TWI356455B - Semiconductor device and method of making the same - Google Patents

Semiconductor device and method of making the same Download PDF

Info

Publication number
TWI356455B
TWI356455B TW95124439A TW95124439A TWI356455B TW I356455 B TWI356455 B TW I356455B TW 95124439 A TW95124439 A TW 95124439A TW 95124439 A TW95124439 A TW 95124439A TW I356455 B TWI356455 B TW I356455B
Authority
TW
Taiwan
Prior art keywords
layer
metal
dielectric layer
gold
substrate
Prior art date
Application number
TW95124439A
Other languages
Chinese (zh)
Other versions
TW200805488A (en
Inventor
Tuung Luoh
Ling Wuu Yang
Kung Chao Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95124439A priority Critical patent/TWI356455B/en
Publication of TW200805488A publication Critical patent/TW200805488A/en
Application granted granted Critical
Publication of TWI356455B publication Critical patent/TWI356455B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

竹年r月,?日修(更)正I函99-5-17 九、發明說明: -— 【發明所屬之技術領域】 本發明是有關於一種半導體元件和製造方法,且特別是有 關於種半導體元件,其包含金屬配線層(metal ^池培㈣的、 在配線層上包含氧和矽的金屬間介電層、用以改進可靠佺 (rdiability)而不會對半導體造成電漿損傷(plasma damage)的金 屬間介電(inter-metaldielectric ’ IMD)層,和位於金屬間介電層 上的氧化層’且本發明還是一種有關前述半導體元件的製造方 法。 【先前技術】 两费度積體電路(integrated circuits,1C)由形成於半導體基 底中和形成於半導體基底上的元件(例如場效應電晶體 (fiied-effecttransistors ’ FETs)和雙極性元件)構成,且包含多層 内連結構’内連結構形成與各種元件的連接並形成各種元 件之間的連接。另外’許多高密度積體電路包含緊密間隔的元 件陣列’元轉赌由形成於基底和元件上的平行配線線路的 個或個以上陣列進行存取,並連接到這些陣列。 …,為實現多個配線層之間的連接,垂直内連線(例如“介層 窗或“插塞,,)形成於第一層配線線路的頂部與第-芦魂 線路的底部之間,並#由金屬 明習知的不著陸介層窗(unlanded via)的形成。 圖1表示半導體基底應,其上形成有圖案化的第一層金 —配線層110。為誠起見’未赠半導縣底⑽與圖案化 弟層金屬配線層110之間的主動元件的元件區域。通常了如 1356455 98-03-23Bamboo year r month,?日修(更)正I函99-5-17 IX. Description of the Invention: -—Technical Field of the Invention The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device including Metal wiring layer (metal ^ dielectric (IV), an inter-metal dielectric layer containing oxygen and germanium on the wiring layer, an intermetallic dielectric layer for improving reliable rdiability without causing plasma damage to the semiconductor An inter-metaldielectric 'IMD layer, and an oxide layer on the inter-metal dielectric layer' and the present invention is also a method for fabricating the aforementioned semiconductor device. [Prior Art] Two-step integrated circuits (integrated circuits, 1C) consisting of elements (eg, field-effect transistors (FETs) and bipolar elements) formed in and formed on a semiconductor substrate, and comprising a plurality of interconnected structures 'interconnected structures formed with various components The connections and the connections between the various components. In addition, 'many high-density integrated circuits contain closely spaced arrays of elements' meta-gambling formed by the base and the element One or more arrays of parallel wiring lines are accessed and connected to the arrays. ...to achieve a connection between a plurality of wiring layers, vertical interconnects (eg, "via" or "plug", ) formed between the top of the first layer wiring line and the bottom of the first-Lushi line, and # is formed by the metal-free unlanded via. Figure 1 shows the semiconductor substrate, on which A patterned first layer of gold-wiring layer 110 is formed. For the sake of good faith, the component area of the active element between the semi-conducting bottom (10) and the patterned sub-layer metal wiring layer 110 is not provided. Usually, such as 1356645 98- 03-23

Ti/TiN阻障層(barrier layer)120的阻障層會形成在於圖案化的 第一層金屬配線層110上。在第一層配線線路形成之後,提供 金屬間介電(IMD)層130,例如高密度電漿 plasma,HDP)氧化層。這些金屬間介電層包含在配線線路給 定層的内金屬圖案之間的HDP氧化沉積期間形成的不良的空 隙區域140。隨後使用電漿增强化學氣相沉積 chemical vapor deposition,PECVD)製程以在 imd 層 130 上沉 積氧化層150。在對PECVD氧化層150進行化學機械研磨 (chemical mechanical polishing,CMP)(以减少表形變化 (topographical variation)160)之後,形成覆蓋氧化層(c^ed oxidelayer)200,如圖 2所示。 如圖3所示,為修補化學機械研磨後所產生之缺陷,會先 在覆蓋乳化層200上形成一層修補層2〇1,其通常為lpteos 或者PECVD氧化層。接著,穿過uvq)層13〇形成一個介層 窗侧開口 3GG,以形成—介層窗,從而暴露第—層配線線路 末端的-部分。然後,提供金屬(未圖示⑽填充介層窗,且隨 後於介層窗内的金屬插塞上形成配線線路(未圖示)以完成連 接。在習知的介層窗形成製程中,難以避免由過度钱刻 (overetching)介層窗槽所導致的對底層主動元件區域和/或基 底區域的損傷。在HDP氧化沉積關形成的空祕域14〇 ^ 存在也使習知介層窗形成製程中的問題加劇。 这是因為通常將介層窗蝕刻製程設計為包含充足水平 (^sufflcientlevel)的過度蝕刻,以確保在介層窗蝕刻製程中暴露 第-層配料路的表面。轉絲或其他终點㈣帅雜測 6 98-03-23 技術來奴介層絲膽程的終點通技不切實際的。因此, 可能難以用滿意的可靠性來探測_終點。出於必要性,介層 窗侧常為蚊_簡作,其藉由設計而合並了預定水平^ ,仗而可能對底層的主動元件區域和/或基底區域引 起貝知。工隙14G的存在則提供—個侧到配線層110水平以 下亚f入基底_中的不良捷徑。而且,常在UV f漿中執行 層固姓刻,使底層氧化膜(例如間極氧化膜)因W電渡而退 ^由圖3中的區域31〇表示示範性的對基底的介層窗侧損 傷0 除了過度飯刻損傷問題之外,當使配線線路具有接近於或 處於在處_間❹的特定平版印刷設備(lithography equipm^it)的分辨率極限(res〇luti〇n此的的寬度時將狼可能 ’成不著时層窗。不著齡層窗為垂助連結構,其延伸越 過即將形朗f連接的金屬配線線路或其他導體的邊緣。因為 ,成的W層_具有約等於其所接觸的配線線路的寬度,所以不 ^陸"層自在習知半導體1(:製程中通常是不可避免的。介層 _的任何對準錯誤都可能引起介層窗的—部分位於超過配線 線路的邊緣處,且因此使介層窗不著陸。圖3中的介層窗姓刻 開口 300說明不著陸介層窗的樣子。 、在不著陸介層窗的情况下,如圖3所示,介層窗的部分安 置成部分離開金屬配線線路,並向下延伸到金屬配絲路的表 面水平以下。此表面水平以下的金屬配線線路的側面隨後在蝕 刻期間暴露。這些暴露區域通常具有較高的高寬比(aspect ratio) ’並可延伸入基底中,如圖3中的區域所示。另外, 1356455 99-5-17 暴露區域缺少蝕刻停止(etch-stop)材料,且如果金屬配線線路 和基底在介層窗形成期間被過度蝕刻’則鄰近金屬配線線路的 元件可能會出現故障》 因此’不著陸介層窗可在金屬層之間引入弱連接boor connection)。另外,不著陸介層窗可捕獲雜質,並可在金屬層 之間幵>成寄生電阻(P扯asitic electrical resistance)。而且,弱介 層1^接觸可為次微米(submicron)元件中的重要故障模式。 。因此’需要防止穿過金屬間介電層的蝕刻和對底層元件的 電漿蝕刻損傷,以改進具有不著陸的元件的可靠性。 本發明針對克服現有技術中的一個或一個以上問題。 【發明内容】 在以下描述中將陳述本發明的額外特徵和優點,這些特徵 !:優點從描述巾刊黯出,或可藉由本發_實踐而瞭解。A barrier layer of a Ti/TiN barrier layer 120 is formed on the patterned first metal wiring layer 110. After the formation of the first wiring layer, an inter-metal dielectric (IMD) layer 130, such as a high density plasma plasma (HDP) oxide layer, is provided. These inter-metal dielectric layers comprise poor void regions 140 formed during HDP oxide deposition between the inner metal patterns of a given layer of wiring lines. A plasma enhanced chemical vapor deposition (PECVD) process is then used to deposit oxide layer 150 on imd layer 130. After chemical mechanical polishing (CMP) of the PECVD oxide layer 150 (to reduce the topographical variation 160), a cap oxide layer 200 is formed, as shown in FIG. As shown in Fig. 3, in order to repair the defects generated after the chemical mechanical polishing, a repair layer 2〇1, which is usually an lpteos or PECVD oxide layer, is first formed on the cover emulsion layer 200. Next, a via window side opening 3GG is formed through the uvq) layer 13 to form a via, thereby exposing the - portion of the end of the first layer wiring line. Then, a metal (not shown (10) is filled in the via, and then a wiring line (not shown) is formed on the metal plug in the via to complete the connection. In the conventional via forming process, it is difficult Avoid damage to the underlying active device region and/or the substrate region caused by excessive overetching of the vias. The presence of the HDF oxidized deposition layer also causes the formation of conventional vias. The problem in the process is exacerbated. This is because the via etch process is typically designed to include a sufficient level of over-etching to ensure that the surface of the first-layer dosing path is exposed during the via etch process. Other end points (four) handsome miscellaneous 6 98-03-23 technology to the slave layer of the biliary end of the end of the technique is unrealistic. Therefore, it may be difficult to detect the _ end point with satisfactory reliability. For necessity, The side of the window is often a mosquito, which is designed to incorporate a predetermined level ^, which may cause a knowledge of the active element area and/or the base area of the bottom layer. The presence of the gap 14G provides a side to Wiring layer 110 level below subf A poor shortcut in the substrate _. Moreover, the layering of the underlying oxide film (for example, the inter-polar oxide film) is often performed in the UV f slurry, and is represented by the region 31 图 in FIG. The damage to the substrate side of the substrate is 0. In addition to the problem of excessive meal damage, when the wiring line is made close to or at the resolution limit of the lithography equipm^it (res 〇luti〇n the width of this wolf may not be able to form a layered window. The age-old window is a vertical support structure, which extends beyond the edge of the metal wiring line or other conductor that will be connected. , the W layer _ has a width equal to the width of the wiring line to which it is contacted, so the layer is free from conventional semiconductors 1 (the process is usually unavoidable. Any alignment error of the layer _ may be The portion that causes the via is located beyond the edge of the wiring line, and thus the via does not land. The via window in Figure 3 has an opening 300 indicating the absence of a landing window. In the case of a window, as shown in Figure 3, the window The portion is disposed to partially exit the metal wiring line and extends downward below the surface level of the metal distribution line. The side of the metal wiring line below the surface level is then exposed during etching. These exposed areas generally have a high aspect ratio. (aspect ratio) 'and can be extended into the substrate as shown in the area in Figure 3. In addition, the 1356455 99-5-17 exposed area lacks etch-stop material, and if the metal wiring line and substrate are in the middle When the layer window is formed, it is over-etched' then the components adjacent to the metal wiring line may malfunction. Therefore, the 'no landing via window may introduce a weak connection boor connection between the metal layers. In addition, the non-landing via window can capture impurities and can be made into a parasitic resistance between the metal layers. Moreover, the weak intervening layer can be an important failure mode in submicron elements. . Therefore, it is necessary to prevent etching through the inter-metal dielectric layer and plasma etching damage to the underlying member to improve the reliability of the component having no landing. The present invention is directed to overcoming one or more problems in the prior art. SUMMARY OF THE INVENTION Additional features and advantages of the invention will be set forth in the description which follows.

Ltfr描述和糊要求以及關中特定指出的半導體元件 Μ冓和製造方法將可實現域得本發明㈣徵和優點。 ,實現這些和其他優點,且根據所實施和廣泛描述的本發 的’提供—種半導體元件,包括—絲底、—層圖案化 3荦化層給其提供於基底上、—層金屬間介電層,其位於 =上和周圍並直接接觸在圖案化金屬配線層 盆中:夕為高密度電卿p)層並包含氧和矽, 义率超過卜和—層氧化層,其形成於 至屬間;丨电層上。在金屬間介電層盥 、; -層圖據it明的還金^ _ =忠的气屬配線層’其提供於基底上、 1356455 99-5-17 位於圖案化金屬配線層上和周圍並直接接觸 j上,其令金屬間介電層為高密度電聚(HDp)層配線 八中石夕原子對氧原子的比率超過丨、—層氧、,^ 乳和石夕’ 間介電層上’金屬間介電層和氧化層共:個=成^金屬 不著陸介層窗,其深度延伸到金屬間 度、和一個 厚度。在金屬間介電層與氧“4有層Ϊ面前述; 界面疋元全位於圖案化的金屬配線層之頂面以上界面,^個 根據本發明另提供一種製造半導體 7個ί底’再在基底上形成-層圖案化匕包=供 在圖案化金屬配線層上和周圍形成。然後, 成的金屬間介電層包含社人丨電層’其中形 率超過卜接著對全屬°門口人乳其中石夕原子對氧原子的比 於金屬間介電層的頂面上形成一層氧化層線層之頂面以上,再 ,據本發明又提供—種製造半導體元件的 基底上形成—層圖案化的金屬配線二秋t ,成的金·介電層包含結合氧㈣,且;其中 間”电層的項面元全位於圖案化的金屬配 之孟屬 於金屬間介電層的頂面上形成氧化層。然後上」再 介層窗’其深度延伸到金屬間介電層和氧^ ^著陸 於前述厚度。 a々軋化赝肀,刖述深度小 應瞭解,上述-般性描述和以下詳細描 釋性2 是用於提供所主張的本發明的進—步解ί和解 僅,下述和其他目的、雜和優點能更明& ί實祕純例,細哈卿时,轉喊明如2 9 1356455 98-03-23 前述厚度。 應瞭解’上述一般性描述和以下詳細描述都是示範性和解 釋f生的,並且是用於提供所主張的本發明的進一步解釋。 ^為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂’下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 現將對本發明的實施例進行詳細參考,在附圖中說明本發 月的只例。在任何可能之處’全部附圖中將使用相同參考數字 來表示相同或類似的部分。 與本發明相一致的實施例提供在半導體元件的不著陸介 層窗中的富含石夕氧化物(silicon_rich oxide,SR〇)金屬間介電 (Π^))及其製造方法。SRO層充當蝕刻停止層以防止不著=介 層囪牙過IMD層’並因此克服與先前播述的習知不著陸介層窗 相關的問題,且改進元件可靠性和製造產量(yidd)。此外:用 於本發明的SRO具有比習知HDP氧化層更高的消光係數 (extinctioncoefficient,以“k”表示),從而有效防止電漿蝕刻 損傷和過多的空隙形成(void formation)。本發明例如適用於 FLASH' DRAM^nOTP (〇ne Time Programmable) PROM^.% ° 為解决與以上論述的習知方法有關的和與本發明的一方 面一致的問題’以下將請參照圖4到圖6來描述與本發明一致 的半導體元件的製造方法。 " 圖4表示半導體基底4〇〇 ’其上形成有圖案化的第一層金 屬配線層410。為簡潔起見,未描缘基底4〇〇與圖案化第一層 金屬配線層410之間的主動元件區域。通常,如Ti/TiN阻^ 1356455 98-03-23 層420的阻障層形成於配線層備上。在第一層配線線路形成 之後,提供金屬間介電(IMD)層43〇。IMD層43〇較佳地為言 密度電漿(HDP)富含矽氧化物(SR〇)。 门 一因此使用Μ)層430將配線層410與鄰近的配線層電學 隔離,並將其用作低介電常數材料(例如“低k電介質以電 學隔離金屬電路。娜層43〇可包含在配線層内金屬圖 案之間的腑SRO沉積_軸的健空隙區域(_也细 air-gap regi〇n)440 ° 與本發明的一方面相一致的IMD層43〇是富含梦的,且 可經形成為包括SRO,其巾SR0忖原子數目與氧原子數目 的比率比si〇2中的比率高得多。因此,IMD層含有大量 懸浮矽鍵結(dangling silicon bonds)。與 Si〇2相比,SRO 具有 較同的光學消光係數。例如,以SR〇形成的^^層43〇對於 小於4〇〇 nm的波長可具有至少為〇 5的光學消光係數。另外、, 以SRO形成的IMD層43〇的消光係數為約1 3到約2 2。 IMD層430可具有約3〇〇到1〇〇〇 nm的厚度,且可使用 化予氣相 >儿積(CVD)技術來形成,例如電漿增强 或高密度電漿化學氣相沉積(HDPCVD)。SiH4與〇2、SiH4與 =2〇、TEOS與〇2,或TEOS與〇3的源氣體組合可用於CVD 製私,且可控制氣體的流動速率以獲得所需要的矽/氧比率。The Ltfr description and paste requirements, as well as the specific semiconductor components and manufacturing methods indicated in the context, will achieve the invention and advantages. Achieving these and other advantages, and according to the embodied and widely described invention, the 'providing a semiconductor element, including a silk bottom, a layer patterned 3 germanium layer, is provided on the substrate, and the layer is intermetallic. An electric layer, located at and around and directly in contact with the patterned metal wiring layer basin: a layer of high-density electric layer p) and containing oxygen and yttrium, the probability of exceeding the wa and layer oxide layer formed at Between the genus; In the inter-metal dielectric layer ;, - the layer diagram according to it, the gold _ = loyal gas wiring layer 'is provided on the substrate, 1356455 99-5-17 is located on and around the patterned metal wiring layer and Directly contacting j, which causes the inter-metal dielectric layer to be a high-density electro-polymerization (HDp) layer. The ratio of the atoms to the oxygen atoms is higher than that of the tantalum, the layer of oxygen, the ^milk, and the Shishi' dielectric layer. 'Inter-metal dielectric layer and oxide layer total: one = metal ^ metal landing window, its depth extends to the intermetallic degree, and a thickness. In the inter-metal dielectric layer and the oxygen "4 layered surface"; the interface unit is located at the top surface of the patterned metal wiring layer, and according to the present invention, another method for manufacturing a semiconductor is provided. Forming a layer on the substrate to form a package = for forming on and around the patterned metal wiring layer. Then, the inter-metal dielectric layer comprises a human-electric layer, wherein the shape rate exceeds that of the entire gate. The top surface of the layer of the oxide layer is formed on the top surface of the intermetallic dielectric layer on the top side of the intermetallic dielectric layer. Further, according to the present invention, a layer pattern is formed on the substrate on which the semiconductor element is fabricated. The metal wiring is formed by the combination of oxygen (4), and the intermediate surface of the intermediate layer is located on the top surface of the intermetallic dielectric layer. An oxide layer is formed. The upper "re-layered window" then extends to the inter-metal dielectric layer and the oxygen landing to the aforementioned thickness. a rolling enthalpy, the depth of the description is small, it should be understood that the above-described general description and the following detailed description 2 are for providing the proposed further steps and solutions of the present invention, only the following and other purposes, Miscellaneous and advantages can be more clear & ί real secrets, fine haqing, shouting as clear as 2 9 1356455 98-03-23 the aforementioned thickness. The above general description and the following detailed description are intended to be illustrative and illustrative and are intended to provide a further explanation of the claimed invention. The above and other objects, features, and advantages of the present invention will become more apparent and understood. [Embodiment] Reference will now be made in detail to the embodiments of the invention, Wherever possible, the same reference numerals will be used to refer to the Embodiments consistent with the present invention provide a silicon-rich oxide (SR) intermetallic dielectric (Π) in a non-landing via window of a semiconductor device and a method of fabricating the same. The SRO layer acts as an etch stop layer to prevent the interlayer from passing through the IMD layer' and thus overcomes the problems associated with previously described conventional landing screens, and improves component reliability and manufacturing yield (yidd). Further, the SRO used in the present invention has a higher extinction coefficient (expressed as "k") than the conventional HDP oxide layer, thereby effectively preventing plasma etching damage and excessive void formation. The present invention is applicable, for example, to FLASH' DRAM^nOTP (〇ne Time Programmable) PROM^.% ° to solve the problems associated with the conventional methods discussed above and consistent with an aspect of the present invention. Fig. 6 depicts a method of fabricating a semiconductor device consistent with the present invention. " Fig. 4 shows a semiconductor substrate 4' on which a patterned first metal wiring layer 410 is formed. For the sake of brevity, the active element regions between the unpatterned substrate 4 and the patterned first metal wiring layer 410 are patterned. Generally, a barrier layer such as a Ti/TiN resistor 1356455 98-03-23 layer 420 is formed on the wiring layer. After the formation of the first wiring line, an inter-metal dielectric (IMD) layer 43 is provided. The IMD layer 43 is preferably a high density plasma (HDP) rich in cerium oxide (SR 〇). The gate 1 thus uses the Μ) layer 430 to electrically isolate the wiring layer 410 from the adjacent wiring layer and use it as a low dielectric constant material (eg, "low-k dielectric to electrically isolate the metal circuit. Naa 43" can be included in the wiring The 腑SRO deposition between the metal patterns in the layer _ the hard-spaced area of the axis (_also air-gap regi〇n) 440 ° The IMD layer 43 一致 consistent with one aspect of the invention is dream-rich and can be Formed to include SRO, the ratio of the number of atoms of the SR0 与 to the number of oxygen atoms is much higher than the ratio in the number of oxygen 。 2. Therefore, the IMD layer contains a large amount of dangling silicon bonds. The SRO has a similar optical extinction coefficient. For example, the layer 43 〇 formed by SR 可 may have an optical extinction coefficient of at least 〇 5 for a wavelength of less than 4 〇〇 nm. In addition, an IMD formed by SRO The extinction coefficient of layer 43A is from about 13 to about 22. The IMD layer 430 can have a thickness of about 3 Å to 1 〇〇〇 nm and can be formed using a chemical vapor phase > CVD technique. For example, plasma enhanced or high density plasma chemical vapor deposition (HDPCVD). SiH4 and 〇2, SiH4 and = 2〇, TEOS and 〇2, or a combination of TEOS and 源3 source gases can be used for CVD, and the gas flow rate can be controlled to achieve the desired enthalpy/oxygen ratio.

、作為實例,可使用包含SiH4、〇2和Ar的源氣體藉由CVD 來形成IMD層430使其具有700 nm的厚度,其中SiH4、〇2 和Ar的;^動速率分別為約5〇 sccm(每分鐘標準立方厘米 (standard cubic centimeters per minute))、約 100 冗咖和約 5〇 11 1356455 98-03-23 seem,其_ RF功率約為3_ w。Q此,狐流動速率伽w rate) 與〇2流動速率的比率近似為1/2。在這些條件下形成的氧化物 具有在248 rnn波長處近似為0的消光係數。 請繼續參照圖4,隨後可使用PECVD製程以在細層 43〇上沉積層45〇。靴化層執行化學顧研磨(⑽曰 以减少表形變化460並使IMD層43〇平坦化。在氧化層45〇 的CMP之後’形成覆蓋氧化層5〇〇,如圖$所示。 請參照圖6,隨後藉由侧介層窗細開〇 _而形成介 層®其牙過覆蓋氧化層5〇〇和麵^層43〇的一部分。較俨 t介層窗_可與金屬層轉壁細 、見度類似(例如為2_㈣’以提供麟垂直内連的適當著 二(hg)這道餘刻暴露介層窗内第一層配線線路410和阻 障層420的末端的一部分。較佳地’可使用70 Sccm的ch3F、 的CF4和1〇〇 sccm的Ar的混合物,藉由電聚 ?如人幹式_製程)來完成侧。接著,提供金屬(未圖$ ==層窗i隨後在介層胃内的金屬_上形成配線線路 ”接。較佳地,此金屬為銅(〇〇、!_)或鎢(W),或 …组it 1且可藉由習㈣程來形成,例如CVD或鑲嵌填充。 參照圖6’區域61〇說明在介層窗侧開口 _的 間暴露的偶然空隙區域44㈣一部分。區域62〇說明介 _的另—部分’以證赚刻製程並未過度钱刻 ===空隙區域440且進入基底樣中。因此SR0細 Μ ΐ '軸峰止層’因為其對㈣侧具有崎習知HDP 乳S低的钱刻速率。此較低的钱刻速率考慮了介層窗钱刻 12 1356455 98-03-23 和不著陸中的容限,並使對底層主動元件區域、金屬配線層或 基底的損傷降至最低。SRO IMD層430的較低敍刻速率是由 於其較高矽含量而導致的。As an example, the IMD layer 430 can be formed by CVD using a source gas containing SiH4, 〇2, and Ar to have a thickness of 700 nm, wherein SiH4, 〇2, and Ar are respectively about 5 〇sccm. (standard cubic centimeters per minute), about 100 verbs and about 5 〇 11 1356455 98-03-23 seem, its _ RF power is about 3 _ w. Q, the ratio of the fox flow rate gamma rate to the 〇2 flow rate is approximately 1/2. The oxide formed under these conditions has an extinction coefficient of approximately 0 at a wavelength of 248 rnn. Continuing to refer to Figure 4, a PECVD process can then be used to deposit a layer 45 on the fine layer 43. The shoe layer performs chemical grinding ((10) 曰 to reduce the morphological change 460 and flatten the IMD layer 43 。. After the CMP of the oxide layer 45 ', the capping oxide layer 5 形成 is formed, as shown in FIG. Figure 6, and then through the side via window to open the 〇 _ to form a layer о a part of the overlying oxide layer 5 〇〇 and the surface layer 〇 43 。 俨 介 介 介 金属 金属 金属The detail is similar (for example, 2_(four)' to provide a proper vertical (hg) of the vertical interconnection of the lining to expose a portion of the end of the first layer wiring line 410 and the barrier layer 420 in the via window. The ground can be completed by using a mixture of 70 Sccm of ch3F, CF4 and 1 〇〇sccm of Ar, by electropolymerization, such as human dry process. Then, metal is provided (not shown $ == layer window i Then, a wiring line is formed on the metal _ in the interlayer stomach. Preferably, the metal is copper (〇〇, !_) or tungsten (W), or ... group it 1 and can be used by Xi (4) Forming, for example, CVD or damascene filling. Referring to Figure 6 'region 61 〇, a portion of the incidental void region 44 (four) exposed between the vias _ is illustrated. The other part of _ is not excessively engraved === void area 440 and enters the base sample. Therefore, SR0 is fine ΐ 'Axis peak stop layer' because it has a familiar HDP milk on the (four) side S low money engraving rate. This lower money engraving rate considers the tolerance of the meso window and the non-landing tolerance, and makes the underlying active device area, metal wiring layer or substrate Damage is minimized. The lower scribe rate of the SRO IMD layer 430 is due to its higher enthalpy content.

因此,根據本發明,SRO IMD層充當蝕刻停止層以防止 即使在存在含有空隙的區域的情况下不著陸介層窗仍完全穿 過IMD層,並因此改進元件可靠性和製造產量。這部分是因 為SRO IMD層具有比習知IMD層更低的蝕刻速率。此外, 用於本發明的SR0具有比習知HDP氧化層更高的消光係數 (k),從而有效防止進一步的電漿後端蝕刻(backend 的損傷 和過多的空隙形成。 、 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域t具有通常知識者,在不脫離本發 明,,神和範圍内,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】Therefore, according to the present invention, the SRO IMD layer acts as an etch stop layer to prevent the landing layer window from completely passing through the IMD layer even in the presence of a region containing voids, and thus improve component reliability and manufacturing yield. This is partly because the SRO IMD layer has a lower etch rate than the conventional IMD layer. Furthermore, the SR0 used in the present invention has a higher extinction coefficient (k) than the conventional HDP oxide layer, thereby effectively preventing further plasma back end etching (backend damage and excessive void formation), although the present invention has The preferred embodiments are disclosed above, but are not intended to limit the present invention, and any one of ordinary skill in the art can be modified and retouched without departing from the scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. [Simplified description]

圖1到圖3說明習知不著陸介層窗形成的方法的剖面示意 已改進不著陸介層窗形 圖4到圖6說明與本發明相一致的 成方法的剖面示意圖。 【主要元件符號說明】 100、400 :基底 110、410 :金屬配線層 120、420 :阻障層 130、430 :金屬間介電層 13 1356455 98-03-23 140、440 :空隙區域 150、450 :氧化層 160、460 :表形變化 200、500 :氧化層 201 :修補層 300、600 :介層窗蝕刻開口 310、610、620 :區域 440 :空隙區域BRIEF DESCRIPTION OF THE DRAWINGS Figures 1 through 3 illustrate cross-sectional views of a conventional method for forming a landing window. Improved Landing Membrane Patterns. Figs. 4 through 6 illustrate cross-sectional views of a method consistent with the present invention. [Main component symbol description] 100, 400: substrate 110, 410: metal wiring layer 120, 420: barrier layer 130, 430: intermetal dielectric layer 13 1356455 98-03-23 140, 440: void region 150, 450 : oxide layer 160, 460: morphological change 200, 500: oxide layer 201: repair layer 300, 600: via etch opening 310, 610, 620: region 440: void region

1414

Claims (1)

1356455 99-5-17 十、申請專利範圍: 1. 一種半導體元件,包括·· 一基底; -圖案化的金屬配線層,提供於該基底上; -金制介電層,位於案化金屬 接接觸在該圖案化金屬配線層上,周圍亚直 其中該金屬間介電層為高密度電裝(HDP) 石夕’其付原子職原子的轉超過i;以及 ^ 一氧化層,形成於該金屬間介電層上, 其中在該金屬齡電層與魏化層之財—界面, 完全位於該_化的金屬§£線層之頂倾上。 … 2.如申請專利範圍第1項所述之半導體it件,其中該圖幸 化金屬配線層包含銅,和金其中至少—者,該金屬配 包括-阻擋金屬層,雜擋金柄包含鈦和氮化鈦其中至^一 者 3_如申請專利範圍第i項所述之半導體元件,其中該 間介電層的消光係數為1.3到2.2 4· 一種半導體元件,包括: 一基底; 一圖案化的金屬配線層,提供於該基底上; -金屬間介電層’位於棚案化金屬配縣上和周圍並直 接接觸在該圖案化金屬配線層上, 其t該金屬間介電層為高密度電漿(HDp)層並包含氧和 矽,其中矽原子對氧原子的比率超過工; 15 1356455 99-5-17 一氧化層,形成於該金屬間介電層上, 其中在該金制介電層與魏化層之 完全位於該圖案化的金屬配線層之頂面以上 該金屬間介電層和氧化層共同具有—個厚声. 射該氧化 化金 ^括-阻擋金屬層’該阻擋金屬層包含鈦和氮化欽其令至^一 者0 屬 6.如申請專利範圍第4項所述之半導體 間介電層的消光係數為1.3到2.2。 元件,其中該金 、7·如申請專利範圍第4項所述之半導體元件,其中一空 隙介電區_尺寸由該金介電層_充特徵來决定。工 8. —種製造半導體元件的方法,包括: 提供一基底; 在該基底上形成一圖案化的金屬配線層; 在該圖案化金屬配線層上和周圍形成一金屬間介電層, ^其中形成該金屬玷介電層包含結合氧和矽,其中矽原子對 氧原子的比率超過1 ; 對該金屬間介電層執行化學機械研磨,使該金屬間介電層 的頂面完全位於該圖案化的金屬配線層之頂面以上;以及 在δ玄金屬間介電層的頂面上形成一氧化層。 9.如申請專利範圍第8項所述之製造半導體元件的方 16 99-5-17 法’=形成該圖案化金屬酉己線層包含沉積銅、師金其中至 並1積—阻擔金屬層,該阻擋金屬層包含欽和氮化鈇 兵千主少一者。 10.如申請專利範圍第8項所述之製造半導體 法’射職歸制介以㈣ (HDP)沉積製程。 又宅氷 ,Π.如中請專概’ 8項所述之製造半導體元件的方 法、、中該金屬間介電層的消光係數為13到2·2。 12.種製造半導體元件的方法,包括: 提供一基底; 在該基底上形成-圖案化的金屬配線詹; 在該圖案化金屬配線層上和周圍形成一金屬間介電層, 其中形成該金屬間介電層包含結合氧和矽,矽原子對 子的比率超過1 ; '、 對該金屬間介電層執行化學機械研磨,使該金屬間介電層 的頂面完全位於該圖案化的金屬配線層之頂面以上;9 人在該金制介電層_面上軸-氧化層,其巾.該金屬間 )丨電層和氧化層共同具有一個厚度;以及 =形成—不麵介層窗,魏歧侧該金制介電層和該 氧化層中,該深度小於該厚度。 Λ 丨3‘如申請專利範圍第12項所述之製造半導體元件的方 ^ ’其中形成該圖案化金屬酉己線層包含沉積銅、铭和金其中至 ^中者,’ι並沉積一阻擋金屬層,該阻擋金屬層包含鈦和氮化鈦 17 1356455 99-5-17 14. 如申請專利範圍第12項所述之製造半導體元件的方 法,其中形成該金屬間介電層的方法包含進行高密度電漿 (HDP)沉積製程。 15. 如申請專利範圍第12項所述之製造半導體元件的方 法,其中該第一氧化層金屬間介電層的消光係數為1.3到2.2。 181356455 99-5-17 X. Patent application scope: 1. A semiconductor component comprising: · a substrate; - a patterned metal wiring layer provided on the substrate; - a gold dielectric layer, located in the case of a metal connection Contacting on the patterned metal wiring layer, the surrounding sub-straight, wherein the inter-metal dielectric layer is a high-density electrical device (HDP), Shi Xi's atomic atomic turn exceeds i; and an oxide layer is formed thereon On the inter-metal dielectric layer, in the financial-interface of the metal-aged electrical layer and the Weihua layer, it is completely located on the top of the θ-shaped metal layer. 2. The semiconductor device of claim 1, wherein the metallization layer of the graph comprises copper, and at least one of gold, the metal includes a barrier metal layer, and the gold barrier comprises titanium. And a semiconductor element according to the invention of claim 1, wherein the dielectric layer has an extinction coefficient of 1.3 to 2.2 4. A semiconductor element comprising: a substrate; a pattern a metal wiring layer is provided on the substrate; - an intermetal dielectric layer is located on and around the shed metal distribution and directly contacts the patterned metal wiring layer, wherein the inter-metal dielectric layer is a high-density plasma (HDp) layer comprising oxygen and helium, wherein a ratio of germanium atoms to oxygen atoms is exceeded; 15 1356455 99-5-17 an oxide layer formed on the intermetal dielectric layer, wherein the gold The dielectric layer and the Weihua layer are completely above the top surface of the patterned metal wiring layer. The inter-metal dielectric layer and the oxide layer together have a thick sound. The oxidized gold-blocking metal layer is emitted. The barrier metal layer comprises titanium and nitride Which makes a person to ^ 0 genus 6. The semiconductor between the item 4 of the scope of patent extinction coefficient of the dielectric layer is 1.3 to 2.2. The element, wherein the gold element is a semiconductor element as described in claim 4, wherein a gap dielectric region size is determined by the gold dielectric layer. 8. A method of fabricating a semiconductor device, comprising: providing a substrate; forming a patterned metal wiring layer on the substrate; forming an intermetal dielectric layer on and around the patterned metal wiring layer, wherein Forming the metal tantalum dielectric layer comprising combining oxygen and helium, wherein a ratio of germanium atoms to oxygen atoms exceeds 1; performing chemical mechanical polishing on the intermetal dielectric layer such that a top surface of the intermetal dielectric layer is completely located in the pattern Above the top surface of the metal wiring layer; and forming an oxide layer on the top surface of the δ inter-metal dielectric layer. 9. The method of manufacturing a semiconductor device according to the invention of claim 8 is a method of manufacturing a semiconductor component. The method of forming a patterned metal germanium layer comprises depositing copper, and the metal is added to the first metal-blocking metal. The layer, the barrier metal layer comprises one of the Qin and the nitrites. 10. The method of manufacturing a semiconductor method as described in claim 8 of the patent application is directed to a (4) (HDP) deposition process. Also, house ice, Π. Please refer to the method of manufacturing a semiconductor device as described in the eighth item, and the extinction coefficient of the inter-metal dielectric layer is 13 to 2.2. 12. A method of fabricating a semiconductor device, comprising: providing a substrate; forming a patterned metal wiring on the substrate; forming an intermetal dielectric layer on and around the patterned metal wiring layer, wherein the metal is formed The intervening dielectric layer comprises a combination of oxygen and lanthanum, the ratio of ytterbium atoms to more than one; ', performing chemical mechanical polishing on the intermetal dielectric layer such that the top surface of the intermetal dielectric layer is completely located on the patterned metal Above the top surface of the wiring layer; 9 people in the gold dielectric layer _ surface axis - oxide layer, the cloth. The metal between the enamel layer and the oxide layer have a thickness; and = formation - non-face layer The window, the gold dielectric layer and the oxide layer on the Wei side, the depth is less than the thickness. Λ 丨 3', as in the manufacture of a semiconductor component according to claim 12, wherein the patterned metal ruthenium layer comprises deposited copper, inscriptions and gold, wherein "imposed and blocked" A method of fabricating a semiconductor device according to claim 12, wherein the method of forming the inter-metal dielectric layer comprises performing a method of fabricating a semiconductor device as described in claim 12, wherein the barrier metal layer comprises titanium and titanium nitride. High density plasma (HDP) deposition process. 15. The method of fabricating a semiconductor device according to claim 12, wherein the first oxide layer intermetal dielectric layer has an extinction coefficient of 1.3 to 2.2. 18
TW95124439A 2006-07-05 2006-07-05 Semiconductor device and method of making the same TWI356455B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95124439A TWI356455B (en) 2006-07-05 2006-07-05 Semiconductor device and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95124439A TWI356455B (en) 2006-07-05 2006-07-05 Semiconductor device and method of making the same

Publications (2)

Publication Number Publication Date
TW200805488A TW200805488A (en) 2008-01-16
TWI356455B true TWI356455B (en) 2012-01-11

Family

ID=44766105

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95124439A TWI356455B (en) 2006-07-05 2006-07-05 Semiconductor device and method of making the same

Country Status (1)

Country Link
TW (1) TWI356455B (en)

Also Published As

Publication number Publication date
TW200805488A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
TWI278965B (en) Semiconductor device and manufacturing method thereof
US11088020B2 (en) Structure and formation method of interconnection structure of semiconductor device
TWI360181B (en) Semiconductor device and fabrication method thereo
TW541657B (en) Semiconductor device and its fabrication method
TWI271841B (en) Dual damascene with via liner and method for fabricating the same
TW200945495A (en) Semiconductor integrated circuit device and manufacturing method of semiconductor integrated device
TW201118997A (en) Pad structure for semiconductor devices
US9412651B2 (en) Air-gap formation in interconnect structures
US7052990B2 (en) Sealed pores in low-k material damascene conductive structures
TW200428577A (en) Integrated circuit and fabrication method thereof and electrical device
JPH11260917A (en) Barrier layer and its manufacture
US20220367605A1 (en) Method of forming a stress reduction structure for metal-insulator-metal capacitors
TW200532810A (en) Method of manufacturing a semiconductor device having damascene structures with air gaps
JP2001135723A (en) Semiconductor device and method of manufacturing the same
JP3762732B2 (en) Manufacturing method of semiconductor device
TWI356455B (en) Semiconductor device and method of making the same
US11532695B2 (en) Stress reduction structure for metal-insulator-metal capacitors
TW202303759A (en) Method for forming interconnect structure
JP4587604B2 (en) Manufacturing method of semiconductor device
US7777336B2 (en) Metal line of semiconductor device and method for forming the same
US7112537B2 (en) Method of fabricating interconnection structure of semiconductor device
US8664743B1 (en) Air-gap formation in interconnect structures
KR20020056341A (en) Method of forming inter-metal dielectric in a semiconductor device
CN108573912A (en) Semiconductor structure and forming method thereof
US6563221B1 (en) Connection structures for integrated circuits and processes for their formation