TWI357212B - - Google Patents
Download PDFInfo
- Publication number
- TWI357212B TWI357212B TW94143819A TW94143819A TWI357212B TW I357212 B TWI357212 B TW I357212B TW 94143819 A TW94143819 A TW 94143819A TW 94143819 A TW94143819 A TW 94143819A TW I357212 B TWI357212 B TW I357212B
- Authority
- TW
- Taiwan
- Prior art keywords
- memory cell
- memory
- semiconductor device
- address
- data
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
- Static Random-Access Memory (AREA)
Description
1357212 九、發明說明: 【發明所屬之技術領域】 本發明係關於可使記憶體以做為邏輯電路而動作之半 導體裝置。 【先前技術】139. The invention relates to a semiconductor device which can operate a memory as a logic circuit. [Prior Art]
習知之LSI(Large Scale Integration)等之半導體裝 置係經由功能設計、邏輯電路設計、晶圓製造、及組立等 之很多的工程而被製造出。因而,雖然其製造工程係適於 同一製品之大量生產’但卻無法適於以就多種類之製品之 每一少量的生產來降下成本。 在此,以做為適於多種類之半導體裝置的少量生產之 技術,來開發出 FPGA(Field Programmable Gate Array) 等之製造技術。所謂FPGA係於製造之後可將邏輯電路程式 化之LSI等的半導體裝置之技術。 然而,FPGA係為了從邏輯電路、配線 '開關等多種之 零件所構成,所以會有所謂需要半導體製程上之配線層數 的各層配線構造和高度的製造技術之問題。 為了解決,、問題’在專利文獻一係開示關於以於 (Static Random Access Memory)等之記憶體來寫入真 值表資料’而將位址做為輸 J 財翰出做為輸出而以做為 邏輯電路來動作之半導體裝置的技術。 [專利文獻一;] 曰本專利公報特開2003-224468號Conventional semiconductor devices such as LSI (Large Scale Integration) are manufactured through many functions such as functional design, logic circuit design, wafer fabrication, and assembly. Thus, although its manufacturing engineering is suitable for mass production of the same product, it is not suitable for lowering costs for each small amount of production of a wide variety of articles. Here, a manufacturing technique such as an FPGA (Field Programmable Gate Array) has been developed as a technique suitable for a small amount of production of a plurality of types of semiconductor devices. The FPGA is a technology of a semiconductor device such as an LSI that can be programmed with a logic circuit after manufacture. However, since the FPGA is composed of a plurality of components such as a logic circuit and a wiring 'switch, there is a problem that a wiring structure of each layer and a high manufacturing technique are required for the number of wiring layers on the semiconductor process. In order to solve the problem, the problem is as follows: in the patent document, the memory is written in the memory of the (Static Random Access Memory), and the address is used as the output. A technique of a semiconductor device that operates as a logic circuit. [Patent Document 1;] Japanese Patent Laid-Open No. 2003-224468
2036-7602-PF 【發明内容】 發明所欲解決之課題: 然而,雖然在專利文獻一之半導體裝置係將集合以記 憶既定量資料之複數個記憶單元的記憶單元塊排成陣列 狀’而來自1個記憶單元單元塊之資料係為了於相鄰接之4 個記憶單元單元塊裏僅輸出2個(例如上下左右襄之右與 下)’但以使做為使資料回授(返回原來之記憶單元塊)之邏 輯電路而動作則為困難。而且,記憶單元單元塊之規模(輸 入數和輸出數)之適正化也還沒有考慮到。 在此’本發明係有鑑於前述問題點而做成者,為以做 為邏輯電路做動作之記憶體’而提供可容易地執行資料之 口授並將5己憶卓元單元塊之規模予以適正化之半導體裝 置以做為目的。 為了解決課題之裝置: 為了解決前述課題,有關本發明之半導體裝置係含有 包含以記憶既定量資料之複數個記憶單元的複數個記憶單 元塊。因而,各自之前述記憶單元塊係以可對預定之位址 來將為了輸出所要之邏輯值之真值表資料予以記憶於 2記憶單元’而做為邏輯電路來動作般地被構成。而且, 前述記憶單元塊之間係以可將來自1個記憶單元塊之3個以 之輸出予以輸入至3個以上之其他記憶單元塊般地予以 連接。 發明效果: 右依據本發明之半導體裝置,則在以做為邏輯電路做2036-7602-PF SUMMARY OF THE INVENTION Problems to be Solved by the Invention: However, in the semiconductor device of Patent Document 1, a memory cell block of a plurality of memory cells collectively ensembles a predetermined amount of data is arranged in an array. The data of one memory cell unit block is only for outputting two of the adjacent four memory cell unit blocks (for example, the right and left sides of the top, bottom, left, and right sides), but to enable the data to be returned (return to the original The logic circuit of the memory cell block is difficult to operate. Moreover, the normalization of the size (input number and output number) of the memory cell unit block has not been considered. Here, the present invention has been made in view of the above-mentioned problems, and provides a dictation that can easily perform data manipulation and corrects the scale of the five-remembered unit cell block in order to operate as a logical circuit. The semiconductor device is designed for the purpose. Means for Solving the Problem: In order to solve the above problems, a semiconductor device according to the present invention includes a plurality of memory cell blocks including a plurality of memory cells for storing predetermined data. Therefore, each of the aforementioned memory cell blocks is configured to operate as a logic circuit by memorizing the truth table data for outputting the desired logical value to a predetermined address. Further, the memory cell blocks are connected to each other by inputting three outputs from one memory cell block to three or more other memory cell blocks. Effect of the Invention: The semiconductor device according to the present invention is made as a logic circuit
2036-7602-PF 6 1357212 動作之記憶體中’可容易地執行資料之回授,並可將記憶 單元早元塊之規模予以適正化。 【實施方式】 以下’關於有關本發明之實施例的半導體裝置,一面 以參考圖式一面來加以說明。 圖1係顯示半導體裝置與資訊處理裝置之構成之圖。資 訊處理裝置100係包含:電腦裝置;鍵·盤等之輸入部1〇1 ; 硬碟等之記憶部1 02 ; RAM(Random Access Memory )等之記 憶體103 ; CRT(Cathode Ray Tube)等之輸出部1 04 ;做為通 信裝置之通信部 1 05 ;及 CPU(Central Processing uni t) 等之處理部106。 還有’也可將在資訊處理裝置100所作成之位元資料 (在圖12之步驟S1104中後述)予以保持在尚未圖示之 R0M(Read only Memory) 〇 半導體裝置110係與資訊處理裝置100之通信部105來 連接。半導體裝置110係以硬體而言,與例如通常之 SRAM(Static Random Access Memory)為同樣之記憶裝置, 詳細係在圖2以下來說明。 圖2係做為以構成圖1之半導體裝置110的記憶元件之 記憶單元的構成圖。記憶單元200係構成為包含:讀出字元 線201、202 ;寫入字元線211 ;讀出資料線221、222 ;寫入 資料線 231、232 ;閘 241、242、251、252、261、262 ;及 正反器271。 2036-7602-PF 7 1357212 還有,雖然閘241、242、251、252、261、及262係以 N-MOS(Negative-Metal Oxide Semiconductor)來構成,但 也可使用 P-MOS(Positive-Metal Oxide Semiconductor) • 來構成,進而也可以做為N-M0S與P-M0S之複合閘》於此場 • 合時,最好以根據需要將週邊電路予以適宜變更來對應。 讀出字元線2(Π、202係於將記憶單元200之資料從外部 讀出時施以電壓之配線。一施以讀出字元線201之電壓則閘 241與閘242打開,一施以讀出字元線202之電壓則閘251與 • 閘252打開。 讀出字元線211係於從外部將資料寫入於記憶單元2〇〇 時施以電壓之配線。一施加寫入字元線211之電壓,則閘2 61 與閘262打開。 讀出資料線22卜222係於讀出字元線201與讀出字元線 202施加預定之電壓,而於閘241、242、251、及252為已打 開時,可將被保持於正反器2 71之資料予以讀出之配線。還 有’成為以可做出於從讀出資料線221將資料「0」讀出時 _ 係從讀出資料線222來讀出資料「1」、於從讀出資料線221 將資料「1」讀出時係從讀出資料線222來讀出資料「0」之 所謂的差動信號之動作。 寫入資料線231、232係於寫入字元線211之電壓為被施 加’而於閘261與閘262已打開時,可將資料寫入於正反器 271之配線。以可於從寫入資料線231寫入資料「〇」時從寫 入資料線232係寫入資料「1」、於從寫入資料線231寫入資 料「1」時從寫入資料線232係寫入資料「〇」。2036-7602-PF 6 1357212 The memory of the action can easily perform data feedback and can normalize the size of the early block of the memory unit. [Embodiment] Hereinafter, a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. 1 is a view showing the configuration of a semiconductor device and an information processing device. The information processing device 100 includes a computer device, an input unit 1〇1 such as a key disk, a memory unit 102 such as a hard disk, a memory 103 such as a RAM (Random Access Memory), and a CRT (Cathode Ray Tube). The output unit 1 04 is a communication unit 205 of the communication device; and a processing unit 106 such as a CPU (Central Processing Unit). Further, the bit data (described later in step S1104 in FIG. 12) formed by the information processing device 100 may be held in a ROM (Read Only Memory) (not shown), and the semiconductor device 110 and the information processing device 100. The communication unit 105 is connected. The semiconductor device 110 is a memory device similar to that of a normal SRAM (Static Random Access Memory), and is described in detail below with reference to FIG. 2 . Fig. 2 is a view showing the configuration of a memory unit constituting a memory element of the semiconductor device 110 of Fig. 1. The memory unit 200 is configured to include: read word lines 201, 202; write word lines 211; read data lines 221, 222; write data lines 231, 232; gates 241, 242, 251, 252, 261 262; and the flip-flop 271. 2036-7602-PF 7 1357212 Further, although the gates 241, 242, 251, 252, 261, and 262 are configured by N-MOS (Negative-Metal Oxide Semiconductor), P-MOS (Positive-Metal) can also be used. Oxide Semiconductor) • It can be used as a composite gate for N-M0S and P-M0S. In this case, it is better to change the peripheral circuits as needed. The reading word line 2 (Π, 202 is a wiring for applying a voltage when the data of the memory unit 200 is read from the outside. When the voltage of the reading word line 201 is applied, the gate 241 and the gate 242 are opened. The gate 251 and the gate 252 are turned on to read the voltage of the word line 202. The read word line 211 is a wiring for applying a voltage when writing data to the memory unit 2 from the outside. The voltage of the line 211 is turned on, and the gate 2 61 and the gate 262 are opened. The read data line 22 222 is applied to the read word line 201 and the read word line 202 to apply a predetermined voltage, and the gates 241, 242, 251 are applied. And 252 are wirings that can be read from the data held by the flip-flops 2 71 when they are turned on. Also, when the data is read from the read data line 221, when the data "0" is read out _ When the data "1" is read from the read data line 222 and the data "1" is read from the read data line 221, the so-called differential signal of the data "0" is read from the read data line 222. The operation of writing the data lines 231, 232 to the write word line 211 is applied, and when the gate 261 and the gate 262 are opened, the data can be written. In the wiring of the flip-flop 271, when the data "〇" is written from the write data line 231, the data "1" is written from the write data line 232, and the data "1" is written from the write data line 231. At the time of writing, the data "〇" is written from the write data line 232.
2036-7602-PF 丄357212 正反器2 71係在上述之意義裏為保持被記憶於記憶單 兀200之「0」或「1」之資料的記憶電路。 圖3係在圖1之半導體裝置110中之内部構造之一部分 之δ己憶单元塊的構成圖(適宜對照圖2)。 s己憶單元塊3 0 0係以含有:複數個記憶單元2 〇 〇,排成 陣列狀而連接;及讀出位址解碼器311、312而構成。而且, 如前述般地,以於左右包含2重之讀出字元線2〇卜2〇2的讀 出位址解碼器311、312 ’而可具有於以下所述之配線功能。 在s己憶單元塊3 0 〇係以可在最上段之外側的記憶單元 200、也就是記憶單元2〇〇(Cell31、〇)與記憶單元 200(Cell31、3)之上側;及最下段之内側的記憶單元2〇〇、 也就是記憶單元200(Cell0、1)與記憶單元2〇〇(CellO、2) 之下侧,將讀出資料線221、222連接於其他記憶單元塊 300(不圖示)般地來構成。 而且,在έ己憶單元塊3 〇 〇係可在最上段之内側的記憶單 元200、也就是記憶單元2〇〇(Cell31、η與記憶單元 200 (Ce 1131、2)之上側;及最下段之外側的記憶單元2〇〇、 也就是記憶單元2〇〇(Cell〇、〇)與記憶單元2〇〇(Cell()、3) 之下側,將讀出資料線221、222來切斷。 也就是,在記憶單元塊300中,讀出資料線係以可連接 外側之複數對於上方、而且連接内側之複數對於下方來構 成。如此而做,可將記憶單元塊3〇〇之輸出(讀出)之規模抑 制於必要最小限,而減輕各種資料處理之負擔,而且可於 複數之方向執行複數之輸出。2036-7602-PF 丄357212 The flip-flop 2 71 is a memory circuit for retaining the data of "0" or "1" stored in the memory unit 200 in the above sense. Figure 3 is a block diagram of a portion of the internal structure of the internal structure of the semiconductor device 110 of Figure 1 (suitable for comparison with Figure 2). The unit cell 300 includes a plurality of memory cells 2 〇 〇 arranged in an array and connected to the address decoders 311 and 312. Further, as described above, the read address decoders 311 and 312' including the double read word line 2 〇 2 〇 2 may have the wiring function described below. The memory cell 200 on the outer side of the uppermost segment, that is, the memory cell 2 (Cell 31, 〇) and the memory cell 200 (Cell 31, 3) on the upper side; and the lowermost The inner memory unit 2, that is, the memory unit 200 (Cell0, 1) and the lower side of the memory unit 2 (CellO, 2), connect the read data lines 221, 222 to other memory unit blocks 300 (not The illustration is constructed in the same way. Moreover, the memory cell 200, which is the inner side of the uppermost segment, that is, the memory cell 2〇〇 (Cell31, η and the memory cell 200 (Ce 1131, 2)) on the upper side; and the lowermost segment The memory unit 2〇〇 on the outer side, that is, the memory unit 2〇〇 (Cell〇, 〇) and the memory unit 2〇〇 (Cell(), 3), will be cut off by reading the data lines 221 and 222. That is, in the memory cell block 300, the read data line is formed by connecting the complex number of the outer side to the upper side and the inner side of the complex number to the lower side. Thus, the output of the memory cell block 3 can be performed ( The size of the readout is suppressed to the necessary minimum, and the burden of various data processing is alleviated, and the output of the complex number can be performed in the plural direction.
2036-7602-PF 9 1357212 在記憶單元塊3 Ο 0内,於左側係配置讀出位址解碼器 311’而從位址輸入線3 2 2接受複數之位址差動信號。而且, 在記憶單元塊300内’於右側係配置讀出位址解碼器312, 而從位址輸入線32 3接受複數之位址差動信號。 還有’在申請專利範圍中之輸入數以及輸出數之所謂 「3個」或「4個」者係相當於所謂差動信號之場合時之3 「對」或「4對」的意義。 在記憶單元塊300係藉由來自該等位址輸入線322、位 址輸入線323、選擇線(指定之位址選擇線)3〇1之輸入,而 由從符號331至符號362止之複數條讀出字元線(對應於圖2 之凟出子元線2 0 2 )來選擇任意之】條,而可施加其讀出字 元線之電壓。 而且’於選擇線3〇1係包含反相器3〇2。進而,於讀出 位址解碼器311係包含複數個邏輯電路(AND電路等)37〇。而2036-7602-PF 9 1357212 In the memory cell block 3 Ο 0, the read address decoder 311' is arranged on the left side and the complex address difference signal is received from the address input line 3 2 2 . Further, in the memory cell block 300, the read address decoder 312 is disposed on the right side, and the complex address difference signal is received from the address input line 32 3 . In addition, the so-called "three" or "four" in the number of inputs and the number of outputs in the scope of application for patents are equivalent to the meaning of "pair" or "four pairs" in the case of a so-called differential signal. The memory cell block 300 is separated by a number from the symbol 331 to the symbol 362 by input from the address input line 322, the address input line 323, the select line (designated address select line) 3〇1. The strip reads the word line (corresponding to the sub-element line 2 0 2 of FIG. 2) to select any strip, and the voltage at which the word line is read can be applied. Further, the selection line 3〇1 includes an inverter 3〇2. Further, the read address decoder 311 includes a plurality of logic circuits (AND circuits, etc.) 37 〇. and
且,寫人字元線371(對應於圖2之讀出字元3⑴係連接於寫 入位址解碼器411 (對照圖5 )。 還有目為即使於讀出位址解碼^312之邏輯電路等, 也與讀出位址解碼器3! i之場合為同&,所以將說明省略 (例如、邏輯電路380為連接於讀出字元線381)。 如圖3所7^成為例如、以可於從選擇線301輸入「1」 時,來動作在記憶單元塊3附之記憶單元之上半分、 於從選擇線人「〇」_’來動作在記憶單元塊中之 記憶單元200之下半分。 因此,若設定成例如 以可將在記憶單元塊3〇〇中之記Moreover, the write character line 371 (corresponding to the read character 3 (1) of Fig. 2 is connected to the write address decoder 411 (cf. Fig. 5). Also, the logic of decoding the address 312 even if the address is decoded. The circuit or the like is also the same as the case of the read address decoder 3! i, and therefore the description will be omitted (for example, the logic circuit 380 is connected to the read word line 381). When the input "1" is input from the selection line 301, the memory unit 200 in the memory unit block is operated by the upper half of the memory unit attached to the memory unit block 3 and the selected line person "〇"_'. The lower half is divided. Therefore, if it is set to, for example, it can be recorded in the memory cell block 3〇〇
2036-7602-PF 1357212 憶單元200之上半分做為加法器、將記憶單元2〇〇之下半分 做為減法器來動作,則僅以切換來自選擇線3〇1之信號,可 瞬時地來執行加法器與減法器之切換。而且,同樣地除 此以外,也可執行加法器與通常的記憶裝置之切換等。 以上、雖然已說明記憶單元塊3〇〇之整體以及詳細,如 此地,若將記憶單元200做為縱32)[横4之構成,則以縮短讀 出資料線22卜222(對照圖2)而可省略感測放大器,並可將 電路簡素化。 圖4係顯示在半導體裝置丨1〇(對照圖丨)中之讀出槔(圖 3之讀出資料線之上下每2輸出與來自位址輸入線322、323 之每2輸入)乏連接狀況之圖。而且,圖4係將半導體裝置 做平面視之場合時之左上的一部分予以表示出。 在s己憶單元塊300d〜3001中’輸入A0(以下稱為「A0」: A1〜A3也為同樣)係為了表示之簡略而將圖3之八〇與/A〇合在 一起而做成,而關於A1〜A3也為同樣。 而且,在記憶單元塊3〇〇d~3001中,輸出D0(以下稱為 「DO」:D1〜D3也為同樣)係為了表示之簡略而將圖3之記憶 單兀200(Ce 1131、0)之讀出資料線2條合在一起而做成,而 關於D1〜D3也為同樣。 §己憶單元塊300d〜3001之A0〜A3以及D0〜D3係如圖4所 示般地來連接》 還有’驅動電路420係將從外部裝置來之輸入於本元件 (半導體裝置110)之信號予以變換成差動信號。而且,放大 器430係將輸入進來之差動信號予以放大及變換成通常的 2036-7602-PF 11 1357212 信號而輸出於外部裝置。 以做成如該配線,在半導體裝置110中,可容易地執行 資料之回授。具體而言,於例如、從記憶單元塊⑽“之⑽ 將資料送至記憶單元塊3〇〇giA1之場合時,在記憶單元塊 3〇〇g以可將從八1進來之資料從D1予以輸出般地,若先將真 值表寫入於5己憶單元塊3 〇 〇 g ,則可使其資料回授於記憶單 元塊300d之A3。 而且,僅以將寫入於記憶單元塊3〇〇d3〇〇1之真值表予 以變更,而以不變更配線,而可使半導體裝置11〇做為各種 的邏輯電路而動作。 還有,如該配線之彎曲之次數和樣子係特別地不被限 定於該圖4,而可做適宜變更。 圖5係半導體裝置11 〇 (對照圖1)之内部構造圖。各自之 記憶單元塊300係被排成陣列狀’而於左側可配置寫入位址 解碼器411、於下側配置寫入/讀出電路4“。其等為如圖般 地被連接。總之,圖5係在與圖4為同樣之半導體裝置11 〇 中,顯示讀出埠之連接狀況以外之樣子之圖。 寫入位址解碼器411係於將資料寫入記憶單元塊3〇〇之 際做為指定記憶單元塊3〇〇之x位址(圖5之半導體裝置11〇 之縱方向之位址)的裝置。 於寫入位址解碼器411係做為指定複數之記憶單元塊 300裏之任何記憶單元塊3〇〇的χ位址為被輸入於上位位址 (該%合時係A5w、A6w、…),而做為指定其所已指定之記 憶單元塊300之内部(記憶單元2〇〇)的χ位址為從下位位址2036-7602-PF 1357212 The upper half of the unit 200 is used as an adder, and the lower half of the memory unit 2 is used as a subtractor to operate. Only by switching the signal from the selection line 3〇1, it can be instantaneously Perform the switching between the adder and the subtractor. Further, in addition to this, switching between the adder and the normal memory device or the like can be performed. In the above, although the memory cell block 3 is described as a whole and in detail, if the memory cell 200 is used as the vertical 32) [horizontal 4 configuration, the read data line 22 222 is shortened (cf. FIG. 2). The sense amplifier can be omitted and the circuit can be simplified. Figure 4 shows the read connection 槔 in the semiconductor device 对照1〇 (reference picture 槔) (every 2 outputs above the read data line of Figure 3 and every 2 inputs from the address input lines 322, 323) Picture. Further, Fig. 4 shows a part of the upper left side when the semiconductor device is viewed in a plan view. In the suffix unit blocks 300d to 3001, 'input A0 (hereinafter referred to as "A0": A1 to A3 are also the same) is made by combining the gossip and /A of FIG. 3 for the sake of simplicity. And about A1~A3 are the same. Further, in the memory cell blocks 3〇〇d to 3001, the output D0 (hereinafter referred to as "DO": D1 to D3 are also the same) is a memory unit 200 of FIG. 3 for the sake of simplicity of presentation (Ce 1131, 0). The read data lines are made up of two together, and the same is true for D1 to D3. § A0 to A3 and D0 to D3 of the cell blocks 300d to 3001 are connected as shown in FIG. 4 and the 'drive circuit 420 is input from the external device to the device (semiconductor device 110). The signal is converted into a differential signal. Further, the amplifier 430 amplifies and converts the input differential signal into a normal 2036-7602-PF 11 1357212 signal and outputs it to an external device. In order to make such wiring, in the semiconductor device 110, feedback of data can be easily performed. Specifically, for example, when the data is sent from the (10) of the memory cell block (10) to the memory cell block 3〇〇giA1, the data from the memory cell block 3〇〇g can be given from D1. Similarly, if the truth table is first written to the 5 memory cell block 3 〇〇g, the data can be returned to A3 of the memory cell block 300d. Moreover, only the memory cell block 3 will be written. The truth table of 〇〇d3〇〇1 is changed, and the semiconductor device 11 can be operated as various logic circuits without changing the wiring. Further, the number of times and the appearance of the wiring are particularly 5 is a suitable configuration of the semiconductor device 11 (refer to FIG. 1). The memory cell blocks 300 are arranged in an array and are configurable on the left side. The address decoder 411 is provided with the write/read circuit 4" on the lower side. They are connected as shown in the figure. In short, Fig. 5 is a view showing a state other than the connection state of the read cymbal in the semiconductor device 11 同样 similar to that of Fig. 4 . The write address decoder 411 is configured to write the data to the memory cell block 3 as the x address of the specified memory cell block 3 (the address in the vertical direction of the semiconductor device 11 in FIG. 5). Device. The write address decoder 411 is used as the address of any memory unit block 3 in the memory unit block 300 of the specified complex number to be input to the upper address (the % time system A5w, A6w, ...) And the address of the internal (memory unit 2〇〇) of the memory unit block 300 designated as the designated one is the lower address
2036-7602-PF 12 U57212 入 (該場合時係A0w〜A4w)被輸 J且J入/讀出電路⑼1係以指定執行資料之讀寫的 來:::: y位址,進而對所指定之記憶單元糊 不執仃貝料之讀寫的裝置。 具:而言’於寫入/讀出電路4〇1係做為指定複數之記 叫早疋塊_襄之任何記憶單元塊位址(圖5之半導 體裝置取橫方向的位址)為被輸人(該場合係於細〇、2036-7602-PF 12 U57212 In (in this case, A0w~A4w) is input J and the J input/readout circuit (9)1 is used to specify the reading and writing of the execution data: ::: y address, and then specified The memory unit paste does not obstruct the reading and writing of the material. Having: In the write/read circuit 4〇1 as the specified complex number, any memory cell block address (the semiconductor device in FIG. 5 takes the address in the horizontal direction) is Lose people (this occasion is tied to
目而’來自輸人術係對其所衫之記憶單元塊_ 、内部(記憶單元200 )之寫入資料(該場合時,係在圖3中 :位址為對應於相同之4個記憶單元、4位元)為被輸入於 寫入/讀出電路4〇1。 —如此而來,以適宜選擇在指定之記憶單元塊3〇〇中之指 疋的記憶單元2〇〇,而可覆寫真值表資料。 一也就疋,半導體裝置Π 〇係於複數之記憶單元塊3〇〇 裏覆冑彳分之記憶單元塊3〇〇之記憶單元⑽所記憶之 表-貝料之場合時,可根據其所覆寫之真值表資料來變 更動作。 繼續地 面對照圖6〜圖9,一面就將半導體裝置 11 〇(對照圖4)做為3位元加法器而使用之場合時之例來說 明。 圖6係8位元加法器之構成例。在該圖6中之記憶單元塊 之間的連接係與圖4之場合時為相同。 在此,係說明關於將8位元之2數E、p做加法運算並 將其結果做為Y之場合。還有,將E之最下位位元做為E0、The purpose is to write data from the input unit _ and internal (memory unit 200) of the shirt (in this case, in Figure 3: the address corresponds to the same 4 memory units) The 4-bit) is input to the write/read circuit 4〇1. - In this way, the truth table data can be overwritten with the memory unit 2 适宜 which is suitable for selecting the finger in the designated memory cell block 3〇〇. In other words, when the semiconductor device is in the memory cell of the plurality of memory cells, the memory cell (10) of the memory cell block (3) is stored in the memory device (10). Overwrite the truth table data to change the action. Continuing with reference to Fig. 6 to Fig. 9, the semiconductor device 11 〇 (cf. Fig. 4) is used as a three-bit adder. Fig. 6 is a configuration example of an 8-bit adder. The connection between the memory cell blocks in Fig. 6 is the same as in the case of Fig. 4. Here, a description will be given of a case where the number of octets E and p are added and the result is Y. Also, the lowest bit of E is E0,
2036-7602-PF 13 1357212 次—位元做為El、最上位位元做為E2。而且,將F之最下位 位元做為F0、次一位元做為F1、最上位位元做為F2。再者, 將Y之最下位位元做為Y0、次一位元做為Y1、最上位位元做 為Y2"而且,將依據最下位位元之加法運算之進位做為c〇、 依據次一位元之加法運算之進位做為C1、依據最上位之位 元的加法運算之進位做為C2。而且,雖然各個信號係為差 動,但記載上予以簡略而記述之。 在記憶單元塊300d係從A0輸入E0、從A1輸入F0,而執 行加法運算’並從D3來輸出Y0、從D2來輸出C0。 在記憶單元塊300e係從A0輸入E1、從A1輸入F1,而且 從A3輸入C0 ’並執行加法運算,而從D3來輸出Y1、從D2來 輸出C1。 在記憶單元塊30(^係從人0輸入£2、從人1輸入?2,而且 從A3輸入C1 ’並執行加法運算,而從D3來輸出Y2、從D2來 輸出C2。 從記憶單元塊30Od之D3所輸出之Y0係經由如圖之經 路’而從記憶單元塊3〇〇 j之D3被輸出來。 從記憶單元塊300e之D3所輸出之Y1係經由如圖之經 路’而從記憶單元塊3〇〇k之D3被輸出來。 從s己憶單元塊30〇 f之D3所輸出之Y2係經由如圖之經 路’而從記憶單元塊3001之D3被輸出來。 如此而來,可得到做為加法運算結果之Y0、Y1、及γ2。 在圖7中’(a)係記憶單元塊300之簡略圖、(b)係儲存 於記憶單元塊300d、300e、及300f之真值表(適宜對照圖6)。 2036-7602-PF 14 1357212 如圖7(a)所示’在記憶單元塊3〇〇中,只要_輪入於 A0〜A3 ’則根據其輸入從D0~D3可輪出已被定義於真值表之 資料。 如圖7(b)所示’只要一於AO、A1、A3# E(E〇〜E2)、 F(F0〜F2)、Cin(C0〜C2)之輸入,則以做為其等3個之加法運 算結果’而將其位元之值於D3以做為γ(γ〇〜γ2)而輸出、將 進位於D2以做為Cout(C0~C2)而輸出。 還有’因為D0與D1係在此為不使用,所以在所有的場 合以做為可輸出「〇」。 而且’雖然從上算起第1段〜第4段與第5段目〜第8 段、及第9段〜第12段與第13段〜第16段係成為除A2以外之 真值為相同,但此係因為做成即使於A2輸入r 〇」與「j」 之任何資料也可得到正確之輸出結果。 在圖8中,(a )係記憶單元塊3 〇 〇之簡略圖、(b)係儲存 於記憶單元塊300g、300 j、300k、及3001之真值表。(適宜 對照圖6) 如圖8(a)之所示,在記憶單元塊300中,只要一於a〇〜A3 有輸入’則根據其輸入可DO〜D3輸出已被定義於真值表之資 料。 如圖8(b)之所示,只要一於A1有Y(Y0~Y2)之輸入,則 將其值照舊輸出於D3。 還有’因為D0〜D2係在此為不使用,所以做成以在所有 的場合時可輸出r 〇」。 而且’實際上係雖然從A1向D3最好有所謂「0」-> 「0」、2036-7602-PF 13 1357212 times—the bit is used as El and the highest bit is used as E2. Moreover, the lowermost bit of F is taken as F0, the next bit is taken as F1, and the uppermost bit is taken as F2. Furthermore, the lowermost bit of Y is used as Y0, the next bit is used as Y1, and the highest bit is used as Y2" and the carry of the addition according to the lowest bit is taken as c〇, based on The carry of the addition of one element is taken as C1, and the carry of the addition according to the highest bit is taken as C2. Further, although each signal system is differential, it is described briefly in the description. In the memory cell block 300d, E0 is input from A0, F0 is input from A1, and the addition operation is performed, and Y0 is output from D3, and C0 is output from D2. In the memory cell block 300e, E1 is input from A0, F1 is input from A1, C0' is input from A3, and addition is performed, and Y1 is output from D3, and C1 is output from D2. In the memory unit block 30 (^ is input from person 0, £2, from person 1 is input to ?2, and from C1' is input from A3, and addition is performed, and Y2 is output from D3, and C2 is output from D2. The Y0 outputted by D3 of 30Od is output from D3 of the memory cell block 3〇〇j via the path of the figure. The Y1 outputted from D3 of the memory cell block 300e is via the path of the figure D3 is output from the memory cell block 3〇〇k. Y2 outputted from D3 of the memory cell block 30〇f is outputted from D3 of the memory cell block 3001 via the path ' as shown in the figure. In the following, Y0, Y1, and γ2 are obtained as the result of the addition. In Fig. 7, '(a) is a simplified diagram of the memory cell block 300, and (b) is stored in the memory cell blocks 300d, 300e, and 300f. The truth table (suitable for comparison with Figure 6). 2036-7602-PF 14 1357212 As shown in Figure 7(a), 'in the memory cell block 3〇〇, as long as _ wheel in A0~A3', according to its input D0~D3 can rotate the data that has been defined in the truth table. As shown in Figure 7(b), as long as one is in AO, A1, A3# E (E〇~E2), F(F0~F2), Cin (C0~C2) input Then, as the result of the addition of three, the value of the bit is output to D3 as γ(γ〇~γ2), and the value is input to D2 as Cout(C0~C2). Also, 'Because D0 and D1 are not used here, they can be output as "〇" in all cases. And 'Although from the above, the first paragraph - the fourth paragraph and the fifth paragraph ~ 8 paragraphs, and 9th paragraphs - 12th paragraphs and 13th paragraphs - 16th paragraphs are the same as the true value except A2, but this is because any data is input even if A2 inputs r 〇" and "j" The correct output result can also be obtained. In Fig. 8, (a) is a simplified diagram of the memory cell block 3, and (b) is a truth table stored in the memory cell blocks 300g, 300j, 300k, and 3001. (Appropriate to FIG. 6) As shown in FIG. 8(a), in the memory cell block 300, as long as there is an input in a〇~A3, the DO~D3 output can be defined in the truth table according to its input. As shown in Fig. 8(b), as long as A1 has Y (Y0~Y2) input, its value is output as usual to D3. Also, because D0~D2 are not used here, Made in place In some cases, r 〇" can be output." Actually, although it is preferable to have "0"-> "0" from A1 to D3,
2036-7602-PF 15 1357212 「!」2種類(2段分)之真值表,但以即使於aq a2、 A3輸入「〇」與「丨」之任何f料也可得到正確之輸出結果 般地,成為16段之真值表。 在圖9中’(a)係記憶單元塊3〇〇之簡略圖、⑻係儲存 . 於記憶單元塊3〇〇h及300i之真值表(適宜對照圖6)。 如圖9(a)之所示,在記憶單元塊3〇〇中,只要一於a〇〜a3 有輸入,則根據其輸入從DO〜D3來輸出被定義於真值表之資 料。 • 如圖9(b)之所示,只要一於剝有以⑶〜C2)之輸入,則 將其值照舊輸出於D1。而且,於A1 一有γ(γ〇〜γ2)之輸入, 則將其值照舊輸出於D3。 還有,因為D0與D2係在此為不使用,所以做成在所有 的場合時可輸出「〇」。 而且’與圖8(b)之場合為同樣地,成為即使於A2與A3 被輸入「0」與「1」之任何資料也可得到正確之輸出結果。 圖10係顯示做為圖4之半導體裝置11 〇之變形例之在半 • 導體裝置ll〇a十之讀出埠的連接狀況之圖。在半導體裝置 ll〇a中’比較於最左之列之記憶單元塊3〇〇m〜3〇〇〇與從左第 3之列之記憶單元塊3〇〇s~3〇〇u,其間之列之記憶單元塊 300p〜300r係於縱方向以錯開半分記憶單元塊而配置。而 且’各自之記憶單元塊之A〇~八3及D0~D3係如圖般地來連 接。 如此地’以錯開記憶單元塊來配置,而比起圖4之半導 體裝置110之場合來,可縮短從各自記憶單元塊之D〇〜])3來2036-7602-PF 15 1357212 "!" 2 types (2 segments) of the truth table, but even if you input any of the "〇" and "丨" in aq a2, A3, you can get the correct output. Ground, become the truth table of 16 segments. In Fig. 9, '(a) is a simplified diagram of the memory cell block 3, and (8) is stored in the truth cell of the memory cell blocks 3〇〇h and 300i (suitable for comparison with Fig. 6). As shown in Fig. 9(a), in the memory cell block 3, as long as there is an input from a〇 to a3, the data defined in the truth table is output from DO to D3 based on the input. • As shown in Fig. 9(b), as long as the input of (3) to C2 is stripped, the value is output as usual to D1. Moreover, when A1 has an input of γ(γ〇~γ2), its value is output as usual to D3. Also, since D0 and D2 are not used here, "〇" can be output in all cases. Further, in the same manner as in the case of Fig. 8(b), even if any data of "0" and "1" is input to A2 and A3, a correct output result can be obtained. Fig. 10 is a view showing a connection state of a semiconductor device 11 as a modification of the semiconductor device 11 of Fig. 4 in a half-conductor device. In the semiconductor device 11a, 'compared to the memory cell block 3〇〇m~3〇〇〇 in the leftmost column and the memory cell block 3〇〇s~3〇〇u in the column from the left third, The memory cell blocks 300p to 300r of the column are arranged in the vertical direction by shifting the half-divided memory cell blocks. Moreover, A'~8-3 and D0~D3 of the respective memory cell blocks are connected as shown. Thus, the memory cells are arranged in a staggered manner, and compared with the case of the semiconductor device 110 of Fig. 4, the D?~])3 of the respective memory cell blocks can be shortened.
2036-7602-PF 16 1357212 輸入於其他記憶單元塊之AO〜A3之配線的長度。 還有’如該配線之彎曲之次數和樣子係特別地不被限 定於該圖10,而可做適宜變更。 而且,半導體裝置110a之内部構成圖(對應於圖5)係有 如圖11所示。在圖11之半導體裝置11〇3中,比較於最左之 列之記憶單元塊300a(對應於圖10之記憶單元塊3〇〇m~300o) 與從左第3之列之記憶單元塊3〇〇c(對應於圖10之記憶單元 塊300s〜300u) ’其間之列之記憶單元塊3〇〇b(對應於圖1〇 之δ己憶單元塊3 0 0 p〜3 0 0 r係因為於縱方向以錯開半分記憶 單元塊而配置,所以被輸入於寫入位址解碼器411之各記憶 單元塊之X位址和内部X位址係也可考慮此來設定。 如以上所做說明般地,若依據本實施例之半導體裝 置’則在可做為邏輯電路而動作之記憶體中,以從1個記憶 單元塊給與4個記憶單元塊來輸出,則可容易地執行資料之 回授。 而且,在習知之FPGA的製造中,例如、以寫成c語言程 式,並從其而寫成HDLCHardware Description Language)。 從其HDL來執行邏輯合成,而作成邏輯電路。而從其邏輯電 路,於該當之FPGA來執行邏輯之配置與配置配線。總之, 複雜而高度之作業工程係為必要。 一方面,因為本實施形態之半導體裝置係為記憶體並 為記憶裝置,所以因為可以編譯c語言程式而將其資料搭載 成真值,所以作業工程變為單純且容易。而且,因為本實 施例之半導體裝置係為記憶裝置,所以即使於實現不同之2036-7602-PF 16 1357212 Enter the length of the wiring of AO to A3 of other memory cell blocks. Further, the number of times and the appearance of the bending of the wiring are not particularly limited to the Fig. 10, and can be appropriately changed. Further, the internal configuration of the semiconductor device 110a (corresponding to Fig. 5) is as shown in Fig. 11. In the semiconductor device 11〇3 of FIG. 11, the memory cell block 300a (corresponding to the memory cell block 3〇〇m~300o of FIG. 10) and the memory cell block 3 of the left third column are compared with the leftmost column. 〇〇c (corresponding to memory cell block 300s~300u of Fig. 10) 'memory cell block 3〇〇b in between (corresponding to Fig. 1 δ 己 recall unit block 3 0 0 p~3 0 0 r system Since the vertical direction is arranged by shifting the half-divided memory cell blocks, the X address and the internal X address system of each memory cell block input to the write address decoder 411 can also be set in consideration of this. Illustratively, in the memory device according to the present embodiment, data can be easily executed by giving four memory cell blocks from one memory cell block in a memory that can operate as a logic circuit. In addition, in the manufacture of conventional FPGAs, for example, to write a c language program, and write it into HDLCHardware Description Language). The logic synthesis is performed from its HDL, and a logic circuit is created. From its logic circuit, the FPGA is configured to perform logic configuration and configuration wiring. In short, complex and high-level work engineering is necessary. On the other hand, since the semiconductor device of the present embodiment is a memory and is a memory device, since the c language program can be compiled and the data is loaded into a true value, the work is simple and easy. Moreover, since the semiconductor device of the present embodiment is a memory device, even if the implementation is different
2036-7602-PF 17 1357212 邏輯電路之場合時,配線係也可僅以覆寫寫入記憶單元“ο 之真值資料來完成。 —面以對照圖12,一面更具體地來說明(適宜對照圖 D。圖12係顯示搭載為了使動作為邏輯電路之位元資料於 半導體裝置時之處理流程之流程圖。 首先,資訊處理裝置100係將記述欲實現之功能的C語2036-7602-PF 17 1357212 In the case of logic circuit, the wiring system can also be completed by simply overwriting the true value data written to the memory unit. ——The surface is more specifically described with reference to Figure 12 (suitable for comparison) Fig. 12 is a flow chart showing a processing flow when the bit data for operating the logic circuit is mounted on the semiconductor device. First, the information processing device 100 is a C language that describes the function to be realized.
吕程式從輸入部101予以輸入(步驟S1101),而記憶於記憔 部102。 D 而且,於記憶部1 〇 2係做為可記憶各種功能(加法、減 法等)之程式者。 因為資訊處理裝置1 〇 〇之操作者係引用被記憶在記憶 部102上之程式裏之必要之物,所以使用輸入部1〇1來追加 宣言文(Include文)(步驟si 102)。 處理部106係基於Include文所追加之c語言程式而作 成真值表(圖7之真值表6 00等)(步驟S1103),而基於其真值 表來作成位元資料(步驟S11〇4),進而通過通信部1〇5將其 位元資料搭載於半導體裝置11〇(步驟su〇5)。 如此地’若依據本實施例之半導體裝置U 〇,則可使半 導體裝置110做為邏輯電路而動作之作業就簡單地完成。 再者’因為右依據本實施例之半導體裝置,則不使用 實際之邏輯電路,所以即使記憶體之一部分即使產生故 障’也可就避開其所在之使用等而可容易地執行其對應(救 濟)。 而且’若將對1個記憶單元塊之字元線以如本實施例般 2036-7602-PF 18 1357212 地做為32條’則可抑制資料(信號)之衰減,而不需要感測 放大盗之使用。然而,假如要重視半導體裝置之功能,則 於瀆出感測放大盗或讀出資料線以使用中間緩衝器也可 將字元線之條數做為33條以上。 再者,若依據本實施例之半導體裝置,則以使用複數 之記憶體,將測試程式放進其裏面之幾個記憶體,則可測 试其他之一個記憶體。因而,測試完畢後係以從放進測試 程式之記憶體來消除測試程式,而可將其等記憶體使用為 通常之記憶體。 而且,在内建記憶體之系統LSI上,將其記憶體做成本 實施例之半導體裝置的構造而行自我測試,而且,以記述 於其部分用C語言所記述之測試程式來作成測試邏輯電 路’而可測試在系統LSI中之其他邏輯電路。 再者,記憶單元塊之間之連接係不限於丨個記憶單元塊 與其他4個記憶單元塊來連接之場合,也可為與如執行資料 之回授之其俾3個以上之記憶單元塊相連接之其他構成。 再者’雖然將讀出資料線做成差動,但也可考慮半導 體布局和讀出位址解碼器之邏輯電路,而以僅在單側之讀 出資料線來配線。 在以上雖然完成實施例之說明,但本發明之態樣係不 應被限定於該等。 例如、本發明之半導體裝置係也可以替代卯紹,而使 用 DJRAM(Dynamic Random Access Memory)和快閃記憶體來 實現。The program is input from the input unit 101 (step S1101), and is stored in the recording unit 102. D Also, the memory unit 1 〇 2 is used as a program that can memorize various functions (addition, subtraction, etc.). Since the operator of the information processing apparatus 1 refers to the necessary items stored in the program stored in the memory unit 102, the input unit 1〇1 is used to add the essay (Included) (step si 102). The processing unit 106 creates a truth table (the truth table 6 00 in FIG. 7 or the like) based on the c language program added to the Include text (step S1103), and creates bit data based on the truth table (step S11〇4). Further, the bit data is mounted on the semiconductor device 11 via the communication unit 1〇5 (step su〇5). As described above, according to the semiconductor device U of the present embodiment, the operation of operating the semiconductor device 110 as a logic circuit can be easily performed. Furthermore, since the semiconductor device according to the present embodiment is not used, the actual logic circuit is not used, so that even if a part of the memory is broken, the correspondence can be easily performed by avoiding the use thereof or the like (relief) ). Moreover, if the word line of one memory cell block is used as 32 in the case of 2036-7602-PF 18 1357212 as in the present embodiment, the attenuation of the data (signal) can be suppressed without sensing the amplification of the pirate. Use. However, if the function of the semiconductor device is to be emphasized, the number of word lines can be made 33 or more by detecting the amplified pirates or reading the data lines to use the intermediate buffer. Further, according to the semiconductor device of the present embodiment, another memory can be tested by using a plurality of memories and putting the test program into several memories therein. Therefore, after the test is completed, the test program is erased from the memory loaded into the test program, and the memory can be used as the usual memory. Further, in the system LSI of the built-in memory, the memory is self-tested by the structure of the semiconductor device of the embodiment, and the test logic circuit is written by the test program described in the C language. 'And other logic circuits in the system LSI can be tested. Furthermore, the connection between the memory unit blocks is not limited to the case where one memory unit block is connected to the other four memory unit blocks, and may be more than three memory unit blocks that are returned as the execution data. Other components connected. Furthermore, although the read data lines are made differential, the logic layout of the semiconductor layout and the read address decoder can be considered, and the data lines can be wired only on one side. Although the description of the embodiments has been completed above, the aspects of the invention should not be limited to these. For example, the semiconductor device of the present invention can be implemented by using DJRAM (Dynamic Random Access Memory) and flash memory instead of the above.
2036-7602-PF 19 載二記憶體之性能提高上之記憶區裝 J功此等之功能搭載來給與限制。 f孫t’、他之不越出本發明之宗旨之範圍襄而給與適宜變 更係為可能之事。 概且變 【圖式簡單說明】 置與資訊處理裝置之構成之圖。 之半導體裝置110之記憶元件的 記 圖1係顯示半導體裝 圖2係做為構成圖1 憶單元之構成圖。 圖3係記憶單元塊之構成圖。 圖4係顯示在半導體裝置11〇中之讀出埠之連接狀況之 圖5係半導體裝置11〇之内部構造圖。 圖6係3位元加法器之構成例。 圖7(a)係記憶單元塊3〇〇之簡略圖、圖7(b)係儲存於記 憶單元塊300d、300e、及300f之真值表。 圖8(a)係記憶單元塊3〇〇之簡略圖、圖8(b)係儲存於記 憶單元塊3 0 0 g、3 0 0 j 、300k、及300 1之真值表。 圖9(a)係記憶單元塊3〇〇之簡略圖、圖9(b)係儲存於記 憶單元塊300h及300i之真值表。 圖10係顯示在半導體裝置11〇3中之讀出埠之連接狀況 之圖。 圖11係半導體裝置110a之内部構成圖。 2036-7602-PF 20 1357212 圖12係顯示在半導體裝置裏搭載為了使動作為邏輯電 路之位元資料時之處理流程之流程圖。 【主要元件符號說明】 100 資訊處理裝置 101 輸入部 102 記憶部 103 記憶體2036-7602-PF 19 The memory of the second memory is improved. The function of the memory is loaded. It is possible that he does not go beyond the scope of the present invention to give appropriate changes. It is a simple diagram of the structure of the information processing device. BRIEF DESCRIPTION OF THE MEMORY ELEMENTS OF THE SEMICONDUCTOR DEVICE 110 Fig. 1 shows a semiconductor device Fig. 2 as a block diagram of the memory cell of Fig. 1. Figure 3 is a block diagram of a memory cell block. Fig. 4 is a view showing the connection state of the readout electrodes in the semiconductor device 11A. Fig. 5 is an internal configuration diagram of the semiconductor device 11A. Fig. 6 is a configuration example of a 3-bit adder. Fig. 7(a) is a schematic diagram of the memory cell block 3A, and Fig. 7(b) is a truth table stored in the memory cell blocks 300d, 300e, and 300f. Fig. 8(a) is a schematic diagram of the memory cell block 3A, and Fig. 8(b) is a truth table stored in the memory cell blocks 3 0 0 g, 3 0 0 j , 300k, and 300 1 . Fig. 9(a) is a schematic diagram of the memory cell block 3A, and Fig. 9(b) is a truth table stored in the memory cell blocks 300h and 300i. Fig. 10 is a view showing the connection state of the readouts in the semiconductor device 11A3. Fig. 11 is a view showing the internal structure of the semiconductor device 110a. 2036-7602-PF 20 1357212 Fig. 12 is a flow chart showing a processing flow when a bit device for operating a logic circuit is mounted in a semiconductor device. [Description of main component symbols] 100 Information processing device 101 Input unit 102 Memory unit 103 Memory
104 輸出部 105 通信部 106 處理部 110 半導體裝置 200 記憶單元 201、202 讀出字元線 211 寫入字元線 221、222 讀出資料線 231、232 寫入資料線 241 、 242 、 251 、 252 、 261 、 262 閘 271 正反器 300 記憶單元塊 301 選擇線 302 反相器 311 ' 312 讀出位址解碼器 322、323 位址輸入線 2036-7602-PF 21 1357212 401 寫入/讀出 600 ' 700 ' 800 電路 真值表104 output unit 105 communication unit 106 processing unit 110 semiconductor device 200 memory unit 201, 202 read word line 211 write word line 221, 222 read data line 231, 232 write data line 241, 242, 251, 252 , 261 , 262 gate 271 flip-flop 300 memory cell block 301 select line 302 inverter 311 ' 312 read address decoder 322, 323 address input line 2036-7602-PF 21 1357212 401 write / read 600 ' 700 ' 800 circuit truth table
2036-7602-PF 222036-7602-PF 22
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW094143819A TW200723692A (en) | 2005-12-12 | 2005-12-12 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW094143819A TW200723692A (en) | 2005-12-12 | 2005-12-12 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200723692A TW200723692A (en) | 2007-06-16 |
TWI357212B true TWI357212B (en) | 2012-01-21 |
Family
ID=46728134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094143819A TW200723692A (en) | 2005-12-12 | 2005-12-12 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200723692A (en) |
-
2005
- 2005-12-12 TW TW094143819A patent/TW200723692A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200723692A (en) | 2007-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4703655B2 (en) | Semiconductor device | |
TWI485716B (en) | Method of operating a flash memory device | |
JP4955990B2 (en) | Nonvolatile semiconductor memory device | |
US8185851B2 (en) | Memory building blocks and memory design using automatic design tools | |
JP4383523B2 (en) | Nonvolatile memory element, nonvolatile semiconductor memory device, and reading method and writing method thereof | |
TWI704572B (en) | Memory input/output, memory input/output method, and memory device | |
TWI767801B (en) | Memory device and memory cell | |
TWI271620B (en) | Method and apparatus for performing multi-programmable function with one-time programmable memories | |
JP2005346887A (en) | Semiconductor storage device | |
US20080114949A1 (en) | Method for controlling semiconductor memory device | |
JP4024582B2 (en) | Multi-function serial input / output circuit | |
JPH11306750A (en) | Magnetic-type semiconductor integrated storage | |
TWI262508B (en) | Nonvolatile semiconductor memory device and block redundancy remedy method | |
JP4932273B2 (en) | Arithmetic processing circuit using ferroelectric capacitor and arithmetic method | |
US11264109B2 (en) | Memory device | |
TWI357212B (en) | ||
US20190096502A1 (en) | Systems and methods to test a memory device | |
US7746722B2 (en) | Metal programmable self-timed memories | |
JP5081240B2 (en) | Semiconductor device | |
Barth et al. | A 500-MHz multi-banked compilable DRAM macro with direct write and programmable pipelining | |
US7304887B2 (en) | Method and apparatus for multi-plane MRAM | |
TWI328233B (en) | Embedded memory | |
TW565839B (en) | Nonvolatile semiconductor memory device | |
JP5032996B2 (en) | Semiconductor device | |
KR101884190B1 (en) | Memory with multiple write ports |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |