TWI357149B - Resistance random access memory and fabricating me - Google Patents

Resistance random access memory and fabricating me Download PDF

Info

Publication number
TWI357149B
TWI357149B TW96109879A TW96109879A TWI357149B TW I357149 B TWI357149 B TW I357149B TW 96109879 A TW96109879 A TW 96109879A TW 96109879 A TW96109879 A TW 96109879A TW I357149 B TWI357149 B TW I357149B
Authority
TW
Taiwan
Prior art keywords
layer
metal oxide
resistive memory
ito
electrode
Prior art date
Application number
TW96109879A
Other languages
Chinese (zh)
Other versions
TW200840020A (en
Inventor
Ching Chiun Wang
Heng Yuan Lee
Pang Hsu Chen
Chi Hung Wu
Kuo Chen Liu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96109879A priority Critical patent/TWI357149B/en
Publication of TW200840020A publication Critical patent/TW200840020A/en
Application granted granted Critical
Publication of TWI357149B publication Critical patent/TWI357149B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

1357149 P51950189TW 23030twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種電阻式記憶·__ ^及其製作方法,且特別是有關於-=:Γ 性的電阻式記憶體及其製作方法。 ⑽般制金屬氧化層的電阻式記随來說,其陽 ==用貴重金屬’心,,等,才能成功 ㈣以及可多次讀寫的記憶元件特性。然而,以 β貝重,:作電極的方式,目前可能遭遇到下列重要的問 金屬騎紐不佳,料和其下的電阻轉換 )剝離,另—是_貴重金屬#作電極是一 項在衣作成表上的重要考量。糾,由於這些貴重金屬因 應’使得乾崎程產生問題’因而不 【發明内容】 2明提供-種電㈣記憶體,可崎低成本、改善 除極、電極與下方金屬氧化層附著性不佳的問題。 提供1電阻式記憶體㈣作方法,能夠克 貝重金屬時不易蝕刻的製程整合問題。 柽本^月提出種電阻式記憶體,包括—層陰極端電 思^氧化鋼錫(滅—_也,ιτ〇)陽極端電極以及 曰金屬統層金屬氧化層是位於陰極το 除極端電極之間。 /、 5 1357149 P51950189TW 23030twf.doc/n 在本發明之一貫施例中,上述陰極端電極包括 Ru〇2或Ir〇2。或者’陰極端電極是選自pt、Au、pd、Ru 及其混合物其中之一。 在本發明之-實施例中,上述金屬氧化層為非化學計 量比的金屬氧化物。例如,金屬氧化層巾的金屬氧化物是 選自 TiOx、HfOx、CU〇x、Ni0x、ZrOx、NbOx、Ta〇x 與 La〇x 中的至少-種金屬氧化物。此外,金屬氧化層包括上述金1357149 P51950189TW 23030twf.doc/n IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a resistive memory __^ and a method of fabricating the same, and in particular to a resistive type of -=: Γ Memory and its making method. (10) The resistive type of the metal oxide layer is generally described as follows: the positive == with the precious metal 'heart,, etc., in order to succeed (4) and the memory element characteristics that can be read and written multiple times. However, in the way of β-shell weight, as the electrode, the following important metal races may be encountered, and the resistance of the material and the underlying resistance are peeled off. The other is that the precious metal is an electrode. Clothing is an important consideration on the table. Correction, because these precious metals respond to 'making problems with the dry process" and therefore not [invention] 2 provide - electric (four) memory, can reduce the low cost, improve the depolarization, the electrode and the underlying metal oxide layer adhesion is not good problem. A resistor memory (4) method is provided to solve the problem of process integration that is difficult to etch when the metal is heavy.柽本^月 proposed a kind of resistive memory, including - the cathode end of the electromagnet ^ oxidized steel tin (extinguishing - _ also, ιτ〇) anode terminal electrode and the yttrium metal layer metal oxide layer is located at the cathode το except the extreme electrode between. /, 5 1357149 P51950189TW 23030twf.doc/n In a consistent embodiment of the invention, the cathode terminal electrode comprises Ru〇2 or Ir〇2. Alternatively, the cathode terminal electrode is one selected from the group consisting of pt, Au, pd, Ru, and mixtures thereof. In an embodiment of the invention, the metal oxide layer is a non-stoichiometric metal oxide. For example, the metal oxide of the metal oxide blanket is at least one metal oxide selected from the group consisting of TiOx, HfOx, CU〇x, Ni0x, ZrOx, NbOx, Ta〇x and La〇x. In addition, the metal oxide layer includes the above gold

屬氧化物的混層或疊層。 在本發明之一實施例中,更包括-條位元線,與ITO 陽極端電極電性相連。 在本發明之-實施财,更包括—個祕級極區,與 陰極端電極電性相連。 β本發明再提出一種電阻式記憶體的製作方法 =一基底,再於基底上依序沉積—層導電層、一層金屬It is a mixed layer or laminate of oxides. In an embodiment of the invention, the strip line is further included and electrically connected to the ITO anode terminal electrode. In the implementation of the present invention, the invention further includes a secret polar region electrically connected to the cathode terminal electrode. β The present invention further proposes a method for fabricating a resistive memory. A substrate is deposited on the substrate in sequence—a conductive layer and a layer of metal.

和Γ層ΙΤ0層。_,層,使其成為一 極端電極,再圖案化上述金屬氧化層。之後,圖 木化導電層’使其成為—層陰極端電極。 在,發明之另—實施例中’上述圖案化⑽層的步驟 ΙΤ〇層上形成一層光阻層,再使用HBr或CH4/H2 、〇式蝕刻氣體移除未被光阻層覆蓋的ITO層。 在本&明之另一實施例中,上述圖案化HQ層的步驟 romp 2 IT〇層上形成一層光阻層’再使用 的2〇)與HC1的混合液去除未被光阻層覆蓋 6 1357149 P51950189TW 23030twf.doc/n 在本發明之另一實施例中,提供上述基底的步驟包括 先在-個梦晶片上形成—個電晶體,其至少包括_個間極 和兩個源極/祕區,然後再於梦晶片上覆蓋-層内層介電 層(ILD)。之後,於内層介電層中形成與源極/沒極^其中 之相連的一個雙重鑲嵌結構(dual damascene),再在内層 "電層上覆盍一層第一内金屬介電層(IMD1)。接著,於第 J内金,介電層巾形成與雙重鑲紐構減的—個電極底Γ layer ΙΤ 0 layer. The layer is made to be an extreme electrode and the metal oxide layer is patterned. Thereafter, the conductive layer is patterned to become a cathode terminal electrode. In another embodiment of the invention, the step of patterning the (10) layer is performed to form a photoresist layer on the germanium layer, and the ITO layer not covered by the photoresist layer is removed by using HBr or CH4/H2, a germanium etching gas. . In another embodiment of the present & Ming, the step of patterning the HQ layer is to form a layer of photoresist layer 're-used 2' on the layer of the red layer of the patterned HQ layer) and the mixture of the HCl is removed by the photoresist layer. 6 1357149 P51950189TW 23030twf.doc/n In another embodiment of the present invention, the step of providing the substrate comprises first forming a transistor on a dream wafer, the method comprising at least one interpole and two source/secret regions. And then overlaid on the dream wafer - the inner dielectric layer (ILD). Thereafter, a dual damascene structure is formed in the inner dielectric layer and connected to the source/nopole, and a first inner metal dielectric layer (IMD1) is overlaid on the inner layer. . Then, in the J gold, the dielectric layer towel forms a double electrode-integrated electrode bottom

口P連結器(bottom electrode connector,BEC)。 彳另—實施例中,上述圖案化導電層的步驟 Ϊ更 在基底上形成一層第二内金屬介電層(細2), 再於第二内金屬介電層中形成與加陽極端電極接觸的一 個電極頂部連結H(tQp eleetrQde __r,tec),之後在 第二内金>8介電層上形成與電_部連結器相連的一條位 元線。 ττηί本發明之另—實施例中,上述於金屬氧化層上形成 ΙΤΟ層的方法包括频、真空蒸鍍或旋轉塗佈法。 彻在/〇發實施财,上料電層的材料包括 ΓιΝ、Ru02 或 Ir〇2。 在本發明之另-實施例中,上述導電層的材料是選自 Pt、Au、Pd、RU及其混合物其中之—。 在本剌之另-實關巾’上述金屬氧化層為非化學 ί十屬氧化物。而金屬氧化層中的金屬氧化物例如 疋選自 Τ1〇χ、Hf〇x、Cu〇x、Ni〇x、Zr〇x、Nb〇x、Ta〇 盥Bottom electrode connector (BEC). In another embodiment, the step of patterning the conductive layer further comprises forming a second inner metal dielectric layer (thin 2) on the substrate, and forming a contact with the anode electrode at the second inner metal dielectric layer. One of the electrodes is connected to H (tQp eleetrQde __r, tec) at the top, and then a bit line connected to the electric connector is formed on the second inner gold > 8 dielectric layer. In another embodiment of the invention, the method of forming a ruthenium layer on the metal oxide layer includes frequency, vacuum evaporation or spin coating. The implementation of the material, the material of the charging layer includes ΓιΝ, Ru02 or Ir〇2. In another embodiment of the invention, the material of the conductive layer is selected from the group consisting of Pt, Au, Pd, RU, and mixtures thereof. In the other, the above-mentioned metal oxide layer is a non-chemical 十 ten-oxide. The metal oxide in the metal oxide layer, for example, 疋 is selected from the group consisting of Τ1〇χ, Hf〇x, Cu〇x, Ni〇x, Zr〇x, Nb〇x, Ta〇 盥

LaOx中的至少-種金屬氧化物。再者,上述金屬氧化層包 1357149 P51950189TW 23030twf.doc/n 括所述金屬氧化物的混層或疊層。 本發明因採用1丁〇作為陽極端電極,所以和習知使用 責重金屬的方式相較,不但可以降低成本、改善與下方金 屬氧化層附著性不佳的問題’還因為ιτο本身能使用多種 方法進行蝕刻,而克服習知使用貴重金屬時不易蝕刻的製 程整合問題。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式’作詳細說明如下。 【實施方式】 圖1是依照本發明之第一實施例的一種電阻式記憶體 的剖面示意圖。 請參照圖1,第一實施例的電阻式記憶體100是由一 層陰極端電極102、一層ITO陽極端電極1〇4以及一層金 屬氧化層106所構成,其中金屬氧化層1〇6是位於陰極端 電極102與ITO陽極端電極104之間。而且,在第一實施 例中,還有與陰極端電極丨02電性相連的一個源極/汲^區 108以及一條與ιτο陽極端電極電性相連的位元線 110。 、 請繼續參照圖i,第一實施例中的源極/汲極區108與 位在一個矽晶片112上的閘極114、閘介電層116及間隙 壁118構成一個電晶體120。而在石夕晶片112上覆蓋有一 層内層介電層(ILD)122,其中有雙重鑲嵌結構124連接到 源極/汲極區108。此外,在内層介電層(ILD)122與電阻式 記憶體100之間可隔著一層第一内金屬介電層 8 1357149 P51950189TW 23030twf.doc/n (IMD1)126,並藉由第一内金屬介電層126中的電極底部 連結器(bottom electrode connector,BEC)128 連結陰極端電 極102和雙重鑲嵌結構124,因此能使陰極端電極1〇2電 性連接到源極/汲極區108。 請再度參照圖1,第一實施例中的位元線11〇則可位 於覆蓋在第一内金屬介電層126及電阻式記憶體1〇〇上的 一層第二内金屬介電層(IMD2)130的表面上,並藉由第二 内金屬介電層130中的電極頂部連結器(t〇p dectr〇de connector ’ TEC)132而與IT0陽極端電極刚電性相連。 在第一實施例中’陰極端電極102包括TiN'Ru〇2 或Ir〇2。此外,陰極端電極102也可以是選自ptAu、pd、2 Ru及其混合物其中之一。 在第一實施例中,金屬氧化層106是一種非化學計量 比的金屬氧化物。舉例來說,金屬氧化層1〇6中的金屬氧 化物是選自 Ti〇x、Hf〇x、Cu〇x、Νί〇χ、ΖΓ〇χ、Nb〇x、τ&〇χ 與LaOx中的至少一種金屬氧化物。除此之外,金屬氧化 層106還可以是上述金屬氡化物的混層或叠層,而不限於 圖1所示。 圖2A至圖2G是依照本發明之第二實施例之一種電 阻式記憶體的製作流㈣面示意圖。請注意,第二實施例 的方法是多種類型的電阻式記憶體中的—種,主要是為了 詳細說明本發明在電阻部份的製作流程,至於其它構件如 電晶體、位元線等的配置與形成方式及順序,均可依所屬 技術領域中具有通常知财所知的技術製作,而不限於第 9 1357149 P51950189TW 23030twf.doc/n 一實施例所述。 請參照圖2A’可先在一個矽晶片200上形成〜個至少 包括有閘極202和兩個源極/没極區204、206的電晶體 . 208 ’其中還有閘介電層210及間隙壁212。 • 然後,請參照圖2B,於矽晶片200上覆蓋一層内層介 電層(ILD)214。之後,於内層介電層214中形成分別與源 極/及極區204、206相連的雙重鑲喪結構(dual _ damascene;^Ιό。 接著’請參照圖2C ’在内層介電層214上覆蓋一層第 一内金屬介電層(IMD1)218,再於第一内金屬介電層218 中形成與其中一個雙重鑲嵌結構216相連的一個電極底部 連結器(bottom electrode connector,BEC)220,這個電極底 部連結器220會藉由雙重鑲嵌結構216與源極/汲極區2〇6 電性相連。 再來’請參照圖2D ’於基底200上(或可為第一内金 屬介電層218上)依序沉積一層導電層222、一層金屬氧化 馨 層224和一層ϊτο層226。其中,導電層222的材料例如At least one metal oxide in LaOx. Further, the above metal oxide layer package 1357149 P51950189TW 23030twf.doc/n includes a mixed layer or a laminate of the metal oxide. Since the invention adopts 1 butyl ruthenium as the anode terminal electrode, compared with the conventional method of using the metal, it can not only reduce the cost and improve the adhesion with the underlying metal oxide layer, but also because the ιτο itself can use various methods. Etching is performed to overcome the problem of process integration that is not easily etched when using precious metals. The above described features and advantages of the present invention will be more apparent from the following description. [Embodiment] Fig. 1 is a schematic cross-sectional view showing a resistive memory according to a first embodiment of the present invention. Referring to FIG. 1, the resistive memory 100 of the first embodiment is composed of a cathode end electrode 102, a ITO anode terminal electrode 1〇4, and a metal oxide layer 106, wherein the metal oxide layer 1〇6 is located in the cathode. Between the extreme electrode 102 and the ITO anode terminal electrode 104. Further, in the first embodiment, there is a source/deuterium region 108 electrically connected to the cathode terminal electrode 丨 02 and a bit line 110 electrically connected to the ιτο anode terminal electrode. Referring to FIG. 1, the source/drain region 108 of the first embodiment and the gate 114, the gate dielectric layer 116, and the spacers 118 on a germanium wafer 112 form a transistor 120. The inner layer 112 is covered with an inner dielectric layer (ILD) 122 having a dual damascene structure 124 connected to the source/drain region 108. In addition, a first inner metal dielectric layer 8 1357149 P51950189TW 23030twf.doc/n (IMD1) 126 may be interposed between the inner dielectric layer (ILD) 122 and the resistive memory 100, and the first inner metal is A bottom electrode connector (BEC) 128 in the dielectric layer 126 connects the cathode terminal electrode 102 and the dual damascene structure 124, thereby enabling the cathode terminal electrode 1〇2 to be electrically connected to the source/drain region 108. Referring to FIG. 1 again, the bit line 11 第一 in the first embodiment may be located on a first inner metal dielectric layer 126 and a resistive memory 1 的 a second inner metal dielectric layer (IMD2). The surface of the 130 is electrically connected to the IT0 anode terminal electrode by an electrode top connector (TEC) 132 in the second inner metal dielectric layer 130. In the first embodiment, the cathode terminal electrode 102 includes TiN'Ru〇2 or Ir〇2. Further, the cathode terminal electrode 102 may also be one selected from the group consisting of ptAu, pd, 2 Ru, and a mixture thereof. In the first embodiment, the metal oxide layer 106 is a non-stoichiometric metal oxide. For example, the metal oxide in the metal oxide layer 1〇6 is selected from the group consisting of Ti〇x, Hf〇x, Cu〇x, Νί〇χ, ΖΓ〇χ, Nb〇x, τ&〇χ and LaOx. At least one metal oxide. In addition, the metal oxide layer 106 may also be a mixed layer or laminate of the above metal halides, and is not limited to that shown in FIG. 2A to 2G are schematic diagrams showing a fabrication flow (four) of a resistive memory according to a second embodiment of the present invention. Please note that the method of the second embodiment is one of various types of resistive memory, mainly for explaining the manufacturing process of the resistor portion in the present invention, and the configuration of other components such as a transistor, a bit line, and the like. The manner of formation and the sequence can be made according to the techniques known in the art, and are not limited to the one described in the first embodiment of the present invention. Referring to FIG. 2A', a transistor including at least a gate 202 and two source/no-pole regions 204, 206 may be formed on a germanium wafer 200. 208 'there is also a gate dielectric layer 210 and a gap. Wall 212. • Then, referring to FIG. 2B, the germanium wafer 200 is covered with an inner dielectric layer (ILD) 214. Thereafter, a dual damascene structure (dual _ damascene; ^ 相连 is formed in the inner dielectric layer 214 respectively connected to the source/pole regions 204, 206. Then, please refer to FIG. 2C for overlaying the inner dielectric layer 214 a first inner metal dielectric layer (IMD1) 218 is formed in the first inner metal dielectric layer 218 to form a bottom electrode connector (BEC) 220 connected to one of the dual damascene structures 216. The bottom connector 220 is electrically connected to the source/drain region 2〇6 by the dual damascene structure 216. Referring to FIG. 2D on the substrate 200 (or may be on the first inner metal dielectric layer 218). A conductive layer 222, a metal oxide layer 224 and a layer 226 are sequentially deposited. The material of the conductive layer 222 is, for example,

TiN、Ru〇2或ir〇2 ;此外,導電層222的材料還可以是選 自Pt Au、Pd、Ru及其混合物其中之一。至於金屬氧化 層224是一種非化學計量比的金屬氧化物。舉例來說,金 屬氧化層224中的金屬氧化物例如是選自τί〇χ、ΗίΌχ、 CuOx、NiOx、ZrOx ' NbOx、TaOx 與 La〇x 中的至少一種X金 屬氧化物。而且,上述金屬氧化層224還可包括金屬氧化 物的混層或疊層,而不限於圖2D所示。而形成IT〇層226 1357149 P51950189TW 23030twf.doc/n 的方法則例如是濺鐘(sputtering)、真空蒸鏟(vaCuum evaporation)或旋轉塗佈法(Spjn c〇atjng) 0 然後’請參照圖2E ’圖案化ITO層226(如圖2D),使 其成為一層ITO陽極端電極226a。而且,圖案化ITO層 226的步驟可選擇以下兩種:第一種是先在IT〇層226上 形成一層光阻層(未繪示),再使用HBr* 口^/氏的乾式蝕 刻氣體移除未被光阻層覆蓋的ΙΤ〇層226;第二種則是同TiN, Ru〇2 or ir〇2; in addition, the material of the conductive layer 222 may also be one selected from the group consisting of Pt Au, Pd, Ru, and a mixture thereof. The metal oxide layer 224 is a non-stoichiometric metal oxide. For example, the metal oxide in the metal oxide layer 224 is, for example, at least one X metal oxide selected from the group consisting of τί〇χ, ΗίΌχ, CuOx, NiOx, ZrOx 'NbOx, TaOx and La〇x. Moreover, the above metal oxide layer 224 may further include a mixed layer or laminate of metal oxides, and is not limited to that shown in Fig. 2D. The method for forming the IT layer 226 1357149 P51950189TW 23030twf.doc/n is, for example, a sputtering, a vacuum evaporation or a spin coating method (Spjn c〇atjng) 0 and then 'Please refer to FIG. 2E' The ITO layer 226 is patterned (Fig. 2D) to form a layer of ITO anode terminal electrode 226a. Moreover, the step of patterning the ITO layer 226 may be selected from the following two types: the first is to form a photoresist layer (not shown) on the IT layer 226, and then use the HBr* dry etching gas shift. Except for the layer 226 not covered by the photoresist layer; the second is the same

樣先在ΙΤ0層226上形成光阻層(未繪示),再使用HF (HF’H2〇2.1〇H2〇)與HC1的混合液去除未被光阻層覆蓋的 IT0 層 226。 隨後,請參照圖2F,圖案化上述金屬氧化層224 圖案化V電層222’使其成為—層陰極端電極222&。此 陰,端電極心、金屬氧化層似以及IT〇陽極端電極 226a即構成本發明之電阻式記憶體。A photoresist layer (not shown) is formed on the ITO layer 226, and a mixture of HF (HF'H2 〇 2.1 〇 H2 〇) and HCl is used to remove the IT0 layer 226 which is not covered by the photoresist layer. Subsequently, referring to FIG. 2F, the metal oxide layer 224 is patterned to form the V-electrode layer 222' to become a layer cathode terminal electrode 222 & The cathode, the terminal electrode, the metal oxide layer, and the IT anode terminal electrode 226a constitute the resistive memory of the present invention.

再者π爹照圖2〇,為使IT〇陽極端電極2細能連 =兀線上,可在圖2F之步驟後先在基底綱上形成— 曰苐一内金屬介電層(iMD2)228,再於第二内金屬介 形成ΓΙΤΓ極端電極226a接觸的—個電極頂部i U (top electrode connect〇r,τ 〇 = 屬:卿上形成與電極頂部連結器23。=:= 行電為==材料仍可成功地執 月翏考圖3與圖4,其中的ΙΤ〇 1357149 P51950J89TW 23030fwf.doc/n 是採用誠的方式形成的。目3是根據本 結構的電®憶體的電流對電壓^曲線 =圖3可能實仙蝴阻寫二^ #作二圖4疋根據本發明之IT〇/Hf〇x細結構 ^憶體的高低電轉分布轉圖 次電阻轉換後,苴汽雷阳$ J力牡厶過60 P,電怨低電阻態仍維持極佳的區 ^ =可適於直流電阻寫人與抹除的操作。In addition, according to FIG. 2, in order to make the IT 〇 anode terminal electrode 2 finely connected to the 兀 line, an internal metal dielectric layer (iMD2) 228 may be formed on the substrate after the step of FIG. 2F. And then the second inner metal forms an electrode top i U which is in contact with the crucible electrode 226a (top electrode connect〇r, τ 〇 = genus: the upper electrode is formed with the electrode top connector 23. =:= the current is = = Material can still be successfully executed in Figure 3 and Figure 4, where ΙΤ〇1357149 P51950J89TW 23030fwf.doc/n is formed in an honest manner. Head 3 is the current-to-voltage of the electrical memory according to this structure ^Curve=Fig. 3 may be real fairy butterfly blocking two ^ #作二图4疋 According to the invention, the IT〇/Hf〇x fine structure ^Recalling the high and low electrical distribution of the transfer pattern after the resistance conversion, the 苴汽雷阳$ J force oyster over 60 P, electric grievance low resistance state still maintains excellent area ^ = can be suitable for DC resistance writing and erasing operations.

wiimf批特點在於使用成本低廉、導電性 ^ 相ιτ〇作為電阻式記紐的陽極端電極, =此可降低胃知烟責重金屬的成本,*且能改善陽極 =與下方金屬氧化層附著性不佳關題。此外,因為IT0 有s金屬更容純烟,所以本發明在製程整合方面且The wiimf batch is characterized by the use of low-cost, conductive ^ ι 〇 〇 as the anode-end electrode of the resistance type, which can reduce the cost of the metal, and can improve the anode = adhesion to the underlying metal oxide layer. Good question. In addition, since IT0 has s metal to be more pure smoke, the present invention is in terms of process integration and

^然本發明已崎佳實施例揭露如上,然其並非用以 二疋本發明’任何關技術領域巾具有通常知識者,在不 、離本毛月之精神和範圍内’當可作些許之更動與潤飾, 為$本發明之保護範圍當視後附之申請專利範圍所界定者 【圖式簡單說明】 圖1疋依照本發明之第一實施例之一種電阻式記憶 的剖面示意圖。 圖2A至圖2G是依照本發明之第二實施例之一種電 阻式記憶體的製作流程剖面示意圖。 圖3是根據本發明之ITO/Hf〇x/TiN結構的電阻式記 12 1357149 P51950189TW 23030twf.doc/n 憶體的電流對電壓的曲線圖。 圖4是根據本發明之ITO/HfOx/TiN結構的電阻式記 憶體的高低電阻態分布曲線圖。 【主要元件符號說明】 100 :電阻式記憶體 102、222a :陰極端電極 104、226a : ITO陽極端電極 106、224 :金屬氧化層 ® 108、204、206 :源極/汲極區 110、232 :位元線 112、200 :矽晶片 114、202 :閘極 116、210 :閘介電層 118、212 :間隙壁 120、208 :電晶體 122、214 :内層介電層 φ I24、216 :雙重鑲嵌結構 126、218 :第一内金屬介電層 128、220 :電極底部連結器 130、228 :第二内金屬介電層 132、230 :電極頂部連結器 222 :導電層 226 : ITO 層 13However, the present invention has been disclosed in the above embodiments, but it is not intended to be used in the context of the present invention. Anyone who has a general knowledge of the technical field is not allowed to do anything in the spirit and scope of the present month. The scope of protection of the present invention is defined by the scope of the appended claims. [FIG. 1] FIG. 1 is a schematic cross-sectional view showing a resistive memory according to a first embodiment of the present invention. 2A to 2G are schematic cross-sectional views showing a manufacturing process of a resistive memory according to a second embodiment of the present invention. Figure 3 is a graph of current versus voltage for a resistive type of ITO/Hf〇x/TiN structure according to the present invention, 12 1357149 P51950189TW 23030 twf.doc/n. Fig. 4 is a graph showing the distribution of high and low resistance states of a resistive memory of an ITO/HfOx/TiN structure according to the present invention. [Description of main component symbols] 100: Resistive memory 102, 222a: cathode terminal electrode 104, 226a: ITO anode terminal electrode 106, 224: metal oxide layer 108, 204, 206: source/drain region 110, 232 : bit line 112, 200: germanium wafer 114, 202: gate 116, 210: gate dielectric layer 118, 212: spacer 120, 208: transistor 122, 214: inner dielectric layer φ I24, 216: double Mosaic structure 126, 218: first inner metal dielectric layer 128, 220: electrode bottom connector 130, 228: second inner metal dielectric layer 132, 230: electrode top connector 222: conductive layer 226: ITO layer 13

Claims (1)

P51950189TW 23030twf.d〇c/n 十、申請專利範圍: 1. 一種電阻式記憶體,包括: 一陰極端電極; 一 ITO陽極端電極;以及 一金屬氧化層,位於該陰極端電極與該ITO陽極端秦 極之間。 t 2. 如申請專利範圍第1項所述之電阻式記憶體,其中 該陰極端電極包括TiN、Ru02或Ir02。 3. 如申請專利範圍第1項所述之電阻式記憶體,其中 該陰極端電極是選自pt、Au、Pd、Ru及其混合物其中之 一一 〇 4. 如申請專利範圍第1項所述之電阻式記憶體,其中 該金屬氧化層為非化學計量比的金屬氧化物。 5. 如申請專利範圍第4項所述之電阻式記憶體,其中 該金屬氧化層中的金屬氧化物是選自TiOx、HfOx、CuOx、 ΝιΟχ、ZrOx、NbOx、丁&(\與LaOx中的至少一種金屬氧化 物。 6. 如申請專利範圍第5項所述之電阻式記憶體,其中 該金屬氧化層包括該金屬氧化物的混層或疊層。 7. 如申請專利範圍第1項所述之電阻式記憶體,更包 括一位元線’與該ITO陽極端電極電性相連。 8. 如申請專利範圍第1項所述之電阻式記憶體,更包 括一源極/汲極區,與該陰極端電極電性相連。 9. 一種電阻式記憶體的製作方法,包括: 1357149 P51950189TW 23030twf.doc/n 提供一基底; 於該基底上 >儿積一導電層; 於該導電層上沉積一金屬氧化層; 於該金屬氧化層上形成一 ITO層; 圖案化該ITO層,以成為一 IT0陽極端電拯. 圖案化該金屬氧化層;以及 ’ 圖案化該導電層,以成為一陰極端電極。P51950189TW 23030twf.d〇c/n X. Patent application scope: 1. A resistive memory comprising: a cathode terminal electrode; an ITO anode terminal electrode; and a metal oxide layer located at the cathode terminal electrode and the ITO anode Extreme between the Qin and the poles. 2. The resistive memory of claim 1, wherein the cathode terminal electrode comprises TiN, Ru02 or Ir02. 3. The resistive memory of claim 1, wherein the cathode terminal electrode is one selected from the group consisting of pt, Au, Pd, Ru, and a mixture thereof. A resistive memory, wherein the metal oxide layer is a non-stoichiometric metal oxide. 5. The resistive memory according to claim 4, wherein the metal oxide in the metal oxide layer is selected from the group consisting of TiOx, HfOx, CuOx, ΝιΟχ, ZrOx, NbOx, Ding & (\ and LaOx 6. The at least one metal oxide according to claim 5, wherein the metal oxide layer comprises a mixed layer or a laminate of the metal oxide. The resistive memory further includes a one-dimensional line electrically connected to the anode electrode of the ITO. 8. The resistive memory according to claim 1, further comprising a source/drain region And electrically connected to the cathode terminal electrode. 9. A method for manufacturing a resistive memory, comprising: 1357149 P51950189TW 23030twf.doc/n providing a substrate; and forming a conductive layer on the substrate; Depositing a metal oxide layer thereon; forming an ITO layer on the metal oxide layer; patterning the ITO layer to form an IT0 anode terminal electrification; patterning the metal oxide layer; and 'patterning the conductive layer to become Cathode end Pole. 10.如申請專利範圍第9項所述之電阻 作方法,其中圖案化該⑽層的步驟包括:° 體的製 在該ITO層上形成一光阻層;以及 使用HBr或CH4/H2的乾式蝕刻氣體移降 層覆蓋的該IT0層。 *未破该光阻 H.如中請專利範圍第9項所述之電阻式記情 作方法,其中圖案化該ITO層的步驟包括:心、襄 在該IT0層上形成一光阻層;以及10. The method of claim 9, wherein the step of patterning the (10) layer comprises: forming a photoresist layer on the ITO layer; and using a dry form of HBr or CH4/H2 The IT0 layer covered by the etching gas migration layer. The method of patterning the ITO layer, wherein the step of patterning the ITO layer comprises: forming a photoresist layer on the IT0 layer; as well as 使用 HF(HF:H2〇2:1〇H2〇)與 HC1 的 光阻層覆蓋的該⑽層。 奸除未被該 作方=如:凊專利辄圍第9項所述之電阻式記憶體的製 乍方法,其中提供該基底的步驟包括: 在-以片上形成-電晶體,該電晶體至少包括一閉 極和兩個源極/没極區; 於該矽晶片上覆蓋一内層介電層; 區其中之一 於該内層介電層中形成與該些源極/汲極 相連的—雙重鑲嵌結構; 15 1357149 P51950189TW 2303Otwf. doc/n 在該内層;l電層上覆蓋—第―内金屬介電層;以及 =第-内金屬介電層中形成與該雙重鑲嵌結構 玉底部連結器(bott〇m electrode connector ’ BEC)。 作方L3.如專利範㈣9項所述之電阻式記憶體的製 乍 八中圖案化該導電層的步驟後,更包括: 在該基底上形成一第二内金屬介電層; 二内金屬介電層中形成與該ιτο陽極端電極接 及、a 5頂部連結器(t〇p electr〇dec〇nne咖,TEc);以 在4第—内金屬介電層上形成與該電極 連的一位元線。 丨埂、、-口时相 14.如巾請專利範圍第9項所述之電阻式砂 作方法’其中於該金屬氧化層上形成該Ιτ 綠 藏鍍、真空蒸鍍或旋轉塗佈法。 ㈣法包括 15·如中請專利範圍第9項所述之電阻式記憶體的製 作方法’其中該導電層的材料包括迎、如〇2或’㈤。'^ 作方ί如1 申^範圍第9項所述之電阻式記憶體的製 作方法’其令該導電層的材料是選自Pt、Au 其混合物其中之一。 α、κιιπ 作方圍第9項所述之電阻式記憶體的製 層為非化學計量比的金屬氧化物。 18.如申斜利範圍第17項所述之 作方法,其中該金屬氧化層中的金屬氧化物二選 HfOx、Cu〇x、Ni〇x、ΖΓ〇χ、啊、风與l吨中的至X少 16 1357149This (10) layer covered with HF (HF: H2 〇 2: 1 〇 H2 〇) and a photoresist layer of HCl was used. The method of preparing the resistive memory according to the invention of claim 9, wherein the step of providing the substrate comprises: forming a transistor on-on-chip, the transistor being at least Including a closed pole and two source/no-polar regions; covering the germanium wafer with an inner dielectric layer; one of the regions is formed in the inner dielectric layer to be connected to the source/drain electrodes Mosaic structure; 15 1357149 P51950189TW 2303Otwf. doc/n over the inner layer; l electrical layer overlying - the first inner metal dielectric layer; and = the first inner metal dielectric layer formed with the dual damascene structure jade bottom connector ( Bott〇m electrode connector ' BEC). After the step of patterning the conductive layer in the resistor memory of the resistive memory device described in the above paragraph (4), the method further comprises: forming a second inner metal dielectric layer on the substrate; Forming a contact with the anode electrode and a top connector (TEc) in the dielectric layer; forming a connection with the electrode on the 4th inner metal dielectric layer One yuan line.丨埂,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (4) The method includes the method for producing a resistive memory as described in claim 9 wherein the material of the conductive layer comprises welcoming, such as 〇2 or '(5). The method for producing a resistive memory according to the invention of claim 9, wherein the material of the conductive layer is one selected from the group consisting of Pt and Au. The layer of the resistive memory described in Item 9 of α, κιιπ is a non-stoichiometric metal oxide. 18. The method according to claim 17, wherein the metal oxide in the metal oxide layer is selected from the group consisting of HfOx, Cu〇x, Ni〇x, ΖΓ〇χ, 啊, wind and l ton. To X less 16 1357149 P51950189TW 23030twf.doc/n 一種金屬氧化物。 19.如申請專利範圍第18項所述之電阻式記憶體,其 中該金屬氧化層包括該金屬氧化物的混層或疊層。 17P51950189TW 23030twf.doc/n A metal oxide. 19. The resistive memory of claim 18, wherein the metal oxide layer comprises a mixed layer or layer of the metal oxide. 17
TW96109879A 2007-03-22 2007-03-22 Resistance random access memory and fabricating me TWI357149B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96109879A TWI357149B (en) 2007-03-22 2007-03-22 Resistance random access memory and fabricating me

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96109879A TWI357149B (en) 2007-03-22 2007-03-22 Resistance random access memory and fabricating me

Publications (2)

Publication Number Publication Date
TW200840020A TW200840020A (en) 2008-10-01
TWI357149B true TWI357149B (en) 2012-01-21

Family

ID=44821035

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109879A TWI357149B (en) 2007-03-22 2007-03-22 Resistance random access memory and fabricating me

Country Status (1)

Country Link
TW (1) TWI357149B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305033B2 (en) 2014-09-19 2019-05-28 Winbond Electronics Corp. Resistive random access memory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397152B (en) 2008-09-25 2013-05-21 Nanya Technology Corp Rram with improved resistance transformation characteristic and the method of making the same
CN101728480B (en) * 2008-10-17 2013-05-08 南亚科技股份有限公司 Resistance type random access memory structure and manufacturing method thereof
US9230647B2 (en) 2013-12-27 2016-01-05 Taiwan Semiconductor Manufacturing Co., Ltd. Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305033B2 (en) 2014-09-19 2019-05-28 Winbond Electronics Corp. Resistive random access memory

Also Published As

Publication number Publication date
TW200840020A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
CN104253159B (en) Thin film transistor (TFT) and preparation method, array base palte and preparation method and display device
TWI271866B (en) Thin film transistor and process thereof
TW508808B (en) Stacked type capacitor structure and its manufacturing method
TW201112315A (en) Direct contact in trench with three-mask shield gate process
TWI334630B (en) Semiconductor device and method for fabricating the same
TWI681541B (en) Semiconductor device having memory cell strucutre and method of manufacturing the same
WO2015027588A1 (en) Thin-film transistor and preparation method therefor, array substrate and preparation method therefor, and display device
TWI357149B (en) Resistance random access memory and fabricating me
TW200847404A (en) Flash memory device and method for fabricating thereof
TWI229411B (en) Method of manufacturing a semiconductor device
TW200910602A (en) Display element and method of manufacturing the same
TW200822232A (en) Thin film transistor and fabrication method thereof
TWI326790B (en) Method of fabricating a thin film transistor of a thin film transistor liquid crystal display and method of fabricating a transistor liquid crystal display
TWI277216B (en) Pixel structure and thin film transistor and fabrication methods thereof
TW200401463A (en) Metal-insulator-metal (MIM) capacitor and method for fabricating the same
TW200421540A (en) Method of filling bit line contact via
TWI328872B (en) Resistive random access memory and method for fabricating the same
TW412764B (en) Manufacturing method of the double layer metal capacitor
TWI321362B (en) Semiconductor structures and fabrication method thereof
TWI627773B (en) Semiconductor structure and method for forming the same
TW200840022A (en) Phase-change memory devices and methods for fabricating the same
TW200923970A (en) Al alloy film, electronic device, and active matrix substrate for use in electrooptic display device
TWI302378B (en) Semiconductor device and fabricating method thereof
JP3489660B2 (en) Method for precious metal electrode contacts with silicon
JP3630334B2 (en) Manufacturing method of semiconductor device