TWI362138B - A multi-band bandpass filter - Google Patents
A multi-band bandpass filter Download PDFInfo
- Publication number
- TWI362138B TWI362138B TW97116690A TW97116690A TWI362138B TW I362138 B TWI362138 B TW I362138B TW 97116690 A TW97116690 A TW 97116690A TW 97116690 A TW97116690 A TW 97116690A TW I362138 B TWI362138 B TW I362138B
- Authority
- TW
- Taiwan
- Prior art keywords
- shaped
- pass filter
- resonant cavity
- band pass
- band
- Prior art date
Links
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Description
1362138 «. % * 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種微波電路,特別是關於一種無線通 訊電路之多頻帶通濾波器。 【先前技術】 ' 躲無線微波頻段之通訊系統而言,帶通誠器係為 其相虽重要的元件之-。近年來,由於通訊領域的裳置多 ® 朝向低側冋〔Low proflle〕、重量輕、高選擇性及多頻段 的趨勢’因此多頻帶通濾 '波器之設計儼然已成為目前通訊 領域中重要的發展標的。 ί物’在雙縣訊系統巾,制雙頻帶H皮器可經 由兩個單頻據波元件經過適當輕接形成,然而,該麵接方 式將使濾波器電路之整體面積增加,進而導致成本之增加 。有鑑於此,目前習用雙頻帶通濾波器大多使用微帶線及 其他耦合方式進行微波濾波器設計,其不但可縮小電路整 鲁 冑面積及成本’且其本身為傳輸線結構而使得頻率響應具 有週期性,以便能藉由適當的調整週期出現的通帶響應, 進而達到預期的雙頻段特性。 * 同樣的,三頻段以上的帶通濾波器亦可藉由微帶線及1362138 «. % * IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a microwave circuit, and more particularly to a multi-band pass filter for a wireless communication circuit. [Prior Art] In the communication system for avoiding the wireless microwave band, the Tongcheng device is an important component of the phase. In recent years, due to the trend of low-side 冋 [Low proflle], light weight, high selectivity and multi-band in the field of communication, the design of multi-band filter has become an important communication field. The development of the target. ί物' in the Shuangxianxun system towel, the dual-band H-skin device can be formed by two light-frequency components that are properly connected by light. However, the face-to-face approach will increase the overall area of the filter circuit, which in turn leads to cost. Increase. In view of this, the conventional dual-band pass filters mostly use microstrip lines and other coupling methods for microwave filter design, which not only can reduce the loop area and cost of the circuit and its own transmission line structure makes the frequency response have Periodicity so that the expected dual-band characteristics can be achieved by the passband response that occurs during the appropriate adjustment period. * Similarly, bandpass filters above the three-band band can also be used with microstrip lines and
• 輕合方式之技術進行設計。例如:Chen,C.F.等人於IEEE• Lightweight technology for design. For example: Chen, C.F., etc. in IEEE
Trans. Microw. Theory Tech.期刊發表"Design of Dual- andTrans. Microw. Theory Tech. Journal Publish "Design of Dual- and
Triple- Passband Filters Using Alternately Cascaded Multiband Resonators” 一文,即是利用改變微帶線結構控 制主頻及諧波的共振頻率,並在一 r〇4〇〇3基板上形成一 —5 — 特定微帶線結構之三頻帶通濾波器,如第i及2圖所示, 其中表1及2分別為第1及2圖的頻率響應特性分析表。 1弟1圖所示三頻帶通遽波器之滴率響應特性。Triple- Passband Filters Using Alternately Cascaded Multiband Resonators, which uses a modified microstrip line structure to control the resonant frequency of the dominant frequency and harmonics, and forms a 5-5 specific microstrip line on a r〇4〇〇3 substrate. The structure of the three-band pass filter, as shown in Figures i and 2, wherein Tables 1 and 2 are the frequency response characteristics analysis table of Figures 1 and 2, respectively. 1D1 shows the drop of the three-band pass chopper Rate response characteristics.
中心頻率 頻寬 卞f H Ί工 插入損失 2.5GHz 一 4% 2.9dB 3.6GHz 4% 2.7dB 5.1GHz 6% 2.3dB 表2第2圖所示三頻帶通渡波器之頻率響應特性。Center frequency Bandwidth 卞f H Completion Insertion loss 2.5GHz - 4% 2.9dB 3.6GHz 4% 2.7dB 5.1GHz 6% 2.3dB The frequency response characteristics of the three-band pass-through waver shown in Figure 2 of Table 2.
中心頻率 頻寬 插入損失 2.3GHz 3.8% 2.5dB 3.7GHz 6.8% 1.9dB 5.3GHz 5% 2.9dB 另外,Lee C.H.等人於 IEEE Microw. Wireless Component Lett.期刊發表 '、Design of a New Tri-Band Microstrip BPF Using Combined Quarter-Wavelength SIRsr/ 一文,利用一 λ/4微帶線及一步階阻抗共振器〔stepped Impedance Resonator, SIR〕結構在一 RT/Duroid 6010 基板 上進行一三頻帶通濾波器之設計,如第3圖所示,其中表 3為第3圖的頻率響應特性分析表。 表3第3圖所示三頻帶通濾波器之頻率響應特性。Center frequency bandwidth insertion loss 2.3GHz 3.8% 2.5dB 3.7GHz 6.8% 1.9dB 5.3GHz 5% 2.9dB In addition, Lee CH et al. published in the IEEE Microw. Wireless Component Lett. Journal, Design of a New Tri-Band Microstrip BPF Using Combined Quarter-Wavelength SIRsr/, a λ/4 microstrip line and stepped Impedance Resonator (SIR) structure is used to design a three-band pass filter on an RT/Duroid 6010 substrate. As shown in Fig. 3, Table 3 is a frequency response characteristic analysis table of Fig. 3. The frequency response characteristics of the three-band pass filter shown in Fig. 3 in Table 3.
中心頻率 頻寬 插入損失 1.57GHz 8.2% 1.5dB 2.45GHz 7.3% 1.34dB 5.25GHz 9.9% 〇.91dB 然而,一般而言,上述習用具有下列缺點,例如:承 1362138 * · 【實施方式】 為讓本發明之上述及其他目的 易懂,下文特舉本料之較 $點能更明顯 作詳細說明如下: 、j並配合所附圖式, 頰 請參照第4a至奸圖所示,本發明較佳* 帶通紐器之結構分別如第4 a施例之多 帶通遽波元件1、—第- ®所不係包含一第— -从, 币〜▼通濾波元件2、一筮=册 兀件3及-第四帶通遽 帛-讀濾波Center frequency bandwidth insertion loss 1.57GHz 8.2% 1.5dB 2.45GHz 7.3% 1.34dB 5.25GHz 9.9% 〇.91dB However, in general, the above-mentioned conventional use has the following disadvantages, for example: 承1362138 * · [Embodiment] The above and other objects of the invention are readily apparent. The following is a more detailed description of the present invention as follows: j, in conjunction with the drawings, the cheeks are shown in reference to 4a to the trait, and the present invention is preferred. * The structure of the band-passing device is as follows: the multi-band pass chopping element 1 of the 4th embodiment, the - - - does not contain a first - -, the coin - ▼ pass filter element 2, a 筮 = book Piece 3 and - fourth band pass 遽帛-read filter
、3、4係分別由不同特各該帶通錢元件U 如第4e圖所示,該第—楚:、、’及共振腔結構所構成,且 一认振人 至第三帶通滤波元件1、2、3利用 ^,再將^^形成—三鮮通缝ϋ,並如第4f圖 第4e圖的1^、册♦、DGS結構之第四帶通濾波元件組合至 器。、—如通錢11,以軸本發明之多頻帶通遽波 笛第^圖所示’該第一帶通渡波元件1具有一 第一 L型傳輪導绫n ^ SIR高頻共振腔13、 ^ L型傳輸導線12、一第一The 3, 4 series are respectively composed of different types of money-passing elements U, as shown in Fig. 4e, the first - Chu:,, and the resonant cavity structure, and a sensitized person to the third band pass filter element 1, 2, 3 use ^, then ^ ^ formed - Sanxian through the seam, and as shown in Figure 4f Figure 4e, the first band pass filter components of the DGS structure are combined. , such as the money 11, according to the multi-band wanted wave flute of the present invention, the first band pass wave wave element 1 has a first L-shaped pass wheel guide n ^ SIR high frequency resonant cavity 13 , ^ L-shaped transmission wire 12, a first
型傳輸導線lu彡成在Λ 高頻共振腔14。該第一L - L型傳輪導線„之=埠傳輸導線5之-側,且該第 #楚一 ^ 端係連接該第一埠傳輸導線5,而 =一 *、n频共振腔13係形成在該L型傳輸導線U之 值二共同形成一U型外框共振結構;而該第二[型 二L型傳輪導線傳輸導線6之—侧,且該第 ^ ^ - QTP - 之一柒係連接該第二埠傳輸導線6,而 一㈣共振腔14係形成在該第三L型傳輸導線 9 12之另〆端,以形成另一 U型外框共振結構,該二幻尺高 頻共振腔13、14係相互對位形成在該外框共振結構之一側 。如第4a圖所示,該二11型外框共振結構係間隔—距離 而相對設置,以形成一完整的外框共振結構。如第5圖所 示,藉由該第一帶通濾波元件1的端點耦合結構可產生至 少一1.57GHz之中心頻率點〔另包— 率點〕。 5.2 GHz之中心頻 請再參照第4b圖所示’該第二帶通濾波元件2具有 一第一 U型又/2共雜21及一第二u型入/2共振腔 該第一 U型又/2共振腔21及該第二υ型λ/2共振腔22 係間隔同樣的距離而相對設置,且該第一u 01 » ^ ^ Ττ 土 并振腔 1 λ/2共振腔22分賴開口係朝向相反方 向。如以圖所示’藉由該第二帶通遽波 合結構可產生-廳ΗΖ之中心頻率點,且如第4=二 圖:::第二帶通遽波元件2係形成在該第-帶通遽波 兀件1之外框共振結構之内。 / f再參照第4e圖所示,該第三帶通據波元件3實質上 係-端點_合的雙碱波H,如第7圖所示,其可產生一 2.45 GHz及—5.2 GHz之中心頻率點。該第三帶通濟波元 件3係設置在料框共振結構之另—側,該第三帶通滤波 兀件3係呈-帽狀共振腔結構,其具有—帽頂傳輪導線31 二一第:帽緣傳輸導線32及一第二帽緣傳輸導線33,該 第-及第:帽緣傳輸導線3 2、3 3係對稱_形成於該帽頂 傳輸導線31之二端部,且分解行設置在該第―蟑傳輸導 1362138 盧 · 線5及該第二埠傳輸導線6之另_側。由第7圖可知,該 第三帶财波元件3在5.2版之中傾率點處的上裙帶 ^pperskirt〕不佳,惟’請再參考第5圖所示,該缺點可 藉由該第-帶通遽波元件丨在5 2 GHz +心頻率所產生的 零點進行改善。 —請再參照第4d圖所示,該第四帶通瀘波元件4具有 -第- U型DGS共振腔41及-第二u型DGS共振腔42 。該第- U型DGS共振腔41在二末端分別形成—擴寬部 川;同樣的’該第二U型DGS共振腔U亦在二末端分 別形成一擴寬部42卜其中該第一 ^DGs共振腔41之 開口係朝向該第二U型DGS共振腔42之開口,且該第一 U型DGS共振腔41之二擴寬部411之末端位置與該第二 U型DGS共振腔42之二擴寬部421之末端位置係分別間 隔-距離㈣位設置。藉由該第四帶通纽元件之設計, 如第8圖所示’其可產生—35GHz之中心頻率點。 本發明利用前述之不同共振腔組合理論將第如至4d 圖所不之第一至第四帶通濾波元件!、2、3、4相互組合在 一基板7上,例如形成在一 FR4電路基板、一氧化鋁基板 、一 Duroid基板或一陶瓷基板上,較佳而言,本發明係將 該多頻帶賴、波器組合至—具有高介電係數及較佳品質因 數之 AB206〔 A=Mg、Zn、Ca ; B=Ta、Nb〕陶兗基板上, 本發明並將所欲設狀該四麵纽合基狀介電係數及 厚度推算出各該帶賴波器結構之幾何尺寸〔例如微帶線 之長及寬〕,再利用一電磁模擬軟體將所設計之各個濾波 —11 — 1302138 ·· & ,AutoCAD㈣繪製出實際結構’並配合網印技術將該 四個帶通遽波元件卜2、3、4網印在該基板7上如第 f圖所示*本發明之電路也可採帛不同之製造方法 ’例如蒸鍍法而獲得。 在網印該四個帶通錢元件卜2、3、4時,請再參 照第知圖所示,該第―、第二及第三帶通滤波元件卜2The type of transmission wire is turned into a high frequency resonant cavity 14. The first L-L type transmission wire „== the side of the transmission line 5, and the first #楚一^ end is connected to the first 埠 transmission line 5, and the =1, n frequency resonant cavity 13 system Forming a value of two on the L-shaped transmission line U to form a U-shaped outer frame resonance structure; and the second [type two-type L-type transmission wire transmission line 6 - side, and the first ^ ^ - QTP - one The 柒 is connected to the second 埠 transmission line 6, and a (four) resonant cavity 14 is formed at the other end of the third L-shaped transmission line 9 12 to form another U-shaped outer frame resonance structure, the two illusion height The frequency resonant cavities 13, 14 are mutually aligned on one side of the outer frame resonance structure. As shown in Fig. 4a, the two 11-type outer frame resonance structures are arranged at intervals-distance to form a complete outer The frame resonance structure. As shown in Fig. 5, the end point coupling structure of the first band pass filter element 1 can generate at least a center frequency point of 1.57 GHz (additional rate point). 5.2 GHz center frequency Referring again to FIG. 4b, the second band pass filter element 2 has a first U-shaped and /2 common impurity 21 and a second U-shaped input//2 resonant cavity. The first U-shaped The /2 resonant cavity 21 and the second υ-type λ/2 resonant cavity 22 are oppositely disposed at the same distance, and the first u 01 » ^ ^ Ττ soil and the vibration cavity 1 λ/2 resonant cavity 22 are separated by openings The system is oriented in the opposite direction. As shown in the figure, the central frequency point of the hall can be generated by the second band pass-through structure, and as in the 4th=2:::2nd bandpass chopper element 2 Formed in the outer frame resonance structure of the first band-pass chopping element 1. /f Referring again to FIG. 4e, the third band-passing wave element 3 is substantially a system-end point-to-double The alkali wave H, as shown in Fig. 7, can generate a center frequency point of 2.45 GHz and -5.2 GHz. The third band-passing wave element 3 is disposed on the other side of the frame resonance structure, the third The band pass filter element 3 is a cap-shaped cavity structure having a cap top transfer wire 31 two-one: a cap edge transmission wire 32 and a second cap edge transmission wire 33, the first and the third cap The edge transmission wires 3 2, 3 3 are symmetrically formed at both ends of the cap transmission wire 31, and the decomposed rows are disposed on the first transmission guide 1362138 Lu·5 and the second transmission wire 6 From the other side, it can be seen from Fig. 7 that the upper belt ^pperskirt of the third belt financial component 3 in the 5.2 version is not good, but please refer to FIG. 5 again. The improvement is achieved by the zero point generated by the first band-pass chopper element at the 5 2 GHz + heart frequency. - Referring again to Figure 4d, the fourth band pass chopping element 4 has a - U-type DGS resonant cavity 41 and - second u-type DGS resonant cavity 42. The first U-shaped DGS resonant cavity 41 is formed at the two ends - a widened portion; the same 'the second U-shaped DGS resonant cavity U is also in two A widening portion 42 is formed at the end, wherein the opening of the first DGs resonant cavity 41 faces the opening of the second U-shaped DGS resonant cavity 42, and the two widened portions 411 of the first U-shaped DGS resonant cavity 41 The end position of the second U-shaped DGS resonant cavity 42 and the end position of the second widened portion 421 are spaced apart by a distance (four). By the design of the fourth band-pass element, as shown in Fig. 8, it can produce a center frequency point of -35 GHz. The present invention utilizes the different resonant cavity combination theory described above to first pass the first to fourth band pass filter elements as shown in the 4d figure! 2, 3, 4 are combined with each other on a substrate 7, for example, on an FR4 circuit substrate, an alumina substrate, a Duroid substrate or a ceramic substrate. Preferably, the present invention is based on the multi-band, The wave device is combined to the AB206 [A=Mg, Zn, Ca; B=Ta, Nb] ceramic substrate having a high dielectric constant and a good quality factor, and the present invention is to be configured with the four-sided bonding The basic dielectric constant and thickness are used to calculate the geometry of each of the stripped filter structures (for example, the length and width of the microstrip line), and then each of the designed filters is filtered using an electromagnetic simulation software - 11 - 1302138 · · & , AutoCAD (4) draws the actual structure 'and cooperates with the screen printing technology to print the four bandpass chopper components 2, 3, 4 on the substrate 7 as shown in Figure f. * The circuit of the present invention can also be different. The production method is obtained, for example, by a vapor deposition method. When printing the four belt money components, 2, 3, and 4, please refer to the first, second, and third bandpass filter components.
係、·周印在該AB2〇6基板之一面;而該AB必基板之另 一面係形心接地面’如第4 f ®所示,本發明在該接地 面以λ /2躲度挖㈣成該第四帶通濾波元件4之結構。The system is printed on one side of the AB2〇6 substrate; and the other side of the AB substrate is a solid ground contact surface as shown in FIG. 4 f ® , and the present invention is dug at the ground plane by λ /2 (4) The structure of the fourth band pass filter element 4 is formed.
在進行該第一、第二及第三帶通澹波元件1、2、3之 組合時,為了避免該三個帶通濾波元件1、2、3之間因交 互搞合所彳丨起_率轉,部分的帶通濾波元件必須進行 Μ冓的調整’如第4e及4f圖所示,該第—帶通濾波元件i 之第一 L型傳輸導線U連接該第一埠傳輸導線5之端及第 二L型傳輸導線12連接該第二埠傳輸導線6之端分別形 成一擴寬部111、121 ;另外,該第二帶通濾波元件2之第 一 U型λ/2共振腔21的二端形成二延伸部211、212,其 中一延伸部211的末端與另一延伸部212之末端係相互對 位,同樣的,該第二帶通濾波元件2之第二xj型;(/2共振 腔22的二端亦形成二延伸部22卜222,且該二延伸部221 、222個別的末端亦相互對位。 本發明在該ΑΒ2〇6基板7上形成該四個帶通濾波元件 1、2、3、4後’可利用一網路分析儀進行其特性的量測, 如表4所示,且配合參照第9圖所示,其揭示該四個帶通 一 12 — 遽波元件i、2、3、4之夂 響應特性When the combination of the first, second and third band pass chopping elements 1, 2, 3 is performed, in order to avoid the interaction between the three band pass filter elements 1, 2, 3 due to interaction _ Rate conversion, part of the band pass filter component must be adjusted Μ冓" as shown in Figures 4e and 4f, the first L-type transmission line U of the first band-pass filter element i is connected to the first 埠 transmission line 5 The ends of the second L-type transmission line 12 connected to the second transmission line 6 respectively form a widening portion 111, 121; in addition, the first U-type λ/2 resonant cavity 21 of the second band-pass filter element 2 The two ends form two extensions 211, 212, wherein the end of one extension 211 is aligned with the end of the other extension 212, and the second xj type of the second band pass filter element 2; The two ends of the resonant cavity 22 also form two extending portions 22 222, and the individual ends of the two extending portions 221 and 222 are also aligned with each other. The present invention forms the four band pass filter elements on the ΑΒ2〇6 substrate 7. After 1, 2, 3, 4, 'a network analyzer can be used to measure its characteristics, as shown in Table 4, and with reference to Figure 9, Revealing the response characteristics of the four bandpass-12-chopper components i, 2, 3, and 4
韻粜缴ί所述’本發明四頻帶通據波元件1、2、3、4之 個:二應:性相較於習用而言〔與表丨、2、3比較〕,其 的頻見及插人損失均有獲得較佳的特性,且由於該多 2通m係形成在具有高介電係、數及較佳品質因數之 土 t,因此可進-步縮小尺寸及改善高頻特性;且更f 要的疋’本發明因具有四個符合目前商用頻段之頻帶,而 相較於制㈣帶㈣波!!可獲得較佳賴段選擇性。 雖然本發明已利用上述較佳實施例揭示,然其並非用以阳 定本發明’任何熟習此技藝者在不脫離本發明之精神和|| 圍之内’相對上述實施例進行各種更動與修改仍屬本發明 所保護之技術範疇,因此本發明之保護範圍當視後附之寺 請專利範圍所界定者為準。 —13 — 1362138 « « 【圖式簡單說明】 第1圖:習用多頻帶通濾波器之示意圖。 第2圖:習用多頻帶通濾波器之示意圖。 第3圖:習用多頻帶通濾波器之示意圖。 第4a圖:本發明較佳實施例之多頻帶通濾波器的第一 帶通濾波元件示意圖。 第4b圖:本發明較佳實施例之多頻帶通濾波器的第二 帶通濾波元件示意圖。 第4c圖:本發明較佳實施例之多頻帶通濾波器的第三 帶通濾波元件示意圖。 第4d圖:本發明較佳實施例之多頻帶通濾波器的第四 帶通濾波元件示意圖。 第4e圖:本發明較佳實施例之多頻帶通濾波器當組合 第一至第三帶通濾波元件之示意圖。 第4f圖:本發明較佳實施例之多頻帶通濾波器當組合 第一至第四帶通濾波元件之示意圖。 第5圖:本發明較佳實施例之多頻帶通濾波器的第一帶 通濾波元件的頻率響應特性圖。 第6圖:本發明較佳實施例之多頻帶通濾波器的第二帶 通濾波元件的頻率響應特性圖。 第7圖:本發明較佳實施例之多頻帶通濾波器的第三帶 通濾波元件的頻率響應特性圖。 第8圖:本發明較佳實施例之多頻帶通濾波器的第四帶 通濾波元件的頻率響應特性圖。 —14 — 1362138 * · 第9圖:本發明較佳實施例之多頻帶通濾波器的第一至 第四帶通濾波元件組合後的頻率響應特性圖。韵粜付ί The 'four-band pass wave elements 1, 2, 3, 4 of the present invention: two should be: compared with the conventional use [compared with the table 丨, 2, 3], the frequency of And the insertion loss has better characteristics, and since the multi-pass m system is formed in the soil t having a high dielectric system, a number and a better quality factor, the size can be further reduced and the high frequency characteristics can be improved. And more f 疋 'The invention has four bands that meet the current commercial frequency band, compared to the system (four) band (four) wave! ! You can get better selectivity. Although the present invention has been disclosed in the above-described preferred embodiments, it is not intended to be used in the present invention. Any of the skilled in the art will be able to make various changes and modifications with respect to the above-described embodiments without departing from the spirit and scope of the present invention. It belongs to the technical scope protected by the present invention, and therefore the scope of protection of the present invention is subject to the definition of the patent scope of the attached temple. —13 — 1362138 « « [Simple description of the diagram] Figure 1: Schematic diagram of the conventional multi-band pass filter. Figure 2: Schematic diagram of a conventional multi-band pass filter. Figure 3: Schematic diagram of a conventional multi-band pass filter. Figure 4a is a schematic diagram of a first band pass filter component of a multi-band pass filter in accordance with a preferred embodiment of the present invention. Figure 4b is a schematic diagram of a second band pass filter component of a multi-band pass filter in accordance with a preferred embodiment of the present invention. Figure 4c is a schematic diagram of a third band pass filter component of a multi-band pass filter in accordance with a preferred embodiment of the present invention. Figure 4d is a diagram showing a fourth band pass filter component of the multi-band pass filter of the preferred embodiment of the present invention. Figure 4e is a diagram showing the combination of the first to third band pass filter elements of the multi-band pass filter of the preferred embodiment of the present invention. Figure 4f is a diagram showing the combination of the first to fourth band pass filter elements of the multi-band pass filter of the preferred embodiment of the present invention. Figure 5 is a graph showing the frequency response characteristics of the first band pass filter element of the multi-band pass filter of the preferred embodiment of the present invention. Figure 6 is a graph showing the frequency response characteristics of the second band pass filter element of the multi-band pass filter of the preferred embodiment of the present invention. Figure 7 is a graph showing the frequency response characteristics of the third band pass filter element of the multi-band pass filter of the preferred embodiment of the present invention. Figure 8 is a graph showing the frequency response characteristics of the fourth band pass filter element of the multi-band pass filter of the preferred embodiment of the present invention. - 14 - 1362138 * - Fig. 9 is a diagram showing the frequency response characteristics of the first to fourth band pass filter elements of the multi-band pass filter of the preferred embodiment of the present invention.
【主要元件符號說明】 1 第一帶通濾波元件 111擴寬部 121擴寬部 14 第二SIR高頻共振腔 21 第一 U型;1/2共振腔 212延伸部 221延伸部 3 第三帶通濾波元件 32第一帽緣傳輸導線 4 第四帶通濾波元件 41 第一 U型DGS共振腔 42 第二U型DGS共振腔 5 第一埠傳輸導線 11第一 L型傳輸導線 12第二L型傳輸導線 13 第一 SIR高頻共振腔 2 第二帶通濾波元件 211延伸部 22 第二U型λ/2共振腔 222延伸部 31帽頂傳輸導線 33 第二帽緣傳輸導線 411擴寬部 421擴寬部 6 第二埠傳輸導線 —15 —[Description of main component symbols] 1 First band pass filter element 111 widened portion 121 widened portion 14 Second SIR high frequency resonant cavity 21 First U-shaped; 1/2 resonant cavity 212 extended portion 221 extended portion 3 Third band Pass filter element 32 first cap edge transmission wire 4 fourth band pass filter element 41 first U-shaped DGS resonator 42 second U-shaped DGS resonator 5 first turn transmission wire 11 first L-type transmission wire 12 second L Type transmission line 13 first SIR high frequency resonant cavity 2 second band pass filter element 211 extension 22 second U type λ/2 resonant cavity 222 extension 31 cap top transmission wire 33 second cap edge transmission wire 411 widened portion 421 widened portion 6 second transmission wire - 15 -
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97116690A TWI362138B (en) | 2008-05-06 | 2008-05-06 | A multi-band bandpass filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97116690A TWI362138B (en) | 2008-05-06 | 2008-05-06 | A multi-band bandpass filter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200947798A TW200947798A (en) | 2009-11-16 |
TWI362138B true TWI362138B (en) | 2012-04-11 |
Family
ID=44870414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97116690A TWI362138B (en) | 2008-05-06 | 2008-05-06 | A multi-band bandpass filter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI362138B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI639273B (en) | 2012-05-11 | 2018-10-21 | 國立中山大學 | Stacked inductance resonator and bandpass filter of using the same |
-
2008
- 2008-05-06 TW TW97116690A patent/TWI362138B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200947798A (en) | 2009-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators | |
Lai et al. | Design of tri-band filter based on stub loaded resonator and DGS resonator | |
Lan et al. | A tri-band bandpass filter with wide stopband using asymmetric stub-loaded resonators | |
US8970325B2 (en) | Laminated bandpass filter | |
CN108598632B (en) | A kind of SIW-CPW ultra-wide band filter with double zero point Wide stop bands | |
JP2010206550A (en) | Antenna device and antenna element used therefor | |
TW201212374A (en) | Defected ground structure with shielding effect | |
Yang et al. | Ultra-wideband bandpass filter with hybrid quasi-lumped elements and defected ground structure | |
Panda et al. | A wide-band monopole antenna in combination with a UWB microwave band-pass filter for application in UWB communication system | |
WO2007138783A1 (en) | Bandpass filter, high-frequency module using the same, and radio communication device using them | |
CN107086374A (en) | One kind miniaturization low section ultra-wide band connection frequency selection surface and its design method | |
CN109672020A (en) | A kind of double trap flexible antennas of the ultra wide band of coplanar wave guide feedback | |
CN106099360A (en) | Dielectric resonator filter antenna | |
JP4807456B2 (en) | Microstrip line filter and manufacturing method thereof | |
CN210926320U (en) | Filtering dipole antenna applied to Sub-6GHz frequency band | |
Qin et al. | Complementary compact microstrip resonant cell and its applications to microwave single-and dual-band bandpass filters | |
TWI362138B (en) | A multi-band bandpass filter | |
JP2006310895A (en) | Filter circuit, band pass filter, and method of manufacturing filter circuit | |
CN109449582A (en) | A kind of low section wideband filtered antenna | |
Li et al. | Dual-band ultra-wideband bandpass filter | |
CN202930556U (en) | Novel three-trapped wave ultra-wide bandwidth antenna based on dumbbell-shaped grooves | |
US7616080B2 (en) | Bandpass filter | |
CN106898848B (en) | A kind of ultra-wide stop-band low-pass filter of H-type open circuit minor matters combination palisading type defect ground structure | |
Cahyasiwi et al. | Circular Patch Filtering Antenna Design Based on Hairpin Bandpass Filter | |
Yang et al. | A compact UWB antenna with sharp dual band-notched characteristics for lower and upper WLAN band |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |