TWI358062B - Method and apparatus for reproducing data of super - Google Patents

Method and apparatus for reproducing data of super Download PDF

Info

Publication number
TWI358062B
TWI358062B TW094122044A TW94122044A TWI358062B TW I358062 B TWI358062 B TW I358062B TW 094122044 A TW094122044 A TW 094122044A TW 94122044 A TW94122044 A TW 94122044A TW I358062 B TWI358062 B TW I358062B
Authority
TW
Taiwan
Prior art keywords
resolution
super
signal
light
storage medium
Prior art date
Application number
TW094122044A
Other languages
Chinese (zh)
Other versions
TW200601296A (en
Inventor
Jin-Kyung Lee
Joo-Ho Kim
Chong-Sam Chung
In-Oh Hwang
Kiu-Hae Jung
Hyun-Ki Kim
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200601296A publication Critical patent/TW200601296A/en
Application granted granted Critical
Publication of TWI358062B publication Critical patent/TWI358062B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/005Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents using brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/02Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by their periphery
    • B24D13/10Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by their periphery comprising assemblies of brushes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

1358062 17312pif_doc 九、發明說明: 【發明所屬之技術領域】 ,本 r:=r;種 貝訊儲存縣上記錄再生㈣的方法與裝置, 二 儲存媒體移除符號間的干擾⑽),以改善再❻ 【先前技術】 狀f記錄制被絲料—縣學純元件的資m :::種=::==£ =^於5⑽在記_體上的 ==孔徑為似時,可再生的解析度 ==句話說,因為自光源放射出來的光線無i 生是很Γ常ΓΓΝΑ的記錄標記’因此這樣的資料無法再 4己,ϋ可以再生—種超過這樣的分辨率關的記錄伊 的^ 種超解析度現象。現今對發現超解析度現象 為史艇Γ及對超解析4現㈣研究朗發都在進行中,因 斤再生超過分辨率限制的記錄標記,超解】 ^求,儲存媒體可以明顯的符合對高密度與大儲存= 6 1358062 17312pif.doc 記來執行,而是用記錄不規則間隔(換句話說就是標記位置 偵測方法)有同樣長度的標記來進行,或是用記錄有不規則 間隔與不同長度的標記(換句話說就是標記長度偵測方法) 來進行。特別的是,在CD或DVD中’範圍在玎與11T(其 中Τ表不一種計時頻率)之間的各種長度的標記會合併記 錄,但是上述的超解析度技術中沒有一個可以成功的再生 這樣的複合訊號,因為由光學記錄媒體反射的訊號不僅含 有由光學特性改變的光點區域反射的訊號,而且會含有由 光學特性改變的週邊區域反射的訊號,假如沒有訊號來自 週邊區域的話,有效光點的尺寸會明顯的減少,所以可以 再生複合訊號β但是,在上述的超解析度技術中,會使用 在光學特性改變的區域與週邊區域之間的差異,而因為差 異小’由週邊區域反射的訊號會變成光點尺寸縮小的障礙 $,當一系列的標記被再生時,在符號間的干擾(ISI)中的 結果會發生,所以無法再生具有高解析度的複合訊號。 圖2A顯示記錄於資訊儲存媒體上的標記之一種記錄 圖案,而圖2B顯示一種Rp訊號,對應於圖2A的記錄圖 =的再生標記。當一個雷射光束的波長為1358062 17312pif_doc IX. Description of the invention: [Technical field of invention], this r:=r; a method and a device for recording and reproducing (4) in a county, and a storage medium to remove interference (10) between symbols to improve ❻ 【Prior Art】 Recording of the material---------------------------------------------------- Resolution == In other words, because the light emitted from the light source is not very common, it is a very common record mark. Therefore, such data can no longer be reproduced, and can be regenerated - a record that exceeds such resolution. ^ Super-resolution phenomenon. Nowadays, it is found that the phenomenon of super-resolution is the history of the boat and the super-analysis of the current (four) research is in progress, because the recycling of the mark exceeds the resolution limit of the record mark, the super solution], the storage medium can be clearly matched High Density and Large Storage = 6 1358062 17312pif.doc To perform, but to record irregular intervals (in other words, mark position detection method) with the same length of mark, or to record irregular intervals with Different length markers (in other words, marker length detection methods) are used. In particular, in the CD or DVD, the marks of various lengths between the range of 玎 and 11T (where Τ is not a timing frequency) are combined, but none of the above-mentioned super-resolution techniques can be successfully reproduced. The composite signal, because the signal reflected by the optical recording medium contains not only the signal reflected by the light spot area whose optical characteristic is changed, but also the signal reflected by the peripheral area whose optical characteristic changes, if there is no signal from the surrounding area, the effective light The size of the dots is significantly reduced, so the composite signal β can be reproduced. However, in the above-described super-resolution technique, the difference between the region where the optical characteristics are changed and the peripheral region is used, and since the difference is small 'reflected by the peripheral region The signal becomes an obstacle $ for the reduction of the spot size. When a series of marks are reproduced, the result in the inter-symbol interference (ISI) occurs, so that the composite signal with high resolution cannot be reproduced. Fig. 2A shows a recording pattern of a mark recorded on the information storage medium, and Fig. 2B shows an Rp signal corresponding to the reproduction mark of the record of Fig. 2A. When the wavelength of a laser beam is

405nm 時,NA 曰疋0.85,而其分辨率會接近75nm,根據標記組合的記 錄圖案會接近75nm,其會比分辨率還要小,接近3〇〇nm 的標記會大於分辨率,而兩個標記之間會有空間,在圖2B ^顯示的再生訊號中,當3〇〇nm長的標記或是空間存在光 4附近,75nm長的標記會被長的標記影響與隔 ^所以热法π楚的偵測到75nm長的標記,具有75nm 1358062 17312pif.doc 射單元將自單一光源放射出的一光束分成該第一與第二光 束。在將自單一光源放射的該光束分開的步驟中,用繞射 單元產生的複數個繞射光束中的一+k;th級的繞射光束可以 用來做為第一光束,而用__kth級的繞射光束做為第二光 束;或者也可以用繞射單元產生的複數個繞射光束中的一 -kth級的繞射光束做為第一光束,而用一 +k th級的繞射光束 做為第二光束。 在本發明的其他目的中,照射操作可以包括由分別包At 405nm, NA 曰疋0.85, and its resolution will be close to 75nm, the recording pattern according to the mark combination will be close to 75nm, which will be smaller than the resolution, the mark close to 3〇〇nm will be larger than the resolution, and two There is space between the marks. In the reproduced signal shown in Fig. 2B, when the mark of 3〇〇nm length or the space exists near the light 4, the mark of 75nm length will be affected by the long mark and the thermal method π The detection of a 75 nm long mark with a 75 nm 1358062 17312 pif. doc unit splits a beam emitted from a single source into the first and second beams. In the step of separating the light beam emitted from a single light source, one of the plurality of diffracted beams generated by the diffraction unit +j;th order of the diffracted beam can be used as the first beam, and __kth The graded diffracted beam is used as the second beam; or a diffracted beam of one of the plurality of diffracted beams generated by the diffractive beam may be used as the first beam, and a +kth order is used. The beam is used as the second beam. In other objects of the invention, the illumination operation may comprise separate packages

括第一光源與第二光源的個別光源中放射出第一光束與第 二光束。The first light source and the second light beam are emitted from the individual light sources including the first light source and the second light source.

根據本發明的其他目的,會提供一種記錄在超解析度 Η訊儲存媒體中資料的再生方法,其標記的數值會小於入 射光束的分辨率,該方法包括:照射具有超解析度能量的 第一光束進入到資訊儲存媒體中;用特定的時間延遲,照 射複數個沒有超解析度能量的第二光束進入到已瘦昭過第 一光束的資訊儲存媒體中;以及根據第一光束二 訊號以及第二光束的.第二再生訊號債測一個最 5^。 根據本發明的其他目的,偵測操作包括取得 訊號與第二再生訊號之間的一差異訊號。 一冉生 根據本發明的其他目的,憤測操^可以進— 償在該第-再生職㈣第二再生職 延遲,或者偵測操作進-步包括補償該特定時間延^ 此該最終再支訊號的跳動或誤碼率(bER)會最小.或=偵= 1358062 17312pif.doc 第一到第三介電層320、340、與360控制超解析度資 訊儲存媒體的光學以及/或熱特性,覆蓋層37〇覆蓋形^在 基底310上的結構層,包括記錄層33〇與超解析度^生層 =0。在此,第一到第三介電層32〇、34〇、與36〇以及^ 盍層370不是超解析度資訊儲存媒体的必要組成當然即 使這些結構層沒有形成在超解析度資訊铸存媒體,資訊還 是可以被再生。 ° " 第到第二介電層320、340、與360較適當但並非必 要的由選自氡化物、氮化物、碳化物、硫化物與氟化物其 中之一的材料構成。換句話說,第一到第三介電層32〇、' 340、與360較適當但非必要的由選自氧化矽(Si〇x)、氧化 鎮(MgOx)、氡化紹(Αι〇χ)、氧化鈦(TiQx)、氧化釩(ν〇χ)、 氧化鉻(CrOx)、氧化鎳(Ni〇x)、氧化鍅(Zr〇x)、氧^鍺 (GeOx)、氧化鋅(ΖηΟχ)、氮化石夕(siNx)、氮化紹(Α1ΝΧ)、氮 化鈦(TiNx)、氮化錯(ZrNx)、氣化錯(GeNx)、碳化石夕(sic)、 硫化鋅(ZnS)、硫化鋅-二氧化矽(ZnS_Si〇2)的一種化合物、 以及氟化鎂(MgF2)。 記錄層330有一種結構,就是被一特定記錄能量等級 的入射光束記錄的記錄標記會有一個直角的剖面或是 一個大致與直角形狀相同的剖面,在此記錄標記(m)包括一 個數值不大於用於再生的光學頭的分辨率之標記。 為了使用超解析度現象重複再生資料,反應層330的 化學反應溫度Tw會高於發生超解析度現象的超解析度再 生層350的溫度Tr。 13 1358062 17312pif.doc 因此,為了形成記錄標記(m),記錄層330必須要有 一層有二或多種材料混合(比如圖3中所示的材料A與B) 的單層結構,其在特定的溫度下有不同的物理特性且 會化學反應。According to another object of the present invention, there is provided a method for reproducing data recorded in a super-resolution memory storage medium, wherein the value of the mark is smaller than the resolution of the incident light beam, the method comprising: illuminating the first energy having the super-resolution energy The light beam enters the information storage medium; and with a specific time delay, illuminates a plurality of second light beams having no super-resolution energy into the information storage medium that has been thinned by the first light beam; and according to the first light beam two signals and The second beam of the second regenerative signal is measured by a maximum of 5^. According to another aspect of the present invention, the detecting operation includes obtaining a difference signal between the signal and the second reproduced signal. According to other objects of the present invention, the intrusion operation can be performed in the second regenerative duty (4), or the second step of the regenerative operation includes compensation for the specific time delay. The jitter or bit error rate (bER) of the signal will be minimal. or = Detect = 1358062 17312pif.doc The first to third dielectric layers 320, 340, and 360 control the optical and/or thermal characteristics of the super-resolution information storage medium, The cover layer 37 〇 covers the structural layer on the substrate 310, including the recording layer 33〇 and the super-resolution layer =0. Here, the first to third dielectric layers 32, 34, 36, and 36 are not necessary components of the super-resolution information storage medium, of course, even if these structural layers are not formed in the super-resolution information casting medium. Information can still be regenerated. ° " The first to second dielectric layers 320, 340, and 360 are suitably, but not necessarily, comprised of a material selected from the group consisting of a halide, a nitride, a carbide, a sulfide, and a fluoride. In other words, the first to third dielectric layers 32A, '340, and 360 are more suitable but not necessarily selected from the group consisting of yttrium oxide (Si〇x), oxidized town (MgOx), and sputum (Αι〇χ). ), titanium oxide (TiQx), vanadium oxide (ν〇χ), chromium oxide (CrOx), nickel oxide (Ni〇x), yttrium oxide (Zr〇x), oxygen (GeOx), zinc oxide (ΖηΟχ) , nitriding cerium (siNx), nitriding (Α1ΝΧ), titanium nitride (TiNx), nitriding (ZrNx), gasification error (GeNx), carbon carbide sic, zinc sulfide (ZnS), vulcanization A compound of zinc-niobium dioxide (ZnS_Si〇2), and magnesium fluoride (MgF2). The recording layer 330 has a structure in which a recording mark recorded by an incident beam of a specific recording energy level has a right-angled section or a section substantially the same as a right-angled shape, wherein the recording mark (m) includes a value not larger than Marking of the resolution of the optical head used for regeneration. In order to repeat the reproduction data using the super-resolution phenomenon, the chemical reaction temperature Tw of the reaction layer 330 is higher than the temperature Tr of the super-resolution reproduction layer 350 in which the super-resolution phenomenon occurs. 13 1358062 17312pif.doc Therefore, in order to form the recording mark (m), the recording layer 330 must have a single layer structure having a mixture of two or more materials (such as materials A and B shown in FIG. 3), which is specific There are different physical properties at temperature and will react chemically.

舉例來說,記錄層330存在的型態是材料A與B在資 料記錄之前混合的一層薄膜,也就是在材料A與B有化學 反應之前,當有特定能量狀態的記錄光束被照射到記錄層 330中時,材料A與B之間的化學反應會發生在記錄層33〇 的一個光點落下的區域,而記錄層的狀態由材料人與6混 合變成與材料A與B的混合物有不同物理特性的化合物 A+B ’化合物A+B會形成記錄標記(m) ’其與在其他區域 中的記錄標記有不同的反射率。 材料A的例子包括鎢(W),而材料b的例子包括矽 (Si) ’根據實際狀況’使用Ge-Sb-Te作為超解析度再生層 的材料的例子中’在再生期間超解析度現象會發生在攝^ 350度附近’而記錄必須在再生溫度下進行,換句話說,For example, the recording layer 330 exists in a pattern in which a material A and B are mixed before data recording, that is, before a material A and B chemically react, when a recording beam having a specific energy state is irradiated to the recording layer. In 330, the chemical reaction between materials A and B occurs in a region where one spot of the recording layer 33〇 falls, and the state of the recording layer is changed from the material person 6 to the mixture of materials A and B. The characteristic compound A+B 'Compound A+B forms a recording mark (m) 'which has a different reflectance than the recorded mark in other areas. Examples of the material A include tungsten (W), and examples of the material b include bismuth (Si) 'based on the actual condition' using Ge-Sb-Te as a material of the super-resolution reproduction layer, 'super-resolution phenomenon during regeneration It will happen near the camera at 350 degrees' and the record must be made at the regeneration temperature, in other words,

一種W-Si的合金的反應溫度接近攝氏6〇〇度,就不會受 再生能量的影響。 胃 當選擇W與Si時’記錄層330較適當,但是並非必 要’的是由像是W的原子數量對Si的原子數量比例為1 比2的兩種材料混合而成’在此情況中,化合物會利 用在記錄層330的會照射記錄能量光束的特定區域處發生 的化學反應來形成,前面提到W與Si原子的比例,也就 是1 : 2只是用來做為示範’但並不會將比例限制在此。 14 1358062 17312pif.d〇c 主的相變材料組成。 因此,超解析度再生層350會產生一個超解析度區 域,因為特定溫度下的相變化,在此處溫度分布或光學特 ' 定的變化會發生在光關—些區域上,藉以允許記錄在數 值小於分辨率的記錄標記(m)型態中的資訊恢復。 如上所述,用再生光束會在溫度分布或光學特性上產 生變化的超解析度區域會產生在再生光點的一些區域上, 其可能位於光點的中心部份。 • 上述的資訊儲存媒體只用來說明超解析度現象,此外 根據本發明提供的再生方法,會展現超解析度現象的任何 形式的資訊儲存媒體都可以被採用。 以下將根據本發明的目的說明一種資訊儲存媒體 資料再生方法。 在本發明提供的資訊儲存媒體之資料再生方法中,有 相對較高能量的第-光束B1與有相對較低能量的第二光 束B2會被照射到資訊儲存媒體中,如圖4所示^記錄標 • 記會沿著資訊儲存媒體的轨道(T)記錄,而第一光束 與第二光束B2會照射到同樣轨道的不同位置上。 时—第-光東B1與第二光束B2可以用—種光束分離器將 早:光源放射出的光束分離而成,或是用兩個光源提供有 不同忐量程度的放射光束而成,光束分離器可以是一種光 柵元件或是一種像是全像(h〇丨〇gram)的繞射元件。 ,第一光束B1有讓超解析度現象發生的再生能量,其 稱為超解析度能量,而第二光束B2的再生能量並不會^ 1358062 17312pif.d〇c 生超解析度現象’稱為無超解析度能量,第一光東B1與 第二光束B2可以同時照射。 ,第一光束B1照射的區域中,如圖5A所示,溫度分 布或是光學特性的改變會發生在光闕—些區域上,因此 形成一個會發生超解析度現象的超解析度區域,在超解析A W-Si alloy has a reaction temperature close to 6 degrees Celsius and is not affected by regenerative energy. When the W and Si are selected, the 'recording layer 330 is more suitable, but not necessary' is a mixture of two materials such as the number of atoms of W and the atomic ratio of Si to 1 to 2'. In this case, The compound is formed by a chemical reaction occurring at a specific region of the recording layer 330 that illuminates the recording energy beam. The ratio of W to Si atoms mentioned above, that is, 1:2 is only used as a demonstration 'but not Limit the ratio here. 14 1358062 17312pif.d〇c Main phase change material composition. Therefore, the super-resolution reproduction layer 350 generates an area of super-resolution, because the phase change at a specific temperature, where temperature distribution or optical specific changes occur in the light-off areas, thereby allowing recording The information in the recording mark (m) type whose value is smaller than the resolution is restored. As noted above, a region of super-resolution that produces a change in temperature distribution or optical properties with a reconstructed beam will result in regions of the reconstructed spot that may be located in the center portion of the spot. • The above information storage medium is only used to illustrate the phenomenon of super-resolution, and in addition, according to the reproduction method provided by the present invention, any form of information storage medium exhibiting a super-resolution phenomenon can be employed. A method of reproducing information storage media data will be described below in accordance with the purpose of the present invention. In the data reproducing method of the information storage medium provided by the present invention, the relatively high energy first beam B1 and the relatively low energy second beam B2 are irradiated onto the information storage medium, as shown in FIG. The recording mark will be recorded along the track (T) of the information storage medium, and the first beam and the second beam B2 will illuminate at different positions on the same track. The time-first-light east B1 and the second light beam B2 may be formed by separating a light beam emitted by the light source by using a beam splitter, or by using two light sources to provide radiation beams of different magnitudes. The separator can be a grating element or a diffractive element such as a h〇丨〇gram. The first beam B1 has regenerative energy that causes the super-resolution phenomenon to occur, which is called super-resolution energy, and the regenerative energy of the second beam B2 does not ^ 1358062 17312pif.d〇c the super-resolution phenomenon is called Without the super-resolution energy, the first light East B1 and the second light beam B2 can be simultaneously illuminated. In the region irradiated by the first light beam B1, as shown in FIG. 5A, a change in temperature distribution or optical characteristics occurs in the pupil region, thereby forming a super-resolution region where super-resolution phenomenon occurs, Super resolution

度區域的週邊區域内,不會發生超解析度現象,如圖5B 所不’在第二絲B2照射的區域中不會發生超解析度現 象。 备第一光束B1的波長為λ,而數值孔徑為NA1時, 第:光束B1的分解^λ/(4*ΝΑ1),當使用單—光源來得 到第一與第二光束B1與B2,第二光束B2的波長與第一 光束B1 —樣,也就是九,而數值孔徑為NA2時,第二光 束B2的分辨率為λ/(4*ΝΑ2),光束的數值孔徑係定義為物 鏡的焦距除以光束的直徑所得到的數值。本發明的一個目 的是根據一個概念,只有反射自光點的超解析度區域的訊 號可以透過由從光點的整個區域反射的訊號中將週邊區域 反射的訊號扣掉來得到。 圖6Α介紹一種用本發明提供之資料再生方法,透過 將一個超解析度能量的光束照射到於圖2Α所示的記錄圖 案中記錄標記中得到的第一再生訊號;圖66介紹一種用 本發明提供的資料再生方法,透過將一個無超解析度能量 的光束照射到於圖2Α所示的記錄圖案中記錄標記中得到 的第二再生訊號;圖6C介紹在第一再生訊號與第二再生 訊號之間的一個差異訊號。 — 17 1358062 17312pif.doc 換句話說,在圖6A的第一再生訊號會有超解析度現 象,其中記錄在圖2A的圖案中的標記會被再生;而在圖 6B的第二再生訊號不會有超解析度現象,其中記錄在圖 2A的圖案中的標記會被再生。 第一再生訊號與第二再生訊號的時間延遲會被補償 且被一差異訊號操作,藉以得到圖6C中所示的第一再生 訊號與第二再生訊號之間的差異訊號。接著,由光點的週 邊區域反射的訊號成份會被排除在差異訊號之外,而只有 自超解析度區域的訊號成份會保留在差異訊號中,藉以克 服週邊區域造成的ISI的問題。請參照圖6C,數值小於分 辨率且其中有空隙的75nm標記可以準確的在部位A、B、 C、D、E與F處再生’在部位A、B、C、D、E與F處的 訊號程度會是均勻的而不管標記與空隙的數量。另外,即 使當300nm的標記與空隙鄰接75nm的標記與空隙時,相 鄰於75nm標記的300nm標記的訊號狀態與那些其他的 300nm標記的連貫。此外’相對於300nm的標記,在高處 與在低處的平台區域會小於整個光點尺寸,建議將用於再 生的有效光束縮小到相較實際光點尺寸相符的尺寸。 此時,雖然已經透過實施例的介紹說明並繪示在第一 再生訊號與第二再生訊號之間的差異訊號,也可以使用操 作技術的變化。 圖7A、7B與7C介紹本發明提供的再生訊號記錄在 隨機記錄圖案的資料的再生結果。圖7A介紹用本發明提 供的資料再主方法使用第一能量光東隨機的再生記錄標記 18 1358062 17312pif.doc 得到的第-再生訊號;® 7B介紹用本發明提供的資料再 生方法使用第二能量光束隨機的再生記錄標記得到的第二 再生訊號;以及圖7C介紹在圖7八與7B中顯示的第一與 第二再生訊號之間的差異訊號。因為圖从與冗中的第一 與第二再生魏的狀態並不固定,記雜記無法精準的再 生’雖然第-與第二再生訊齡棚分翻定的狀態,另 -方面,’目7C的差異訊號有—個固定狀態,所以假如差In the peripheral region of the degree region, the phenomenon of super-resolution does not occur, and as shown in Fig. 5B, the super-resolution phenomenon does not occur in the region irradiated by the second filament B2. The wavelength of the first beam B1 is λ, and when the numerical aperture is NA1, the decomposition of the beam B1 is ^λ/(4*ΝΑ1), and when the single-light source is used to obtain the first and second beams B1 and B2, The wavelength of the two beams B2 is the same as that of the first beam B1, that is, nine, and when the numerical aperture is NA2, the resolution of the second beam B2 is λ/(4*ΝΑ2), and the numerical aperture of the beam is defined as the focal length of the objective lens. Divided by the diameter of the beam. One object of the present invention is that, according to one concept, only the signal of the super-resolution region reflected from the spot can be obtained by deducting the signal reflected by the peripheral region from the signal reflected from the entire region of the spot. FIG. 6A illustrates a first reproduction signal obtained by irradiating a light beam of super-resolution energy to a recording mark in the recording pattern shown in FIG. 2A by using the data reproduction method provided by the present invention; FIG. 66 illustrates an embodiment of the present invention. The data reproduction method is provided by irradiating a beam having no super-resolution energy to the second reproduction signal obtained by recording the mark in the recording pattern shown in FIG. 2A; FIG. 6C is the first reproduction signal and the second reproduction signal. A difference signal between. — 17 1358062 17312pif.doc In other words, the first regenerative signal in FIG. 6A has a super-resolution phenomenon, in which the mark recorded in the pattern of FIG. 2A is reproduced; and the second reproduced signal in FIG. 6B does not. There is a phenomenon of super-resolution, in which the marks recorded in the pattern of Fig. 2A are reproduced. The time delay of the first reproduced signal and the second reproduced signal is compensated and operated by a difference signal to obtain a difference signal between the first reproduced signal and the second reproduced signal shown in FIG. 6C. Then, the signal component reflected by the peripheral area of the spot is excluded from the difference signal, and only the signal component from the super-resolution area remains in the difference signal, thereby overcoming the ISI problem caused by the surrounding area. Referring to FIG. 6C, a 75 nm mark having a value smaller than the resolution and having a void therein can be accurately reproduced at the portions A, B, C, D, E, and F at the portions A, B, C, D, E, and F. The level of the signal will be uniform regardless of the number of marks and gaps. In addition, even when the 300 nm mark and the void are adjacent to the 75 nm mark and the void, the signal state of the 300 nm mark adjacent to the 75 nm mark is continuous with those of the other 300 nm mark. Furthermore, with respect to the 300 nm mark, the plateau area at the high and low places is smaller than the entire spot size, and it is recommended to reduce the effective beam for reproduction to a size corresponding to the actual spot size. At this time, although the difference signal between the first reproduced signal and the second reproduced signal has been described and illustrated by the embodiment, the change of the operating technique can also be used. 7A, 7B and 7C show the reproduction results of the data recorded in the random recording pattern by the reproduced signal provided by the present invention. FIG. 7A illustrates a first-regeneration signal obtained by using the data re-master method provided by the present invention using the first energy light east random reproduction record mark 18 1358062 17312pif.doc; and 7B introducing the second energy using the data reproduction method provided by the present invention. The second reproduced signal obtained by randomly reproducing the recording mark of the light beam; and FIG. 7C is a difference signal between the first and second reproduced signals shown in FIGS. 7 and 7B. Because the figure is not fixed from the state of the first and second regenerative Wei, the memorization cannot accurately reproduce 'Although the first and second regenerative ages are divided, the other side, 'the 7C The difference signal has a fixed state, so if it is bad

異訊號被劃分成敎狀態,記_記可哺準的被再生。 _圖8 紹在圖7C中的差異訊號得到的目視圖案,顯 示再生訊财好的_概,也就是說本發明提供的資料 ,生方法可4效的應胁記錄在超騎度資訊儲存媒體 中隨機記錄圖案中的資料。 在本發明提供的資料再生方法中,超解析度能量的光 束與無超騎度能量的光束會用—預定的時間延遲昭射, 據Ϊ騎度能制縣之第—再生職與根據無超 斤又此1的光束之第二再生訊號之間的時間延遲會被補 償且用理想_作技術來操作。在這樣的方式中,在再生 光點+中的超解析度區域之週邊區域產生的⑻可以被避 免,藉以用簡單的方改善再生訊號特性。 可以進行本發明 圖9A繪示一種資料再生裝置9〇〇, 的資料再生方法。 資料再主裝置9G0包括—個光學讀取頭鹽、一個記 錄/再生訊號處理H 、以及—健制器㈣;更特別的 是光學讀取頭9U)包括—_練射光束的杨911,一 19 1358062 173l2pif.doc 個繞射單元912用於繞射自光源911放射出的光束,—個 準直透鏡913用於對準通過繞射單元912的光束,一個光 束分離器914用於改變入射光束的傳送路徑,以及一個物 鏡915用於將通過光束分離器914的光束聚焦到資訊儲存 媒體300上。 由光源911放射出來的光束會被繞射單元912分離成 第一光束與第二光束,第一光束的能量與第二光束的能量 可以透過繞射單元912繞射圖案的變化來加以調整,繞射 .單元912可以是光柵元件或是一個全像。 自資訊儲存媒體300反射的第一光束與第二光束會被 光束分離器914反射而被光偵測器916接忮,光偵測器916 接收的第一光束與第二光束會被記錄/再生訊號處理器92〇 轉換成電子訊號並輸出作為再生訊號。 記錄/再生訊號處理器920可以有一個放大器921以放 大被,偵測器916作光點轉換的第一光束訊號,並有一個 .補仏器922以補償光偵測器916作光點轉換的第二光束訊 • 號的一個時間延遲,第一光束的再生訊號與第二光束的再 生訊號會被操作單元923轉換,然後透過一個通道1(αα) 輪出作為一個射頻(RF)訊號,以及透過一個通 出作為-轉縣的減。 (^ 接3將詳細說明繞射單元912。具有超解析度能量 件^^及具有無超解析度能量的第二光束在能量條 t以外’麟須要滿足像差量的條件,換句話說,第一與 弟二光束的像差量會大致相符合,當第一光束與第二光/束 20 1358062 17312pif.doc 的像差量不一樣時,透過第一光束形成在資訊儲存媒體上 的光點的形狀會與透過第二光束形成在資訊儲存媒體上的 光點的形狀不同,第一與第二光束構成的不同光點形狀會 使其很難但並非無法達到本發明的目的。 ^曰 為了滿足用於第一光束與第二光束的能量條件以及 差異量的條件,在本發明的繞射單元912中會使用一種槽 狀光樹单元。 圖9B介紹本發明提供的槽狀光栅單元912。當由光 源911放射出的光束951會入射到圖9B的槽狀光栅單元 912上,複數個繞設的光束,也就是〇th級的繞射光束952、 +lst級的繞射光束953、-Ist級的繞射光束954、以及士2nd 級的繞射光束到土N級的繞射光束(未顯示)會由槽狀光柵 單元912放射出來’在此n理論上表示一個無限大的整數。 +lst級的繞射光束953與-Ist級的繞射光束954的像差 量幾乎完全相同,熟習此技藝者很容易可以將槽狀光柵單 元912應用於本發明’所以+ist級的繞射光束953有高能 量而-Ist級的繞射光束954相對於+lst級的繞射光束953有 較低的能量,或是所以+lst級的繞射光束953有低能量而 -Ist級的繞射光束954相對於+1'級的繞射光束953有較高 的能量,此時0Λ級的繞射光束952的能量太弱因此可以忽 略0 圖9Α中的資料再生裝置900包括一個繞射單元以產 生第一光束與第二光束,其也可以包括獨立的光源,也就 是第一光源941a以放射超解析度能量光束,就是第一光 21 1358062 17312pif.doc ί:以及一第二光源941b以放射無超解析度能量光束,就 是第二光束,如圖10所示。在圖1〇中,第一光源941a 與第一光源941b會被放置在一個光學模組941中,或者除 了形成光學模組以外,第一光源與第二光源也可以個別提 供並設置在不同位置上,當第一光源與第二光源是以這樣 的方式分別提供時,就不需要另外提供繞射單元來產生第 一與第二光束。 在圖10中,會用相同的標號來表示與圖9中所示的 那些有同樣功能的單元,而以下將會有詳細的說明。 一方面’光偵測器942包括一個第一光偵測器942a 以接收由第一光源941a放射以及自資訊儲存媒體300反射 的的第一光束’以及一個第二光偵測器942b以接枚由第二 光源941b放射以及自資訊儲存媒體3〇〇反射的的第二光 束,根據第一光束的第一再生訊號與根據第二光束的第二 再生訊號之間的時間延遲會用補償器922補償,而被操作 單元923轉換,藉以產生一個具有絕佳訊號特性而沒有ι§ι 的RF訊號。 如上所述,當第一光源與第二光源個別提供時,不管 是第一光源或第二光源都可以用來作為資料記錄的光源, 此外第一光源與第二光源可以結合這樣一個光學讀取頭可 以相容的用於具有不同格式的資訊儲存媒體。 至此,本發明實施例中的兩値光束,也就是具有超解 析度能量的第一光束與無超解析度能量的第二光束會被照 射到已經提過的超解析度資訊儲存媒體上。但是,在本發 22 1358062 17312pif.doc ^的實施财,可㈣—雜料元或 生複數個具有無超解析度 =個光縣產 的這此福數個本φ合命的先束而無超解析度能量 二复數個;^束s與―個有超騎度能 照射到超解析度資訊儲存媒體 $束起破 = .、,'超解析度的複數個光束會與有超解析度量 =照射到超解析度資訊儲存媒體上之後,利用:The alien signal is divided into the 敎 state, and the _ record can be reproduced. _ Figure 8 shows the visual pattern obtained by the difference signal in Figure 7C, showing that the regenerative signal is good, that is to say, the information provided by the present invention can be recorded in the super-ride information storage medium. Randomly record the data in the pattern. In the data regeneration method provided by the present invention, the beam of super-resolution energy and the beam without super-riding energy will be used for a predetermined time delay, according to the first degree of the county--regeneration and The time delay between the second regenerative signal of the beam of 1 is compensated and operated with the ideal technique. In such a manner, (8) generated in the peripheral region of the super-resolution region in the reproduction spot + can be avoided, whereby the reproduced signal characteristic can be improved with a simple method. The present invention can be carried out. Fig. 9A shows a data reproducing method of a data reproducing apparatus 9A. The data re-master device 9G0 includes an optical pickup salt, a recording/reproducing signal processing H, and a health controller (4); more particularly, the optical reading head 9U) includes a _yang 911, which is a beam of light. 19 1358062 173l2pif.doc A diffraction unit 912 is used to diffract the light beam emitted from the light source 911, a collimating lens 913 is used to align the light beam passing through the diffraction unit 912, and a beam splitter 914 is used to change the incident light beam. The transmission path, and an objective lens 915, are used to focus the beam passing through the beam splitter 914 onto the information storage medium 300. The light beam emitted by the light source 911 is separated into a first light beam and a second light beam by the diffraction unit 912, and the energy of the first light beam and the energy of the second light beam can be adjusted by the diffraction pattern of the diffraction unit 912 to be adjusted. The unit 912 can be a grating element or a hologram. The first beam and the second beam reflected from the information storage medium 300 are reflected by the beam splitter 914 and are connected by the photodetector 916. The first beam and the second beam received by the photodetector 916 are recorded/regenerated. The signal processor 92 is converted into an electronic signal and output as a reproduced signal. The recording/reproducing signal processor 920 can have an amplifier 921 for amplifying the first beam signal converted by the detector 916 as a spot, and a buffer 922 for compensating the photodetector 916 for the spot conversion. A time delay of the two beam signals, the reproduced signal of the first beam and the reproduced signal of the second beam are converted by the operating unit 923, and then rotated through a channel 1 (αα) as a radio frequency (RF) signal, and transmitted through An outbound as a reduction of the county. (^3 will explain the diffraction unit 912 in detail. The second beam with the super-resolution energy element and the energy without super-resolution energy needs to satisfy the condition of the aberration amount in addition to the energy bar t, in other words, The amount of aberration of the first and second beams will be substantially consistent. When the amount of aberration between the first beam and the second beam/beam 20 1358062 17312pif.doc is different, the light formed on the information storage medium through the first beam The shape of the dots may be different from the shape of the spot formed on the information storage medium by the second light beam, and the different spot shapes formed by the first and second beams may make it difficult, but not incapable of achieving the object of the present invention. In order to satisfy the conditions of the energy conditions and the amount of difference for the first beam and the second beam, a grooved light tree unit is used in the diffraction unit 912 of the present invention. Fig. 9B illustrates the grooved grating unit 912 provided by the present invention. When the light beam 951 emitted by the light source 911 is incident on the grooved grating unit 912 of FIG. 9B, a plurality of winding beams, that is, a diffraction beam 952 of the 〇th order, a diffraction beam 953 of the +lst order, - Ist grade diffracted light The 954, and the 2nd-order diffracted beam to the N-level diffracted beam (not shown) will be emitted by the trough-like grating unit 912 'where n theoretically represents an infinite integer. +lst-level diffraction The amount of aberration of the diffracted beam 954 of the beam 953 and the -Ist stage is almost identical, and it is easy for those skilled in the art to apply the trough-like grating unit 912 to the present invention so that the diffracted beam 953 of the +ist class has high energy. The -Ist-level diffracted beam 954 has a lower energy relative to the +lst-order diffracted beam 953, or the +lst-order diffracted beam 953 has low energy and the -Ist-order diffracted beam 954 is relative to + The 1'-order diffracted beam 953 has a higher energy, and the energy of the 0-order diffracted beam 952 is too weak to be ignored. The data reproducing device 900 in FIG. 9A includes a diffraction unit to generate a first beam. The second light beam, which may also include a separate light source, that is, the first light source 941a to emit a super-resolution energy beam, that is, the first light 21 1358062 17312pif.doc ί: and a second light source 941b to emit no super-resolution energy The beam is the second beam, as shown in Figure 10. In FIG. 1A, the first light source 941a and the first light source 941b may be placed in an optical module 941, or the first light source and the second light source may be separately provided and set differently except for forming the optical module. Positionally, when the first light source and the second light source are respectively provided in such a manner, it is not necessary to additionally provide a diffraction unit to generate the first and second light beams. In Fig. 10, the same reference numerals are used to indicate The units shown in Fig. 9 have the same function, and will be described in detail below. On the one hand, the photodetector 942 includes a first photodetector 942a for receiving radiation from the first source 941a and self-information. The first light beam reflected by the storage medium 300 and the second light detector 942b are connected to the second light beam radiated by the second light source 941b and reflected from the information storage medium 3, according to the first light beam The time delay between the reproduced signal and the second reproduced signal according to the second beam is compensated by the compensator 922 and converted by the operating unit 923 to generate an RF having excellent signal characteristics without ι§ι Signal. As described above, when the first light source and the second light source are separately provided, whether the first light source or the second light source can be used as a light source for data recording, the first light source and the second light source can be combined with such an optical reading. The headers are compatible for use with information storage media having different formats. To this end, the two beams of the present invention, that is, the first beam having the super-resolution energy and the second beam having no super-resolution energy, are irradiated onto the super-resolution information storage medium that has been mentioned. However, in the implementation of this issue 22 1358062 17312pif.doc ^, can be (four) - miscellaneous materials or a number of students with no super-resolution = a light county production of this 福 个 合 合 而 而 而 而Super-resolution energy is two complex numbers; ^ bundle s and one with super-riding degree can illuminate the super-resolution information storage medium $ bundle break = .,, 'super-resolution multiple beams will have super-resolution metric = After illuminating the super-resolution information storage media, use:

===有光束得到的再生訊號會得到-個最: 的再生訊號,如方程式i所示:===The regenerative signal obtained by the beam will get the most: regenerative signal, as shown in equation i:

最終RF訊號=RF ( M i 由抑 * 化抑2+ g2RF3+...+ gN]RPN)..,(l) D 表不由具有超解析度能量的光束得到的再生 訊號,阳至RFN表示由(糾)個光束中得到的再生訊號, 而gi至是特定係數 再生訊號处2至^^與反^有時 間延遲’熟習此技藝者可以利用本發明得到在方程 的最終RF訊號。The final RF signal = RF (M i is suppressed by 2+ g2RF3 + ... + gN) RPN).., (l) D represents the regenerative signal obtained from the beam with super-resolution energy, positive to RFN (Correcting) the regenerative signal obtained in a beam, and gi is a specific coefficient regenerative signal at 2 to ^^ and inverse having a time delay. Those skilled in the art can use the present invention to obtain the final RF signal in the equation.

圖11為“·私圖,顯示用圖9A或1〇的資料再生芽 置900進行的資料再生方法。請參照圖n,首先在操作^ ,1100中’光學讀取頭91〇或94〇會照射具有超解析度能 量的第一光束於資訊儲存媒體300上。 接著,在操作步驟111〇中,光學讀取頭91〇或94〇 會用一特定的時間延遲,照射無超解析度能量的第二光束 於被第一光東照射過的資訊儲存媒體上300,有特定時間 延遲的第二光束的照射並不表示光學讀取頭910會刻意的 延緩第二光束的照射,而是表示第一光束沿著轨道通過與 第二光束在第一光束之後沿著同樣的軌道通過自然就會產 23 1358062 173l2pif.doc 生一個時間延遲。 在操作步驟1120中,印铭/s丄 償照射在資訊儲存媒體3G〇°上的第處,器920會補 以及照射在資訊儲存媒體3〇〇上=第-再生訊號 號之間的時間延遲,並進行 :a束之第二再生訊 ,像疋自第—再生訊號 于弟—再生訊相輸出—最終再生訊號。Fig. 11 is a ". private map showing a data reproducing method performed by the data reproducing bud 900 of Fig. 9A or 1 。. Please refer to Fig. n, first in the operation ^, 1100 'optical reading head 91 〇 or 94 〇 The first light beam having the super-resolution energy is irradiated onto the information storage medium 300. Next, in operation step 111, the optical pickup 91 〇 or 94 〇 is irradiated with a specific time delay to illuminate the energy without super-resolution energy. The second light beam is incident on the information storage medium 300 illuminated by the first light. The illumination of the second light beam having a specific time delay does not mean that the optical pickup 910 deliberately delays the illumination of the second light beam, but indicates that A beam of light passing along the track and the second beam passing along the same orbit along the first beam will naturally produce a time delay of 23 1358062 173l2 pif.doc. In operation 1120, the imprint/s compensation is illuminated. The third place on the storage medium 3G〇, the device 920 will compensate and illuminate the time delay between the information storage medium 3〇〇=the first-reproduced signal number, and perform: a second regenerative signal of the bundle, like The first - the regenerative signal News regeneration phase output - a final reproduced signal.

當可㈣高能量相超解析度再生而第 j第一再生訊號被扣除時,假如沒 訊= =再;訊號之間的時間延遲,扣除造成的== ^二=:第一再生訊號是自可以產生有高能量: ^^再生的光點1中取得,而第二再生訊號是自產生 ^低月b置的-般再生的光點2中取得。接著,透過圖9A 〆10所不的放大器921進行的扣除會給第二再生訊號一個 適當的倍率,此時延遲單元922 t控制因兩個光點i與2 之間的空間距離造成第一與第二再生訊號之間的時間延When the (4) high-energy phase super-resolution is reproduced and the jth first regenerative signal is deducted, if there is no news == again; the time delay between the signals, the deduction is caused by == ^ two =: the first regenerative signal is self It can be generated with a high energy: ^^ regenerated spot 1 is obtained, and the second regenerative signal is obtained from the spot 2 of the general reproduction generated by the low moon b. Then, the subtraction by the amplifier 921 shown in FIG. 9A 〆10 gives an appropriate magnification to the second reproduced signal, and the delay unit 922 t controls the first distance due to the spatial distance between the two spots i and 2. Time delay between the second regenerative signals

遲,假如在第一與第二再生訊號之間的時間延遲不精確, 扣除產生的訊號就會有差的特定。當然,由光點1與2之 間的空間距離可以得到時間延遲,但是各種外部的干擾可 能會在光碟再生期間發生,舉例來說,假如主轴馬達的旋 轉速度稍微的改變或是有放射方向或切線方向的傾斜發 生’在實際光碟上的光點之間的空間距離就會改變,假如 光點之間的空間距離的改變沒有適當的調整’最終再生訊 號的品質會很差。 圖12為一圖表,顯示透過模擬根據延遲時間扣減之 24 1358062 17312pif.doc 後的訊號跳動得到的結果。在圖12的模擬中,光點的線性 速度為5m/s,當跳動為1〇%時,會得到一個,因為±〇.〇4T 的範圍是對應到±0.03毫微秒,±0·04Τ的時間延遲範圍是 非常窄的,因此需要一種可以準確的控制時間延遲的單元β 在第一與第二再生訊號之間的時間延遲可以用下列 的方法糈準的控制:第一,利用跳動或誤碼率(bER);第二, 利用前凹點或特定的識別訊號;而第三,利用一擺動訊號。 在使用擺動訊號的方法中,可以使用擺動訊號上不連續的 點。 首先’會說明使用跳動或誤碼率(bER)以精準的控制 第一與第二再生訊號之間的時間延遲的方法。在此方法 中’根據第一與第二再生訊號得到的最終再生訊號的跳動 或誤碼率會被監看,而第一與第二再生訊號之間的時間延 遲會被補償,所以監看的跳動或誤碼率會達到最小。 圖14顯示一種訊號處理器142〇,係為圖9或1〇的資 料再生裝置900中的記錄/再生訊號處理器92〇的一種改 良,此改良訊號會用一跳動值來進行補償。請參照圖14, 由資訊儲存媒體300反射的第一光束之光線會被第一光線 偵測器942a偵測到,而由資訊儲存媒體3〇〇反射的第二光 束之光線會被第二光線偵測器942b偵測到。 訊號處理器1420的一個延遲單元1421會接收由第一 光線偵測器942a輸出的光線,將接收的光線延遲一段第一 ..延遲時間,以補償第一光線偵測器942a的光點i與第二光 線制II 942b的光點2之間的時間延遲,並將^的光線 25 1358062 17312pif.doc &供到一個操作單元1423上,訊號處理器1420的放大器 1422會接收自第二光線偵測器942b輸出的光線,放大接 收的光線並將放大的光線提供到一個操作單元U23上,搡 作單元1423會自第一再生訊號扣除第二再生訊號。” 將透過第一光束的第一光點B1與透過第二光束的第 二光點B2之間的距離(d)除以第一光點的線性速度可以 得到第一延遲時間⑴,如圖13所示,延遲單元142ι可以 透過延遲第一再生訊號一段第一延遲時間,初步的補償第 齡一光點與第二光點之間的時間延遲。 在圖14的實施例中,延遲單元1421透過跳動值可以 進一步的補償第一與第二光點之間的時間延遲,為了更明 確的,跳動補償單元1424會監控由操作單元1423輸出的 最終再生訊號的跳動值或誤碼率,計算補償值讓跳動或誤 碼率最小,透過自第一延遲時間加入或扣除補償值得到第 二延遲時間,以及提供第二延遲時間到延遲單元1421,接 著延遲時間1421會將第一再生訊號延遲第二延遲時間,精 • 確的調整第一與第二光點之間的時間延遲。 圖15為一流程圖,係根據本發明一實施例說明一種 用跳動值補償在第一光東與第二光束之間的時間延遲的方 法。請參照圖15,在操作步驟15〇〇中,透過計算第一與 第二光點之間的距離與光點的線性速度可以計算出第一延 遲時間。 接著’在操作步驟151〇中’透過將光點1的偵測訊 喊延遲第一延遲時間並進行延遲偵測訊號的操作與光點2 26 1358062 l7312pif.doc 的偵測訊號可以得到再生訊號。 在操作步驟1520中,可以得到再生訊號的跳動或誤 碼率,並計算出可以將再生訊號的跳動或誤碼率最小化的 第二延遲時間。 ^在操作步驟153〇中,透過將光點2的偵測訊號延遲 第—延遲時間並進行延遲的偵測訊號與光點1的偵測訊號 的操作會得到一個再生訊號。Late, if the time delay between the first and second regenerative signals is inaccurate, the deducted signal will be poorly specific. Of course, the time delay can be obtained by the spatial distance between the light spots 1 and 2, but various external disturbances may occur during the regeneration of the optical disc, for example, if the rotational speed of the spindle motor is slightly changed or has a radial direction or The tilt of the tangential direction occurs. 'The spatial distance between the spots on the actual disc changes. If the change in the spatial distance between the spots is not properly adjusted, the quality of the final reproduced signal will be poor. Figure 12 is a graph showing the results of signal jitter after 24 1358062 17312 pif.doc deducted from the delay time by simulation. In the simulation of Fig. 12, the linear velocity of the light spot is 5 m/s, and when the jitter is 1〇%, one is obtained because the range of ±〇.〇4T corresponds to ±0.03 nanoseconds, ±0·04Τ The time delay range is very narrow, so a unit that can accurately control the time delay is required. The time delay between the first and second reproduced signals can be controlled by the following methods: first, using jitter or Bit error rate (bER); second, using a front pit or a specific identification signal; and third, using a wobble signal. In the method of using the wobble signal, a point on the wobble signal that is discontinuous can be used. First, a method of using the jitter or bit error rate (bER) to accurately control the time delay between the first and second reproduced signals will be described. In this method, the jitter or bit error rate of the final reproduced signal obtained from the first and second reproduced signals is monitored, and the time delay between the first and second reproduced signals is compensated, so that the monitoring is performed. The jitter or bit error rate will be minimized. Fig. 14 shows a signal processor 142, which is an improvement of the recording/reproducing signal processor 92 in the data reproducing apparatus 900 of Fig. 9 or 1 and which is compensated by a jitter value. Referring to FIG. 14, the light of the first light beam reflected by the information storage medium 300 is detected by the first light detector 942a, and the light of the second light beam reflected by the information storage medium 3 is received by the second light. The detector 942b detects it. A delay unit 1421 of the signal processor 1420 receives the light output by the first light detector 942a, and delays the received light by a first delay time to compensate for the light spot i of the first light detector 942a. The time delay between the light spot 2 of the second light system II 942b, and the light 25 1358062 17312pif.doc & is supplied to an operation unit 1423, and the amplifier 1422 of the signal processor 1420 receives the second light detection. The light output from the detector 942b amplifies the received light and supplies the amplified light to an operation unit U23. The processing unit 1423 subtracts the second reproduction signal from the first reproduction signal. The first delay time (1) can be obtained by dividing the distance (d) between the first spot B1 of the first beam and the second spot B2 of the second beam by the linear velocity of the first spot, as shown in FIG. As shown, the delay unit 142i can delay the time delay between the first light spot and the second light spot by delaying the first regenerative signal for a first delay time. In the embodiment of FIG. 14, the delay unit 1421 transmits The jitter value can further compensate the time delay between the first and second spots. To be more explicit, the jitter compensation unit 1424 monitors the jitter value or the bit error rate of the final reproduced signal output by the operating unit 1423, and calculates the compensation value. The jitter or bit error rate is minimized, the second delay time is obtained by adding or subtracting the compensation value from the first delay time, and the second delay time is provided to the delay unit 1421, and then the delay time 1421 delays the first reproduction signal by the second delay. Time, precise adjustment of the time delay between the first and second spots. Figure 15 is a flow chart illustrating the use of jitter value compensation in accordance with an embodiment of the present invention. A method of time delay between the optical east and the second light beam. Referring to FIG. 15, in operation step 15, the distance between the first and second light spots and the linear velocity of the light spot can be calculated to calculate the first a delay time. Then, in the operation step 151, the delay of the detection of the light spot 1 by the first delay time and the delay detection signal operation and the detection signal of the light spot 2 26 1358062 l7312pif.doc can be A regenerative signal is obtained. In operation 1520, a jitter or bit error rate of the reproduced signal can be obtained, and a second delay time that can minimize the jitter or bit error rate of the reproduced signal is calculated. ^ In operation step 153, A regenerative signal is obtained by delaying the detection signal of the spot 2 by the delay time and delaying the detection signal and the detection signal of the spot 1.

接著將會參相16與17說明制前凹點或特定的辨 別資訊精確的補償在第—光束與第二光束之間的時間延遲 的方法。特定的_資訊表示額外的週期蹄訊可以輕易 的分辨來自使用者資料的額外資料。 首先,則凹點會參考圖16詳細的說明。圖16介紹一 =有軌道的超解析度資訊儲存媒體,在預定的區域形 ^ _ 光干記錄媒體會包括一個記錄有前References 16 and 17 will then be used to illustrate the method of pre-pitting or specific discrimination information to accurately compensate for the time delay between the first beam and the second beam. The specific _ information indicates that additional cycle information can easily distinguish additional data from the user's data. First, the pit will be described in detail with reference to FIG. Figure 16 shows a = super-resolution information storage medium with orbital, in the predetermined area shape ^ _ optical dry recording media will include a record before

區域以及記錄有使用者資料的-個使用者ΐ 3^在_-讀中,每個磁區會儲存ΐ28位元二 3貝:,當製作光碟基底時這會被記錄為前凹點,讀: 3 在由前凹點組成的前頭區域中的前頭資料: S t磁區Ϊ型態、以及平台執道/溝槽執道 1 =可_前頭資訊進行隨 方面有不平均的前凹點形成於其中广 另一 每個磁區的—個特定區域中、置在 取頭透過記錄在前頭區域中的資料可=¾ 27 17312pif.doc 的預定區域。 凊參照圖16 ’對應記錄右^ ^:^綱會形成在本== 咖區域 ϋ域儲存前頭資訊’用前凹點構成的前頭 ί 解析度資訊㈣ 種利二^ ^圖’係根據本發明另-實施例說明- =:=:別資訊補償在第-光束與第™ 首先,在操作步驟1700中, 的距:ϊ光點的線性迷度可以計算出第-延以 於延遲步,、i7iG中’透過將光點1的偵測訊 間亚進魏遲的侧訊號與光點2的侦 測訊唬的刼作可以得到再生訊號。 炎在操作步驟172G巾,補償介於第與第二光 束,間的時間延遲’以使用於用 別資訊所需要的時間與 玍引m辨 所需要的時間之_= 先束再生㈣點或辨別資訊 料ΐ後=操作步驟173G中,透過將光點1的偵測訊 ί Γ广間對應於補償的時間延遲,以及進行延遲的 先點2〜的偵測訊號的操作可以得到再生訊號。 °所逑,當記錄使用者資料以外的前凹點或額外的 28 1358062 17312pif.doc .. . . 辨懸二由:利用前述的光束再生前凹點或辨別資訊時 起算’ I’M奸來的絲再找凹點雌师訊時的一段 時間可以用來作為延遲時間。 Φ 在本發明的超解析度資訊儲存媒體的資料再生友法 中’當再生資料用標記的方式記錄時,由超解析度區域以 外,,,區域之訊號成分會被移除,其中透過照射有 Ϊ尚能量的再生光束會在溫度分布或光學雜上有改變, 藉以增進再生訊號特性。此外,控制時間延遲的方法會用 ^精^的㈣総之間的距離,藉以獲得更精確的再生訊 些f法可以改善透過再生記錄在隨機圖案中的資料 號之特性’藉以促成超解析度資訊儲存媒體實用 生裝ΐ:以解析度資訊儲存媒體的資料再 置:處理訊號而不需要對現有的再生裝 置有月顯的以,就可以改善再生訊號特性。 使用本發日月的㈣再生方法與裝置可以改解 度貝訊儲存媒體的#料再生效能’藉以達到高^古— 度、高性能的資訊儲存媒體的實際應用。。口、、问达 C發明提供的超解析度資訊儲存媒體是 個多層結構,在基底上有五或七層而超解:以 雖然本發明已以較佳實施例揭露如上,然其並非用以 29 1358062 17312pif.doc. 和_,當可作些許之更細炉喊發明之3 範圍當視制之申請專利翻所界定者為準。 ί 【圖式簡單說明】 丄,1騎示為m中超解析度現象會發生在再 生光點在超騎度資訊儲存舰上的照射處。 解析===皁=記的數值小於有超 率者會被記錄下來刀料者與標記的數值大於分辨 量的=繪=種二訊號,係透過使用有超解析度能 獲得。 錄在圖2A中的記錄圖案的資訊而 範例圖】;:=顯示一種超解析度資訊儲存媒體的 圖ttt發明所提供的-種再生方法。 方法中照提供-種資料再生 無超解析度能雜上的超解析度能量的光束以及 圖5A與5B係顯示在本發明一竇 方法中,超解析度能量的光束與沒;= 的-種5料再生 照射在資訊儲存媒體上的放大圖。σ❻能量的光束 方法圖二23再生訊號’係利用本發明的資料再生 的標記=二有起解析度能量的光束照射到記錄在圖Μ 圖6Β緣示一種再生訊號,係利用本發明的資料再生 1358062 173l2pif.doc • 的標年而隹得'V. V. . .. ’·.·_·-· * - · · * · 目6C繪示在圖6A# 6B .中顯示的再生訊號之間的一 差異訊號。 一圖7A繪示-種再生訊號’係將—種有超解析度 光束照射在透過本發明提供的—種資料再生方法記 錄的隨機標記上。 二ΐ不—種再生訊號’係利用將一種沒有超解析 度Μ的光東照射在透過本發明 記錄的隨機標記上。 π m貝付丹生万法 差異示在圖7A^B中顯示的再生訊號之間的一 案。圖8緣示一種由圖7C,差異訊號得到的一視覺圖 度資=:⑽=實施例的-種用於超解析 圖犯繪示係扣秘士外 元。 ,、根據本發明一實施例的一種槽狀光柵單 圖1〇續'示後„ 圖11為一;。圖9A的資料再生裝置的改良圖。 再生方法。、程圖,顯示本發明一實施例的一種資料 圖12為— 後的訊號跳動得到表,顯不透過模擬根據延遲時間扣減之 圖13顯示爾的結果。 用於圖11的再生方法中的第-時間延遲g 31 1358062 173I2pif.doo : . . . . .... . . . : 計算方:法。 ·- .·· ;· : -ν. · :: · · : ·· ·.····. . ·· :··.·· ·· · :’ ':圖:14鹤示_ 的資科丹生瘅寞爭的每錄g生知 赛處理器的—種改良m減會用-絲值來進行^ .圖15 .為—流程圖,係根據本發明一實施例說一 =跳動值補償在第-光束與第二光束之__延遲的; 其中=::;=r析度資訊細體,在 的時間延遲的方法。 先束與第二光束之間 【主要元件符號說明】 110 :標記 100、T :轨道 120 :光點 130 :超解析度區域 140:週邊區域 A、B、C、D、E、F : 75nm 的 310 :基底 320 :第一介電層 330 :記錄層 340:第二介電層 350 :超解析度再生層 32 1358062 17312pif.doc 360 :第三介電層 370 :覆蓋層 OL、915 :物鏡 m:記錄標記 A、B :記錄層的材料 B1 :第一光束 B2 :第二光束 300 :資訊儲存媒體 900 :資料再生裝置 910、940 ··光學讀取頭 911 :光源 912 :繞射單元 913 :準直透鏡 914 :光束分離器 916 :光偵測器 920 :記錄/再生訊號處理器 921 :放大器 922 :補償器 923 ··操作單元 930 :控制器 Chi :通道1 Οι2 :通道2 912 :槽狀光柵單元 951 :光束 33 1358062 17312pif.doc .952 : 0th級的繞射光束 953 : +lst級的繞射光束 954 : -Ist級的繞射光束 941 :光學模組 941a:第一光源 941b :第二光源 942 :光偵測器 942a :第一光偵測器 • 942b:第二光偵測器 1100-1120、1500〜1530、1700〜1730 :操作步驟 1420 :訊號處理器 1421 :延遲單元 1422:放大器 1423 :操作單元 1424:跳動補償單元 d:光點的距離 $ t:第一延遲時間 v : B1的線性速度 1600 :前頭區域 34The area and the user who recorded the user data ΐ 3^ In the _-read, each magnetic area will store ΐ28 bits and 2 lbs: this will be recorded as the front dent when making the disc base, read: 3 The head data in the front region consisting of the front pit: S t magnetic zone Ϊ type, and the platform command/groove command 1 = _ _ front information is performed with uneven edging In the specific area of each of the other magnetic regions, the data placed in the head area through the take-up head can be a predetermined area of 3⁄4 27 17312pif.doc.凊 Referring to FIG. 16 'corresponding record right ^ ^: ^ outline will be stored in the current == coffee area 储存 domain storage front information 'pre-head 构成 resolution information (four) seed 二 ^ ^ map ' according to the present invention Another-embodiment description - =:=: other information is compensated in the first beam and the third. First, in the operation step 1700, the distance from the linear brightness of the dimming point can be calculated as the first delay to the delay step, In the i7iG, the regenerative signal can be obtained by the detection of the side signal of the spot 1 and the detection of the spot 2 and the detection of the spot 2. In the operation step 172G, the time delay between the first and second beams is compensated for the time required for the use of the different information and the time required to identify the _= the first beam regeneration (four) point or discrimination After the information source = operation step 173G, the reproduced signal can be obtained by the operation of the detection of the light spot 1 corresponding to the time delay of the compensation, and the operation of the detection signal of the first point 2 to the delay. °逑, when recording the user's data other than the front pit or extra 28 1358062 17312pif.doc .. . . . 2: Using the aforementioned beam to reproduce the pit before or identify the information from the beginning of the 'I'M rape The time when the silk is found again can be used as a delay time. Φ In the data regeneration method of the super-resolution information storage medium of the present invention, when the reproduced data is recorded by means of a mark, the signal components of the area are removed from outside the super-resolution area, and The regenerative beam of the energy of the genius will change in temperature distribution or optical complexity to enhance the regenerative signal characteristics. In addition, the method of controlling the time delay will use the distance between (4) ,, to obtain a more accurate regenerative signal, and the f-method can improve the characteristics of the data number recorded in the random pattern by the reproduction, thereby promoting super-resolution. Information storage media utility ΐ: Re-distribution of information in the resolution information storage media: processing signals without the need for monthly display of existing regenerative devices can improve the regenerative signal characteristics. Using the (four) regeneration method and device of the present day and month can be used to improve the practical application of high-altitude, high-performance information storage media. . The super-resolution information storage medium provided by the invention is a multi-layer structure having five or seven layers on the substrate and super-solution: although the present invention has been disclosed in the preferred embodiment as above, it is not used for 29 1358062 17312pif.doc. and _, when a little more can be made, the scope of the invention is 3, and the scope of the patent application is determined. ί [Simple description of the diagram] 丄, 1 riding in the m super-resolution phenomenon will occur in the illumination spot on the super-riding information storage ship. Analysis === soap = the value of the record is less than the value of the over-the-counter. The value of the tool and the mark is greater than the resolution = the picture = the second signal, which can be obtained by using the super-resolution. The information of the recording pattern recorded in Fig. 2A is an example of a reproduction method provided by the invention of the super-resolution information storage medium. The method provides a light beam of super-resolution energy without super-resolution energy and FIG. 5A and FIG. 5B shows that in the sinus method of the present invention, the beam of super-resolution energy is not An enlarged view of the material regenerated on the information storage medium. The beam method of σ❻ energy is shown in Fig. 223. The regenerative signal 'is the mark reproduced by the data of the present invention=the second beam having the resolution energy is irradiated to the record. FIG. 6 shows a regenerative signal, which is reproduced by using the data of the present invention. 1358062 173l2pif.doc • The year of the mark and 'VV . .. '···_·-· * - · · * · Figure 6C shows a difference between the reproduced signals shown in Figure 6A# 6B . Signal. A Figure 7A illustrates a type of regenerative signal that is illuminated by a super-resolution beam onto a random mark recorded by the data reproduction method provided by the present invention. The second type of regenerative signal is used to illuminate a random mark recorded by the present invention with a light having no super-resolution Μ. The difference between the π m and the dans is shown in the case of the reproduced signal shown in Fig. 7A^B. Fig. 8 shows a visual map obtained by the difference signal of Fig. 7C. = (10) = the type of the embodiment is used for super-resolution. Figure 1 is a schematic view of the data reproduction device of Figure 9A. Regeneration method, process diagram, showing an implementation of the present invention, in accordance with an embodiment of the present invention. A data of an example is shown in Fig. 12 as a post-jumping result table, which shows the result of the simulation shown in Fig. 13 according to the delay time deduction. The first-time delay used in the regeneration method of Fig. 11 is g 31 1358062 173I2pif. Doo : . . . . . . . . . : Computation: Law. ·- .·· ;· : -ν. · :: · · : ·················· ······ · : ' ': Picture: 14 Crane Show _ The qualification of each of the records of the syllabus of the syllabus of the squad, the improvement of the m-reduction will be carried out with the wire value ^. Figure 15 For the flow chart, according to an embodiment of the invention, a = jitter value is compensated for the delay of the __ of the first beam and the second beam; wherein =::; = r is the information detail, the time delay Method between the first beam and the second beam [Main component symbol description] 110: mark 100, T: track 120: spot 130: super-resolution area 140: peripheral areas A, B, C, D, E, F : 75nm of 31 0: substrate 320: first dielectric layer 330: recording layer 340: second dielectric layer 350: super-resolution reproduction layer 32 1358062 17312pif.doc 360: third dielectric layer 370: cover layer OL, 915: objective lens m Recording marks A, B: material of the recording layer B1: first light beam B2: second light beam 300: information storage medium 900: data reproducing device 910, 940 · optical reading head 911: light source 912: diffraction unit 913: Collimating lens 914: beam splitter 916: photodetector 920: recording/reproducing signal processor 921: amplifier 922: compensator 923 · operating unit 930: controller Chi: channel 1 Οι2: channel 2 912: trough Raster unit 951: beam 33 1358062 17312pif.doc .952 : diffracted beam of phase 953: diffracted beam of +lst order 954: diffracted beam of 941 -Ist stage: optical module 941a: first source 941b: Two light sources 942: photodetector 942a: first photodetector 942b: second photodetectors 1100-1120, 1500~1530, 1700~1730: operation step 1420: signal processor 1421: delay unit 1422: Amplifier 1423: operation unit 1424: jitter compensation unit d: distance of light spot $t: first delay v: B1 linear velocity of 1600: the top region 34

Claims (1)

1358062 號中文專利範圍無劃線修;_No. 1358062 Chinese patent scope without line repair; _ 17312pif2 爲第 94122044 十、申請專利範園:17312pif2 is the 94122044 X. Patent Application Park: _ A著儲存資料的軌道照射_第二, 束不會造成該超解析度現象; 、中&quot;第一先 谓測基於該第—光束的該第—再生訊號以及基於該 第二光束的該第二再生訊號;以及 補償該第一再生訊號與該第二再生訊號之間的一時 間延遲,並獲得該第一再生訊號和該第二再生訊號之間的 一差異訊號。 2. 如申凊專利範圍第1項所述之在標記的大小小於入 φ 射光束的分辨率下對超解析度資訊儲存媒體進行資料再生 的方法,其中該第一光束與該第二光束會以一時間延遲的 方式照射到一同樣的執道上。 3. 如申請專利範圍第1項所述之在標記的大小小於入 射光束的分辨率下對超解析度資訊儲存媒體進行資料再生 的方法,其中該第—與第二光束之照射包括用一繞射單元 將自一單一光源放射出的一光柬分成該第一與第二光束。 4. 如申請專利範圍第1項所述之在標記的大小小於入 射光束的分辨率下對超解析度實訊儲存媒體進行資料再生 35 1358062 17312pif2 修正曰期:100年9月j日 爲第94122044號中文專利範圍無劃線修正本 2方法’其t該第-與第二光束之照射包括用分別包含一 光源與-第二光源的個別絲來照射該第—光束與該 第二光束。 、 5.如申請專利範圍第3項戶斤述之在標記的大小小於入 射光束的分畴下對超騎度資觸存雜進行資料再生 的方法’其令在將自該單一光源放射的該光束分開的 中,用該繞射單元產生的複數個繞射光束中的―+❾ 做為該第-光束,而-,級的繞射光束做』 請專利範圍第3項所述之在標記的大小小^ 用5玄繞射單元產生的複數個繞射光束中的一_kth級 做為該第-先束,而—Μ級的繞射光束做為Ϊ 射光請專利範圍第5項所述之在標記的大小小於入 的,;:===進行— 的方法’其令該繞射單元為-槽狀光柵二進㈣再生 沿著館存資料的軌道照射-第一先束=;·· 36 s 1358062 17312pif2 修正曰期:1〇〇年9月1日 爲第94122044號中文專利範圍無劃線修正本 束係造成一超解析度現象,而該超解析度現象是指一光束 點之中央部分的溫度分布或光學特性的改變; 透過-特定的時間延遲,將複數個第二光束照射至被 該第-光束照射過的執道上,其令該些第二光束不會造成 該超解析度現象;以及 根據獲得來自該第-光束的一第一再生訊號和來自於 該些,二光束的一第二再生訊號之間的一差異訊號,而侦 測一隶終再生訊號。 10.如申請專利細第9項所述之在標記的大小小於 入射光束齡解下騎騎度龍儲存媒 再 中制該最終再生訊號進—步包括補償3 第一=生《與該第二再生訊號之_該特料間延遲。 入射H申請專利範圍第9項所述之在標記的大小小於 =束的分辨率下對超解析度資訊儲存媒體進行資料再 生的方法’其+制該最終再纽號進—纟 : =::延遲’因此該最终再生訊號的跳動:括⑶ 12.如申請專利範圍第9項所述之 入射光束的分辨率下對超解析度資訊儲存:體進」、於 生=方法?__最終再 光束再生前EJ點或識別訊號所需的—時間“第- 者r ’以及用該第二光束再生前凹dt λ之間的一差異來補償該特定時間= 申μ專利範圍第9項所述之在標記的; S 37 1358062 17312pif2 爲第94122044號中文專利範圍無fij線修正;^ 修正日期:100年9月!日 入射光束的分辨率下對超解析度資訊儲存媒體進行資料 生的方法,其中偵測該最終再生訊號進—步包括用二 訊號來補償該特定時間延遲。 ^動 14·如申請專利範圍第9項所述之在標記的大小小於 入射光束的分解下_騎度資_存媒贿行再 生的方法,其中進-步包括用一繞射單元將自—單二= 放射出的一光束分成有超解析度能量的該第一盥盔 = 度能量的該些第二光束。 一…'超解析 15:-種在標記的大小小於人射光束的分辨率 解析度資訊儲存媒體進行資料再生的裝置,該裝置包括σ -光學讀㈣’沿著該超解析度:# ^卢 資料的轨道照射-第一光束,以造成一超解儲: 束點之中央部分“分布;戈 光干特I·生的改變,且5亥光學讀取頭更延著儲存 照射:ϊϊί里:而光束不會造成該超解析度現象, 1-先束之該第二再生訊號,以補償該第_ 味、 ί再操:=該第-再生訊號與該第 一控制器,使用接收自該訊號處理 該光學讀取頭。 的訊唬來控制 工6.如申睛專利範圍第15項所述之 下對超解析度資訊儲存‘體進行i: 生的裝置’其中該訊號處理器包括—操作單元,以進2 38 .c. 1358062 I7312pif2 修正日期:100年9月! 爲第94122044號中文專利範圍無劃線修正本 臼 該第-再生訊號與該第二再生訊號上的該差 =如申請專·_ ls項所述之在標記的° 入射光束齡辨率下_麟度小於 生的裝置,其中該第一光束與該第二光束資料再 照射在同樣的軌道上β θ 時間延遲 H如中請專利範圍第15項所述之在標記 入射先束的分辨率下對超解析度資訊儲存媒大^、於 生的裝置,其中該光學讀取頭包括: 丁貝料再 一光源;以及 一繞射單元’將該光源照射的—光束 束與該第二光束。 巧成该第〜光 19. 如申請專利範圍第18項所述之在標記 入射光束的分辨率下對超解析度資訊儲存二、隹大小小於 生的裝置,其中該[光束對應到該繞射單元=資料再 個繞射光束甲的一+kA級的繞射光束,而該 生的複數 到一-妒級的繞射光束。 μ〜光束對應 20. 如申請專利範圍第18項所述之在標記 入射光束的分辨率下對超解析度資訊儲存媒 小小於 生的裝置,其中該第一光束對應到該繞射單元纡&gt;料再 個繞射光束中的一_kth級的繞射光束,而該第—生的複數 到一+kth級的繞射光束。 X〜光束對應 21·如申請專利範圍第19項所述之在標記 入射光束的分辨率下對超解析度資訊儲存媒體1大小+於 生的裝置’其中該繞射單元為_槽狀光栅單元。行資料再 39 $ 17312pif2 修正曰期:100年9月1曰 爲第94122044號中文專利範 人射^二申Γ專利乾圍第20項所述之在標記的大小小於 生的裝置進行資料再 入射=1請專職㈣15項崎之摘記的大小小於 生的裝置,對?解析度資訊儲存媒體進行資料再 一光源與放射該第二光束的一第二光源4先束的第 解析Γ資記:大小小於入射光相分辨率下對超 存媒體進行資料再生的裳置,該袭置包括: 光學讀取頭,沿著該超解析度資 資料的軌道照射一第一光 ;貝,存媒體上儲存 中該超解析度現象是指4束二 二先束,其具有-特定時= 弟一光束不會造成該超解析度現象; 一 帅=號處理器,根據來自該第—光束之—第一再生1 號與來自該些第二光束之一第二再生訊 號’而偵測一最終再生訊號;以及 該光學ί^。’使用接收自該訊號處理器的一訊號來控制 入射光^賴之錢糾大小小於 生的裳置,其中該訊號處理資料再 生訊號與該第二再升訊虹進行—差= 17312pif2 修正曰期:1〇〇年9月1曰 爲第94122044號中文專利範圍無劃線修正本 異訊號。 26. 如申請專利範圍第25項所述之在標記的大小小於 入射光束的分辨率下對超解析度資訊儲存媒體進行資料再 生的裝置,其中該訊號處理器進一步包括一補償單元補償 在該第一再生訊號與該第二再生訊號之間的—預定時間延 遲。 27. 如申請專利範圍帛26項所述之在標記的大小小於 入射光束的分辨率下對超解析度資訊儲存媒體進行資料再 生的4置,其中該補償單元會補償該預定時間延遲,所以 最終再生訊號的跳動或誤碼率(bER)會最小。 28. 如申請專利範圍f %項所述之在標記的大小小於 入射光束的分解下對賴析度資職存雜進行資料再 生的裝置’其巾_償單元補償該預定時岐遲是用該 一光束再生前凹點或識別訊號所需的一時 來作為使用者資料,以及用該第二光束再生前凹二= 訊號所需的-時間之間的—差異來進行。 別 29·如申請專利範圍第%項所述之在標記的大 入射光束的分辨率下對超騎度資靖存媒 里 置’其中該補償單元用-擺動訊號來補償4: 專_圍第24項所述之在標記的大小小於 入射先束以辨率下對超解析度資訊儲存 至 生的裝置,其+該光學讀取頭包括: 知貝科再 一光源;以及 1358062 17312pif2 修正曰期:100年9月1曰 爲第94122044號中文專利範圍無劃線修正本 一繞射單兀,將該光源照射的一光束分開成該第一光 束與該第二光束。 31. 如申凊專利範圍第24項所述之在標記的大小小於 入射光束的分辨率下對超解析度資訊儲存媒體進行資料再 生的裝置,其中該光學讀取頭包括放射該第一光束的一第 一光源與放射該第二光束的一第二光源。_ A orbital illumination for storing data _ second, the beam does not cause the super-resolution phenomenon; , medium &quot; first prior measure based on the first-regeneration signal of the first beam and the second beam based a second regenerative signal; and a time delay between the first regenerative signal and the second regenerative signal, and obtaining a difference signal between the first regenerative signal and the second regenerated signal. 2. The method for reproducing data of a super-resolution information storage medium at a resolution of a mark smaller than a resolution of a ray beam as described in claim 1 of the claim, wherein the first beam and the second beam are Illuminate the same way in a time delay. 3. A method for reproducing data of a super-resolution information storage medium at a resolution of a mark smaller than an incident beam as described in claim 1 wherein the illumination of the first and second beams comprises a winding The firing unit divides a light bulb emitted from a single light source into the first and second light beams. 4. Data regeneration for super-resolution live storage media as described in item 1 of the scope of the patent application. 35 1358062 17312pif2 Correction period: September, September j, the number 94112044 The Chinese patent range has no scribing correction. The method of the present invention, wherein the illumination of the first and second beams comprises illuminating the first beam and the second beam with individual wires each comprising a light source and a second source. 5. The method of reproducing data from the super-riding factor in the case where the size of the mark is smaller than the area of the incident beam, as described in item 3 of the patent application, which causes the radiation to be emitted from the single source In the splitting of the light beam, ―❾ 中 of the plurality of diffracted light beams generated by the diffraction unit is used as the first light beam, and - the diffraction light beam of the level is made. The size of the small ^ is a _kth level of the plurality of diffracted beams generated by the 5 Xuan diffraction unit as the first-first beam, and the Μ-level diffracted beam is used as the illuminating light. The method described in the case where the size of the mark is smaller than the input, ::=== is performed - the diffraction unit is - trough-like grating binary (4) regeneration orbital illumination along the library data - first first beam =; ·· 36 s 1358062 17312pif2 Revision period: 1st September 1st is No. 94112044 Chinese patent range without slash correction This beam system causes a super-resolution phenomenon, and the super-resolution phenomenon refers to a beam point Change in temperature distribution or optical properties of the central portion; transmission-specific time delay And illuminating a plurality of second beams onto the track illuminated by the first beam, so that the second beams do not cause the super-resolution phenomenon; and obtaining a first regenerative signal from the first beam And a difference signal between the second regenerative signals of the two beams, and detecting a final regenerative signal. 10. If the size of the mark is less than the incident beam age, the final regenerative signal is generated by the method as described in the ninth application of the patent, and the compensation includes 3 first = raw "and the second" Regeneration signal _ the delay between the special materials. The method for reproducing data of the super-resolution information storage medium under the size of the mark is less than the resolution of the beam as described in item 9 of the scope of the application of the invention of the invention of the invention, and the method of reproducing the data of the super-resolution information storage medium is as follows: Delay 'so the bounce of the final regenerative signal: (3) 12. According to the resolution of the incident beam described in item 9 of the patent application, the super-resolution information is stored: body-in, in-situ = method?__final Compensating for the specific time when the EJ point before the beam is regenerated or the difference between the time "the first r" required to identify the signal and the front dt λ of the second beam is used to reproduce the specific time = S 37 1358062 17312pif2 is the fifi line correction for the Chinese patent range No. 94112044; ^ Revision date: September, 100! The method of data generation for the super-resolution information storage medium under the resolution of the incident beam at the day, The detecting the final regenerative signal further comprises using a second signal to compensate for the specific time delay. The motion 14 is as described in item 9 of the patent application, wherein the size of the mark is smaller than the decomposition of the incident beam. Save the bribe The method of line regeneration, wherein the step of stepping comprises: dividing, by a diffraction unit, a beam emitted from the single-second==the second beam having the super-resolution energy of the first helmet=degree of energy. 'Super-resolution 15:--A device for reproducing data by the information storage medium whose size is smaller than the resolution of the human beam, the device includes σ-optical reading (4) along the super-resolution: #^卢Orbital illumination - the first beam, to cause a super-storage: the central portion of the beam spot "distribution; the change of the G-light dry I, and the 5H optical read head is more extended than the storage illumination: ϊϊί里: and the beam The super-resolution phenomenon is not caused, 1-the second regenerative signal is first bundled to compensate for the first symmetry, and the second regenerative signal is used by the first controller to receive the signal from the first controller. The optical pickup. The information is controlled by the operator. 6. According to the scope of claim 15 of the scope of the patent application, the device for i: the raw device of the super-resolution information storage body is included, wherein the signal processor includes an operation unit to advance 2 38 . c. 1358062 I7312pif2 Revision date: September 100! For the Chinese patent scope No. 94112044, there is no slash correction. The difference between the first-reproduced signal and the second reproduced signal is as shown in the application of the _ ls item at the marked incident light beam age _ a device having a smaller degree than the raw device, wherein the first beam and the second beam data are re-irradiated in the same orbital β θ time delay H as described in the fifteenth item of the patent scope The apparatus for super-resolution information storage medium, wherein the optical pickup comprises: a bain material and a light source; and a diffraction unit that irradiates the light beam with the second beam. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The unit = data is again a diffracted beam of a +kA level of the diffracted beam A, and the resulting complex is diffracted to a diffracted beam of the one-th order. The μ~beam corresponds to 20. The device of claim 18, wherein the super-resolution information storage medium is smaller than the resolution at the resolution of the marked incident beam, wherein the first beam corresponds to the diffraction unit 纡&gt And diffracting a _kth-order diffracted beam of the beam, and the first-order complex to a +kth-order diffracted beam. X~beam corresponding 21· The device of the super-resolution information storage medium 1 at the resolution of the incident light beam as described in claim 19, wherein the diffraction unit is a trough-like grating unit . Line data again 39 $ 17312pif2 Amendment period: 100 years September 1st is the Chinese patent model of the No. 94112044, and the device is re-injected at the size of the mark. =1 Please full-time (4) 15 items of the Kawasaki note are smaller than the raw device, and the resolution information storage medium is used to transmit the data and a second light source 4 that emits the second light beam. The device for reproducing data on the super-storage medium is smaller than the resolution of the incident light phase, and the attack comprises: an optical reading head, illuminating a first light along the track of the super-resolution data; storing on the storage medium The super-resolution phenomenon refers to a bundle of four bundles, which has a specific time = a beam of light does not cause the super-resolution phenomenon; a handsome = number processor, according to the first beam from the first beam Regenerating No. 1 and a second regenerative signal from one of the second beams to detect a final reproduced signal; and the optical ί^. 'Using a signal received from the signal processor to control the incident light, the size of the money is smaller than the raw one, wherein the signal processing data regeneration signal and the second resurgence rainbow are performed - the difference = 17312pif2 : 1 September 1st is the Chinese patent scope of No. 94112044 without a slash correction of the original signal. 26. The apparatus for reproducing data of a super-resolution information storage medium having a size smaller than an incident beam as described in claim 25, wherein the signal processor further comprises a compensation unit compensation a predetermined time delay between a regenerative signal and the second regenerative signal. 27. As described in claim 26, the data of the super-resolution information storage medium is reproduced at a resolution smaller than the resolution of the incident beam, wherein the compensation unit compensates for the predetermined time delay, so that The jitter or bit error rate (bER) of the reproduced signal will be minimal. 28. If the size of the mark is smaller than the decomposition of the incident beam, the device for reproducing the data of the reliance on the grading is described in the patent application scope f%. The time required for a beam to reproduce the pit or the identification signal is used as the user data, and the difference between the time required to reproduce the front and the second signal is used. No. 29· As stated in the scope of the patent application, the resolution of the large incident beam of the mark is applied to the super-riding capital of the capital, where the compensation unit is compensated by the -swing signal: 4: The device described in item 24, wherein the size of the mark is smaller than the incident first beam, and the super-resolution information is stored to the living device, the optical read head includes: a light source of another knowledge; and a 1358062 17312pif2 correction period In the Chinese patent range of No. 94112044, which is not slashed, the light beam irradiated by the light source is divided into the first light beam and the second light beam. 31. The apparatus for reproducing data of a super-resolution information storage medium at a resolution that is smaller than a resolution of an incident beam, as described in claim 24, wherein the optical pickup includes the first beam. a first light source and a second light source that radiates the second light beam. 32. —種在超解析度儲存媒體中再生資料的方法,該方 法包括: ° 在形成於該超解析度儲存媒體上之一超解析度區域 中的一標記上照射具有一第一解析度能量的一第一光束, 該第一光束造成一超解析度現象; 在形成於該超解析度儲存媒體上的一標記上照射具 有一第二解析度能量的一第二光束,該第二光束不會造成 該超解析度現象;32. A method of reproducing data in a super-resolution storage medium, the method comprising: illuminating a first resolution energy on a mark formed in one of the super-resolution regions on the super-resolution storage medium a first light beam, the first light beam causing a super-resolution phenomenon; a second light beam having a second resolution energy is irradiated on a mark formed on the super-resolution storage medium, the second light beam is not Will cause this super-resolution phenomenon; 偵測根據該第一光束的一第一再生訊號與根據該第 二光束的一第二再生訊號; 處理該第一與第二再生訊號;以及 根據處理的該第一與第二再生訊號計算在該第一與 °玄弟一再生机號之間的一時間延遲。 33. 如申請專利範圍第32項所述之在超解析度儲存媒 體中再生資料的方法,其中介於該第一再生訊號與該第二 再生訊號之間的該時間延遲會用一跳動或誤碼率(bER)方 法來計算。 34. 如申請專利範圍第32項所述之在超解析度儲存媒 42 5 1358062 17312pif2 修正日期:100年9月1曰 爲第94丨22〇44號中文專利範圍無劃線修正本 體中再生資料的方法,其中介於該第—再生訊號與該第二 再生訊號之_該時間延遲會用形成在儲存媒體的前凹點 或是預定的辨別資訊來計算。 … 35. 如申請專利範圍第Μ項所述之在超解析 體中再生㈣的方法,其中介於該第—再生訊號與該第f 再生磁之間的該時間延遲賴__鶴訊號來計算。 36. 如申請專利範圍第丨項所述之在標記的大小小於 入射光束的77辨率下對超解析度資訊儲存媒體進行資料再 =排光束的週邊區域反_ 入射專㈣圍f 1項所狀在標⑽大小小於 二3 =率下對超解析度資訊儲存媒體進行資料再 保留在該差異訊號ί來自—超解析度區域的訊號成分會被 入射㈣1韻紅在標糾大小小於 生的方法,對,析度#訊儲存媒體進行資料再 八中5亥第—與弟二光束的像差量會大致相同。 43 sDetecting a first reproduced signal according to the first light beam and a second reproduced signal according to the second light beam; processing the first and second reproduced signals; and calculating according to the processed first and second reproduced signals A time delay between the first and the "Xiaodi" regenerative machine number. 33. The method for reproducing data in a super-resolution storage medium according to claim 32, wherein the time delay between the first reproduced signal and the second reproduced signal may be a beating or a mistake. Rate (bER) method to calculate. 34. The super-resolution storage medium 42 5 1358062 17312pif2 as described in the scope of patent application No. 32, date of revision: 100 years September 1st, the number of Chinese patents No. 94丨22〇44 The method, wherein the time delay between the first reproduction signal and the second reproduction signal is calculated by using a front pit formed on the storage medium or predetermined discrimination information. 35. The method of reproducing (4) in a super-resolved body as described in the scope of claim 2, wherein the time delay between the first-regeneration signal and the f-regenerated magnet is calculated by the __ crane signal . 36. As described in the scope of the patent application, the size of the mark is less than the 77-degree resolution of the incident beam, and the data of the super-resolution information storage medium is re-reflected by the surrounding area of the ray beam. The data is retained in the super-resolution information storage medium at the size of the target (10) and the data is retained in the super-resolution information storage medium. The signal component of the super-resolution area is incident (four) 1 rhyme red is less than the size of the calibration method. , Yes, the degree of analysis # information storage media to carry out data again in the 8th Haidi - the difference between the two beams will be roughly the same. 43 s
TW094122044A 2004-06-30 2005-06-30 Method and apparatus for reproducing data of super TWI358062B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20040050787 2004-06-30
KR1020050017249A KR101044942B1 (en) 2004-06-30 2005-03-02 Method and apparatus for reproducing data of super resolution information storage medium
KR1020050017576A KR101108680B1 (en) 2004-06-30 2005-03-03 Method and apparatus for reproducing data from super resolution information storage medium

Publications (2)

Publication Number Publication Date
TW200601296A TW200601296A (en) 2006-01-01
TWI358062B true TWI358062B (en) 2012-02-11

Family

ID=37148705

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094122044A TWI358062B (en) 2004-06-30 2005-06-30 Method and apparatus for reproducing data of super

Country Status (5)

Country Link
JP (1) JP4772790B2 (en)
KR (2) KR101044942B1 (en)
CN (1) CN100547660C (en)
MY (1) MY150262A (en)
TW (1) TWI358062B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0607088D0 (en) * 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
EP2136364A1 (en) * 2008-06-16 2009-12-23 Deutsche Thomson OHG High data capacity storage medium with protection code, method for obtaining the protection code and respective data reading apparatus
JP5230524B2 (en) * 2009-05-25 2013-07-10 三菱電機株式会社 Optical head device and optical disk device
CN107478615B (en) * 2017-07-11 2020-08-04 中国科学院上海光学精密机械研究所 Super-resolution non-fluorescence imaging method based on material thermal-induced transmittance change

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087283A (en) * 1994-06-23 1996-01-12 Hitachi Ltd Device and method for reproducing optical information
JPH09120564A (en) * 1995-10-23 1997-05-06 Hitachi Ltd Optical disk device
JP2000017306A (en) 1998-07-02 2000-01-18 Shimazu Mekutemu Kk Degreasing sintering furnace
JP2000173061A (en) 1998-09-28 2000-06-23 Matsushita Electric Ind Co Ltd Optical disk signal-reproducing device

Also Published As

Publication number Publication date
KR20060043355A (en) 2006-05-15
TW200601296A (en) 2006-01-01
CN1977316A (en) 2007-06-06
KR20060043327A (en) 2006-05-15
CN100547660C (en) 2009-10-07
KR101108680B1 (en) 2012-01-25
MY150262A (en) 2013-12-31
JP4772790B2 (en) 2011-09-14
KR101044942B1 (en) 2011-06-28
JP2008505426A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US7995441B2 (en) Real time power control for optical recording drives
ATE441183T1 (en) OPTICAL SCANNING DEVICE, RECORDING/RECORDING DEVICE EQUIPPED WITH THE OPTICAL SCANNING DEVICE, OPTICAL ELEMENT AND METHOD FOR DATA RECORDING/REPRODUCTION
NL7906576A (en) REGISTRATION HOLDER IN WHICH INFORMATION HAS BEEN INCLUDED IN AN OPTICALLY READABLE INFORMATION STRUCTURE AND READING DEVICE THEREFOR.
EP1801794A3 (en) Hologram reproduction method and apparatus
TWI358062B (en) Method and apparatus for reproducing data of super
JP4618730B2 (en) Information reproducing method and information reproducing apparatus
TWI239002B (en) Optical recording/reproducing apparatus, optical head apparatus, optical disc drive apparatus, tracking control method for use therein, and optical disc
TW505915B (en) Optical information recording medium, method for recording/reproducing the same, and optical pickup
JP2006216148A (en) Holographic recording apparatus, holographic reproducing apparatus, its method and holographic medium
EP1774521B1 (en) Method and apparatus for reproducing data of super resolution information storage medium
JP3173839B2 (en) Information reproducing apparatus for recording medium and reproducing method
JP2007035194A (en) Information storage medium, information recording and reproducing device, and information recording and reproducing method
JP2007087494A (en) Method and device for recording information to optical recording medium
KR101296761B1 (en) Pickup for optical recording medium
JPS59154651A (en) Information recording and reproducing device
EP1958191A1 (en) An optical recording apparatus with high-speed forward laser power control (lpc)
JP4508100B2 (en) Information recording method and information recording apparatus for super-resolution optical recording medium
WO2005022517A1 (en) Optical recording disk
TW200529207A (en) Super resolution information storage medium, method of improving C/N ratio of the same, and apparatus for recording data on and/or reproducing data from the same
JP5073028B2 (en) Information playback device
WO2013175525A1 (en) Optical information recording/reproduction device, recording condition adjustment method, and optical information recording medium
KR0144193B1 (en) Optical recording medium and reproducing apparatus using grating lens
JP2011187101A (en) Optical information recording/reproducing device and optical information reproducing method
WO2011027420A1 (en) Optical recording/reproducing device
JP2007242145A (en) Information recorder and information reproducing device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees