TWI373826B - Cmos transistor and the method for manufacturing the same - Google Patents

Cmos transistor and the method for manufacturing the same Download PDF

Info

Publication number
TWI373826B
TWI373826B TW97125048A TW97125048A TWI373826B TW I373826 B TWI373826 B TW I373826B TW 97125048 A TW97125048 A TW 97125048A TW 97125048 A TW97125048 A TW 97125048A TW I373826 B TWI373826 B TW I373826B
Authority
TW
Taiwan
Prior art keywords
transistor
source
pmos transistor
drain
tensile stress
Prior art date
Application number
TW97125048A
Other languages
Chinese (zh)
Other versions
TW201003849A (en
Inventor
yi wei Chen
Teng Chun Tsai
Chien Chung Huang
Jei Ming Chen
Tsai Fu Hsiao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW97125048A priority Critical patent/TWI373826B/en
Publication of TW201003849A publication Critical patent/TW201003849A/en
Application granted granted Critical
Publication of TWI373826B publication Critical patent/TWI373826B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

1373826 九、發明說明: • 【發明所屬之技術領域】 - 本發明係關於一種CMOS電晶體及其製作方法,特別 是一種可防止鍺原子外擴(Ge out-diffusion)的CMOS電晶 體及其製作方法。 【先前技術】 • 近年來,利用微縮元件尺寸以提升金氧半導體 (metal-oxide semiconductor,以下簡稱MOS)電晶體表現效 能的製程方向,遭逢微影製程技術瓶頸、昂貴花費等負面 因素影響,業界開始尋求其他的方法來改善MOS電晶體的 運作效能,其中以利用材料特性對MOS電晶體造成應變效 應(strain effect)的方式最受矚目。 例如,為提升設具有P型金氧半導體(PMOS)電晶體及 N型金氧半導體(NMOS)電晶體的互補式金氧半導體 (complementary metal-oxide semiconductor,以下簡稱 CMOS)電晶體的驅動電流,業界發展出應變矽 (strained-silicon)技術,係利用製程技術或自然晶格常數的 差異,達成提升CMOS電晶體驅動電流的目的。一般來說, 應變石夕技術主要可概分為基板應變方法(substrate-strain based)與製程應變方法(process-induced strain based)二個系 統,基板應變方法係利用一應變矽基板或結合選擇性磊晶 6 1373826 成長(selective epitaxial growth)製移·’由材料間晶格常數的 差異來產生應變;而製程應變方法則係利用某些製程步 驟,在CMOS電晶體表面形成應力薄膜’例如:多晶矽應力 覆蓋層(cap poly stressor)或接觸洞棘刻停止層(contact etch stop layer,以下簡稱CESL)等方武’進而對MOS電晶體施 加相對應之伸張應力或壓縮應力。上述二種應變矽技術皆 可使CMOS電晶體閘極下方的通道區域矽晶格發生應變, 降低載子在通道區域遭受的阻力,使載子的遷移率增加, 以期改善CMOS電晶體效能。 請參考第1圖,第1圖為一習知之CMOS電晶體1〇 的示意圖。如第1圖所示,CMOS電晶體10包含一 PMOS 電晶體12以及一 NMOS電晶體14分別形成於一基底16, 且PMOS電晶體12與NMOS電晶體14間係設有淺溝隔離 (STI) 30以防止電晶體間發生短路,其中NMOS電晶體14 係設置於基底16之一 P型井18上,其包含一源極/汲極20A 以及一閘極結構22A’PMOS電晶體12則係設置於基底16 之N型井24上,其包含一源極/汲極20B以及一閘極結構 22B,且PMOS電晶體12之源極/汲極20B係為一石夕鍺化 合物(SiGe)磊晶,藉由矽鍺間晶格常數的差異來對pmos 電晶體12閘極結構22B下方之通道區域(channel region) 產生擠壓的應力;此外,在PMOS電晶體12的源極/汲極 20B和NMOS電晶體14的源極/汲極20A表面形成有一鎳 1373826 化矽層(nickel siUcide)26,以提升金屬對矽材間進行歐姆式 接觸(Ohmic contact)的能力;再者,為加強NMOS電晶體 14通道區域的載子遷移率,在CMOS電晶體10上另覆有 一具有伸張應力之高伸張力薄膜28覆蓋於閘極結構22A、 22B與源極/汲極2〇a、20B表面,並進行一紫外線硬化(UV curing)製程,照射紫外光以強化覆蓋於閘極結構22A與源 極/>及極2〇a表面之高伸張力薄膜28,藉以增加其伸張應 力’來拉大NMOS電晶體14閘極結構22A下方,亦即通 道區域之!>型井18的晶格排列,進而提升通道區域的電子 遷移率以及NMOS電晶體14之驅動電流。 然而’在利用紫外線硬化製程調整高伸張力薄膜28之 伸張應力值時,覆蓋在CMOS電晶體10上之高伸張力薄 膜28的伸張應力卻會造成PMOS電晶體12之源極/汲極 毛生錯原子外擴(Ge out-diffusion)的現象,如第2圖所 ,由電子顯微鏡(SEM)照片可清楚的觀察到,在鎳化矽層 26的表面有黑色斑點形成,該些黑色斑點即為鍺原子外擴 的也據’此一現象將造成石夕化物結塊(siiicide 而使阻值升高,以及嚴重影響對pM〇s電晶體閾值電壓 (threshold voltage)的精準控制。 【發明内容】 為解決習知鍺外擴的現象,本發明揭露一種可遏止鍺 8 1373826 * MOS電晶體的製作方法。首先,提供一半導體基 •底,邊半導體基底具有至少—pM〇s電晶體以及至少一 •丽⑽電晶體’且該PMOS及之源極/汲極包含鍺;接著形 成一碳摻雜層於該PM〇s電晶體之該源極/汲極的上半部, 然後進行一自行對準金屬矽化物製程,接著再形成至少一 伸張應力薄臈(tensiie thin fum)覆蓋該半導體基底該 丽〇s電晶體以及該PM0S電晶體,之後對該伸張應力薄 • 膜進行一表面處理製程,以強化該伸張應力薄膜。 另外’本發明另揭露一種CMOS電晶體,其包含有一 半導體基底、至少一 NMOS電晶體以及至少一 PM〇s電晶 體形成於該半導體基底上以及一接觸洞蝕刻停止層覆蓋於 該PMOS電晶體及該NMOS電晶體上,其中該PM〇s電晶 體之一源極/汲極包含鍺,且該PMOS電晶體之該源極汲極 I 上半部設有一碳摻雜層,以達成遏止鍺外擴的目的。 以本發明所示之方法所形成之CMOS電晶體,在 PMOS電晶體源極/汲極上半部形成有一碳摻雜展,可確保 鍺離子在PMOS電晶體之源極/汲極内的摻雜嘈电 ^ 、 啡,辰度,並改善 習知技藝中鍺外擴的問題。 13 【實施方式】 請參考第3圖至第10圖,第3圖至第〜& _係依據本發 13738261373826 IX. Description of the Invention: • Technical Field of the Invention - The present invention relates to a CMOS transistor and a method of fabricating the same, and more particularly to a CMOS transistor capable of preventing Ge out-diffusion and its fabrication method. [Prior Art] • In recent years, the use of miniature component sizes to improve the performance of metal-oxide semiconductor (MOS) transistor performance has been affected by negative factors such as fascination technology bottlenecks and expensive costs. Other methods have been sought to improve the operational efficiency of MOS transistors, and the way in which strain effects are applied to MOS transistors by utilizing material properties has been attracting the most attention. For example, in order to improve a driving current of a complementary metal-oxide semiconductor (hereinafter referred to as CMOS) transistor having a P-type metal oxide semiconductor (PMOS) transistor and an N-type metal oxide semiconductor (NMOS) transistor, The industry has developed strained-silicon technology, which uses process technology or natural lattice constants to achieve the goal of increasing the drive current of CMOS transistors. In general, Strain Technology can be broadly divided into two systems, a substrate-strain based method and a process-induced strain based method. The substrate strain method utilizes a strained ruthenium substrate or a combination of selective Epitaxial 6 1373826 growth (selective epitaxial growth) migration · 'the strain is generated by the difference in lattice constant between materials; and the process strain method uses some process steps to form a stress film on the surface of CMOS transistor 'eg polycrystalline germanium A cap poly stressor or a contact etch stop layer (CESL) or the like is applied to the MOS transistor to apply a corresponding tensile stress or compressive stress. Both of the above strain enthalpy techniques can strain the channel region under the gate of the CMOS transistor, reduce the resistance of the carrier in the channel region, and increase the mobility of the carrier to improve the performance of the CMOS transistor. Please refer to FIG. 1 , which is a schematic diagram of a conventional CMOS transistor 1 。. As shown in FIG. 1, the CMOS transistor 10 includes a PMOS transistor 12 and an NMOS transistor 14 formed on a substrate 16, respectively, and a shallow trench isolation (STI) is provided between the PMOS transistor 12 and the NMOS transistor 14. 30 to prevent a short circuit between the transistors, wherein the NMOS transistor 14 is disposed on one of the P-wells 18 of the substrate 16, and includes a source/drain 20A and a gate structure 22A'. The N-well 24 of the substrate 16 includes a source/drain 20B and a gate structure 22B, and the source/drain 20B of the PMOS transistor 12 is a SiGe epitaxial layer. Extrusion stress is generated on the channel region under the gate structure 22B of the pmos transistor 12 by the difference in the inter-turn lattice constant; in addition, the source/drain 20B and the NMOS of the PMOS transistor 12 A nickel 1373826 bismuth layer is formed on the surface of the source/drain 20A of the transistor 14 to enhance the ability of the metal to make an ohmic contact between the girders; further, to strengthen the NMOS transistor The carrier mobility of the 14-channel region is additionally provided on the CMOS transistor 10. The tensile stress high tensile film 28 covers the gate structures 22A, 22B and the source/drain electrodes 2〇a, 20B, and is subjected to a UV curing process to irradiate ultraviolet light to strengthen the gate structure. 22A and the source/> and the high tensile film 28 on the surface of the pole 2〇a, thereby increasing the tensile stress ′ to widen the NMOS transistor 14 under the gate structure 22A, that is, the channel region! > The lattice arrangement of the well 18 enhances the electron mobility of the channel region and the drive current of the NMOS transistor 14. However, when the tensile stress value of the high tensile film 28 is adjusted by the ultraviolet curing process, the tensile stress of the high tensile film 28 overlying the CMOS transistor 10 causes the source/dip of the PMOS transistor 12 to be generated. The phenomenon of Ge out-diffusion, as shown in Fig. 2, is clearly observed by electron microscopy (SEM) photographs, in which black spots are formed on the surface of the nickel ruthenium layer 26, and these black spots are For the expansion of helium atoms, according to this phenomenon, the formation of the cerium compound will increase the resistance and seriously affect the precise control of the threshold voltage of the pM〇s transistor. In order to solve the phenomenon of the conventional expansion, the present invention discloses a method for suppressing the 锗8 1373826* MOS transistor. First, a semiconductor substrate is provided, and the semiconductor substrate has at least a —pM〇s transistor and at least a Li (10) transistor 'and the source/drain of the PMOS and the drain; then forming a carbon doped layer on the upper half of the source/drain of the PM〇s transistor, and then performing a self Aligning metal 矽a process, followed by forming at least one tensile stress thin tensor covering the semiconductor substrate and the PMOS transistor, and then performing a surface treatment process on the tensile stress thin film to strengthen the The present invention further discloses a CMOS transistor comprising a semiconductor substrate, at least one NMOS transistor, and at least one PM〇s transistor formed on the semiconductor substrate and a contact hole etch stop layer overlying the a PMOS transistor and the NMOS transistor, wherein one source/drain of the PM〇s transistor comprises germanium, and a top of the source drain of the PMOS transistor is provided with a carbon doped layer to The purpose of suppressing the external expansion is to achieve a CMOS transistor formed by the method of the present invention, and a carbon doping is formed in the upper half of the PMOS transistor source/drain to ensure the source of erbium ions in the PMOS transistor. Doping 嘈 嘈 、 、 、 、 内 内 , , 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 & _ According to the present invention 1373826

明之一較佳實施例所繪示之CM〇s電晶體的製作方法示意 *圖’第10圖係為製作本發明之可遏止鍺外擴的CMOS電 •曰曰體的流程示意圖。如第3圖所示,提供一半導體基底3〇, 其包含至少一 PMOS電晶體32以及至少一 NMOS電晶體 34 ’其中NMOS電晶體34係設置於半導體基底30之一 P 型井36内,其包含一設於半導體基底3〇表面之一閘極結 構38A以及一設於閘極結構38a兩側之一源極/汲極4〇 ; • PM0S電晶體32則係設於半導體基底3〇之n型井44内, 其包含一設於半導體基底3〇表面之一閘極結構38B以及一 s又於閘極結構38B兩側之一源極/汲極46。 閘極結構38Α、38Β各包含一閘極介電層50、設於閘 極介電層50上方之一閘極52以及設於閘極52上方之一硬 遮罩層54 ’其中閘極介電層5〇可包含氧化矽、氮氧化矽、 亂化石夕等傳統介電材料或金屬氧化物(metal oxide)、金屬石夕 酸鹽(metal silicate)、金屬銘 g复鹽(metal aluminate)、金屬氮* 氧化物(metal oxynitride)等高介電係數(high-k)介電材料或 前述材料之組合,藉由熱氧化、氮化、化學氣相沉積等製 程形成之;閘極52可包含多晶矽、矽鍺化合物(SiGe)、金 屬、金屬矽化物、金屬氮化物或金屬氧化物或上述材料之 組合;而硬遮罩層54可包含氧化矽、氮化矽、碳化矽、氧 氮化矽等介電材料,且閘極結構38A、38B之側壁各設有 〜熱氧化層(thermal oxide layer)56以及一側壁子58,側壁 10 13-73826 了乂疋單層或多層結構,且構成側壁子5 8的材料可 '包含氧化秒、氮化矽、氤氧化矽或其他的介電材料。另外’ .為防止電晶體間發生短路,半導體基底30上另設有複數個 設於M〇S電晶體間的絶緣結構,如設於PMOS電晶體32 與NMOS電晶體34間的淺溝隔離48,且閘極結構38a、 38B兩側之半導體基底30分別設有一輕雜摻汲極(lightly doped drain, LDD)5〇a、50B,以防止 PMOS 電晶體 32 或 鲁 NMOS電日日體34的熱電子效應(h〇t eiectf〇n effects)。 為增加PMOS電晶體32位於閘極結構38B下方之通 道區域的載子遷移速率,PM〇S電晶體32之源極/汲極46 係包含鍺。以本較佳實施例為來說,形成PMOS電晶體32 之源極/及極46 ’係先於NMOS電晶體34上形成一圖案化 光阻(圖未示)’再進行一蝕刻製程以於PM〇S電晶體32閘 _ 極結構38B的半導體基底3〇表面形成至少一凹槽(圖未 示)’之後再利用一選擇性遙晶成長(selective epitaxial growth)製程成長之一矽鍺化合物磊晶於該凹槽内,其中, 矽鍺化合物蠢晶的晶格常數係大於半導體基板3〇之晶格 常數,並略微向電晶體通道區域的方向延伸,同時進行一 重摻雜製程,植入P型摻質(如硼到閘極結構38B兩側 之該矽鍺化合物磊晶,並完成源極/汲極46的製作。另外 為增加對通道區域的壓力同時避免後續形成的金屬矽化物 太過接近源極/汲極46接面,較佳之pM〇s電晶體32之源 1373826 極/汲極46將略突出於半導體基板30之上表面;然而源極 • /没極46亦可與半導體基板30之上表面齊平,又或者是低 . 於半導體基板30之上表面,在此不多做限制。 如第4圖所示,隨後利用一遮罩(圖未示)蓋住NMOS 電晶體34,並進行一碳佈植(carb〇n implantation)製程,以 對PM0S電晶體32的源極/汲極46植入做為摻質的碳,進 φ 而在源極/汲極46.的上半部形成一碳摻雜層60 !其厚度約 在1〇〇埃(angstrom)到500埃之間,較佳之厚度約介於200 埃到300埃之間。碳佈植製程的佈植能量可依預定的佈植 深度而定,例如介於丨KeV至5 KeV之間,劑量可介於1〇13 至10原子/平方公分(atom/cm2).,較佳之佈植能量約為 2KeV’較佳之佈植劑量約為1.05xl015atom/cm2;然而本發 明之方法並不限定只對PM〇s電晶體32的源極/汲極46植 入奴推貝’亦可全面性地對NM〇s電晶體34以及PM〇s 電晶體32進行碳佈植製程。接著可選擇性地進行一回火 (讓ealing)製程,例如一快速熱處理製程㈣醒】 process’RTP) ’利用刚代至赃的高溫來活化被植入 的反^冑並同時修補碳佈植製程中受損之半導體基底3〇 MW格結構1後再進行一自行對準金屬石夕化物 (self-aligned silicide 〇 ι· ^ ae,sahcide)製程,在源極/汲極4〇、46表 面形成金屬矽化物, 谓e>2,例如_含鎳、鉑等之金屬矽化物, 且金屬矽化物62的;§ ^:从士 的厚度約在50埃到500埃之間,較佳之 12 1373826 厚度約在100埃到300埃之間,形成金屬矽化物62之該些 製程係為本領域之人或熟習該技藝者所熟知,故於此不再 贅述。 如第5圖所示,依序形成一第一襯墊層64、一伸張應 力薄膜65以及可選擇性地進行一表面處理製程,例如一快 速熱處理製程或一紫外線硬化(UV curing)製程,以強化伸 張應力緩衝薄膜65,接著沉積一第二襯墊層70,其中伸張 應力薄膜65係為一多層(multi-layered)應力薄膜,其包含 一伸張應力緩衝薄膜66以及一高伸張應力薄膜68,且其 中伸張應力緩衝薄膜66的伸張應力值會小於高伸張應力 薄膜68。此外.,在形成一第一概塾層64、一伸張應力薄膜 65以及一第二襯墊層70之前,本發明亦可選擇性地去除 PMOS電晶體32與NMOS電晶體34的側壁子58,以使伸 張應力薄膜65能更有效調整NMOS電晶體34通道區域的 晶格排列。 請參考第6圖,於第二襯墊層70形成後,進行一光阻 塗佈、曝光以及顯影製程,形成一第一圖案化光阻72以將 NMOS電晶體34蓋住,並進行一蝕刻製程,例如一非等向 性蝕刻製程,以第一圖案化光阻72為蝕刻遮罩,移除覆蓋 於PMOS電晶體32上的伸張應力緩衝薄膜66、高伸張應 力薄膜68以及第二襯墊層70,且於該蝕刻製程中,以氧 13 1373826 化矽為主要材料的第一襯墊層64係做為蝕刻停止層之 用,藉以保護下方之PMOS電晶體32。接著如第7圖所示, 在第一圖案化光阻72移除後,形成一高壓縮應力薄膜74, 例如再次利用一電漿增強化學氣相沈積製程,沉積高壓縮 應力薄膜74全面性地覆蓋PMOS電晶體32、NMOS電晶 體34。 - 然後如第8圖所示,再次進行一光阻塗佈、曝..光以及. 顯影製程,以形成一第二圖案化光阻76並覆蓋整個PMOS 電晶體32。接著進行一蝕刻製程,以第二圖案化光阻76 為蝕刻遮罩去除未被第二圖案化光阻層76覆蓋的區域,亦 即覆蓋於NMOS電晶體34上的高壓縮應力薄膜74以及第 二襯墊層70,僅保留部分的高壓縮應力薄膜74覆蓋於 PMOS電晶體32的閘極結構38B與源極/汲極46表面。 隨後如第9圖所示,移除覆蓋於PMOS電晶體32上的 第二圖案化光阻層76,至此,以本發明之方法所製作之一 CMOS電晶體78於是完成其基礎的製作流程,且覆蓋於 PMOS電晶體32上的高壓縮應力薄膜74以及覆蓋於NMOS 電晶體34上的伸張應力薄膜65可做為CMOS電晶體78 的接觸洞蝕刻停止層之用。之後可於高伸張應力薄膜68及 高壓縮應力薄膜74上再覆蓋一層間介電層(inter-layer dielectric layer, ILD layer)(圖未示),然後利用一圖案化光 14 13-73826 阻(圖未示)當作蝕刻遮罩並進行一非等向性蝕刻製程,在 該層間介電層與做為接觸洞蝕刻停止層的伸張應力薄膜65 及高壓縮應力薄膜74中形成複數個接觸洞(contact hoIe)(圖未示),作為PMOS電晶體32與NMOS電晶體34 之閘極結構38A、38B、或源極/汲極40、46與其他電子元 件連接的橋樑。 請參考第10圖,其係為本發明之CMOS .電晶體的製 作方法之流程示意圖,包含以下步驟: 步驟100 :提供一半導體基底,其定義有至少一 PMOS電 晶體以及至少一 NMOS電晶體,且該PMOS電 晶體之一源極/沒極係為一碎錯化合物蟲3曰曰; 步驟102 :對該PMOS電晶體之該源極/汲極進行一碳佈植 製程,形成一碳摻雜層於該PMOS電晶體之該源 極/汲極的上半部; 步驟104 :進行一自行對準金屬矽化物製程,在PMOS電 晶體和NMOS電晶體之該源極/汲極表面形成金 屬石夕化物; 步驟106 :形成一伸張應力薄膜,其包含一伸張應力緩衝 薄膜以及一高伸張應力薄膜,且該伸張應力緩衝 薄膜之伸強應力值係小於該高伸張應力薄膜; 步驟108 :進行一表面處理製程,例如一快速熱處理製程 .或一紫外線硬化製程,以強化該伸張應力薄膜; 15 1373826 步驟110 :移除形成於該PMOS電晶體上之部分該伸張應 力薄膜; 步驟112:形成一高壓縮應力薄膜全面性地覆蓋於該PMOS 電晶體以及該NMOS電晶體;以及 步驟114 :移除形成於該NMOS電晶體上之部分該高壓縮 應力薄膜。 此外,製作本發明之CMOS電晶體78時,在考量節 省製程步驟的前提下,PMOS電晶體32上的伸張應力薄膜 65亦可保留,另選擇性地形成高壓縮應力薄膜74覆蓋 PMOS電晶體32。 請參考第11圖,其為以本發明所述之方法所製作之 CMOS電晶體78的電子顯微鏡照片。請一併參考第2圖及 第11圖,經比較可以發現,以習知方法所製作之CMOS 電晶體10表面會有鍺外擴的現象,因而在鎳化矽層26表 面形成黑色斑點,然,以本發明之方法所製作之CMOS電 晶體78,在金屬矽化物62表面並沒有觀察到任何的黑色 斑點形成。 為避免鍺外擴的情形發生,本發明係在金屬矽化物62 形成前,先將原子半徑小於矽且為電中性的碳原子佈植在 以矽鍺化合物磊晶為材料的PMOS電晶體32的源極/汲極 16 13.73826 46中,另在尚伸張應力薄勝68和金屬矽化物62間形成伸 *張應力緩衝薄膜66。經實驗發現,僅形成伸張應力緩衝薄 .膜%時,隨著伸張應力緩衝薄膜66的厚度增加,抑制鍺 外擴的效果也就愈好,然而伸張應力緩衝薄膜66的增厚並 不利於CMOS電晶體78的離子增益(i〇ngain)效應;因此 配合碳佈植製程,使得摻雜的碳原子停留在矽鍺化合物磊 晶的晶格内,不但增加了矽鍺化合物磊晶的穩定性,且.可 • 減少伸張應力缓衝薄膜60的厚度.,以確保CMOS電晶體 78離子增益的效果,由此可知,本發明係藉由形成於PM〇s 電晶體32之源極/汲極46表面的碳摻雜層60以及伸張應 力緩衝層66,有效遏止了 PMOS電晶體32之源極/汲極46 發生鍺外擴的現象。然而.,若將碳佈植製程的碳原子取代 為同為電中性,且其原子半徑小於矽之其他惰性摻質來進 行佈植時,例如氬(Ar)、鍺、銦(In),並無法達到如本發明 0 所示之遏止鍺外擴的效果。 此外,形成於PMOS電晶體32之源極/汲極46上半部 的碳摻雜層並不限於本較佳實施例所示,在形成金屬矽化 物前’進行碳佈植製程將碳植入PMOS電晶體32之源極/ /及極46。碳摻雜層亦可在形成源極/汲極46的過程中加入, 例如在重摻雜製程植入P型摻質到半導體基底30之前,或 者在重推雜製程後,進行碳佈植製程,將碳植入PMOS電 . 日日體32之源極/汲極46 ;此外亦可在以選擇性磊晶成長製 17 1373826 私形成做為PMOS電晶體32之源極/汲極46的矽鍺化合物 .磊晶的過程中直接加入碳做為磊晶的材料之一,例如,在 •形成矽鍺化合物磊晶的初期先加入少量的碳做為摻質,並 在石夕鍺化合物磊晶形成的製程中,逐漸增加破摻雜的比 例,因而在源極/汲極上半部形成碳摻雜層,且其碳摻質的 /辰度相較於下半部先形成的石夕鍺化合物遙晶内的碳推質濃 度咼,之後再形成一伸張應力緩衝薄膜以及一高伸張應力 • 薄膜在CMOS電晶體表面,以期達成遏止鍺外擴的效果。 同時’在含有碳摻雜的矽鍺化合物磊晶形成後,亦可進行 本發明所揭示之製作CMOS電晶體的方法,選擇性地進行 碳佈植製程’以增加碳原子在PM〇s電晶體之源極/汲極上 半部的摻質濃度。 以本發明所述之方法係在CMOS電晶體源極/汲極表 面的金屬矽化物形成前,先以碳佈植製程在PMOS電晶體 之源極/汲極的上半部植入相當濃度的碳原子,在源極/汲極 上半部,特別是接近表面的地方形成碳摻雜層,之後再形 成金屬矽化物以及具有伸張或壓縮應力的蝕刻停止層於 NMOS電晶體或pm〇S電晶體上,以完成CMOS電晶體的 製作。此外,以本發明之方法所形成之CMOS電晶體,經 歷自行對準金屬矽化物製程、回火製程或快速熱處理製程 等高溫製程的過程中,碳摻雜層可具有阻障的功能,使得 PMOS源極/汲極内的鍺不會發生外擴的情形;其次,以本 18 1373826 發明之方法所製作之CM0S電晶體,無需在金屬矽化物與 源極/汲極間形成矽蓋層(silicon cap),因此做為pm〇S電晶 體源極/汲極的矽鍺化合物磊晶在側壁子附近能保有斜角 (facet),以便提供適度的壓縮應力擠壓pmos電晶體的通 道區域’以達成提高載子在通道區域的遷移率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 園所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為一習知之CMOS電晶體的示意圖。 第2圖為習知之CMOS電晶體的電子顯微鏡照片。 第3圖至第9圖係依據本發明之一較佳實施例所繪示之 CMOS電晶體的製作方法示意圖。 第10圖係為製作本發明之可遏止鍺外擴的CMOS電晶體 的流程示意圖。 第11圖為以本發明所述之方法所製作之CMOS電晶體的 電子顯微鏡照片。 【主要元件符號說明】 10 CMOS電晶體 12 PMOS電晶 14 NMOS電晶體 16 基底 18 P型井 20A、20B 源極/沒極 19 1373826BRIEF DESCRIPTION OF THE DRAWINGS FIG. 10 is a schematic flow chart showing the fabrication of a CMOS device capable of suppressing the external expansion of the present invention. As shown in FIG. 3, a semiconductor substrate 3 is provided, which includes at least one PMOS transistor 32 and at least one NMOS transistor 34'. The NMOS transistor 34 is disposed in a P-well 36 of the semiconductor substrate 30. A gate structure 38A disposed on the surface of the semiconductor substrate 3 and a source/drain 4 θ disposed on both sides of the gate structure 38a are included; • The PM0S transistor 32 is disposed on the semiconductor substrate 3 The well 44 includes a gate structure 38B disposed on the surface of the semiconductor substrate 3 and a source/drain 46 on one side of the gate structure 38B. The gate structures 38A and 38B each include a gate dielectric layer 50, a gate 52 disposed above the gate dielectric layer 50, and a hard mask layer 54' disposed over the gate 52. The layer 5〇 may comprise a conventional dielectric material such as yttrium oxide, ytterbium oxynitride, or smashed stone shovel, or a metal oxide, a metal silicate, a metal aluminate, or a metal. A high-k dielectric material such as a metal oxynitride or a combination of the foregoing materials is formed by thermal oxidation, nitridation, chemical vapor deposition, etc.; the gate 52 may comprise polysilicon a germanium compound (SiGe), a metal, a metal halide, a metal nitride or a metal oxide or a combination thereof; and the hard mask layer 54 may comprise germanium oxide, tantalum nitride, tantalum carbide, hafnium oxynitride, etc. a dielectric material, and sidewalls of the gate structures 38A, 38B are each provided with a thermal oxide layer 56 and a sidewall spacer 58. The sidewalls 10 13-73826 have a single or multi-layer structure and constitute a sidewall. 5 8 materials can 'contain oxidized seconds, tantalum nitride, helium oxide Silicon or other dielectric materials. In order to prevent a short circuit between the transistors, the semiconductor substrate 30 is further provided with a plurality of insulating structures disposed between the M〇S transistors, such as shallow trench isolations between the PMOS transistors 32 and the NMOS transistors 34. And the semiconductor substrate 30 on both sides of the gate structures 38a, 38B is respectively provided with a lightly doped drain (LDD) 5〇a, 50B to prevent the PMOS transistor 32 or the NMOS transistor 34 Thermal electron effect (h〇t eiectf〇n effects). To increase the carrier mobility of the PMOS transistor 32 in the channel region below the gate structure 38B, the source/drain 46 of the PM〇S transistor 32 contains germanium. In the preferred embodiment, the source/pole 46' of the PMOS transistor 32 is formed on the NMOS transistor 34 to form a patterned photoresist (not shown) and then an etching process is performed. The PM〇S transistor 32 gate _ the structure of the semiconductor substrate 3 of the pole structure 38B forms at least one groove (not shown) and then uses a selective epitaxial growth process to grow one of the compounds. Crystallized in the recess, wherein the lattice constant of the bismuth compound is larger than the lattice constant of the semiconductor substrate 3, and extends slightly toward the direction of the transistor channel region, while performing a heavily doping process, implanting P Type dopants (such as boron to the germanium compound on both sides of the gate structure 38B are epitaxial, and the fabrication of the source/drain 46 is completed. In addition, the pressure on the channel region is increased while avoiding the subsequent formation of metal telluride too much. Close to the source/drain 46 junction, preferably the source 1383826 pole/drain 46 of the pM〇s transistor 32 will protrude slightly above the upper surface of the semiconductor substrate 30; however, the source/dot 46 may also be associated with the semiconductor substrate. 30 is flush on the surface, or It is low. On the upper surface of the semiconductor substrate 30, there is no limitation here. As shown in Fig. 4, the NMOS transistor 34 is then covered with a mask (not shown), and a carbon implant (carb) is performed. The process of implanting the source/drain 46 of the PMOS transistor 32 into carbon as a dopant, and forming a carbon doped layer 60 in the upper half of the source/drain 46. The thickness is between about 1 angstrom and 500 angstroms, preferably between about 200 angstroms and 300 angstroms. The implantation energy of the carbon implant process can be determined according to the predetermined planting depth. For example, between 丨KeV and 5 KeV, the dose may be between 1〇13 and 10 atoms/cm2 (atom/cm2). The preferred implant energy is about 2KeV. The preferred implant dose is about 1.05xl015atom/ Cm2; however, the method of the present invention is not limited to implanting only the source/drain 46 of the PM〇s transistor 32. It is also possible to comprehensively apply the NM〇s transistor 34 and the PM〇s transistor 32. Perform a carbon implantation process. Then, a tempering process can be selectively performed, such as a rapid heat treatment process (four) wake up process 'RTP) The high temperature is used to activate the implanted anti-胄 and simultaneously repair the damaged semiconductor substrate in the carbon implant process, and then perform a self-aligned silicide 〇ι· ^ Ae, sahcide) process, forming metal telluride on the surface of source/drain 4〇, 46, ie e>2, for example, metal halide containing nickel, platinum, etc., and metal telluride 62; § ^: from The thickness of the lanthanum is between about 50 angstroms and 500 angstroms, preferably 12 1 373 826, and the thickness is between about 100 angstroms and about 300 angstroms. The processes for forming the metal sulphide 62 are well known to those skilled in the art or are familiar to those skilled in the art. Therefore, it will not be repeated here. As shown in FIG. 5, a first liner layer 64, a tensile stress film 65, and a surface treatment process, such as a rapid thermal processing process or a UV curing process, are sequentially formed. The tensile stress buffer film 65 is strengthened, followed by deposition of a second liner layer 70, wherein the tensile stress film 65 is a multi-layered stress film comprising a tensile stress buffer film 66 and a high tensile stress film 68. And wherein the tensile stress buffer film 66 has a tensile stress value that is smaller than the high tensile stress film 68. In addition, the present invention can also selectively remove the sidewalls 58 of the PMOS transistor 32 and the NMOS transistor 34 before forming a first profile layer 64, a tensile stress film 65, and a second liner layer 70. In order to make the tensile stress film 65 more effectively adjust the lattice arrangement of the channel region of the NMOS transistor 34. Referring to FIG. 6, after the second liner layer 70 is formed, a photoresist coating, exposure, and development process is performed to form a first patterned photoresist 72 to cover the NMOS transistor 34 and perform an etching process. The process, such as an anisotropic etch process, uses the first patterned photoresist 72 as an etch mask, removes the tensile stress buffer film 66 overlying the PMOS transistor 32, the high tensile stress film 68, and the second liner. The layer 70, and in the etching process, the first liner layer 64 with oxygen 13 1373826 as the main material is used as an etch stop layer to protect the underlying PMOS transistor 32. Next, as shown in FIG. 7, after the first patterned photoresist 72 is removed, a high compressive stress film 74 is formed, for example, using a plasma enhanced chemical vapor deposition process again, and the deposited high compressive stress film 74 is comprehensively The PMOS transistor 32 and the NMOS transistor 34 are covered. - Then, as shown in Fig. 8, a photoresist coating, exposure, and development process is again performed to form a second patterned photoresist 76 and cover the entire PMOS transistor 32. Then, an etching process is performed to remove the region not covered by the second patterned photoresist layer 76, that is, the high compressive stress film 74 covering the NMOS transistor 34, and the second patterned photoresist 76 as an etch mask. The two liner layers 70 retain only a portion of the high compressive stress film 74 overlying the gate structure 38B and source/drain 46 surfaces of the PMOS transistor 32. Then, as shown in FIG. 9, the second patterned photoresist layer 76 overlying the PMOS transistor 32 is removed. Thus, one of the CMOS transistors 78 fabricated by the method of the present invention completes the basic fabrication process. The high compressive stress film 74 overlying the PMOS transistor 32 and the tensile stress film 65 overlying the NMOS transistor 34 can be used as a contact hole etch stop layer of the CMOS transistor 78. Then, an inter-layer dielectric layer (ILD layer) (not shown) may be overlaid on the high tensile stress film 68 and the high compressive stress film 74, and then a patterned light 14 13-73826 is used ( As shown in the figure, as an etch mask and an anisotropic etching process, a plurality of contact holes are formed in the interlayer dielectric layer and the tensile stress film 65 and the high compressive stress film 74 as the contact hole etch stop layer. (contact hoIe) (not shown), as a bridge connecting the PMOS transistor 32 and the gate structures 38A, 38B of the NMOS transistor 34, or the source/drain electrodes 40, 46 to other electronic components. Please refer to FIG. 10 , which is a schematic flowchart of a method for fabricating a CMOS transistor according to the present invention, comprising the following steps: Step 100 : providing a semiconductor substrate defining at least one PMOS transistor and at least one NMOS transistor. And one of the source/no-pole of the PMOS transistor is a compound of the compound 3; Step 102: performing a carbon implantation process on the source/drain of the PMOS transistor to form a carbon doping Layered on the upper half of the source/drain of the PMOS transistor; Step 104: performing a self-aligned metal telluride process to form a metal stone on the source/drain surface of the PMOS transistor and the NMOS transistor And forming a tensile stress film comprising a tensile stress buffer film and a high tensile stress film, wherein the tensile stress buffer film has a tensile stress value smaller than the high tensile stress film; Step 108: performing a a surface treatment process, such as a rapid thermal processing process or an ultraviolet curing process to strengthen the tensile stress film; 15 1373826 Step 110: removing a portion of the PMOS transistor formed on the PMOS transistor Stress film; Step 112: forming a high compressive stress film to completely cover the PMOS transistor and NMOS transistor; and a step 114: removing the portion formed on the NMOS transistor of the high compressive stress films. In addition, when the CMOS transistor 78 of the present invention is fabricated, the tensile stress film 65 on the PMOS transistor 32 may be retained while the process step of saving the process is considered, and the high compressive stress film 74 is selectively formed to cover the PMOS transistor 32. . Please refer to Fig. 11, which is an electron micrograph of a CMOS transistor 78 fabricated by the method of the present invention. Referring to FIG. 2 and FIG. 11 together, it can be found that the surface of the CMOS transistor 10 fabricated by the conventional method has a phenomenon in which the surface of the CMOS transistor 10 is expanded outward, thereby forming black spots on the surface of the nickel ruthenium layer 26. The CMOS transistor 78 fabricated by the method of the present invention did not observe any black speckle formation on the surface of the metal telluride 62. In order to avoid the occurrence of enthalpy expansion, the present invention first implants a carbon atom having an atomic radius smaller than 矽 and being electrically neutral in a PMOS transistor 32 which is epitaxially grown with bismuth compound before metal bismuth 62 is formed. In the source/drain 16 of the 13.73826 46, a tensile stress buffer film 66 is formed between the tensile stressor 68 and the metal telluride 62. It has been found through experiments that only the tensile stress buffer film is formed. When the film thickness is increased, as the thickness of the tensile stress buffer film 66 increases, the effect of suppressing the 锗 锗 expansion is better, but the thickening of the tensile stress buffer film 66 is not favorable for CMOS. The ion gain effect of the transistor 78; therefore, in combination with the carbon implantation process, the doped carbon atoms stay in the crystal lattice of the germanium compound epitaxy, which not only increases the stability of the germanium compound epitaxial, Moreover, the thickness of the tensile stress buffer film 60 can be reduced to ensure the effect of the ion gain of the CMOS transistor 78. Thus, the present invention is formed by the source/drain 46 formed in the PM〇s transistor 32. The surface carbon doped layer 60 and the tensile stress buffer layer 66 effectively suppress the 锗-extension of the source/drain 46 of the PMOS transistor 32. However, if the carbon atoms of the carbon implantation process are replaced by other inert dopants which are electrically neutral and whose atomic radius is smaller than 矽, such as argon (Ar), bismuth, indium (In), It is not possible to achieve the effect of suppressing the expansion of the enthalpy as shown in the invention 0. In addition, the carbon doped layer formed on the upper half of the source/drain 46 of the PMOS transistor 32 is not limited to that shown in the preferred embodiment, and the carbon implantation process is performed before the formation of the metal telluride. The source//and the pole 46 of the PMOS transistor 32. The carbon doped layer may also be added during the process of forming the source/drain 46, for example, before the heavily doped process implants the P-type dopant into the semiconductor substrate 30, or after the re-doping process, the carbon implantation process is performed. The carbon is implanted into the PMOS. The source/drain 46 of the Japanese body 32; or the source/drain 46 of the PMOS transistor 32 can be formed by the selective epitaxial growth 17 1373826.锗 compound. In the process of epitaxy, carbon is directly added as one of the epitaxial materials. For example, in the initial stage of the formation of bismuth compound epitaxial, a small amount of carbon is added as a dopant, and the compound is epitaxial in the shixi compound. In the formed process, the proportion of underdoping is gradually increased, and thus a carbon doped layer is formed in the upper half of the source/drain, and the carbon dopant is formed earlier than the lower phase of the first phase. The carbon push concentration in the telecrystal is 咼, and then a tensile stress buffer film and a high tensile stress film are formed on the surface of the CMOS transistor in order to achieve the effect of suppressing the external expansion. At the same time, after the epitaxial formation of the carbon-doped yttrium compound, the method for fabricating a CMOS transistor disclosed in the present invention can also be carried out to selectively perform a carbon implantation process to increase carbon atoms in the PM 〇s transistor. The dopant concentration of the source/dipper upper half. Prior to the formation of the metal telluride on the source/drain surface of the CMOS transistor, the method of the present invention implants a considerable concentration in the upper half of the source/drain of the PMOS transistor by a carbon implantation process. a carbon atom, forming a carbon doped layer in the upper part of the source/drain, especially near the surface, and then forming a metal telluride and an etch stop layer having tensile or compressive stress on the NMOS transistor or pm〇S transistor On, to complete the fabrication of CMOS transistors. In addition, the CMOS transistor formed by the method of the present invention undergoes self-alignment in a high temperature process such as a metal telluride process, a tempering process or a rapid heat treatment process, and the carbon doped layer may have a barrier function, so that the PMOS The enthalpy in the source/drain is not expanded; secondly, the CMOS transistor fabricated by the method of the invention of 18 1373826 does not need to form a cap layer between the metal telluride and the source/drain. Cap), therefore, the bismuth compound epitaxial as the source/drain of the pm〇S transistor can maintain a facet near the sidewall to provide a moderate compressive stress to squeeze the channel region of the pmos transistor. Achieve increased mobility of the carrier in the channel region. The above is only the preferred embodiment of the present invention, and all changes and modifications made by the patent application scope of the present invention should be covered by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a conventional CMOS transistor. Figure 2 is an electron micrograph of a conventional CMOS transistor. 3 to 9 are schematic views showing a method of fabricating a CMOS transistor according to a preferred embodiment of the present invention. Fig. 10 is a flow chart showing the fabrication of the CMOS transistor of the present invention which can suppress the external expansion. Figure 11 is an electron micrograph of a CMOS transistor fabricated by the method of the present invention. [Main component symbol description] 10 CMOS transistor 12 PMOS transistor 14 NMOS transistor 16 substrate 18 P-well 20A, 20B source/no-pole 19 1373826

22A、22B 鬧極結構 24 N型井 26 鎳化矽層 28 高伸張應力薄 膜 30 半導體基底 32 PMOS電晶體 34 NMOS電晶體 36 P型井 38A、38B 閘極結構 40 源極/汲·極 44 N型井 46 源極/沒極 48 淺溝隔離 50 閘極介電層- 52 閘極 54 硬遮罩層 56 熱氧化層 58 側壁子 60 碳摻雜層 62 金屬^夕化物 64 第一概塾層 65 伸張應力薄膜 66 伸張應力緩衝 薄膜 68 高伸張應力薄 膜 70 第二襯墊層 72 第一圖案化光 阻 74 高壓縮應力薄 膜 76 第二圖案化光 阻 78 CMOS電晶體 2022A, 22B Noisy structure 24 N-type well 26 Nickel ruthenium layer 28 High tensile stress film 30 Semiconductor substrate 32 PMOS transistor 34 NMOS transistor 36 P-well 38A, 38B Gate structure 40 Source / 汲 · pole 44 N Well 46 Source/No-pole 48 Shallow trench isolation 50 Gate dielectric layer - 52 Gate 54 Hard mask layer 56 Thermal oxide layer 58 Sidewall 60 Carbon doped layer 62 Metal oxide compound 64 First layer 65 tensile stress film 66 tensile stress buffer film 68 high tensile stress film 70 second liner layer 72 first patterned photoresist 74 high compressive stress film 76 second patterned photoresist 78 CMOS transistor 20

Claims (1)

1373826 101年3月12弓修正替換頁 :十、申請專利範園:^^ -1. -種CMOS電晶體的製作方法包含有: •提供-半導體基底,該半導體基底具有至少—pM〇s電晶 V 體以及至少—NM〇S電晶體,且該PMOS電晶體之源 極/汲極係包含鍺(Ge);- 形成一碳摻雜層於該PMOS電晶體之源極/汲極的上半部; 進行一自行對準金屬矽化物製程; 鲁形專至少一伸張應力薄膜(tensile thin film)覆蓋該半導體 基底、該NMOS電晶體以及該PMOS電晶體;以及 對該伸張應力薄膜進行一表面處理製程。 2.如請求項1所述之製作方法,其中形成該碳摻雜層之方 法係利用一碳佈植製私。 3. 如請求.項2所述之製作方法,其中該碳佈植製程之佈植 _ 能量係介於1 KeV到5 KeV之間,佈植劑量係介於1〇〗3 atom/cm2 至 i〇l6at〇m/cm 之間。 4. ·如請求項2戶斤述之製作方法’其中形成該PM0S電晶體 之該源極/汲極厶方法係包含一重摻雜製程’用以植入p型 摻質於該半導艘泰底,且該碳佈植製程係進行於該重摻雜 锖 1 製程之前。, 21 13738261373826 March 12, 2011 bow correction replacement page: X. Patent application Fan Park: ^^ -1. - A CMOS transistor manufacturing method includes: • Providing a semiconductor substrate having at least -pM〇s electricity a crystal V body and at least a NM〇S transistor, and the source/drain of the PMOS transistor includes germanium (Ge); forming a carbon doped layer on the source/drain of the PMOS transistor a self-aligned metal telluride process; a thin thin film covering the semiconductor substrate, the NMOS transistor, and the PMOS transistor; and a surface of the tensile stress film Process the process. 2. The method of claim 1, wherein the method of forming the carbon doped layer is performed using a carbon cloth. 3. The method of claim 2, wherein the carbon implanting process is between 1 KeV and 5 KeV, and the implant dose is between 1 and 3 atoms/cm2 to i. 〇l6at〇m/cm. 4. The method of claim 2, wherein the source/drain enthalpy method for forming the PMOS transistor comprises a heavily doped process for implanting a p-type dopant in the semiconductor The bottom, and the carbon implantation process is performed before the heavily doped 锖1 process. , 21 1373826 101年3月12日修正替換頁 5.如請求項2所述之製作方法,其中形成該pM〇s€^ 該源極/及極之方法包含一重摻雜製程,用以植入p型摻 貝於該半導體基底,且該碳佈後製程係進行於該重摻雜製 程之後。 、 6·如請求項1所述之製作方法,其中形成該 PMOS電晶體 之源極/汲極之方法包含以下步题: 進行钱刻製程,於該PMOS電晶體内之部分該半導體基 底表面形成至少一凹槽;以及 , 進行一選擇性聶晶.成長(selective epitaxial growth)製程,於 該凹槽内形成一矽鍺化合物磊晶,其中該碳摻雜層係 利用該選擇性磊晶成長製程形成。 7·如請求項6所述之製作方法,其中進行該選擇性磊晶成 長製程時,係加入碳做為摻質。 8.如請求項7.所述之製作方法,其中碳的摻雜濃度隨該矽 鍺化合物磊晶的成長而增加。 9·如請求項1所述之製作方法,其中該表面處理製程係包 含一快速熱處理製程(RTP)或一紫外線硬化(UV curing)製 程。 - 22 1373826 月丨&gt;9修正替換頁! ______: 101年3月12日修正替換頁 10. 如請求項1所述之製作方法,其中該伸張應力薄膜係為 一多層(multi-layered)應力薄膜。 11. 洳請求項10所述之製作方法,其中該多層應力薄膜包 含一伸張應力缓衝薄膜(buffered tensile thin film)以及一高 伸張應力薄膜,且該伸張應力薄膜之伸張應力值係小於該 高伸張應.力薄膜。 —12.如請求項1所述之製作方法,其中於該伸張應力薄膜形 成後5另包含形成一高壓縮應力薄膜覆蓋於該PMO$電晶 -體。 13.—種CMOS電晶體,包含: 一半導體基底 至少一 NMOS電晶體,定義於該半導體基底,該NMOS電 φ 晶體包含一 P型井、一閘極結構設於該P型井之表面 以及一源極/汲極設於該閘極結構之兩側; 至少一 PMOS電晶體,定義於該半導體基底,該PMOS電 晶體包含一 N型井、一閘極結構設於該N型井之表面 以及一源極/汲極設於該閘極結構之兩側,其中該 PMOS電晶體之源極/汲極上半部設有一碳摻雜層;以 . 及 \ \ 一接觸洞蝕刻停止層覆蓋於該NMOS電晶體以及該PMOS 23 1373826 101年3月12日修正替換頁 卜降^/阳修正替換頁I _;__1 電晶體上。 1‘ 14. 如請求項13所述之CMOS電晶體,其中該PMOS電晶 體之該源極/汲極係包含鍺。 15. 如請求項14所述之CMOS電晶體,其中該PMOS電晶 體之該源極/丨及極係為一砍鍺化合物(SiGe)蠢晶。 16. 如請求項13所述之CMOS電晶體,其中該碳摻雜層的 厚度範圍介於100埃(angstrom)到500埃之間。 17. 如請求項13所述之CMOS電晶體,其中該等源極/汲極 表面設有一金屬石夕化物,且各該金屬石夕化物的厚度範圍介 於50埃到500埃之間。 18. 如請求項10所述之CMOS電晶體,其中覆蓋於該NMOS 電晶體上之部分接觸洞蝕刻停止層係為一伸張應力薄膜, 且覆蓋於該PMOS電晶體上之部分接觸洞蝕刻停止層係為 一高壓縮應力薄膜。 19. 如請'求項18之CMOS電晶體,其中該伸張應力薄膜俦 為一多層應力薄膜。 20. 如請求項19之CMOS電晶體,其中該多層應力薄膜包 24 1373826 1。1年3月W修正替換頁 - ---1 101年3月12日修正替換頁 含一伸張應力緩衝薄膜以及一高應力薄膜,且該伸張應力 薄膜之伸張應力強度係小於該高應力薄膜。 十一、圖式:The method of manufacturing the method of claim 2, wherein the method of forming the source/pole includes a heavily doped process for implanting p-type doping The semiconductor substrate is bonded to the semiconductor substrate, and the carbon cloth post-process is performed after the heavy doping process. 6. The method of claim 1, wherein the method of forming the source/drain of the PMOS transistor comprises the following step: performing a process of engraving, forming a portion of the surface of the semiconductor substrate in the PMOS transistor At least one recess; and performing a selective epitaxial growth process to form a germanium compound epitaxial layer in the recess, wherein the carbon doped layer utilizes the selective epitaxial growth process form. 7. The method according to claim 6, wherein the carbon is added as a dopant when the selective epitaxial growth process is performed. 8. The method of claim 7, wherein the doping concentration of carbon increases as the epitaxial growth of the bismuth compound increases. 9. The method of claim 1, wherein the surface treatment process comprises a rapid thermal processing process (RTP) or a UV curing process. - 22 1373826 Month 丨 &gt; 9 correction replacement page! ______: Amendment </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 11. The method of claim 10, wherein the multilayer stress film comprises a buffered tensile thin film and a high tensile stress film, and the tensile stress value of the tensile stress film is less than the height. Stretching should be. Force film. The method of claim 1, wherein the forming of the tensile stress film further comprises forming a high compressive stress film overlying the PMO$ electro-crystal body. 13. A CMOS transistor comprising: a semiconductor substrate having at least one NMOS transistor defined on the semiconductor substrate, the NMOS transistor φ crystal comprising a P-type well, a gate structure disposed on a surface of the P-type well, and a a source/drain is disposed on two sides of the gate structure; at least one PMOS transistor is defined on the semiconductor substrate, the PMOS transistor includes an N-type well, and a gate structure is disposed on the surface of the N-type well and A source/drain is disposed on both sides of the gate structure, wherein a source of the PMOS transistor is provided with a carbon doped layer on the upper half of the drain electrode; and a contact hole etch stop layer is overlaid on the PMOS transistor The NMOS transistor and the PMOS 23 1373826 revised the replacement page on March 12, 2011, and the replacement page I _;__1 on the transistor. The CMOS transistor of claim 13, wherein the source/drain of the PMOS transistor comprises germanium. 15. The CMOS transistor of claim 14, wherein the source/germanium and the gate of the PMOS transistor are a chopped compound (SiGe) doped crystal. 16. The CMOS transistor of claim 13, wherein the carbon doped layer has a thickness ranging from 100 angstroms to 500 angstroms. 17. The CMOS transistor of claim 13, wherein the source/drain electrodes are provided with a metal ruthenium compound, and each of the metal cerium compounds has a thickness ranging from 50 angstroms to 500 angstroms. 18. The CMOS transistor of claim 10, wherein a portion of the contact hole etch stop layer overlying the NMOS transistor is a tensile stress film, and a portion of the contact hole etch stop layer overlying the PMOS transistor It is a high compressive stress film. 19. For the CMOS transistor of claim 18, wherein the tensile stress film 俦 is a multilayer stress film. 20. The CMOS transistor of claim 19, wherein the multilayer stress film package 24 1373826 1. March 1st W correction replacement page - -1 March 12, 101 revised replacement page comprising a tensile stress buffer film and A high stress film, and the tensile stress strength of the tensile stress film is smaller than the high stress film. XI. Schema: 2525
TW97125048A 2008-07-03 2008-07-03 Cmos transistor and the method for manufacturing the same TWI373826B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97125048A TWI373826B (en) 2008-07-03 2008-07-03 Cmos transistor and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97125048A TWI373826B (en) 2008-07-03 2008-07-03 Cmos transistor and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201003849A TW201003849A (en) 2010-01-16
TWI373826B true TWI373826B (en) 2012-10-01

Family

ID=44825705

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97125048A TWI373826B (en) 2008-07-03 2008-07-03 Cmos transistor and the method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI373826B (en)

Also Published As

Publication number Publication date
TW201003849A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
US8772878B2 (en) Performance enhancement in PMOS and NMOS transistors on the basis of silicon/carbon material
TWI630644B (en) Semiconductor structure and manufacturing method thereof
JP4937253B2 (en) Techniques for forming contact insulation layers and silicide regions with different properties
US7586153B2 (en) Technique for forming recessed strained drain/source regions in NMOS and PMOS transistors
KR101605150B1 (en) In situ formed drain and source regions including a strain inducing alloy and a graded dopant profile
TWI411109B (en) Semiconductor device and method for production of semiconductor device
TWI385735B (en) Method for forming a strained channel in a semiconductor device
US7569437B2 (en) Formation of transistor having a strained channel region including a performance enhancing material composition utilizing a mask pattern
JP2008193060A (en) Semiconductor device and manufacturing method of semiconductor device
JP2008283182A (en) Method of manufacturing pmos transistor, and method of manufacturing cmos transistor
US7754555B2 (en) Transistor having a channel with biaxial strain induced by silicon/germanium in the gate electrode
KR101539416B1 (en) Reduction of threshold voltage variation in transistors comprising a channel semiconductor alloy by reducing deposition non-uniformities
US8518784B2 (en) Adjusting of strain caused in a transistor channel by semiconductor material provided for threshold adjustment
TWI495016B (en) A semiconductor device comprising a metal gate stack of reduced height and method of forming the same
WO2013185397A1 (en) Semiconductor structure and manufacturing method thereof
US8999803B2 (en) Methods for fabricating integrated circuits with the implantation of fluorine
JP4846167B2 (en) Manufacturing method of semiconductor device
US8338892B2 (en) Strain enhancement in transistors comprising an embedded strain-inducing semiconductor alloy by corner rounding at the top of the gate electrode
JP2009252895A (en) Semiconductor device and method of manufacturing the same
JP2003203927A (en) Method of manufacturing semiconductor device
JP3518059B2 (en) Method of manufacturing MIS transistor
JPWO2005101477A1 (en) Semiconductor device and manufacturing method thereof
KR20060063183A (en) Semiconductor device and method of manufacturing the same
TWI373826B (en) Cmos transistor and the method for manufacturing the same
WO2009084376A1 (en) Semiconductor device and process for producing the semiconductor device