200947798 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種微波電路,特別是關於一種無線通 ·. 訊電路之多頻帶通濾波器。 【先前技術】 對於無線微波頻段之通訊系統而言,帶通滤波器係為 其相虽重要的元件之-。近年來,由於通訊領域的裝置多 © 朝向低側117〔 Low Proflle〕、重量輕、高選擇性及多頻段 的趨勢,因此多頻帶通濾波器之設計慑然已成為目前通訊 領域中重要的發展標的。 例如,在雙頻通訊系統中,習用雙頻帶通濾波器可經 由兩個單頻濾波元件經過適當耦接形成,然而,該耦接方 式將使濾波器電路之整體面積增加,進而導致成本之增加 。有鑑於此,目前習用雙頻帶通濾波器大多使用微帶線及 其他麵合方式進行微波濾波器設計,其不但可縮小電路整 ❹體面積及成本,且其本身為傳輸線結構而使得頻率響應具 有週期性,以便能藉由適當的調整週期出現的通帶響應, 進而達到預期的雙頻段特性。 - 同樣的,三頻段以上的帶通濾波器亦可藉由微帶線及 搞合方式之技術進行設計。例如:Chen, C.F.等人於IEEE Trans. Microw. Theory Tech.期刊發表、Design ofDual_ an(}200947798 IX. Description of the Invention: [Technical Field] The present invention relates to a microwave circuit, and more particularly to a multi-band pass filter for a wireless communication circuit. [Prior Art] For the communication system of the wireless microwave band, the band pass filter is an important component of the phase. In recent years, the design of multi-band pass filters has become an important development in the field of communication due to the trend of low-side devices 117 [Low Proflle], light weight, high selectivity and multi-band. Subject. For example, in a dual-band communication system, a conventional dual-band pass filter can be formed by appropriately coupling two single-frequency filter components. However, the coupling method will increase the overall area of the filter circuit, thereby causing cost. increase. In view of this, the conventional dual-band pass filter mostly uses microstrip lines and other face-to-face methods for microwave filter design, which not only reduces the overall body area and cost of the circuit, but also makes the frequency response of the transmission line structure itself. It has periodicity so that the expected passband response can be achieved by an appropriate adjustment period. - Similarly, bandpass filters above the three-band range can also be designed using microstrip lines and techniques. For example: Chen, C.F., et al. published in IEEE Trans. Microw. Theory Tech., Design of Dual_ an (}
Triple- Passband Filters Using Alternately Cascaded Multiband Resonators〃一文,即是利用改變微帶線結構控 制主頻及諧波的共振頻率,並在一 R〇4〇〇3基板上形成一 200947798 特定微帶線結構之三頻帶通濾波器,如第1及2圖所示, 其中表1及2分別為第1及2圖的頻率響應特性分析表。 表1第1圖所示三頻帶通濾波器之頻率響應特性。Triple- Passband Filters Using Alternately Cascaded Multiband Resonators, which uses a modified microstrip line structure to control the resonant frequency of the dominant frequency and harmonics, and forms a 200947798 specific microstrip line structure on a R〇4〇〇3 substrate. The three-band pass filter is shown in Figs. 1 and 2, and Tables 1 and 2 are the frequency response characteristic analysis tables of Figs. 1 and 2, respectively. The frequency response characteristics of the three-band pass filter shown in Fig. 1 are shown in Fig. 1.
中心頻率 頻寬 插入損失 2.5GHz 4% 2.9dB 3.6GHz 4% 2.7dB 5.1GHz 6% 2.3dB 表2第2圖所示三頻帶通濾波器之頻率響應特性。Center Frequency Bandwidth Insertion Loss 2.5GHz 4% 2.9dB 3.6GHz 4% 2.7dB 5.1GHz 6% 2.3dB The frequency response characteristics of the three-band pass filter shown in Figure 2, Table 2.
中心頻率 頻寬 插入損失 2.3GHz 3.8% 2.5dB 3.7GHz 6.8% 1.9dB 5.3GHz 5% 2.9dB 另外,Lee C.H.等人於 IEEE Microw. Wireless Component Lett.期刊發表、Design of a New Tri-Band Microstrip BPF Using Combined Quarter-Wavelength SIRsr/ 一文,利用一 λ/4微帶線及一步階阻抗共振器〔steppedCenter frequency bandwidth insertion loss 2.3GHz 3.8% 2.5dB 3.7GHz 6.8% 1.9dB 5.3GHz 5% 2.9dB In addition, Lee CH et al. published in IEEE Microw. Wireless Component Lett., Design of a New Tri-Band Microstrip BPF Using Combined Quarter-Wavelength SIRsr/, using a λ/4 microstrip line and a step-by-step impedance resonator
Impedance Resonator,SIR〕結構在一 RT/Dur〇id 6010 基板 上進行一三頻帶通濾波器之設計,如第3圖所示,其中表 3為第3圖的頻率響應特性分析表。 表3第3圖所示三頻帶通濾波器之頻率變庵桩妯。The Impedance Resonator (SIR) structure is designed as a three-band pass filter on an RT/Dur〇id 6010 substrate, as shown in Fig. 3, and Table 3 is a frequency response characteristic analysis table of Fig. 3. The frequency of the three-band pass filter shown in Figure 3 of Table 3 is changed.
中心頻率 頻寬 插入損失 1.57GHz 8.2% 1.5dB 2.45GHz 7.3% ~ 1.34dB 5.25GHz 9.9% 0.91dB 然而,一般而5,上述I用具有下列缺點,例如:承 200947798 載該帶通舰H之剛基板具有較差的介電絲及品質因 數’使得其頻寬的特性及插入損失的表現不佳。更重要的 ' m該三種_的三頻帶職波n由於其特定的微帶 :f及SIR結構的設計,將使得-第_段_波器之設計 又到限制>f列如將無法藉由一接地缺陷結構〔。设― .G_d St_re,DGS〕進行該第四頻段_波器之設_ 。基於上述職,有必要進—步改良上述習❹頻帶通滤 ❹ 波器。 【發明内容】 纟發明之主要目的係提供_種多頻帶通濾波器,其係 好難有_«歧錄麟構之帶通舰糾設計 在-基板上’使得本發明具有提升頻段選擇性之功效。 本發明之-人要目的係提供一種多頻帶通滤波器,其係 將一膽結構湘共振料理與多個具有特定微帶線及 共振腔結構之帶通濾波元件設計在一基板上,使得本發明 ❹ 進一步提升頻段選擇性之功效。 本發明之另一目的係提供一種多頻帶通渡波器,其將 多個帶通紐it件形成在—AB2〇6〔 Α%、&、^; β=τ& 7〕之喊基板上,使得本剌具麵小元件尺寸、改 善高頻特性及降低插入損失之功效。 根據本發明之多頻帶通濾波器,其係形成於一陶究基 板上,該多頻帶渡波器包含一第一帶通遽波元件、一第二 帶通渡波f件及一第三帶通慮波元件。該第-帶通渡波元 件具有帛- L型傳輪導線、一第二匕型傳輸導線、一第 200947798 - SIR高頻共振腔、—第二观高頻共振腔,該第一 l型 傳輸導線係形成在—第—料輸導線之—侧,且該第一 L '型傳輸導線之—端係連接該第傳輸導線,而該第一 : 观高頻共振腔係形成在該[型傳輪導線之另-端,以丘 . _成-u型外框共振結構;該第二L型傳輸導線係職 在了第二琿傳輸導線之一側,且該第二L型傳輸導線之一 端係連接該第二埠傳輸導線,而該第二SIR高頻共振腔係 ❹ 軸在該第二L型傳輸導線之另―端,⑽成另型外 $共振結構,該二U型外框共振結構係間隔—距離而相對 設置,以形成一完整的外框共振結構,該第一帶通濾波元 . 件用以產生—h57GHz的巾^解;而該第二帶通據波元 件設置在該第-帶通滤波元件之内,該第二帶通滤波元件 具有一第一 U型λ/2共振腔及一第二1;型又/2共振腔,該 第一 U型;1/2共振腔及該第二(;型λ/2共振腔係間隔該距 離而相對設置,且該第一 11型λ/2共振腔及該第二U型入 〇 /2共振腔分別的開口係朝向相反方向,該第二帶通濾波元 件帛减生-2_45GHz的巾心鮮;該帛三帶誠波元件 ,主要為一帽狀共振腔結構,其具有一帽頂傳輸導線、一 . 第一帽緣傳輸導線及一第二帽緣傳輸導線,該第一及第二 帽緣傳輸導線係對稱延伸形成於該帽頂傳輸導線之二端部 ,且分別平行設置在該第一埠傳輸導線及該第二埠傳輪導 線之另一側,該第三帶通濾波元件用以產生一 52GHz的 中心頻率;其中,該第一帶通濾波元件、第二帶通濾波元 件及第三帶通濾波元件係共同設計在該基板之一面。 —8 — 200947798 【實施方式】 為讓本發明之上述及其他目的、特徵及優點能更明顯 易懂,下文特舉本發明之較佳實施例,並配合所附圖式, 作詳細說明如下: ΟCenter frequency bandwidth insertion loss 1.57GHz 8.2% 1.5dB 2.45GHz 7.3% ~ 1.34dB 5.25GHz 9.9% 0.91dB However, in general, the above I uses the following shortcomings, for example: Cheng 200947798 contains the bandpass ship H Zhigang The substrate has a poor dielectric wire and a quality factor that makes its bandwidth characteristics and insertion loss poor. More importantly, the three-band VO of the three _s are due to their specific microstrip: the design of the f and SIR structure will make the design of the - _ _ _ waver again to the limit > f column will not be able to borrow By a grounded defect structure [. Let ―G_d St_re, DGS] perform the fourth band_wave device setting_. Based on the above duties, it is necessary to further improve the above-mentioned conventional band pass filter chopper. SUMMARY OF THE INVENTION The main object of the invention is to provide a multi-band pass filter, which is difficult to have _« 录 麟 之 之 舰 舰 舰 纠 设计 设计 纠 纠 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得 使得efficacy. The object of the present invention is to provide a multi-band pass filter which designs a gallbladder structure and a plurality of band pass filter elements having a specific microstrip line and a resonant cavity structure on a substrate. Invention ❹ Further enhance the efficiency of frequency band selectivity. Another object of the present invention is to provide a multi-band wave-passing wave device which forms a plurality of band-passing elements on a shrewing substrate of -AB2〇6[Α%, &,^;β=τ& 7], This makes the enamel face small component size, improve high frequency characteristics and reduce the insertion loss. The multi-band pass filter according to the present invention is formed on a ceramic substrate, the multi-band waver comprising a first band pass chopper element, a second band pass wave f piece and a third band pass Wave component. The first band-passing wave element has a 帛-L type transmission wire, a second 匕 type transmission wire, a 200947798 - SIR high frequency resonant cavity, a second observation high frequency resonant cavity, and the first l type transmission wire Formed on the side of the -first material transmission line, and the end of the first L'-type transmission line is connected to the first transmission line, and the first: the high frequency resonant cavity system is formed in the [type transmission wheel] The other end of the wire, with a hill. _ into a u-shaped outer frame resonance structure; the second L-shaped transmission wire is on the side of one of the second transmission wires, and one end of the second L-shaped transmission wire Connecting the second transmission line, and the second SIR high frequency resonant cavity is at the other end of the second L-shaped transmission line, and (10) is a different external resonance structure, and the two U-shaped outer frame resonance structure Interval-distance and relative arrangement to form a complete outer frame resonance structure, the first band pass filter element is used to generate -h57 GHz, and the second band pass data element is set in the Within the band pass filter component, the second band pass filter component has a first U-shaped λ/2 resonant cavity and a second one; /2 resonant cavity, the first U-shaped; 1/2 resonant cavity and the second (; type λ/2 resonant cavity are oppositely disposed at intervals, and the first 11-type λ/2 resonant cavity and the first The openings of the two U-shaped input/resonance resonators are opposite to each other, and the second band-pass filter element is reduced by -2 to 45 GHz; the three-banded wave-wave component is mainly a cap-shaped resonator structure. And having a cap top transmission wire, a first cap edge transmission wire and a second cap edge transmission wire, wherein the first and second cap edge transmission wires are symmetrically extended at two ends of the cap top transmission wire And parallelly disposed on the other side of the first transmission line and the second transmission line, the third band pass filter element is configured to generate a center frequency of 52 GHz; wherein the first band pass filter element The second band pass filter component and the third band pass filter component are jointly designed on one side of the substrate. 8 - 200947798 [Embodiment] The above and other objects, features and advantages of the present invention will become more apparent and obvious. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention are exemplified Drawings, described in detail below: o
請參照第4a S 4f圖所*,本發明較佳實施例之多頻 帶通濾波器之結構分別如第如至4d圖所示係包含一第一 帶通濾波元件卜—第二帶通元件2 —第三帶通濾波 兀件3及-第四帶通渡波元件4。树帶通濾波元件卜2 、3、4係分別由不同特定微帶線及共振腔結構所構成,且 如第4e圖所示’該第—至第三帶通濾波元件3利用 -共振腔組合原理轉成—三㈣通m,並如第 所示,再賴具有-DGS結構之第四帶通錢元件組 ,4e圖的—頻帶通m,以形成本發明之多頻帶通遽波 5月再參照第4a圖所示,該第一帶通濾波元件u 第- L型傳輸導線n、—第二L型傳輸導線u、一 SIR高頻共振腔13、一第二_高頻共振腔14。 型傳輸導線11形成在一第一埠傳輸導線5之—側,且 ;ΓΓ導線11之一端係連接該第一槔傳輪導線二 該弟- SIR㈣絲腔_成錢L雜料線 以共同形成-U型外框共振結構;而該第二 傳輸導線12係形成在一第二埠傳輪導線6之—側,且 二型=導Γ之一端係連接該第二璋傳輸導線二 ο第一 SIR域共振腔14係形成在該第二L型傳輸導線 200947798 12之另一端,以形成另一 U型外框共振結構,該二S][R高 頻共振腔13、14係相互對位形成在該外框共振結構之一側 。如第4a圖所示,該二U型外框共振結構係間隔一距離 而相對設置,以形成一完整的外框共振結構。如第5圖所 示,藉由該第一帶通濾波元件1的端點麵合結構可產生至 )—1.57GHz之中心頻率點〔另包含一 5.2 GHz之中心頻 率點〕。Referring to FIG. 4a S 4f, the structure of the multi-band pass filter according to the preferred embodiment of the present invention includes a first band pass filter component and a second band pass device 2 as shown in FIG. 4d. a third band pass filter element 3 and a fourth band pass wave element 4. The tree band pass filter components 2, 3, and 4 are respectively composed of different specific microstrip lines and resonant cavity structures, and as shown in FIG. 4e, the first to third band pass filter elements 3 utilize a -resonator combination. The principle is converted into three (four) pass m, and as shown in the figure, the fourth band pass element group having the -DGS structure, the band of the 4e map is m, to form the multi-band pass wave of the present invention in May. Referring again to FIG. 4a, the first band pass filter element u is an L-type transmission line n, a second L-type transmission line u, an SIR high-frequency resonant cavity 13, and a second-high frequency resonant cavity 14. . The type of transmission wire 11 is formed on the side of the first 埠 transmission line 5, and one end of the ΓΓ wire 11 is connected to the first 槔 轮 导线 该 该 该 S S S S S S S S 成 成 成 成 成 成 成 成 成 成 成 成 成 成a U-shaped outer frame resonance structure; and the second transmission wire 12 is formed on a side of the second transmission wire 6 and the second type = one end of the guide wire is connected to the second transmission wire 2 The SIR domain resonant cavity 14 is formed at the other end of the second L-shaped transmission line 200947798 12 to form another U-shaped outer frame resonance structure, and the two S][R high frequency resonant cavities 13 and 14 are mutually aligned. On one side of the outer frame resonance structure. As shown in Fig. 4a, the two U-shaped outer frame resonance structures are disposed at a distance apart to form a complete outer frame resonance structure. As shown in Fig. 5, the end point junction structure of the first band pass filter element 1 can produce a center frequency point of -1.57 GHz (including a center frequency point of 5.2 GHz).
請再參照第4b圖所示’該第二帶通濾波元件2具有 —第—ϋ型λ/2共振腔21及一第二11型;1/2共振腔22。 該第一 U型;1/2共振腔21及該第二υ型λ/2共振腔22 係間隔同樣的距離而相對設置,且該第一 U型λ/2共振腔 21及該第二U型;1/2共振腔22分別的開口係朝向相反方 向如第6圖所示,藉由該第二帶通濾波元件 合結構可產生-2.45GHz之巾心_點,且如= 圖所示’該第二帶聽波締2係形成在該第—帶通遽波 疋件1之外框共振結構之内。 請再參照第4e®所示,該第三帶賴波元件3實質上 糸一端點齡的雙頻濾、波器,如第7圖所示,其可產生— Γ3ΓΖ及一 5.2GHz之中心頻率點。該第三帶通濾波元 元件3係呈-微絲㈣· Γ 第二▼通慮波 、 巾I、振腔、,,°構’其具有-帽頂傳輸導線31 第帽緣傳輸導線32及—第二帽緣傳輸導線33,該 二帽緣傳輸導線32、33係對稱延伸形成於該帽頂 輪導線31之二端部,且分別平行設置在該第—埠傳輪導 200947798 線5及該第二埠傳輸導線6之另一側。由第7圖可知,該 第三帶通濾波元件3在5.2 GHz之中心頻率點處的上裙帶 ' 〔upper skirt〕不佳,惟,請再參考第5圖所示,該缺點可 . 藉由該第一帶通遽波元件1在5.2 GHz中心頻率所產生的 ' 零點進行改善。 清再參照第4d圖所示,該第四帶通濾波元件4具有 一第一 U型DGS共振腔41及一第二u型DGS共振腔42 ❹ 。該第一 U型DGS共振腔41在二末端分別形成一擴寬部 411 ;同樣的,該第二U型DGS共振腔42亦在二末端分 別形成一擴寬部421。其中該第一 u型DGS共振腔41之 開口係朝向該第一 U型DGS共振腔42之開口,且該第一 U型DGS共振腔41之二擴寬部411之末端位置與該第二 U型DGS共振腔42之二擴寬部421之末端位置係分別間 隔一距離而對位設置。藉由該第四帶通濾波元件之設計, 如第8圖所示,其可產生一 3.5 GHz之中心頻率點。 〇 本發明利用前述之不同共振腔組合理論將第4a至4d 圖所示之第一至第四帶通濾波元件丨、2、3、4相互組合在 -基板7上’例如形成在-FR4電路基板、—氧化銘基板 、一 Duroid基板或一陶瓷基板上,較佳而言,本發明係將 該多頻帶通濾 '波器組合至一具有高介電係數及較佳品質因 數之 AB206〔 A=Mg、Zn、Ca ; B=Ta、Nb〕陶瓷基板上, 本發明並將所欲設計之該四個頻段配合基板之介電係數及 厚度推算出各該帶通滤波器結構之幾何尺寸〔例如微帶線 之長及寬〕,再利用一電磁模擬軟體將所設計之各個濾波 200947798 _ sfeUt〇CAD軟體繪製出實際結構,並配合網印技術將該 四個帶通濾'波元件卜2、3、4網印在該基板7上,如第 ,e 4f严所不。林發明之電路也可採料同之製造方法 ,例如蒸鐘法而獲得。 —在網印該四個帶波元件卜2、3、4時,請再參 照弟和圖所示’該第一、第二及第三帶通濾波元件卜2 ❹ 〇 係網印在該瑪〇6基板之一面;而該AB206基板之另 面係开/成-接地面’如第4 f圖所示,本發明在該接地 面乂 λ/2的冰度挖出形成該第四帶通濾波元件4之結構。 在進行該第-、第二及第三帶通渡波元件卜2、3之 '、且s時,為了避免該二個帶通濾波元件1、2、3之間因交 互耗合所弓丨起的頻率飄移,部分的帶通紐元件必須進行 結構的調整,如第4e及4f圖所示,該第—帶通舰元件i 之第L型傳輸導線11連接該第__埠傳輸導線5之端及第 - L型傳輸導線12連接該第二;^傳輸導線6之端分別形 成-擴寬部in、121 ;另外,該第二帶通遽波元件2之第 U型A/2共振腔21的二端形成二延伸部211、212,其 中一延伸部211的末端與另一延伸部212之末端係相互對 位,同樣的,該第二帶通濾波元件2之第二口型λ/2共振 腔22的二端亦形成二延伸部22卜222,且該二延伸部^21 ' 222個別的末端亦相互對位。 本發明在該ΑΒ2〇6基板7上形成該四個帶通濾波元件 1、2、3、4後,可利用一網路分析儀進行其特性的量測, 如表4所示,且配合參照第9圖所示,其揭示該四個帶通 —12 — 200947798 遽波元件卜2、3、4之各個頻段之頻率響 1.57GHz 2.45(}¾ 3.5 GHz 5.25GHz 頻寬 8.3% 31% 10.8% 14.1% ❹ ❹ • ~~~ _______[— 如上所述,本發明四頻帶通渡波元 - 頻率響應特性相較於習用而言〔盘表丨2 、3、4之 個別的頻寬及插入損失均有獲得較佳的特性3比較〕,其 頻帶通滤波器係形成在具有高介電係數及較佳,由於該多 ^板上,因此可進—步縮小尺寸及改善高頻^質因數之 要的是,本發明因具有四個符合目前商用^ ,且更重 相較於制多_職波n可餅較 ,而 雖然本發明已_上述難實施㈣^私選擇性。 定本發明,任何孰習此#心 η:其並非用以限 圍之内,相對上;=縣者在不脫離本發明之精神和範 所保護之技詩ί 各種更動婦改仍屬本發明 請專利範圍所衫者為準。 —1視_之申 —13 — 200947798 【圖式簡單說明】 第1圖:習用多頻帶通濾波器之示意圖。 第2圖:習用多頻帶通濾波器之示意圖。 第3圖:習用多頻帶通濾波器之示意圖。 第4a圖:本發明較佳實施例之多頻帶通濾波器的第一 帶通濾波元件示意圖。 第4b圖:本發明較佳實施例之多頻帶通濾波器的第二 帶通遽波元件示意圖。 第4c圖:本發明較佳實施例之多頻帶通濾波器的第三 帶通濾、波元件示意圖。 第4d圖:本發明較佳實施例之多頻帶通濾波器的第四 帶通濾波元件示意圖。 第4e圖:本發明較佳實施例之多頻帶通濾波器當組合 第一至第三帶通濾波元件之示意圖。 第4f圖:本發明較佳實施例之多頻帶通濾波器當組合 第一至第四帶通濾波元件之示意圖。 第5圖:本發明較佳實施例之多頻帶通濾波器的第一帶 通濾波元件的頻率響應特性圖。 第6圖:本發明較佳實施例之多頻帶通濾波器的第二帶 通濾波元件的頻率響應特性圖。 第7圖:本發明較佳實施例之多頻帶通濾波器的第三帶 通濾波元件的頻率響應特性圖。 第8圖:本發明較佳實施例之多頻帶通濾波器的第四帶 通濾波元件的頻率響應特性圖。 200947798 第9圖:本發明較佳實施例之多頻帶通濾波器的第一至 第四帶通濾波元件組合後的頻率響應特性圖。Referring again to FIG. 4b, the second band pass filter element 2 has a -th type λ/2 resonator 21 and a second type 11; 1/2 resonator 22. The first U-shaped; 1/2 resonant cavity 21 and the second υ-shaped λ/2 resonant cavity 22 are oppositely disposed at the same distance, and the first U-shaped λ/2 resonant cavity 21 and the second U The openings of the 1/2 resonant cavity 22 are respectively oriented in opposite directions as shown in FIG. 6, and the second band pass filter component structure can generate a center-point of -2.55 GHz, and as shown in FIG. The second band audible wave 2 is formed within the outer frame resonance structure of the first band pass chopping element 1. Referring to FIG. 4e® again, the third band-receiving element 3 is substantially a dual-frequency filter and a wave device of an end length, as shown in FIG. 7, which can generate a center frequency of Γ3ΓΖ and a 5.2 GHz. point. The third band pass filter element 3 is a microfilament (four) · Γ second ▼ pass wave, a towel I, a vibrating cavity, a structure having a capped transmission wire 31 and a cap edge transmission wire 32 and a second cap edge transmission wire 33, the two cap edge transmission wires 32, 33 are symmetrically extended at two ends of the cap wheel wire 31, and are respectively disposed in parallel in the first pass transmission wheel guide 200947798 line 5 and The other side of the second turn transmission line 6. As can be seen from FIG. 7, the upper band gap of the third band pass filter element 3 at the center frequency point of 5.2 GHz is not good. However, please refer to FIG. 5 again. The first bandpass chopper element 1 is improved at the zero point produced by the 5.2 GHz center frequency. Referring again to Fig. 4d, the fourth band pass filter element 4 has a first U-shaped DGS resonator 41 and a second U-type DGS resonator 42 ❹. The first U-shaped DGS resonant cavity 41 forms a widened portion 411 at the two ends. Similarly, the second U-shaped DGS resonant cavity 42 also forms a widened portion 421 at the two ends. The opening of the first U-shaped DGS resonant cavity 41 faces the opening of the first U-shaped DGS resonant cavity 42 , and the end position of the two widened portions 411 of the first U-shaped DGS resonant cavity 41 and the second U The end positions of the two widened portions 421 of the DGS resonant cavity 42 are disposed at a distance apart from each other. With the design of the fourth band pass filter element, as shown in Fig. 8, it can generate a center frequency point of 3.5 GHz. The present invention combines the first to fourth band pass filter elements 丨, 2, 3, 4 shown in FIGS. 4a to 4d on the substrate 7 using the different resonance cavity combination theory described above, for example, formed in the -FR4 circuit. Preferably, the present invention combines the multi-band pass filter to an AB206 having a high dielectric constant and a better quality factor. =Mg, Zn, Ca; B=Ta, Nb] on the ceramic substrate, the present invention and the four frequency bands to be designed to match the dielectric constant and thickness of the substrate to calculate the geometrical dimensions of each of the band pass filter structures [ For example, the length and width of the microstrip line], and then use an electromagnetic simulation software to draw the actual structure of the various filters 200947798 _ sfeUt〇CAD software, and cooperate with the screen printing technology to filter the four band filters. 3, 4 screen printed on the substrate 7, as in the first, e 4f strictly. The circuit invented by Lin can also be obtained by the same method as the manufacturing method, such as the steam clock method. - When printing the four components with wave components 2, 3, and 4 on the screen, please refer to the figure shown in the figure below. The first, second, and third bandpass filter components are printed on the horse.之一6 one side of the substrate; and the other side of the AB206 substrate is turned on/off-grounded surface' as shown in FIG. 4f, the present invention excavates the ice at the ground plane 乂λ/2 to form the fourth band pass The structure of the filter element 4. When the first, second, and third band-passing wave elements 2, 3', and s are performed, in order to avoid the interaction between the two band-pass filter elements 1, 2, and 3 due to interaction consumption The frequency of the band is shifted, and some of the band-passing elements must be structurally adjusted. As shown in Figures 4e and 4f, the L-shaped transmission wire 11 of the first-passing ship component i is connected to the first __ transmission wire 5 The end and the -L-type transmission wire 12 are connected to the second; the ends of the transmission wire 6 respectively form a widening portion in, 121; in addition, the U-shaped A/2 resonant cavity of the second band-pass chopper element 2 The two ends of the two ends form a second extension portion 211, 212, wherein the end of one extension portion 211 is aligned with the end of the other extension portion 212. Similarly, the second port type of the second band pass filter element 2 is λ/ The two ends of the resonant cavity 22 also form two extensions 22 222, and the individual ends of the two extensions ^ 21 ' 222 are also aligned with each other. After the four band pass filter elements 1, 2, 3, and 4 are formed on the 72〇6 substrate 7, the network can be measured by a network analyzer, as shown in Table 4, and with reference. Figure 9, which reveals that the frequency of each of the four bandpass-12-200947798 chopper components, 2, 3, and 4 is 1.57GHz 2.45 (}3⁄4 3.5 GHz 5.25GHz bandwidth 8.3% 31% 10.8% 14.1% ❹ ❹ • ~~~ _______ [- As described above, the four-band transit wave element of the present invention has a frequency response characteristic as compared with the conventional ones [the individual bandwidth and insertion loss of the disk tables 丨 2, 3, and 4 are both There is a better characteristic 3 comparison], the band-pass filter is formed with a high dielectric constant and is preferable, and due to the multi-plate, the size can be further reduced and the high-frequency factor can be improved. The present invention has four conforming to the current commercial quality, and is heavier than the conventional multi-function wave, but although the present invention has been difficult to implement (four) ^ private selectivity.习此#心η: It is not intended to be used within the limits, relative to; = the county without departing from the spirit and scope of the invention The technical poetry of the various changes is still in the scope of the invention. Please refer to the patent scope. 1 - _ _ _ _ 13 - 200947798 [Simplified illustration] Figure 1: Schematic diagram of the conventional multi-band pass filter. Figure 2: Schematic diagram of a conventional multi-band pass filter. Figure 3: Schematic diagram of a conventional multi-band pass filter. Figure 4a: Schematic diagram of a first band pass filter component of a multi-band pass filter in accordance with a preferred embodiment of the present invention Figure 4b is a schematic diagram of a second band pass chopper component of a multi-band pass filter in accordance with a preferred embodiment of the present invention. Figure 4c is a third band pass filter of a multi-band pass filter in accordance with a preferred embodiment of the present invention, 4D is a schematic diagram of a fourth band pass filter component of the multi-band pass filter of the preferred embodiment of the present invention. FIG. 4e is a multi-band pass filter of the preferred embodiment of the present invention when combining the first to Schematic diagram of a third band pass filter component. Figure 4f is a schematic diagram of a multi-band pass filter in accordance with a preferred embodiment of the present invention when combining the first to fourth band pass filter elements. Figure 5: Preferred embodiment of the present invention Multi-band pass filter Frequency response characteristic diagram of the first band pass filter element. Fig. 6 is a frequency response characteristic diagram of the second band pass filter element of the multi-band pass filter of the preferred embodiment of the present invention. Fig. 7 is a preferred embodiment of the present invention. Frequency response characteristic diagram of the third band pass filter component of the multi-band pass filter of the example. Fig. 8 is a diagram showing the frequency response characteristic of the fourth band pass filter component of the multi-band pass filter of the preferred embodiment of the present invention. Figure 9 is a graph showing the frequency response characteristics of the first to fourth band pass filter elements of the multi-band pass filter of the preferred embodiment of the present invention.
第二U型DGS共振腔421擴寬部 【主要元件符號說明】 1 第一帶通濾波元件 111擴寬部 121擴寬部 14 第二SIR高頻共振腔 21 第一 U型;1/2共振腔 212延伸部 221延伸部 3 第三帶通濾波元件 32第一帽緣傳輸導線 4 第四帶通濾波元件 41 第一 U型DGS共振腔 42 5 第一埠傳輸導線 11第一 L型傳輸導線 12 第二L型傳輸導線 13 第一 SIR高頻共振腔 2 第二帶通瀘波元件 211延伸部 22 第二U型λ/2共振腔 222延伸部 31帽頂傳輸導線 33 第二帽緣傳輸導線 411擴寬部 6 第二埠傳輸導線 —15 —Second U-shaped DGS Resonant Cavity 421 Widening Section [Main Element Symbol Description] 1 First Bandpass Filter Element 111 Widening Section 121 Widening Section 14 Second SIR High Frequency Resonator 21 First U-Type; 1/2 Resonance Cavity 212 extension 221 extension 3 third band pass filter element 32 first cap edge transmission wire 4 fourth band pass filter element 41 first U-shaped DGS resonator 42 5 first 埠 transmission line 11 first L-type transmission wire 12 second L-shaped transmission line 13 first SIR high frequency resonant cavity 2 second band pass chopping element 211 extension 22 second U-shaped λ/2 resonant cavity 222 extension 31 cap top transmission wire 33 second cap transmission Wire 411 widening portion 6 second transmission wire - 15 -