是使用NC加工。In one aspect, the diffuser plate does not have a hollow cathode gradient and the gas passage is substantially identical to the hollow cathode cavity. In another aspect, the diffuser plate has both a curved downstream surface and a hollow cathode gradient. In either case, the processing of the gas passage, which is significantly simplified for a substantially flat surface, is preferably performed prior to the annealing process. Although not substantially cost effective, the processing of the gas passages can also be performed after the annealing/bending process. The processing of the gas passages can be manual or numerically controlled (NC), but since there are many gas passages on the large spreader plate, it is preferred to use NC machining.
在另一實施例中,氣體散佈器板之下游側的所希望彎 曲性是藉由加工除去在散佈器之下游側上所需材料來形 成,其係使用該技藝中所熟知之磨銑或車床形式的金屬移 除製程。在一態樣中,氣體通道之加工是在形成彎曲表面 之後而被執行。氣體通道之加工可以為手動或數值控制 (numerically controlled, NC )的,但是因為大散佈器板 上具有許多氣體通道,較佳地是使用NC加工。 在另一實施例中,氣體通道是先被加工於散佈器板 中,接著一第一彎曲性係被加工於氣體散佈器板之下游側 中,並且最後散佈器板被退火成一最終彎曲性。該實施例 提供了 一節省成本以用於製造氣體散佈板之方法,其中該 氣體散佈板包括一中空陰極梯度以用於均勻性地沈積氮化In another embodiment, the desired bendability on the downstream side of the gas diffuser plate is formed by machining to remove the desired material on the downstream side of the spreader using a milling or lathe well known in the art. Form metal removal process. In one aspect, the processing of the gas passage is performed after forming a curved surface. The processing of the gas passages can be manual or numerically controlled (NC), but since there are many gas passages on the large spreader plate, it is preferred to use NC machining. In another embodiment, the gas passage is first machined into the diffuser plate, then a first bend is machined into the downstream side of the gas diffuser plate, and finally the diffuser plate is annealed to a final bend. This embodiment provides a cost effective method for fabricating a gas distribution plate, wherein the gas distribution plate includes a hollow cathode gradient for uniform deposition of nitriding
37 137419737 1374197
梦與一實質上内凹的彎曲性以用於均勻性地沈積cx-Si兩 者。典型上相同的氣體通道係被加工至一實質上平坦的表 面中。相對於加工可改變的深度與直徑之氣體通道至一彎 曲表面中,這更能節省成本且可重複地製造。然後,第一 彎曲性係使用該技藝中所熟知之磨銑或車床形式的金屬移 除製程被加工至氣體散佈器板之下游側中,以在散佈器表 面上建立所希望的中空陰極腔穴梯度;當靠近散佈器板之 中心處有更多材料被移除時,起初相同的氣體通道之產生 的中空陰極腔穴尺寸因此被減少。氣體散佈器板接著藉由 前述退火/彎曲製程而被形成有最終希望的彎曲性。此最終 步驟是必須的,因為需要用以建立所希望中空陰極梯度之 彎曲性是極少相同於希望用於均勻性沈積a - S i之彎曲性。 雖然本文已經顯示且詳細地描述了一些包含有本發明 教示之較佳實施,熟習該技藝之人士可以容易地構想出許 多其他仍然包含這些教示之變更的實施例。The dream and a substantially concave curvature are used to uniformly deposit both cx-Si. Typically the same gas passage is machined into a substantially flat surface. This is more cost effective and reproducible in manufacturing a gas path of varying depth and diameter to a curved surface. The first bend is then machined into the downstream side of the gas diffuser plate using a metal removal process in the form of a milling or lathe well known in the art to create the desired hollow cathode cavity on the diffuser surface. Gradient; when more material is removed near the center of the diffuser plate, the size of the hollow cathode cavity created by the same gas channel is thus reduced. The gas diffuser plate is then formed with the final desired bendability by the aforementioned annealing/bending process. This final step is necessary because the flexibility required to establish the desired hollow cathode gradient is rarely the same as the bend desired for uniform deposition a - S i . While the invention has been shown and described with reference to the preferred embodiments of the invention, those skilled in the art can readily contemplate many other embodiments that still include variations of these teachings.
雖然前述係著重於本發明之實施例,本發明之其他與 進一步實施例在不脫離其基本範圍内是可以被構想出,且 其範圍是由隨附申請專利範圍所決定。 【圖式簡單說明】 本發明之前述特徵可以藉由參照實施例而能被更加詳 細地瞭解,其中一些實施例係被繪示在附圖中。然而,必 須注意的是,附圖僅繪示出本發明之典型實施例,且因此 不會限制本發明範圍,本發明可允許有其他等效之實施例。While the foregoing is directed to the embodiments of the present invention, the invention and the further embodiments of the invention may be devised without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The foregoing features of the present invention can be understood by reference to the embodiments of the invention. It is to be understood, however, that the appended claims
38 1374197 第1圖係繪示一薄膜電晶體結構之截面圖。 第2圖係顯示在一2200 mm寬度玻璃基材上一非晶矽 膜層之厚度曲線。 第3圖係顯示在一 2 2 00 mm寬度玻璃基材上另一非晶 矽膜層之厚度曲線。 第4圖係顯示在一 2200 mm寬度玻璃基材上另一非晶 矽膜層之厚度曲線。38 1374197 Figure 1 is a cross-sectional view showing the structure of a thin film transistor. Figure 2 is a graph showing the thickness of an amorphous tantalum film layer on a 2200 mm wide glass substrate. Figure 3 is a graph showing the thickness of another amorphous tantalum film layer on a 2 2 00 mm wide glass substrate. Figure 4 is a graph showing the thickness of another amorphous tantalum film layer on a 2200 mm wide glass substrate.
第5圖為一電漿加強化學氣相沈積系統之一實施例的 截面圖。 第6A圖係顯示一 RF中空陰極。 第6B-6G圖係繪示中空陰極腔穴之不同設計。 第7圖係顯示開孔之直徑“D”、深度“d”與喇叭形角度 “α”的定義,其中開孔係延伸至一氣體通道之下游。 第8圖係繪示一氣體散佈器板之截面圖。 第9A圖係顯示一在多個區塊中有散佈器孔洞之散佈 器板。Figure 5 is a cross-sectional view of one embodiment of a plasma enhanced chemical vapor deposition system. Figure 6A shows an RF hollow cathode. Figure 6B-6G shows the different designs of the hollow cathode cavity. Figure 7 shows the definition of the diameter "D" of the opening, the depth "d" and the horn angle "α", wherein the opening extends downstream of a gas passage. Figure 8 is a cross-sectional view showing a gas diffuser plate. Figure 9A shows a diffuser plate with diffuser holes in a plurality of blocks.
第9B圖係顯示一具有混合之中空陰極腔穴直徑的散 佈器板,内部區域中空陰極腔穴體積與/或表面積密度是小 於外部區域中空陰極腔穴體積與/或表面積密度。 第9C圖係顯示一具有大部份中空陰極腔穴為相同的 散佈器板,而在靠近散佈器板邊緣處具有一些較大的中空 陰極腔穴。 第9D圊係顯示一具有改變的散佈器孔洞密度之散佈 器板的下游侧視圖。Figure 9B shows a diffuser plate having a mixed hollow cathode cavity diameter with a hollow cathode cavity volume and/or surface area density in the inner region that is less than the hollow cathode cavity volume and/or surface area density in the outer region. Figure 9C shows a diffuser plate having a plurality of hollow cathode cavities and a plurality of larger hollow cathode cavities near the edge of the diffuser plate. The 9D tether shows a downstream side view of the diffuser plate with a modified diffuser hole density.
39 1374197 第10圖係繪示一具有彎曲性之氣體散佈器板實施例 的截面圖。 第1 0 A圖係繪示一具有彎曲性之氣體散佈器板實施例 的截面圖。 第10B圖係繪示一具有彎曲性之氣體散佈器板實施例 的截面圖。39 1374197 Figure 10 is a cross-sectional view showing an embodiment of a gas diffuser plate having flexibility. Figure 10A is a cross-sectional view showing an embodiment of a gas diffuser plate having flexibility. Figure 10B is a cross-sectional view showing an embodiment of a gas diffuser plate having flexibility.
第10C圖係繪示一氣體散佈器板實施例的截面圖,該 氣體散佈器板具有一實質上平坦之下游側與一具彎曲性之 基材支撐件。 第1 0D係繪示一氣體散佈器板實施例的截面圖,該氣 體散佈器板具有一彎曲之下游側與一具彎曲性之基材支撐 件。 第11圖係顯示在一玻璃基材上之一非晶矽膜層的厚 度曲線,其係使用一具有彎曲性之散佈器板。 第 1 2圖係繪示用以彎曲一散佈器板至所希望彎曲性 之散佈器退火製程的流程圖。Figure 10C is a cross-sectional view showing an embodiment of a gas diffuser plate having a substantially flat downstream side and a flexible substrate support. A 10D is a cross-sectional view of an embodiment of a gas diffuser plate having a curved downstream side and a flexible substrate support. Figure 11 is a graph showing the thickness profile of an amorphous tantalum film layer on a glass substrate using a diffuser plate having flexibility. Figure 12 is a flow chart showing the spreader annealing process for bending a diffuser plate to the desired bendability.
第13圖係繪示用以將一 1.4英吋厚度之鋁散佈器板退 火的一示範性重物配置。 為了清晰目的,若可行的話,本文係使用相同的標號 來指定圖之間相同的構件。 【主要元件符號說明】 101 基材 103 閘極介電層 102 閘極電極層 104 主體半導體層 40 1374197 603a 、603b 電 場 802 上游側 804a 下游側 8 12 第二凹礼 816 角度 820 底部 832 長度 836 開口直徑 882 緣 1002 散佈器 1004 位移 1007 第一區 域 1010 散佈器 板 1012 基材支 撐 件 彎 曲 表 面 1013 散佈器 板 1015 基材支 撐 件 彎 曲 表 面 1017 中心區 域 電 極 間 隔 1101 厚度曲 線 1200 散佈器 退 火 製 程 1201 置放散 佈 器 於 退 火 固 1202 保護散 佈 器 之 表 面 以 1203 將散佈 器 裝 載 以 重 物 1204 升高散 佈 器 之 溫 度 1205 裝載有 重 物 時 » 將 散Figure 13 is an illustration of an exemplary weight configuration for annealing a 1.4 inch thick aluminum spreader plate. For the sake of clarity, the same reference numbers will be used herein to designate the same components in the drawings. [Main component symbol description] 101 substrate 103 gate dielectric layer 102 gate electrode layer 104 main body semiconductor layer 40 1374197 603a, 603b electric field 802 upstream side 804a downstream side 8 12 second indentation 816 angle 820 bottom 832 length 836 opening Diameter 882 Edge 1002 Disperser 1004 Displacement 1007 First Area 1010 Disperser Plate 1012 Substrate Support Bending Surface 1013 Disperser Plate 1015 Substrate Support Bending Surface 1017 Center Area Electrode Space 1101 Thickness Curve 1200 Disperser Annealing Process 1201 Placement Disperser on the surface of the annealed solid 1202 protection spreader to 1203 load the spreader with a weight 1204 to raise the temperature of the spreader 1205 when loaded with heavy loads » will be scattered
605 路徑 804 下游側 810 第一凹孔 814 開孔 8 18 底部 830 第一深度 834 長度 880 距離 1001 氣體散佈器板 1 003 散佈器 1005 頂點 1007a 彎曲區段 1011 基材支撐件 1012a 平坦基材支撐件表面 1014 基材支撐件 1016 下游表面 1018 邊緣區域電極間隔 1102 厚度曲線 定件上 免於重物損壞 佈器退火605 path 804 downstream side 810 first recess 814 opening 8 18 bottom 830 first depth 834 length 880 distance 1001 gas diffuser plate 1 003 diffuser 1005 apex 1007a curved section 1011 substrate support 1012a flat substrate support Surface 1014 Substrate support 1016 Downstream surface 1018 Edge area Electrode spacing 1102 Thickness curve on the part to avoid damage to the cloth
42 1374197 1206 降低散佈器之溫度 1207 移除重物42 1374197 1206 Lowering the temperature of the diffuser 1207 Removing heavy objects
4343
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/143,506 US20060005771A1 (en) | 2004-07-12 | 2005-06-02 | Apparatus and method of shaping profiles of large-area PECVD electrodes |
US11/173,210 US8074599B2 (en) | 2004-05-12 | 2005-07-01 | Plasma uniformity control by gas diffuser curvature |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200702486A TW200702486A (en) | 2007-01-16 |
TWI374197B true TWI374197B (en) | 2012-10-11 |
Family
ID=48093249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95119776A TWI374197B (en) | 2005-06-02 | 2006-06-02 | Plasma uniformity control by gas diffuser curvature |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI374197B (en) |
-
2006
- 2006-06-02 TW TW95119776A patent/TWI374197B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200702486A (en) | 2007-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8074599B2 (en) | Plasma uniformity control by gas diffuser curvature | |
KR100931910B1 (en) | Plasma uniformity control by gas diffuser hole design | |
TW484188B (en) | Plasma CVD film forming device | |
CN101018886A (en) | Plasma uniformity control by gas diffuser curvature | |
TWI376763B (en) | Asymmetric grounding of rectangular susceptor | |
CN101443474B (en) | Method and apparatus for improving uniformity of large-area substrates | |
TWI392020B (en) | A shower plate and a method for manufacturing the same, and a plasma processing apparatus using the shower plate, a plasma processing method | |
CN101871099B (en) | Plasma uniformity control by gas diffuser curvature | |
TW573053B (en) | Surface processing apparatus | |
TWI550123B (en) | Gas delivery and distribution system for uniform process in linear-type large-area plasma reactor and a processing chamber therefor | |
US20090311869A1 (en) | Shower plate and manufacturing method thereof, and plasma processing apparatus, plasma processing method and electronic device manufacturing method using the shower plate | |
US20080283086A1 (en) | Substrate processing apparatus and cleaning method therefor | |
TW201211299A (en) | Apparatus for chemical vapor deposition | |
JP2013527319A (en) | Design of process chamber lids incorporating a plasma source for short-lived species | |
JP2007053359A (en) | Plasma cvd equipment and method of forming uniform film | |
KR20170062440A (en) | Electrostatic chuck device | |
TW201717262A (en) | High productivity PECVD tool for wafer processing of semiconductor manufacturing | |
KR102224586B1 (en) | Coating material for processing chambers | |
KR101197020B1 (en) | Substrate processing apparatus for uniform plasma discharge and method of adjusting strength of plasma discharge | |
TWI374197B (en) | Plasma uniformity control by gas diffuser curvature | |
TW201031282A (en) | Plasma reactor for treating a substrate | |
US20190062908A1 (en) | Semiconductor process kit with nano structures | |
TW202405230A (en) | Thermal shield for processing chamber | |
JP2006086470A (en) | Plasma generator | |
CN104947049A (en) | Coating device |