TWI357730B - Soft handoff of a cdma reverse link - Google Patents
Soft handoff of a cdma reverse link Download PDFInfo
- Publication number
- TWI357730B TWI357730B TW092132400A TW92132400A TWI357730B TW I357730 B TWI357730 B TW I357730B TW 092132400 A TW092132400 A TW 092132400A TW 92132400 A TW92132400 A TW 92132400A TW I357730 B TWI357730 B TW I357730B
- Authority
- TW
- Taiwan
- Prior art keywords
- base station
- signal
- reverse link
- timing
- orthogonal
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 41
- 230000005540 biological transmission Effects 0.000 claims description 30
- 238000005259 measurement Methods 0.000 claims description 30
- 238000012546 transfer Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 241000255925 Diptera Species 0.000 claims 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 1
- 239000013078 crystal Substances 0.000 claims 1
- 230000000977 initiatory effect Effects 0.000 claims 1
- 210000003205 muscle Anatomy 0.000 claims 1
- 239000007858 starting material Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 26
- 238000012423 maintenance Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 230000009467 reduction Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 208000003580 polydactyly Diseases 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101100132433 Arabidopsis thaliana VIII-1 gene Proteins 0.000 description 1
- 206010011469 Crying Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2628—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0022—PN, e.g. Kronecker
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
- H04W36/18—Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/40—TPC being performed in particular situations during macro-diversity or soft handoff
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/002—Mutual synchronization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/0045—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Wire Bonding (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
1357730 玖、發明說明: [發明所屬之技術領域] 本發明大致上係關於通訊網路,且特別係關於分碼多 路接取反向鏈路之軟性交接操作。 [先前技術] 無線通訊服務之形式及需求在最近二十年係具有空前 的成長。包含行動電話、個人通訊服務(pers〇nal1357730 发明, INSTRUCTION DESCRIPTION: [Technical Field to Which the Invention Is Ascribed] The present invention relates generally to communication networks, and more particularly to soft handover operations for code division multiple access reverse links. [Prior Art] The form and demand for wireless communication services have grown at an unprecedented rate in the last two decades. Includes mobile phone, personal communication service (pers〇nal
Communication Services,PCS)及類似系統之無線語音通 訊服務現今係提供幾乎到處存在之涵蓋範圍。用於如此網 路之基礎結構係已經被建立成美國、歐洲及世界上其他工 業化之區域之大部分居民具有不只一個而為複數個服務提 供者可以選擇之情況。 於電子及電腦工業之持續成長係對於接取 無數的服務及提供之特色之增加的需求有貢獻。於使用包 含膝上型電腦、手持個人數位助理、網際網路致能之行動 電話及類似裝置之計算設備,尤其是可攜式之種類,之增 殖係已經造成無線資料存取之需求的對應增加。 雖然行動電話及個人通訊服務網路係廣泛地配置,這 二系統起始並非意欲用於攜帶流通資料。反而是,相較於 網際網路通訊所需之叢發模式數位通訊係 設計用於有效率地Φ媳、4^ , 一矛統係 m 續類似訊號。亦考慮語音通訊 於一個大約3千赫芝之通訊頻道頻寬。然而 覽之有效的網際網路通訊而言,需要至少每秒 5 6千位元之資料率係可以被接受的。 1357730 此外,該流通資料流本身之本質係與語音通訊之本質 不同。語音係需要-個連續的多工連結;亦即,於一個連 結之-端之使用者係期望能夠持續地傳送至一個連結之另 一端之使用者及由該使用者接收而來 ° $伐叹叩木。然而,透過網際網 路接取網頁一.般而言倍非t業·疏道& 。你非吊叢發導向的。典型地,—個遠 距客戶電腦之使用者係指定諸如μ 货?日疋0^如於一個網路伺服器上之電 月®檔案,之位址。然後,請求将姑故彳儿* 月水係被格式化為一個相當短的資 料訊息’典型地為長度小* _ 、 又j %丄υ υ ◦位το組。然後,諸如 於該網路中之一個網路词服写虚 』崎川服窃處之該連結之另一端係以可 以由1 0千位元組至數百萬位元組之文字、影像、聲音或 者視頻資料之被請求之資料檔案作回應。由於網際網路本 身之㈣的固有特性’使用者通常期望在該被請求之内容 開始傳迗給使用者之前延遲至少數秒或者吏多。然後,一 旦該内容被傳送,該使用者伤 一' 便·者係了以在指定下一頁被下載之 月’J化費數秒或者甚至數分鐘觀看或讀取該頁之内容。 再者,語音網路係被建構成支援高移動力之用途,亦 力係=用極長之長度以支援高速公路之速度形式之移動 用,!ϋ以語音為基礎之行動及個人通訊服務之網路之使 用者/σ著—條高速公路以高速移動時維持連結。然而,一 上型電腦之典型的使用者係相當靜止的,諸如坐於桌 言:'、因此,用於無線語音之考量行動單元對行動單元之 '、移’動力之重要觀點典型地係不需要用於支援資料存取 〇 [發明内容] 1357730 改進現存之無線基礎結構之某些構件以更有效率地適 合無線‘資料係有意義的。實施用於高資料率且低移動力之 使用者之新的使用者等級之類外功能應該向後與現在用於 為低貧料率及南移動力之你用去 7 <便用煮之功能相容。此將允許使 用現存被使用之語音網政其成纟士战^ ^ 日’峪丞礎結構之相同的頻率分配計劃 、基地臺天線 '建構位詈乃直仙士二 销·1丑置及具他方面,以提供新的高速資 料服務。 於反向鏈路上攜f資料之如&的網路之反向鏈路上支 援儘可能高之資料率係特別重要的,例如由遠距單元至該 基地臺。考慮諸如IS-95分碼多路接取(c〇de Dwisi〇nWireless voice communication services for Communication Services (PCS) and similar systems are now available in almost everywhere. The infrastructure used for such networks has been established as having more than one resident in the United States, Europe, and other industrialized regions of the world with more than one service provider. The continued growth in the electronics and computer industries contributes to the increased demand for access to numerous services and features. The use of computing devices including laptops, handheld personal digital assistants, Internet-enabled mobile phones and similar devices, especially portable types, has increased the demand for wireless data access. . Although the mobile phone and personal communication service networks are widely deployed, these two systems are not intended to be used to carry streaming information. Rather, the burst mode digital communication system required for Internet communication is designed to efficiently Φ媳, 4^, and a spear. Voice communication is also considered in a communication channel bandwidth of approximately 3 kilohertz. However, for effective Internet communication, a data rate of at least 56,000 bits per second is acceptable. 1357730 In addition, the nature of the circulation data stream itself is different from the nature of voice communication. The voice system requires a continuous multiplex link; that is, the user at the end of a link is expected to be continuously transmitted to and received by the user at the other end of the link. Elm. However, accessing the webpage through the Internet is generally not the same as the industry. You are not hoisting. Typically, a user of a remote client computer specifies the address of the e-month® file on a network server, such as μ. Then, the request is to format the sorrow * month water system into a fairly short information message 'typically a small length * _ , and another j % 丄υ ◦ τ τ ο group. Then, the other end of the link, such as one of the network words in the network, is written in the form of a text, image, or image from 10 kilobytes to millions of bytes. The requested data file of the sound or video material is responded to. Because of the inherent nature of (4) the Internet itself, users typically expect to delay at least a few seconds or more before the requested content begins to be transmitted to the user. Then, once the content is transmitted, the user is injured to view or read the contents of the page for a few seconds or even minutes at the time of designating the next page to be downloaded. Furthermore, the voice network is built to support the use of high mobility, and it is also the use of extremely long lengths to support the speed of the expressway, and the voice-based mobile and personal communication services. The user of the network / σ - the highway maintains the link when moving at high speed. However, the typical user of a supercomputer is quite static, such as sitting on the table: 'So, the important point of view of the 'moving' of the mobile unit for the wireless voice is usually not Needed to support data access [Abstract] 1357730 It is meaningful to improve some of the components of existing wireless infrastructure to more efficiently fit the wireless 'data. The implementation of external functions such as new user ratings for users with high data rates and low mobility should be used backwards and now for the low lean rate and the south mobile force. Rong. This will allow the use of the existing voice network to become the same frequency allocation plan for the gentleman's warfare ^ ^ 日's basic structure, the base station antenna 'construction position is the straight fairy two sales · 1 ugly and On the other hand, to provide new high-speed data services. It is particularly important to support as high a data rate as possible on the reverse link of a network such as & on the reverse link, such as by a remote unit to the base station. Consider such as IS-95 code division multiple access (c〇de Dwisi〇n
Multiple Access,CDMA)之現存之-數位行動係指定於一順 向鏈路方向上使用不同的碼序列,以維護頻道之間之最小 的于擾。明確言之,諸如一個系統於順向鍵路上採用正交 碼’其係定義個別的邏輯頻m ’如此之系統之最佳 操作係需要所有如此之碼依時間對準於—特定邊界,以於 该接收器處維護正交性。因此,該傳輸係必須被同步化。 此並非-個順向鏈路中之一個特別的考量,因為所有 的傳輪係起源於相同之位置,亦gp,於一個基地臺收發器 :之位置。然而’目前之數位行動分碼多路接取標準係不 =使用或者需要在反向鏈路方向上頻道之間之正交性。 、土般二言’其係假設同步化起源於位於不同位置之複數個 =距早兀且距離該基地臺可能相當不同距離之傳輸係困難 之唯:而是’這些系統典型地係使用具有此長的偽隨機碼 的位移之晶片準位亂碼,以辨識該個別的反向鏈路 丄乃7730 頻^ 然而,使用此亂碼係排除姑+ τ τ η 钾除彼此正父之不同的使用者 之傳輸之可能性。 因此’本發明之一個實施例係包含一種支援於使用者 —個.第一群組之使用者及— 八, 矛一群組之使用者之組成 /之間之通訊。可以為—個數位分碼多路接取行動電話 糸”先之既有使用者之第—群組之使用者係以—個共同第一 :碼碼其之傳輸。如此之第-群級之使用者係藉由提供用The existing-digit operations of Multiple Access (CDMA) specify the use of different code sequences in a forward link direction to maintain the minimum interference between channels. To be clear, such as a system using orthogonal codes in the forward keyway, which defines the individual logic frequency m', the best operating system of such a system requires all such codes to be time-aligned with a specific boundary. The orthogonality is maintained at the receiver. Therefore, the transmission system must be synchronized. This is not a particular consideration in a forward link because all of the transmissions originate in the same location, also in the location of a base station transceiver. However, the current digital bit code multi-access standard does not use or require orthogonality between channels in the reverse link direction. As the saying goes, the synchronization of the hypothesis originates from the fact that multiple transmissions at different locations are at a distance from the base station and may be quite different distances from the base station: but these systems are typically used with this The length of the pseudo-random random code is garbled at the wafer level to identify the individual reverse link 77 is the 7730 frequency. However, using this garbled code excludes the user who is different from each other in the parental + τ τ η potassium The possibility of transmission. Thus, an embodiment of the present invention includes communication between a user/a user of the first group and a composition/user of a group of eight, spears. It can be used for multiple digits and multiple digits to access the mobile phone. First, the user of the first user of the user is connected with a common first: code. The first group is User is provided by
C : ^的碼相位偏移而可被唯一地辨 識出。為一個高速資料服務之第_ ^ . 力〈弟—群組之使用者係使用相 同之碼及該碼之該碼相位偏移 ^ ^ 而編碼其之傳輸。然而 ,.第二群組之使用者之每-個係、進—步以個額外的碼編 碼其之傳輸,該額外的碼對於第二群組之使用者之每一個 係為唯-的。此係允許第二群組之使用者之傳輸彼此正交 ,同時仍然維持整體之外觀為第—群組之一個單一使用者 ΟThe code phase shift of C: ^ can be uniquely identified. For the user of a high-speed data service, the user of the group uses the same code and the code phase offset ^ ^ of the code to encode the transmission. However, each of the users of the second group encodes its transmission with an additional code that is unique to each of the users of the second group. This allows the users of the second group to be orthogonal to each other while still maintaining the overall appearance as a single user of the first group.
C 指定給第-群組之使用者之碼係可以為一個共同的晶 片速率或者偽隨機碼。指定給第二群組之使用者之碼典型 地係可以為-組唯-的正交碼。第―群組之終端之個別組 成成分.係可以藉由擾頻具有一個被選擇出之較長的偽隨機 雜訊序列之唯一的相位偏移之碼而被辨識出。 於-個較佳實施例中,係採取某些步驟,以確保於第 二群組使用者之間之發訊的正確操作,亦即所謂的“心跳 ”。明確言之,-個共同的碼頻道係可以專.門使用於作為 一個同步化頻道。此係允許在舉例而言該編碼機制係於一 10 丄 W730 維持第二群組之終端之 個反向鏈路方向上實施之情況下 傳輸的正破時序。 於另一個實施例中,第_ 於傳翰之拉” 使用者可以被分配用 於傳輸之特疋時間槽,且因 維拉Π:六逛過便用刀時多路接取而 、、·寺 父性。再次地,該點传為坌-我々 為第-群組之使用者整體上 對於第-群組之使用者之傳輸表現為—個單—使用者。 ▲本發明之原理係允許設計用於交通工具之移動性之目 J的刀碼多路接取系統支援於其之反向鍵路上之正交頻道 使用者之軟性交接操作,以增加於_高的可變射頻環境下 反向鏈路頻道連結之韌性。 因為一個正交鏈路係必須為於時間上對準,以維持由 一個使用者至下一個使用者之正交性,所以由一個單一基 地臺而來之時序控制迴路係被採用。對於在一個反向鏈路 方向上之兩個基地臺而| ’正交性係不容易達到,因為相 對之傳播時間延遲係使在兩個基地臺之時間對準變複雜。 因此,為了使用具有軟性交接操作之正交反向鏈路,係具 有一個提供時序控制之主要反向鏈路基地臺及一個可以以 非同步方式接收傳輸之辅助基地臺。 特定之條件係被定義成決定何時重新指定由該主要基 地臺至該辅助基地臺之時序控制以允許由該第一基地臺至 該第二基地臺之正交鏈路之改變係有利的。當只有一個正 交基地臺時’於該第二基地臺所接收之訊號準位可以足夠 用於接收。這些訊號可以被使用於提供用於多樣化。此係 於兩移動性系統中特別有用。 135.7730 雖然只有一個單一基地臺實施時序控制,於一個較佳 實施例中,兩者係實施功率控制。此係因為,當該非正交 基地臺之路彳空損失隨著該使用者移動而減少時,該接收到 之功率可以變成如此強’使得其開始產生過量之干擾,減 少該輔助基地臺之容量。因此,當該訊號準位係適合於在 該輔助基地臺處接收時,命令或者訊息係被傳送至該用戶 單元以減少該傳送之功率。雖然這些命令係影響於該正交 基地臺處及該非正交基地臺處之接收功率,重新指定由該 主要基地臺至該輔助基地臺之時序控制係適當的。一個典 型的情況可以為當對於該非正交或者輔助基地臺之測量出 的路徑損失係超過某一臨限差時,舉例而言i 〇分貝。 現有之分碼多路接取系統係以非正交方式界定反向鏈 路頻道化。此係藉由界定用於每一個反向鏈路之使用者之 唯一的展開碼位移而實施。正交的及非正交的反向相容性 係能夠由用於一個主要基地臺且共享該相同展開碼之正交 使用者而達成。當這些使用者之訊號係於其他基地臺處被 接收時,該些使用者訊號為時間對準的係不太可能,反而 疋該些使用者訊號將全部具有唯一的位移且能夠根據碼位 移及正交碼而被唯一地辨識出。這些訊號係不會比為現有 之分碼多路接取系統所既有的標準非正交訊號產生更多干 擾。因此,如同現今所實施之軟性交接操作,其係能夠以 個正交主要基地臺及非正交辅助基地臺而實施。 當該主要基地臺係被重新指定,使得現在之時序係由 一個辅助基地臺而來時(亦即,反向鏈路時序控制交接操 12 135.7730 作係已經發生),其係可能有一個大的延遲及碼相位偏移 。使用一個傳統的一位元差動時序控制迴路可能太慢以致 於不能當其交接操作時不能快速地以該新的基地臺獲得正 交。因此,當該交接操作發生時,一個總體時序調整命令 或者訊息係可以被使用於快速地重新對準該反向鏈路,其 中,該總體時序調整可以為絕對的或者相對的。於該時序 命之情況下,該用戶單元係被告知實施一項粗略的時序調 整’而於該時序訊息之情況下,該用戶單元係自動地回應 該時序訊息中之資訊。 用於時序控制交接操作之條件可以根據至少下列之— 之條件而定: 1 . 一個替代路徑之測量值係超過用於一指定之期間 之一個臨限值; 一指定之期間之一個臨限值; 2.—個替代路徑之測量值係超過相對於目前路徑在 :或者 目前選擇出之路徑係下降成低於 一個絕對測量值 4 ·候 4 .候選路徑係超過一個絕對測量值, 一或多個: 其中’該測量值係可以為下列之一或多 a. 功率; b. 訊號對雜訊比; c_功率之變異值; d.訊號對雜訊比之變異值;戋者 e.兩個路徑(亦即,正 正交鏈路及非正交鏈路) 之間之 13 述測量值之相對比值 個正交鍵路(RL )之功率控制(或者訊號對雜訊比 制)係可以根據正交(對準之)及非正交路徑而定。 個非正交路徑之訊號對雜訊比係符合上文所列之 皮牛同時個功率控制迴路係為活動時’該用戶單元之時 。 疋成與該非正交路徑相關之該基地臺 關於該功率控制迪技,加i l 假如一個命令係被傳送,而非 —個訊息或者報生,目丨丨姑a a〆 對雜Μ” ° ι命“糸可以為每-個路徑之訊號 之最小值。舉例而言,假如兩個路徑被追蹤,且 個需要電力而另一個係且右 人^、 _具有太多電力,則該電力係被命 所Γ亦適用於一個軟性交接功能,其中,由該 二二 功率係僅在所有提供功率測量值之命令 或訊息係需要其增加之情況下增加。 在由-個基地臺之一個非正交路 交路徑而來之命人夕M1 汉田止 例而山A 7 可以具有—個相對的偏移值。舉 少之前且具他的路徑控制功率之減 W寫要由非正交路徑而來之軔 係可能需要成為更 s>'功率之命令 内之正交區上了 維持一段較長的期間。基地臺 内之正乂£域係可以以一個上述 當時序t @以方法而予以處理。 、田:序正交係由一個基地臺所控制時 以由正乂基地臺乃非τ六甘l * 率控制係了 量及非正交基地臺所維持。 該正交及非正交基地臺兩者所維持=控制係* 或訊息係必須济荖a, 包含測量值之命令 者該順向路鍵路而被傳送至該用戶單元傳 14 1357730 送器》 由每一個基地臺而來之功率控制命令可以根據是否於 每一個個別的基地臺處一個品質測量值係被達成而定。該 品質測,量值可以為位元錯誤率,訊號對雜訊比,接收到之 功率或者干擾密度Ec/lo。假設該測量值係滿足,則一個減 少傳輸功率之命令係被傳送出。因為該接取終端係接收由 該兩個基地臺而來之命令,通常其係將接收衝突的命令。 當此情況產生時’假如一個降低功率之命令產生,則該接 取終端係遵從該降低功率之命令。此係可以使用一個互斥 (7 或(exClusive-OR )之函數而實施;舉例而言,只有在兩 個基地臺皆命令提高功率之情況下,一個提高功率之.動作 ϋ產朱。假如有一個基地臺係命令降低功率,則一個降低 功率之動作係產生於該接取終端。此對於複數個位元之命 令亦為相同,其中,功率上之最小的增加量或者最大之滅 少量係被遵從。 [實施方式] 第1圖係為一個分碼多路接取通訊系統1 〇之一個方 Q 塊圖’該分碼多路接取通訊系統i 0係使·用一個訊號編碼 機制於該機構中,一個第一等級之邏輯頻道係被指定具 有不同碼相位偏移之唯一的長碼,且一個第二等級之邏輯 頻道係藉由使用一個共同碼及共同碼相位偏移及結合使用 一個用於每一個頻道之唯一的正交碼之額外編碼程序而被 設置。 於一個實施例之下列詳細敘述之中,該通訊系統丄〇 15 1357730 係被敘述成使得該共享的頻道資源係為一個無線頻道或者 射頻頻道。然而,應瞭解的是,於此所敘述之技術係能夠 應用於實施對於其他形式之媒體之共享接取,諸如電話連 結,電.腦網路連結,電纜連結,及接取係在一個需求驅動 之基礎下被允許之其他實體媒體。 該系統1〇係提供一第一群組之使用者1 1 〇以及一 第二群組之使用者2 1 0無線通訊。該第一群組之使用者 1 1 0典型地係為行動電話設備之既有的使用者,該行動 電話設備係諸如無線手機i 13 —丄,丄13_2及/或 設置於車輛中之行動電話1 1 3—k。該第一群組之使用 者1 1 0主要係使用於一個語音模式之網一,藉此,其之 通訊係被編碼為連續的通訊。於一個較佳實施例中,這些 使用者之傳輸係由該用戶單元丄i 3透過順向鏈路4 〇射 頻頻道及反向鍵路5 Q射頻頻道而被轉送。該些訊號係於 個中央位置處被管理,該中央位置係包含一個基地臺天 8 基地收發器臺(Base Transceiver Station, BTS )1 2 0,基地臺控制器(Base Stati〇n controller,BSC) 1 2 3。因此’該第一群組之使用者1 1 〇典型地係結合 於使用忒行動用戶單元丄工3、基地收發器臺丄2 〇及該 土也臺技制益1 2 3之語音會談之中,以透過公共交換電 話網路1 2 4而連接電話連結. 由該第一群組之使用者所使用之順向鏈路4 〇係可以 根據眾所周知之數位行動標準而予以編碼,該些標準係例 疋義於由通仏工業協會(Telecommunication Industry 1357730C The code assigned to the user of the first group can be a common wafer rate or pseudo-random code. The code assigned to the user of the second group is typically an orthogonal code of -group only. The individual component of the terminal of the first group can be identified by scrambling a code having a unique phase offset of a selected long pseudo-random noise sequence. In a preferred embodiment, certain steps are taken to ensure proper operation of the communication between the users of the second group, the so-called "heartbeat". To be clear, a common code channel can be used as a synchronization channel. This allows, for example, the encoding mechanism to be transmitted in the case of a 10 丄 W730 maintaining the reverse link direction of the terminals of the second group. In another embodiment, the user can be assigned a special time slot for transmission, and because of the Π Π: Once again, the point is that the user of the first group is represented as a single-user for the user of the first group. ▲The principle of the invention allows design The tool code multi-path pick-up system for the mobility of the vehicle supports the soft hand-over operation of the orthogonal channel users on its reverse keyway to increase the reverse in the variable RF environment The resilience of link channel connections. Since an orthogonal link must be aligned in time to maintain the orthogonality from one user to the next, a sequential control loop from a single base station It is used. For two base stations in the direction of one reverse link, the 'orthogonality' is not easy to achieve because the relative propagation time delay complicates the time alignment between the two base stations. In order to use the soft handover operation The orthogonal reverse link has a primary reverse link base station that provides timing control and an auxiliary base station that can receive transmissions in an asynchronous manner. The specific conditions are defined to determine when to reassign by the primary The timing control of the base station to the secondary base station to facilitate the change of the orthogonal link from the first base station to the second base station is advantageous. When there is only one orthogonal base station, the second base station The received signal levels may be sufficient for reception. These signals can be used for diversification. This is especially useful in two mobility systems. 135.7730 Although only a single base station implements timing control, a better In the embodiment, both implement power control. This is because when the path loss of the non-orthogonal base station decreases as the user moves, the received power can become so strong that it begins to generate Excessive interference reduces the capacity of the auxiliary base station. Therefore, when the signal level is suitable for reception at the auxiliary base station, the command or The message is transmitted to the subscriber unit to reduce the power of the transmission. Although these commands affect the received power at the orthogonal base station and the non-orthogonal base station, the primary base station is reassigned from the primary base station to the secondary base station. The timing control of the station is appropriate. A typical case may be when the measured path loss for the non-orthogonal or auxiliary base station exceeds a certain margin, for example, i 〇 decibel. The routing system defines reverse link channelization in a non-orthogonal manner, which is implemented by defining a unique spreading code offset for each user of the reverse link. Orthogonal and non-orthogonal The backward compatibility can be achieved by orthogonal users for a primary base station and sharing the same expansion code. When the signals of these users are received at other base stations, the user signals are It is unlikely that the time alignment will be possible, but instead the user signals will all have a unique displacement and can be uniquely identified based on the code shift and the orthogonal code. These signals do not generate more interference than the standard non-orthogonal signals that are present in existing code division multiple access systems. Therefore, as with the soft handover operation implemented today, it can be implemented with orthogonal primary base stations and non-orthogonal auxiliary base stations. When the primary base station is reassigned so that the current sequence is from an auxiliary base station (ie, reverse link timing control handover operation 12 135.7730 has already occurred), its system may have a large Delay and code phase offset. The use of a conventional one-bit differential timing control loop may be too slow to be able to quickly get the ortho to the new base station when it is handed over. Thus, when the handover operation occurs, an overall timing adjustment command or message can be used to quickly realign the reverse link, where the overall timing adjustment can be absolute or relative. In the case of this timing, the subscriber unit is informed to implement a coarse timing adjustment' and in the case of the timing message, the subscriber unit automatically responds to the information in the timing message. The conditions for the timing control handover operation may be based on at least the following conditions: 1. The measurement value of an alternate path is greater than a threshold for a specified period; a threshold for a specified period 2. The measured value of the alternative path is greater than the current path: or the currently selected path is reduced to less than an absolute measurement 4 · candidate 4. The candidate path is more than one absolute measurement, one or more : where 'the measured value can be one or more of the following a. power; b. signal to noise ratio; c_ power variation value; d. signal to noise ratio variation value; The relative ratio of the measured values between the paths (ie, the orthogonal orthogonal link and the non-orthogonal link), the power control (or signal-to-noise ratio) of the orthogonal key (RL) Depending on the orthogonal (aligned) and non-orthogonal paths. The signal-to-noise ratio of the non-orthogonal paths is the same as the time when the same power control loop is listed as the subscriber unit. The base station associated with the non-orthogonal path relates to the power control ditech, plus il if a command is transmitted, instead of a message or a report, the target is awkward. “糸 can be the minimum value of the signal for each path. For example, if two paths are tracked and one requires power and the other and the right person ^, _ has too much power, the power is also applied to a soft handover function, where The 22 power is increased only if all commands or messages that provide power measurements require an increase. In the case of a non-orthogonal road intersection of a base station, the M1 Hantian case can be used as a case of a relative offset value. Less than before and with his path control power reduction W writes from non-orthogonal paths may need to be more s> 'power's command within the orthogonal region for a longer period of time. The domain in the base station can be processed in a manner as described above when the timing t @ is used. Tian: The sequence orthogonal system is controlled by a base station and is maintained by the positive control unit and the non-orthogonal base station. The orthogonal and non-orthogonal base stations are maintained = the control system * or the message system must be a, the commander containing the measured value is transmitted to the subscriber unit to transmit the 14 1357730 transmitter. The power control commands from each base station may be based on whether a quality measurement is achieved at each individual base station. The quality measurement can be a bit error rate, a signal-to-noise ratio, a received power or an interference density Ec/lo. Assuming that the measurement is satisfied, a command to reduce the transmission power is transmitted. Since the pick-up terminal receives commands from the two base stations, it will usually receive conflicting commands. When this occurs, the command is followed by the command to reduce power if a command to reduce power is generated. This can be implemented using a mutex (7 or (exClusive-OR) function; for example, only if both base stations are commanding to increase power, an increase in power is produced. If there is A base station command reduces the power, and a power reduction action is generated from the access terminal. The command for the plurality of bits is also the same, wherein the minimum increase in power or the maximum number of kills is [Embodiment] Figure 1 is a square Q block diagram of a code division multiple access communication system 1 'The code division multiple access communication system i 0 is made with a signal encoding mechanism In the organization, a first level logical channel is assigned a unique long code with a different code phase offset, and a second level logical channel is used by using a common code and a common code phase offset and a combination An additional encoding procedure for the unique orthogonal code of each channel is provided. In the following detailed description of one embodiment, the communication system 丄〇15 1357730 is described as The shared channel resource is a wireless channel or a radio frequency channel. However, it should be understood that the techniques described herein can be applied to implement shared access to other forms of media, such as telephone connections, electricity, brains. Network connections, cable connections, and access are other physical media that are allowed on a demand-driven basis. The system provides a first group of users 1 1 and a second group. 2 1 0 wireless communication. The first group of users 110 is typically an existing user of a mobile telephone device, such as a wireless handset i 13 - 丄, 丄 13_2 and/or The mobile phone 1 1 3 - k is disposed in the vehicle. The user 1 1 0 of the first group is mainly used in the network 1 of a voice mode, whereby the communication system is encoded as continuous communication. In a preferred embodiment, the transmissions of the users are forwarded by the subscriber unit 丄i 3 through the forward link 4 〇 RF channel and the reverse link 5 Q RF channel. The signals are in a central location. Being managed, The central location consists of a Base Transceiver Station (BTS) 120 and a Base Stati〇n controller (BSC) 1 2 3. Therefore, the use of the first group The 1 1 〇 is typically combined with the use of the 忒 Mobile User Unit Completion 3, the Base Transceiver Station 2 〇 and the Tuen-Technology Benefits 1 2 3 voice talks to communicate over the public switched telephone network 1 Connect the telephone link. The forward link 4 used by the users of the first group can be coded according to well-known digital action standards, which are defined by the Wanted Industry Association. (Telecommunication Industry 1357730
Association,TIA)所指定之 標準。該順向鏈路4〇係包含^ Y中之分瑪多路接取 流通資料頻道i 4 2以及立仙.1個發訊頻道1 4 1及 道1 4 1、冷m八邏輯頻道1 4 4。該發訊頻 丄 "IL通舅料頻道1 4 2以π +ί· ^ μ 及其他邏輯頻道144 係疋義於藉由使m料頻道之“ 1 4 4 之使用去1 η π ★』A 之系統之中。該第一群組 之使用者1 1 〇亦根據該Is 踗準而透過該反向鏈 路5 0·而編碼其之傳輸。因此, π , /、係使用一個反向鏈路5 〇方向中之數個邏輯頻道,包The standard specified by the Association, TIA). The forward link 4 includes the branching data channel i 4 2 and Lixian. 1 transmitting channel 1 4 1 and channel 1 4 1 , cold m VIII logical channel 1 4 4. The polling frequency "IL communication channel 1 4 2 is π +ί· ^ μ and other logical channels 144 system is used to make the m channel "1 4 4 use 1 η π ★" In the system of A, the user of the first group 1 1 编码 also encodes the transmission through the reverse link 5 0· according to the Is. Therefore, π , /, uses a reverse Several logical channels in the link 5 〇 direction, including
C il %L 4S ^ , 個接取頻道1 5 1,流 通貧枓頻道152,及其他邏 ς n , <弭鸿道154。於該反向鏈 路50中’該第一群組之使 ., ,v 用者1 1 〇典型地係使用不同 的碼相位偏移以一個 ……L長碼而編碼該些訊號。於反向 鏈路5 0上用於該些既有的僅 者之編碼訊號之方式亦係 煞 > 該項技術者所眾所周知。 該通訊系統1 0亦包含一第二群組之使用者2丄〇。 該第二群組之使用者2 i 〇典型地係為需要高速無線資料 服務之使用者。該也使用法> 9 1 <C il %L 4S ^ , one access channel 1 5 1, the poor channel 152, and other logic n, < 弭鸿道154. In the reverse link 50, the first group of .1, v users 1 1 〇 typically encode the signals with a ... L long code using different code phase offsets. The manner in which the encoded signals for the existing ones are used on the reverse link 50 is also known to those skilled in the art. The communication system 10 also includes a user of the second group. The user 2 i of the second group is typically a user requiring a high speed wireless data service. This also uses the method > 9 1 <
C 之用者J1〇之系統構件係包含複數 個遠距設置之個人電腦裝置212 —丄,2ΐ2 — 2,. .•二2 1 2—h’ · . .,2 1 2-卜對應之遠距用戶 接取單元(Subscriber Access Unit, SAU) 2 1 4 — 1,2 4 — 2,· . . ’214-h 合之天線216—1,216—2 • ’ 2 1 4 —1 及結 • · ·,2 1 6 — h ,· ·_ : ,2 1 β —卜設置於中央之設備係包含一個基地 臺天線2 1 8 ,及一個基地臺處理器(Base Stati〇nThe system component of C user J1 includes a plurality of remotely disposed personal computer devices 212 - 丄, 2 ΐ 2 - 2, . . . 2 2 2 2 - h' · . . , 2 1 2 Subscriber Access Unit (SAU) 2 1 4 — 1,2 4 — 2,· . . '214-h Antenna 216-1,216-2 • ' 2 1 4 —1 and knot • · ·, 2 1 6 — h , · · _ : , 2 1 β — The equipment installed in the center contains a base station antenna 2 1 8 and a base station processor (Base Stati〇n
Processor,BSP) 2 2 0。該基地臺處理器2 2 〇係提供至 17 丄乃7730 -個網際網路閘道器2 2 2及由該網際網路閘道器 =結,該網際網路閘道器2 2 2係接著提供接取- '馮路,諸如網際網路2 2 4及連接至該網路2 2 之網路檔案伺服器2 3 〇。 该些電腦裝置2丄2可以透過由既有的使用者 Γ 該順向鏈路4 〇及該反向鏈路5 0所實施之雙向 ^鏈,而傳送資料至網耗服器2 3 ◦及接收由網路飼 服益2 3 Q而來之資料n解的是,於所示之—個點至 :點之:路接取無線通訊系統丄〇之中,一個給定之基地 1處理器2 2 〇係以類似於一個行動電話通訊網路之方式 而提供與許多不同的活動的用戶接取單元214之㈣。 於目前之場景中,分配用於由該第一群組之使用者1 1 0所使用之射頻頻率係與分配用於由該第二群組之使用 者2 1 0所使用之射頻頻率相同。本發明係特別地關於如 何允許一個不同的編碼結構由該第二群組之使用者2工〇 所使用同時產生對於該[群組之使用Μ ! 0最小的干 擾。 該些電腦裝置2 1 2典型地係為膝上型電腦2丄2_ 1,手持単元2 1 2 - h,、網際網路致能之行動電話或個. 人數位助理型之計算裝置。該些電腦裝置2 1 2之每一個 係透過一個諸如乙太網路形式之連結之適合的線路連結而 連接至一個個別的用戶接取單元2 1 4 » 一個用戶接取單元2 1 4係允許與其結合之電腦裝置 2 1 2透過該基地臺處理器2 2 〇、該網際網路閘道器2 18 2 2及該網際網路;> 9 /i 〇。於該反向鏈路方向上而:接至該網路檔㈣服器23 1 2朝‘該伺服器2 3 0移動、I ’對於由該些電腦裝置2 移動之&通資料而言,該些電腦裝 匕“供—個網際網路協定準位之封包至該用戶接 取早1 4。然後,該用戶接取單元2 1 4係以適當的 無線連,纟。框化及編碼而囊封該㈣之框化(亦即,乙太網 路忙, 」後。玄適當地格式化之無線資料封包係透過Processor, BSP) 2 2 0. The base station processor 2 2 is provided to 17 丄 is 7730 - an internet gateway 2 2 2 and by the internet gateway = junction, the internet gateway 2 2 2 is followed by Provide access - 'Feng Road, such as the Internet 2 2 4 and the network file server connected to the network 2 2 〇. The computer devices 2 丄 2 can transmit data to the network consuming device through the two-way chain implemented by the existing user 顺 the forward link 4 〇 and the reverse link 50. Receiving the information from the network feeding service 2 3 Q is, as shown, a point to: point: the road access wireless communication system, a given base 1 processor 2 2 The user access unit 214 (four) is provided in a manner similar to a mobile telephone communication network. In the current scenario, the radio frequency frequencies allocated for use by the user 1 1 0 of the first group are the same as the radio frequency frequencies allocated for use by the users 2 1 0 of the second group. The present invention is particularly concerned with how to allow a different coding structure to be used by the user 2 of the second group while generating the least interference for the use of the group. The computer devices 2 1 2 are typically laptop computers 2 丄 2 _ 1, handheld units 2 1 2 - h, Internet enabled mobile phones or a number of assistant-type computing devices. Each of the computer devices 2 1 2 is connected to an individual user access unit via a suitable line connection such as a link in the form of an Ethernet network. 2 1 4 » A user access unit 2 1 4 is allowed The computer device 2 1 2 coupled thereto passes through the base station processor 2 2 , the Internet gateway 2 18 2 2 and the Internet; > 9 /i. In the reverse link direction: connected to the network file (4) server 23 1 2 moves to the server 2 3 0, I 'for the & pass data moved by the computer devices 2, The computers are equipped with "a packet for the Internet Protocol Level to the user to receive the early 14th. Then, the user access unit 2 1 4 is connected to the appropriate wireless connection, frame, and code. Encapsulating the boxing of (4) (that is, the Ethernet is busy, after), the properly formatted wireless data packet is transmitted through
C 天線2 1 6及2 1 8而移動經過包含該反向鏈路5 〇之射 頻頻〔—於β亥中央基地臺位置處,該基地臺處理器2 2 〇接著取出該射頻鍵路框化且以網際網路協定之形式重 新格式化該封包,且透過該網際網路閘道器2 2 2而轉送 該封包。然後’該封包係經過任何數量及/或任何形式之 諸如網際網路2 2 4之傳輸控制協定/網際網路協定之網 路而選擇至其最終目的地之路由,諸如該網路檀案祠服器 2 3 0° 資料亦可以於一個順向鏈路4 〇之方向由該鋼路檔案 伺服器2 3 0傳送至該些電腦裝置2 i 2。於此實例中, 一個起.源於該檔案伺服器2 3 〇之網際網路協定封包係透 過忒網際網路閘道器2 2 2而移動經過網際網_路2 2 4而 到達該基地臺處理器2 2 0。然後,適當的無線協定框化 及編碼係被加入至該網際網路協定封包。然後,該封包係 移動道過該天線2 1 6及2 1 8而至該意欲之接收之用戶 接取單元2 1 4該接收之用戶接取單元2 1 4係解碼該無 線封包格式化’且轉送該封包至該實施該網際網路協定層 19 1357/30 處理之意欲之電腦裝置2 i 2。 因此’ 一個給定之電腦裝置2 1 2及該檔案伺服器2 3 0係能夠被視為於該網際網路協定層之雙工連結之終點 一旦一個連結被建立,於該電腦裝置2 1 2處之一個使 用者係因而可以傳送資料至該檔案伺服器2 3 0及由該檔 案词取器2 3 0接收資料。C antennas 2 1 6 and 2 1 8 and move through the radio frequency including the reverse link 5 〔 [where the base station of the β hai is at the base station, the base station processor 2 2 取出 then removes the radio frequency key frame The packet is reformatted in the form of an internet protocol and forwarded through the internet gateway 2 2 2 . The packet is then routed to its final destination via any number and/or any form of network such as the Internet 2 2 Transmission Control Protocol/Internet Protocol, such as the network. The server 2 3 0° data may also be transmitted from the steel path file server 203 to the computer devices 2 i 2 in the direction of a forward link 4 。. In this example, an Internet Protocol packet originating from the file server is moved through the Internet gateway 2 2 2 to reach the base station through the Internet gateway 2 2 2 Processor 2 2 0. The appropriate radio protocol framing and coding scheme is then added to the Internet Protocol packet. Then, the packet is moved through the antennas 2 16 and 2 1 8 to the intended receiving user access unit 2 1 4 , and the received user access unit 2 1 4 decodes the wireless packet formatted ' The packet is forwarded to the intended computer device 2 i 2 that implements the Internet Protocol layer 19 1357/30 processing. Therefore, a given computer device 2 1 2 and the file server 203 can be regarded as the end point of the duplex link of the Internet Protocol layer. Once a link is established, at the computer device 2 1 2 One of the user systems can thus transmit data to the file server 203 and receive data from the file finder 2300.
C 由該第二群組之使用者2 1 0之觀點而言,該反向鏈 路5 0係真正地包含許多不同形式之邏輯及/或實體之射 頻頻道’包含一個接取頻道2 5 i,複數個流通資料頻道 2 5 2 1,_ . · ,2 5 2 — t,及一個維護頻道 5 3。C. From the point of view of the user 2 1 0 of the second group, the reverse link 50 is a radio channel containing exactly many different forms of logic and/or entities 'containing an access channel 2 5 i , a plurality of circulation data channels 2 5 2 1, _ . · , 2 5 2 — t, and a maintenance channel 5 3 .
該反向鏈路接取頻道2 5 i係被用戶接取單元2 4 〇所使 用,以傳送訊息至該基地臺處理器2 2 ◦以請求該流通資 料頻道.准許給予它們。然後,該被指定之流通資料頻道2 5 2係由該用戶接取單元2丄4攜帶資料酬載至該基地臺 處理器2 2 0。應瞭解的是,一個給定之網際網路協定層 連結可以真正地具有超過一個指定至其之流通資料頻道2 5 2。此外,一個維護頻道2 5 3係可以攜帶諸如同步化 及功率控制訊息,以進一步透過該反向鏈路5 〇而提供資 訊傳輸。 類似地’該第二群組之使用者係具有一個順向鏈路4 0 ’該順向鏈路4 0係包含一個發訊頻道2 4 1,複數個 流通資料頻道2 4 2 — 1 ’ . . . ,2 4 2 — t, 道2 4 3。該發訊頻道2 4 1係由該基地臺處理 所使用,以不僅通知該用戶接取單元2 1 4順向 及維護頻 器2 2 〇 鏈路流通 20 資料頻道2 5 2係已經分配給該用戶接取單元2 i 4,亦 通知該用戶接取單元2 i 4該反向鍵路方向上之被分配的 =通資料頻道2 5 2。然後,㈣順向鏈路4 〇上之流通 貧料頻道2 4 2 - 12 4 2 —t係被使用於由 該基地臺處理器2 2 〇攜帶資料資訊至該用戶接取單元2 1 4。此外’維護頻道2 4 3係於該順向鏈路4丨〇上由該 基地臺處理器2 2 0攜帶同步化及功率控制資訊至該用戶 接取單元2 1 4。應瞭解的是,典型地係具有比發訊頻道 2 4 1或者維5蔓頻道2 4 3為多之流通資料頻道2 4 1 ^ 於該較'佳實施例中,該些邏輯順向鏈路頻道2 4丄,2 4 2 ’ 2 4 3,2 5 1,2 5 2及2 5 3係藉由指定每一個 偽隨機頻道一個偽隨機雜訊頻道碼。因此,該系統係為一 個所謂的分碼多路接取系統,其中’複數個編碼過之頻道 係可以使用相同之射頻頻道。該邏輯或者碼頻道亦可以進The reverse link access channel 2 5 i is used by the user access unit 2 4 to transmit a message to the base station processor 2 2 to request the flow of information channels. Grant them. Then, the designated circulation data channel 2 5 2 is carried by the user access unit 2丄4 to the base station processor 2 2 0. It should be appreciated that a given Internet Protocol layer link can actually have more than one tradable data channel assigned to it 2 2 2 . In addition, a maintenance channel 2 5 3 can carry information such as synchronization and power control to further provide information transmission over the reverse link 5 . Similarly, the user of the second group has a forward link 40. The forward link 40 includes a signaling channel 2 4 1, and a plurality of circulating data channels 2 4 2 - 1 '. . . , 2 4 2 — t, Road 2 4 3 . The transmitting channel 241 is used by the base station to notify not only the user access unit 2 1 4 directional and maintenance frequency 2 2 〇 link circulation 20 data channel 2 5 2 system has been assigned to the The user access unit 2 i 4 also notifies the user access unit 2 i 4 of the assigned data channel 2 5 2 in the reverse link direction. Then, (iv) the flow on the forward link 4 the poor channel 2 4 2 - 12 4 2 - t is used to carry the information information to the user access unit 2 1 4 by the base station processor 2 2 . In addition, the maintenance channel 2 4 3 carries the synchronization and power control information to the user access unit 2 1 4 on the forward link 4 . It should be understood that there is typically a circulation data channel 2 4 1 ^ which is more than the transmission channel 2 4 1 or the V 5 channel 2 4 3 ^ in the preferred embodiment, the logical forward links Channel 2 4丄, 2 4 2 ' 2 4 3, 2 5 1, 2 5 2 and 2 5 3 are by specifying a pseudo-random channel code for each pseudo-random channel. Therefore, the system is a so-called code division multiple access system in which 'multiple coded channels can use the same RF channel. The logic or code channel can also enter
C 一步於複數個活動的用戶接取單元2工4中被分割或者指 定。 訊號處理操作之序列典型地係被實施,以編碼個別的 反向鏈路5 0之邏輯頻道5 !,5 2及5 3。於該反向鍵 路方向上,該傳送器係為該用戶接取單元2工4之一,且 該接收器係為該基地臺處理器2 2 〇。本發明之較佳實施 例係於諸如根據該J S · 9 5 B標準而操作之系統之一個分碼多 路接取之數位行動電話系統之既有使用者亦係出現於該反 向鏈路5 0上之環境中實施。於一個is_95B標準之系統中 ,反向鏈路分碼多路接取頻道訊號係藉由指定非正交偽隨 21 1357730 機雜訊碼而被辨識。 現在凊參照第2圖,用於該第一群組之既有使用者1 1 ◦之頻道編碼程序將予以更詳細敘述。該第一群組使用 者包含舉例而言數位分碼多路接取行動電話系統之使用者 ’其係根據上文所述之該is_95b標準而編碼訊號。因此, 該個別的頻道係藉由以一個用於每一個頻道之偽隨機雜訊 碼序列·而調變該輸入之數位化語音訊號而被辨識。明確言 之,該頻道編碼程序係採取代表被傳送之資訊之之一個輸 入數位訊號3 0 2。一個正交調變器3 〇 4係提供一個同 相(Ο及正交(q)訊號路徑至一對乘法器3 〇 6—丨及3 0 6 — —個短的爲隨機雜訊碼產生器3 〇 5係提供一 個使用於展頻目的之短的(於此情況下,一個2 i 5 —丄或 者3 2 7 6 7位元)長度的碼。因此,該短的碼典型地係 為”用於第群組110之每一個邏輯頻道相同的碼。 一個第二碼調變步驟係藉由將該兩個訊號路徑乘上一 個額外的長偽隨機碼’而被施加至該(i )及(q )訊號。 係由長碼產生器3 〇 7及長碼乘法器3 〇 ^一丨及^ 〇 8 q所元成。該長碼係用於唯一地辨識出於該反向鏈路 5 〇上之每_個使用者。該長碼可以為—個非常長的碼, 其,例而言僅每242 —丄位元重複—次。該長碼係以該短 1曰曰片速率施加,例如該長碼之一個位元係被施加至由該 短碼調變程序所輸出之每―個位元,使得進—步之展頻: 不產生。 個別的使用者係藉由施加該偽隨機雜訊長碼之不同的 22 丄乃/730 相位偏移至每—個使用者而被辨識。 應瞭解的是,對於該第一群組之使用者丄丄〇而言, 係不需要採取其他同步化之步驟。明確言之,於該反向鏈 5 〇上之這些傳輸係被設計成非同步的,且因此係不需 要完全正交的。 第3圖係為一個用於第二群組之使用者2丄〇之頻道 編碼程‘序之更詳細的圖^該第二群組2 i Q舉例而言係包 Γ 含根據—個資料傳輸最佳化之格式而編碼訊號之無線資料 使用者。· 。該些個別的頻道係藉由—個偽隨機雜訊碼調變該輸入 訊號而被辨識出’該偽隨機雜訊碼係與用於該第一群組之 使用者1 1 〇相同之碼序列。然而,如同可由下文瞭解, 於該第二群組2 1 〇 φ夕斗s、蓄及丄α 丄υ宁之頻道係由諸如沃爾什(Walsh) 碼之特定正交碼所唯—地辨識出。明確言之,用於該第二 群、且之使用者2 1 〇之頻道編碼程序係採用一個輸入數位C is divided or specified in the user access unit 2 of the plurality of activities. The sequence of signal processing operations is typically implemented to encode the individual reverse link 50 logical channels 5!, 5 2 and 5 3 . In the direction of the reverse link, the transmitter is one of the user access unit 2, and the receiver is the base station processor 2 2 〇. The preferred embodiment of the present invention is an existing user of a digitally-coded telephone system such as a coded multiple access system operating in accordance with the JS 9.5 B standard, also occurring on the reverse link 5 Implemented in the environment of 0. In an is_95B standard system, the reverse link code division multiple access channel signal is identified by specifying a non-orthogonal pseudo 21 1357730 machine noise code. Referring now to Figure 2, the channel coding procedure for the existing user 1 1 该 of the first group will be described in more detail. The first group of users includes, for example, a user of a digital code division multiple access mobile telephone system' which encodes the signal in accordance with the is_95b standard described above. Thus, the individual channel is identified by modulating the digitized speech signal of the input with a pseudorandom code sequence for each channel. Specifically, the channel encoding process takes one of the input digital signals 3 0 2 representing the transmitted information. A quadrature modulator 3 〇4 provides an in-phase (Ο and quadrature (q) signal paths to a pair of multipliers 3 〇 6 - 丨 and 3 0 6 - a short random noise code generator 3 The 〇5 series provides a short code (in this case, a 2 i 5 —丄 or 3 2 7 6 7 bits) length for the purpose of the spread spectrum. Therefore, the short code is typically "used" The same code for each logical channel of the first group 110. A second code modulation step is applied to the (i) and (by multiplying the two signal paths by an additional long pseudo-random code ' q) The signal is composed of a long code generator 3 〇7 and a long code multiplier 3 〇^丨 and ^ 〇8 q. The long code is used to uniquely identify the reverse link 5 〇 Each of the above users may be a very long code, which, for example, is repeated only once every 242-bits. The long code is applied at the short one-chip rate. For example, one bit of the long code is applied to each bit output by the short code modulation program, so that the spread of the step is not generated. The system is identified by applying a different 22 丄/730 phase offset of the pseudo-random noise long code to each user. It should be understood that for the first group of users 丄丄〇 In other words, there is no need to take other steps of synchronization. Specifically, these transmissions on the reverse chain 5 are designed to be asynchronous, and therefore do not need to be completely orthogonal. For a more detailed view of the channel coding procedure for the user of the second group, the second group 2 i Q, for example, is optimized according to one data transmission. a wireless data user that encodes a signal and formats the signals. The individual channels are identified by a pseudo-random noise code to modulate the input signal and the pseudo-random noise code system is used for the first The user of the group 1 1 〇 the same code sequence. However, as can be understood from the following, the channel of the second group 2 1 〇 夕 夕 蓄 蓄 蓄 蓄 蓄 蓄 蓄 系 系 系 系 系 系 系 诸如 诸如 诸如Walsh) The specific orthogonal code of the code is uniquely identified. Clearly speaking, it is used for the second group, and User-based channel encoding program 21 uses a square of the input digital
C 〇 2 ’且施加由一個短碼產生器4 〇 5、沃爾什碼 產生益4 1 3及長碼產生器4 〇 7所產生之許多碼。 作為一個第一步驟,一初 ^ 個正父調變器404係提供一 個同相(i)及正交()邙妹 — 、q)汛唬路杈至一個第一對乘法器4 6 ―1及4 〇 6 —q。該短偽隨機雜訊碼產生器4 〇 5係 提供一個短碼’於此範例中為—個使用於展頻目的之21' 5長度碼:因此’該短碼係與使用於該第一群.組1 i ◦中 之頻道之每一個之短偽隨機碼相同。 於5玄程序中之一個第 ' -牛跡 一’驟係為施加諸如由锌沃爾什 23 丄357730 碼產生器4 4 3所產生之一個 12-1^419 此係藉由乘法器4 路捏而完成4^施加正交碼於每—個同相及正交訊號 且唯一‘地辨識如此之頻道。 一碼係不同的’ 於該些程序之—個最後步驟之中 訊長碼係施加至(i、芬r、、 個第-偽隨機雜 生器4074轉^ 路經。因此’該長碼產 7係轉适邊長瑪至個別的同相乘法器4 〇 8、 該長碼係非唯-地辨識該第二 唯地辨識其之第一群組之使用者丄i0之第 組中之相同長碼之—。因此,兴 群 碑曰m 0此舉例而吕.,其係以與-個短 、::片速率仙同之域絲,使彳㈣長碼之-個位元传 :也加至由該短㈣變程序所輸出之每—個位元。以此方 =’所有於該第二群組2丄〇中之使用者係呈現出該第— :組110的一個單一既有使用者、然而,在該第二群电 使用者係已經被㈣唯—的正交沃爾什碼之情況 下及第一群組21〇之使用者可以被唯一地辨識出。 田孝乂佳實施例係實施於一個反向鏈路5 〇上時,額外 的資訊係必須被提供,以維護於該第二群組2 i ◦之不同 使用者之間之正交。明確言之,_個維護頻道2 4 3係因 而^含於該順向鏈路40之内。該維護或者“心跳,,頻道 係提供同步化資訊及/或其他時序訊號,使得該些遠距單 凡2 1 4係可以適當地同步化其之傳輸。該維護頻道係可-、為以時間槽分割的。為了該順向鏈路維護頻道2 4 3之 24 1357730 格式化之更多細節,係可以參照申請中之申請於2 〇 〇 1 年2月1日名稱為“使用活動的/備用請求頻道之維護鏈 路”之美國專利申請案第〇 9 / 7 7 5,3 〇 5號,該案 係於此併入作為參考。 應瞭解的是,某些基礎結構係因而可以由該第二群組 之使用者2 1 〇及第一群組之使用者i i 〇所共享。舉例 而言,雖然該些天線2 1 8及1丄8係顯示為分離的,第 1圖中之基地臺天線實際上可以為一個共享的天線。類似 地,用於該些天線之位置係因而可以為相同的。此係允許 該第二群組之使用者2丄〇共享已經設立且由該既有使用 者1 1 0所使用之設備及實體建立之位置。此係大幅簡化 用於該新的群組之使用者210之無線基礎結構之配置, 舉例而。新的位置及新的天線位置係不需要被建立。 第4圖係為—個類似於第1圓之網路圖。於無線網路 40 ◦之巾’-個第-基地臺處理器220- 1及第二基 地臺處理器220 — 2 (集體稱為22〇)係提供接取其 他網路(例如網際網路或者公共交換電話網路),以用於 -2 ό 接取終端213 — 1,21 一 3。該些 ^ ^ ^ 1 1 3 - 1 , 1 1 3 - 2 ^ 1 _ 基,臺處理器2 2 ◦亦㈣用於非既有接取終端2 13之 乂頻道而提供分碼多路接取反向鏈路之軟性交接操作, 同時允許既有手持單元113以典型的方式使用反向鏈路 接取終端2 1 3及手持單元!"係可互換地被稱為域 早70或者用戶接取單元(SAU )。 25 1357730 既有”域單元係指未配備一個施加唯— Θ时_ 尹的正父碼以 單元共享一個共同反向鏈路頻道之調變程序之域 單兀°非既有”域單元係指配備一個施加唯— 一 f 的正交碼 以/、其他域單元共享一個共同反向鏈路頻道之調變程序之 域單元。該些基地臺處理器220係藉由根據條件而選= 性地重新指定反向鏈路頻道之時序控制而提供軟性交接操 作。於一個較佳實施例中,該些基地臺處 、 ^ ^ ^ J 2 〇皆提 供功率控制反饋至該些域單元。 繼續參照第7圖,於天線塔218之上係為第一及第 二時序圖4G3- 1及4Q3-2 (集體地稱為4〇3) ’該第-及第二時序圖4 ◦ 3 — !及4 ◦ 3 — 2係顯示用 於與個別基地臺處理器220通訊之每一個域單元之反向 鏈路訊號之相關時序。這些時序圖4 〇 3係顯示為時間上 對準之正交反向鏈路頻道及非時間上對準之正交或非正交 頻道之間之差異。如上文所敘述,每一個共享一個共同反 向鍵路頻道之非既有接取終端2 i 3係具有一個額外的編 碼程序,以加入-個唯一的正交碼,卩用於區分其之反向 鏈路訊號及使用共同反向鏈路頻道之其他網路裝置之反向 鏈路訊號。 為了討論之目的,其係假設(i)該些接取終端2工3 係共享一個共同反向鏈路正交頻道及(ii)該三個手持單 疋1 1 3係'於該反賴路中使用既有且非丨交之通訊技術 〇 於該第一時序圖403 — 1之中,該第一基地臺處理 26C 〇 2 ' and a plurality of codes generated by a short code generator 4 〇 5, a Walsh code, and a long code generator 4 〇 7 are applied. As a first step, a first positive parent modulator 404 provides an in-phase (i) and orthogonal () sister-, q) loops to a first pair of multipliers 4 6 -1 and 4 〇6 —q. The short pseudo-random random code generator 4 〇5 provides a short code 'in this example, a 21' 5 length code used for the spread spectrum purpose: therefore 'the short code system is used for the first group The short pseudo-random codes of each of the channels in group 1 i are the same. In the 5th program, the first '-牛牛一' is applied to a 12-1^419 generated by the zinc Walsh 23 丄 357730 code generator 4 4 3 by the multiplier 4 Pinch and complete 4^ apply orthogonal codes to each of the in-phase and quadrature signals and uniquely identify such a channel. A code is different from the last step of the program. The code length is applied to (i, fen r, and the first-pseudo-random stalker 4074). Therefore, the long code is produced. 7 is a suitable phase multiplier to the individual phase multiplier 4 〇 8. The long code is non-only-identified to identify the second group of users of the first group 丄i0 The same long code -. Therefore, Xingqun monument 曰 m 0 this example and Lu., which is with a short, :: film rate of the same domain, so that (4) long code - a bit: Also added to each bit output by the short (four) variable program. This side = 'all of the user groups in the second group 2丄〇 present the first -: a single one of the group 110 There is a user, however, in the case where the second group of electric users has been (4) only the orthogonal Walsh code and the user of the first group 21〇 can be uniquely identified. When the instance is implemented on a reverse link 5, additional information must be provided to maintain the orthogonality between the different users of the second group 2 i. _ a maintenance channel 2 4 3 system is thus included in the forward link 40. The maintenance or "heartbeat, the channel provides synchronization information and / or other timing signals, so that the distance is only 2 The transmission can be properly synchronized, and the maintenance channel can be divided into time slots. For more details of the format of the downstream link maintenance channel 2 4 3 24 1357730, reference can be made to US Patent Application No. 9 / 7 7 5, 3 〇 5, filed on February 1, 2001, entitled "Maintenance Link for Active/Alternate Request Channels", the case This is incorporated herein by reference. It should be appreciated that certain infrastructures may thus be shared by users of the second group and users of the first group. For example, although The antennas 2 1 8 and 1 丄 8 are shown as separate, and the base station antennas in Fig. 1 may actually be a shared antenna. Similarly, the positions for the antennas may thus be the same. Allowing the user of the second group to share the established The location of the device and entity used by the user 110 is greatly simplified. This greatly simplifies the configuration of the wireless infrastructure for the user 210 of the new group, for example. New location and new antenna location The system diagram does not need to be established. Figure 4 is a network diagram similar to the first circle. On the wireless network 40 巾 ' '-------- base station processor 220-1 and the second base station processor 220-2 (collectively referred to as 22〇) provides access to other networks (such as the Internet or public switched telephone network) for -2 接 access terminals 213 - 1, 21 - 3. These ^ ^ ^ 1 1 3 - 1 , 1 1 3 - 2 ^ 1 _ base, station processor 2 2 ◦ also (4) for non-existing terminal 2 13 channel and provide code division multiple access reverse chain The soft handover operation of the road allows the existing handheld unit 113 to use the reverse link to access the terminal 21 and the handheld unit in a typical manner! " is interchangeably referred to as domain early 70 or user access unit (SAU). 25 1357730 An existing "domain unit" refers to a domain that is not equipped with a positive-parent code that applies a unique-------------------------------------------------- Equipped with a domain unit that applies a unique code of -f to the other, the domain unit shares a common reverse link channel modulation procedure. The base station processor 220 provides a soft handover operation by selectively reassigning the timing control of the reverse link channel according to conditions. In a preferred embodiment, the base stations, ^^^J 2 提 provide power control feedback to the domain units. Continuing to refer to FIG. 7, the antenna tower 218 is first and second timing diagrams 4G3-1 and 4Q3-2 (collectively referred to as 4〇3) 'the first and second timing diagrams 4 ◦ 3 — And 4 ◦ 3 - 2 show the timing of the reverse link signals for each of the domain units communicating with the individual base station processor 220. These timing diagrams 4 〇 3 show the difference between the time aligned orthogonal reverse link channels and the non-time aligned orthogonal or non-orthogonal channels. As described above, each of the non-existing access terminals 2 i 3 sharing a common reverse link channel has an additional encoding procedure to add a unique orthogonal code, which is used to distinguish the opposite. The reverse link signal to the link signal and other network devices using the common reverse link channel. For the purposes of discussion, it is assumed that (i) the access terminals 2 are sharing a common reverse link orthogonal channel and (ii) the three handheld units are in the opposite direction. The first and second base station processing 26 is used in the first timing diagram 403-1.
/ /JU ^ 2 2 Ο — 1 传 i念 ra j ^ 牟私用一個對準控制器(未示出),以對準 基地里處理器2 2 〇 一 1控制之接取终端之反向鏈 正乂頻道之時序。於此情況下,該第-基地臺處理器2 2 〇 - 1係控制表示為4 2 5 及4 2 5 _ 2之該第一 及第—域單元2 1 3 — 1及2 1 3 — 2之反向鏈路邏輯頻 心420 — 1及420 — 2之時序。具有時間上對準(亦 ?相‘位對準之共同長碼)之反向鏈路之反向鏈路頻道係 被稱為“本地的”正交頻道4 1 0。亦與該第一基地臺處 理盗2 2 0 — 1通訊之第三接取終端2丄3一3係不具有 〔 與忒第一及第二接取終端2丄3_1及2丄3_2之反向 鍵路邏輯頻道時間上對準之其之反向鏈路邏輯頻道4 2 〇 —3 (425 — 3)。該第三接取終端213_3係使其 之反向鏈路頻道4 2 〇 — 3由該第二基地臺處理器2 2 0 〜2所控制。因此’用於該第三域單元2 1 3_3之該反/ /JU ^ 2 2 Ο — 1 传一念ra j ^ 牟 Privately use an alignment controller (not shown) to align the reverse chain of the terminal in the base processor 2 2 〇 1 control The timing of the channel. In this case, the first base station processor 2 2 〇 -1 controls the first and second domain units 2 1 3 - 1 and 2 1 3 - 2 indicated as 4 2 5 and 4 2 5 _ 2 The timing of the reverse link logic cores 420-1 and 420-2. The reverse link channel with the reverse link that is time aligned (also the phase 'bit aligned common long code) is referred to as the "local" orthogonal channel 4 1 0. The third access terminal 2丄3-3, which also communicates with the first base station to handle the stealing 2 2 0-1, does not have the reverse direction with the first and second access terminals 2丄3_1 and 2丄3_2. The link logic channel is time aligned with its reverse link logic channel 4 2 〇—3 (425 — 3). The third access terminal 213_3 is such that its reverse link channel 4 2 〇 3 is controlled by the second base station processor 2 2 〜 2 . Therefore 'for the inverse of the third domain unit 2 1 3_3
向鏈路邏輯頻道420 — 3 (425 — 3)之時序係於由 該本地的正交頻道4 2 5 — 1及4 2 5 — 2而來之該第一 ¥序圖4 0 3 — 1顯示為具有偏移。 G 於該第二時序圖403 — 2之中,與該第二基地臺處 理器2 2 0 — 2通訊之五値無線網路裝置2 1 3 — 1,2 13-3,113 — 1 ’ 113 — 2及 113 — 3之反向 鍵路邏輯頻道 420 — 1,420~3,420 — 4,.4 2 0 — 5及4 2 〇 — 6係分別由垂直標記4 2 5 — 1,4 25 — 3,425 — 4,425 — 5及425 — 6 所表示 。该第二基地臺處理器2 2 0 — 2係控制該第三接取終端 27 1357730 213 — 3反向正交鏈路420 — 3 (425 — 3)之時 ^’但不控制其他接取終端^^及^卜之之任 :個之時序。因此,如同可以預期的,該些反向鏈路邏輯 ,道420 (425)係於該第二基地臺處理器22〇 一 2處與另一個反向鏈路邏輯頻道彼此相位偏移,如表示於 §第一時序圖403 — 2。三個反向鏈路頻道42ς_ι 25 5及425 — 6於該第二基地臺處理器22〇 —2處係於時間上相當近,且係被稱為“外部的” 道 4 1 R。 u 該些外部的正交頻道4i5係非真正地正交,該些頻 道j不具有在一共同且反向之鏈路頻道上用於辨識彼此之 唯一的正交碼。因此,假如該些外部的正交頻道4 i 5係 被對準,則其將於該第二基地臺處理器2 2 0 — 2處彼此 作不良的介面連結。於一個特別的情況下,該些基地臺處 理器2 2 0之每一個係可以支援本地的正交頻道4丄〇及 外部的或者非正交的頻道4 i 5。此情況係指示非既有及 既有之域單元之組合係能夠使用於相同之單元區域之内。 於現有之正交技術之中,當一個諸如該些接取終端之 -(例如’ 2丄3 _ 3 )之域單元係由一個第一基地臺處 理器220—1之一個單元區域移動至一個第二基地臺處 理器220-2之-個單元區域時,於該反向鏈路,係無 軟性交接操作之技術。揭示於此之反向鏈路軟性交接操作 技術係(i)於反向鏈路中提供由非既有無線網路裝置2 1 3至複數個基地臺處理器22 ◦之通訊,(π)實施時序 28 135.7730 及力率控制(如下文予以敘述),及(iH)根據參照第 圖之條件而協調該複數個基地臺處理器2 2 〇之哪一個 為用於一個域單元之反向鏈路時序控制之“主導者,,。係 由協調複數個基地臺處理器2 2 〇之哪一個係控制一個: 疋接取終端2 1 3之該反向鍵路頻道之時序,該給定之。 取終端2 1 3係能夠由-個單元區域移動至另—個單元^ 域,而不遺失該反向鍵路之連結。本發明之主要技術= 包含-個用於快速的正交時序對準之技術(亦W,調整用 於-個接取終端2 1 3之共同邏輯頻道之長碼之相位,使 得該共同反向鏈路頻道係與其他接取終端2 i 3之共同反 向鏈路頻道在時間上為對準的,或者相互正交的)。 接收該反向鏈路頻道之時序控制之該基地臺處理器2 2 0係確認該域單元之反向鏈路邏輯頻道之時序之總體偏 移係為共享相同的反向鏈路邏輯頻道之其他域之反向鏈路 邏輯頻道之時序之一個函數。該總體偏移係以一個偏移命 令或者偏移訊息之形式被傳送至該域單元2丄3 ^根據該 總體偏移資訊,該域單元係根據該總體時序偏移而實施該 邏輯頻道之一個粗略的時序調整。於該粗略的時序調整之 後,可以根據可以由該基地臺處理器2 2 〇在該反向鏈路 邏輯頻道4 2 0之粗略時序調整之後所測量之細微的時序 偏移而實施一項細微的時序調整。 第5圖係為一個包含提供使用一個正交頻道結構之分 碼多路接取反向鏈路之軟性交接操作之基地臺處理器2 2 0_1之方塊圖。該基地臺處理器22〇一丄係透過該天 29 1357730The timing of the link logic channel 420-3 (425-3) is displayed by the local orthogonal channel 4 2 5 - 1 and 4 2 5 - 2 from the first ¥4 4 3 - 1 To have an offset. G. In the second timing diagram 402-3, a wireless network device 2 1 3 — 1, 2 13-3, 113 — 1 ' 113 communicating with the second base station processor 2 2 2 2 — 2 and 113 — 3 Reverse Key Logic Channels 420 — 1, 420~3, 420 — 4, .4 2 0 — 5 and 4 2 〇 — 6 are respectively marked by vertical marks 4 2 5 — 1, 4 25 — 3, 425 — 4, 425 — 5 and 425 — 6. The second base station processor 2 2 0 - 2 controls the third access terminal 27 1357730 213 - 3 reverse orthogonal link 420 - 3 (425 - 3) ^ but does not control other access terminals ^^ and ^ 任任任: one of the timing. Thus, as can be expected, the reverse link logic, track 420 (425) is phase shifted from the other reverse link logical channel at the second base station processor 22〇2, as indicated In § first timing diagram 403-2. The three reverse link channels 42ς_ι 25 5 and 425-6 are fairly close in time to the second base station processor 22〇2 and are referred to as "external" tracks 4 1 R. u The external orthogonal channels 4i5 are not truly orthogonal, and the channels j do not have orthogonal codes for identifying each other on a common and inverted link channel. Therefore, if the external orthogonal channels 4 i 5 are aligned, they will be poorly interfaced with each other at the second base station processor 2 2 2-2. In a particular case, each of the base station processors 2 200 can support local orthogonal channels 4 丄〇 and external or non-orthogonal channels 4 i 5 . This situation indicates that a combination of non-existing and existing domain units can be used within the same unit area. In the existing orthogonal technology, when a domain unit such as the terminal terminals (for example, '2丄3 _ 3 ) is moved to a unit area of a first base station processor 220-1 When the second base station processor 220-2 has a unit area, there is no soft handover operation technique on the reverse link. The reverse link soft handover operation technique disclosed herein (i) provides communication from a non-existing wireless network device 2 1 3 to a plurality of base station processors 22 in a reverse link, (π) implementation Timing 28 135.7730 and force rate control (described below), and (iH) which of the plurality of base station processors 2 2 is coordinated according to the conditions of the reference figure, which is a reverse link for one domain unit The "master" of the timing control is to coordinate one of the plurality of base station processors 2 2 to control one: 疋 pick up the timing of the reverse link channel of the terminal 2 1 3, the given. The terminal 2 1 3 can be moved from the unit area to the other unit without losing the connection of the reverse link. The main technique of the present invention = includes one for fast orthogonal timing alignment Technique (also, adjusting the phase of the long code of the common logical channel for the access terminals 2 1 3 such that the common reverse link channel and the common reverse link channel of the other access terminals 2 i 3 Received in time, or orthogonal to each other. The base station processor 220 of the timing control of the link channel confirms that the overall offset of the timing of the reverse link logical channel of the domain unit is the reverse of other domains sharing the same reverse link logical channel. a function of the timing of the link logical channel. The overall offset is transmitted to the domain unit in the form of an offset command or an offset message. According to the overall offset information, the domain unit is based on the total Performing a coarse timing adjustment of the logical channel with timing offset. After the coarse timing adjustment, the coarse timing adjustment of the reverse link logical channel 4 2 can be adjusted according to the base station processor 2 2 A subtle timing adjustment is then performed to measure the subtle timing offset. Figure 5 is a base station that includes a soft handover operation that provides a code division multiple access reverse link using an orthogonal channel structure. a block diagram of the processor 2 2 0_1. The base station processor 22 passes through the day 29 1357730
C 線塔2 1 8而接收由該域單元丄丄3及2丄3而來之反向 鏈路頻道。一個接收由一給定的域單元2丄3而來之一個 反向鏈路頻道之接收'器5 〇 5係傳送該接收到之訊號至一 個正交·時序控制器5 :L 〇。該正交時序控制器5丄〇或者 均等單元係確S忍對於由共享該相同反向鏈路邏輯頻道之其 他域單元而來之反向鏈路頻道之一個總體時序偏移5工3 。該總體時序偏移5 ;L 3係可以為—個用於以一個命令之 形式傳送至該給定域單元2丄3之絕對測量值,或者可以 為-個相對測量偉,且以鹤專之形式被傳送回該給定之域 單元2 1 3,而該給定之域單元2丄3係使用額外的程序 以確認該反向鏈路訊號之時序偏# (亦即,相位調整)。 .絕料測量值及相對測量值之組合係亦可以被採用。 第6A圖係為具肴該第一基地臺處理器及 該第二基地臺處理器2 2 0 - 2之網路之示意圖。該些基 地臺處理器2 2 〇係包含個別的對準控制器5丄5。該些 對準控制器515係由該基地臺處理器220所使用,;; =或者控制哪-個基地臺處理器22〇係控.制該些域單 兀2 1 3之該反向鏈路4 2 〇之該時序對準。 單乂了確認哪一個基地臺處理器22〇應該控制該些域 1 3 1之時序對準’該些對準控制器5 1 5係可 以叶昇與由該域單元2 1 3 —]拉 # r v 1接收而來之訊號相關之測 里值(例如’訊號對雜訊比)。 —個給定之對準控制器$ 直仙斜.隹 ㈣5 1 5係可以發出-個訊息至 ”他對準控制器5 i 5,以其 丹他基地臺處理器2 2 〇 30 1357730 ^相與該给疋之對準控制器5 1 5相關之相關的基地臺處 係將控制該域單元2"」之該反向鍵路臺; 或者,該給定之對準控制器5 1 5係可以發出 =個命令或者訊息至另-個對準控制器5 i 5,諸如於該 基地臺處理器22 ◦,之該對準控制器5“ ; =通知該第二基地臺處理器2 2 〇 — 2應該控制該域單元 1 3 - 1之該反向鏈路頻道之時序。其他協商配置係可 以發生於料對準㈣Η 1 5 H決定哪—個基地 臺處理器220將控制該域單元213之對準。一旦—個 基地臺處理器2 2 0已經被命令或者已經被選擇成控制該 反向鏈路頻道之時序,該正交時序控制器5 1 〇係被採用 於決定-個總體時序偏移,如上文敘述用於利用 制之交接操作。 & -第6B圖係為該對準控制器5工5係被配置為該域單 元2 1 3 - 1之一部分之無線網路之一個示意圖,於此情 況下,係結合於該用戶接取單元214—1之中。或者, 該對準控制器5 1 5係可以包含於該個人電腦裝置;工2 —1之中,或者作為一個電性連接至該用戶接取單元2 1 4-1或個人電腦裝置川—丄其中一個之獨立單元。 於此配置中,該對準控制器515係於該域單元21 3 - 1處提供一個命令或者訊息至該用戶接取單元? “ -1,以導致該域單元2"」回應由該第 理器220 — 者坌- υ u者第一基地臺處理器22〇—2接收而 來之時序控制訊號。 31 1357730 第6C圖係為該對準控制器5 1 5係配置於該基地臺 控制器123中之無線網路4“之_個示意圖。於此情 況下,該對準控制器515係可以由每—個正交時序控制 器510接收由該第一基地臺處理器22〇— 基地臺處理器2 2 0 - 2而來之資m 一 貝讯以決定哪一個基地 宜處理器2 20應該控制用於該域單元2 i 3 — ^之正交 且反向之鏈路頻道之時序。該對準控制器5丄5係二以: 據許多因素而決定該項決定,該㈣素係諸如於每一個基 地臺處理器2 2 0處之該反向鏈路訊號之訊號對雜訊比。 該對準控制器515係可以使用命令或者訊息,以指示哪 一個基地臺處理器220將控制該域單元213_丄之該 反向鏈路之時序。於任—情況下,該被選擇出之基地臺處 理器2 2 0係可以發出—個命令或者訊息至該域單元2丄 3—1’以通知基地臺處理器220將控制該正交及反向 。鏈路頻道之時序。應瞭解的是,該對準控制器5 1 5亦 可以瞭解不同之觀點,且實施哪一個基地臺控制器2 2 〇 將控制該反向鍵路頻道之時序之選擇,以最大化該些基地 臺處理器2 2 0之間之差異之效益。 第7圖係為根據本發明之分碼多路接取正交反向鏈路 之軟性交接方法之流程圖。於此範例中,豸第一基地臺處 器2 2 0 1係執行一個第一程序7 〇 〇,且該接取終 端2 1 3係執行一個第二程序7 3 5。在基地臺處理器程 序700中之步驟7 〇5之開始之後,該基地臺處理器程 序700係想要於步驟710中接收由該接取終端213 32 1357730 而來之一個反向鏈路訊號。於該接取終端程序7 3 5開始 之後之步驟740中,該接取終端213係於步驟745 中於個反向鏈路頻道上傳送一個與其他接取終端213 之反向鏈路訊號相同之具有唯一的正交碼之反向鏈路訊號 。該基地臺處理器程序700係於步驟71〇中接收該反 向鏈路訊號且持續至步驟7丄5。於步驟7i5中,該基 地臺處理器程序7 0 0係決定是否於該反向鏈路訊號中辨 識屬於-個正交反向鏈路群組之接取終端2工3之長碼係 與在忒相同接取終端群組中之其他接取终端2丄3之長碼 同^’如參照第2及3 I。該些長碼而非該唯―、特定且 正交之諸如沃爾什碼之碼係與該基地臺處理器程序7 〇 ◦ 間上對準。當該.些長碼係同相時,該反向鏈路訊號之 該唯一且用於辨識之碼係相互正交。 假如於該反向鏈路訊號中之長碼係與於相同之相互正 二 i::路群組中之其他接取終端213之其他反向鏈路 哭ί序7 Γ同相(亦即,時間上對準),則該基地臺處理 ;之:0 0係結束於步驟7 3 〇。假如於該反向鏈路訊 號中之長碼係與於相同之相互 2 1^^ 乂夂勹鏈路群組中之其他 基地臺二反向鏈路訊號之長碼不同相,則該 处里盗私序7 〇 〇係持續至 總體時序偏移之決定’ 2 0其中,該 ,如同上文夫昭^控制器5 1 0所實施 上又参照第5圖之敘述。 該基地臺處理器程序7 〇 該步驟中,該基地臺處理哭22Ω/至步驟7 2 5,於 處理盗220係以-個命令或者訊息 33 1357730 之形式傳送該總體時序偏移至該接取纨 7 ’、嘀213。於步驟 5〇中,該接取終端程序735係接收該總體時序偏移 ’且調整該反向鏈路訊號之時序。該接取终端程序7 3 5 係結束於步驟755,且該基地臺處理器程 * & 益径序7 0 0係結 朿於步驟730。 第8圖係為當第一基地臺處理器”^丄及第二美 地臺處理器2 2 Ό — 2與該接取终端2 1 七 、細^1^交互作用時之The C-line tower 2 1 8 receives the reverse link channel from the domain units 丄丄3 and 2丄3. A receiving device 5 接收 5 that receives a reverse link channel from a given domain unit 2 传送 3 transmits the received signal to an orthogonal timing controller 5 : L 〇 . The quadrature timing controller 5 丄〇 or the equal unit S S is tolerant of an overall timing offset of 3 for the reverse link channel from the other domain units sharing the same reverse link logical channel. The overall timing offset 5; L 3 can be an absolute measurement value transmitted to the given domain unit 2丄3 in the form of a command, or can be a relative measurement Wei, and The form is transmitted back to the given domain unit 2 1 3, and the given domain unit 2丄3 uses an additional procedure to confirm the timing offset # of the reverse link signal (ie, phase adjustment). Combinations of extinction measurements and relative measurements can also be used. Figure 6A is a schematic diagram of a network of the first base station processor and the second base station processor 2 2 0-2. The base station processors 2 2 include individual alignment controllers 5丄5. The alignment controllers 515 are used by the base station processor 220;; or = which base station processor 22 is controlled to control the reverse links of the domain units 2 1 3 4 2 〇 This timing alignment. Single-click to confirm which base station processor 22 should control the timing alignment of the fields 1 3 1 'The alignment controller 5 1 5 can be leaf-lifted and the domain unit 2 1 3 —] pull # The measured value associated with the signal received by rv 1 (eg 'signal to noise ratio'). - A given alignment controller $ 直仙斜. 隹 (4) 5 1 5 Series can send a message to "He is aligned with the controller 5 i 5, with its Danta base station processor 2 2 〇 30 1357730 ^ The associated base station associated with the alignment controller 5 1 5 will control the reverse keyway of the domain unit 2"; or the given alignment controller 5 1 5 can issue = a command or message to another align controller 5 i 5 , such as the base station processor 22 ◦, the alignment controller 5 ” = inform the second base station processor 2 2 〇 2 The timing of the reverse link channel of the domain unit 1 3 - 1 should be controlled. Other negotiation configurations may occur in the material alignment (4) Η 1 5 H whichever is determined - the base station processor 220 will control the pair of the domain unit 213 Once the base station processor 220 has been commanded or has been selected to control the timing of the reverse link channel, the quadrature timing controller 5 1 is used to determine the overall timing offset. , as described above for the transfer operation using the system. & - Figure 6B is the alignment controller 5 5 is a schematic diagram of a wireless network configured as part of the domain unit 2 1 3 - 1 , in this case, incorporated in the user access unit 214-1. Alternatively, the alignment controller 5 The 1 5 series may be included in the personal computer device; in the work 2-1, or as a separate unit electrically connected to the user access unit 2 1 4-1 or the personal computer device. In the configuration, the alignment controller 515 provides a command or message to the user access unit at the domain unit 21 3 -1 "-1" to cause the domain unit 2" to respond to the processor 220. — 坌 υ 者 The first base station processor 22〇-2 receives the timing control signal. 31 1357730 FIG. 6C is a schematic diagram of the alignment controller 5 15 is configured in the wireless network 4 of the base station controller 123. In this case, the alignment controller 515 can be Each of the quadrature timing controllers 510 receives the information from the first base station processor 22 - the base station processor 2 2 0 - 2 to determine which base should be controlled by the processor 2 20 The timing of the orthogonal and reverse link channels for the domain unit 2 i 3 — ^. The alignment controller 5丄5 is configured to: determine the decision based on a number of factors, such as The signal-to-noise ratio of the reverse link signal at each base station processor 220. The alignment controller 515 can use commands or messages to indicate which base station processor 220 will control the domain. The timing of the reverse link of the unit 213_丄. In any case, the selected base station processor 220 can issue a command or message to the domain unit 2丄3-1' Notifying the base station processor 220 to control the timing of the orthogonal and reverse link channels. It should be understood Yes, the alignment controller 515 can also understand different points of view, and which base station controller 2 2 实施 will control the timing of the reverse link channel to maximize the base station processors The benefit of the difference between 2 2 0. Figure 7 is a flow chart of the soft handover method of the code division multiple access orthogonal reverse link according to the present invention. In this example, the first base station The processor 2 2 0 1 executes a first program 7 〇〇, and the access terminal 2 1 3 executes a second program 735. After the start of step 7 〇 5 in the base station processor program 700, The base station processor program 700 is intended to receive a reverse link signal from the access terminal 213 32 1357730 in step 710. In step 740 after the start of the access terminal program 735, the The access terminal 213 transmits a reverse link signal having a unique orthogonal code identical to the reverse link signal of the other access terminals 213 on the reverse link channel in step 745. The base station processes The program 700 receives the reverse link signal in step 71〇 and Continuing to step 7丄5, in step 7i5, the base station processor program 700 determines whether to identify the access terminal 2 belonging to the orthogonal reverse link group in the reverse link signal. The long code of 3 is the same as the long code of other access terminals 2丄3 in the terminal group of the same terminal as in the second and third. The long codes are not specific, specific and positive. The code such as the Walsh code is aligned with the base station processor program 7. When the long codes are in phase, the reverse link signal is unique and used for identification. If the long code in the reverse link signal is in the same phase as the other reverse link of the other access terminal 213 in the same mutual positive i:: way group ( That is, the time is aligned, then the base station processes; the: 0 0 system ends at step 7 3 〇. If the long code in the reverse link signal is out of phase with the long code of the other base station two reverse link signals in the same mutual link group, then the location The stealing sequence 7 continues until the decision of the overall timing offset '20, which is as described above with reference to Figure 5 in the implementation of the controller 5 10 . The base station processor program 7 〇 In this step, the base station processes crying 22 Ω / to step 725, and transmits the overall timing offset to the access in the form of a command or message 33 1357730纨7 ', 嘀213. In step 5, the access terminal program 735 receives the overall timing offset and adjusts the timing of the reverse link signal. The access terminal program 7 3 5 ends at step 755, and the base station processor program * & the path sequence 7 0 0 is tied to step 730. Figure 8 is when the first base station processor "2" and the second US platform processor 2 2 Ό 2 interact with the access terminal 2 1 VII and 细^1^
C ,。該第-基地臺處理器2 20]係執行一個控制 該接取終端2 1 3之該反向鏈路之時序之程序δ〇〇。第 二基地臺處理器22Q_2係執行_個提供不控制該接取 終鸲2.1 3之該反向鏈路之時序之處理的程序8〇2 ^玆 接取终端2 1 3係執行其自己的程序8 3 3。該程序8 j係能夠接收反饋,對於該反向鏈路訊號以粗略的量及細 微的量實施調整,以及根據由該基地臺處理器2 2 〇接收 而來之功率準位反饋而調整功率準位❶ 該接取終端2 1 3係傳送由該第一基地臺處理器2 2 〇〜1及該第二基地臺處理器2 2 〇 — 2所接收之訊號( 步驟8 3 6 )。於此範例中,其係假設該第一基地臺處理 斋2 2 0 — 1先前係已經被該接取終端2丄3選擇出以控 制該反向鏈路訊號之時序。因此,該第一基地臺處理器^ 2 〇 — 1係接收由該接取終端2 2 3而來之該反向鏈路正 交訊號(步驟8 〇 3 ),該些反向鏈路正交訊號係與共享 該相同反向鏈路頻道之其他反向鏈路訊號或者與由其他使 用相同的反向鏈路頻道之接取終端2 了 3而來之其他反向 34 2:訊號對準。於步驟8〇6中’該第一基地臺處理器2 八—-1係決定是否由該接取終端2 i 3而來之訊號係符 ^個時序條件或者標準。假如該訊號係不符合該時序條 貝!程序8 QQ係決定反饋回該接取終端2 1 以使該訊號與使用相同碼之其他訊號對準之總體時序偏 。於步驟8 3 9中’反饋係由該接取終端2 "所接收 二假如該訊號係符合該時序條件或者標準,則程序8 〇 〇 進行至步驟8 0 9,其中,該程序8〇〇係決定是否一 固細微的時序偏移係有需要1如㈣要,㈣程序8〇 糸傳送給該接取終端2!3哪-個係為細微時序偏移及 個係於程序8 3 3之步驟8 3 9中被該接取終端2 1 所接收。假如不需要細微時序偏移,則該程序8 〇 〇係 進行至步驟8 1 5 /> 一於步驟815中’該第一基地臺處理器220—丄係 、'、是否由該接取終糕2 1 3所傳送之訊號之功率準位應 該被調整。類似地,於步驟815中,該第二基地臺處理 ^ 2〇-2亦決定是否其應該導致該接取終端2 i 3之 個功率準位調整。於上述任_情況下,該功率準位偏移 係於該順向鏈路中被傳送至該接取終端2 i 3。 假如不需要功率準位調整,則參照該第一基地臺處理 器程序8 〇 〇及該第二基地臺處理器程序8 〇 2 ’個別的 序糸進行至步驟8 1 8 ’其中,__項關於是否時序控制 軟性交接操作應該被起始化之決定係被實施。時序控制軟 性交,接操作係可以㈣下列條件之—㈣合而被起始化: 35 1357730 個用於一預先指定 (a)—個替代路徑之測量值係超過— 之期間之臨限值; 指定之期間超過相對 (b) 一個替代路徑之測量值係於 於目前之路徑之一個臨限值; 之下;及 其中,該測量 ⑷目冑選擇之路徑係下降至一個絕對值 (d)候選的路徑係超過一個絕對測量值, 值係可以為下列之一或多個: (a)功率; (b) 訊號對雜訊比; (c) 功率之變異值; (d) 訊號對雜訊比之變異值;或者 (e) 兩個路徑之相對比值功率。 假如時序控制交接操作之起始化已經被起動,則於步 驟8 2 1令,該基地臺處理器2 2 〇 —工係更新其他基地 臺處理器及該基地臺控制器工2 3。該接取終端2工3亦 可以被告知該時序控制交接操作。假如該時序控制係尚未 被軟性交接,則該些程序8 〇 〇及8 〇 2係進行至步驟8 24 ’於步騍824中,萬一另一個基地臺處理器 、基地臺控制器123或者接取終端2!3將控制該反向 鏈路訊號之時序而傳送—個命令或者訊息至該基地臺處理 器2 2 0,則釋放或者接受該時序控制之決定係被實施❶ 假如該基地臺處理器係釋放或者接受時序控制之責任,則 該些程序8 0 〇及8 0 2係進行至步驟8 3 〇 ,以更新系 統之作業參數’·否則,該些程序8 〇 〇及8 〇 2係進行回 36 1357730 到步驟8 Ο 3,以接收由該接取終端2 i 3而來之訊號。 由該接取終端21 3所執行之程序8 3 3係接收於步 驟8 3 9中之反饋且處理該反饋如下文所述。首先,假如 未接收.到任何反饋,則於此實施例中,該程序8 3 3係作 迴圈於步驟8 3 9中等待反饋。假如反饋被接收,則該程 序係進行至步驟8 4 2,以決定是否一個粗略時序調整命 令或者訊息已經被接收。假如一値粗略時序調整命令或者 訊息係已經被接收,則該粗略時序調整係於步驟8 4 5中 貫施。應瞭解的疋,該粗略時序調整可以為一個絕對的或 者相對的測量,如上文所述。 於步驟84 8中,該接取终端2 Γ3係決定是否一個 細微的時序調整命令或者訊息係已經被接收。假如一個細 徽的時序調整命令或者訊息係已經被接收,則於步驟8 5 1中實施細微時序調整。應瞭解的是,該細微時序調整典 型地係,為一個差動的命令或者訊息。在該細微時序調整之 後,该程序8 3 3係決定是否一個功率準位謌整命令戍者 訊息係已經被接收。假如一個功率準位調整命令或者訊幸、 係已經被接收,則於步驟8 5 7中,該接取終端? η ^技 調整該功率準位》 '、 在對於時序或者功率作調整之後,於步驟8 6 〇中, e亥私序8 3 3係更新該接取終端2 1 3之操作參數。在更 新系統參數之後,該程序8 3 3係赞步驟8 3 9中重複, 等待由一或多個基地臺處理器2 2 0而來之反饋。 第9圖係為分別由該基地臺處理器2 2 〇及接取终端 37 1357730 由行之程序9。。及92°流程圖’以用於調整 由該接取終端2 1 q s 參照由該基地臺處理哭^之反向鍵路訊號之功率準位。 .η η 處理咨22〇所執行之程序9〇〇,該 序9〇〇係開始於步驟9〇5 = 臺處硿器2 2 〇# +— Β 該基地 .步驟9】η由 疋否導致該接取終端2 1 3改變於 反向鏈路訊號準向鍵路訊號之功率準位。假如係期望改變 ""位’則反饋係以-個命令或者訊息之形式 Γ ::該接取終端2 1 3。該基地臺處理器22〇传於 程序9〇〇中結束於步驟915。 “係於 /由該接取終端2 1 3係開始於步驟9 2 5。—旦及德 2 =驟9 3 〇中被接收’則該程序9 2 ◦係進行^ 935,於步驟 9 卩 传 35中關於-否所有基地臺處理器2 :0U-個功率準位增加之決定係被實施。假 ,地臺處理器2 2 ◦係請求一個功率準位增加,則該程序 9山20係進行至步驟94〇,於步驟94〇中,該接取終C,. The first base station processor 2 20 executes a program δ 控制 that controls the timing of the reverse link of the terminal 2 1 3 . The second base station processor 22Q_2 executes a program that provides a process for not controlling the timing of the reverse link of the access terminal 2.13. The terminal 2 1 3 executes its own program. 8 3 3. The program 8j is capable of receiving feedback, performing adjustments on the reverse link signal in a coarse amount and a small amount, and adjusting the power level based on the power level feedback received by the base station processor 2 2 〇 The access terminal 2 1 3 transmits signals received by the first base station processor 2 2 〇 1 and the second base station processor 2 2 ( 2 (step 8 3 6 ). In this example, it is assumed that the first base station processes the timing that the previous system has been selected by the access terminal 2丄3 to control the reverse link signal. Therefore, the first base station processor 2 1 receives the reverse link orthogonal signal (step 8 〇 3 ) from the access terminal 2 2 3 , and the reverse links are orthogonal The signal is aligned with other reverse link signals sharing the same reverse link channel or with other reverse 34 2: signals from other terminals that use the same reverse link channel. In step 8〇6, the first base station processor 2 VIII-1 determines whether the signal signal from the terminal 2 i 3 is a timing condition or standard. If the signal does not meet the timing bar! The program 8 QQ determines to feedback back to the access terminal 2 1 to offset the overall timing of the signal with other signals using the same code. In step 8 3 9 'feedback is received by the receiving terminal 2 " If the signal conforms to the timing condition or standard, then the program 8 proceeds to step 8 0 9, where the program 8〇〇 It is determined whether a fine timing offset system has a need of 1 (4), (4) program 8 is transmitted to the access terminal 2! 3 which is a fine timing offset and is tied to the program 8 3 3 Step 8 3 9 is received by the receiving terminal 2 1 . If a fine timing offset is not required, then the program 8 proceeds to step 8 1 5 />; in step 815, 'the first base station processor 220 is 丄, ', whether it is terminated by the connection The power level of the signal transmitted by the cake 2 1 3 should be adjusted. Similarly, in step 815, the second base station processing ^2〇-2 also determines whether it should cause the power level adjustment of the access terminal 2i3. In the above case, the power level offset is transmitted to the access terminal 2 i 3 in the forward link. If the power level adjustment is not required, refer to the first base station processor program 8 and the second base station processor program 8 〇 2 'individual sequence number to proceed to step 8 1 8 'where __ The decision as to whether or not the timing control soft handover operation should be initialized is implemented. The timing control soft intersection, the operation system can be (4) the following conditions - (4) combined and initialized: 35 1357730 for a pre-specified (a) - the alternative path of the measured value is more than - the threshold of the period; The specified period exceeds the relative (b) the measured value of an alternate path is at a threshold of the current path; below; and wherein the measurement (4) the selected path is down to an absolute value (d) candidate The path is more than one absolute measurement, and the value can be one or more of the following: (a) power; (b) signal-to-noise ratio; (c) power variation; (d) signal-to-noise ratio The variation value; or (e) the relative ratio power of the two paths. If the initialization of the timing control handover operation has been initiated, then in step 8 2, the base station processor 2 2 - the system updates the other base station processor and the base station controller 2 3 . The access terminal 2 can also be informed of the timing control handover operation. If the timing control system has not been softly handed over, the programs 8 8 and 8 〇 2 are passed to step 8 24 ' in step 824, in case another base station processor, base station controller 123 or The terminal 2!3 will control the timing of the reverse link signal to transmit a command or message to the base station processor 220, and then the decision to release or accept the timing control is implemented. If the base station processes If the system releases or accepts the responsibility of timing control, then the programs 8 0 〇 and 802 go to step 8 3 〇 to update the system's operating parameters'. Otherwise, the programs 8 〇〇 and 8 〇 2 Go back to 36 1357730 to step 8 Ο 3 to receive the signal from the receiving terminal 2 i 3 . The program 8 3 3 executed by the access terminal 213 receives the feedback in step 839 and processes the feedback as described below. First, if no feedback is received, in this embodiment, the program 8 3 3 is looped back in step 8 3 9 for feedback. If the feedback is received, the program proceeds to step 8 4 2 to determine if a coarse timing adjustment command or message has been received. If a coarse timing adjustment command or message has been received, then the coarse timing adjustment is performed in step 8.5. It should be understood that the coarse timing adjustment can be an absolute or relative measurement, as described above. In step 840, the access terminal 2 Γ 3 determines whether a fine timing adjustment command or message has been received. If a timing adjustment command or message system has been received, a fine timing adjustment is performed in step 851. It should be understood that this fine timing adjustment is typically a differential command or message. After this fine timing adjustment, the program 8 3 3 determines whether a power level adjustment command has been received. If a power level adjustment command or a message has been received, then in step 857, the terminal is accessed? η ^ skill adjusts the power level ′′, after adjusting for timing or power, in step 8.6, the operating parameters of the access terminal 2 1 3 are updated. After updating the system parameters, the program 8 3 3 is repeated in step 8 3 9 and waits for feedback from one or more base station processors 2 2 0 . Figure 9 is a program 9 by the base station processor 2 2 and the terminal terminal 37 1357730. . And a 92° flow chart ’ for adjusting the power level of the reverse key signal processed by the base station by the receiving terminal 2 1 q s . .η η Process 〇 〇 〇 〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The access terminal 2 1 3 is changed to the power level of the reverse link signal alignment key signal. If it is desired to change the "" bit, then the feedback is in the form of a command or message Γ: the access terminal 2 1 3 . The base station processor 22 is circulated in the program 9 and ends at step 915. "Through/from the access terminal 2 1 3 begins in step 9 2 5. - and 2 = 9 9 is received" then the program 9 2 is performed ^ 935, in step 9 In 35, the decision of all base station processors 2: 0U-power level increase is implemented. If the ground station processor 2 2 requests a power level increase, the program is performed on the 9th and 20th lines. Go to step 94, in step 94, the end of the connection
C k 2 1 3係增加與-個最低增加反饋一樣多之反向鍵路佼C k 2 1 3 increases the number of reverse links as much as the lowest increase feedback佼
戒之功率準位。假如並非所有基地臺處理器2 2 ◦請求L 7率準位增加,則於步驟945中,-項關於是否任何 ,地臺處理器220係正請求-功率準位減少之決定係被 貫施。.假如至少有基地臺處理器2 2 〇係正請求—功率準 位減少’則於步驟950中’該接取終端213係減少與 —個最低減少反饋一樣多之一個功率準位。該程序9 2 〇 係於步驟9 5 5結束’或者可以僅迴圈回到步驟9 3 〇, 以等彳寺接收一個功率.準位反饋》 38 1357730The power level of the ring. If not all of the base station processors 2 2 request the L 7 rate increase, then in step 945, the decision on whether or not the base station 220 is requesting - the power level reduction is applied. If at least the base station processor 2 2 is requesting - power level reduction & then in step 950 'the access terminal 213 is reduced by as many power levels as the lowest reduction feedback. The program 9 2 〇 is at the end of step 9.5 5 or can only loop back to step 9 3 〇 to receive a power in the same temple. Level feedback 38 1357730
C 雖然該正交及非正交基地臺之功率控制係被维護,但 是命令或者測量值係可以透過一個順向鍵路而被傳送至該 用戶基地傳送器(亦即接取終端2工3 )。由每一個基地 臺處理器2 2 0而來之該功率控制命令係可以根據是否一 嗰訊號,品質測量值係於每一個個別的基地臺處理器2 2 〇 ‘處被達到而定。該訊號品質測量值係可以為一個位元錯誤 率’訊號對雜訊比,接收之功率或者干擾密度㈣。。假設 該測量值係滿足’則一個減少傳輸功率之命令係被傳送出 。因為.該接取終端2 1 3係接收由該兩個基地臺處理器2 2 〇而來之命令,通常其係將接收衝突的命令。當此情況 產生時’假如-個降低功率之命令產生,則該接取終端2 1.3係遵從該降低功率之命令。此係可以使用一個互斥或 (exch^ve-OR)之函數而實施;舉例而言,只有在兩個 基地臺處理器2 2 0皆命令提高功率之情況下,一個提高 功率之動作係產生。假如有一個基地臺處理器2 2 〇係命 令降低功率’則-個降低功率之動作係產生。此對於複數 個位元之命令亦為相同,其中’功率上之最小的增加量或 者最大之滅少量係被遵從。 雖然本發明係已經參照本發明之較佳實施例而予以顯 示及敘述’熟習該項技術者應瞭解的是’在不偏離由後附 申請專利範圍所涵蓋之本發明之範脅之下,許多於形式上 及細節上之改變係可以被實施。 【圖式簡單說明】 圖式部分 39 1357730 由示於後附圖式之本發明之較佳實施例的更詳細敘述 ’本發明之上述及其他目的、特色及優點將變成顯明的, 其中,類似的元件符號係於不同的圖式中指示相同之元件 該些圖式係不需要比例化及強調,而是顯示本發明之原 理。.. 第1圖係為一個提供正交及非正交鏈路之無線通訊系 統之方塊圖;C Although the power control of the orthogonal and non-orthogonal base stations is maintained, the command or measurement value can be transmitted to the user base transmitter through a forward key (ie, the access terminal 2 ). The power control command from each base station processor 220 can be based on whether or not the signal is measured, and the quality measurement is determined by each individual base station processor 2 2 〇 ‘ . The signal quality measurement can be a bit error rate 'signal to noise ratio, received power or interference density (four). . Assuming that the measured value is satisfied, then a command to reduce the transmission power is transmitted. Because the access terminal 2 1 3 receives commands from the two base station processors 2 2, typically it will receive conflicting commands. When this occurs, if the command to reduce power is generated, the access terminal 2 1.3 follows the command to reduce the power. This can be implemented using a mutually exclusive or (exch^ve-OR) function; for example, an action to increase power is generated only if both base station processors are 208 to increase power. . If there is a base station processor 2 2 system command to reduce the power 'then' a reduced power action system. This is also the same for a plurality of bits, where the smallest increase in power or the maximum number of kills is followed. Although the present invention has been shown and described with respect to the preferred embodiments of the present invention, it should be understood by those skilled in the art that Changes in form and detail can be implemented. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments of the invention. The components are denoted by the same elements in the different drawings. The drawings are not necessarily to scale and emphasis, but rather to illustrate the principles of the invention. .. Figure 1 is a block diagram of a wireless communication system providing orthogonal and non-orthogonal links;
C 第2圖係為一個由第1圖之該接取終端所採用之電路 的方圖;C Figure 2 is a square diagram of the circuit employed by the access terminal of Figure 1;
第3圖係為一個進一步包含一個碼產生器之第2圖的 電路之方塊圖,該碼產生器係用於在具有其 -個正交鏈路上操作; K ▲第4圖係為第丄圖之該無線通訊系統的—個方塊圖, 該無線通訊系統係具有複數個使用正交及非正交鏈路之域 第5圖係為第4圖Figure 3 is a block diagram of a circuit further including a code generator of Figure 2, the code generator for operating on its orthogonal links; K ▲ Figure 4 is a third diagram a block diagram of the wireless communication system, the wireless communication system having a plurality of domains using orthogonal and non-orthogonal links, FIG. 5 is a fourth diagram
—^ ^ w m 7T—^ ^ w m 7T
C 該基地2:處理器係具有一個正 汁衩刷窃,以控讳 6亥正父鏈路上之接取終端之時序; 第6 A圖係為具有一個位於該基地臺處理器 控制器.之第4圖的網路之一個網路圖; 第6B圖係為具有一個位於該域單元 之第4圖的網路之一個網路圖; 丰控牵 第6 C圖係為具有一個位於一個基地臺控 準控制器之第4圖的網路之-個網路圖; °之 40 第7圖係為一個可以由第4圖之該基地終端臺及接取 終端所使用以使訊號相互正交之處理器之流程圖; 第8A及8B圖係為可以由在第4圖之多單元環境中 之基地終端臺及接取終端所使用以用於軟性交接操作之處 理器之流程圖;及 第9A及9B圖係為可以由在第i圖之基地終端臺及 接取終端所使用以用於功率控制之處理器之流程圖。 (二) 元件代表符號 10 分碼多路接取通訊系統 40 順向鏈路 50 反向鏈路 51,52 邏輯頻道 53 維護頻道 110 第一群組之使用者 113-1,113-2 及 113-3 手持單元 113-k 車輛中之行動電話 113 用戶單元 118 基地臺天線 120 基地收發器臺 123 基地臺控制器 124 公共交換電話網路 141 發訊頻道 142 流通資料頻道 144 邏輯頻道 1357730 151 152 154 210 212-1 212-2 212- h 212-1 213 213- 1,213-2,213-3 214- 1 214-2 214-h 214-1 216-1 216-2 216-h 216-1 218 220 220-1 220-2 222 224 接取頻道 流通資料頻道 邏輯頻道 第二群組之使用者 個人電腦裝置 個人電腦裝置 個人電腦裝置 個人電腦裝置 接取終端 接取終端 遠距用戶接取單元 遠距用戶接取單元 遠距用戶接取單元 遠距用戶接取單元 結合之天線 結合之天線 結合之天線 結合之天線 基地臺天線 基地臺處理器 第一基地臺處理器 第二基地臺處理器 網際網路閘道器 網際網路C. Base 2: The processor has a smear of smear to control the timing of the access terminal on the 6-year-old parent link; Figure 6A has a processor controller located at the base station. Figure 4 is a network diagram of the network; Figure 6B is a network diagram with a network located in Figure 4 of the domain unit; Fengkong is in a 6 C diagram with one located at a base The network diagram of the network of Figure 4 of the controller of the station controller; 40 of the 40th diagram is a base terminal station and the access terminal of Figure 4, so that the signals are orthogonal to each other. Flowchart of the processor; Figures 8A and 8B are flowcharts of a processor that can be used by the base terminal station and the access terminal in the multi-unit environment of Figure 4 for soft handover operations; The 9A and 9B diagrams are flow diagrams of processors that can be used by the base terminations and access terminals of Figure i for power control. (2) Component Representation Symbol 10 Code Division Multiple Access Communication System 40 Forward Link 50 Reverse Link 51, 52 Logical Channel 53 Maintenance Channel 110 Users of the first group 113-1, 113-2 and 113 -3 Handheld unit 113-k Mobile phone 113 in the vehicle User unit 118 Base station antenna 120 Base transceiver station 123 Base station controller 124 Public switched telephone network 141 Signaling channel 142 Circulating data channel 144 Logical channel 1357730 151 152 154 210 212-1 212-2 212- h 212-1 213 213- 1,213-2,213-3 214- 1 214-2 214-h 214-1 216-1 216-2 216-h 216-1 218 220 220-1 220-2 222 224 Access Channel Circulation Data Channel Logic Channel Second Group User PC Device Personal Computer Device Personal Computer Device Personal Computer Device Access Terminal Access Terminal Remote User Access Unit Remote User Access Unit Remote user access unit remote user access unit combined antenna combined antenna combined antenna base station antenna base station processor first base station processor second base station processor internet gateway Internet
42 1357730 230 網路檔案伺服器 240 用戶接取單元 241 發訊頻道 242-1,242-t 流通資料頻道 243 維護頻道 251 接取頻道 252-1,252-t 流通資料頻道 252 及 253 邏輯_向鏈路頻道 302 輸入數位訊號 304 .正交_變器 305 偽隨機雜訊碼產生器 306-i 及 306-q 乘法器 307 長碼產生器 308-i 及 308-q 長碼燊法器 400 無線網路 402 輸入數位訊號 404 正交調變器 405 短碼產生器 406-i 及 406-q 第一對乘法器 407 長碼產生器 408-i 同相乘法器 408-q 正交乘法器 410 本地的正交頻道 413 沃爾什碼產生器42 1357730 230 Network File Server 240 User Access Unit 241 Signal Channels 242-1, 242-t Circulation Data Channel 243 Maintenance Channel 251 Access Channels 252-1, 252-t Circulation Data Channels 252 and 253 Logic_Link Channels 302 Input digital signal 304. Quadrature_variant 305 pseudo random noise code generator 306-i and 306-q multiplier 307 long code generator 308-i and 308-q long code buffer 400 wireless network 402 input Digital Signal 404 Quadrature Modulator 405 Short Code Generator 406-i and 406-q First Pair Multiplier 407 Long Code Generator 408-i Non-Phase Multiplier 408-q Orthogonal Multiplier 410 Local Orthogonal Channel 413 Walsh Code Generator
43 1357730 415 外部的正交頻道 420-1 反向鏈路邏輯頻道 420-2 反向鏈路邏輯頻道 420-3 反向鏈路邏輯頻道 420-4 反向鏈路邏輯頻道 420-5 反向鏈路邏輯頻道 420-6 反向鏈路邏輯頻道 425-1 及 425-2 本地的正交頻道 425-1 、 425-5 及 425-6 反向鏈路頻道 505 接收器 510 正交時序控制器 513 總體時序偏移 515 對準控制器43 1357730 415 External Orthogonal Channel 420-1 Reverse Link Logic Channel 420-2 Reverse Link Logic Channel 420-3 Reverse Link Logic Channel 420-4 Reverse Link Logic Channel 420-5 Reverse Chain Path 420-6 Reverse Link Logic Channels 425-1 and 425-2 Local Orthogonal Channels 425-1, 425-5, and 425-6 Reverse Link Channel 505 Receiver 510 Quadrature Timing Controller 513 Overall timing offset 515 alignment controller
4444
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42784702P | 2002-11-20 | 2002-11-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200419952A TW200419952A (en) | 2004-10-01 |
TWI357730B true TWI357730B (en) | 2012-02-01 |
Family
ID=32326600
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096120422A TWI364920B (en) | 2002-11-20 | 2003-11-19 | Soft handoff of a cdma reverse link |
TW103124639A TWI539762B (en) | 2002-11-20 | 2003-11-19 | Soft handoff of a cdma reverse link |
TW100114978A TWI470946B (en) | 2002-11-20 | 2003-11-19 | A wireless subscriber unit and a method of soft handover |
TW092132400A TWI357730B (en) | 2002-11-20 | 2003-11-19 | Soft handoff of a cdma reverse link |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096120422A TWI364920B (en) | 2002-11-20 | 2003-11-19 | Soft handoff of a cdma reverse link |
TW103124639A TWI539762B (en) | 2002-11-20 | 2003-11-19 | Soft handoff of a cdma reverse link |
TW100114978A TWI470946B (en) | 2002-11-20 | 2003-11-19 | A wireless subscriber unit and a method of soft handover |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1565995A4 (en) |
JP (1) | JP2006506917A (en) |
KR (2) | KR101019460B1 (en) |
CN (1) | CN1714516B (en) |
AU (1) | AU2003294428A1 (en) |
CA (1) | CA2506754A1 (en) |
MX (1) | MXPA05005395A (en) |
NO (2) | NO338063B1 (en) |
TW (4) | TWI364920B (en) |
WO (1) | WO2004046893A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8537656B2 (en) | 2000-07-19 | 2013-09-17 | Ipr Licensing, Inc. | Method for compensating for multi-path of a CDMA reverse link utilizing an orthogonal channel structure |
US7911993B2 (en) | 2000-07-19 | 2011-03-22 | Ipr Licensing, Inc. | Method and apparatus for allowing soft handoff of a CDMA reverse link utilizing an orthogonal channel structure |
US6917581B2 (en) | 2001-07-17 | 2005-07-12 | Ipr Licensing, Inc. | Use of orthogonal or near orthogonal codes in reverse link |
US7821995B2 (en) * | 2004-09-30 | 2010-10-26 | Alcatel-Lucent Usa Inc. | Active session mobility solution for radio link protocol |
KR101267406B1 (en) * | 2008-08-20 | 2013-06-04 | 퀄컴 인코포레이티드 | Multiple-frame offset between neighbor cells to enhance the geran signaling performance when power control for signaling is in use |
FR2942097A1 (en) * | 2009-02-06 | 2010-08-13 | Thomson Licensing | TRANSMITTING METHOD IN A WIRELESS NETWORK AND CORRESPONDING RECEIVING METHOD |
KR101358823B1 (en) | 2009-05-11 | 2014-02-10 | 퀄컴 인코포레이티드 | Time shifting of co-channel data transmissions to reduce co-channel interference |
JP5479553B2 (en) * | 2012-09-20 | 2014-04-23 | 京セラ株式会社 | COMMUNICATION METHOD AND TERMINAL DEVICE USING THE SAME |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101501A (en) | 1989-11-07 | 1992-03-31 | Qualcomm Incorporated | Method and system for providing a soft handoff in communications in a cdma cellular telephone system |
US5103459B1 (en) * | 1990-06-25 | 1999-07-06 | Qualcomm Inc | System and method for generating signal waveforms in a cdma cellular telephone system |
JP2677191B2 (en) * | 1994-03-15 | 1997-11-17 | 日本電気株式会社 | CDMA communication system |
ZA955605B (en) * | 1994-07-13 | 1996-04-10 | Qualcomm Inc | System and method for simulating user interference received by subscriber units in a spread spectrum communication network |
US5691974A (en) * | 1995-01-04 | 1997-11-25 | Qualcomm Incorporated | Method and apparatus for using full spectrum transmitted power in a spread spectrum communication system for tracking individual recipient phase, time and energy |
JPH1013918A (en) * | 1996-06-19 | 1998-01-16 | Toshiba Corp | Moving communication system, adapting code division multiple access system, and its radio communication device |
JPH1022874A (en) * | 1996-07-09 | 1998-01-23 | Hitachi Ltd | Cdma communication system and method therefor |
JPH1028077A (en) * | 1996-07-11 | 1998-01-27 | Takuro Sato | Communication equipment |
US5937019A (en) * | 1996-08-07 | 1999-08-10 | Qualcomm Incorporated | Method and apparatus for reliable intersystem handoff in a CDMA system |
KR100407355B1 (en) * | 1998-02-14 | 2004-04-03 | 삼성전자주식회사 | Apparatus and method for aligning time of reverse link in mobile communication system |
US5956641A (en) * | 1998-03-30 | 1999-09-21 | Motorola, Inc. | System and method for facilitating a handoff of at least one mobile unit in a telecommunication system |
JP2000278759A (en) * | 1999-03-26 | 2000-10-06 | Oki Electric Ind Co Ltd | Transmission timing controller |
JP2000286784A (en) * | 1999-03-31 | 2000-10-13 | Oki Electric Ind Co Ltd | Radio terminal, radio base station and radio communication system |
EP1049349B1 (en) * | 1999-04-30 | 2002-02-27 | Alcatel Alsthom Compagnie Generale D'electricite | CDMA soft handover method using uplink measurements |
JP2001016159A (en) * | 1999-06-28 | 2001-01-19 | Fujitsu Ltd | Base station and mobile station |
US8099122B1 (en) * | 2000-06-05 | 2012-01-17 | Qualcomm Incorporated | Method and apparatus for improved forward link power control while in soft handoff |
CN1223102C (en) * | 2000-06-24 | 2005-10-12 | 三星电子株式会社 | Appts. and method for synchronization of uplink synchronous transmission scheme in CDMA communication system |
US7006428B2 (en) * | 2000-07-19 | 2006-02-28 | Ipr Licensing, Inc. | Method for allowing multi-user orthogonal and non-orthogonal interoperability of code channels |
JP4825372B2 (en) * | 2000-08-09 | 2011-11-30 | エスケーテレコム株式会社 | Handover method in wireless communication system supporting reverse synchronization transmission system |
US7054292B2 (en) * | 2000-10-27 | 2006-05-30 | L-3 Communications Corporation | Hybrid synchronous space/code multiple access system using an adaptive antenna system |
US6930470B2 (en) * | 2001-03-01 | 2005-08-16 | Nortel Networks Limited | System and method for code division multiple access communication in a wireless communication environment |
US6917581B2 (en) * | 2001-07-17 | 2005-07-12 | Ipr Licensing, Inc. | Use of orthogonal or near orthogonal codes in reverse link |
-
2003
- 2003-11-19 TW TW096120422A patent/TWI364920B/en not_active IP Right Cessation
- 2003-11-19 TW TW103124639A patent/TWI539762B/en not_active IP Right Cessation
- 2003-11-19 TW TW100114978A patent/TWI470946B/en not_active IP Right Cessation
- 2003-11-19 TW TW092132400A patent/TWI357730B/en not_active IP Right Cessation
- 2003-11-20 WO PCT/US2003/037272 patent/WO2004046893A2/en active Application Filing
- 2003-11-20 CA CA002506754A patent/CA2506754A1/en not_active Abandoned
- 2003-11-20 KR KR1020057009188A patent/KR101019460B1/en not_active IP Right Cessation
- 2003-11-20 MX MXPA05005395A patent/MXPA05005395A/en active IP Right Grant
- 2003-11-20 CN CN200380103601.5A patent/CN1714516B/en not_active Expired - Lifetime
- 2003-11-20 EP EP03789911A patent/EP1565995A4/en not_active Ceased
- 2003-11-20 AU AU2003294428A patent/AU2003294428A1/en not_active Abandoned
- 2003-11-20 JP JP2004554010A patent/JP2006506917A/en active Pending
- 2003-11-20 KR KR1020077010738A patent/KR101047967B1/en not_active IP Right Cessation
-
2005
- 2005-06-16 NO NO20052945A patent/NO338063B1/en not_active IP Right Cessation
-
2016
- 2016-05-24 NO NO20160875A patent/NO342812B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NO342812B1 (en) | 2018-08-13 |
EP1565995A4 (en) | 2006-12-06 |
CN1714516B (en) | 2011-06-08 |
CN1714516A (en) | 2005-12-28 |
WO2004046893A3 (en) | 2004-10-28 |
MXPA05005395A (en) | 2005-11-23 |
NO20052945D0 (en) | 2005-06-16 |
KR101047967B1 (en) | 2011-07-12 |
NO20160875A1 (en) | 2005-08-17 |
CA2506754A1 (en) | 2004-06-03 |
NO338063B1 (en) | 2016-07-25 |
EP1565995A2 (en) | 2005-08-24 |
TW200419952A (en) | 2004-10-01 |
TWI364920B (en) | 2012-05-21 |
KR20070055642A (en) | 2007-05-30 |
AU2003294428A1 (en) | 2004-06-15 |
TW200824320A (en) | 2008-06-01 |
JP2006506917A (en) | 2006-02-23 |
KR20050085092A (en) | 2005-08-29 |
AU2003294428A8 (en) | 2004-06-15 |
KR101019460B1 (en) | 2011-03-07 |
WO2004046893A2 (en) | 2004-06-03 |
TWI539762B (en) | 2016-06-21 |
NO20052945L (en) | 2005-08-17 |
TW201521368A (en) | 2015-06-01 |
TWI470946B (en) | 2015-01-21 |
TW201206095A (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI396397B (en) | Method for compensating for multi-path of a cdma reverse link utilizing an orthogonal channel structure | |
US9867101B2 (en) | Method and apparatus for allowing soft handoff of a CDMA reverse link utilizing an orthogonal channel structure | |
TWI357730B (en) | Soft handoff of a cdma reverse link | |
US7839820B2 (en) | Mobile station and method for implementing variable bandwidth service on demand | |
KR20200039400A (en) | Apparatus and method for information protection | |
MXPA06008461A (en) | Method for compensating for multi-path |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |