TWI355535B - - Google Patents

Download PDF

Info

Publication number
TWI355535B
TWI355535B TW095137880A TW95137880A TWI355535B TW I355535 B TWI355535 B TW I355535B TW 095137880 A TW095137880 A TW 095137880A TW 95137880 A TW95137880 A TW 95137880A TW I355535 B TWI355535 B TW I355535B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
light
polarizing plate
substrate
disposed
Prior art date
Application number
TW095137880A
Other languages
Chinese (zh)
Other versions
TW200730939A (en
Inventor
Yoshihisa Iwamoto
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Publication of TW200730939A publication Critical patent/TW200730939A/en
Application granted granted Critical
Publication of TWI355535B publication Critical patent/TWI355535B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source

Description

1355535 九、發明說明: 【發明所屬之技術區域】 技術區域 本發明係有關於液晶顯示元件(liquid crystal display ; 5 LCD)及其驅動方法。 【先前技術】 背景技術 在段型、點矩陣型、及兩者之複合型液晶顯示元件中, 係調整用於顯示之段部或點部以外之區域(非顯示區域)的 1〇 顯示色,以提高顯示易視度或設計性等。 第8(A)〜(C)圖係概略地顯示可調整非顯示區域之色調 之液晶顯示元件内部結構例的分解透視圖。 參照第8(A)圖,液晶顯示元件的結構包含有相對配置 成大略平行的上側基板50a及下側基板50b、及被挾持於其 15 間之液晶層55。上側基板50a及下側基板50b設有如平板玻 璃基板(上側及下側玻璃基板51a、51b)、在該等平板玻璃基 板相對面上以ITO(indium tin oxide)等透明導電材形成且具 有預定圖案之電極(上側及下側透明電極52a、52b)、及形成 於各電極上之配向膜(上侧及下側配向膜53a、53b)。液晶層 20 55係由如正型介電係數異向性(△£>〇)向列液晶所形成之扭 轉向列液晶層’且藉由上側及下側配向膜53a、53b之摩擦 方向所定之扭轉角係如90°。 在上侧基板50a及下側基板50b外側上,一對上側及下 側偏光板54a、54b係沿摩擦方向配置成正交偏光狀態。上 5 側及下側偏光板54a、54b分別在面向内方向具有穿透軸, 且只供於穿透軸方向偏光之光穿透。在未施加電壓的狀態 下,入射光之偏光方向係依照液晶分子的配向旋轉,然後 穿透偏光板,進行白底顯示。在圖8(A)中,以箭頭表示穿 透軸方向。 多色背光56係配置於下側偏光板54b外側,且多色背光 56係可射出複數色之光的背光,並且使用如RGB多色led 光源。 藉由連接於上側及下側透明電極52a、52b間之電壓施 加機構,可將電壓施加於液晶層55,使液晶分子從水平方 向直立於垂直方向,如此入射光之偏光方向即可不受液晶 層影響,而藉由正交偏光片遮光。 由多色背光56發出、通過液晶層55之光在穿透上側偏 光板52a時,係藉由發出之光色進行「亮」顯示,而在被上 側偏光板54a遮蔽時進行「暗」顯示。 在使用「暗」顯示使顯示部為黑顯示之白底型液晶顯 示元件中’藉由使用可使背光之發光色變化的多色背光, 可任意變化非顯示區域之色調。 請參照第8(B)圖,第8(B)圖所示之液晶顯示元件與第 8(A)圖所示者相比,不同點在於使用上側及下側色偏光板 54c、54d來代替上側及下側偏光板54a、54b,及使用白色 背光57來代替多色背光56。 白色背光57係使用例如冷陰極螢光管(c〇id cathode fluorescent lamp ; CCFL)構成。也有使用無機白色LED(light 1355535 emitting diode)、有機白色LED等構成者。 另外’上側及下側色偏光板54c、54d係配置成正交偏 光狀態。 雖然第8(A)圖之上側及下铡偏光板54a、5仆係如淺灰 5色調的偏光板,但第8(B)圖之上側及下側色偏光板54c、54d 係如利用色素染色之色偏光板。藉由使由白色背光57射出 之光穿透上側及下側色偏光板54c、54d,可將背景色設定 為由上側及下側色偏光板54c、54d所決定之顏色。 參照第8(C)圖’第8(C)圖所示之液晶顯示元件與第8(b) 10圖所示者相比,不同點在於上侧偏光板54a與上側基板50a 之間插有相位差板58。又,藉由插入相位差板58,可調整 非顯不區域的色調。 非顯示區域之色調調整可藉由液晶層厚度、液晶分子 扭轉程度之調整、偏光板、相位差板之組合等進行。 15 另外,在第8(B)及(C)圖所示之液晶顯示元件中,無法 在元件完成後改變非顯示區域之色。 第9 (A)及(B)圖係概略地顯示可調整點部或段部之色 調之液晶顯示元件内部結構例的分解透視圖。 參照弟9(A)圖,第9(A)圖所示之液晶顯示元件與第8(A) 圖所示者相比’不同點在於上側及下側基板5〇a、50b間配 置有區域濾色片(area color filter)60及黑膜59,及使用白色 背光57代替多色背光56。 區域濾色片60係包含例如紅色部60r、綠色部60g、藍 色部60b及白色部60w構成者。在圖示之液晶顯示元件中, 7 藉由使由白色背光57發出之光穿透區域據色片歡相異色 區域(各色部60r,g,b,w),即可顯示複數色。 黑膜59係覆蓋色區域邊界,用以提高對比或色純度而 配置者。 參照第9(B)圖’第9(B)圖所示之液晶顯示元件與第8(A) 圖所示者相比’不同點在於上側及下側偏光板54a、54b配 置成平行偏光。此外,在由多色背光56發出之光於下側偏 光板54b偏光’且依照電壓未施加時之液晶分子的配向狀態 旋轉偏光方向時,會與上側偏光板54a之偏光方向垂直而遮 光。即本圖所示之⑨晶顯示元件係使用多色背光之黑底型 液晶顯示元件。藉由電壓施加時之發光色,可進行複數色 顯示。 幕所周知,在如進行段顯示之液晶顯示元件中,以段 單位獨立改變顯示區域色之方法有場序(field sequential ; FS)驅動法。 第10(A)圖係概略地顯示可進行FS驅動之液晶顯示元 件之内部結構_分解透視圖,^第卿)圖係顯示液晶顯 示元件顯示部之平面圖。 參照第10(A)圖’第1〇(Α)圖所示之液晶顯示元件係第 9(B)圖所示者再加上背光同步驅動電路75。 在FS驅動中,多色背光56係依如紅(R)、綠⑹藍(b) 的順序重斜間分碰光。背_步驅㈣路75係連接於 如多色背光56與上側及下側透明電極523、5沘之間使其 與多色背光56之發光時點同步地進行液晶單元之切換(使 1355535 光穿透/不穿透的ΟΝ/OFF)。 在1^驅動法中,係藉由將影像資料分解成R、G、B各 色貝料’再將該各色資料在時間軸上合成(加法混色)來進行 顯不。藉由將多色背光56的發光切換為肉眼無法分解之高 5速,可使肉眼識別該混色影像。 參照第10(B)圖,液晶顯示元件係在如7段顯示部3〇進 行顯示。顯示部30係包含有顯示單位(各段)31〜37及背景區 域38構成者。各個顯示單位31〜37分別對應地設有可獨立驅 動的電極。藉由選擇性地將電壓施加在該等電極上,可變 10化對應於電極之液晶層之液晶分子的配向狀態,例如可顯 示「〇」〜「9」.之各數字。另外,藉由顯示單位32、33、35 及36之亮燈,亦可顯示「丨丨」。 在本說明書中,係將如用於顯示各數字之顯示單位稱 作顯示區域,而除此之外的顯示單位及背景區域則稱作非 15顯示區域。例如’在顯示數字「7」時,顯示區域意指顯示 單位31〜33,而非顯示區域則意指顯示單位34〜37及背景區 域38 〇 第11圖係顯示使用FS驅動方式之液晶顯示元件之顯示 控制之一例的時序圖。參照第11圖,說明FS方式之液晶驅 20動方法。 在FS驅動法中,如前述’多色背光56係依如R、G、B 的順序重複時間分割發光。R、G、B分別依序發光1次的期 間為1畫格。1畫格係如16.7ms。1個影像係以晝格單位顯 示。1晝格最好係如20ms以下(畫格頻率為5〇Hz以上),以對 9 1355535 R、G、B之光進行加法混色。 1畫格係分割成複數(3個)次畫格(sub-frame ; SB),而 1 SB係如 5.57ms。 請參照「多色背光」段。1個SB係分成發光期間及空白 5期間,且在SB(SB1〜SB3)各自的發光期間可進行r、g、B 中之任1個發光。在第11圖所示之時序圖中,係於SB1、SB2 及SB3之各發光期間分別進行r、g、及B之發光。 在液晶顯示元件中,液晶層對施加電壓回應所需之時 間’較切換多色背光之發光色所需之時間長。而空白期間 10係指所有色光都不發光的期間,且係液晶層之液晶分子之 配向狀態由於所施加之電壓而變化至某種程度所需之時 間。 參照「顯示單位31」段。以下使用之「顯示單位31」、 「顯示單位32」等表記係表示第ι〇(Β)圖所示之各顯示單位 15 者。另外,在本圖中,驅動時序圖之顯示單位行中之「on」 係指顯示液晶顯示元件處於透光狀態,而r〇FF」則指顯 示液晶顯示元件處於不透光狀態。 顯示單位31在SB1及SB2透光。因此,觀察者可識別R 與G混色之黃(γ)。 20 請參照「顯示單位32」段。顯示單位32在SB1及SB3透 光。因此,觀察者可識別R與B混色之品紅(M)。 請參照「顯示單位37」段。顯示單位37在SB2透光。因 此,觀察者可識別G。 但是,在視線從藉由2色以上之以加法混色所得之顯示 10 1355535 部分脫離時、或在液晶顯示元件上加上振動時等,通常會 產生觀察到觀察者的眼睛所無法識別之各SB影像分離的現 象,即所謂的色分離現象。而色分離現象在周圍暗時尤為 顯著。色分離現象的產生帶給觀察者心理之影響亦不甚理 5 想。 因此本發明人藉由於每一 SB形成所需色光並使其發 光,且使於某一 SB為透光狀態之顯示單位在另一 SB為遮光 狀態,來防止色分離現象之液晶顯示元件之驅動方法。(例 如,參照專利文獻1) 10 第12圖係用以說明前述申請案之液晶驅動方法的時序 圖。 請參照「多色背光」段。在圖示之1晝格中,SB1係藉 由複數色光源同時亮燈而射出白光,而SB2則係橙光,且 SB3係射出由單一光源所發出之藍光。又,本圖中,在5.57ms 15 之1 SB期間内,將空白期間設為3ms。 請參照「顯示單位31」段。在顯示單位31中,只有SB1 為透光狀態。因此,可顯示白色。 請參照「顯示單位32」段。在顯示單位32中,所有SB 皆為遮光狀態。因此,顯示色為黑色。 20 請參照「顯示單位37」段。在顯示單位37中,只有SB2 為透光狀態。因此,可顯示橙色。 根據專利文獻1之液晶顯示元件之驅動方法,可於每一 畫格改變多色背光的亮燈色,故可達到多樣化色顯示。 但是,在前述技術中,顯示區域與非顯示區域係分別 11 1355535 個別獨立’且不易在製造液晶顯示元件後控制成任意色 調。若為使用微濾色片之滿點矩陣(full dot matrix)液晶顯示 元件’外觀上看來雖可實質地獨立進行非顯示區域與顯示 區域的色調整,但使用微濾色片會使成本提高。 _ 5 特別是段型或段與點之複合型液晶顯示元件,為求低 成本’最好是不使用微濾色片等濾色片(例如,參照專利文 獻2)。 φ 【專利文獻1】特開2〇〇5-〇7〇44〇號公報 【專利文獻2】特開昭49-074438號公報 1〇【發明内容】 發明揭示 f明所欲解決之問題 本發明之目的在於提供在使用FS驅動法之彩色顯示 可防止色分離現象之多樣化色顯示之液晶顯示元件及 15其驅動方法。 φ 用以解決問題之手段 根據本發明之一觀點,可提供一種液晶顯示元件,且 該液晶顯示元件包含有:第i基板,係設有預定形狀之第】 電極者;第2基板’係配置成與前述第1基板大略平行,且 , 叹有預定形狀之第2電極,係配置成與前述第1基板大略平 仃,且彀有預定形狀之第2電極,並且前述第丨電極與前述 第電極相對之位置係劃定為可進行顯示之單數或複數顯 不早位’而非前述第1電極與前述第2電極相對之位置則劃 疋為背景區域者;液晶層’係配置於前述第i基板與前述第 12 1355535 2基板之間,且可藉由在前述第1電極與前述第2電極之間施 加電壓,來切換配向狀態者;第1偏光板,係配置在與前述 第1基板之前述液晶層所配置之側相反之側者;第1光源, 係配置在與前述第1偏光板之前述第1基板所配置之側相反 5 之側者;穿透、反射板,係配置在與前述第2基板之前述液 晶層所配置之側相反之側,且可依照偏光狀態使入射光穿 透、或反射者;第2偏光板,係配置在與前述穿透、反射板 之前述第2基板所配置之側相反之側者;第2光源,係配置 在與前述第2偏光板之前述穿透、反射板所配置之側相反之 10 側者;電壓施加機構,係可在前述第1電極與前述第2電極 之間施加電壓者;及控制電路,係在以顯示1個影像之期間 為1畫格時,可將1畫格時間分割成複數次晝格,使前述第1 或第2光源在各前述次畫格内發光,並與該發光同步地控制 前述液晶層之配向狀態的切換者,且前述穿透、反射板可 15 反射穿透前述第1偏光板及電壓未施加時之前述液晶層之 偏光狀態的光,並供穿透前述第2偏光板之偏光狀態的光穿 透。 根據本發明之另一觀點,可提供一種液晶顯示元件之 驅動方法,且該液晶顯示元件包含有:第1基板,係設有預 20 定形狀之第1電極者;第2基板,係配置成與前述第1基板大 略平行,且設有預定形狀之第2電極,係配置成與前述第1 基板大略平行,且設有預定形狀之第2電極,並且前述第1 電極與前述第2電極相對之位置係劃定為可進行顯示之單 數或複數顯示單位,而非前述第1電極與前述第2電極相對 13 1355535 之位置則劃定為背景區域者;液晶層,係配置於前述第1基 板與前述第2基板之間,且可藉由在前述第1電極與前述第2 電極之間施加電壓,來切換配向狀態者;第1偏光板,係配 置在與前述第1基板之前述液晶層所配置之側相反之側 5 者;第1光源,係配置在與前述第1偏光板之前述第1基板所 配置之側相反之側者;穿透、反射板,係配置在與前述第2 基板之前述液晶層所配置之側相反之側,且可依照偏光狀 態使入射光穿透、或反射者;第2偏光板,係配置在與前述 穿透、反射板之前述第2基板所配置之側相反之側者;第2 10 光源,係配置在與前述第2偏光板之前述穿透、反射板所配 置之側相反之側者;電壓施加機構,係可在前述第1電極與 前述第2電極之間施加電壓者;及控制電路,係在以顯示1 個影像之期間為1畫格時,可將1畫格時間分割成複數次晝 格,使前述第1或第2光源在各前述次晝格内發光,並與該 15 發光同步地控制前述液晶層之配向狀態的切換者,且前述 穿透、反射板可反射穿透前述第1偏光板及電壓未施加時之 前述液晶層之偏光狀態的光,並供穿透前述第2偏光板之偏 光狀態的光穿透,而該驅動方法包含有:利用由前述第1光 源射出之光在其中一前述次畫格進行顯示的步驟;利用由 20 前述.第2光源射出之光在另一前述次畫格進行顯示的步 驟;及利用由前述第1或第2光源射出之光在前述1晝格中之 頂多1個前述次晝格進行各個前述顯示單位之顯示。 發明效果 根據本發明,可提供在使用FS驅動法之彩色顯示中, 14 1355535 可防止色分離現象之多樣化色顯示之液晶顯示元件及其驅 動方法。 【實施方式】 實施發明之最佳形態 5 本發明者已在特願2006-005156號中申請可達到多樣 化色顯示之新構造液晶顯示元件(特願2006-005156號,發明 之詳細說明[0028]段〜[0116]段)。本發明係更深考察該申請 案之發明者。 第1圖係概略地顯示參照第2圖〜第6圖詳細說明之實 10 施例之液晶顯示元件之内部結構例的分解透視圖。 第1圖所示之液晶顯示元件的結構包含有相對配置成 大略平行的上側基板50a及下側基板50b、及被挾持於其間 之液晶層55。上侧基板50a及下側基板5〇b設有如平板玻璃 基板(上側及下侧玻璃基板51a ' 51b)、在該等平板玻璃基板 15 相對面上以ITO等透明導電材形成且具有預定圖案之電極 (上側及下側透明電極52a、52b)、及形成於各電極上之配向 獏(上側及下侧配向膜53a、53b)。 上側基板50a及下側基板50b外側配置有一對上側及下 側偏光板54a、54b。上側及下側偏光板54a、54b係如直線 20 偏光板 '圓偏光板、或橢圓偏光板。上側及下侧偏光板54a、 5仆分別在面向内方向具有穿透軸,只供於穿透軸方向偏光 之光穿透。上側及下側偏光板54a、54b為圓偏光板、橢圓 偏光板時,内側還設有相位差板。 上側透明電極52a與下側透明電極52b之間連接有電壓 15 1355535 施加機構68。電壓施加機構68可在兩電極52a、52b間施加 任意電壓’改變液晶層55之液晶分子的配向狀態。 下側基板50b與下側偏光板54b之間配置有偏光分離穿 透、反射板67。偏光分離穿透、反射板67可依照其偏光狀 5態穿透或反射入射光。偏光分離穿透、反射板67可使用如 用於(股)3M 製 D-BEF(brightness enhane film)或(股)日東電 工製增党膜PCF(polarization conversion film)等之寬帶膽固 醇液晶膜(broadband cholesteric film)。多色前光66及多色背 光56係分別配置於上側偏光板54a、下側偏光板54b外側。 10多色前光66及多色背光56係可選擇性地射出複數色之光 源’例如在侧方具有RGB多色LED光源,可將所入射之光 朝液晶層照射。色光源可使用有機LED、無機LED、CCFL、 FE燈等構成。射出光色的變化可以使用複數發光色不同之 單色光源的結構實現,亦可以使用可變化發光色之單一光 15源的結構實現。多色前光66可使來自液晶層之光穿透。 多色背光56可控制點、段等顯示區域的顯示,而多色 前光66則用於實現非顯示區域的色顯示。 同步電路74係用以同步進行多色背光56的亮熄燈、多 色前光66的亮熄燈、及液晶層55的切換(液晶分子配向狀態 20的變化、透光狀態與遮光狀態的切換)的電路,且該電路可 將1晝格時間分割成複數次畫格,使多色前光66或多色背光 56在各_欠晝格内發光’並與該發光同步地進行液晶層μ的 切換。 顯示係藉由液晶層55的切換來進行。可利用上側透明 16 電極52a與下侧透明電極52b在上側基板50a側劃定如第 10(B)圖所示之7段顯示部(可進行顯示之單數或複數顯示單 位及背景區域)。顯示單位係劃定在上側透明電極52a與下 側透明電極52b相對之位置,而背景區域則劃定在非上側透 明電極52a與下側透明電極52b相對之位置。 由上側及下側基板50a、50b,液晶層55,上側及下側 偏光板54a、54b ;偏光分離穿透、反射板67構成之液晶單 元對於由多色背光56發出之光為黑底型液晶單元。 在此種液晶顯示元件中,藉由控制多色前光66及多色 背光56的發光色,可以不同色調個別獨立顯示顯示區域與 非顯示區域。 以下,說明液晶顯示元件之具體結構及動作。在第2 圖〜第4圖所示之液晶顯示元件中,係使用(股)3M製D-BEF 作為第1圖之偏光分離穿透、反射板67。D-BEF在面向内方 向具有反射軸,可反射於反射轴方向偏光之光。另外,在 第5圖及第6圖所示之液晶顯示元件中,係使用用於(股)曰東 電工製增亮膜PCF之寬帶膽固醇液晶膜作為第1圖之偏光分 離穿透、反射板67。寬帶膽固醇液晶膜可例如反射右圓偏 光’穿透左圓偏光,亦有與其相反之寬帶膽固醇液晶膜。 第2圖係概略地顯示第1實施例之液晶顯示元件的分解 透視圖^ 液晶層55係使用負型介電係數異向性(Δε<〇)之液晶材 料形成,作為垂直配向型液晶顯示元件。本圖係顯示電壓 未施加時之液晶分子的配向狀態。另外,上側及下側偏光 1355535 板54a、54b係使用直線偏光板。圖中,以箭頭顯示上側及 下側偏光板54a、54b之穿透軸方向。 上側及下側偏光板54a、54b係配置成正交偏光狀態, 且D-BEF69之反射轴與下側偏光板54b之穿透軸係配置成 5互相垂直的狀態(以使來自下側之光穿透D-BEF69)。由上側 及下側基板50a、50b ’液晶層55 ;上側及下側偏光板54a、 54b ;及D-BEF69構成之液晶單元係黑底型液晶單元,可在 電壓未施加狀態下,使自多色背光56發出之光不改變偏光 狀態地穿透,並遮光於上側偏光板54a。 10 接著說明第1實施例之液晶顯示元件的動作。如前述, 第1實施例之液晶顯示元件的液晶分子在電壓未施加時,係 幾乎垂直地配向於上側及下側基板5〇a、50b。因此,入射 於液晶層之光不需改變偏光方向即可穿透液晶層。 另一方面,雖然在電壓施加時,液晶分子在非顯示區 15域中之配向狀態與電壓未施加時並無不同,但,在顯示區 域中’液晶分子從電壓未施加時改變,倒向相對於上側及 下側偏光板54a、54b之穿透軸面向内方向45。的方向,賦予 入射於液晶層之光雙折射效應,讓液晶層具有和1/2波長板 同等的效果,使入射光之偏光方向變化90。,由液晶層射出。 20 接著,說明電壓未施加時的動作。 由多色前光66射出之光會變成於上側偏光板54a之穿 透軸方向具偏光方向之直線偏光,而入射於液晶層55,且 該光不需改變偏光方向即可穿透液晶層,入射於 D-BEF69。D-BEF69之反射軸方向係與上側偏光板54a之穿 18 透轴方向平行。因此,穿透液晶層55之多色前光66之光幾 乎會100%於D-BEF69反射,而再度穿透液晶層55及上側偏 光板54a。而穿透之光可被觀察者識別。 由多色背光56射出之光會變成於下側偏光板54b之穿 透軸方向具偏光方向之直線偏光,而入射於D_beF69。因 D-BEF69之反射轴方向與下側偏光板54b之穿透軸方向垂 直,故直線偏光可穿透D-BEF69,而入射於液晶層55。液 晶層55之偏光方向並沒有改變’所以射出液晶層55之光會 被配置成與下側偏光板54b正交偏光之上側偏光板54a吸 收。 因此,在電壓未施加時,由多色前光66發出之光可在 顯示部全區域被觀察者識別。 接著,說明電壓施加時的動作。 由多色前光66射出之光係以和電壓未施加時相同的理 由在非顯示區域被觀察者識別。 另一方面,在顯示區域中’由多色前光66射出之光會 變成於上側偏光板54a之穿透軸方向具偏光方向之直線偏 光’而入射於液晶層55。因液晶分子之配向狀態從電壓未 施加時改變’故入射於液晶層55之光的偏光方向會變化9〇 ’而射出液晶層55。射出液晶層55之直線偏光的偏光方向 與D-BEF69之反射軸方向垂直(與D-BEF69之穿透轴方向平 行),所以射出液晶層55之直線偏光會穿透D-BEF69,再穿 透下側偏光板54b ’然後傳播至多色背光56側,由於散亂等 消失。故,由多色前光66射出之光不會被觀察者識別。 1355535 由多色背光56射出之光係以和電壓未施加時相同的理 由在非顯示區域無法被觀察者識別。 另一方面,在顯示區域中,由多色背光56射出之光會 變成於下側偏光板54b之穿迭軸方向具偏光方向之直線偏 5光’穿透D-BEF69而入射於液晶層55,且偏光方向在液晶 層55變化9〇。。所以,射出液晶層55之光會穿透上側偏光板 54a ’被觀察者識別。 因此’在電壓施加時,由多色前光66發出之光可在非 顯示區域被觀察者識別,而由多色背光56發出之光則可在 10顯示區域被觀察者識別。 如此’第1實施例之液晶顯示元件可分別獨立地以多色 前光66顯現非顯示區域之色調,而以多色背光56顯現顯示 區域之色調。另外,藉由選擇由光源56及66射出之光色, 可分別選擇顯示區域及非顯示區域之顯示色。 15 如前述,第1實施例之液晶顯示元件即使在多色前光66 及多色背光56同時亮燈的情形下,也只有一方之光會在任 思一處被觀察者識別。只要液晶顯示元件係進行如單純矩 陣驅動之ΟΝ/OFF之切換動作者,則就算兩者同時亮燈也幾 乎不會產生混色。 20 第3圖係概略地顯示第2實施例之液晶顯示元件的分解 透視圖。在第1實施例中係使用垂直配向型液晶單元。而在 第2實施例中,則係使用包含有分別配置於上側及下側偏光 板54a、54b側之補償單元(上側單元)7〇及驅動單元(下側單 元)71之2層構造的液晶單元,與第丨實施例之液晶顯示元件 20 不同。 — 一 補償單S7G及㈣單元71之液晶層55係同時使用相同 之正里;|電係數異向性(Δε>0)液晶材料形成,並將各單元 70、71分別設為左扭轉角9〇。、右扭轉角9〇。之水平配向型 5液晶顯示元件。使在各單元7〇、71之液晶層55的厚度方向 中央之液晶分子配向方向互相垂直,且使兩單元7〇、7丨之 液曰曰層55厚度相等。又,本圖係顯示電壓未施加時之液晶 _ 分子的配向狀態。 顯不動作只有在對驅動單元(下側單元)71施加電壓時 1〇進行,不對補償單元(上側單元)7〇通電。 以補償單元70,驅動單元7卜上侧及下側偏光板%、 54b及〇-卿69構成之液晶單元對於由多色背光%發出之 .光為黑底型液晶單元。 然後說明第2實施例之液晶顯示元件的動作。如前述, U因不對補償單元7〇通電,故補償單元%之液晶分子通常會 φ 鋪在左扭轉角9〇。的狀態。因此,入射於補償單元70之光 的偏光方向會向左變化90。,射出補償單元7〇。 在電壓未施加時,驅動單元71可使入射光之偏光方向 - 肖右變化9〇。射出。即’在驅動單元71中,光之偏光方向和 20補償單元職方向變化9()。。於是,光會以與人射於2層構 造之液晶單元時相等之偏光方向射出2層構造之液晶單元。 但是,在電壓施加時,非顯示區域之液晶分子的配向 狀態雖和電壓未施加時相同,但在顯示區域中,驅動單元 71之液晶分子的配向狀態從電壓未施加時改變(在上側及 21 1355535 下側基板50a、50b幾乎垂直配向),入射於驅動單元]之光 不需改變偏光方向即可由驅動單元71射出。然後,光之偏 .光方向會與入射於2層構造之液晶單元時相差9〇。,射出2層 構造之液晶單元。 5 因此,即使在電壓未施加時及電壓施加時,藉由2層構 造之液晶單元(補償單元70及驅動單元71),光可在非顯示區 域中不改變偏光方向。另一方面,在電壓施加時,在顯示 區域中,光可變化90。偏光方向,由2層構造之液晶單元射 出。 10 因此,第2實施例之液晶顯示元件和第1實施例之液晶 顯示元件相同地動作,在電壓未施加時,由多色前光66發 出之光可在顯示部全區域被觀察者識別,而在電壓施加 時,由多色前光66發出之光可在非顯示區域被觀察者識 別,由多色背光56發出之光則可在顯示區域被觀察者識別。 15 本發明者在研究各式各樣之扭轉角之液晶單元後,發 現當補償單元70及驅動單元71之扭轉角為7〇。〜240。時,第2 實施例之液晶顯示元件可在實用上有效地作用。 此外’將補償單元(上側單元)7〇置換成具有與其同等 之光學機能之液晶性聚合物配向相位差板(股)P〇latechn〇公 20 司製TwiStar也可得到相同效果。 第4圖係概略地顯示第3實施例之液晶顯示元件的分解 透視圖。 第3實施例之液晶顯示元件係在上側基板5 〇 a與上側偏 光板54a之間設有相位差板72之液晶顯示元件。 22 1355535 藉由適切地規定液晶分子之扭轉角'液晶層的厚度、= 相位差板的相位差値及相位落後軸的方位,可使以上側及 下侧基板50a、50b,液晶層55,上側及下側偏光板5知、5扑, D-BEF69 ’及相位差板72構成之液晶單元對於由多色背光 5 56發出之光為黑底型液晶單元。此時,相位差板72可發揮 調整色調的功用。 詳細結構如下。 將液晶層55的厚度設為6μηι,使用(股)大日本油墨 (Dainippon Ink)製RDP00333作為液晶材料,並將液晶分子 10 之扭轉角設為向左扭轉240°之扭轉水平配向。然後使用相 位差値600Nm之早轴光學異向性相位差板,作為相位差板 72。又’將相位差板72之相位落後軸、上側偏光板54a之穿 透軸、D-BEF69之穿透軸、及下側偏光板54b之穿透軸分別 與液晶層55之中央分子配向方向形成之角設為14〇。、95。、 15 70° 、 70° 。 本圖係顯示電壓未施加時之液晶分子的配向狀態。另 外,以箭頭顯示上側及下側偏光板54a、54b之穿透軸方向、 相位差板72之相位落後軸方向、及d_beF69之穿透軸方向。 在第3實施例中’雖係使用1片相位差板72,但亦可使 20用複數相位差板。此外,並不限於單軸光學異向性相位差 板,亦可使用雙軸光學異向性相位差板。 又;液晶分子之扭轉角最好是設為180。〜240。。 第5圖係概略地顯示第4實施例之液晶顯示元件的分解 透視圖。 23 第4實施例之液晶顯示元件和第2圖所示之第丨實施例 之液晶顯示元件類似。第丨實施例之液晶顯示元件係分別在 挟持液晶層55之上側及下側基板50a、5〇1)外側配置有上側 及下侧偏光板54a、54b,且其外側還分別配置有多色前光 66及多色背光56。而且’還在下側基板50b與下側偏光板54b 之間插有D-BEF,作為可依照其偏光狀態使入射光穿透或 反射之偏光分離穿透、反射板。 而第4實施例之液晶顯示元件係將寬帶膽固醇液晶膜 而非D-BEF配置在下侧基板5〇b與下側偏光板5仆之間作 1〇為偏光分離穿透、反射板67,與第1實施例之液晶顯示元件 不同。 另外,在第1實施例之液晶顯示元件中,雖係使用直線 偏光板作為上側及下侧偏光板54a、54b,但在第4實施例之 液晶顯示元件中’對來自上方之光係採用組合上侧直線偏 15光板54e及上側1/4波長板54g之圓偏光板,作為上側偏光板 54a,而對來自下方之光則採用組合下側直線偏光板5奸與 下側1/4波長板54h之圓偏光板,作為下侧偏光板54b。另 外,上側及下側偏光板54a、54b係同時在光源66、56側配 置直線偏光板,在液晶單元側配置1/4波長板形成,並將直 20線偏光板之穿透軸與1/4波長板之相位落後軸之間的角度 δ又成土45 ,且使上側及下側直線偏光板54e、54f之穿透轴 互相垂直。又,直線偏光板54e、54f之穿透軸的方位可相 對於上側及下側基板50a、50b任意設定。 另外’ 1/4波長板54g、54h的機能亦可使用複數波長板 24 組合(例如1/4波長板與1/2波長板的組合)實現。 在第4實關讀晶—元件巾,係將上側偏光板5如 作為右圓偏光板,而將下側偏光板54b作為左圓偏光板。此 外,寬帶膽固醇液晶膜73係作為可反射右圓偏光,穿透左 5 圓偏光者。 以下,以X成分對y成分相位落後之圓偏光為右圓偏 光,而相位超前之圓偏光為左圓偏光。 亦可與此相反地,將上側偏光板5如作為左圓偏光板, 而將下側偏光板54b作為右圓偏光板,且將寬帶膽固醇液晶 10膜73作為可反射左圓偏光,穿透右圓偏光者。並將上側偏 光板54a與下側偏光板54b之圓偏光方向設為反方向,使寬 帶膽固醇液晶膜73穿透之圓偏光方向與下側偏光板54b之 圓偏光方向一致。 此外’採用寬帶膽固醇液晶膜與圓偏光板貼合之結構 15 的(股)曰東電工製NIPOCS或(股)Merck製TRANSMAX等通 常係貼合於背光上或液晶單元下側來使用。此時,寬帶膽 固醇液晶膜係配置於光源侧。而在本實施例中,偏光板係 配置於光源側,與此不同。 液晶層55係使用負型介電係數異向性(△£<〇)之液晶材 20 料形成’作為垂直配向型液晶顯示元件。在本圖中,顯示 有電壓未施加時之液晶分子的配向狀態。又,電壓施加時 液晶層55的延遲量為1/2波長(例如,x成分相位落後1/2波 長)。 由多色前光66射出之光會變成偏光於上側直線偏光板 25 1355535 54e之穿透軸方向之光,而入射於上側1/4波長板54g’x成分 只相位落後1/4波長而變成右圓偏光。 在電壓未施加時,可使入射於液晶層55之光不改變偏 光狀態射出液晶層55。由多色前光66發出而射出上側1/4波 5 長板54g之右圓偏光係直接以右圓偏光的狀態射出液晶層 55,於寬帶膽固醇液晶膜73反射。反射光在仍為右圓偏光 的狀態下穿透液晶層,y成分於上側1/4波長板54g相位落後 1/4波長’所以會變成與入射光相同之偏光成分的直線偏 光’穿透於上側直線偏光板54e,被觀察者識別。相反地, 10因由多色背光56射出之光係X成分在下側1/4波長板54h相 位超前1/4波長,以左圓偏光的狀態穿透液晶層,於上側1/4 波長板54g相位落後1/4波長,故會變成於下側偏光板之偏 光軸旋轉90°之直線偏光,遮光於上側直線偏光板54e,而 無法被觀察者識別。 15 在電壓施加時’因液晶層55之液晶分子的配向狀態改 變,入射於顯示區域之液晶層55之右圓偏光會變成左圓偏 光射出液晶層55。又,左圓偏光會變成右圓偏光射出液晶 層55。 由多色前光66射出之光和電壓未施加時一樣,可在非 2〇顯示區域被觀察者識別。在顯示區域中,因x成分相位落後 1/4波長、相位落後1/2波長,變成左圓偏光穿透寬帶膽固醇 液晶膜73,且於下側1/4波長板54h相位超前1/4波長,穿透 下側直線偏光板54f’故可被觀察者識別。 另-方面’由多色背光56射出之光因分別於下側1/4 26 1355535 波長板54h、液晶層55、上側1/4波長板54g相位超前1/4波 長、相位落後1/2波長、相位落後1/4波長,而入射於上侧直 線偏光板54e,故可穿透其被觀察者識別。 對由多色背光56發出之光,以上側及下側基板5〇a、 5 50b ;液晶層55 ;上側及下側偏光板54a、54b ;及寬帶膽固 醇液晶膜73構成之液晶單元係黑底型液晶單元《此外,液 晶單元與上側或下側偏光板54a、54b之間雖未使用視角補 償板等相位差板(相位差膜),但亦可依需要適當使用。 第4實施例之液晶顯示元件的動作與第1實施例之液晶 10 顯示元件的動作相同。因此,在電壓未施加時,由多色前 光66發出之光可在顯示部全區域被觀察者識別,在電壓施 加時,由多色前光66發出之光可在非顯示區域被觀察者識 別’由多色背光56發出之光則可在顯示區域被觀察者識別。 第4實施例之液晶顯示元件亦可達到與第1實施例之液 15 晶顯示元件相同的效果。 第6圖係概略地顯示第5實施例之液晶顯示元件的分解 透視圖。第4實施例係使用垂直配向型液晶單元,而第5實 施例則係使用包含有分別配置在上側及下側偏光板54a、 54b側之扭轉向列型補償單元(上側單元)7〇及扭轉向列型驅 20 動單元(下側單元)71之2層構造的扭轉向列型液晶單元,與 第4實施例之液晶顯示元件不同。 補償單元70及驅動單元71之液晶層55係同時使用相同 之正型介電係數異向性(△£>0)液晶材料形成,且使其為各 單元70、71分別為左扭轉角90°、右扭轉角90。之水平配向 27 1355535 型液晶顯示元件。各單元70 ' 71之液晶層55的厚度方向中 〇的液晶分子配向方向係互相垂直,且兩單元Μ』之液 - ㈤層55的厚度相等。本圖係顯示電壓未施加時之液晶分子 - _向狀態。又’兩單以〇、71之液晶層55的延遲量同時 5為1波長。 顯不動作只有在對驅動單元(下側I元)71施加電壓時 進行,不對補償單元(上側單元)70通電。 • 卩補償單元70 ’驅動單元71,上侧及下側偏光板54a、 54b’及寬帶膽固醇液晶膜73構成之液晶單元對於由多色背 10光56發出之光黑底型液晶單元。 然後成明第5實施例之液晶顯示元件的動作。如前述, •目不對補償單元70通電,故補償單元7G可發揮作為偏光旋 轉片(polarization rotator)的機能。因此,入射 之右圓偏光會變成左圓偏光射出。又,左圓偏先 15圓偏光射出補償單元70。 # π «單元71在電壓未施加時,可發揮作為顯示與補償 單元相反之旋轉方向的偏光旋轉片的機能。另外,在電壓 施加時,在非顯示區域亦與其相同。但,在顯示區域中, - 驅動單元71之液晶分子的配向狀態從電壓未施加時改變 20 (上側及下側基板50a、50b幾乎垂直配向),可不使入射於驅 動單元71之光改變偏光狀態自驅動單元71射出。 因此,在電壓未施加時及電壓施加時’在非顯示區域 中,入射於2層構造之液晶單元(補償單元7〇及驅動單元71) 之光若為右圓偏光則以右圓偏光的狀態、若為左圓偏光則 28 1355535 以左圓偏光的狀態射出2層構造之液晶單元。另一方面,在 電壓施加時,在顯示區域中,右圓偏光會變成左圓偏光, 而左圓偏光會變成右圓偏光’由2層構造之液晶單元射出。 因此,第5實施例之液晶顯示元件係和第4實施例之液 5晶顯示元件相同地動作,在電壓未施加時,由多色前光% 發出之光可在顯不部全區域被觀察者識別,在電壓施加 時,由多色前光66發出之光可在非顯示區域被觀察者識 別’由多色背光56發出之光财在顯示區域被觀察者識別。 本發明者在研究各式各樣之扭轉角之液晶單元後,發 10現補償單元70及驅動單元71之扭轉角為70。〜240。時,第5 實施例之液晶顯示元件可在實用上有效地作用。 此外,將補償單元(上側單元)7〇置換成具有與其同等 之光學機能之液晶性聚合物配向相位差板(股)p〇latechn〇公 司製TwiStar也可得到相同效果。 15 以上雖沿實施例說明,但本發明之液晶顯示元件並不, 限於該等實施例。例如雖然第3圖及第6圖中圖示有補償單 元7 0上側及下側基板5 0 a、5 0 b分別設有上側及下側透明電 極52a、52b的液晶顯示元件,但不施加電壓於補償單元7〇 時則無此必要。另外’在實施例中’雖係將補償單元7〇配 20置在上方’而驅動單元71配置在下方,但亦可作相反配置。 此外,在所有實施例中,係使用黑底型液晶單元,以 多色背光進行顯示區域的顯示’而以多色前光進行非顯示 區域的顯示。亦可使用白底型液晶單元,以多色背光進行 非顯示區域的顯示,以多色前光進行顯示區域的顯示。 29 而且,在實她例中,雖係說明段型液晶顯示元件,但 亦可為可同時進行段顯示與點顯示之液晶顯示元件或滿點 型液晶顯示元件等。 此外,相位差板(相位差膜)可插入上側基板50a與上側 偏光板54a之間、下側基板50b與下側偏光板54b之間之一方 或雙方。 參照第7圖說明實施例之液晶顯示元件之驅動方法。所 驅動之液晶顯示元件係如參照第1圖〜第6圖說明之液晶顯 示元件。 在實施例之驅動方法中,將1畫格設為16 7mS,分成3 個分別為5.57mS的SB(SB 1〜SB3)。然後將各SB最初的3mS 作為空白期間’再將剩下的2.57mS作為發光期間。 在本圖之顯示單位列中之「0Nj係顯示在上側及下側 透明電極52a、52b間施加有電壓,而「0FF」則顯示電壓未 鉍加狀態。又,在多色前光及多色背光列中,「〇N」係顯 示亮燈,而「OFF」則顯示熄燈,且兩光源不會同時亮燈。 此外,多色前光、多色背光及液晶層的切換係使用同 步電路使其同步。藉此’可避免顯示部之照明光混色。 參照SB1行。在SB1中,由多色前光66射出藍色之光。 又,多色背光56為OFF,不進行發光。 如前述,在顯示單位31〜37中,未在兩電極52a、52b 間施加電壓時(「0FF」時),係以來自多色前光66之光進行 顯示。另外,在兩電極52a、52b間施加電壓時(「〇N」時), 則以來自多色背光56之光進行顯示。因此,「off」之顯示1355535 IX. Description of the Invention: [Technical Area to Be Invented by the Invention] Technical Field The present invention relates to a liquid crystal display element (LCD) and a method of driving the same. [Prior Art] In a composite liquid crystal display device of a segment type, a dot matrix type, and both, a 1 〇 display color for a region other than a segment or a dot portion (non-display region) for display is adjusted, To improve display visibility or design. The eighth (A) to (C) drawings schematically show an exploded perspective view showing an example of the internal structure of the liquid crystal display element in which the color tone of the non-display area can be adjusted. Referring to Fig. 8(A), the liquid crystal display element has a structure in which an upper substrate 50a and a lower substrate 50b which are arranged substantially parallel to each other, and a liquid crystal layer 55 which is held between the substrates 15 are disposed. The upper substrate 50a and the lower substrate 50b are provided with, for example, flat glass substrates (upper and lower glass substrates 51a and 51b), and are formed of a transparent conductive material such as ITO (indium tin oxide) on the opposite surfaces of the flat glass substrates and have a predetermined pattern. The electrodes (the upper and lower transparent electrodes 52a and 52b) and the alignment films (the upper and lower alignment films 53a and 53b) formed on the respective electrodes. The liquid crystal layer 20 55 is composed of a twisted nematic liquid crystal layer ' formed of a positive dielectric anisotropy (Δ£> 〇) nematic liquid crystal and is determined by the rubbing directions of the upper and lower alignment films 53a, 53b. The torsion angle is such as 90°. On the outer sides of the upper substrate 50a and the lower substrate 50b, the pair of upper and lower polarizing plates 54a and 54b are arranged in a crossed polarization state in the rubbing direction. The upper 5 side and lower side polarizing plates 54a, 54b respectively have a transmission axis in the inward direction, and are only provided for light that is polarized in the direction of the transmission axis. In a state where no voltage is applied, the polarization direction of the incident light is rotated in accordance with the alignment of the liquid crystal molecules, and then penetrates the polarizing plate to perform white display. In Fig. 8(A), the direction of the transmission axis is indicated by an arrow. The multi-color backlight 56 is disposed outside the lower polarizing plate 54b, and the multi-color backlight 56 is a backlight that emits light of a plurality of colors, and uses, for example, an RGB multi-color led light source. By applying a voltage applying mechanism between the upper and lower transparent electrodes 52a and 52b, a voltage can be applied to the liquid crystal layer 55 so that the liquid crystal molecules stand in the vertical direction from the horizontal direction, so that the polarization direction of the incident light is not affected by the liquid crystal layer. Effect, while shading by orthogonal polarizers. When the light emitted from the multi-color backlight 56 and passing through the liquid crystal layer 55 passes through the upper polarizing plate 52a, it is "bright" by the emitted light color, and is "dark" when it is shielded by the upper polarizing plate 54a. In the white-type liquid crystal display element in which the display portion is black-displayed by "dark" display, the color tone of the non-display area can be arbitrarily changed by using a multi-color backlight which can change the illuminating color of the backlight. Referring to Fig. 8(B), the liquid crystal display element shown in Fig. 8(B) is different from the one shown in Fig. 8(A) in that the upper and lower color polarizing plates 54c and 54d are used instead. The upper and lower polarizing plates 54a and 54b and the white backlight 57 are used instead of the multicolor backlight 56. The white backlight 57 is formed using, for example, a cold cathode fluorescent lamp (CCFL). There are also those who use an inorganic white LED (light 1355535 emitting diode) or an organic white LED. Further, the upper and lower color polarizing plates 54c and 54d are arranged in a state of orthogonal polarization. Although the upper side of the eighth (A) and the lower polarizing plates 54a and 5 are polarized plates of a light gray color, the upper side and the lower side polarizing plates 54c and 54d of the eighth (B) figure are colored by a coloring matter. Dyed color polarizer. By passing the light emitted from the white backlight 57 through the upper and lower color polarizing plates 54c and 54d, the background color can be set to the color determined by the upper and lower color polarizing plates 54c and 54d. Referring to Fig. 8(C), the liquid crystal display element shown in Fig. 8(C) is different from that shown in Fig. 8(b) 10 in that a difference is placed between the upper polarizing plate 54a and the upper substrate 50a. Phase difference plate 58. Further, by inserting the phase difference plate 58, the color tone of the non-display area can be adjusted. The color tone adjustment of the non-display area can be performed by the thickness of the liquid crystal layer, the adjustment of the degree of twist of the liquid crystal molecules, the combination of the polarizing plate and the phase difference plate, and the like. Further, in the liquid crystal display element shown in Figs. 8(B) and (C), the color of the non-display area cannot be changed after the completion of the element. The ninth (A) and (B) drawings schematically show an exploded perspective view showing an example of the internal structure of the liquid crystal display element in which the color of the dot or the segment can be adjusted. Referring to the ninth (A) diagram, the liquid crystal display element shown in Fig. 9(A) is different from the one shown in Fig. 8(A) in that an area is disposed between the upper and lower substrates 5a and 50b. An area color filter 60 and a black film 59, and a white backlight 57 are used instead of the multi-color backlight 56. The area color filter 60 includes, for example, a red portion 60r, a green portion 60g, a blue portion 60b, and a white portion 60w. In the liquid crystal display element shown in the drawing, 7 a plurality of colors can be displayed by causing the light-transmitting region emitted from the white backlight 57 to be colored by the color-changing regions (the respective color portions 60r, g, b, w). The black film 59 is used to cover the boundaries of the color regions to improve contrast or color purity. Referring to Fig. 9(B), the liquid crystal display element shown in Fig. 9(B) is different from that shown in Fig. 8(A) in that the upper and lower polarizing plates 54a and 54b are arranged in parallel polarized light. Further, when the light emitted from the multi-color backlight 56 is polarized by the lower polarizing plate 54b and rotated in the direction of alignment of the liquid crystal molecules when the voltage is not applied, it is blocked perpendicular to the polarization direction of the upper polarizing plate 54a. That is, the nine-crystal display element shown in the figure is a black matrix liquid crystal display element using a multicolor backlight. The complex color display can be performed by the illuminating color when the voltage is applied. As is well known in the art, in a liquid crystal display element such as a segment display, the method of independently changing the color of the display area in units of segments has a field sequential (FS) driving method. Fig. 10(A) is a plan view schematically showing the internal structure of the liquid crystal display element which can be subjected to FS driving, and an exploded perspective view showing the display portion of the liquid crystal display element. Referring to Fig. 10(A), the liquid crystal display element shown in Fig. 9(B) is a backlight synchronous driving circuit 75. In the FS drive, the multi-color backlight 56 is divided into light beams in the order of red (R), green (6) blue (b). The back_step drive (four) way 75 is connected between the multi-color backlight 56 and the upper and lower transparent electrodes 523, 5沘 to switch the liquid crystal cells in synchronization with the light-emitting time of the multi-color backlight 56 (to make 1355535 light wear) Permeable/non-penetrating ΟΝ/OFF). In the 1^ driving method, the image data is decomposed into R, G, and B colors, and the respective color data are synthesized on the time axis (additional color mixing). By switching the illumination of the multi-color backlight 56 to a high speed which is incapable of being decomposed by the naked eye, the color-mixed image can be visually recognized. Referring to Fig. 10(B), the liquid crystal display element is displayed on the display unit 3 of the seventh stage. The display unit 30 includes a display unit (each segment) 31 to 37 and a background area 38. Each of the display units 31 to 37 is provided with an independently driveable electrode. By selectively applying a voltage to the electrodes, the alignment state of the liquid crystal molecules corresponding to the liquid crystal layer of the electrode can be changed, for example, the numbers "〇" to "9" can be displayed. In addition, "丨丨" can also be displayed by the illumination of the display units 32, 33, 35 and 36. In the present specification, a display unit such as a unit for displaying each number is referred to as a display area, and other display units and background areas are referred to as non-15 display areas. For example, when the number "7" is displayed, the display area means the display unit 31 to 33, and the non-display area means the display unit 34 to 37 and the background area 38. The 11th figure shows the liquid crystal display element using the FS drive mode. A timing diagram of an example of display control. Referring to Fig. 11, a description will be given of a method of operating the liquid crystal panel of the FS method. In the FS driving method, as described above, the multi-color backlight 56 repeats time-division illumination in the order of R, G, and B. The period in which R, G, and B are sequentially illuminated once is 1 frame. 1 frame is as follows: 16.7ms. One image is displayed in ICP units. The 1 昼 grid is preferably 20ms or less (the frame frequency is 5 〇 Hz or higher), and the additive color mixing is performed on the light of 9 1355535 R, G, and B. 1 Grid is divided into complex (3) sub-frames (SB), and 1 SB is 5.57ms. Please refer to the "Multicolor Backlight" section. One SB system is divided into a light-emitting period and a blank period 5, and any one of r, g, and B light emission can be performed in each of the light-emitting periods of SB (SB1 to SB3). In the timing chart shown in Fig. 11, the light emission of r, g, and B is performed for each of the light-emitting periods of SB1, SB2, and SB3. In the liquid crystal display element, the time required for the liquid crystal layer to respond to the application of the voltage is longer than the time required to switch the color of the multicolor backlight. The blank period 10 is a period in which all of the color lights do not emit light, and the alignment state of the liquid crystal molecules of the liquid crystal layer is changed to a certain degree by the applied voltage. Refer to the "Display Unit 31" section. The following expressions such as "display unit 31" and "display unit 32" are used to indicate each display unit shown in the first ι (〇) diagram. Further, in the figure, "on" in the display unit row of the drive timing chart means that the liquid crystal display element is in a light transmitting state, and r 〇 FF" means that the liquid crystal display element is in an opaque state. The display unit 31 transmits light in SB1 and SB2. Therefore, the observer can recognize the yellow (γ) of the mixed color of R and G. 20 Please refer to the section "Display Unit 32". Display unit 32 is transparent to SB1 and SB3. Therefore, the observer can recognize the magenta (M) of the mixed color of R and B. Please refer to the paragraph "Display Unit 37". The display unit 37 transmits light in the SB2. Therefore, the observer can recognize G. However, when the line of sight is partially removed from the display 10 1355535 obtained by additive color mixing of two or more colors, or when vibration is applied to the liquid crystal display element, it is generally observed that each SB which is not recognized by the observer's eyes is observed. The phenomenon of image separation, the so-called color separation phenomenon. The color separation phenomenon is particularly noticeable when the surroundings are dark. The effect of the phenomenon of color separation on the psychological impact of the observer is also not very reasonable. Therefore, the present inventors prevent the color separation phenomenon from being driven by the liquid crystal display element by forming a desired color light for each SB and causing it to emit light, and the display unit in which one SB is in a light transmitting state is in a light blocking state in the other SB. method. (For example, refer to Patent Document 1) 10 Fig. 12 is a timing chart for explaining the liquid crystal driving method of the above application. Please refer to the "Multicolor Backlight" section. In the first frame of the figure, SB1 emits white light by simultaneously turning on a plurality of color light sources, while SB2 emits orange light, and SB3 emits blue light emitted by a single light source. Further, in the figure, the blank period is set to 3 ms during the 1 SB period of 5.57 ms 15 . Please refer to the paragraph "Display Unit 31". In the display unit 31, only SB1 is in a light transmitting state. Therefore, white can be displayed. Please refer to the "Display Unit 32" section. In display unit 32, all SBs are in a blackout state. Therefore, the display color is black. 20 Please refer to the paragraph "Display Unit 37". In the display unit 37, only SB2 is in a light transmitting state. Therefore, orange can be displayed. According to the driving method of the liquid crystal display element of Patent Document 1, the lighting color of the multi-color backlight can be changed for each frame, so that diversified color display can be achieved. However, in the above technique, the display area and the non-display area are individually independent of each other and are not easily controlled to an arbitrary color tone after the liquid crystal display element is manufactured. In the case of a full dot matrix liquid crystal display element using a micro-filter, it is apparent that the color adjustment of the non-display area and the display area can be substantially independently performed, but the use of micro-filters increases the cost. . _ 5 In particular, a segment type or a segment-to-dot composite liquid crystal display element is required for low cost. It is preferable not to use a color filter such as a micro color filter (for example, refer to Patent Document 2). φ 【 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利It is an object of the invention to provide a liquid crystal display element and a driving method thereof that are capable of displaying a variety of colors that prevent color separation by color display using the FS driving method. φ. Means for Solving the Problem According to one aspect of the present invention, a liquid crystal display element including: an ith substrate having a predetermined shape of an electrode; and a second substrate configuration a second electrode that is substantially parallel to the first substrate, and has a predetermined shape, is disposed to be substantially flush with the first substrate, and has a second electrode having a predetermined shape, and the second electrode and the first electrode The position of the electrode relative to the position is defined as a singular or complex display that is not displayed. 'When the position where the first electrode and the second electrode are opposed to each other is drawn as a background area; the liquid crystal layer' is disposed in the foregoing Between the i substrate and the substrate of the 12th 1355535 2, a voltage can be applied between the first electrode and the second electrode to switch the alignment state; and the first polarizer is disposed on the first substrate The side opposite to the side on which the liquid crystal layer is disposed; the first light source is disposed on the side opposite to the side on which the first substrate of the first polarizing plate is disposed; and the penetrating and reflecting plates are disposed With before The side opposite to the side on which the liquid crystal layer of the second substrate is disposed, and the incident light may be transmitted or reflected in accordance with the polarized state; and the second polarizing plate is disposed on the second substrate of the penetrating and reflecting plate The side opposite to the side on which the arrangement is disposed; the second light source is disposed on the side opposite to the side of the second polarizing plate on which the penetration and the reflecting plate are disposed; and the voltage applying means is provided in the first electrode When a voltage is applied between the second electrode and the control circuit, when one period of displaying one image is one frame, the one frame time can be divided into plural times, and the first or second time can be made. The light source emits light in each of the sub-frames, and controls the switching state of the alignment state of the liquid crystal layer in synchronization with the light emission, and the penetration and reflection plate 15 can reflect the first polarizing plate and the voltage is not applied. The light in the polarized state of the liquid crystal layer penetrates the light that penetrates the polarized state of the second polarizing plate. According to another aspect of the present invention, a liquid crystal display device can be provided, wherein the liquid crystal display device includes a first substrate and a first electrode having a predetermined shape, and the second substrate is configured to be a second electrode that is substantially parallel to the first substrate and has a predetermined shape, is disposed substantially parallel to the first substrate, and is provided with a second electrode of a predetermined shape, and the first electrode is opposed to the second electrode The position is defined as a singular or plural display unit that can be displayed, and the position where the first electrode and the second electrode are opposed to each other at a position of 13 1355535 is defined as a background region; and the liquid crystal layer is disposed on the first substrate. Between the second substrate and the second electrode, a voltage can be applied between the first electrode and the second electrode to switch the alignment state; and the first polarizing plate is disposed on the liquid crystal layer of the first substrate The side opposite to the side on which the side is disposed; the first light source is disposed on the side opposite to the side on which the first substrate of the first polarizing plate is disposed; the penetrating and reflecting plate is disposed in the second portion Substrate The side on which the liquid crystal layer is disposed on the side opposite to the side, and the incident light may be transmitted or reflected in accordance with the polarized state; and the second polarizing plate is disposed on the side of the second substrate on which the penetrating and reflecting plate is disposed. The second light source is disposed on a side opposite to the side of the second polarizing plate on which the penetrating and reflecting plates are disposed; and the voltage applying mechanism is the first electrode and the second electrode When a voltage is applied between the electrodes; and the control circuit is configured to display a single image for one frame, the one frame time can be divided into a plurality of frames, and the first or second light source is used in each of the foregoing Illuminating in the sub-frame, and controlling the switching of the alignment state of the liquid crystal layer in synchronization with the 15 illuminating, wherein the penetrating and reflecting plate can reflect the first polarizing plate and the liquid crystal layer when the voltage is not applied a light in a polarized state, and a light penetrating through a polarized state of the second polarizing plate, wherein the driving method includes: displaying the light emitted by the first light source in one of the foregoing second frames; Utilized by 20 aforementioned. a step of displaying the light emitted from the light source in another of the sub-frames; and performing the display unit by using at least one of the first sub-frames of the light emitted by the first or second light source The display. Advantageous Effects of Invention According to the present invention, it is possible to provide a liquid crystal display element and a driving method thereof which are capable of preventing color separation of a color separation phenomenon in a color display using the FS driving method. EMBODIMENT OF THE INVENTION The present invention has been filed in Japanese Patent Application No. 2006-005156, the entire disclosure of which is incorporated herein by reference. Section ~ [0116] paragraph). The present invention is a further examination of the inventors of this application. Fig. 1 is an exploded perspective view showing an example of the internal structure of a liquid crystal display element of the embodiment explained in detail with reference to Figs. 2 to 6 . The liquid crystal display device shown in Fig. 1 has a structure in which the upper substrate 50a and the lower substrate 50b which are disposed substantially in parallel with each other, and the liquid crystal layer 55 held therebetween. The upper substrate 50a and the lower substrate 5〇b are provided with, for example, flat glass substrates (upper and lower glass substrates 51a' to 51b), and are formed of a transparent conductive material such as ITO on the opposite surfaces of the flat glass substrates 15 and have a predetermined pattern. Electrodes (upper and lower transparent electrodes 52a and 52b) and alignment ridges (upper and lower alignment films 53a and 53b) formed on the respective electrodes. A pair of upper and lower polarizing plates 54a and 54b are disposed outside the upper substrate 50a and the lower substrate 50b. The upper and lower polarizing plates 54a and 54b are, for example, a linear 20 polarizing plate 'circular polarizing plate or an elliptically polarizing plate. The upper and lower polarizing plates 54a and 5 respectively have a transmission axis in the inward direction, and are only transmitted through the light that is polarized in the direction of the transmission axis. When the upper and lower polarizing plates 54a and 54b are a circularly polarizing plate or an elliptically polarizing plate, a retardation plate is further provided inside. A voltage 15 1355535 applying mechanism 68 is connected between the upper transparent electrode 52a and the lower transparent electrode 52b. The voltage applying mechanism 68 can apply an arbitrary voltage between the electrodes 52a, 52b to change the alignment state of the liquid crystal molecules of the liquid crystal layer 55. A polarized light-transparent and reflective plate 67 is disposed between the lower substrate 50b and the lower polarizing plate 54b. The polarized light is separated and the reflecting plate 67 can penetrate or reflect the incident light according to its polarized state. The polarized light is separated and the reflecting plate 67 can be a broadband cholesteric liquid crystal film (broadband) such as a D-BEF (brightness enhane film) for use in a 3M system or a polarization conversion film (PCF). Cholesteric film). The multi-color front light 66 and the multi-color back light 56 are disposed outside the upper polarizing plate 54a and the lower polarizing plate 54b, respectively. The 10 multi-color front light 66 and the multi-color backlight 56 are capable of selectively emitting a plurality of light sources. For example, an RGB multi-color LED light source is provided on the side, and the incident light is irradiated toward the liquid crystal layer. The color light source can be composed of an organic LED, an inorganic LED, a CCFL, an FE lamp, or the like. The change in the color of the emitted light can be realized by a structure in which a plurality of monochromatic light sources of different illuminating colors are used, or a structure in which a single light source of a variable illuminating color can be used. The multi-color front light 66 allows light from the liquid crystal layer to penetrate. The multi-color backlight 56 controls the display of display areas such as dots and segments, while the multi-color front light 66 is used to achieve color display of non-display areas. The synchronizing circuit 74 is configured to synchronously turn on and off the multi-color backlight 56, turn on and off the multi-color front light 66, and switch the liquid crystal layer 55 (change in the liquid crystal molecular alignment state 20, switching between the light transmitting state and the light blocking state). a circuit, and the circuit can divide the 1 昼 time into a plurality of frames, causing the multi-color front light 66 or the multi-color backlight 56 to illuminate in each ' 昼 并 and switch the liquid crystal layer μ in synchronization with the illuminating . The display is performed by switching of the liquid crystal layer 55. The upper transparent 16 electrode 52a and the lower transparent electrode 52b define a 7-segment display portion (a singular or plural display unit and a background region which can be displayed) as shown in Fig. 10(B) on the upper substrate 50a side. The display unit is defined at a position where the upper transparent electrode 52a and the lower transparent electrode 52b oppose each other, and the background region is defined at a position where the non-upper transparent electrode 52a and the lower transparent electrode 52b oppose each other. The liquid crystal cells formed by the upper and lower substrates 50a and 50b, the liquid crystal layer 55, the upper and lower polarizing plates 54a and 54b, and the polarized light separating and reflecting plate 67 are black matrix liquid crystals for the light emitted by the multicolor backlight 56. unit. In such a liquid crystal display element, by controlling the illuminating colors of the multi-color front light 66 and the multi-color backlight 56, the display area and the non-display area can be independently displayed in different hues. Hereinafter, the specific structure and operation of the liquid crystal display element will be described. In the liquid crystal display elements shown in Figs. 2 to 4, D-BEF manufactured by 3M is used as the polarization separation and reflection plate 67 of Fig. 1 . D-BEF has a reflection axis in the inward direction and can reflect light polarized in the direction of the reflection axis. Further, in the liquid crystal display elements shown in FIGS. 5 and 6, a broadband cholesteric liquid crystal film for a brightness enhancement film PCF made by Nippon Electric Co., Ltd. is used as the polarization separation penetration and reflection plate of FIG. 67. The broadband cholesteric liquid crystal film can, for example, reflect a right circular polarized light 'permeating a left circular polarized light, and has a broadband cholesteric liquid crystal film opposite thereto. Fig. 2 is a schematic perspective view showing the liquid crystal display element of the first embodiment. The liquid crystal layer 55 uses a negative dielectric anisotropy (Δε). The liquid crystal material of <〇) is formed as a vertical alignment type liquid crystal display element. This figure shows the alignment state of liquid crystal molecules when the voltage is not applied. Further, the upper and lower polarized light 1355535 plates 54a and 54b are linear polarizing plates. In the figure, the direction of the transmission axis of the upper and lower polarizing plates 54a, 54b is indicated by an arrow. The upper and lower polarizing plates 54a and 54b are arranged in a state of being orthogonally polarized, and the transmission axis of the D-BEF 69 and the transmission axis of the lower polarizing plate 54b are arranged in a state in which they are perpendicular to each other (5 such that light from the lower side) Penetrate D-BEF69). The liquid crystal cell black matrix type liquid crystal cell composed of the upper and lower substrates 50a, 50b 'liquid crystal layer 55; the upper and lower polarizing plates 54a, 54b; and D-BEF69 can be self-contained in a state where the voltage is not applied. The light emitted from the color backlight 56 penetrates without changing the polarized state, and is shielded from the upper polarizing plate 54a. 10 Next, the operation of the liquid crystal display element of the first embodiment will be described. As described above, the liquid crystal molecules of the liquid crystal display element of the first embodiment are aligned almost perpendicularly to the upper and lower substrates 5a, 50b when the voltage is not applied. Therefore, the light incident on the liquid crystal layer can penetrate the liquid crystal layer without changing the polarization direction. On the other hand, although the alignment state of the liquid crystal molecules in the non-display region 15 is not different when the voltage is applied, the liquid crystal molecules change in the display region when the voltage is not applied, and the reverse direction is reversed. The transmission axis of the upper and lower polarizing plates 54a, 54b faces the inward direction 45. The direction imparts a birefringence effect to the light incident on the liquid crystal layer, so that the liquid crystal layer has the same effect as the 1/2 wavelength plate, and the polarization direction of the incident light is changed by 90. , emitted by the liquid crystal layer. 20 Next, the operation when the voltage is not applied will be described. The light emitted from the multi-color front light 66 becomes a linearly polarized light having a polarization direction in the direction of the transmission axis of the upper polarizing plate 54a, and is incident on the liquid crystal layer 55, and the light can penetrate the liquid crystal layer without changing the polarization direction. Incident on D-BEF69. The direction of the reflection axis of the D-BEF 69 is parallel to the direction of the through-axis of the upper polarizing plate 54a. Therefore, the light of the multi-color front light 66 penetrating the liquid crystal layer 55 is almost 100% reflected by the D-BEF 69, and penetrates the liquid crystal layer 55 and the upper polarizing plate 54a again. The transmitted light can be recognized by the observer. The light emitted from the multi-color backlight 56 becomes a linearly polarized light having a polarization direction in the direction of the transmission axis of the lower polarizing plate 54b, and is incident on D_beF69. Since the reflection axis direction of the D-BEF 69 is perpendicular to the transmission axis direction of the lower polarizing plate 54b, the linear polarization can penetrate the D-BEF 69 and enter the liquid crystal layer 55. The polarization direction of the liquid crystal layer 55 is not changed. Therefore, the light emitted from the liquid crystal layer 55 is arranged to be absorbed by the polarizing plate 54a which is orthogonal to the polarizing plate 54b. Therefore, when the voltage is not applied, the light emitted by the multi-color front light 66 can be recognized by the observer in the entire area of the display portion. Next, the operation at the time of voltage application will be described. The light emitted by the multi-color front light 66 is recognized by the observer in the non-display area in the same manner as when the voltage is not applied. On the other hand, in the display region, the light emitted by the multi-color front light 66 becomes a linearly polarized light having a polarization direction in the transmission axis direction of the upper polarizing plate 54a, and is incident on the liquid crystal layer 55. Since the alignment state of the liquid crystal molecules changes from when the voltage is not applied, the polarization direction of the light incident on the liquid crystal layer 55 changes by 9 〇 ' to emit the liquid crystal layer 55. The direction of polarization of the linearly polarized light that exits the liquid crystal layer 55 is perpendicular to the direction of the reflection axis of the D-BEF 69 (parallel to the direction of the transmission axis of the D-BEF 69), so that the linearly polarized light that exits the liquid crystal layer 55 penetrates the D-BEF 69 and penetrates. The lower polarizing plate 54b' then propagates to the side of the multicolor backlight 56, disappearing due to scattering or the like. Therefore, the light emitted by the multi-color front light 66 is not recognized by the observer. 1355535 The light emitted by the multi-color backlight 56 is the same as that when the voltage is not applied, and cannot be recognized by the observer in the non-display area. On the other hand, in the display region, the light emitted by the multi-color backlight 56 becomes a linearly polarized light having a polarization direction in the direction of the crossing direction of the lower polarizing plate 54b, which penetrates D-BEF 69 and is incident on the liquid crystal layer 55. And the polarization direction changes by 9 在 in the liquid crystal layer 55. . Therefore, the light that exits the liquid crystal layer 55 passes through the upper polarizing plate 54a' and is recognized by the observer. Thus, when voltage is applied, light emitted by the multi-color front light 66 can be recognized by the observer in the non-display area, and light emitted by the multi-color backlight 56 can be recognized by the observer in the 10 display area. Thus, the liquid crystal display element of the first embodiment can independently express the hue of the non-display area with the multi-color front light 66, and the hue of the display area with the multi-color backlight 56. Further, by selecting the color of light emitted from the light sources 56 and 66, the display colors of the display area and the non-display area can be selected. As described above, in the case of the liquid crystal display element of the first embodiment, even when the multi-color front light 66 and the multi-color backlight 56 are simultaneously lit, only one of the lights is recognized by the observer at any place. As long as the liquid crystal display element is switched to the ΟΝ/OFF of the simple matrix drive, even if both of them are lit at the same time, almost no color mixture is produced. Fig. 3 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the second embodiment. In the first embodiment, a vertical alignment type liquid crystal cell is used. In the second embodiment, a liquid crystal having a two-layer structure including a compensation unit (upper unit) 7〇 and a drive unit (lower unit) 71 disposed on the upper and lower polarizing plates 54a and 54b, respectively, is used. The unit is different from the liquid crystal display element 20 of the second embodiment. - a liquid crystal layer 55 of a compensation sheet S7G and (four) unit 71 is simultaneously formed using the same positive polarity; | electrical coefficient anisotropy (Δε > 0) liquid crystal material, and each unit 70, 71 is set to a left twist angle of 9, respectively. Hey. The right twist angle is 9〇. Horizontal alignment type 5 liquid crystal display elements. The alignment direction of the liquid crystal molecules in the center in the thickness direction of the liquid crystal layer 55 of each of the cells 7, 71 is perpendicular to each other, and the thickness of the liquid helium layer 55 of the two cells 7?, 7? is made equal. Further, this figure shows the alignment state of the liquid crystal molecules when the voltage is not applied. The display failure is performed only when a voltage is applied to the drive unit (lower unit) 71, and the compensation unit (upper unit) 7 is not energized. The liquid crystal cell composed of the compensation unit 70, the upper and lower polarizing plates %, 54b and the 〇-Qing 69 of the driving unit 7 is emitted by the multi-color backlight %. The light is a black matrix type liquid crystal cell. Next, the operation of the liquid crystal display element of the second embodiment will be described. As described above, since the U is not energized by the compensation unit 7, the liquid crystal molecules of the compensation unit % are usually laid at the left twist angle of 9 〇. status. Therefore, the direction of polarization of the light incident on the compensating unit 70 changes 90 to the left. , the injection compensation unit 7〇. When the voltage is not applied, the driving unit 71 can change the polarization direction of the incident light - Xiao right by 9 〇. Shoot out. That is, in the driving unit 71, the light polarization direction and the 20 compensation unit direction change 9 (). . Then, the light emits a liquid crystal cell having a two-layer structure in a polarization direction equal to that when a person is shot in a liquid crystal cell of two layers. However, when the voltage is applied, the alignment state of the liquid crystal molecules in the non-display region is the same as when the voltage is not applied, but in the display region, the alignment state of the liquid crystal molecules of the driving unit 71 is changed from when the voltage is not applied (on the upper side and 21). 1355535 The lower substrates 50a, 50b are arranged almost vertically, and the light incident on the driving unit] can be emitted by the driving unit 71 without changing the polarization direction. Then, the light is offset by 9 与 from the liquid crystal cell incident on the 2-layer structure. , a liquid crystal cell of two layers is constructed. Therefore, even when the voltage is not applied and the voltage is applied, the light can be changed in the non-display area without changing the polarization direction by the liquid crystal cell of the two-layer structure (the compensation unit 70 and the driving unit 71). On the other hand, when a voltage is applied, the light can be varied by 90 in the display area. The polarization direction is emitted by a liquid crystal cell having a two-layer structure. Therefore, the liquid crystal display element of the second embodiment operates in the same manner as the liquid crystal display element of the first embodiment, and when the voltage is not applied, the light emitted by the multi-color front light 66 can be recognized by the observer in the entire display unit. While the voltage is applied, the light emitted by the multi-color front light 66 can be recognized by the viewer in the non-display area, and the light emitted by the multi-color backlight 56 can be recognized by the observer in the display area. 15 After studying various liquid crystal cells of various twist angles, the inventors found that the torsion angle of the compensating unit 70 and the driving unit 71 is 7 〇. ~240. At this time, the liquid crystal display element of the second embodiment can effectively function practically. Further, the same effect can be obtained by replacing the compensation unit (upper unit) 7〇 with a liquid crystal polymer alignment retardation plate (share) having the same optical function as Pwlatechn. Fig. 4 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the third embodiment. The liquid crystal display element of the third embodiment is a liquid crystal display element in which a phase difference plate 72 is provided between the upper substrate 5A and the upper polarizing plate 54a. 22 1355535 The upper and lower substrates 50a, 50b, the liquid crystal layer 55, the upper side can be made by appropriately specifying the torsion angle of the liquid crystal molecules 'the thickness of the liquid crystal layer, the phase difference 値 of the phase difference plate, and the orientation of the phase backward axis. The liquid crystal cell composed of the lower polarizing plate 5, the batt, the D-BEF 69' and the phase difference plate 72 is a black matrix liquid crystal cell for the light emitted by the multicolor backlight 5 56. At this time, the phase difference plate 72 can function to adjust the color tone. The detailed structure is as follows. The thickness of the liquid crystal layer 55 was set to 6 μm, and RDP00333 manufactured by Dainippon Ink was used as a liquid crystal material, and the twist angle of the liquid crystal molecules 10 was set to be twisted horizontally by 240° to the left. Then, an early-axis optical anisotropic phase difference plate having a phase difference of N600 Nm was used as the phase difference plate 72. Further, 'the phase backward axis of the phase difference plate 72, the transmission axis of the upper polarizing plate 54a, the transmission axis of the D-BEF 69, and the transmission axis of the lower polarizing plate 54b are respectively formed with the central molecular alignment direction of the liquid crystal layer 55. The corner is set to 14〇. 95. , 15 70°, 70°. This figure shows the alignment state of liquid crystal molecules when the voltage is not applied. Further, the direction of the transmission axis of the upper and lower polarizing plates 54a, 54b, the phase of the phase difference plate 72 behind the axis direction, and the direction of the transmission axis of d_beF69 are indicated by arrows. In the third embodiment, although one phase difference plate 72 is used, a plurality of phase difference plates may be used for 20. Further, it is not limited to a single-axis optical anisotropic phase difference plate, and a biaxial optical anisotropic phase difference plate can also be used. Further, the twist angle of the liquid crystal molecules is preferably set to 180. ~240. . Fig. 5 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the fourth embodiment. The liquid crystal display element of the fourth embodiment is similar to the liquid crystal display element of the second embodiment shown in Fig. 2. In the liquid crystal display device of the second embodiment, the upper and lower polarizing plates 54a and 54b are disposed on the outer side of the upper and lower substrates 50a and 5'1 of the liquid crystal layer 55, and the outer sides are also disposed with a plurality of colors. Light 66 and multi-color backlight 56. Further, D-BEF is inserted between the lower substrate 50b and the lower polarizing plate 54b as a polarizing separation and reflection plate that can penetrate or reflect incident light in accordance with the polarization state thereof. In the liquid crystal display device of the fourth embodiment, the broadband cholesteric liquid crystal film, not the D-BEF, is disposed between the lower substrate 5b and the lower polarizing plate 5 as a polarized light separation and reflection plate 67, and The liquid crystal display elements of the first embodiment are different. Further, in the liquid crystal display device of the first embodiment, a linear polarizing plate is used as the upper and lower polarizing plates 54a and 54b. However, in the liquid crystal display device of the fourth embodiment, a combination of light from the upper side is employed. The upper polarizing plate 15e and the upper polarizing plate 54g are used as the upper polarizing plate 54a, and the lower linear polarizing plate 5 and the lower 1⁄4 wavelength plate 54h are used for the light from the lower side. The circular polarizing plate serves as the lower polarizing plate 54b. Further, the upper and lower polarizing plates 54a and 54b are arranged with a linear polarizing plate on the side of the light sources 66 and 56, and a quarter-wave plate is formed on the liquid crystal cell side, and the transmission axis of the straight 20-line polarizing plate is 1/1. The angle δ between the axes of the four-wavelength plates is formed by the soil 45, and the transmission axes of the upper and lower linear polarizing plates 54e, 54f are perpendicular to each other. Further, the directions of the transmission axes of the linear polarizing plates 54e and 54f can be arbitrarily set with respect to the upper and lower substrates 50a and 50b. Further, the functions of the '1/4 wavelength plates 54g, 54h can also be realized by a combination of complex wave plates 24 (for example, a combination of a 1⁄4 wavelength plate and a 1⁄2 wavelength plate). In the fourth real-time reading of the crystal-element towel, the upper polarizing plate 5 is used as a right circular polarizing plate, and the lower polarizing plate 54b is used as a left circular polarizing plate. Further, the broadband cholesteric liquid crystal film 73 serves as a person who can reflect the right circular polarized light and penetrate the left 5 circular polarized light. Hereinafter, the circularly polarized light whose X component is opposite to the phase of the y component is a right circular polarized light, and the circularly polarized light whose phase is advanced is a left circular polarized light. Conversely, the upper polarizing plate 5 is used as a left circular polarizing plate, and the lower polarizing plate 54b is used as a right circular polarizing plate, and the broadband cholesteric liquid crystal 10 film 73 is reflected as a left circular polarized light, which penetrates the right. Round polarizer. The circular polarization direction of the upper polarizing plate 54a and the lower polarizing plate 54b is reversed, and the circular polarization direction through which the wide cholesteric liquid crystal film 73 penetrates coincides with the circular polarization direction of the lower polarizing plate 54b. In addition, a structure in which a wide-band cholesteric liquid crystal film and a circular polarizing plate are bonded to each other is used in conjunction with a backlight or a liquid crystal cell, such as a NIPOCS manufactured by Nippon Electric Co., Ltd. or a TRANSMAX manufactured by Merck. At this time, the broadband cholesteric liquid crystal film is disposed on the light source side. In the present embodiment, the polarizing plate is disposed on the light source side, which is different from this. The liquid crystal layer 55 uses a negative dielectric anisotropy (Δ£ <〇) The liquid crystal material 20 is formed as a vertical alignment type liquid crystal display element. In the figure, the alignment state of the liquid crystal molecules when the voltage is not applied is shown. Further, the retardation amount of the liquid crystal layer 55 at the time of voltage application is 1/2 wavelength (e.g., the phase of the x component is 1/2 wavelength later). The light emitted by the multi-color front light 66 becomes light polarized in the direction of the transmission axis of the upper linear polarizing plate 25 1355535 54e, and the incident on the upper side quarter wave plate 54g'x component is only 1/4 wavelength behind the phase. Right circular polarization. When the voltage is not applied, the light incident on the liquid crystal layer 55 can be emitted from the liquid crystal layer 55 without changing the polarization state. The right circular light emitted from the multi-color front light 66 and emitted from the upper side 1/4 wave 5 long plate 54g directly emits the liquid crystal layer 55 in a state of right circular polarization, and is reflected by the broadband cholesteric liquid crystal film 73. The reflected light penetrates the liquid crystal layer while still being in the right circularly polarized light, and the y component is 1/4 wavelength in the upper side quarter wave plate 54g, so that the linear polarized light which becomes the same polarizing component as the incident light penetrates The upper linear polarizing plate 54e is recognized by the observer. On the other hand, the light component X component emitted from the multi-color backlight 56 is advanced by 1/4 wavelength in the lower quarter-wavelength plate 54h, and penetrates the liquid crystal layer in the state of the left circular polarization, and is in the phase of the upper 1/4 wavelength plate 54g. When it is 1/4 wavelength behind, it becomes a linearly polarized light which is rotated by 90° on the polarization axis of the lower polarizing plate, and is shielded from the upper linear polarizing plate 54e, and cannot be recognized by the observer. When the voltage is applied, the right circularly polarized light of the liquid crystal layer 55 incident on the display region changes to the left circularly polarized light emitting liquid crystal layer 55 due to the change in the alignment state of the liquid crystal molecules of the liquid crystal layer 55. Further, the left circularly polarized light becomes a right circularly polarized light to emit the liquid crystal layer 55. The light emitted by the multi-color front light 66 can be recognized by the observer in the non-〇 display area as in the case where the voltage is not applied. In the display area, since the x component phase is 1/4 wavelength behind and the phase is 1/2 wavelength, the left circular polarization penetrates the broadband cholesteric liquid crystal film 73, and the phase of the lower quarter wave plate 54h is 1/4 wavelength. It penetrates the lower linear polarizing plate 54f' and can be recognized by the observer. In another aspect, the light emitted by the multi-color backlight 56 is separated from the 1/2 wavelength by the lower side 1/4 26 1355535 wave plate 54h, the liquid crystal layer 55, the upper side quarter wave plate 54g, and the phase 1/4 wavelength. The phase is 1/4 wavelength behind, and is incident on the upper linear polarizing plate 54e, so that it can be penetrated by the observer to recognize. For the light emitted by the multi-color backlight 56, the upper and lower substrates 5a, 550b; the liquid crystal layer 55; the upper and lower polarizers 54a, 54b; and the wide-band cholesteric liquid crystal film 73 constitute a black matrix In the liquid crystal cell, a phase difference plate (retardation film) such as a viewing angle compensation plate is not used between the liquid crystal cell and the upper or lower polarizing plates 54a and 54b, but may be suitably used as needed. The operation of the liquid crystal display element of the fourth embodiment is the same as the operation of the liquid crystal 10 display element of the first embodiment. Therefore, when the voltage is not applied, the light emitted by the multi-color front light 66 can be recognized by the observer in the entire area of the display portion, and the light emitted by the multi-color front light 66 can be observed in the non-display area when the voltage is applied. The light identified by the multi-color backlight 56 can be recognized by the viewer in the display area. The liquid crystal display element of the fourth embodiment can also achieve the same effects as the liquid 15-crystal display element of the first embodiment. Fig. 6 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the fifth embodiment. In the fourth embodiment, the vertical alignment type liquid crystal cell is used, and in the fifth embodiment, the torsional nematic compensation unit (upper unit) 7 〇 and the torsion which are disposed on the side of the upper and lower polarizing plates 54a and 54b, respectively, are used. The twisted nematic liquid crystal cell having a two-layer structure of the nematic drive 20 (lower cell) 71 is different from the liquid crystal display device of the fourth embodiment. The compensation unit 70 and the liquid crystal layer 55 of the driving unit 71 are simultaneously formed using the same positive-type dielectric anisotropy (Δ£ > 0) liquid crystal material, and the respective units 70 and 71 are respectively the left twist angle 90. °, right twist angle 90. Horizontal alignment 27 1355535 type liquid crystal display element. The alignment direction of the liquid crystal molecules in the thickness direction of the liquid crystal layer 55 of each unit 70'71 is perpendicular to each other, and the thickness of the liquid-(f) layer 55 of the two units is equal. This figure shows the liquid crystal molecule - _ state when the voltage is not applied. Further, the retardation amount of the liquid crystal layer 55 of 两 and 71 is two at the same time. The display failure is performed only when a voltage is applied to the drive unit (lower side I unit) 71, and the compensation unit (upper unit) 70 is not energized. • The 卩 compensation unit 70' drive unit 71, the upper and lower polarizing plates 54a, 54b' and the wide-band cholesteric liquid crystal film 73 constitute a liquid crystal cell for the bluish-type liquid crystal cell emitted by the multi-color back light 56. Then, the operation of the liquid crystal display element of the fifth embodiment will be described. As described above, the compensation unit 70 is not energized, so that the compensation unit 7G can function as a polarization rotator. Therefore, the incident right circularly polarized light will become a left circular polarized light. Further, the left circle is biased by the first 15 circular polarized light emission compensation unit 70. # π «The unit 71 functions as a polarizing rotor that displays the direction of rotation opposite to the compensation unit when the voltage is not applied. In addition, when the voltage is applied, it is also the same in the non-display area. However, in the display region, the alignment state of the liquid crystal molecules of the driving unit 71 is changed 20 when the voltage is not applied (the upper and lower substrates 50a, 50b are almost vertically aligned), and the light incident on the driving unit 71 may not be changed to the polarized state. The self-driving unit 71 is emitted. Therefore, in the non-display area, when the voltage is not applied and the voltage is applied, the light incident on the liquid crystal cell of the two-layer structure (the compensation unit 7A and the driving unit 71) is in the right circularly polarized state. In the case of a left circular polarization, 28 1355535 emits a liquid crystal cell having a two-layer structure in a left circular polarization state. On the other hand, at the time of voltage application, in the display region, the right circularly polarized light becomes a left circularly polarized light, and the left circularly polarized light becomes a right circularly polarized light' emitted by a liquid crystal cell of a two-layer structure. Therefore, the liquid crystal display element of the fifth embodiment operates in the same manner as the liquid 5-crystal display element of the fourth embodiment, and when the voltage is not applied, the light emitted by the multi-color front light % can be observed in the entire area of the display portion. It is recognized that, when voltage is applied, light emitted by the multi-color front light 66 can be recognized by the observer in the non-display area. The light emitted by the multi-color backlight 56 is recognized by the observer in the display area. The inventors of the present invention have studied the twist angle of the liquid crystal cell of various twist angles, and the twist angle of the compensation unit 70 and the drive unit 71 is 70. ~240. At this time, the liquid crystal display element of the fifth embodiment can be effectively used practically. Further, the same effect can be obtained by replacing the compensation unit (upper unit) 7〇 with a liquid crystal polymer alignment phase difference plate (share) of the same optical function as that of the TwiStar company. 15 Although the above description has been made with respect to the embodiments, the liquid crystal display elements of the present invention are not limited to the embodiments. For example, in FIGS. 3 and 6 , the liquid crystal display elements of the upper and lower transparent electrodes 52 a and 52 b are provided on the upper and lower substrates 5 0 a and 5 0 b of the compensation unit 70, respectively, but no voltage is applied. This is not necessary for the compensation unit 7〇. Further, in the embodiment, the compensation unit 7 is disposed above and the drive unit 71 is disposed below, but the arrangement may be reversed. Further, in all of the embodiments, the black matrix type liquid crystal cell is used, and the display of the display area is performed with the multicolor backlight, and the display of the non-display area is performed with the multicolor front light. It is also possible to use a white-type liquid crystal cell to display a non-display area with a multi-color backlight and display a display area with multi-color front light. Further, in the example of the present invention, a segment type liquid crystal display element is described, but a liquid crystal display element or a full-point liquid crystal display element which can simultaneously perform segment display and dot display can be used. Further, a phase difference plate (retardation film) can be inserted between the upper substrate 50a and the upper polarizing plate 54a, or between one or both of the lower substrate 50b and the lower polarizing plate 54b. A method of driving a liquid crystal display element of an embodiment will be described with reference to Fig. 7. The liquid crystal display element to be driven is a liquid crystal display element as described with reference to Figs. 1 to 6 . In the driving method of the embodiment, 1 frame is set to 16 7 mS, and divided into 3 SBs (SB 1 to SB3) each having 5.57 mS. Then, the first 3 mS of each SB is used as a blank period, and the remaining 2.57 mS is used as the light-emitting period. In the display unit column of the figure, "0Nj shows that a voltage is applied between the upper and lower transparent electrodes 52a and 52b, and "0FF" indicates that the voltage is not applied. Also, in the multi-color front and multi-color backlight columns, "〇N" is displayed as a light, while "OFF" is turned off, and the two light sources are not lit at the same time. In addition, the switching of the multi-color front light, the multi-color backlight, and the liquid crystal layer is synchronized using a synchronization circuit. Thereby, the illumination light mixing of the display portion can be avoided. Refer to line SB1. In SB1, blue light is emitted by the multi-color front light 66. Further, the multi-color backlight 56 is turned off, and no light is emitted. As described above, in the display units 31 to 37, when a voltage is not applied between the electrodes 52a and 52b ("0FF"), the light from the multi-color front light 66 is displayed. Further, when a voltage is applied between the two electrodes 52a and 52b (when "〇N"), the light is emitted from the multicolor backlight 56. Therefore, the display of "off"

10 1510 15

早位31、34及37係以藍色之光進行顯示而「之县 單位:33、奴36則不會以藍色之光進行齡。』不 2仃。在SB2中,多色前光66為0FF,不進行發 光,且由多色背光56射出紅色之光。因此,「〇N」= 單位35及36如紅色之光進行顯示⑽」二3 位31〜34及37則不會以紅色之光進行顯示。 早 參照啦行。在SB3中,多色前光66為OFF,不進行發 且由多色背光56射出黃色之光。因此,「⑽」之顯示 早位32及32係以黃色之紐行顯示,而「㈣」之顯 位31、^〜37則不會叫色之光進行顯示。 見母一顯示單位,可看到顯示單位3卜34及37係以藍 色進行顯^⑽示單位32及33則以黃色進行顯示。又, 顯示單位35及36係处色進行顯示。 此外’因對應背景區域38之液晶層未施加電壓,故背 景區域38通常係、以來自多色前光%之光即藍色之光進行 顯示。 在本發明者以第7圖所示之驅動方法驅動液晶顯示元 件時’在如第10⑻圖所示之顯示部中,數字「11 」左側之 1」以紅色顯示’而右側之「1」以黃色顯示。 在實施例之液晶顯示元件的驅動方法中,係在SB1使 多色别光66亮燈進行非顯示區域的顯示。又,在SB2及SB3 使多色背光56亮燈進行顯示區域的顯示。因將sm、SB2及 SB3的免燈色分別設為藍、紅及黃,故可以藍顯示非顯示區 域,而以紅及黃顯示顯示區域。 31 1355535 因可從多色前光66及多色背光56射出任意色之光,故 顯示區域、非顯示區域可同時進行多樣化色顯示。另外, 如實施例所見,在顯示區域中,可達到複數色之顯示。例 如只要設置3個顯示區域顯示用之SB,且在各SB由多色背 5 光56射出不同色之光,即可用3色來顯示顯示區域。因此可 根據顯示單位數,以不同之色顯示每一顯示單位。 此外,例如液晶單元為黑底時,可藉由透過所有SB使 多色前光熄燈,以黑色顯示背景區域。又,在其中一顯示 單位中,藉由使用同步電路控制,可以黑色顯示該顯示單 10 位,以使其不會透過所有SB進行照明光之顯示。所以,將1 畫格分成也包含非顯示區域顯示用SB之N個SB時,可顯示 也包含非顯示區域色之n+1色。 而且,因各顯示單位及背景區域係只在頂多1個SB以 來自光源之光進行顯示,故可防止色分離。 15 以上,雖係沿實施例說明本發明,但本發明並不限定 於此。發明所屬技術領域中具有通常知識者自當明瞭可對 其作各種變更、改良、組合等。 産業上利用之可能性 本發明可作為段型、段顯示及點顯示之複合型、滿 20 點型液晶顯示元件及其驅動方法來利用。 【圖式簡單說明】 第1圖係概略地顯示參照第2圖〜第6圖詳細說明之實施 例之液晶顯示元件之内部結構例的分解透視圖。 第2圖係概略地顯示第1實施例之液晶顯示元件的分解 32 1355535 透視圖。 第3圖係概略地顯示第2實施例之液晶顯示元件的分解 透視圖。 第4圖係概略地顯示第3實施例之液晶顯示元件的分解 5 透視圖。 第5圖係概略地顯示第4實施例之液晶顯示元件的分解 透視圖。 第6圖係概略地顯示第5實施例之液晶顯示元件的分解 透視圖。 10 第7圖係用以說明實施例之液晶顯示元件的驅動方法 的圖。 第8(A)〜(C)圖係概略地顯示可調整非顯示區域之色調 之液晶顯示元件之内部結構例的分解透視圖。 第9(A)及(B)圖係概略地顯示可調整點部或段部之色調 15 之液晶顯示元件之内部結構例的分解透視圖。 第10(A)圖係概略地顯示可進行FS驅動之液晶顯示元 件之内部構成例的分解透視圖,而第10(B)圖則係顯示液晶 顯示元件之顯示部的平面圖。 第11圖係顯示使用FS驅動方式之液晶顯示元件之顯示 20 控制之一例的時序圖。 第12圖用以說明前述申請案之液晶驅動方法的時序 圖。 【主要元件符號說明】 30...顯示部 31〜37…顯示單位 33 1355535In the morning, the 31st, 34th, and 37th lines are displayed in blue light. "The county unit: 33, the slave 36 will not be aged with blue light." No. 2. In SB2, the multi-color front light 66 0FF, no light is emitted, and the red light is emitted by the multi-color backlight 56. Therefore, "〇N" = units 35 and 36 are displayed as red light (10)" 2 3 bits 31 to 34 and 37 are not red The light is displayed. Refer to the line early. In SB3, the multi-color front light 66 is OFF, no light is emitted, and yellow light is emitted by the multi-color backlight 56. Therefore, the display of "(10)" is displayed in the yellow line of the early 32 and 32, and the display 31 and ^~37 of the "(4)" are not displayed. See the mother-display unit, you can see that the display unit 3 Bu 34 and 37 are displayed in blue. (10) The units 32 and 33 are displayed in yellow. In addition, the display units 35 and 36 are displayed in color. Further, since the liquid crystal layer corresponding to the background region 38 is not applied with a voltage, the background region 38 is usually displayed with blue light from the multi-color front light. When the inventors drive the liquid crystal display element by the driving method shown in Fig. 7, 'in the display portion shown in Fig. 10(8), the 1" on the left side of the numeral "11" is displayed in red and the "1" on the right side is Yellow display. In the driving method of the liquid crystal display element of the embodiment, the multi-color light 66 is turned on at SB1 to display the non-display area. Further, in SB2 and SB3, the multi-color backlight 56 is turned on to display the display area. Since the lights-free colors of sm, SB2, and SB3 are set to blue, red, and yellow, respectively, the non-display area can be displayed in blue, and the display area can be displayed in red and yellow. 31 1355535 Since the light of any color can be emitted from the multi-color front light 66 and the multi-color backlight 56, the display area and the non-display area can simultaneously display a variety of colors. In addition, as seen in the embodiment, the display of the plurality of colors can be achieved in the display area. For example, if three SBs for display area display are provided, and light of different colors is emitted from each of the SBs by the multi-color back light 56, the display area can be displayed in three colors. Therefore, each display unit can be displayed in a different color according to the number of display units. Further, for example, when the liquid crystal cell is a black matrix, the background area can be displayed in black by turning off the multi-color front light through all the SBs. Further, in one of the display units, by using the synchronization circuit control, the display unit 10 bits can be displayed in black so that the illumination light is not displayed through all the SBs. Therefore, when the 1 frame is divided into N SBs which also include the SB for non-display area display, the n+1 color including the non-display area color can also be displayed. Further, since each display unit and the background area are displayed with only one SB at a maximum amount of light from the light source, color separation can be prevented. Although the invention has been described by way of examples, the invention is not limited thereto. It is obvious to those skilled in the art that various changes, modifications, combinations and the like can be made thereto. Industrial Applicability The present invention can be utilized as a composite type, full 20-point liquid crystal display element and a driving method thereof for segment type, segment display, and dot display. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded perspective view showing an internal configuration example of a liquid crystal display element of an embodiment which is described in detail with reference to Figs. 2 to 6 . Fig. 2 is a perspective view schematically showing the decomposition of the liquid crystal display element of the first embodiment 32 1355535. Fig. 3 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the second embodiment. Fig. 4 is a perspective view schematically showing an exploded view of the liquid crystal display element of the third embodiment. Fig. 5 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the fourth embodiment. Fig. 6 is a perspective view schematically showing an exploded perspective view of the liquid crystal display element of the fifth embodiment. Fig. 7 is a view for explaining a driving method of the liquid crystal display element of the embodiment. The eighth (A) to (C) drawings schematically show an exploded perspective view of an internal configuration example of a liquid crystal display element which can adjust the color tone of the non-display area. The ninth (A) and (B) drawings schematically show an exploded perspective view showing an internal configuration example of the liquid crystal display element which can adjust the hue of the dot portion or the segment portion. Fig. 10(A) is an exploded perspective view schematically showing an internal configuration example of a liquid crystal display element capable of performing FS driving, and Fig. 10(B) is a plan view showing a display portion of the liquid crystal display element. Fig. 11 is a timing chart showing an example of the display 20 control of the liquid crystal display element using the FS driving method. Fig. 12 is a timing chart for explaining the liquid crystal driving method of the above application. [Description of main component symbols] 30...Display section 31 to 37...Display unit 33 1355535

38.. .背景區域 50a—L側基板 50b...下側基板 5 la…上側玻璃基板 51b...下側玻璃基板 52a...上側透明電極 52b...下側透明電極 53a...上側配向膜 53b...下側配向膜 54a...上側偏光板 54b...下側偏光板 54c…上側色偏:¾¾ 54d...下側色偏光板 54e...上側直線偏光板 54f...下側直線偏光板 54g···上側1/4波長板 54h...下側1/4波長板 55.. .液晶層 56.. .多色背光 57.. .白色背光 58.. .相位差板 59.. .黑膜 60.. .區域濾色片 60.. .紅色部 60g...綠色部 60b...藍色部 60w...白色部 66.. .多色前光 67.. .偏光分離穿透、反射板 68.. .電壓施加機構38.. Background area 50a-L side substrate 50b... Lower side substrate 5 la... Upper side glass substrate 51b... Lower side glass substrate 52a... Upper side transparent electrode 52b... Lower side transparent electrode 53a.. The upper alignment film 53b...the lower alignment film 54a...the upper polarizing plate 54b...the lower polarizing plate 54c...the upper side color shift: 3⁄43⁄4 54d...the lower side polarizing plate 54e...the upper side linear polarized light Plate 54f... lower linear polarizing plate 54g··· upper 1/4 wavelength plate 54h... lower 1/4 wavelength plate 55.. liquid crystal layer 56.. multicolor backlight 57.. white backlight 58.. phase difference plate 59.. black film 60.. area color filter 60.. red portion 60g... green portion 60b... blue portion 60w... white portion 66.. Multi-color front light 67.. polarized light separation penetration, reflector 68.. voltage application mechanism

69.. .D-BEF 70.. .補償單元 71.. .驅動單元 72.. .相位差板 73.. .寬帶膽固醇液晶膜 74.. .同步電路 75.. .背光同步驅動電路 3469.. .D-BEF 70.. .Compensation unit 71.. Drive unit 72.. phase difference plate 73.. Broadband cholesteric liquid crystal film 74.. Synchronization circuit 75.. Backlight synchronous drive circuit 34

Claims (1)

1355535 第95137880號申請案100.09.01修正替換 十、申請專利範圍: 1. 一種液晶顯示元件,包含有: 第1基板,係設有預定形狀之第1電極者; 第2基板,係配置成與前述第1基板大略平行,且設 5 有預定形狀之第2電極,並且前述第1電極與前述第2電 極相對之位置係劃定為可進行顯示之單數或複數顯示 單位,而非前述第1電極與前述第2電極相對之位置則劃 定為背景區域者; 液晶層,係配置於前述第1基板與前述第2基板之 10 間,且可藉由在前述第1電極與前述第2電極之間施加電 壓,來切換配向狀態者; 第1偏光板,係配置在與前述第1基板之前述液晶層 所配置之側相反之側者; 第1光源,係配置在與前述第1偏光板之前述第1基 15 板所配置之側相反之側者; 穿透、反射板,係配置在與前述第2基板之前述液 晶層所配置之側相反之側,且可依照偏光狀態使入射光 穿透、或反射者; 第2偏光板,係配置在與前述穿透、反射板之前述 20 第2基板所配置之側相反之側者; 第2光源,係配置在與前述第2偏光板之前述穿透、 反射板所配置之側相反之側者; 電壓施加機構,係可在前述第1電極與前述第2電極 之間施加電壓者;及 35 1355535 第95137880號申請案100.09.01修正替換 控制電路,係在以顯示1個影像之期間為1畫格時, 可將前述1畫格時間分割成複數次畫格,使前述第1或第 2光源在各前述次畫格内發光,並與該發光同步地控制 前述液晶層之配向狀態的切換者, 5 又,前述穿透、反射板可反射穿透前述第1偏光板 及電壓未施加時之前述液晶層之偏光狀態的光,且可供 穿透前述第2偏光板之偏光狀態的光穿透, 未施加電壓時之第1光源光係由前述透過、反射板 反射而可被識別,且未施加電壓時之第2光源光係因前 10 述第1偏光板之吸收而遮光,無法被識別, 而,電壓施加時之第1光源光係穿透前述透過、反 射板並傳播至前述第1光源而散亂消失,無法被識別, 且電壓施加時之第2光源光係穿透前述第1偏光板而可 被識別。 15 2.如申請專利範圍第1項之液晶顯示元件,其中前述第1 或第2光源可選擇性地射出複數色之光。 3.如申請專利範圍第1項之液晶顯示元件,其中前述第1 偏光板及前述第2偏光板係分別在第1方向及與前述第1 方向垂直之第2方向上具有穿透軸之直線偏光板。 20 4.如申請專利範圍第3項之液晶顯示元件,其中前述穿 透、反射板之反射軸方向與前述第1方向為平行方向。 5.如申請專利範圍第1項之液晶顯示元件,其中前述第1 偏光板係可穿透右圓偏光之圓偏光板,而前述第2偏光 板係可穿透左圓偏光之圓偏光板,或前述第1偏光板係 36 1355535 第95137880號申請案100.09.01修正替換 可穿透左圓偏光之圓偏光板,而前述第2偏光板係可穿 透右圓偏光之圓偏光板。 6.如申請專利範圍第5項之液晶顯示元件,其中前述第1 及第2偏光板分別包含有直線偏光板及1/4波長板。 5 7.如申請專利範圍第1項之液晶顯示元件,其中前述液晶 層係在電壓未施加狀態下垂直配向地被挾持於前述第1 基板與前述第2基板之間者。 8. 如申請專利範圍第1項之液晶顯示元件,更包含有補償 液晶層,且該補償液晶層係配置於前述第2基板與前述 10 穿透、反射板之間、或前述第1基板與前述第1偏光板之 間者, 而前述液晶層及前述補償液晶層包含在電壓未施 加狀態下互相朝反方向扭轉之水平配向液晶分子, 且位於前述液晶層厚度方向中央之液晶分子的配 15 向方向與位於前述補償液晶層厚度方向中央之液晶分 子的配向方向垂直, 並且前述液晶層與前述補償液晶層之延遲量相等。 9. 如申請專利範圍第8項之液晶顯示元件,其中前述液晶 層與前述補償液晶層之液晶分子的扭轉角為70°〜240°。 20 10.如申請專利範圍第1項之液晶顯示元件,更包含有: 相位差板,係配置於前述第1基板與前述第1偏光板 之間,或前述第2基板與前述第2偏光板之間者。 11.如申請專利範圍第1項之液晶顯示元件,其中前述控制 電路可利用由前述第1光源射出之光在其中一前述次晝 37 1355535 第95137880號申請案100.09.01修正替換 格進行顯示,而利用由前述第2光源射出之光在另一前 述次畫格進行顯示,且可控制前述第1光源的發光、前 述第2光源的發光、及前述液晶層之配向狀態的切換, 以利用由前述第1或第2光源射出之光在1畫格中之頂多 5 1個前述次晝格進行各個前述顯示單位之顯示。 12.如申請專利範圍第1項之液晶顯示元件,其中前述控制 電路可控制前述第1或第2光源,以使其在前述1畫格中 之所有前述次畫格中發出不同色之光。 B. —種液晶顯示元件之驅動方法,且該液晶顯示元件包含 10 有:第1基板,係設有預定形狀之第1電極者;第2基板, 係配置成與前述第1基板大略平行,且設有預定形狀之 第2電極,係配置成與前述第1基板大略平行,且設有預 定形狀之第2電極,並且前述第1電極與前述第2電極相 對之位置係劃定為可進行顯示之單數或複數顯示單 15 位,而非前述第1電極與前述第2電極相對之位置則劃定 為背景區域者;液晶層,係配置於前述第1基板與前述 第2基板之間,且可藉由在前述第1電極與前述第2電極 之間施加電壓,來切換配向狀態者;第1偏光板,係配 置在與前述第1基板之前述液晶層所配置之側相反之側 20 者;第1光源,係配置在與前述第1偏光板之前述第1基 板所配置之側相反之側者;穿透、反射板,係配置在與 前述第2基板之前述液晶層所配置之側相反之側,且可 依照偏光狀態使入射光穿透、或反射者;第2偏光板, 係配置在與前述穿透、反射板之前述第2基板所配置之 38 1355535 第95137880號申請案100.09.01修正替換 側相反之側者;第2光源,係配置在與前述第2偏光板之 前述穿透、反射板所配置之側相反之側者;電壓施加機 構,係可在前述第1電極與前述第2電極之間施加電壓 者;及控制電路,係在以顯示1個影像之期間為1畫格 5 時,可將1畫格時間分割成複數次畫格,使前述第1或第 2光源在各前述次畫格内發光,並與該發光同步地控制 前述液晶層之配向狀態的切換者,且前述穿透、反射板 可反射穿透前述第1偏光板及電壓未施加時之前述液晶 層之偏光狀態的光,並供穿透前述第2偏光板之偏光狀 10 態的光穿透,而該驅動方法包含有: 利用由前述第1光源射出之光在其中一前述次畫格 進行顯示的步驟; 利用由前述第2光源射出之光在另一前述次晝格進 行顯示的步驟;及 15 利用由前述第1或第2光源射出之光在前述1晝格中 之頂多1個前述次畫格進行各個前述顯示單位之顯示, 又,未施加電壓時之第1光源光係由前述透過、反 射板反射而可被識別,且未施加電壓時之第2光源光係 因前述第1偏光板之吸收而遮光,無法被識別, 20 而,電壓施加時之第1光源光係穿透前述透過、反 射板並傳播至前述第1光源而散亂消失,無法被識別, 且電壓施加時之第2光源光係穿透前述第1偏光板而可 被識別。 14.如申請專利範圍第13項之液晶顯示元件之驅動方法,其 39 1355535 第95137880號申請案KXX09.01修正替換 中前述控制電路可控制前述第1或第2光源,以使其在前 述1畫格中之所有前述次畫格發出不同色之光。1355535 Application No. 95137880 100.09.01 Amendment 10, Patent Application Range: 1. A liquid crystal display element comprising: a first substrate provided with a first electrode of a predetermined shape; and a second substrate configured to be The first substrate is substantially parallel, and a second electrode having a predetermined shape is provided, and a position at which the first electrode and the second electrode face each other is defined as a singular or plural display unit that can be displayed, instead of the first a position at which the electrode faces the second electrode is defined as a background region; and a liquid crystal layer is disposed between the first substrate and the second substrate 10, and the first electrode and the second electrode are The first polarizing plate is disposed on a side opposite to the side on which the liquid crystal layer of the first substrate is disposed; and the first light source is disposed on the first polarizing plate. The side opposite to the side on which the first base 15 plate is disposed; the penetrating and reflecting plate is disposed on the side opposite to the side on which the liquid crystal layer of the second substrate is disposed, and can be made in accordance with the polarization state The second polarizing plate is disposed on a side opposite to the side on which the second substrate of the penetrating and reflecting plate is disposed; and the second light source is disposed in the second polarized light. a side of the plate that penetrates the side opposite to the side on which the reflector is disposed; a voltage applying mechanism that applies a voltage between the first electrode and the second electrode; and 35 1355535, application No. 95137880, 100.09.01 The correction replacement control circuit divides the first frame time into a plurality of frames when the period during which one image is displayed is one frame, and causes the first or second light source to emit light in each of the second frames. And switching the alignment state of the liquid crystal layer in synchronization with the light emission. 5, the penetration and reflection plate can reflect light that penetrates the first polarizing plate and the polarized state of the liquid crystal layer when the voltage is not applied. And the light that can pass through the polarized state of the second polarizing plate penetrates, and the first light source that is reflected when the voltage is not applied is reflected by the transmitting and reflecting plates, and the second light source is not applied with a voltage. Light system (10) The first polarizing plate absorbs light and is blocked from light, and the first light source light penetrates the transmission and reflection plate and propagates to the first light source, and is scattered and disappears, and is not recognized, and The second light source light when the voltage is applied is transmitted through the first polarizing plate to be recognized. The liquid crystal display device of claim 1, wherein the first or second light source selectively emits light of a plurality of colors. 3. The liquid crystal display device of claim 1, wherein the first polarizing plate and the second polarizing plate have a straight line passing through the axis in the first direction and the second direction perpendicular to the first direction. Polarizer. The liquid crystal display device of claim 3, wherein the direction of the reflection axis of the transmissive and reflecting plate is parallel to the first direction. 5. The liquid crystal display device of claim 1, wherein the first polarizing plate is capable of penetrating a right circularly polarized circular polarizing plate, and the second polarizing plate is capable of penetrating a left circular polarizing circular polarizing plate. Or the first polarizing plate system 36 1355535 No. 95137880, the application of the 100.09.01 correction replaces the circular polarizing plate which can penetrate the left circularly polarized light, and the second polarizing plate can penetrate the circular polarizing plate of the right circular polarized light. 6. The liquid crystal display device of claim 5, wherein the first and second polarizers each comprise a linear polarizing plate and a quarter wave plate. The liquid crystal display device of claim 1, wherein the liquid crystal layer is vertically sandwiched between the first substrate and the second substrate in a state where the voltage is not applied. 8. The liquid crystal display device of claim 1, further comprising a compensation liquid crystal layer disposed between the second substrate and the ten-passing and reflecting plate, or the first substrate and In the first polarizing plate, the liquid crystal layer and the compensation liquid crystal layer include horizontal alignment liquid crystal molecules which are twisted in opposite directions when the voltage is not applied, and liquid crystal molecules located in the center in the thickness direction of the liquid crystal layer. The direction of the alignment is perpendicular to the alignment direction of the liquid crystal molecules located in the center of the thickness direction of the compensation liquid crystal layer, and the retardation amount of the liquid crystal layer and the compensation liquid crystal layer is equal. 9. The liquid crystal display device of claim 8, wherein the liquid crystal layer and the liquid crystal molecules of the compensation liquid crystal layer have a twist angle of 70 to 240. The liquid crystal display device of claim 1, further comprising: a phase difference plate disposed between the first substrate and the first polarizing plate, or the second substrate and the second polarizing plate Between. 11. The liquid crystal display device of claim 1, wherein the control circuit is capable of displaying, by using the light emitted by the first light source, in a modification of a replacement cell of the above-mentioned No. 95 1355535 No. 95137880 application No. 95.09.01, The light emitted by the second light source is displayed on the other sub-frame, and the light emission of the first light source, the light emission of the second light source, and the switching of the alignment state of the liquid crystal layer can be controlled. The light emitted from the first or second light source is displayed on each of the display units at a maximum of 51 sub-frames in one of the grids. 12. The liquid crystal display element of claim 1, wherein the control circuit controls the first or second light source such that it emits light of a different color in all of the aforementioned sub-frames in the first frame. B. A method of driving a liquid crystal display device, comprising: a first substrate having a first electrode of a predetermined shape; and a second substrate disposed substantially parallel to the first substrate; a second electrode having a predetermined shape is disposed substantially parallel to the first substrate, and is provided with a second electrode having a predetermined shape, and a position of the first electrode facing the second electrode is defined as being The singular or plural display 15 bits are displayed, and the position where the first electrode and the second electrode are opposed to each other is defined as a background region; and the liquid crystal layer is disposed between the first substrate and the second substrate. The switching state can be switched by applying a voltage between the first electrode and the second electrode; and the first polarizing plate is disposed on the side opposite to the side on which the liquid crystal layer of the first substrate is disposed. The first light source is disposed on a side opposite to the side on which the first substrate of the first polarizing plate is disposed; and the penetrating and reflecting plate is disposed on the liquid crystal layer of the second substrate. Side opposite side Further, the incident light may be transmitted or reflected in accordance with the polarized state; and the second polarizing plate is disposed in the first substrate of the penetrating and reflecting plate, and is replaced by the application of the first substrate of the first and second substrates. a side opposite to the side; the second light source is disposed on a side opposite to the side of the second polarizing plate on which the penetration and the reflecting plate are disposed; and the voltage applying means is the first electrode and the second When a voltage is applied between the electrodes; and the control circuit is set to 1 frame 5 during the period in which one image is displayed, the 1 frame time can be divided into a plurality of frames, and the first or second light source can be used in each The light in the secondary frame is illuminated, and the switcher of the alignment state of the liquid crystal layer is controlled in synchronization with the light emission, and the penetrating and reflecting plate can reflect the first polarizing plate and the liquid crystal layer when the voltage is not applied. The light in the polarized state is transmitted through the light of the polarized state of the second polarizing plate, and the driving method includes: displaying the light emitted by the first light source in one of the foregoing sub-frames Step a step of displaying the light emitted by the second light source in another sub-frame; and 15 using the light emitted by the first or second light source at least one of the first frames in the first frame The display of each of the display units is performed, and when the voltage is not applied, the first source light is reflected by the transmission and the reflection plate, and the second source light is not applied by the first polarizer. It absorbs and blocks light, and cannot be recognized. 20 When the voltage is applied, the first light source light penetrates the transmission and reflection plate and propagates to the first light source, and disappears and disappears, and is not recognized, and the second voltage is applied. The light source light can be recognized by penetrating the first polarizing plate. 14. The method of driving a liquid crystal display element according to claim 13 of the patent application, the first control circuit of the above-mentioned control circuit can control the first or second light source in the above-mentioned 1 in the above-mentioned control circuit in the modification of the KXX09.01 All of the aforementioned secondary frames in the frame emit different colors of light. 4040
TW095137880A 2006-01-24 2006-10-14 Liquid crystal display component and driving method thereof (1) TW200730939A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014927A JP4846369B2 (en) 2006-01-24 2006-01-24 Liquid crystal display element and method for driving liquid crystal display element

Publications (2)

Publication Number Publication Date
TW200730939A TW200730939A (en) 2007-08-16
TWI355535B true TWI355535B (en) 2012-01-01

Family

ID=38453860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095137880A TW200730939A (en) 2006-01-24 2006-10-14 Liquid crystal display component and driving method thereof (1)

Country Status (3)

Country Link
JP (1) JP4846369B2 (en)
KR (1) KR100840204B1 (en)
TW (1) TW200730939A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115963A (en) * 2007-11-05 2009-05-28 Stanley Electric Co Ltd Liquid crystal display device and its driving method
KR100893027B1 (en) 2007-10-22 2009-04-15 엘지이노텍 주식회사 Liquid crystal display device
JP5473764B2 (en) * 2010-05-07 2014-04-16 テスコム株式会社 Liquid crystal display
KR102646632B1 (en) * 2016-09-20 2024-03-12 삼성디스플레이 주식회사 Display device
KR20190006890A (en) * 2017-07-11 2019-01-21 경상대학교산학협력단 Circular polarization device, notch filter and bandpass filter including the same
EP3435147A1 (en) * 2017-07-25 2019-01-30 Koninklijke Philips N.V. Information display integrated into a lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042516B2 (en) * 2002-04-26 2008-02-06 カシオ計算機株式会社 Display device
JP3972947B2 (en) * 2003-02-14 2007-09-05 三菱電機株式会社 Liquid crystal display device and information device equipped with the same
JP4721252B2 (en) * 2003-08-05 2011-07-13 スタンレー電気株式会社 Normally white type LCD

Also Published As

Publication number Publication date
TW200730939A (en) 2007-08-16
KR100840204B1 (en) 2008-06-23
JP2007199157A (en) 2007-08-09
JP4846369B2 (en) 2011-12-28
KR20070077768A (en) 2007-07-27

Similar Documents

Publication Publication Date Title
TW594172B (en) Liquid crystal display device in which two liquid crystal display elements arranged on the two sides of a machine can be observed from said two sides
WO2016152311A1 (en) Mirror display
CN1873502B (en) Liquid crystal display device
US20110292319A1 (en) Dual mode electro-optic displays
TWI355535B (en)
KR100478804B1 (en) Optical shifter and optical display system
US10216034B2 (en) Liquid crystal display device
CN109073921B (en) Switch type mirror panel and switch type mirror device
JP2004117652A (en) Composite display device
TWI358567B (en)
JP5138893B2 (en) Liquid crystal display element and method for driving liquid crystal display element
JP4846527B2 (en) Liquid crystal display element
JP2006215582A (en) Color display apparatus
JP4884040B2 (en) Liquid crystal display element and method for driving liquid crystal display element
JP5192302B2 (en) Liquid crystal display
JP3810525B2 (en) Color display device
JP2004294824A (en) Liquid crystal display device
JP2000089208A (en) Reflection type liquid crystal display device
JP3888760B2 (en) Reflective full color LCD
JP3557570B2 (en) Liquid crystal display
JPH0627462A (en) Planar display panel
JP2004138633A (en) Display device and electronic appliance
JPS6267516A (en) Multicolor liquid crystal display
KR20070109894A (en) Liquid crystal display device
JP2008216896A (en) Liquid crystal display element and driving method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees