TWI359987B - Liquid crystal display and light emitting unit the - Google Patents

Liquid crystal display and light emitting unit the Download PDF

Info

Publication number
TWI359987B
TWI359987B TW94128643A TW94128643A TWI359987B TW I359987 B TWI359987 B TW I359987B TW 94128643 A TW94128643 A TW 94128643A TW 94128643 A TW94128643 A TW 94128643A TW I359987 B TWI359987 B TW I359987B
Authority
TW
Taiwan
Prior art keywords
light
liquid crystal
crystal display
display device
unit
Prior art date
Application number
TW94128643A
Other languages
Chinese (zh)
Other versions
TW200622437A (en
Inventor
Min Hsun Hsieh
Chien Wuan Wang
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW94128643A priority Critical patent/TWI359987B/en
Priority to DE102005045589A priority patent/DE102005045589A1/en
Priority to US11/233,039 priority patent/US7724321B2/en
Priority to KR1020050089023A priority patent/KR101178778B1/en
Priority to JP2005278910A priority patent/JP5193418B2/en
Publication of TW200622437A publication Critical patent/TW200622437A/en
Priority to US12/659,652 priority patent/US8054409B2/en
Priority to US13/290,755 priority patent/US8724052B2/en
Priority to JP2012046385A priority patent/JP5417469B2/en
Application granted granted Critical
Publication of TWI359987B publication Critical patent/TWI359987B/en
Priority to KR1020120030804A priority patent/KR101381241B1/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

1359987 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示裝置,其包含一淚光層與背光模 組,背光模組中至少包含一紫外光單元,濾光層中包含可以吸收 來自紫外光單元之紫外光並產生綠光之波長轉換材料。 【先前技術】 液晶顯示器係屬於非自發光之顯示器,因此,需要藉由另一 裝置提供光源,此等光源通常稱為背光模組(Backlight M〇dule)。 背光模組一般可區分為二種形式:直下光源式(DirectLightType) 及側向光源式(Edge Light Type);傳統上背光模組之光源係使用 冷陰極管(CCFL)之類之燈管,然而,冷陰極管之色彩飽和度並 不佳,無法呈現晝面之真實色彩。 為達到較佳之色彩飽和度,使用發光二極體(UghtEmitting Diode ’ LED)作為背光模組之光源為目前的市場趨勢。發光二極 體具有體積小、耗電量低、壽命長、反應速度快、機械強度佳等 優點,是本世紀極具前景之照明I具之—。為再現各種色彩,液 晶顯示器巾—般係使贼光片將來自於背光模組之白光過遽以分 解出色形之二原色’亦即,紅、藍、綠三色,藉由控制各個晝素 組中三原色之比例而形成所需之各種色彩。並且,此白光中必須 包含有三原色,才得以過濾出紅、藍、綠三色。 使用發光二極體形成白光之方式有數種:⑴藍光發光二極 3 1359987 體配合黃色螢絲,一般係使用似呂石權石(YAG)之營光粉, 此係目前形成白光最為普遍的一種手段,然而此種白光係藉由藍 光與黃光之混合所形成,其光譜主要位於46〇1皿與55〇11111兩個波 長,亦即此種白光中欠缺紅光與綠光之成分,所以,使用此種白 光之液晶顯示器無法呈現晝面之真實色彩。⑵藍光發光二極體 配合紅色與綠色螢光粉,係使用藍光發光二極體激發紅色與綠色 螢光粉以產生紅光與綠光,並與藍光混合以形成白光,然而此種 • 方式所產生之紅、藍、綠三色間串擾(Crosstalk)嚴重,亦即紅、 藍、綠二色之頻寬彼此重疊,造成彩度(Hue)降低。门)紫外 線發光二極體配合紅色、藍色與綠色螢光粉,此係使用紫外線發 光二極體同時激發三種或三種以上之螢光粉體以產生紅藍綠三 色’唯此種方式所產生之紅、藍、綠三色間亦有嚴重之串擾,且 各色螢光粉之技術水準亦不平均。⑷單狀紅、藍、綠三色之 發光二極體’使用獨立三色之發光二極體作為背光模組之光源可 • 以使液晶顯示器之色彩飽和度達到l〇5%NTSC以上,為傳統使用 冷陰極g之液晶顯不器之15倍,然而,由於不同顏色之發光二極 體之毛光欢率不同,應用時需不同數量之紅、藍、綠發光二極體, I又而θ ’綠色發光二極體之效率較差,而需使用較多之數量以 與其他純所產生之光量相平衡,但是此舉勢必造成成本的增 加且數里的增加亦使得谷置空間的需求提高,S於日漸小型化 之電子產品不啻為一大缺點。 1359987 【發明内容】 本發明之液晶赫裝置包含-背光模組,包含—料光單元; 一液晶層’用以控制該背光模組所發出光之通量:一渡光層包 含複數個晝素’ m長轉換材料形成於職數個畫素中之 一,戎波長轉換材料經該紫外光單元照射而產生綠光。 該背光模組更包含-紅絲元與—藍光單元。較佳地,該紫 外光單几、該紅光單元及該藍光單元中至少之―料―發光二極 體。 為充分利用背光模組所發出之光,_光層係具有—反射層 以選擇性反射來自背光模組之光。較佩,該渡光層包含一布拉 格反射層(Distributed Bragg Reflector ;DBR)以選擇性反射來自 背光模組之光。 【實施方式】 第一實施例 第1圖係顯示本發明之液晶顯示裝置1〇之結構示意圖。液晶顯 不裝置10巾本應包含許多元件’然為清晰減,第旧巾僅表示本 發明中必須討論之部分,合先陳明。 液晶顯不f置10中包含H模組n。背光模組⑽提供光 源予液晶顯示裝置10,由於液晶顯示裝·係呈現可見光波長範 圍之如舒使用者,因此背光模组丨卜般亦需提供可見絲圍之 光源,且為完整呈現真實世界之色彩,背光模組ig—般需提供白 1359987 , 光,且此白光較佳係由紅、藍與綠三原色光源所組成,例如:紅、 藍與綠發光二極體。 然而,為提高綠光之發光效率,本發明之背光模組丨丨中係使 用一紫外光發射體,如第丨圖中之紫外光單元1101,較佳係為一紫 外光發光二極體(LightEmittingDiode ; LED),搭配一種可以吸 收紫外光並產生綠光之波長轉換材料1402 (標示p)以產生綠光, 在此所辨之紫外光係為波長介於10〜420nm之光,較佳係為 • 200〜420nm。若在背光模組11中配置可以產生紅光與藍光之紅光單 元1102與藍光單元1103,則可以與紫外光單元11〇1與波長轉換材 料1402所產生之綠光混合形成白光,其中,紅光單元1102與藍光 單元1103較佳亦係為發光二極體’然其他發光裝置,如:螢光燈、 白熾燈、鹵素燈等亦適用。 波長轉換材料1402係如一蝥光粉(phosphor ),可以為紫外光 單元lien所發出之紫外光所激發並發出綠光。若紫外光單元11〇1 φ 所發出之紫外光之波長範圍介於200〜420nm,較佳係為 360〜400nm ’波長轉換材料1402則可以使用鹼土金屬矽酸鹽之螢光 粉’較佳地係使用銪活化之鹼土金屬矽酸鹽之螢光粉,該螢光粉 之組成係如(SrBaMg) zSiOiEu ’此種螢光粉可以形成狹窄之波 寬,例如:小於3 5nm之半高全寬(Full Width Half Maximum ; FWHM),此寬度小於inGaN系發光二極體所產生之綠光之半高全 I ’而形成較佳之彩度。市場上類似之產品係如Intematix公司所生 產之Green Lighting G400TM/G380TM/G360TM系列之螢光粉。 6 1359987 此外,其他可以為紫外光激發出綠光之螢光粉係如: (Bai.x.y.zCaxSryEuz) 2 (Mgl.wZnvv) Si2〇7 > x+y+z=l ; 0.05>z>0 ; 0.05>w ^ Ca8Mg ( Si04) 4ci2:Eu,Mn ^ Ba2Si04:Eu ^ Ba2MgSi207:Eu > 腿2〇4:Eu、SrAl2〇4:Eu、與BaMg2A1i6〇27:Eu等激發波長係介於 330〜42〇11111之間。 紫外光單元11G1、紅光單元膽與藍光單元·之數量係取 決於液晶顯π器10之大小、液晶顯示器1〇所需之亮度單元11〇1、 φ 11〇2、11〇3之單位免度、以及背光模組_之光學設計等。而三 原色之排列序列可以為紅藍綠(紫外光)、紅綠(紫外光)藍、 藍綠(紫外光)紅、藍紅綠(紫外光)、綠(紫外光)紅藍、綠 (紫外光)藍紅、紅藍綠(紫外光)紅、紅綠(紫外光)藍紅等。 本例中’由於料光為非可絲,因此背絲組⑽射出之 混合光12將僅顯現紅光與藍光混合後之光,亦即紫紅色系列之光。 液晶層13中至少包含液晶材料與薄膜電晶體層(Thin Film 擊 Transistor ; TFT),當一偏壓施加於薄膜電晶體層上時,被施加偏 壓之區域中之液晶將轉向,藉由控制偏壓之大小即可控制液晶之 轉向角度,以調節混合光12的通過液晶層之量,亦即控制液晶顯 示器10之明暗。液晶顯示器之操作原理乃習知技術,細節部分可 參考相關技術文獻。 混合光12通過液晶層13後抵達濾光層14,濾光層14通常係形 成於一玻璃基板上,濾光層14中包含複數個晝素(pixd) 14〇1 (於 第1圖中標示為R、P、B),通常以至少三個晝素為一組,分別為 1359987 用以過滤混合光12以產生紅、藍與綠三色。 本實施例中係於-組畫素中之_個晝素内設置波長轉換材料 1402 (以下此晝素稱為綠色晝素⑻),波長轉換材料购經由 紫外光單元1101所發射之料光激發後產生綠光⑹一組畫素 中之另二個晝素分別為紅色畫素⑻與藍色畫素⑻,其係分 別將紅色與藍色有機材料製作於相應之晝素中,以分別過红 光與纽,亦即,混合光12經過紅色晝素(R)後非紅光波钱圍 #之光將被遽除,而經過藍色晝素(B)後之非藍光波長範圍之光將 被濾除,因此,紅色晝素(R)將發出紅光,而藍色晝素⑻將 發出藍光。藉由綠色畫素(P)、紅色晝素(R)與藍色晝素⑻ 所形成之絲、紅光與H光之三聽,可收合出各齡樣的顏 色。 除可使用有機材料形成紅色晝素(R)與藍色晝素(B)外, 亦可以使用可以為紫外光激發出紅光與藍光之螢光粉形成紅色晝 鲁素(R)與藍色畫素(B)。可以為紫外光激發出紅光之勞光粉係 如.Y202S:Eu,Bi、Y2〇3:Eu,Bi、3 5Mg〇.〇 5咐2 &〇2施4+,激 發波長係介於330〜420mn之間。可以為紫外光激發出藍光之營光粉 係如:BaMg2Al16027:Eu、⑽aCa)5(p〇4)3C1:Eu、Sr4Ai]4〇25Eu, 激發波長係介於220〜330nm之間。 各晝素可赠除非減波長細之光,此意味該被濾除之光 可能無法通過容許其_之畫素,而造成㈣效率下降,例如, 於紅素晝素(R)中被滤、除之藍光與紫外光極可能為紅色晝素⑻ 8 1359987 ,. 吸收而無法再通過藍色晝素(B)與綠色晝素(P)。為提高光之 利用率,一布拉格反射層(Distributed Bragg Reflector ; DBR) 1404 係形成於濾光層1401之前’以選擇性反射混合光12中不同波長範 圍之光’例如於紅色晝素(R)前形成一可以反射藍光或紫外光之 布拉格反射層,使藍光或紫外光不會完全為紅素晝素(R)吸收, 並經過數次反射後進入藍色晝素(B)或綠色晝素(P)之中,產 生相應之色光’其他晝素之原理亦相同。此外,由於紫外光為布 # 拉格反射層1404所反射,而可以避免紫外光溢射出液晶顯示器10 之外部。 此外,液晶顯示器10中尚包含其他種類之光學膜片,如:棱 鏡片(Prism Sheet)、擴散片(DiffUser)、偏光板(polarizer)等。 其中稜鏡片與擴散片通常係設置於背光模組η之中,用以使發光 單元1101〜1103所發出光均勻化而產生所需要之混合光丨2。偏光板 則通常係與液晶層13搭配,以使混合光12偏極化後再進入液晶層 φ 13之中。 使用紫外光激發波長轉換材料1402以產生綠光雖然可以提高 綠光之產出效率,但是,液晶顯示器1〇内之部分零件,特別如稜 鏡片、擴散片、偏光板等塑膠製品,可能容易因長時間照射紫外 光而劣化,因此,為防止劣化現象的發生,該些光學膜片或塑膠 較佳地係採用可以抗紫外光之材質。 本實施例之其他相關技術資料如美國專利申請案 US2005/0001537A卜 US2004/0061810A1、US6,686,69 卜 9 1359987 US6,791,636、US6,844,903、US6,809,78 卜 US6,252,254、 US6,255,670、US6,278,135、US6,294,800、EP1138747、 W00189000、W00189001 ’皆一併錄於本文以玆參考。 第二實施例 本實施例中背光模組11係包含一光分散裝置丨5及/或具有一波 # 紋狀陣列之光學調整表面16以導引、混合及/或分散各發光單元 1101〜1103所產生之光線朝向液晶層13,如第以圖所示。 如第2b圖所示,光分散裝置15具有翼狀突出部15〇1、凹口 15〇2 及入光面1503 ’且光分散裝置15係朝一長度方向15〇4延伸,凹口 1502係位於运離入光面1503之位置,較佳地,凹口1502係位於入 光面1503之相對側;光學調整表面16上具有第一波紋狀陣列 1601,可以使來自紫外光單元11〇1、紅光單元11〇2、及/或藍光單 • 元1103之光線均勻地分散及/或混合以避免背光模組11產生顯著之 光點或顯現未均勻混合之色光。光線由入光面1503射入光分散裝 置15後,部分光線於凹口 15〇2處經全内反射(T〇talInternal Relection)而射向凹口 15〇2之兩侧,亦即,射向翼狀突出部15〇1 的方向;部分光線於凹口 1502處直接射出’且由於光分散裝置15 與外界光介質(OpticalMedium)之折射係數的差異而產生折射的 效果’但由於部份光線於凹口 1502處遭全反射而射向翼狀突出部 1501的方向使得由凹口 1502直接射出的光量減少,如此可以避免 10 1359987 凹口 15〇2附近形成局部光點,較佳地,凹口 15〇2之形狀係近似為v 型或U型。經由凹口咖導引至翼狀突出部鹽之光線或其他射向 翼狀突出部1501之光線於翼狀突出部測處經折射、反射或直接 射出光分散裝置15 ’例如光線於_航肖度人射至光分散裝置15 之中將於翼狀突出部丨5 〇丨内經數次全内反射而逐漸混合為均勾的 色光而射出光分健置15之外。规餘由人光面簡進入光分 散裝置15之中,入光面15〇3並不以平面為限,亦可以為凹型或其 • 他有利於光線接收之形狀。 光學調整表面16具有第一波紋狀陣列16〇1,光學調整表面“ 及第一波紋狀陣列1601係形成於光分散裝置15之入光面15〇3上。 第一波紋狀陣列1601係於光學調整表面16上所形成之如波浪狀的 表面,且此波浪狀的表面具有一固定之波浪的方向,亦即第一波 紋狀陣列1601之陣列方向或波前方向,第一波紋狀陣列16〇1上之 波浪係為數個微小透鏡,光線經過光學調整表面16時將因為第一 • 波紋狀陣列1601上之微小透鏡產生不同角度之折射,如此可以將 來自發光單元1101〜1103之光線模糊而避免了局部的光點,使得光 分散裝置15所產生之色光更加均勻。為使得第一波紋狀陣列臟 達到較佳之散光效果,微小透鏡之直徑係約為5〇〜6〇从瓜。當第一 波紋狀陣列1601為連續波浪狀時,連續二個波峰或波谷之距離係 約為 100〜120/z m。 光學調整表面16亦可以設置於光分散裝置15之中’其係藉由 結合二個折射係數不同之材料,並於此二個透光材料之結合面上 11 1359987 形成波紋狀陣列以達到上述之分光效果,如第2C圖所示,其中斜 線部份與未標示有斜線部分係具有相異之折射係數。第一波紋狀 陣列1601並不限於設置於入光面15〇3上,亦可以設置於翼狀凸出 部1501或/及凹口 1502上,亦即光線所行經之路徑上都可以設置第 一波紋狀陣列1601,如第2e圖所示。 其中光分散裝置15之材料係為丙烯酸樹脂(ACryiic Resin)、 環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸 •醋(PC)、聚醚醯亞胺(polyetherimide)、氟碳聚合物(Fiuorocarbon Polymer)、矽膠(Silicone)、上述材料之組合、或其他透光材料。 如第2d圖所示,光學調整表面16亦可以形成於一具有相對之 第一表面1701及第二表面1702之光學膜片17上,光學調整表面16 係形成其中一個表面之上,如第一表面17〇1上,第一波紋狀陣列 1601則形成於第一表面1701上,其中光學膜片17可以設置於光分 散裝置15上方或介於光分散裝置15與發光單元11〇1〜11〇3之間。此 鲁外,第二表面上可以形成第二光學調整表面lg,且第二光學 調整表面18上形成有第二波紋陣列腦,然而第一波紋狀陣列 1601與第二波⑽列麵之_方向減。藉由相異方向疊合之 第一波紋狀陣列1601與第二波紋陣列18〇1可以產生一疊紋 (Μ〇ίΓ〇,將第一波紋狀陣列麵與第二波紋陣列1801適當地調 整可以使經過此疊紋之光線之紐度重新地分佈而達到均勾分散 光線的效果。具有疊紋或波紋陣列之光學臈片17係如帝晶公司 (S_LightOptoelectronics)所生產之產品。 12 1359987 光學調整表面16或18並不限於只能設置於光分散裝置15或光 學膜面17其中之一’亦可以同時設置於光分散裝置15及光學膜面 Π之上,此外,如上所述,光學調整表面16或/及18可以設置於光 分散裝置15之中,其係藉由結合二種以上具有不同折射係數之材 料,並於此些透光材料之結合面上形成波紋狀陣列以達到分光之 效果。第一波紋狀陣列1601與第二波紋陣列18〇1上之波紋大小、 波紋之形狀、波紋之頻率係可以相同或相異。 右發光單元1101、1102、及/或1103之排列方向平行第一波紋 狀陣列16G1之陣财向,亦即纽之波前方向,光線經過第一波 紋狀陣列16G1後將產生近似平行於第一波紋狀陣列職之波前方 向之光形18。因此’當絲11G卜服、及/或聰之排列方向與 第-波紋狀陣列1601之波前方向皆為直線時,絲將被分散呈一 絲。當光源110卜11〇2、及/或11〇3之排列方向與第一波紋狀陣 列1601之波前扣錄狀或放射狀,紐將被分散呈—弧狀或放 射狀。理論上’當光源·、_、及/或⑽之排列方向與第一 波紋狀陣列1601之波財向平行献辭行,可以使得光源、 102及/或11〇3所產生光線被分散為沿著波前方向延伸之光形。 光分散裝置及波紋鱗列之細部技術已描述於申請人之中華 民國專利申請案第093129157號及第09411463〇號中,亦一併錄於 本文以玆參考。 第三實施例 13 本實施例中,發光單元1101〜1103係為半導體發光元件,例如 發光二極體,較佳地,係為發光二極體晶粒(die)。隨著功率提 向,發光二極體所產生之熱量亦越高,為提供發光二極體之散熱, 本實施例之紫外光單元1101、紅光單元1102、及/或藍光單元11〇3 係設置於一複合材料基板19〇1上,如第3a圖所示,其中,19係表 鲁不半導體發光元件組成,例如一發光二極體封裝;1901係表示複 δ材料基板,1902係表不黏接結構;1903〜係表示電路佈局載 體;19〇4〜表示電性接點;1905〜表示導線。 電路佈局載體1903與极合材料基板1901係藉由黏接結構 1902相結合。紫外光單元11〇1、紅光單元11〇2、及/或藍光單元 11〇3係固定於凹陷空間1906内,並以導線1905或其他之電連 接方式連接發光元件1101、1102、及/或1103與形成於電路佈 局载體1903上之電性接點19〇4。此外,發光元件u〇1~u〇3 與複合材料基板1901間之熱膨脹係數(Thermal ExpansiQn • Coefficient)之差值係不大於,如此可以減緩發 光元件1101〜1103與複合材料基板:l 9〇 1間因熱膨脹所產生之熱 應力。 … 發光二極體之晶粒之熱膨脹係數通常介於之 間,例如:氮化鎵(GaN)係為5.4xicr6/t:、磷化銦(ιηΡ)係 為 4.6x1CTV°C、磷化鎵(GaP)係為 5.3xl〇-6/°c。為了與發 光元件1101〜1103之熱膨脹係數相匹配,避免過多熱應力形成 於與其相接觸之材料間’本實施例使用複合材料基板19〇1作為 組成19之承載基板,除支撐電路佈局載體ι9〇3及發光元件 14 1359987 1101〜1103外,亦作為一散熱媒介,並選用適當之複合材料基板 19〇1使其與發光元件1101〜:L1〇3間之熱膨脹係數之差值不大於 10xl0_6/°C,如此可以減緩熱應力之影響。1359987 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display device including a tear layer and a backlight module. The backlight module includes at least one ultraviolet light unit, and the filter layer includes A wavelength converting material that absorbs ultraviolet light from the ultraviolet light unit and produces green light. [Prior Art] A liquid crystal display is a non-self-illuminating display. Therefore, it is necessary to provide a light source by another device, which is generally called a backlight module. The backlight module can be generally divided into two types: a direct light source (DirectLightType) and an edge light type (Edge Light Type); conventionally, the light source of the backlight module uses a lamp such as a cold cathode tube (CCFL), however The color saturation of the cold cathode tube is not good enough to present the true color of the surface. In order to achieve better color saturation, the use of a light-emitting diode (Ught Emitting Diode ‘LED) as a light source for a backlight module is currently the market trend. The light-emitting diode has the advantages of small volume, low power consumption, long life, fast response, and good mechanical strength. It is a promising lighting in this century. In order to reproduce various colors, the liquid crystal display towel generally causes the thief light film to pass through the white light of the backlight module to decompose the two primary colors of the excellent shape, that is, red, blue and green, by controlling each element. The ratio of the three primary colors in the group forms the desired color. Moreover, the white light must contain three primary colors to filter out the red, blue, and green colors. There are several ways to use white light to form white light: (1) blue light emitting diode 3 1359987 body with yellow fluorescent wire, generally using the light powder like Lu Shiquanshi (YAG), which is the most common means of forming white light. However, this kind of white light is formed by the mixture of blue light and yellow light, and its spectrum is mainly located at two wavelengths of 46〇1 and 55〇11111, that is, the white light lacks the components of red light and green light, so the use of such The white light LCD display cannot present the true color of the face. (2) The blue light emitting diode is combined with the red and green fluorescent powder, and the blue and green fluorescent powder is used to excite the red and green fluorescent powder to generate red and green light, and mixed with the blue light to form white light, but this way The crosstalk between the red, blue and green colors is serious, that is, the bandwidths of the red, blue and green colors overlap each other, causing the Hue to decrease. Door) ultraviolet light emitting diode with red, blue and green fluorescent powder, which uses ultraviolet light emitting diode to simultaneously excite three or more kinds of fluorescent powder to produce red, blue and green three colors. There are also serious crosstalk between the red, blue and green colors, and the technical level of the phosphors of various colors is not even. (4) The single-color red, blue and green LEDs use the independent three-color LED as the light source of the backlight module. • The color saturation of the liquid crystal display can reach l〇5% NTSC or more. Traditionally, the liquid crystal display of the cold cathode g is 15 times. However, due to the different brightness of the light-emitting diodes of different colors, different numbers of red, blue and green light-emitting diodes are required for application, and θ ' The green light-emitting diodes are inefficient, and more quantities are needed to balance the amount of light produced by other pure sources. However, this will inevitably lead to an increase in cost and an increase in the number of valleys. The increasingly miniaturized electronic products are a major drawback. 1359987 [Invention] The liquid crystal device of the present invention comprises a backlight module comprising: a light unit; a liquid crystal layer 'for controlling the flux of light emitted by the backlight module: a light passing layer comprising a plurality of halogen elements The 'm long conversion material is formed in one of the plurality of pixels, and the wavelength conversion material is irradiated by the ultraviolet light unit to generate green light. The backlight module further includes a red wire element and a blue light unit. Preferably, the ultraviolet light is a single, the red light unit and at least a material-emitting diode of the blue light unit. In order to make full use of the light emitted by the backlight module, the _ light layer has a reflective layer to selectively reflect light from the backlight module. Preferably, the light-passing layer includes a Distributed Bragg Reflector (DBR) to selectively reflect light from the backlight module. [Embodiment] First Embodiment Fig. 1 is a view showing the structure of a liquid crystal display device 1 of the present invention. The liquid crystal display device 10 should contain many components, but it is clearly reduced. The old towel only indicates the part that must be discussed in the present invention. The liquid crystal display does not include the H module n. The backlight module (10) provides a light source to the liquid crystal display device 10. Since the liquid crystal display device exhibits a visible wavelength range, the backlight module also needs to provide a visible light source, and the real world is presented. The color, the backlight module ig generally needs to provide white 1359987, light, and the white light is preferably composed of three primary colors of red, blue and green, such as red, blue and green light emitting diodes. However, in order to improve the luminous efficiency of the green light, an ultraviolet light emitter is used in the backlight module of the present invention, such as the ultraviolet light unit 1101 in the first drawing, preferably an ultraviolet light emitting diode ( LightEmittingDiode; LED), combined with a wavelength conversion material 1402 (labeled p) that absorbs ultraviolet light and produces green light to produce green light. The ultraviolet light system here is light with a wavelength between 10 and 420 nm, preferably For • 200~420nm. If the red light unit 1102 and the blue light unit 1103 capable of generating red light and blue light are disposed in the backlight module 11, the white light may be mixed with the green light generated by the ultraviolet light unit 11〇1 and the wavelength conversion material 1402, wherein the red light is formed. The light unit 1102 and the blue light unit 1103 are preferably also light-emitting diodes. Other light-emitting devices such as fluorescent lamps, incandescent lamps, halogen lamps, and the like are also suitable. The wavelength converting material 1402 is, for example, a phosphor which is excited by the ultraviolet light emitted by the ultraviolet light unit lien and emits green light. If the wavelength of the ultraviolet light emitted by the ultraviolet light unit 11 〇 1 φ is in the range of 200 to 420 nm, preferably 360 to 400 nm, 'the wavelength conversion material 1402 can use the phosphor powder of the alkaline earth metal citrate'. A fluorescent powder of cerium-activated alkaline earth metal silicate is used, and the composition of the fluorescent powder is such as (SrBaMg) zSiOiEu ' such a fluorescent powder can form a narrow wave width, for example, a full width at half maximum of less than 35 nm (Full Width Half Maximum; FWHM), this width is smaller than the half-height of the green light generated by the inGaN-based light-emitting diode to form a preferred chroma. Similar products on the market are Fluorescent Powders of the Green Lighting G400TM/G380TM/G360TM series produced by Intematix. 6 1359987 In addition, other fluorescent powders which can excite green light for ultraviolet light are: (Bai.xyzCaxSryEuz) 2 (Mgl.wZnvv) Si2〇7 >x+y+z=l;0.05>z>0;0.05>w ^ Ca8Mg ( Si04) 4ci2:Eu,Mn ^ Ba2Si04:Eu ^ Ba2MgSi207:Eu > Leg 2〇4:Eu, SrAl2〇4:Eu, and BaMg2A1i6〇27:Eu, etc. Between 330~42〇11111. The number of the ultraviolet light unit 11G1, the red light unit and the blue light unit depends on the size of the liquid crystal display unit 10, and the unit of the brightness unit 11〇1, φ11〇2, and 11〇3 required for the liquid crystal display 1 is free. Degree, and the optical design of the backlight module. The arrangement of the three primary colors may be red blue green (ultraviolet light), red green (ultraviolet light blue), blue green (ultraviolet light) red, blue red green (ultraviolet light), green (ultraviolet light) red blue, green (ultraviolet light). Light) blue red, red blue green (ultraviolet light) red, red green (ultraviolet light) blue red and so on. In this example, since the material light is non-wire, the mixed light 12 emitted by the back yarn group (10) will only show light mixed with red light and blue light, that is, light of the magenta series. The liquid crystal layer 13 includes at least a liquid crystal material and a thin film transistor layer (TFT). When a bias voltage is applied to the thin film transistor layer, the liquid crystal in the biased region will be turned by the control. The steering angle can control the steering angle of the liquid crystal to adjust the amount of the mixed light 12 passing through the liquid crystal layer, that is, to control the brightness of the liquid crystal display 10. The operating principle of the liquid crystal display is a well-known technique, and the details can be referred to the related technical literature. The mixed light 12 passes through the liquid crystal layer 13 and reaches the filter layer 14. The filter layer 14 is usually formed on a glass substrate. The filter layer 14 contains a plurality of pixd 14 〇 1 (marked in FIG. 1 R, P, B), usually in a group of at least three halogens, respectively 1359987 to filter the mixed light 12 to produce three colors of red, blue and green. In this embodiment, a wavelength conversion material 1402 (hereinafter referred to as a green halogen (8)) is disposed in a single element of the group of pixels, and the wavelength conversion material is excited by the light emitted by the ultraviolet light unit 1101. After the green light (6), the other two elements in the set of pixels are red pixel (8) and blue pixel (8), respectively, which are made of red and blue organic materials in the corresponding elements, respectively. Red light and New Zealand, that is, the light of the mixed light 12 after passing through the red halogen (R) will be removed, and the light of the non-blue wavelength range after the blue halogen (B) will be removed. It is filtered out, so red halogen (R) will emit red light, while blue halogen (8) will emit blue light. With the green pixel (P), red halogen (R) and blue halogen (8), the silk, red light and H light can be combined to capture the age of each color. In addition to the use of organic materials to form red halogen (R) and blue halogen (B), you can also use the fluorescent powder that can excite red and blue light for ultraviolet light to form red rutin (R) and blue Picture (B). The laser light powder that can excite red light for ultraviolet light such as .Y202S:Eu,Bi,Y2〇3:Eu,Bi,3 5Mg〇.〇5咐2 &〇2 applies 4+, the excitation wavelength is between Between 330 and 420mn. For example, BaMg2Al16027:Eu, (10)aCa)5(p〇4)3C1:Eu, Sr4Ai]4〇25Eu, and the excitation wavelength range is between 220 and 330 nm. Each element can be given a light with a reduced wavelength, which means that the filtered light may not pass through the pixels that allow it, resulting in (4) decreased efficiency, for example, being filtered in erythromycin (R), In addition to blue and ultraviolet light, it is likely to be red halogen (8) 8 1359987. It can no longer pass blue halogen (B) and green halogen (P). In order to improve the utilization of light, a Bragg Reflector (DBR) 1404 is formed before the filter layer 1401 to selectively reflect light of different wavelength ranges in the mixed light 12, for example, red halogen (R). Forming a Bragg reflection layer that reflects blue or ultraviolet light, so that the blue or ultraviolet light is not completely absorbed by the red pigment (R), and after several reflections, it enters blue halogen (B) or green halogen. Among the (P), the principle of generating the corresponding color light 'other elements' is also the same. Further, since the ultraviolet light is reflected by the cloth #拉格反射层 1404, ultraviolet light can be prevented from overflowing the outside of the liquid crystal display 10. Further, the liquid crystal display 10 includes other types of optical films such as a prism sheet, a diffuser (DiffUser), a polarizer, and the like. The cymbal and the diffusion sheet are usually disposed in the backlight module η for homogenizing the light emitted by the light-emitting units 1101 to 1103 to generate the desired hybrid aperture 2. The polarizing plate is usually combined with the liquid crystal layer 13 so that the mixed light 12 is polarized and then enters the liquid crystal layer φ13. Excitation of the wavelength conversion material 1402 by ultraviolet light to generate green light can improve the production efficiency of green light. However, some parts of the liquid crystal display, such as plastic sheets such as cymbals, diffusion sheets, and polarizers, may be easily caused. The ultraviolet light is irradiated for a long time to deteriorate. Therefore, in order to prevent the occurrence of deterioration, the optical film or plastic is preferably made of a material resistant to ultraviolet light. Other related technical materials of this embodiment are as described in US Patent Application No. US2005/0001537A, US2004/0061810A1, US6,686,69, and U.S. Patent No. 1,1,359,987, US 6,791,636, US 6,844,903, US 6,809,78, US 6,252,254, US 6,255,670 , US 6,278,135, US 6,294,800, EP1138747, W00189000, W00189001 'all are listed here for reference. In the second embodiment, the backlight module 11 includes a light dispersing device 丨5 and/or an optical adjusting surface 16 having a wave pattern array to guide, mix and/or disperse the light emitting units 1101~1103. The generated light is directed toward the liquid crystal layer 13, as shown in the figure. As shown in Fig. 2b, the optical dispersion device 15 has a wing-like projection 15〇1, a recess 15〇2, and a light incident surface 1503', and the optical dispersion device 15 extends toward a longitudinal direction 15〇4, and the recess 1502 is located. Preferably, the recess 1502 is located on the opposite side of the light incident surface 1503; the optical adjustment surface 16 has a first corrugated array 1601, which can be made from the ultraviolet light unit 11〇1, red The light of the light unit 11A2, and/or the blue light unit 1103 is evenly dispersed and/or mixed to prevent the backlight module 11 from producing a significant spot or exhibiting an unevenly mixed color light. After the light enters the light dispersing device 15 from the light incident surface 1503, part of the light is incident on the two sides of the notch 15〇2 through the total internal reflection (T〇talInternal Relection) at the notch 15〇2, that is, the light is directed The direction of the wing-like protrusion 15〇1; part of the light is directly emitted at the notch 1502 and the effect of refraction is caused by the difference in the refractive index of the optical dispersion device 15 and the external optical medium (but due to partial light The direction of total reflection at the recess 1502 to the wing-like projection 1501 reduces the amount of light directly emitted by the recess 1502, thus avoiding the formation of a local spot near the recess 15〇2, preferably a notch. The shape of 15〇2 is approximately v-shaped or U-shaped. The light guided to the wing-like protrusion salt or other light that is directed toward the wing-like protrusion 1501 via the notch is refracted, reflected or directly emitted from the wing-shaped protrusion 15 ' The person is incident on the light dispersing device 15 and is gradually mixed into the uniform color light after several times of total internal reflection in the wing-shaped protruding portion 丨5 射 to emit the light-splitting device 15 . The rule is entered into the light diffusing device 15 by the smooth surface of the person, and the light incident surface 15〇3 is not limited to the plane, and may be concave or it is advantageous for the shape of the light receiving. The optical adjustment surface 16 has a first corrugated array 16〇1, and the optical adjustment surface “and the first corrugated array 1601 are formed on the light incident surface 15〇3 of the light dispersion device 15. The first corrugated array 1601 is attached to the optical The undulating surface formed on the surface 16 is adjusted, and the undulating surface has a fixed wave direction, that is, an array direction or a wavefront direction of the first corrugated array 1601, and the first corrugated array 16〇 The wave on 1 is a plurality of tiny lenses. When the light passes through the optical adjustment surface 16, the small lenses on the first corrugated array 1601 are refracted at different angles, so that the light from the light-emitting units 1101 to 1103 can be blurred to avoid The partial light spot makes the color light generated by the light dispersing device 15 more uniform. In order to achieve the better astigmatism effect of the first corrugated array, the diameter of the micro lens is about 5 〇 6 6 〇 from the melon. When the corrugated array 1601 has a continuous wave shape, the distance between two consecutive peaks or troughs is about 100 to 120/zm. The optical adjustment surface 16 may also be disposed in the optical dispersion device 15 The middle part is formed by combining two materials having different refractive indices, and forming a corrugated array on the bonding surface of the two light-transmitting materials 11 1359987 to achieve the above-mentioned beam splitting effect, as shown in FIG. 2C, wherein the oblique line portion The portion has a refractive index different from that of the portion not marked with a diagonal line. The first corrugated array 1601 is not limited to be disposed on the light incident surface 15〇3, and may be disposed on the wing protrusion 1501 or/and the recess 1502. The first corrugated array 1601 may be disposed on the path through which the light passes, as shown in Fig. 2e. The material of the optical dispersion device 15 is acrylic resin (ACryiic Resin), cycloolefin polymer (COC). , polymethyl methacrylate (PMMA), polycarbonate vinegar (PC), polyetherimide, fluorocarbon polymer (Fiuorocarbon Polymer), silicone (Silicone), combinations of the above materials, or other Optical material. As shown in Fig. 2d, the optical adjustment surface 16 may also be formed on an optical film 17 having a first surface 1701 and a second surface 1702 opposite to each other, and the optical adjustment surface 16 is formed on one of the surfaces. On the first surface 17〇1, the first corrugated array 1601 is formed on the first surface 1701, wherein the optical film 17 can be disposed above the light dispersing device 15 or between the light dispersing device 15 and the light emitting unit 11〇1~ Between 11 and 3. In this case, a second optical adjustment surface lg may be formed on the second surface, and a second corrugated array brain is formed on the second optical adjustment surface 18, but the first corrugated array 1601 and the second wave (10) The direction of the column is reduced by the first corrugated array 1601 and the second corrugated array 18〇1 which are superimposed in different directions to generate a moiré (the first corrugated array surface and the first The two-corrugated array 1801 is appropriately adjusted to re-distribute the brightness of the light passing through the overlay to achieve a uniform light-scattering effect. An optical cymbal 17 having a stacked or corrugated array is a product produced by S_Light Optoelectronics. 12 1359987 The optical adjustment surface 16 or 18 is not limited to being disposed only on one of the optical dispersion device 15 or the optical film surface 17 and may be disposed on the optical dispersion device 15 and the optical film surface 同时 simultaneously, as described above. The optical adjustment surface 16 or/and 18 may be disposed in the light dispersion device 15 by combining two or more materials having different refractive indices, and forming a corrugated array on the bonding surface of the light transmissive materials. Achieve the effect of splitting. The corrugation size, the shape of the corrugations, and the frequency of the corrugations on the first corrugated array 1601 and the second corrugated array 18〇1 may be the same or different. The arrangement direction of the right illumination units 1101, 1102, and/or 1103 is parallel to the front of the first corrugated array 16G1, that is, the wavefront direction of the neon, and the light passes through the first corrugated array 16G1 to be approximately parallel to the first Corrugated array of light shape 18 in the wave front direction. Therefore, when the alignment direction of the wire 11G and/or the alignment direction of the wire and the wavefront direction of the first-corrugated array 1601 are both straight, the wires are dispersed in a single filament. When the arrangement direction of the light source 110b, and/or 11〇3 is delineated or radial with respect to the wavefront of the first corrugated array 1601, the neon will be dispersed in an arc shape or a radiation shape. Theoretically, when the arrangement direction of the light source, _, and/or (10) is parallel to the wave direction of the first corrugated array 1601, the light generated by the light source, 102, and/or 11〇3 can be dispersed along the line. The shape of the light extending in the direction of the wavefront. A detailed description of the light dispersing device and the corrugated scale is described in the applicant's Republic of China Patent Application No. 093129157 and No. 09,011,463, the disclosure of which is incorporated herein by reference. Third Embodiment In the present embodiment, the light-emitting units 1101 to 1103 are semiconductor light-emitting elements, for example, light-emitting diodes, and preferably, light-emitting diode dies. As the power is raised, the heat generated by the light-emitting diode is higher. In order to provide heat dissipation of the light-emitting diode, the ultraviolet light unit 1101, the red light unit 1102, and/or the blue light unit 11〇3 of the embodiment are provided. It is disposed on a composite substrate 19〇1, as shown in FIG. 3a, wherein the 19-series is not composed of a semiconductor light-emitting element, such as a light-emitting diode package; the 1901 system represents a complex δ material substrate, and the 1902 system does not. Bonding structure; 1903~ indicates circuit layout carrier; 19〇4~ indicates electrical contact; 1905~ indicates wire. The circuit layout carrier 1903 and the pole material substrate 1901 are combined by a bonding structure 1902. The ultraviolet light unit 11〇1, the red light unit 11〇2, and/or the blue light unit 11〇3 are fixed in the recessed space 1906, and are connected to the light-emitting elements 1101, 1102 and/or by wires 1905 or other electrical connections. 1103 and an electrical contact 19〇4 formed on the circuit layout carrier 1903. In addition, the difference between the thermal expansion coefficients (Thermal ExpansiQn • Coefficient) between the light-emitting elements u〇1 to u〇3 and the composite substrate 1901 is not greater than this, so that the light-emitting elements 1101 to 1103 and the composite substrate can be slowed down: l 9〇1 Thermal stress due to thermal expansion. The thermal expansion coefficient of the crystal grains of the light-emitting diode is usually between, for example, 5.4 xicr6/t for gallium nitride (GaN) and 4.6x1 CTV °C for gallium phosphide (indium phosphide). GaP) is 5.3 x 1 〇 -6 / ° c. In order to match the thermal expansion coefficients of the light-emitting elements 1101 to 1103, excessive thermal stress is prevented from being formed between the materials in contact with it. In this embodiment, the composite substrate 19〇1 is used as the carrier substrate of the composition 19, except for the support circuit layout carrier ι9〇 3 and the light-emitting element 14 1359987 1101~1103, also as a heat-dissipating medium, and the appropriate composite substrate 19〇1 is used to make the difference between the thermal expansion coefficients of the light-emitting elements 1101~:L1〇3 not more than 10xl0_6/° C, this can slow down the effects of thermal stress.

複合材料係由二種以上之材料所組成,且此二種以上之材料 並不會形成他種h子或原子結構。一般來說,複合材料能夠結合 個別材料之優點而形成較原始組成材料具有更佳物理特性之材 料’ 一般來說’複合材料具輕量、高強度、熱力性質佳等優點。 複合材料可大致區分為金屬基複合材料(Metal Matrix Composite ; _C)、聚合物基複合物(ρ〇1_Γ贼〜 Composite ; PMC)、及陶瓷基複合物(Ceramic脱以“ Composite,CMC),其係將碳纖維或陶瓷纖維等分別與金屬、 聚合物及陶瓷相混合。在此,為傳導發光元件11〇1~ιι〇3所產 生之高熱’難地可贿賴料係數科於1SQ w/nrK且軌 膨脹係數不大於mo-Vt;之金屬基複合材料,如:縣複合材 料(目前,熱傳導係數約為100〜64〇 w/m»K ;熱膨服係數約為 5〜15 xl〇-6/°C),作為複合材料基板19〇1。但聚合物基複合物 及陶瓷基複合物亦可以視需要而使用。 電路佈局載體1903係如印刷電路板(printed Circui Board ; PCB)、軟性印刷電路板(Γΐ^^ΐβ Circuit ; FPC)等、陶£基板、或為矽基板(si 專+導體基板。使用料體基板作為電路佈局載體謂3係可i 利用各種半導體製程,如_、續等,於其上製造所需之電路 =可以與發光二極體之触撼合,有懈製程魏的提升。出 :丄如石夕基材之半導體基板更具有優良之熱傳性質(熱料係畫 私;熱膨脹係數約為4χ1(Γ6Λ:),與複合材糊 板’特別是金屬基複合材料之基板共同使用時,由於其二肩 15 1359987 之熱傳導絲及鱗_數槪,目此可 生,以及提高熱傳導之效能。々β士牛…應力之產 板等亦可城需要而細。4卩㈣路域祕印刷電路 本發明之電路佈局载體丄卯3與複合材 ^ 1902 1902 係為-軟質黏性材料層,更佳地,係於室溫 性質之軟質黏性材料層。此軟質黏性材料層之材料係如苯The composite material is composed of two or more materials, and the two or more materials do not form other kinds of h or atomic structures. In general, composite materials can combine the advantages of individual materials to form materials with better physical properties than the original constituent materials. 'Generally, composite materials have the advantages of light weight, high strength, and good thermal properties. The composite material can be roughly classified into a metal matrix composite (Metal Matrix Composite; _C), a polymer matrix composite (ρ〇1_Γ thief ~ Composite; PMC), and a ceramic matrix composite (Ceramic is stripped of "Composite, CMC"), which Carbon fiber or ceramic fiber is mixed with metal, polymer and ceramic, respectively. Here, the high heat generated by the conduction light-emitting element 11〇1~ιι〇3 is difficult to be used in 1SQ w/nrK. And the rail expansion coefficient is not greater than mo-Vt; the metal matrix composite material, such as: county composite material (currently, the heat transfer coefficient is about 100~64〇w/m»K; the thermal expansion coefficient is about 5~15 xl〇- 6 / ° C), as a composite substrate 19 〇 1. However, polymer-based composites and ceramic-based composites can also be used as needed. Circuit layout carrier 1903 is like printed circuit board (PCB), soft Printed circuit board (Γΐ^^ΐβ Circuit; FPC), etc., ceramic substrate, or germanium substrate (si special + conductor substrate. The use of the material substrate as a circuit layout carrier can be used in various semiconductor processes, such as _, Continued, manufacturing the required circuit on it = It can be combined with the contact of the light-emitting diode, and it has the improvement of the process. The semiconductor substrate of the stone substrate is more excellent in heat transfer properties (the thermal expansion coefficient is about 4χ1). Γ6Λ:), when used together with the substrate of the composite paste board, especially the metal matrix composite material, the heat conduction wire and the scale of the two shoulders 15 1359987 can be produced, and the heat conduction efficiency can be improved. Shi Niu...The production board of stress can also be fined by the city. 4卩(4) Roadside secret printed circuit The circuit layout carrier 丄卯3 of the invention and the composite material ^ 1902 1902 are made of a soft adhesive layer, preferably Ground, a layer of soft adhesive material at room temperature. The material of the soft adhesive layer is benzene.

Ben2〇Cycl〇butene :剛、環氧樹脂(epGxy)、聚亞酿胺 polype(S0G),^m Csilic〇ne) ϋ於二^Γ) I、或上赌料之組合。由於該絲_性材料可 於較低之溫度(-般為300。〇以下)下加熱固化,如此可以 減、k複合材料基板與發拉件lm~11Q3,及/或複合 料基板19Q1與電路佈局載體19〇3_高溫 _ 口 且亦可以降低發光元件11〇1~11〇3因高溫可能受到的損^並 、本^施例之黏接結構㈣2除使用上述之婦黏接材料外, 以口併使用它種材料以更進一步提升黏接結構19犯之黏 :^第反所示’黏接結構1902係包含一軟質黏性材料層 02與2〇〇3係分卿成於軟質黏性材料芦 载體19Q3及/或複合材縣板之間^ 3軟質黏性材料層2QQ1與電路佈局載體19 ^二 二19;1:?接效果。反應層2。。2 一= x)鈦(Tl)、鉻(cr)、或上述材料之組合。電路 化與/或複合材料基板19Q1上可以先_物理氣相沉積、 佈^^積等方式形成反應層·2與/或·3,再將於電路 〇 — 9〇3與/或複合材料基板1901之其中-側上形成軟質 16 1359987 =材^層2〇01,再組合電路佈局载體丄咖與複合材料基板 〇1,並施以適當之壓力及/或溫度’例如328g/cn^658 g/cm2 、及150 C 600 C ’較佳地係為5〇5 g/cm2以及2〇〇。〇〜3〇〇。匚, 以固結接合電路佈局載體!9〇3與複合材料基板19〇1。 再者,由於複合材才斗基板1901之表面可能為-粗糖面。因 此’為使黏接結構19〇2可以相地附著於複合材料基板ΐ9〇ι ^,於複合材料基板1901之表面可以形成一平坦化層21以填充 複合材料基板1901上之粗触。平坦化層21之材料係為錄(Ni) • 或他種可以與黏接結構1902形成結合之材質。 本只施例甲’波長轉換材料1402係覆蓋於發光元件η01、 1102、及/或1103之上方’再於其上方形成透光材料,如透鏡以 固定並/或保護波長轉換材料14()2 〇 或者,將波長轉換材料1402與透光材料或其他膠合材料相混 合後再覆蓋於發光元件110卜11〇2、及/或11〇3之上方。然而, 波長轉換材料1402亦可以在不與透光材料或其他膠合材料相混合 下,利用沉積法(sedimentati〇n)直接覆蓋於發光元件11〇1、11〇2、 及/或1103上方。 | 並且為提高發光元件11G卜11〇3之光摘出效率,於凹陷空 間1906内更可以形成一反射層22 ’用以反射及導引發光元件 1101〜1103所發射之光線大多朝向同一方向。反射層22係為可 以反射光線之材質,如金、銀、銅、紹、錫等金屬。反射層22係 可以利用各種薄膜沉積方式形成於凹陷空間19〇6之部分或全部 之内表面。此外,當反射層22為導電材料時,為使發光件 1101 1103與反射層22保持絕緣,較佳地,反射層22並不形 成於發光元件11〇1~11〇3覆蓋於複合材料基板19〇1上方之區 域。此外,為使反射層22可以達到較佳之反射效果,凹陷空間 17 U59987 亦即凹陷空間1906之内壁 6係為一錐狀(tapered)空間, 係為一斜面’形成如一漏斗狀空間。 个貝卿巧 棚邓抆術匕描述於申請人之中 案第0941G3538號中’亦-併錄於本文以兹參考。 雖然本發明已以具體之實施例說 ^本發明之内容,任何熟悉此技藝之人士任絲、思^ 傅,皆不脫如附申凊專利範圍所欲保護者。 、、又: 【圖式簡單說明】 第1圖係顯示一本發明之實施例之示意圖; 第2a〜2e圖係顯示本發明之實施例中光分散裝置與光學調敕 之示意圖; 第3a及3b圖係顯示本發曰月之實施例中半導體發光元件组 意圖。 v 【主要元件符號說明】 。10〜液晶顯不裝置;11〜背光模组;11〇1〜紫外光單元;11〇2〜紅光 單元;11G3〜藍光單元;12〜混合光;13〜液晶層;⑷濾光層;!彻〜 晝素;1402〜波長轉換材料;1403〜綠光;1404-布拉格反射層;15〜光 分散裝置;1501〜翼狀突出部;15〇2〜凹口 ; 15〇3〜入光面;16^光學調 整表面;1601〜第一波紋狀陣列;17〜光學膜片;1701〜第一表面;17〇2〜 第一表面,18〜第二光學調整表面;18〇1〜第二波紋陣列;19〜半導 體發光7L件組成;19〇1〜複合材料基板;19〇2〜黏接結構;19〇3~ 電路佈局載體’ 19〇4〜電性接點;19〇5〜導線;19〇6〜凹陷空間; 2001〜軟質黏性材料層;2〇〇2~反應層;2〇〇3~反應層;21〜平坦 化層;22~反射層。 18Ben2〇Cycl〇butene: just, epoxy (epGxy), poly-aniline polype (S0G), ^m Csilic〇ne) ϋ 二 2) I, or a combination of gambling. Since the silk-material can be heat-cured at a lower temperature (typically 300 Å or less), the composite substrate and the tensile member lm~11Q3, and/or the composite substrate 19Q1 and the circuit can be reduced. The layout carrier 19〇3_high temperature_ mouth can also reduce the damage of the light-emitting elements 11〇1~11〇3 due to high temperature, and the bonding structure (4) 2 of the present embodiment, in addition to using the above-mentioned female bonding material, Use the material of the mouth and use it to further improve the adhesion structure. 19 The adhesion is: ^ The opposite shows that the 'adhesive structure 1902' contains a layer of soft adhesive material 02 and 2〇〇3 is divided into soft and sticky. Material material reed carrier 19Q3 and / or composite material between the plate 2 ^ soft adhesive material layer 2QQ1 and circuit layout carrier 19 ^ 22:19; 1: connection effect. Reaction layer 2. . 2 a = x) titanium (Tl), chromium (cr), or a combination of the above. On the circuitized and/or composite substrate 19Q1, the reaction layer·2 and/or·3 may be formed by physical vapor deposition, deposition, etc., and then the circuit 〇-9〇3 and/or the composite substrate may be formed. On the middle side of 1901, a soft 16 1359987 = material layer 2 〇 01 is formed, and the circuit layout carrier 丄 与 and the composite substrate 〇 1 are combined, and appropriate pressure and/or temperature is applied, for example, 328 g/cn^658 g/cm2, and 150 C 600 C ' are preferably 5 〇 5 g/cm 2 and 2 〇〇. 〇~3〇〇.匚, to consolidate the junction circuit layout carrier! 9〇3 with composite substrate 19〇1. Furthermore, since the surface of the composite substrate 1901 may be a coarse sugar surface. Therefore, in order to allow the bonding structure 19〇2 to be phase-attached to the composite substrate ΐ9〇, a planarization layer 21 may be formed on the surface of the composite substrate 1901 to fill the coarse contact on the composite substrate 1901. The material of the planarization layer 21 is a material (Ni) or a material which can be combined with the bonding structure 1902. The only embodiment of the 'wavelength converting material 1402 is over the light emitting elements η01, 1102, and/or 1103' to form a light transmissive material thereon, such as a lens to fix and/or protect the wavelength converting material 14 () 2 Alternatively, the wavelength converting material 1402 may be mixed with the light transmissive material or other bonding material and then over the light emitting element 110, and/or 11〇3. However, the wavelength converting material 1402 may also be directly overlaid on the light-emitting elements 11〇1, 11〇2, and/or 1103 by a deposition method without being mixed with a light-transmitting material or other bonding material. Further, in order to improve the light extraction efficiency of the light-emitting element 11G, the light-emitting element 11G can be formed into a reflective layer 22' for reflecting and guiding the light-emitting elements 1101 to 1103 to emit light in the same direction. The reflective layer 22 is made of a material that reflects light, such as gold, silver, copper, sulphur, tin, and the like. The reflective layer 22 can be formed on part or all of the inner surface of the recessed space 19〇6 by various thin film deposition methods. In addition, when the reflective layer 22 is a conductive material, in order to keep the light-emitting member 1101 1103 and the reflective layer 22 insulated, preferably, the reflective layer 22 is not formed on the light-emitting elements 11〇1 to 11〇3 over the composite substrate 19 The area above 〇1. In addition, in order to achieve a better reflection effect of the reflective layer 22, the recessed space 17 U59987, that is, the inner wall 6 of the recessed space 1906 is a tapered space, and a sloped surface is formed as a funnel-shaped space. A copy of the book is described in the applicant's case No. 0941G3538, which is also included in the text. Although the present invention has been described in terms of specific embodiments, any person skilled in the art, such as Rensi and Sifu, is not to be protected as claimed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an embodiment of the present invention; and FIGS. 2a to 2e are diagrams showing an optical dispersion device and an optical adjustment in an embodiment of the present invention; The 3b diagram shows the intention of the semiconductor light-emitting element group in the embodiment of the present invention. v [Main component symbol description]. 10~LCD display device; 11~ backlight module; 11〇1~UV unit; 11〇2~red light unit; 11G3~blue unit; 12~mixed light; 13~liquid crystal layer; (4) filter layer; Ts ~ 昼素; 1402 ~ wavelength conversion material; 1403 ~ green light; 1404- Bragg reflection layer; 15 ~ light dispersion device; 1501 ~ wing-like protrusion; 15 〇 2 ~ notch; 15 〇 3 ~ into the light surface; 16^ optical adjustment surface; 1601~first corrugated array; 17~ optical diaphragm; 1701~first surface; 17〇2~ first surface, 18~second optical adjustment surface; 18〇1~second corrugation array 19~ semiconductor light emitting 7L component; 19〇1~ composite substrate; 19〇2~bonded structure; 19〇3~ circuit layout carrier '19〇4~electrical contact; 19〇5~ wire; 19〇 6~ recessed space; 2001~ soft adhesive layer; 2〇〇2~ reaction layer; 2〇〇3~ reaction layer; 21~ flattening layer; 22~reflective layer. 18

Claims (1)

1359987 μ V ,ί 七、f請專利: 1. 一種液晶顯示裝置,包含: 一背光模組,包含一發光單元用以發出一光線; 一液晶層,用以控制該背光模組所發出光之通量; 一濾光層,包含複數個晝素,設於該液晶層上; -光分散裝置,用以導引該背光模_之光線朝向該液晶層, 該光刀政裝置包含-光學調整表面,該光學調整表面具有—波 紋狀陣列設置於光線所行經之路徑上;以及 / • 一波長轉換材料形成於該複數個晝素中之一,該波長轉換材料 經該發光單元照射而產生綠光。 2. 如申請專利II圍第丨項所述之液晶顯示裝置,其巾該發光單元 包含一紫外光單元、一紅光單元與一藍光單元。 3. 如申請專利範圍第2項所述之液晶顯示裝置,其中該紫外光單 元、該紅光單元及該藍光單元中至少之一係為一發光二極體。 4. 如申請專利細第1項所述之液晶顯示裝置,其巾該複數個晝 素包含一紅色畫素用以使紅光通過,與一藍色晝素用以使藍光 攀 通過。 5. 如申請專利範圍第2項所述之液晶顯示裝置,其中該紫外光單 元所產生之光之波長係介於2〇〇〜420nm。 6. 如申請專利範圍第2項所述之液晶顯示裝置,其中該紫外光單 元所產生之光之波長係介於360〜400!^。 7. 如申請專利範圍第1項所述之液晶顯示裝置,其中該濾光層係 選擇性反射來自背光模組之光。 8. 如申請專利範圍第丨項所述之液晶顯示裝置,其中該濾光層包 、"一布拉格反射層(Distributed Bragg Reflector ; DBR)以選擇 19 1359987 性反射來自背光模組之光- 9·如申請專利範圍第1項所述之液晶顯示裝置,其中該液晶層包 含一薄膜電晶體層。 10. 如申請專利範圍第1項所述之液晶顯示裝置,更包含複數之光 學膜片。 11. 如申請專利範圍第1〇項所述之液晶顯示裝置,其中該些光學 膜片其中之一係抗紫外光。 12. 如申請專利範圍第1〇項所述之液晶顯示裝置,其中該些光學 • 膜片其中之一係擇自棱鏡片、擴散膜、及偏光膜其中之一。 13·如申請專利範圍第1項所述之液晶顯示裝置,其中該波長轉換 材料係包含鹼土金屬矽酸鹽。 Μ·如申請專利範圍第1項所述之液晶顯示裝置,其中該波長轉換 材料係包含銪活化之鹼土金屬矽酸鹽。 15.如申請專利範圍第i項所述之液晶顯示裝置,其中該波長轉換 材料係擇自(SrBaMg)2Si04:EU、(Bai-x-y-zCaxSryEUz)2(Mgi為 • Sl2〇7,X+y+z=1 ; 0.05>z>0 ; 〇.05>w、Ca8Mg (Si04) 4Cl2:Eu,Mn、 Ba2Si〇4:Eu、Ba2MgSi2〇7:Eu、BaAlA:Eu、SrAi2〇4:Eu、與 BaMg2Al16〇27:Eu、所構成之一族群。 ” 1<5.如申請專利範圍第2項所述之液晶顯示裝置,其中該紅光單 元與該藍光單元係包含螢光粉。 ^ 17·如申請專利範圍第2項所述之液晶顯示裝 單元之一 平凡之一材料係擇自Y2〇2S:Eu,Bi 3’5Mg〇 〇_5MgF2 · Ge〇2:Mn4+所構成之一步 置,其中構成該紅光 、Y2〇3:Eu,Bi、與 族群。 18.如申睛專利範圍第2項所述之液晶顯示襞置, 單元之一材料係擇自BaMg2Ali6〇27:Eu -置’其中構成該藍光 (SrBaCa) 5 (P〇4) 20 1359987 3C1’Eu、與Sr4A1M〇25:Eu所構成之—族群。 19·—種發光裝置,包含: 、 一發光單元用以發出一光線; 一光分散裝置用以導引該發光單元所發具有—翼1359987 μ V , ί 七, f Please patent: 1. A liquid crystal display device comprising: a backlight module comprising a light emitting unit for emitting a light; a liquid crystal layer for controlling the light emitted by the backlight module a filter layer comprising a plurality of halogens disposed on the liquid crystal layer; a light dispersing device for guiding the light of the backlight mode toward the liquid crystal layer, the optical knife device comprising an optical adjustment surface The optical adjustment surface has a corrugated array disposed on a path through which the light travels; and/or a wavelength converting material is formed in one of the plurality of pixels, the wavelength converting material being illuminated by the light emitting unit to generate green light . 2. The liquid crystal display device of claim 2, wherein the light emitting unit comprises an ultraviolet light unit, a red light unit and a blue light unit. 3. The liquid crystal display device of claim 2, wherein at least one of the ultraviolet light unit, the red light unit, and the blue light unit is a light emitting diode. 4. The liquid crystal display device of claim 1, wherein the plurality of pixels comprise a red pixel for passing red light and a blue halogen for passing the blue light. 5. The liquid crystal display device of claim 2, wherein the ultraviolet light unit generates light having a wavelength of between 2 〇〇 and 420 nm. 6. The liquid crystal display device of claim 2, wherein the wavelength of light generated by the ultraviolet light unit is between 360 and 400! 7. The liquid crystal display device of claim 1, wherein the filter layer selectively reflects light from the backlight module. 8. The liquid crystal display device of claim 2, wherein the filter layer package, "Distributed Bragg Reflector; DBR, selects 19 1359987 to reflect light from the backlight module - 9 The liquid crystal display device of claim 1, wherein the liquid crystal layer comprises a thin film transistor layer. 10. The liquid crystal display device of claim 1, further comprising a plurality of optical films. 11. The liquid crystal display device of claim 1, wherein one of the optical films is resistant to ultraviolet light. 12. The liquid crystal display device of claim 1, wherein one of the optical films is selected from one of a prism sheet, a diffusion film, and a polarizing film. The liquid crystal display device of claim 1, wherein the wavelength converting material comprises an alkaline earth metal silicate. The liquid crystal display device of claim 1, wherein the wavelength converting material comprises cerium activated alkaline earth metal cerate. 15. The liquid crystal display device of claim 1, wherein the wavelength converting material is selected from (SrBaMg) 2Si04: EU, (Bai-xy-zCaxSryEUz) 2 (Mgi is • Sl2〇7, X+y +z=1 ; 0.05>z>0 ; 〇.05>w, Ca8Mg (Si04) 4Cl2:Eu, Mn, Ba2Si〇4:Eu, Ba2MgSi2〇7:Eu, BaAlA:Eu, SrAi2〇4:Eu, The liquid crystal display device of claim 2, wherein the red light unit and the blue light unit comprise phosphor powder. ^ 17· One of the ordinary materials of the liquid crystal display unit described in claim 2 is selected from the group consisting of Y2〇2S:Eu, Bi 3'5Mg〇〇_5MgF2 · Ge〇2:Mn4+, wherein The red light, Y2〇3:Eu, Bi, and the group are formed. 18. The liquid crystal display device according to claim 2, wherein one of the materials of the unit is selected from BaMg2Ali6〇27:Eu-set The blue light (SrBaCa) 5 (P〇4) 20 1359987 3C1'Eu and the Sr4A1M〇25:Eu group are formed. 19. The light-emitting device comprises: A light; a light guide means for dispersing the light emitting unit having issued - wing 調整表面,該凹口係 的兩側,該光學調整 經之路徑上,該波紋 2(^2專利第19項所述之發光裝置,其中該發光單元更包含一 备、卜光發射體、-紅光發射體、及—藍光發射體。 一係為一發光二極體。 此如申請專概_ 2〇賴狀發絲置,其巾該發光單元所 ^該紫外光發射體、該紅光發㈣、及雜光發射體其中之 22.如申請專利範圍f 19項所述之發光裝置,其中該光學調整表 面係形成於該光分散裝置上。 • 23.如申請專利範圍第19項所述之發光裝置,其中該波前方向係 大體上平行於該長度方向。 24. ^申請專纖圍第19項所述之發光裝置,更包含—光電裝置, 包合一光發射體,及一波長轉換材料經該光發射體照射後激發 出綠光射向該入光面,其中該光電裝置之一排列方向係大體上 平行於該波前方向。 25. 如申請專利範圍第24項所述之發光裝置,其中該光電裝置更 包含: —複合材料基板; 一電路佈局載體’係電性連接至該光發射體;及 21 1359987 一黏接結構,用以接合該複合材料基板與該電路佈局載體。 26·如申請專利範圍第24項所述之發光裝置’其中該波長轉換材 料係形成於該光發射體之一出光路徑上。 27. 如申請專利細第25項所述之發光裝置,其中該光發射體與 該電路佈局载體係位於該複合材料基板之同一側。 28. 如申請專利範圍» 25項所述之發光«置,其中該複合材料基 板係包含金屬基複合材料(Metal Matrix composite ; MMC)、聚合物基複合物(p〇lymer Matrix c⑽; # PMC)、陶瓷基複合物(Ceramic Matrix Composite ; CMC)、上述材料之等效物、或上述材料之組合。 29. 如申請專利範圍第25項所述之發光裝置,其中該電路佈局載 體係為半導體基板、印刷電路板(Printed Circuit Board ; PCB)、軟性印刷電路板(Flexible Printed Circuit ; FPC)、矽基板(si substrate)、陶瓷基板、上述材料之等 效物、或上述材料之組合。 30·如入申,專利範圍帛2S項所述之發光裝置,其中該黏接結構係 _ 包含笨環丁稀(Benzocyclobutene ; BCB)、環氧樹脂 (epoxy)、聚亞酿胺(p〇lyimide)、旋塗式玻璃(s〇G)、石夕 树月曰(siliCone)、焊料、上述材料之等效物、或上述材料之 組合。 31.—種液晶顯示裝置,包含: 一背光模組,包含一紫外光單元、一紅光單元與一藍光單元,其 中遠紫外光單元、該紅光單元及該藍光單元中至少之一係為—發 光二極體; X 一液晶層,用以控制該背光模組所發出光之通量; 一濾光層,設於該液晶層上,包含複數個畫素,以及一波長轉換 22 U59987 材料形成於該複數個晝素中之一,該波長轉換材料經該紫外光單 元照射而產生綠光。 如申明專利軌圍第31項所述之液晶顯示裝置,其中該複數個書 素包含一紅色畫素用以使紅光通過,與一藍色晝素用以使藍光 通過。 33.如申請專利範圍第31項所述之液晶顯示裝置,其中該濾光層係 選擇性反射來自背光模組之光。 4.如申明專利範圍第31項所述之液晶顯示裝置,其中該滤光層包Adjusting the surface, the two sides of the notch, the optical adjustment is in the path of the illuminating device according to the invention, wherein the illuminating unit further comprises a preparation, a light emitter, and a red light emitter, and a blue light emitter. The first system is a light emitting diode. The application is a generalized _ 2 〇 状 hairline, the towel light emitting unit, the ultraviolet light emitter, the red light The illuminating device of claim 19, wherein the optical adjusting surface is formed on the optical dispersing device, wherein the optical adjusting surface is formed on the optical dispersing device. The illuminating device, wherein the wavefront direction is substantially parallel to the length direction. 24. The application of the illuminating device of claim 19, further comprising an optoelectronic device, including a light emitter, and a After the wavelength conversion material is irradiated by the light emitter, green light is emitted toward the light incident surface, wherein one of the optoelectronic devices is aligned substantially parallel to the wavefront direction. 25. As described in claim 24 Illuminating device, wherein the optoelectronic device The invention comprises: a composite substrate; a circuit layout carrier ' electrically connected to the light emitter; and 21 1359987 a bonding structure for bonding the composite substrate and the circuit layout carrier. The illuminating device of claim 24, wherein the wavelength converting material is formed on a light-emitting path of the light-emitting body. 27. The light-emitting device of claim 25, wherein the light emitter and the circuit layout The carrier is located on the same side of the composite substrate. 28. The luminescent device according to the scope of the application of the invention, wherein the composite substrate comprises a metal matrix composite (MMC), a polymer matrix composite (p〇lymer Matrix c(10); #PMC), Ceramic Matrix Composite (CMC), equivalent of the above materials, or a combination of the above. 29. Illumination as described in claim 25 The device, wherein the circuit layout carrier is a semiconductor substrate, a printed circuit board (PCB), a flexible printed circuit board (Flexible Printed) Circuit; FPC), a silicon substrate, a ceramic substrate, an equivalent of the above materials, or a combination of the above materials. 30. The light-emitting device of claim 2, wherein the bonding structure Department _ Contains Benzocyclobutene (BCB), epoxy, polypyramine, spin-on glass (s〇G), siliCone, solder , the equivalent of the above materials, or a combination of the above materials. 31. A liquid crystal display device comprising: a backlight module comprising an ultraviolet light unit, a red light unit and a blue light unit, wherein at least one of the far ultraviolet light unit, the red light unit and the blue light unit is a light-emitting diode; a liquid crystal layer for controlling the flux of light emitted by the backlight module; a filter layer disposed on the liquid crystal layer, comprising a plurality of pixels, and a wavelength conversion 22 U59987 material Formed in one of the plurality of halogens, the wavelength converting material is irradiated by the ultraviolet light unit to generate green light. The liquid crystal display device of claim 31, wherein the plurality of pixels comprise a red pixel for passing red light and a blue halogen for passing blue light. The liquid crystal display device of claim 31, wherein the filter layer selectively reflects light from the backlight module. 4. The liquid crystal display device of claim 31, wherein the filter layer package 含一布拉格反射層(Distributed Bragg Reflect〇r ; DBR)以選擇 性反射來自背光模組之光。 35. 如申請專利範圍第31項所述之液晶顯示裝置,其中該液晶層包 含一薄膜電晶體層。 曰 36. 如申請專利範圍第3丨項所述之液晶顯示裝置,更包含複數之光 學膜片。 3 7.如申請專利範圍第3 6項所述之液晶顯示裝置,其中該些光學膜 片其中之一係抗紫外光。 、 女申明專利範圍弟36項所述之液晶顯示裝置,其中該些光學膜 片其中之一係擇自稜鏡片、擴散膜、及偏光膜其中之一。 .如申》月專利範圍第31項所述之液晶顯示裝置,其巾該背光模组 更包含: 更包含 光分散裝置,用以導引該背光模組内之光線朝向該液晶層。 '如申請專職圍第39 _狀液_稍置,其中前光曰模組 示裝置,其中該波長轉換 一光學調整表面,具有一波紋狀陣列。 41.如申請專利範圍第31項所述之液晶顯 材料係包含鹼土金屬矽酸鹽。 23 1359987 42.如申請專利範圍第31項所述之液晶顯示裝置’其中該波長轉換 材料係包含销活化之鹼土金屬矽酸鹽。 43·如申請專利範圍第31項所述之液晶顯示裝置,其中該波長轉換 材料係擇自(SrBaMg )2Si04:Eu、(Bah.y.zCaxSryEuz)2( Mgi.wZnw ) Si207» x+y+z=i ; 〇.〇5>z>〇 ; 〇.〇5>w' Ca8Mg (Si04) 4Cl2:Eu,Mn ' Ba2Si04:Eu、Ba2MgSi207:Eu、BaAl204:Eu、SrAl204:Eu、與 BaMg2Al16〇27:Eu、所構成之一族群。A Bragg Reflector (DBR) is included to selectively reflect light from the backlight module. The liquid crystal display device of claim 31, wherein the liquid crystal layer comprises a thin film transistor layer.曰 36. The liquid crystal display device of claim 3, further comprising a plurality of optical films. 3. The liquid crystal display device of claim 36, wherein one of the optical films is resistant to ultraviolet light. The liquid crystal display device of claim 36, wherein one of the optical films is selected from one of a ruthenium film, a diffusion film, and a polarizing film. The liquid crystal display device of claim 31, wherein the backlight module further comprises: a light dispersing device for guiding light in the backlight module toward the liquid crystal layer. 'If applying for a full-time 39th _ _ liquid _ slightly set, where the front light 曰 module display device, where the wavelength conversion an optical adjustment surface, has a corrugated array. 41. The liquid crystal display material according to claim 31, which comprises an alkaline earth metal silicate. A liquid crystal display device as described in claim 31, wherein the wavelength converting material comprises a pin activated alkaline earth metal silicate. 43. The liquid crystal display device of claim 31, wherein the wavelength conversion material is selected from (SrBaMg)2Si04:Eu, (Bah.y.zCaxSryEuz)2(Mgi.wZnw) Si207»x+y+ z=i ; 〇.〇5>z>〇;〇.〇5>w' Ca8Mg (Si04) 4Cl2:Eu, Mn ' Ba2Si04:Eu, Ba2MgSi207:Eu, BaAl204:Eu, SrAl204:Eu, and BaMg2Al16〇27 :Eu, a group of people. 44.如申請專利範圍第31項所述之液晶顯示裝置,其中該紅 — 與該藍光單元係包含螢光粉。 早兀 45·如申請專利範圍第31項所述之液晶顯示裝置,苴 單元之一材料係擇自Y2〇2S:Eu,Bi、Y、構成該紅夫 3.5MgO.〇.5MgF2.Ge〇2:Mn4+所構成之一族群。2〇3:Eu,Bi、 46.如申請專利範圍第31項所述之液晶顯示裝 單元之一材料係擇自BaJVfeAlwOyHu、( $其中構成該藍; 3CLE11、與 Sr4Ali4025:Eu所構成之一族群。s (1>〇4、The liquid crystal display device of claim 31, wherein the red light and the blue light unit comprise phosphor powder. 45. According to the liquid crystal display device described in claim 31, one of the materials of the unit is selected from Y2〇2S: Eu, Bi, Y, and constitutes the red metal 3.5MgO.〇5MgF2.Ge〇2 : Mn4+ constitutes a group of people. 2〇3: Eu, Bi, 46. One of the materials of the liquid crystal display unit according to claim 31 is selected from BaJVfeAlwOyHu, (which constitutes the blue; 3CLE11, and Sr4Ali4025: Eu) .s (1>〇4, 24twenty four
TW94128643A 2004-09-24 2005-08-22 Liquid crystal display and light emitting unit the TWI359987B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
TW94128643A TWI359987B (en) 2004-09-24 2005-08-22 Liquid crystal display and light emitting unit the
DE102005045589A DE102005045589A1 (en) 2004-09-24 2005-09-23 liquid crystal display
US11/233,039 US7724321B2 (en) 2004-09-24 2005-09-23 Liquid crystal display
KR1020050089023A KR101178778B1 (en) 2004-09-24 2005-09-24 Liquid Crystal Display Device
JP2005278910A JP5193418B2 (en) 2004-09-24 2005-09-26 LCD display
US12/659,652 US8054409B2 (en) 2004-09-24 2010-03-16 Liquid crystal display
US13/290,755 US8724052B2 (en) 2004-09-24 2011-11-07 Light-spreading device
JP2012046385A JP5417469B2 (en) 2004-09-24 2012-03-02 Light emitting device
KR1020120030804A KR101381241B1 (en) 2004-09-24 2012-03-26 Liquid Crystal Display Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW93129157 2004-09-24
TW94103538 2005-02-04
TW94121784 2005-06-29
TW94128643A TWI359987B (en) 2004-09-24 2005-08-22 Liquid crystal display and light emitting unit the

Publications (2)

Publication Number Publication Date
TW200622437A TW200622437A (en) 2006-07-01
TWI359987B true TWI359987B (en) 2012-03-11

Family

ID=46728222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94128643A TWI359987B (en) 2004-09-24 2005-08-22 Liquid crystal display and light emitting unit the

Country Status (1)

Country Link
TW (1) TWI359987B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643670B2 (en) * 2011-02-03 2014-12-17 株式会社エンプラス Luminous flux control member and lighting device
TWI682223B (en) * 2018-12-21 2020-01-11 友達光電股份有限公司 Display module

Also Published As

Publication number Publication date
TW200622437A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
US11906156B2 (en) Light emitting device
JP7125636B2 (en) light emitting device
KR101178778B1 (en) Liquid Crystal Display Device
TWI612011B (en) Optical sheet, display device and light emitting device having the same
KR101713148B1 (en) Liquid crystal display device
JP5415433B2 (en) Polarized light emitting device
US9417380B2 (en) Light emitting device array and backlight unit
JP2004118205A (en) Back light of color liquid crystal display using wavelength conversion light emitting device
TW201040598A (en) Light guides
JP2007243135A (en) Illuminating device, and display equipped with it
US8885122B2 (en) Light emitting diode, method of fabricating the same, and liquid crystal display including the same
WO2008027773A2 (en) White light unit, backlight unit and liquid crystal display device using the same
TW201109589A (en) Remote wavelength converting material configuration for lighting
TWI359987B (en) Liquid crystal display and light emitting unit the
TWI291244B (en) Light emitting diode and light emitting diode package
JP7189464B2 (en) light emitting device
JP2019083217A (en) Light emitting device
JP6923832B2 (en) Light emitting device
KR101781047B1 (en) Light emitting device package
TWM327038U (en) Light-emitting diode chip, side emitting backlight module, direct type backlight module
KR20120109732A (en) Light emitting device package and lighting system
JP2008034647A (en) Led device, and surface lighting device
TWM545921U (en) Light source structure and backlight module thereof
TW201020647A (en) Backlight module and liquid crystal display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees