TWI355392B - Method for producing urethane foam - Google Patents

Method for producing urethane foam Download PDF

Info

Publication number
TWI355392B
TWI355392B TW94133577A TW94133577A TWI355392B TW I355392 B TWI355392 B TW I355392B TW 94133577 A TW94133577 A TW 94133577A TW 94133577 A TW94133577 A TW 94133577A TW I355392 B TWI355392 B TW I355392B
Authority
TW
Taiwan
Prior art keywords
agitating mixer
mixer
composition
foam
agitating
Prior art date
Application number
TW94133577A
Other languages
Chinese (zh)
Other versions
TW200615290A (en
Inventor
Suguru Yamada
Naoyuki Oomori
Original Assignee
Nippon Polyurethane Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Kogyo Kk filed Critical Nippon Polyurethane Kogyo Kk
Publication of TW200615290A publication Critical patent/TW200615290A/en
Application granted granted Critical
Publication of TWI355392B publication Critical patent/TWI355392B/en

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

1355392 . (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於胺基甲酸乙酯發泡體的製造方法,更具 體而s ’係可有效地製造具有微細而均勻的泡孔結構的胺 - 基甲酸乙酯發泡體(聚胺基甲酸乙酯發泡體)的胺基甲酸 % 乙酯發泡體製造方法。 ®【先前技術】 作爲胺基甲酸乙酯發泡體的製造方法,已知的是藉由 在惰性氣體氛圍下攪拌混合可形成胺基甲酸乙醋的成分 (多元醇和異氰酸酯)而進行機械發泡的機械起泡法(參 見,例如專利文獻1 )。 機械起泡法具有以下的優點:比化學發泡法(水發 泡)的成型操作更簡單,而且不會出現因脲基而導致物性 低劣的發泡體等。 ® 在機械起泡法中,是將多元醇、異氰酸酯及惰性氣體 (空氣)提供到攪拌混合機(mixing head )中,藉由在惰 性氣體氛圍下機械攪拌多元醇和異氰酸酯而調製成泡沫狀 '原料,再將其從攪拌混合機中排出,並注入模具等中進行 固化。 由這種方法獲得的胺基甲酸乙酯發泡體必須形成微細 而均勻的泡孔(由惰性氣體形成的氣泡) 〔專利文獻1〕特開200 1 -89547 1355392 . (2) • 【發明內容】 〔發明所欲解決之課題〕 胺基甲酸乙酯發泡體的泡孔結構,與攪拌 拌條件(特別是轉子的轉數)有相關性。無論 數過低(攪拌不充分),還是轉子的轉數過 拌),都不能形成具有微細而均勻的泡孔結構 乙酯發泡體。因此,本發明人在謀求獲得胺基 # 泡體的泡孔的微細化及均勻化的最佳攪拌條件 復進行了專心硏究。 但是,僅使攪拌混合機的攪拌條件(轉子 最適化,對於泡孔的微細化及均勻化是有限的 本發明是基於以上的情況所完成者,其目 有效地製造具有微細而均勻的泡孔結構的胺基 泡體的方法。 爲了解決上問題,本發明人反復進行了專 ® 結果發現透過在一定的攪拌條件下對由攪拌混 泡沫狀組合物再進行機械攪拌,可以得到用以 法不能得到的具有微細且均勻的泡孔結構的胺 發泡體,基於此認知而完成本發明。 本發明的製造方法是藉由機械起泡法來製 乙酯發泡體的方法,其特徵在於包括下述步驟 拌混合機中和情性氣體氛圍下對含有多元醇及 可形成胺基甲酸乙酯的液態組合物進行機械攪 製成在該液態組合物中分散有惰性氣體的泡沫 混合機的攪 是轉子的轉 高(過度攪 的胺基甲酸 甲酸乙酯發 設定方面反 轉數)逹到 〇 的是提供可 甲酸乙酯發 心地硏究, 合機獲得的 往的習知方 基甲酸乙酯 造胺基甲酸 :在第二攪 異氰酸酯的 拌,從而調 狀組合物, (3) 1355392 再將該泡沬狀組合物輸送到第二攪拌混合機中進行機械攪 拌,而後從第二混合攪拌機中排出;在第一攪拌混合機中 進行攪拌時的轉子的轉數(r】)爲200〜1 5 0 0rpm,在第二 攪拌混合機中進行攪拌時的轉子的轉數(r2)爲24 0〜 3000rpm,轉數比(r2/ri)爲 1.2 〜5.0。 在本發明的製造方法中,較佳爲以下的實施型態。 (甲)在泡沫狀組合物被輸送到的第二攪拌混合機中 ® 導入惰性氣體,在第二攪拌混合機中和惰性氣體氛圍下再 對泡沫狀組合物進行機械攪拌。 (乙)在泡沫狀組合物被輸送到的第二攪拌混合機中 加入用於形成胺基甲酸乙酯發泡體的添加劑(例如催化 劑、泡沫穩定劑)。 (丙)在泡沬狀組合物被輸送到的第二攪拌混合機中 加入化學發泡劑》 (丁)作爲預備步驟,在預混合機中和不存在惰性氣 ® 體的情況下對多元醇及異氰酸酯進行攪拌混合,從而獲得 可形成胺基甲酸乙酯的液態組合物(均勻混合液),並將 該液態組合物供給第一攪拌混合機。 (戊)轉數比(Γ2/ Π )爲1_5〜4.0。 〔發明的效果〕 根據申請專利範圍第1項的發明,藉由用第二攪拌混 合機對由第一攪拌混合機獲得的泡沫狀組合物再次進行機 械攪拌,可以獲得具有微細(例如,平均泡孔直徑在 -6- (4) (4)1355392 60μπι以下)且均勻(例如,泡孔直徑偏差在±20μηι以 內)的泡孔結構的胺基甲酸乙酯發泡體。 根據申請專利範圍第2項的發明,藉由使採用第二攪 拌混合機的機械攪拌也在惰性氣體氛圍下進行(兩階段實 施機械起泡法),使得所獲得的胺基甲酸乙酯發泡體具有 更微細的泡孔結構(例如,平均泡孔直徑在40μη!以 下)。 根據申請專利範圍第3項的發明,不向第一攪拌混合 機提供添加劑(例如催化劑、泡沫穩定劑),因此可以在 第一攪拌混合機中進行充分攪拌(長時間和/或高轉數下 的攪拌),而不必考慮對該添加劑造成的影響等。從而, 使所獲得的胺基甲酸乙酯發泡體具有更微細的泡孔結構 (例如,平均泡孔直徑在40μπι以下)。 根據申請專利範圍第4項的發明,用第一攪拌混合機 藉由機械起泡法獲得泡沫狀組合物,以構成該泡沫狀組合 物的泡爲發泡核在第二攪拌混合機中進行化學發泡(用化 學發泡劑發泡)。藉由化學發泡法使由此獲得的胺基甲酸 乙酯發泡體具有極微細和均勻的泡孔結構。 根據申請專利範圍第5項的發明,由於向第一攪拌混 合機提供在預混合機中得到攪拌混合的多元醇與異氰酸酯 的均勻混合液,因而可以將第一攪拌混合機和/或第二攪 拌混合機的轉數設定爲比分別向第一攪拌混合機提供多元 醇及異氰酸酯時的轉數更低。結果,可以避免在第一攪拌 混合機或第二攪拌混合機中進行高轉數攪拌時因發生胺基 (5) (5)1355392 甲酸乙酯化反應而導致的原料固化等問題。 〔發明之最佳實施型態〕 以下對本發明進行詳細說明。 在本發明的製造方法中,在第一攪拌混合機中進行機 械攪拌(機械起泡法)和在第二攪拌混合機中進行機械攪 拌’從而調製未固化的泡沬狀組合物。 圖1[1]〜[5]是示意性表示本發明(申請專利範圍 5的發明)製造方法的步驟圖,在該圖中,ι〇.爲第—攪拌 混合機,20爲第二攪拌混合機,30爲預混合機,4〇爲模 具。此處,第一攪拌混合機10及第二攪拌混合機20實質 上由同類型.、同尺寸的混合攪拌機(mixing head)組成。 <第一實施型態> 在圖〗[1]中所示的製造方法中,在向第一攪拌混合機 1〇中提供多元醇(圖中簡寫爲“poly” )、異氰酸酯(圖 中簡寫爲“ i s 〇 ” )及添加劑(圖中簡寫爲“ a d d ” )的同 時’導入作爲情性氣體的空氣(圖中簡寫爲“ Air” )。 在第一攪拌混合機10中,在空氣(惰性氣體)氛圍 下及特定的攪拌條件下藉由未圖示的轉子對含有多元醇、 異氰酸酯及添加劑的可形成胺基甲酸乙酯的液態混合物進 行機械攪拌。由此調製在該液態混合物中分散有惰性氣體 的泡沬狀組合物。將該泡沬狀組合物(圖中記爲“ F (1 ) ” )從第一攪拌混合機〗0中排出,再提供給第二攪 (6) 1355392 拌混合機20。 再在特定的攪拌條件下,藉由未圖示的轉子對提供到 第二攪拌混合機20的泡沫狀組合物進行機械攪拌。從而 使構成泡沫狀組合物的泡(泡孔)變得更加微細和均勻。 將經過上述機械攪拌的泡沫狀組合物(圖中記爲“ F (2 ) ” )從第二攪拌混合機20中排出,並注入模具40 中,在保持其發泡狀態(微細、均勻的泡孔結構)的情況 • 下於模具40內進行固化,從而獲得由胺基甲酸乙酯發泡 體構成的成型品。 圖2是顯示用作第一攪拌混合機10或第二混合攪拌 機20的一個攪拌混合機例子的槪略結構的說明圖。 在圖2中,2〗爲圓筒狀外殼,22爲混合室,23爲轉 子,24爲其旋轉軸,251、252爲原料供給噴嘴.,26爲氣 體供給噴嘴,27爲原料排出口。 外殼2〗具有外管21〗和內管212的雙重管結構,藉 ® 由外管211和內管212形成冷卻介質(水)的流路213的 區域。214爲冷卻介質流入口,215爲冷卻介質流出口。 在轉子23的外周面上設置有在旋轉軸24的長度方向 上按一定間隔排列的、從旋轉軸2 4呈放射狀向外延伸的 柱 2 3P。 另一方面’在外殼21 (內管212)的內周面上設置有 在其長度方向上按一定間隔(與柱23P相同的間隔)排列 的且向內延伸的柱21P。如圖2所示,藉由交錯設置轉子 2 3的柱2 3 P和外殼21的柱2 1 P,可以進行有效的攪拌操 (7) 1355392 作(施加剪切力)。混合室22的容量爲,例如200〜 3000cm3。 如果對使用第一攪拌混合機10(圖2所示結構的攪拌 混合機)在惰性氣體氛圍下對液態組合物(多元醇、異氰 酸酯及添加劑)進行機械攪拌的方法進行舉例,可以是分 別從原料供給噴嘴25 1向混合室22提供多元醇及添加 劑,從原料供給噴嘴252向混合室22提供異氰酸酯,同 ® 時從氣體供給噴嘴26提供惰性氣體(空氣)。此處,向 第一攪拌混合機1 〇的混合室22提供的液態組合物與惰性 氣體的比率按容量計較佳爲〗:9〜1:0.〇1。 藉由轉子2 3的旋轉,使提供到混合室22的液態組合 物(多元醇、異氰酸酯及添加劑)在惰性氣體(空氣)氛 圍下被攪拌。 還有,在攪拌時,可以使水藉由冷卻介質流路2 13, 從而抑制因剪切熱引起的混合室22內的溫度上升。 ® 在第一攪拌混合機中進行攪拌時轉子的轉數(ri) 爲 200〜〗500rpm,較佳爲 200〜800rpm,更佳爲 200〜 4 0 0 rpm ° 如果轉數(γι )不足200rpm,則多元醇和異氰酸酯不 能達到充分的均勻化,惰性氣體也不能得到充分地分散。 另一方面,當轉數(Π)超過1500rpm時,攪拌時産生的 ' 剪切熱過大,可能因胺基甲酸乙酯化反應的進行而使原料 固化。 將按上述方式獲得的泡沫狀組合物從第一攪拌混合機 -10- (8) (8)1355392 1 〇的原料排出口 27排出,並輸送到第二攪拌混合機20中 進行再次的機械攪拌^ 如果對使用第二攪拌混合機20(圖2所示結構的攪样 混合機)對泡沫狀組合物進行機械攪拌的方法進行舉例’ 可以是從原料供給噴嘴(251或252)向混合室22提供泡 沫狀組合物,在不從氣體供給噴嘴26供給情性氣體的情 況下,藉由轉子23的旋轉對泡沫狀組合物進行攪拌。另 外’在攪拌時,可以使冰藉由冷卻介質流路2 1 3,從而抑 制因剪切熱引起的混合室22內的溫度上升。 從而,使逵到泡孔微細化、均勻化的泡沫狀組贪物從 原料排出口 27排出,注入模具等中。 在第二攪拌混合機20中進行攪拌時轉子的轉數(r2 ) 爲 240〜3000rpm,較佳爲 400〜2000rpm,更佳爲 500〜 8Ό0rpm。 如果轉數(r2)不足240rpm,則轉數比(r2/ 1Ί)達 不到1_2以上。另一方面,如果在超過3000rpm的轉數下 進行攪拌,就會發生泡的破壞(over mix ),使所獲得的 胺基甲酸乙酯發泡體不具有均勻的泡孔結構。另外,由於 産生的剪切熱過大,混合室22內的溫度過度升高而使原 料産生固化。 在圖1 [1]所示的製造方法中,用第二攪拌混合機20 進行攪拌時的轉子轉數(r2)相對於用第一攪拌混合機10 進行攪拌時的轉子轉數(ri )的比(r2/ η )爲1.2〜5.0, 較佳爲1 .5〜4.0。由於使轉數比(r;!/ η )限定在上述範圍 -11 - 1355392 ⑼ 內,使得可以獲得藉由以往的製造方法(利用單獨的攪拌 混合機的製造方法)不能得到的、具有微細而均勻的泡孔 結構的胺基甲酸乙酯發泡體。 如果該轉數比(Γ2/ η)不足1.2,則用第一攪拌混合 機10形成和保持的泡會在第二攪拌混合機20中受到破 壞,不能使得到的胺基甲酸乙酯發泡體具有微細的泡孔結 構。另一方面,如果轉數比(r2/ η )超過5.0,則會造成 • 過度混合,也不能使得到的胺基甲酸乙酯發泡體具有微細 而均勻的泡孔結構。 在圖〗[1]所示的製造方法中,製造時使用第一攪拌混 合機10及第二攪拌混合機20進行攪拌的時間(原料停留 時間)各爲,例如3 0〜9 0秒鐘。 另外,由原料排出口 27排出的泡沫狀組合物的量爲 4Ό0 〜5000cm3/分。 另外,模具內的固化時間沒有特別的限制,從製^效 ® 率的角度來看,較佳爲30分鐘以內。 根據圖1[1]所示的製造方法(第一實施型態),由於_ 將第一攪拌混合機10中得到的泡沫狀組合物在第二搜伴 混合機20中進行再次的機械攪拌,因而可以獲得由以往 的製造方法(採用單一的攪拌混合機的製造方法)不能得 到的、具有微細(例如,平均泡孔直徑爲60μηι以下} 0 均勻(例如,泡孔直徑的偏差在±20μηι以內)的泡孔結構 的胺基甲酸乙酯發泡體。 -12- 1355392 do) <第二實施型態> 圖][2]所示的製造方法是在泡沫狀組合物被輸送到的 第二攪拌混合機20中也導入作爲惰性氣體的空氣,在第 二攪拌混合機20中及在惰性氣體的氛圍下對泡沫組合物 進行再次的機械攪拌。 根據這種製造方法(第二實施型態),在第二攪拌混 合機20中的機械攪拌也是在惰性氣體的氛圍下進行實施 ® 的,結果是:機械起泡法的實施經歷了兩個階段,使得到 的胺基甲酸乙酯發泡體具有更微細的泡孔結構(例如,平 均泡孔直徑爲40μιη以下)。 <第三實施型態> 圖1 [3]所示的製造方法是向泡沬狀組合物被輸送到的 第二攪拌混合機2 0中供給添加劑(例如催化劑、泡沫穩 定劑)的方法。 ® 根據這種製造方法(第三實施型態),可以不向第一 攪拌混合機1 0中供給添加劑,因而可以在不考慮第一攪 拌混合機1 0中對添加劑造成影響等(例如,因催化劑存 在而加速固化反應)的情況下,進行長時間和/或高轉數 下的充分攪拌。因此,由經過充分攪拌而獲得的泡沫狀組 合物形成的胺基甲酸乙酯發泡體就具有更微細的泡孔結構 (例如,平均泡孔直徑爲40μτη以下)。 <第四實施型態> •13- (11) (11)1355392 圖1 [4]所示的製造方法是向泡沫狀組合物被輸送到的 第二攪拌混合機20中供給化學發泡劑(圖中記爲 “forming agent” )的方法。 在這種製造方法(第四實施型態)中,藉由機械起泡 法在第一攪拌混合機10中獲得泡沫狀組合物,再將構成 該泡沫狀組合物的泡作爲發泡核,在第二攪拌混合機20 中進行化學發泡(藉由化學發泡劑發泡)》 由於採用了化學發泡法,使得由此獲得的胺基甲酸乙 酯發泡體具有非常微細(例如,平均泡孔直徑爲30μηι以 下)而均勻的泡孔結構。 <第五實施型態> 圖1 [5]所示的製造方法的特徵是在預混合機30中和 不存在惰性氣體的情況下對多元醇、異氰酸酯及添加劑進 行攪拌混合,從而調製成液態組合物(均勻混合液),再 將該液態組合物供給第一攪拌混合機]0,其他步驟與圖 1 [ 1 ]所示內容相同。 也就是說,在該製造法(第五實施型態)中,調製液 態組合物(多元醇、異氰酸酯及添加劑的均勻混合液)的 混合操作(採用預混合機3 0進行的攪拌混合)和惰性氣 體向液態組合物中分散的操作(用第一攪拌混合機1 0進 行的機械攪拌)是分別實施的。 圖3是顯示一個預混合機30的例子的槪略結構的說 明圖。 -14 - (12) (12)1355392 在該圖中,31爲外殼,32爲墊塊(head block) ,33 爲混合室,34爲轉子,35爲其旋轉軸,36爲第一噴嘴, 37爲第二噴嘴,38爲原料排出口。 轉子34的外周面上形成有螺旋狀溝槽39。還有,轉 子34的外周面形狀沒有特別的限制,只要能提高攪拌效 率,例如可以在全部的外周面上形成凹凸狀。 預混合機30的混合室33的容量爲,例如10〜 450cm3 » 多元醇、異氰酸酯及添加劑的混合操作是在由外殼31 及墊塊32圍成的混合室3 3中進行的。具體而言,在從第 一噴嘴36供給多元醇及添加劑的同時,從第二噴嘴37供 給異氰酸酯,藉由轉子34的旋轉而對兩者進行攪拌混 合。 該混合操作是在無惰性氣體存在的情況下進行的。藉 由此操作,即使在較低的轉數下(例如200〜lOOOrpm ) 也可以有效地使兩者達到均勻化。 此處’轉子34的轉數較佳爲200rpm以上,更佳爲 200 〜900rpm〇 另外,使用預混合機30進行攪拌混合的時間(原料 停留時間)爲,例如0.5〜1 0秒鐘。 藉由預混合機3 0的攪拌混合,可以獲得由多元醇、 異氰酸酯及添加劑均勻混合形成的液態組合物。將該液態 組合物從原料排出口 3 8排出,輸送至第一攪拌混合機 10’再從第一攪拌混合機10的原料供給噴嘴(圖2所示 -15- (13) 1355392 的原料供給噴嘴25 1或252的任何一個)供給到混合室 中。 根據這種製造方法(第五實施型態),在預混合機30 +進行攪拌混合後的均勻混合液(液態混合物)被供給到 第—攙拌混合機10中,因而可以將第一攪拌混合機10和 /或第二攪拌混合機20的轉數設定爲比將多元醇和異氰酸 醋分別供給第一攪拌混合機1 0時的轉數更低(即使是低 ® 轉數,也能使惰性氣體得到微分散)。在這種低轉數下實 施機械攪拌,降低了所産生的剪切熱,其結果是在第一混 合攪拌機10或第二攪拌混合機20中不會産生胺基甲酸乙 酯化反應所導致的原料固化(在高轉數下進行攪拌時出現 的現象)。 <其他實施型態> 以上對本發明的製造方法的實施型態進行了說明,但 ^ 本發明並不局限於此,可以進行各種變化。例如,可以對 上述5種實施型態中的2種或3種以上進行適當組合。 另外,作爲第三種實施型態的變化例’還可以將添加 劑的一部分(例如泡沫穩定劑)供給到第一攪拌混合機 1 0,將添加劑的剩餘部分(例如催化劑)供給到第二攪拌 混合機20。 並且,還可以在第二攪拌混合機20上連接一台或更 多台其他攪拌混合機’用所連接的攪拌混合機(第三攪拌 混合機、第四攪拌混合機……第n攪拌混合機)對從第二 -16- (14) 1355392 攪拌混合機20排出的泡沫狀組合物再次實施機械攪拌。 <胺基甲酸乙酯發泡體> 藉由本發明的製造方法獲得的胺基甲酸乙酯發泡體可 以形成比使用以往習知的機械起泡法(採用單一的攪拌混 合機的製造方法)所獲得的胺基甲酸乙酯發泡體的泡孔直 徑更小(例如,平均泡孔直徑爲60μιη以下,特別是40μηι ^ 以下)、泡孔直徑偏差更小(例如,偏差在±20μπι以內, 特別是在±1〇μηι以內)的泡孔結構》 因此,具有這種微細而均勻的泡孔結構的胺基甲酸乙 酯發泡體具有高機械強度,並且不同部位的機械強度的偏 差小。 <多元醇> 作爲本發明的製造方法中使用的“多元醇”,可以列 舉聚醚多元醇、聚酯多元醇、聚碳酸酯多元醇、聚烯烴多 元醇、丙烯醯基多元醇、低分子多元醇(擴鏈劑)等。 特別佳的是,同時使用選自下述(1)及(2)中的至 少一種的多元醇、選自下述(3)中的至少一種的低分子 多元醇。 (1) 平均官能團數爲2.0〜4.0、數均分子量爲6 00〜 1〇,〇〇〇的聚醚多元醇。 (2) 平均官能團數爲2.0〜4.0、數均分子量爲600〜 〗〇,〇〇〇的聚酯多元醇 -Μ- (15) 1355392 (3)官能團數爲2〜4、分子量爲600以下的 多元醇。 作爲上述(1)的聚醚多元醇,可以列舉藉由 有2〜4個活性氫的化合物作爲引發劑,用環醚對 均官能團數爲2.0〜4.0的聚(氧化乙烯)多元醇、 化丙烯)多元醇、聚(氧化四甲烯)多元醇進行加 備的物質。 作爲用於製造聚醚多元醇的“具有2〜4個活 化合物”,可以列舉乙二醇' 1,2-丙二醇、1,3-丙 2,2-二甲基-1,3-丙二醇(新戊二醇)、1,3-丁二醇、 二醇、1,5-戊二醇、1,6·己二醇、二乙二醇、二丙 三乙二醇、1,1〇-癸二醇、3·甲基-1,5-戊二醇、雙 低分子量二醇;甘油、己三醇、三羥甲基丙烷等低 三醇;季戊四醇等低分子量多元醇;乙二胺、丙二 肪族二胺;苯二胺、甲苯二胺、二甲苯二胺、二苯 二胺等芳香族二胺;苯胺等芳香族胺;單乙醇胺、 胺' 三乙醇胺等低分子氨基醇;四羥甲基環己烷; 糖苷等,它們可以單獨使用或兩種以上組合使用。 作爲用於製造聚醚多元醇的“環醚”,可以列 乙烷、環氧丙烷、環氧丁烷、氧雜環丁烷 '四氫呋t 作爲上述(2)的聚酯多元醇,可以列舉含有 上羥基的化合物(多元醇)與含有兩個以上羧基的 (多元酸)利用習知方法進行反應而製備的物質》 作爲用於製造聚酯多元醇的“含有兩個以上羥 低分子 使用具 公稱平 聚(氧 成而製 性氫的 二醇、 1,4-丁 二醇、 } A等 分子量 胺等脂 基甲烷 二乙醇 甲基葡 舉環氧 南等。 兩個以 化合物 基的化 -18- (16) (16)1355392 合物(多元醇)”,可以列舉上述的低分子量二醇及低分 子量三元醇,它們可以單獨使用或兩種以上組合使用。 作爲用於製造聚酯多元醇的"含有兩個以上羧基的化 合物(多元酸)”,可以列舉己二酸、丙二酸、琥珀酸、 酒石酸、庚二酸' 癸二酸、草酸、鄰苯二甲酸、對苯二甲 酸、間苯二甲酸、鄰苯二甲酸酐'壬二酸、偏苯三酸、戊 烯二酸、α-氫黏康酸' β_氫黏康酸、α-丁基·α_乙基戊二 酸、α,β-二乙基琥珀酸、連苯三酸、〗,4-環己烷二羧酸、 2,6 -萘二羧酸、4,4,-聯苯二羧酸、4,4’-二苯基醚二羧酸、 4,4’-二苯基甲烷二羧酸、4,4、二苯楓二羧酸、4,4,-二苯 基亞異丙基一较酸、1,2 -—苯氧基乙院-4’,4”-二殘酸、惠 二羧酸、2,5-吡啶二羧酸、二苯酮二羧酸等,它們可以單 獨使用或兩種以上組合使用。 上述(1)及上述(2)的多元醇的平均官能團數爲 2.0〜4.0’較佳爲2.0〜3.0。 當多元醇的平均官能團數未逹2.0時,所得到的胺基 甲酸乙酯發泡體沒有高機械強度(拉伸強度、斷裂強 度)。另一方面’多元醇的平均官能團數超過4·〇時,所 得到的胺基甲酸乙酯發泡體沒有高彈性(伸長率),表現 出脆性。 上述(1)及上述(2)的多兀醇的數均分子量爲6〇〇 〜10,000’ 較佳爲 1,〇〇〇 〜5〇〇〇。 當多元醇的數均分子量不足600時,所得到的胺基甲 酸乙酯發泡體沒有高彈性力(拉伸強度、伸長率)。另— -19- (17) (17)1355392 方面’當多元醇的數均分子量超過10,000時,所得到的 胺基甲酸乙酯發泡體沒有高機械強度(拉伸強度、斷裂強 度)及良好的壓縮性能(例如,低壓縮永久變形)。 作爲上述(3)的低分子量多元醇,可以例示乙二 醇、二乙二醇、三乙二醇、丙二醇、二丙二醇、丨,4· 丁二 醇、1,6-己二醇、新戊二醇等低分子量二醇,甘油 '三羥 甲基丙院、三徑甲基乙院、己三醇等低分子量三醇,雙甘 油等低分子量四醇等。 藉由並用低分子多元醇,可以賦予所得到的胺基甲酸 乙酯發泡體以高機械強度。 <異氰酸酯> 作爲本發明的製造方法中使用的“異氰酸酯”,可以 列舉二苯基甲烷二異氰酸酯(MDI)、苯撐二異氰酸酯、 2,4.·甲苯二異氰酸酯(2,4-TDI) 、2,6 -甲苯二異氰酸酯 (2,6-TDI )等芳香族異氰酸酯類,四亞甲基二.異氰酸 醋、六亞甲基二異氰酸酯(HDI )等脂肪族二異氰酸酯, 異佛爾酮二異氰酸酯 '氫化TDI、氫化MDI等脂環族二異 氰酸醋’由異氧酸酯與多元醇反應而得到的NC0基末端 預聚物等,它們可以單獨使用或兩種以上組合使用。 其中’較佳爲使用由MDI類異氰酸酯與多元醇反應 而得到的NCO基末端預聚物(以下也稱爲“ MDI類NCO 基末端預聚物”)。 構成可形成胺基甲酸乙酯的組合物的MDI類NCO基 -20- (18) (18)1355392 末端預聚物是藉由MDI類異氰酸酯與多元醇的反應而得 到的。 此處,“ MDI類異氰酸酯”中包含MDI (二核體)及 聚合MDI (三核體以上的多核體)。 用於形成MDI類NCO基末端預聚物的MDI和聚合 MDI的比率較佳爲30〜100: 70〜0,更佳爲40〜100: 60 〜〇 β 另外,所使用的 MDI中有4,4’-MDl、2,4’-MDI及 2,2’-MDI的異構體,較佳4,4’-MDI的比例在70%以上。 作爲用於形成MDI類NCO基末端預聚物的多元醇, 可以列舉聚醚二醇 '聚酯二醇、聚碳酸酯二醇等二元醇。 作爲用於形成MDI類NCO基末端預聚物的“聚酸二 醇” ’可以例示聚氧化乙二醇(PEG )、聚氧化丙二醇 (PPG )、聚氧化四甲二醇(PTMG ):以脂肪族二元醇 (例如乙二醇、1,3-丁二醇、1,4-丁二醇、二乙二醇、二 丙二醇、1,2 -丙二醇、ι,3·丙二醇)爲引發劑使環醚(例 如,環氧乙烷、環氧丙烷、氧雜環丁烷、四氫呋喃)進行 開環聚合而製成的聚醚多元醇,它們可以單獨使用.或兩種 以上組合使用。 作爲用於形成MDI類NCO基末端預聚物的“聚酯二 醇’可以例示聚(己二酸乙二醇酯)二醇、聚(己二酸 丙二醇酯)二醇 '聚(己二酸乙二醇-丙二醇酯)二醇、· 聚(己二酸丁二醇酯)二醇、聚(己二酸己二醇酯)二 醇,由乙一醇、丙二醇、己二酸進行縮聚而製成的共聚酯 21 - (19) 1355392 二醇[例如,聚(己二酸丁二醇-乙二醇酯)二醇 二酸1,4_ 丁二醇-丙二醇酯)二醇及聚(己二酸 醇·乙二醇-丙二醇酯)二醇];由己內酯和/或二 如其中的琥珀酸、丙二酸、庚二酸、癸二酸及辛 低分子量二醇進行縮聚而製成的聚酯二醇,它們 使用或兩種以上組合使用。 作爲用於形成MDI類NCO基末端預聚物的 ®酯二醇” ’可以列舉低分子量碳酸酯與低分子量 反應(脫醇縮聚反應)而形成的物質,它們可以 或兩種以上組合使用。 作爲用於形成聚碳酸酯二醇的“低分子量碳 可以列舉碳酸—院基醋(例如,碳酸二乙醋)、 烷基酯(例如’碳酸二亞乙酯)、碳酸二苯酯等 MDI類NCO基末端預聚物可以藉由MDI類 與多元醇進行混合、再加熱該混合物進行胺基甲 ®反應而進行製備。 MDI類NCO基末端預聚物的NCO含量較佳 質量%,更佳爲4〜1 6質量%。 當NCO含量不足3質量%時,該預聚物的黏 與多元醇的混合性差’導致製備效率低》 另一方面,當NCO含量超過34質量%時, $的貯存穩定性可能會惡化。 另外’ MDI類NCO基末端預聚物的平均官 隹爲2_〇〜3.5’更佳爲2.0〜2.5。 、聚(己 1,4-丁二 羧酸(例 二酸)與 可以單獨 “聚碳酸 二醇進行 單獨使用 酸酯”, 碳酸.二亞 〇 異氰酸酯 酸乙酯化 爲3〜3 4 度過高, 該預聚物 能團數較 -22- (20) ) (20) )1355392 當平均官能團數不足2.0時’所獲得的胺基甲酸乙酯 發泡體不具有良好的壓縮特性、高機械強度。 另一方面,當平均官能團數超過3.5時,易於發生凝 膠化,穩定性變差。 作爲本發明的製造方法中使用的“添加劑”,可以列 舉催化劑、泡沫穩定劑、著色劑(顔料、染料)、抗氧化 劑及紫外線吸收劑等。 作爲用作添加劑的“催化劑”,可以列舉三乙二胺 (TEDA )、四甲基六亞甲基二胺(TMHMDA)、五甲基 二亞乙基三胺 (PMDETA )、二甲基環己基胺 (DMCHA )、雙二甲胺基乙基醚(BDMAEA) 、Ν·甲基咪 唑、三甲胺基乙基哌嗪、三丙胺、三乙胺' Ν-甲基嗎啉等 胺催化劑、二乙酸二丁錫、二月桂酸二丁錫(DBTDL )、 二月桂酸二辛錫(DOTDL )等錫化合物,乙醯丙酮金屬鹽 等金屬配位化合物,反應型胺催化劑[例如,二甲基乙醇 胺(DMEA) 、Ν,Ν,Ν,-三甲氨基乙基乙醇胺、Ν,Ν-二甲氨 基乙氧基乙醇]等。 【實施方式】 以下,對本發明的實施例進行說明,但本發明並不局 限於此。 <調製例 將公稱平均官能團數=2、數均分子量=2,000的聚(氧 -23- (21) (21)1355392 化<29甲烯)多元醇85.0質量份、公稱平均官能團數=3' 數均分子量=3,000的聚(氧化丙烯)多元醇10.0質量 份' 1,4· 丁二醇5.0質量份、改性有機矽酮泡沫穩定劑I.0 質量份和錫類催化劑(DOTDL) 0.02質量份進行混合,從 而得到多元醇混合物。 <調製例2> 除了不混入錫類催化劑(DOTDL)之外,按與調製例 1相同的方式得到多元醇混合物。 <合成例1 ( NCO基未端預聚物的合成)> 在配置有攪拌機、冷卻管、氮氣導入管及溫度計的容 量爲1000mL的反應容器中加入MDI (含有1質量%以下 的由2,2’-MDI及 2,4’-MDI組成的異構體混合物和99質 量%以上的4,4’-MDI的二苯基甲烷二異氰酸酯)100.0質 量份和公稱平均官能團數=2、數均分子量=2,000的聚(氧 四亞甲基)多元醇166.2質量份,在80 °C下攪拌4小時以 進行胺基甲酸乙酯化反應,從而得到NCO含量爲10.〇質 量%的NCO基末端預聚物。 <實施例】> (1)藉由預混合機進行攪拌混合 將調製例1中獲得的多元醇混合物和合成例1中獲得 的NCO基末端預聚物按後者的異氰酸酯基相對於前者的 -24- (22) (22)1355392 羥基的摩爾比([NCO]/[OH])爲ι·〇5的比例供給到圖3 所示結構的預混合機30 (混合室的容量= 〗5cm1)中,在 不存在惰性氣體的情況下,使轉子進行60 Orpm的旋轉而 對兩者進行攪拌混合’從而調製作爲均勻混合液的可形成 胺基甲酸乙酯的液態組合物,將獲得的液態組合物從預混 合機中連續排出(混合室中的原料停留時間(實測値)=3 秒)。 (2) 藉由第一攪拌混合機進行機械攪拌 將從預混合機中排出的液態組合物連續輸送到具有圖 2所示結構的、且與預混合機30相連的第一攪拌混合機 10的混合室(容量= 450cm1)中,同時連續向混合室供給 相對於該液態組合物1容量份爲0.7容量份比例的惰性氣 •體(乾燥空氣),一邊用冷水進行冷卻,一邊使第一攪拌 混合機10的轉子進行3 0 Orpm的旋轉,在惰性氣體氛圍下 對該液態組合物進行機械攪拌,從而調製在液態組合物中 微分散有惰性氣體的泡沬狀組合物,將所得到的泡沫狀組 合物從第一攪拌混合機10中連續排出(混合室中的原料 停留時間(實測値)=60秒)。 -25- 1 藉由第二攪拌混合機進行機械攪拌 將從第一攪拌混合機1 〇中排出的泡沫狀組合物連續 輸送到具有圖2所示結構的、且與第一攪拌混合機1〇相 連的第二攪拌混合機20的混合室(容量=4 5 0cm1 )中,一 (23) 1355392 邊用冷水進行冷卻,.一邊使第二攪拌混合卷 行600rpm的旋轉,從而對該泡沫狀組合裝 (泡孔的微細化、均勻化處理),然後將| 從第二攪拌混合機20中連續排出(混合室 時間(實測値)=60秒,排.出量=83 3 cm1 2/mi (4 )澆鑄、固化處理 在常壓下將從第二攪拌混合機20中劫 物連續注入模具(26Ommx220mmx30mm), 將該模具在U〇°C的烘箱內放置30分鐘,校 沫狀組合物固化而製成胺基甲酸乙酯發泡儀 具中取出。 <實施例2> (1) 藉由預混合機進行攪拌混合 按與實施例1(1)同樣的方式調製可把 酯的液態組合物,將獲得的液態組合物從預 排出(混合室中的原料停留時間(實測値) 20的轉子進 進行機械攪拌 泡沬狀組合物 中的原料停留 出泡沫狀組合 模具密閉後, 而使注入的泡 ,再將其從模 .成胺基甲酸乙 混合機中連續 =3 秒)。 除了將第一攪 按與實施例1 得到的泡沫狀 混合室中的原 -26- 1 藉由第一攪拌混合機進行機械攪拌 使用從預混合機中排出的液態組合物, 2 拌混合機10的轉子轉數變爲400rpm以外, (2)相同的方式調製泡沫狀組合物,將所 組合物從第一攪拌混合機1 0中連續排出( (24) 1355392 料停留時間(實測値)=60秒)。 (3)藉由第二攪拌混合機進行機械攪拌 將從第一攪拌混合機10中排出的泡沫狀組合物連續 輸送到具有圖2所示結構的、且與第一攪拌混合機1〇相 連的第二攪拌混合機20的混合室(容量=4 5 0cm3 )中,同 時連續向混合室供給相對於構成該泡沫狀組合物的液態組 ® 合物1容量份爲〇.5容量份比例的惰性氣體(乾燥空 氣)’一邊用冷水進行冷卻’一邊使第二攪拌混合機20 的轉子進行600rpm的旋轉,從而在惰性氣體的氛圍下對 該泡沫狀組合物進行機械攪拌,然後將其從第二攪拌混合 機2 0中連續排出(混合室中的原料停留時間(實測値) =60 秒,扫栏出量=833cm3/min)。 (4 )澆鑄、固化處理 ® 使用從第二攪拌混合機20中排出的泡沬狀組合物, 按與實施例1(4)相同的方式製造胺基甲酸乙酯發泡體。 <實施例3> (1)藉由預混合機進行攪拌混合 除了用調製例 2中得到的多元醇混合物(不含 DOTDL的混合物)([NCO]/[OH] = 1.〇5)代替調製例I中 得到的多元醇混合物以外,按與實施例1 ( 1 )同樣的方式 調製可形成胺基甲酸乙酯的液態組合物,將獲得的液態組 -27- (25) 1355392 合物從預混合機中連續排出(混合室1 (實測値)=3秒)。 (.2 )藉由第一攪拌混合機進行機械攪持 使用從預混合機中排出的液態組合 拌混合機10的轉子轉數變爲200rpm以 (2 )相同的方式調製泡沫狀組合物, ® 組合物從第一攪拌混合機1 0中連續排 料停留時間(實測値)=60秒)。 (3)藉由第二攪拌混合機進行機械攪拌 將從第一攪拌混合機1〇中排出的 輸送到具有圖2所示結構的、且與第一 連的第二攪拌混合機20的混合室(容邏 時連續向混合室供給相對於構成該泡沫 ® 合物100質量份爲0.02質量份比 (DOTDL ),一邊用冷水進行冷卻,一 機20的轉子進行800rpm的旋轉,對該 機械攪拌,然後將其從第二攪拌混合夺 (混合室中的原料停留時間(實測値: = 833cm3/min ) ° (4 )澆鑄、固化處理 使用從第二攪拌混合機20中排出 的原料停留時間 物,除了將第一攪 .外,按與實施例1 將所得到的泡沫狀 出(混合室中的原 泡沫狀組合物連續 攪拌混合機1 0相 t=450cm3.)中,同 狀組合物的液態組 例的錫類催化劑 邊使第二攪拌混合 泡沬狀組合物進行 幾20中連續排出 > =60秒,排出量 的泡沫狀組合物, •28- (26) (26)1355392 按與實施例1(4)相同的方式製造胺基甲酸乙酯發泡體。 <實施例4> (1) 藉由預混合機進行攪拌混合 按與實施例1 (1)相同的方式調製可形成胺基甲酸乙 酯的液態組合物,將獲得的液態組合物從預混合機中連續 排出(混合室中的原料停留時間(實測値)=3秒)。 (2) 藉由第一攪拌混合機進行機械攪拌 按與實施例1 ( 2 )相同的方式_製泡沫狀組合物,將 所得到的泡沫狀組合物從第一攪拌混合機1 0中連續排出 (混合室中的原料停留時間(實測値)=60秒)。 -29- (27) (27)1355392 (4 )澆鑄、固化處理 使用從第二攪拌混合機20中排出的泡沫狀組合物, 按與實施例〗(4)相同的方式製造胺基甲酸乙酯發泡體。 <比較例1 > (1) 藉由預混合機進行攪拌混合 按與實施例1 (1)相同的方式調製可形成胺基甲酸乙 酯的液態組合物,將獲得的液態組合物從預混合機中連續 排出(混合室中的原料停留時間(實測値)=3秒)。 (2) 藉由攪拌混合機進行機械攪拌 將從預混合機中排出的液態組合物連續輸送到具有圖 2所示結構的、且與預混合機相連的攪拌混合機的混合室 (容量=4 50 cm3 )中,同時連續向混合室供給相對於該液 態組合物1容量份爲0.67容量份比例的惰性氣體(乾燥 空氣),一邊用冷水進行冷卻,一邊使攪拌混合機的轉子 進行5 0 0 rp m的旋轉,從而在惰性氣體的氛圍下對該液態 組合物進行機械攪拌,由此調製在液態組合物中微分散有 惰性氣體的泡沬狀組合物,將所得到的泡沫狀組合物從攪 拌混合機中連續排出(混合室中的原料停留時間(實測 値)=60 秒,排出量= 8 3 3 cm3/min)。 (3 )澆鑄、固化處理 -30- (28) 1355392 使用從攪拌混合機中排出的泡沬狀組合物,按與實施 例1 (4)相同的方式製造胺基甲酸乙酯發泡體。 <比較例2 > (】)藉由預混合機進行攪拌混合 按與實施例1 (1)相同的方式調製可形成胺基甲酸乙 酯的液態組合物,將獲得的液態組合物從預混合機中連續 ® 排出(混合室中的原料停留時間(實測値)=3秒)。 (2) 藉由第一攪拌混合機進行機械攪拌 使用從預混合機中排出的液態組合物,除了將第一攪 拌混合機1〇的轉子轉數變爲8 0 Orpm以外,按與實施例1 (2 )相同的方式調製泡沫狀組合物,將所得到的泡沫狀 組合物從第一攪拌混合機10中連續排出(混合室中的原 料停留時間(實測値)=60秒)。 -31 - (29) 1355392 (4 )澆鑄、固化處理 使用從第二攪拌混合機20中排出的泡沫狀組合物, 按與實施例1(4)相同的方式製造胺基甲酸乙酯發泡體。 按照以下的專案分別對實施例1〜4及比較例1〜2中 所得到的胺基甲酸乙酯發泡體進行測定、評價。結果示於 下表1中。 • ( 1 )平均泡孔直徑(平均値(Dav )): 在任意位置將胺基甲酸乙酯發泡體切斷,在平衡選擇 的5個切斷面上分別測定面積=2cm2的取樣範圍記億體在 的泡孔的直徑’求出各切斷面上的平均泡孔直徑(〇1、 D2、D3、D4、D5 ),再算出它們的平均値(= (D1+D2 + D3 + D4 + D5) /5]。 (2 )泡孔直徑偏差: ® 由上述(1)測定的全部泡孔直徑(測定範圍=2cm2x 5 = 10 cm2)的最大値(D^x)及最小値(Dmin)求出與上 述平均値(Dav)的差値(Dmax-Dav)及(Dmin_ Dav)。 (3 )密度: 按照JI S Z 8 8 0 7進行測定。 (4)硬度: 按照JIS K 6253,使用硬度計(a型)測定硬度 -32- (30) 1355392 (JIS-Α 硬度)。 (5)拉伸強度及伸長率(平均値及偏差) 按照JIS K 625 1,在拉伸速度=5 00mm/分的條件下對 從平衡選擇的5個部位取樣而製作成的試驗片(啞鈴3 號)進行拉伸試驗,基於拉伸強度及伸長率的測定資料 (n = 5),求出各自的平均値及偏差[(最大値—平均値)/平 ® 均値及(最小値-平均値)/平均値]。 (6 )斷譯強度(平均値及偏差) 按照JIS K 6252,在拉伸速度=200mm/分的條件下對 從平衡選擇的5個部位取樣而製作成的試驗片(B型啞 鈴)進行斷裂試驗’求出斷裂強度的平均値及偏差[(最 大値一平均値)/平均値及(最小値一平均値)/平均値]。 以上的結果示於下表1中。 -33- 13553921355392. (1) Description of the Invention [Technical Field] The present invention relates to a method for producing a urethane foam, and more particularly, the s' system can efficiently produce a fine and uniform cell structure A method for producing a urethane-based ethyl ester foam of an amine-ethyl carbamate foam (polyurethane foam). ® [Prior Art] As a method for producing a urethane foam, it is known to mechanically foam by forming a component (polyol and isocyanate) of ethyl urethane by stirring and mixing under an inert gas atmosphere. Mechanical foaming method (see, for example, Patent Document 1). The mechanical foaming method has the following advantages: it is simpler than the chemical foaming method (water foaming), and there is no foam which is inferior in physical properties due to the urea group. ® In the mechanical foaming method, a polyol, an isocyanate, and an inert gas (air) are supplied to a mixing head, and a foamed material is prepared by mechanically stirring a polyol and an isocyanate under an inert gas atmosphere. Then, it is discharged from the agitating mixer, and injected into a mold or the like for curing. The urethane foam obtained by this method must form fine and uniform cells (bubbles formed of an inert gas) [Patent Document 1] JP-A-200 1 -89547 1355392. (2) • [Summary of the Invention] [Problems to be Solved by the Invention] The cell structure of the urethane foam has a correlation with the stirring and mixing conditions (especially the number of revolutions of the rotor). Whether the number is too low (sufficient stirring) or the number of revolutions of the rotor is too large, an ethyl ester foam having a fine and uniform cell structure cannot be formed. Therefore, the inventors of the present invention have intensively studied in order to obtain the optimum agitation conditions for obtaining the fineness and homogenization of the cells of the amine group. However, the stirring conditions of the agitating mixer (the rotor is optimized, and the miniaturization and homogenization of the cells are limited. The present invention is based on the above, and the purpose is to efficiently produce fine and uniform cells. The method of the structure of the amine-based foam body. In order to solve the above problem, the inventors have repeatedly performed the special product. It has been found that by mechanically stirring the stirred foam-like composition under a certain stirring condition, the method can not be used. The obtained amine foam having a fine and uniform cell structure is completed based on this knowledge. The production method of the present invention is a method for producing an ethyl ester foam by a mechanical foaming method, which is characterized by including The following steps are carried out in a mixing machine to mechanically stir the liquid composition containing the polyol and the ethyl group-forming ethyl ester to form a foam mixer in which the inert gas is dispersed in the liquid composition. It is the rotation of the rotor (the number of inversions in the setting of the excessively stirred urethane) is a matter of providing ethyl formate. , the conventionally obtained ethyl urethane amide for the amino acid: the second isocyanate is mixed, thereby adjusting the composition, (3) 1355392 and then transferring the foam composition to the second stirring Mechanical agitation is carried out in the mixer, and then discharged from the second mixing mixer; the number of revolutions (r) of the rotor when stirring in the first agitating mixer is 200 to 1 500 rpm, in the second agitating mixer The number of revolutions (r2) of the rotor when stirring is 24 0 to 3000 rpm, and the number of revolutions (r2/ri) is 1.2 to 5.0. In the production method of the present invention, the following embodiment is preferred. In the second agitating mixer to which the foamed composition is delivered, an inert gas is introduced, and the foamed composition is mechanically stirred in a second agitating mixer and under an inert gas atmosphere. (B) In a foamy composition An additive (for example, a catalyst, a foam stabilizer) for forming a urethane foam is added to the second agitating mixer to which it is fed. (C) a second agitation mixture to which the bubble-like composition is delivered. Chemical foaming agent added to the machine (d) as a preliminary step, stirring and mixing the polyol and the isocyanate in a premixer and in the absence of an inert gas body, thereby obtaining a liquid composition (homogeneous mixture) capable of forming a urethane, The liquid composition is supplied to the first agitating mixer. (E) The number of revolutions (Γ2/ Π) is from 1 to 5 to 4.0. [Effect of the Invention] According to the invention of claim 1, by the second stirring The mixer further mechanically agitates the foamed composition obtained by the first agitating mixer to obtain fineness (for example, an average cell diameter of -6-(4) (4) 1355392 60 μm or less) and uniformity (for example, A urethane foam having a cell structure with a cell diameter deviation of ±20 μm. According to the invention of claim 2, the obtained urethane is foamed by mechanical agitation using a second agitating mixer under an inert gas atmosphere (two-stage mechanical foaming) The body has a finer cell structure (for example, an average cell diameter of 40 μη! or less). According to the invention of claim 3, the additive (for example, catalyst, foam stabilizer) is not supplied to the first agitating mixer, so that it can be sufficiently stirred in the first agitating mixer (long time and/or high number of revolutions) Stirring) without having to consider the effects on the additive. Thereby, the obtained urethane foam has a finer cell structure (e.g., an average cell diameter of 40 μm or less). According to the invention of claim 4, the foamed composition is obtained by a mechanical foaming method using a first agitating mixer to form a foam of the foamed composition as a foaming core to carry out chemistry in a second agitating mixer. Foaming (foaming with a chemical blowing agent). The thus obtained urethane foam obtained by the chemical foaming method has an extremely fine and uniform cell structure. According to the invention of claim 5, since the first agitating mixer is provided with a uniform mixture of the polyol and the isocyanate which are stirred and mixed in the premixer, the first agitating mixer and/or the second agitation can be used. The number of revolutions of the mixer was set to be lower than the number of revolutions when the polyol and the isocyanate were supplied to the first agitating mixer, respectively. As a result, it is possible to avoid problems such as solidification of the raw material due to the ethylation reaction of the amine group (5) (5) 1355392 for the high-speed stirring in the first agitating mixer or the second agitating mixer. [Best Mode for Carrying Out the Invention] Hereinafter, the present invention will be described in detail. In the production method of the present invention, mechanical agitation (mechanical foaming) and mechanical agitation in a second agitating mixer are carried out in a first agitating mixer to prepare an uncured foam-like composition. 1 [1] to [5] are process diagrams schematically showing a manufacturing method of the present invention (the invention of claim 5), in which ι is a first agitating mixer and 20 is a second agitating mixing. Machine, 30 is a premixer, and 4 turns as a mold. Here, the first agitating mixer 10 and the second agitating mixer 20 are substantially composed of a mixing head of the same type and the same size. <First Embodiment> In the production method shown in Fig. [1], a polyol (abbreviated as "poly" in the drawing) and isocyanate are supplied to the first agitating mixer 1 (in the figure) Shortly referred to as "is 〇") and additives (abbreviated as "add" in the figure), 'import the air as an emotional gas (abbreviated as "Air" in the figure). In the first agitating mixer 10, a liquid mixture of a urethane-containing mixture containing a polyol, an isocyanate, and an additive is subjected to a rotor (not shown) under an air (inert gas) atmosphere and a specific stirring condition. Mechanical agitation. Thus, a bubble-like composition in which an inert gas is dispersed in the liquid mixture is prepared. The bubble-like composition (indicated as "F (1 ) " in the figure) was discharged from the first agitating mixer and supplied to the second agitating (6) 1355392 mixing machine 20. Further, under a specific stirring condition, the foamed composition supplied to the second agitating mixer 20 is mechanically stirred by a rotor (not shown). Thereby, the bubbles (cells) constituting the foam composition are made finer and more uniform. The foam-like composition (referred to as "F (2)" in the drawing) subjected to the above mechanical stirring is discharged from the second agitating mixer 20, and injected into the mold 40 while maintaining its foamed state (fine, uniform foam) In the case of the pore structure, it is cured in the mold 40 to obtain a molded article composed of a urethane foam. Fig. 2 is an explanatory view showing a schematic structure of an example of a stirring mixer used as the first agitating mixer 10 or the second mixing agitator 20. In Fig. 2, 2 is a cylindrical outer casing, 22 is a mixing chamber, 23 is a rotor, 24 is a rotating shaft, 251 and 252 are raw material supply nozzles, 26 is a gas supply nozzle, and 27 is a raw material discharge port. The outer casing 2 has a double pipe structure of the outer pipe 21 and the inner pipe 212, and the region of the flow path 213 of the cooling medium (water) is formed by the outer pipe 211 and the inner pipe 212. 214 is a cooling medium inflow port, and 215 is a cooling medium outflow port. On the outer peripheral surface of the rotor 23, there are provided pillars 2 3P which are arranged at regular intervals in the longitudinal direction of the rotary shaft 24 and radially outward from the rotary shaft 24 . On the other hand, the inner peripheral surface of the outer casing 21 (the inner tube 212) is provided with a column 21P which is arranged at a constant interval (the same interval as the column 23P) and extends inward in the longitudinal direction. As shown in Fig. 2, by alternately arranging the column 2 3 P of the rotor 2 3 and the column 2 1 P of the outer casing 21, an effective stirring operation (7) 1355392 (applying shearing force) can be performed. The capacity of the mixing chamber 22 is, for example, 200 to 3000 cm3. If the method of mechanically stirring the liquid composition (polyol, isocyanate, and additive) under an inert gas atmosphere using the first agitating mixer 10 (agitating mixer of the structure shown in FIG. 2) is exemplified, it may be separately from the raw material. The supply nozzle 25 1 supplies the polyol and the additive to the mixing chamber 22, and supplies the isocyanate from the raw material supply nozzle 252 to the mixing chamber 22, and supplies the inert gas (air) from the gas supply nozzle 26 at the same time. Here, the ratio of the liquid composition to the inert gas supplied to the mixing chamber 22 of the first agitating mixer 1 is preferably 9. 9 to 1: 0.1. The liquid composition (polyol, isocyanate, and additive) supplied to the mixing chamber 22 is stirred by an inert gas (air) atmosphere by the rotation of the rotor 23. Further, during the stirring, the water can be passed through the cooling medium flow path 2 13, thereby suppressing the temperature rise in the mixing chamber 22 due to the shear heat. ® The number of revolutions (ri) of the rotor when stirring in the first agitating mixer is 200 to 500 rpm, preferably 200 to 800 rpm, more preferably 200 to 400 rpm °, if the number of revolutions (γι) is less than 200 rpm, Then, the polyol and the isocyanate cannot be sufficiently homogenized, and the inert gas cannot be sufficiently dispersed. On the other hand, when the number of revolutions (Π) exceeds 1,500 rpm, the 'shear heat generated during stirring is too large, and the raw material may be solidified by the progress of the ethyl carbamate reaction. The foamy composition obtained in the above manner is discharged from the raw material discharge port 27 of the first agitating mixer-10-(8)(8)1355392 1 , and is sent to the second agitating mixer 20 for mechanical stirring again. ^ If the method of mechanically stirring the foamed composition using the second agitating mixer 20 (mixing mixer of the structure shown in Fig. 2) is exemplified, it may be from the raw material supply nozzle (251 or 252) to the mixing chamber 22 The foam composition is supplied, and the foam composition is stirred by the rotation of the rotor 23 without supplying the inert gas from the gas supply nozzle 26. Further, when stirring, the ice can be made to pass through the cooling medium flow path 2 1 3, thereby suppressing the temperature rise in the mixing chamber 22 due to the shear heat. Therefore, the foam-like group of the particles which are made finer and uniformized in the cells are discharged from the raw material discharge port 27 and injected into a mold or the like. The number of revolutions (r2) of the rotor when stirring in the second agitating mixer 20 is 240 to 3000 rpm, preferably 400 to 2000 rpm, more preferably 500 to 8 Torr. If the number of revolutions (r2) is less than 240 rpm, the revolution ratio (r2/1Ί) is less than 1_2. On the other hand, if stirring is carried out at a number of revolutions exceeding 3000 rpm, over-mixing of the bubbles occurs, so that the obtained urethane foam does not have a uniform cell structure. Further, since the shear heat generated is excessively large, the temperature in the mixing chamber 22 is excessively increased to cause the raw material to be solidified. In the manufacturing method shown in Fig. 1 [1], the number of revolutions of the rotor (r2) when stirring by the second agitating mixer 20 is relative to the number of revolutions of the rotor (ri) when the first agitating mixer 10 is agitated. The ratio (r2/η) is 1.2 to 5.0, preferably 1.5 to 4.0. Since the rotation ratio (r; !/ η ) is limited to the above range -11 - 1355392 (9), it is possible to obtain a fineness which cannot be obtained by a conventional production method (manufacturing method using a separate agitating mixer). A urethane foam of uniform cell structure. If the number of revolutions (Γ2/η) is less than 1.2, the bubbles formed and held by the first agitating mixer 10 are destroyed in the second agitating mixer 20, and the resulting urethane foam cannot be obtained. It has a fine cell structure. On the other hand, if the revolution ratio (r2/η) exceeds 5.0, excessive mixing may occur, and the obtained urethane foam may have a fine and uniform cell structure. In the production method shown in Fig. [1], the time during which the first agitating mixer 10 and the second agitating mixer 20 are used for the agitation (the residence time of the raw material) is each, for example, 30 to 90 seconds. Further, the amount of the foamy composition discharged from the raw material discharge port 27 is from 4 Ό 0 to 5000 cm 3 /min. Further, the curing time in the mold is not particularly limited, and it is preferably within 30 minutes from the viewpoint of the production efficiency. According to the manufacturing method (first embodiment) shown in Fig. 1 [1], since the foamy composition obtained in the first agitating mixer 10 is mechanically stirred again in the second search mixer 20, Therefore, it is possible to obtain a fine (for example, an average cell diameter of 60 μm or less) 0 uniform (for example, a cell diameter deviation within ±20 μηι) which cannot be obtained by a conventional production method (manufacturing method using a single agitating mixer). a urethane foam of a cell structure. -12- 1355392 do) <Second embodiment> The manufacturing method shown in [2] is that air is introduced as an inert gas in the second agitating mixer 20 to which the foamed composition is supplied, in the second agitating mixer. The foam composition was again mechanically agitated in an inert gas atmosphere. According to this manufacturing method (second embodiment), the mechanical agitation in the second agitating mixer 20 is also carried out under an inert gas atmosphere, and as a result, the implementation of the mechanical foaming method has gone through two stages. The resulting urethane foam has a finer cell structure (for example, an average cell diameter of 40 μm or less). <Third embodiment> The production method shown in Fig. 1 [3] is a method of supplying an additive (for example, a catalyst or a foam stabilizer) to a second agitating mixer 20 to which a bubble-like composition is transported. . According to this manufacturing method (third embodiment), the additive may not be supplied to the first agitating mixer 10, and thus the additive may be affected without considering the first agitating mixer 10 (for example, In the case where the catalyst is present to accelerate the curing reaction, sufficient stirring is performed for a long period of time and/or a high number of revolutions. Therefore, the urethane foam formed of the foamed composition obtained by thorough stirring has a finer cell structure (e.g., an average cell diameter of 40 μτη or less). <Fourth embodiment> • 13-(11) (11) 1355392 The manufacturing method shown in Fig. 1 [4] is to supply chemical foaming to the second agitating mixer 20 to which the foam composition is transported. The method of the agent (denoted as "forming agent" in the figure). In this manufacturing method (fourth embodiment), a foam-like composition is obtained in the first agitating mixer 10 by a mechanical foaming method, and a bubble constituting the foam-like composition is used as a foaming core. Chemical foaming (foaming by chemical foaming agent) in the second agitating mixer 20: The urethane foam thus obtained is very fine (for example, average) by the chemical foaming method. A cell structure having a cell diameter of 30 μm or less and uniformity. <Fifth Embodiment> The manufacturing method shown in Fig. 1 [5] is characterized in that the polyol, the isocyanate, and the additive are stirred and mixed in the premixer 30 and in the absence of an inert gas, thereby preparing The liquid composition (homogeneous mixture) is supplied to the first agitating mixer]0, and the other steps are the same as those shown in Fig. 1 [1]. That is, in the production method (fifth embodiment), a mixing operation of a liquid composition (a homogeneous mixture of a polyol, an isocyanate, and an additive) (mixing and mixing by a premixer 30) and inertness are prepared. The operation of dispersing the gas into the liquid composition (mechanical stirring by the first agitating mixer 10) was carried out separately. Fig. 3 is an explanatory view showing a schematic structure of an example of a premixer 30. -14 - (12) (12)1355392 In the figure, 31 is the outer casing, 32 is the head block, 33 is the mixing chamber, 34 is the rotor, 35 is its rotating shaft, 36 is the first nozzle, 37 For the second nozzle, 38 is a raw material discharge port. A spiral groove 39 is formed on the outer peripheral surface of the rotor 34. Further, the shape of the outer peripheral surface of the rotor 34 is not particularly limited, and as long as the stirring efficiency can be improved, for example, irregularities can be formed on all the outer peripheral surfaces. The mixing chamber 33 of the premixer 30 has a capacity of, for example, 10 to 450 cm3. The mixing operation of the polyol, the isocyanate, and the additive is carried out in the mixing chamber 33 surrounded by the outer casing 31 and the spacer 32. Specifically, the polyol and the additive are supplied from the first nozzle 36, and the isocyanate is supplied from the second nozzle 37, and the both are agitated and mixed by the rotation of the rotor 34. This mixing operation is carried out in the absence of an inert gas. By this operation, even at a lower number of revolutions (e.g., 200 to 1000 rpm), it is possible to effectively homogenize the two. Here, the number of revolutions of the rotor 34 is preferably 200 rpm or more, more preferably 200 to 900 rpm. Further, the time (stuck residence time) for stirring and mixing using the premixer 30 is, for example, 0.5 to 10 seconds. By stirring and mixing the premixer 30, a liquid composition formed by uniformly mixing a polyol, an isocyanate, and an additive can be obtained. The liquid composition is discharged from the raw material discharge port 38, and sent to the first agitating mixer 10' and then from the raw material supply nozzle of the first agitating mixer 10 (the raw material supply nozzle of -15-(13) 1355392 shown in Fig. 2 Any one of 25 1 or 252) is supplied to the mixing chamber. According to this manufacturing method (fifth embodiment), the homogeneous mixed liquid (liquid mixture) after the stirring and mixing in the premixer 30+ is supplied to the first mixing mixer 10, so that the first stirring can be mixed. The number of revolutions of the machine 10 and/or the second agitating mixer 20 is set to be lower than the number of revolutions when the polyol and the isocyanate are respectively supplied to the first agitating mixer 10 (even if the number of revolutions is low) The inert gas is slightly dispersed). Mechanical agitation is carried out at such a low number of revolutions, and the heat of shear generated is lowered, with the result that no ethyluretic acidification reaction occurs in the first mixing mixer 10 or the second agitating mixer 20. Curing of the raw material (a phenomenon that occurs when stirring at a high number of revolutions). <Other Embodiments> The embodiments of the manufacturing method of the present invention have been described above, but the present invention is not limited thereto, and various modifications can be made. For example, two or more of the above five types of embodiments may be appropriately combined. Further, as a variation of the third embodiment, a part of the additive (for example, a foam stabilizer) may be supplied to the first agitating mixer 10, and the remaining portion of the additive (for example, a catalyst) may be supplied to the second agitating and mixing. Machine 20. Furthermore, it is also possible to connect one or more other agitating mixers on the second agitating mixer 20 with the connected agitating mixer (the third agitating mixer, the fourth agitating mixer, the nth agitating mixer) The foamed composition discharged from the second-16-(14) 1355392 agitating mixer 20 was again subjected to mechanical agitation. <Ethyl carbamate foam> The urethane foam obtained by the production method of the present invention can be formed by using a conventional mechanical foaming method (manufacturing method using a single agitating mixer) The obtained urethane foam has a smaller cell diameter (for example, an average cell diameter of 60 μm or less, particularly 40 μm ^ or less), and a smaller cell diameter deviation (for example, a deviation of ±20 μm or less) Therefore, the cell structure of the cell structure having a fine and uniform cell structure has high mechanical strength and small variation in mechanical strength at different portions. . <Polyol> The "polyol" used in the production method of the present invention may, for example, be a polyether polyol, a polyester polyol, a polycarbonate polyol, a polyolefin polyol, an acryl-based polyol, or a low Molecular polyol (chain extender) and the like. It is particularly preferable to use at least one polyol selected from the following (1) and (2), and a low molecular polyol selected from at least one of the following (3). (1) A polyether polyol having an average number of functional groups of 2.0 to 4.0 and a number average molecular weight of 6 00 to 1 Å. (2) The average functional group number is 2.0 to 4.0, and the number average molecular weight is 600 〜 〇, 〇〇〇 polyester polyol-Μ-(15) 1355392 (3) The number of functional groups is 2 to 4, and the molecular weight is 600 or less. Polyol. Examples of the polyether polyol of the above (1) include a poly(ethylene oxide) polyol having a homofunctional group number of 2.0 to 4.0 and a propylene compound by using a compound having 2 to 4 active hydrogens as an initiator. A polyol or a poly(tetramethylene oxide) polyol is added. As "having 2 to 4 living compounds" for producing a polyether polyol, ethylene glycol '1,2-propanediol, 1,3-propane 2,2-dimethyl-1,3-propanediol can be cited ( Neopentyl glycol), 1,3-butanediol, diol, 1,5-pentanediol, 1,6·hexanediol, diethylene glycol, dipropylene glycol, 1,1〇- Decylene glycol, 3·methyl-1,5-pentanediol, double low molecular weight diol; lower triol such as glycerin, hexanetriol, trimethylolpropane; low molecular weight polyol such as pentaerythritol; ethylenediamine, a propylene diamine diamine; an aromatic diamine such as phenylenediamine, toluenediamine, xylene diamine or diphenyldiamine; an aromatic amine such as aniline; a low molecular weight amino alcohol such as monoethanolamine or amine 'triethanolamine; Hydroxymethylcyclohexane; glycosides and the like, which may be used singly or in combination of two or more. As the "cyclic ether" for producing the polyether polyol, ethane, propylene oxide, butylene oxide, oxetane 'tetrahydrofuran t can be listed as the polyester polyol of the above (2), and A compound prepared by reacting a compound (polyol) containing an upper hydroxyl group with a (polybasic acid) containing two or more carboxyl groups by a conventional method is used as "a monomer containing two or more hydroxyl groups for use in the production of a polyester polyol". A compound such as a diol which is a nominally condensed (oxygen-forming hydrogen, 1,4-butanediol, a molecular weight amine such as A), etc. -18- (16) (16) 1355392 (polyol)", the above-mentioned low molecular weight diol and low molecular weight triol, which may be used alone or in combination of two or more. "compounds containing two or more carboxyl groups (polyacids)", examples thereof include adipic acid, malonic acid, succinic acid, tartaric acid, pimelic acid 'sebacic acid, oxalic acid, phthalic acid, and para-benzene Dicarboxylic acid, isophthalic acid, ortho-benzene Methanic anhydride 'sebacic acid, trimellitic acid, glutaconic acid, α-hydromuconic acid' β_hydromuconic acid, α-butyl·α-ethylglutaric acid, α,β-diethyl Succinic acid, trimellitic acid, 〗 4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4,-biphenyldicarboxylic acid, 4,4'-diphenyl ether Carboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4,4, diphenylfengdicarboxylic acid, 4,4,-diphenylisopropylidene-acid, 1,2-benzophenone乙乙院-4',4"-dissid acid, dicarboxylic acid, 2,5-pyridinedicarboxylic acid, benzophenone dicarboxylic acid, etc., which may be used singly or in combination of two or more. And the average functional group number of the polyol of the above (2) is 2.0 to 4.0', preferably 2.0 to 3.0. When the average number of functional groups of the polyol is less than 2.0, the obtained ethyl urethane foam is not high. Mechanical strength (tensile strength, breaking strength). On the other hand, when the average functional group number of the polyol exceeds 4 Å, the obtained urethane foam has no high elasticity (elongation) and exhibits brittleness. Number average of the above (1) and above (2) The amount is from 6 〇〇 to 10,000 Å, preferably from 1, 〇〇〇 to 5 〇〇〇. When the number average molecular weight of the polyol is less than 600, the obtained urethane foam has no high elastic force (pull Strength, elongation). - -19- (17) (17) 1355392 Aspect 'When the number average molecular weight of the polyol exceeds 10,000, the resulting urethane foam has no high mechanical strength (stretching) Strength, breaking strength) and good compression properties (for example, low compression set). As the low molecular weight polyol of the above (3), ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol can be exemplified. , 丨, 4·butanediol, 1,6-hexanediol, neopentyl glycol and other low molecular weight diols, glycerol 'trimethylol propylamine, three-path methyl ketone, hexane triol and other low molecular weight three A low molecular weight tetraol such as an alcohol or a diglycerin. By using a low molecular weight polyol in combination, the obtained urethane foam can be imparted with high mechanical strength. <Isocyanate> Examples of the "isocyanate" used in the production method of the present invention include diphenylmethane diisocyanate (MDI), phenyl diisocyanate, and 2,4. toluene diisocyanate (2,4-TDI). , an aromatic isocyanate such as 2,6-toluene diisocyanate (2,6-TDI), an aliphatic diisocyanate such as tetramethylene diisocyanate or hexamethylene diisocyanate (HDI), isophor The keto diisocyanate 'hydrogenated TDI, hydrogenated MDI or the like, an alicyclic diisocyanate vinegar', an NC0-based terminal prepolymer obtained by reacting an isoxyl acid ester with a polyhydric alcohol, etc., may be used singly or in combination of two or more. Among them, it is preferred to use an NCO-based terminal prepolymer obtained by reacting an MDI-based isocyanate with a polyol (hereinafter also referred to as "MDI-based NCO-based terminal prepolymer"). The MDI-based NCO group -20-(18)(18)1355392 terminal prepolymer constituting the composition capable of forming urethane is obtained by the reaction of an MDI-type isocyanate with a polyol. Here, "MDI-type isocyanate" includes MDI (dinucleotide) and polymeric MDI (multi-nuclear body of a trinuclear or higher body). The ratio of MDI and polymeric MDI used to form the MDI-based NCO-based terminal prepolymer is preferably from 30 to 100: 70 to 0, more preferably from 40 to 100: 60 to 〇β, and 4 of the MDI used. The isomers of 4'-MDl, 2,4'-MDI and 2,2'-MDI, preferably 4,4'-MDI, are at a ratio of 70% or more. Examples of the polyhydric alcohol used to form the MDI-based NCO-based terminal prepolymer include diols such as polyether diols, polyester diols, and polycarbonate diols. As the "polyacid diol" used for forming the MDI-based NCO-based terminal prepolymer, polyethylene oxide (PEG), polyoxypropylene glycol (PPG), and polyoxytetramethylene glycol (PTMG) can be exemplified: Group diols (such as ethylene glycol, 1,3-butylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,2-propylene glycol, iota, propylene glycol) as initiators A polyether polyol produced by ring-opening polymerization of a cyclic ether (for example, ethylene oxide, propylene oxide, oxetane or tetrahydrofuran) may be used singly or in combination of two or more. As the "polyester diol" for forming an MDI-based NCO-based terminal prepolymer, poly(ethylene adipate) diol, poly(propylene glycol adipate) diol 'poly(adipate) can be exemplified. Glycol-propylene glycol diol, poly(butylene adipate) diol, poly(hexanediol adipate) diol, produced by polycondensation of ethyl alcohol, propylene glycol, and adipic acid Copolyester 21 - (19) 1355392 diol [for example, poly(butylene adipate-ethylene glycol adipate) diol diacid 1,4-butanediol-propylene glycol) diol and poly(hex Diacid alcohol·ethylene glycol-propylene glycol)diol; made by polycondensation of caprolactone and/or two of succinic acid, malonic acid, pimelic acid, sebacic acid and sim low molecular weight diol Polyester diols, which are used in combination or in combination of two or more. As the ester diol used to form the MDI-based NCO-based terminal prepolymer "" can be cited as a low molecular weight carbonate with a low molecular weight reaction (dealcoholization polycondensation reaction) The substances formed may be used in combination of two or more. Examples of the "low molecular weight carbon used for forming the polycarbonate diol include MDI such as carbonate-based vinegar (for example, diethyl carbonate), alkyl ester (for example, 'diethylene carbonate), and diphenyl carbonate. The NCO-based terminal prepolymer can be prepared by mixing MDI with a polyol and heating the mixture to carry out an amine methylation reaction. The NCO content of the MDI-based NCO-based terminal prepolymer is preferably % by mass, more preferably 4 to 16% by mass. When the NCO content is less than 3% by mass, the miscibility of the prepolymer to the polyol is poor, resulting in low production efficiency. On the other hand, when the NCO content exceeds 34% by mass, the storage of $ The stability may deteriorate. In addition, the average official size of the 'MDI-based NCO-based terminal prepolymer is 2_〇~3.5', more preferably 2.0~2.5. Poly(hexa-1,4-butanedicarboxylic acid) ) and can be used alone as "polycarbonate diol for the use of acid ester alone", carbonic acid. Diterpene isocyanate acid ethyl esterification is 3~3 4 degrees too high, the prepolymer can be compared to -22- (20) (20) ) 1355392 When the average number of functional groups is less than 2.0, 'the obtained amino carboxylic acid B The foam does not have good compression properties and high mechanical strength. On the other hand, when the average number of functional groups exceeds 3.5, gelation tends to occur and stability is deteriorated. As an "additive" used in the production method of the present invention, Examples thereof include a catalyst, a foam stabilizer, a colorant (pigment, dye), an antioxidant, an ultraviolet absorber, etc. As a "catalyst" used as an additive, triethylenediamine (TEDA) and tetramethylhexamethylene can be cited. Diamine (TMHMDA), pentamethyldiethylenetriamine (PMDETA), dimethylcyclohexylamine (DMCHA), bisdimethylaminoethyl ether (BDMAEA), hydrazine methylimidazole, trimethylamine Amine catalysts such as ethylpiperazine, tripropylamine, triethylamine 'Ν-methylmorpholine, tin dibutyltin diacetate, dibutyltin dilaurate (DBTDL), dioctyltin dilaurate (DOTDL) a metal complex such as an ethyl acetonide metal salt, a reactive amine catalyst [eg, dimethylethanolamine (DMEA), hydrazine, hydrazine, hydrazine, -trimethylaminoethylethanolamine, hydrazine, hydrazine-dimethylaminoethoxyl Ethanol], etc. [Embodiment] , Embodiments of the present invention will be described, but the present invention is not limited thereto. <Preparation Example Poly(oxy-23-(21)(21)1355392 which has a nominal average functional group number = 2 and a number average molecular weight = 2,000 <29 methylene) Polyol 85.0 parts by mass, nominal average number of functional groups = 3' Number average molecular weight = 3,000 poly(oxypropylene) polyol 10.0 parts by mass '1,4·butylene glycol 5.0 parts by mass, modified organic I.0 parts by mass of an anthrone foam stabilizer and 0.02 parts by mass of a tin-based catalyst (DOTDL) were mixed to obtain a polyol mixture. <Preparation Example 2> A polyol mixture was obtained in the same manner as in Preparation Example 1 except that the tin-based catalyst (DOTDL) was not mixed. <Synthesis Example 1 (Synthesis of NCO-based terminal prepolymer)> MDI was added to a reaction vessel having a capacity of 1000 mL in which a stirrer, a cooling tube, a nitrogen gas introduction tube, and a thermometer were placed (including 1% by mass or less of 2) , a mixture of 2'-MDI and 2,4'-MDI isomers and 99% by mass of 4,4'-MDI of diphenylmethane diisocyanate) 100.0 parts by mass and a nominal average number of functional groups = 2 166.2 parts by mass of a poly(oxytetramethylene) polyol having a molecular weight of 2,000, and stirred at 80 ° C for 4 hours to carry out an ethyl carbamate reaction, thereby obtaining an NCO group having an NCO content of 0.1% by mass. End prepolymer. <Examples> (1) The polyol mixture obtained in Preparation Example 1 and the NCO-based terminal prepolymer obtained in Synthesis Example 1 were subjected to stirring and mixing by a premixer, and the latter wasocyanate group was compared with the former. -24- (22) (22) 1355392 The ratio of the molar ratio of hydroxyl groups ([NCO]/[OH]) to ι·〇5 is supplied to the premixer 30 of the structure shown in Fig. 3 (capacity of the mixing chamber = 〖5 cm1 In the case where no inert gas is present, the rotor is rotated at 60 rpm and the both are stirred and mixed to prepare a liquid composition capable of forming a urethane as a homogeneous mixture, and the obtained liquid state is obtained. The composition was continuously discharged from the premixer (the residence time of the raw material in the mixing chamber (measured 値) = 3 seconds). (2) The liquid composition discharged from the premixer is continuously conveyed to the first agitating mixer 10 having the structure shown in Fig. 2 and connected to the premixer 30 by mechanical agitation by a first agitating mixer. In the mixing chamber (capacity = 450 cm1), the inert gas body (dry air) in a ratio of 0.7 parts by volume relative to the volume fraction of the liquid composition is continuously supplied to the mixing chamber, and the first stirring is performed while cooling with cold water. The rotor of the mixer 10 was rotated at 300 rpm, and the liquid composition was mechanically stirred under an inert gas atmosphere to prepare a foam-like composition in which an inert gas was finely dispersed in the liquid composition, and the obtained foam was obtained. The composition was continuously discharged from the first agitating mixer 10 (the residence time of the raw material in the mixing chamber (measured 値) = 60 seconds). -25- 1 The foamy composition discharged from the first agitating mixer 1 is continuously conveyed to the structure having the structure shown in Fig. 2 and the first agitating mixer 1 by mechanical agitation by a second agitating mixer. In the mixing chamber (capacity = 4500 cm1) of the connected second agitating mixer 20, one (23) 1355392 is cooled with cold water, while the second agitating mixing is rotated at 600 rpm, thereby foaming the combination. Loading (refinement of the cells, homogenization treatment), and then continuously discharging | from the second agitating mixer 20 (mixing chamber time (measured 値) = 60 seconds, discharge amount = 83 3 cm1 2 / mi ( 4) Casting and solidification treatment The workpiece was continuously injected into the mold (26Ommx220mmx30mm) from the second agitating mixer 20 under normal pressure, and the mold was placed in an U〇°C oven for 30 minutes, and the school foam composition was cured. It was taken out from the urethane foaming instrument. <Example 2> (1) Stirring and mixing by a premixer A liquid composition of an ester can be prepared in the same manner as in the embodiment 1 (1), and the obtained liquid composition is discharged from the pre-mixing chamber. The raw material residence time (measured 値) 20 of the rotor into the mechanically stirred bubble-like composition of the material stays out of the foam-like combination mold after sealing, and the injected bubble, and then from the mold to the urethane Continuous in the machine = 3 seconds). In addition to the first stirrer, the raw -26-1 in the foamy mixing chamber obtained in Example 1 was mechanically stirred by the first agitating mixer to use the liquid composition discharged from the premixer, 2 mixing mixer 10 The rotor rotation number becomes 400 rpm, (2) The foam composition is prepared in the same manner, and the composition is continuously discharged from the first agitating mixer 10 ((24) 1355392 material residence time (measured 値) = 60 second). (3) The foamy composition discharged from the first agitating mixer 10 is continuously conveyed to the structure having the structure shown in Fig. 2 and connected to the first agitating mixer 1 by mechanical agitation by a second agitating mixer. In the mixing chamber (capacity = 4500 cm3) of the second agitating mixer 20, the inert gas is continuously supplied to the mixing chamber at a ratio of 1 part by volume to 5% by volume of the liquid group composition constituting the foam composition. The gas (dry air) 'cools with cold water' while rotating the rotor of the second agitating mixer 20 at 600 rpm to mechanically stir the foamed composition under an inert gas atmosphere, and then from the second Continuously discharged in the agitating mixer 20 (the residence time of the raw material in the mixing chamber (measured 値) = 60 seconds, the amount of sweeping out = 833 cm 3 /min). (4) Casting and Curing Treatment ® Using a foam-like composition discharged from the second agitating mixer 20, a urethane foam was produced in the same manner as in Example 1 (4). <Example 3> (1) Stirring mixing by a premixer was carried out except that the polyol mixture obtained in Preparation Example 2 (mixture containing no DOTDL) ([NCO]/[OH] = 1.〇5) was replaced. A liquid composition capable of forming a urethane was prepared in the same manner as in Example 1 (1) except that the polyol mixture obtained in Example I was prepared, and the obtained liquid group -27-(25) 1355392 was obtained from Continuous discharge in the premixer (mixing chamber 1 (measured 値) = 3 seconds). (2) Mechanically agitated by a first agitating mixer The number of revolutions of the liquid combination mixer 10 discharged from the premixer was changed to 200 rpm to modulate the foam composition in the same manner as in (2), The composition was continuously discharged from the first agitating mixer 10 for a residence time (measured 値) = 60 seconds). (3) a mixing chamber discharged from the first agitating mixer 1〇 by mechanical agitation by a second agitating mixer to a mixing chamber having the structure shown in Fig. 2 and connected to the first agitating mixer 20 (The ratio of 0.02 parts by mass (DOTDL) to 100 parts by mass of the foam composition is continuously supplied to the mixing chamber, and the rotor of one machine 20 is rotated at 800 rpm, and the mechanical stirring is performed. Then, it is cast from the second agitation (the residence time of the raw material in the mixing chamber (measured 値: = 833 cm 3 /min ) ° (4 ), and the solidification treatment uses the raw material residence time discharged from the second agitating mixer 20, In the same manner as in Example 1, the obtained foam was discharged in the same manner as in Example 1 (the original foam-like composition in the mixing chamber was continuously stirred in a mixer of 10° t = 450 cm 3 .), and the liquid of the composition was the same. The tin-based catalyst of the group was subjected to continuous evacuation of the second stirred mixed foam composition for several 20 seconds > = 60 seconds, and the discharged amount of the foam composition, • 28-(26) (26) 1355392 was implemented. In the same manner as in Example 1 (4), the urethane 4 was produced. Foam. <Example 4> (1) A liquid composition capable of forming a urethane was prepared in the same manner as in Example 1 (1) by stirring and mixing by a premixer, and the obtained liquid composition was premixed. Continuous discharge in the machine (feeding time of the raw material in the mixing chamber (measured 値) = 3 seconds). (2) Mechanically stirring by a first agitating mixer In the same manner as in Example 1 (2), a foamy composition was continuously discharged from the first agitating mixer 10 (Material residence time in the mixing chamber (measured 値) = 60 seconds). -29- (27) (27) 1355392 (4) Casting and solidification treatment Using the foamed composition discharged from the second agitating mixer 20, ethyl urethane was produced in the same manner as in the example (4). Foam. <Comparative Example 1 > (1) A liquid composition which can form a urethane is prepared in the same manner as in the embodiment 1 (1) by stirring and mixing by a premixer, and the obtained liquid composition is preliminarily Continuous discharge in the mixer (feeding time of the raw material in the mixing chamber (measured 値) = 3 seconds). (2) The liquid composition discharged from the premixer is continuously conveyed by a stirring mixer to the mixing chamber of the agitating mixer having the structure shown in Fig. 2 and connected to the premixer (capacity = 4) In 50 cm 3 ), an inert gas (dry air) in a ratio of 0.67 parts by volume relative to the volume fraction of the liquid composition was continuously supplied to the mixing chamber, and the rotor of the agitating mixer was subjected to cooling while cooling with cold water. Rotation of rp m to mechanically agitate the liquid composition under an inert gas atmosphere, thereby preparing a foam-like composition in which an inert gas is micro-dispersed in a liquid composition, and the obtained foam-like composition is Continuous discharge in the mixer (the residence time of the raw material in the mixing chamber (measured 値) = 60 seconds, discharge = 8 3 3 cm3 / min). (3) Casting and solidification treatment -30- (28) 1355392 A urethane foam was produced in the same manner as in Example 1 (4) using a foam-like composition discharged from a stirring mixer. <Comparative Example 2 > ()) A liquid composition capable of forming a urethane was prepared in the same manner as in Example 1 (1) by stirring and mixing with a premixer, and the obtained liquid composition was preliminarily Continuous® discharge in the mixer (feedstock residence time in the mixing chamber (measured 値) = 3 seconds). (2) The liquid composition discharged from the premixer was mechanically stirred by the first agitating mixer, except that the number of revolutions of the first agitating mixer 1 was changed to 80 rpm, and Example 1 (2) The foamy composition was prepared in the same manner, and the obtained foamy composition was continuously discharged from the first agitating mixer 10 (the residence time of the raw material in the mixing chamber (measured enthalpy) = 60 seconds). -31 - (29) 1355392 (4) Casting and solidification treatment Using a foamed composition discharged from the second agitating mixer 20, a urethane foam was produced in the same manner as in Example 1 (4). . The urethane foam obtained in Examples 1 to 4 and Comparative Examples 1 to 2 was measured and evaluated according to the following procedures. The results are shown in Table 1 below. • (1) Average cell diameter (average 値 (Dav)): The urethane foam was cut at any position, and the sampling range of area=2 cm2 was measured on each of the five cut surfaces selected for balance. The diameter of the cells of the billion bodies is determined by the average cell diameter (〇1, D2, D3, D4, D5) on each cut surface, and then their average 値 is calculated (= (D1+D2 + D3 + D4) + D5) /5] (2) Cell diameter deviation: ® Maximum 値 (D^x) and minimum 値 (Dmin) of all cell diameters (measurement range = 2cm2x 5 = 10 cm2) measured by the above (1) The difference (Dmax-Dav) and (Dmin_Dav) from the above average 値 (Dav) are obtained. (3) Density: Measured according to JI SZ 8 8 0 7. (4) Hardness: According to JIS K 6253 Hardness tester (type a) measured hardness -32- (30) 1355392 (JIS-Α hardness). (5) Tensile strength and elongation (average 値 and deviation) according to JIS K 625 1, at tensile speed = 500 mm The test piece (dumbbell No. 3) prepared by sampling the five parts selected from the balance was subjected to a tensile test under the condition of /min, and the respective tensile strength and elongation measurement data (n = 5) were used to obtain respective Average 値 and deviation [(maximum 値 - average 値) / flat 値 値 and (min 値 - average 値) / average 値]. (6) Decoding strength (average 値 and deviation) according to JIS K 6252, pulling A test piece (B type dumbbell) prepared by sampling five parts selected from the balance was subjected to a fracture test under the condition of a stretching speed of 200 mm/min. The average enthalpy and deviation of the breaking strength were determined [(maximum 値 average 値) / average 値 and (minimum 値 average 値) / average 値]. The above results are shown in Table 1. -33- 1355392

【一嗽】 比較例2 m 800 〇 ν〇 200 S 0.25 833 160 ±40 0.60 〇〇 m cn O +1 420 +1 寸 00 比較例1 m 500 〇 ν〇 1 1 1 833 ±20 0.60 m 00 450 +1 VO 實施例4 m 300 〇 ν〇 500 S 卜 VO 833 ±20 〇〇 〇 Ό 〇\ 〇 OO 590 Ό VO 實施例3 m 200 〇 ν〇 800 S ο 寸 833 〇 寸 ±20 0.60 寸 Ό 470 實施桐2 m 400 〇 VO 600 S 833 〇 寸 〇 +1 _ 1 1 1 1 0.42 00 2.8 寸 520 m .寸 實施例1 300 ο ν〇 600 S Ο CN 833 〇 ±10 0.62 ID Ό 470 預混合機[停留時間(實測値)][秒] [rpm] [秒] [rpm] [秒] 轉數比(r2/n) 排出量(注入模具的量) [cm3/分] [μιη] [μηι] [g/cm3] 硬度(JIS-A) 1 [MPa] 1 1 ί—1 1 1 r-j ε 2 L»J 轉子轉數η 停留時間(實測値) 轉子轉數r2 停留時間(實測値) 平均泡孔直徑[平均値(Dav)] 平均値 偏差 平均値 偏差 平均値 偏差 第一攪拌混合機 (攪拌混合機) < In i Π i 偏差 ΐ φ( 3: ί 分 π ΐ i I 1 ' 1 ί 泡孔 直徑 密度 i i 11 二 i ϊ -34- (32) 根據本發明的製造方法,可以有效地製造在具有微細 而均勻的泡孔結構的同時、機械強度高且不同部位的機械 強度的偏差小的胺基甲酸乙醋發泡體。 藉由本發明的製造方法得到的胺基甲酸乙醋發泡體可 以應用於建材領域(防震材料、免震材料塡料等)、鐵 道材料領域(防震材料、衝擊吸收材料等)、車輛領域 (衝擊吸收材料等)、各種橡膠替代物(輕質彈性體 等)、化妝品領域(粉撲等)、卷材(〇 A卷材等)、衛 生製品(馬桶座等)等領域。 【圖式簡單說明】 圖U1]〜[5]爲示意性表示本發明製造方法的步驟 圖。 ’圖2爲表示作爲第一攪拌混合機或第二混合攪拌機使 用之攪拌混合機的其中一例的槪略結構的說明圖。 圖3是表示預混合機的其中一例的槪略結構的說明 圖。 【主要元件符號說明】 10:第一攪拌混合機 20 :第二攪拌混合機 21 :外殼 21 1 :外管 212 :內管 -35- (33) (33)1355392 2 I 3 :冷卻介質流路 2 1 4 :冷卻介質流入口 2 1 5 :冷卻介質流出口 2 1P :柱 22 :混合室 23 :轉子 23P :柱 24 :旋轉軸 2 5 1,2 5 2 :原料供給噴嘴 2 6 :氣體供給噴嘴 2 7 :原料排出口 3 0 :預混合機 3 1 :外殼 32 :墊塊 3 3 :混合室 34 :轉子 35 :旋轉軸. 36 :第一噴嘴 3 7 :第二噴嘴 3 8 :原料排出口 3 9 :螺旋狀溝槽 40 :模具 -36[一嗽] Comparative Example 2 m 800 〇ν〇200 S 0.25 833 160 ±40 0.60 〇〇m cn O +1 420 +1 inch 00 Comparative example 1 m 500 〇ν〇1 1 1 833 ±20 0.60 m 00 450 +1 VO Example 4 m 300 〇ν〇500 S VO 833 ±20 〇〇〇Ό 〇\ 〇OO 590 Ό VO Example 3 m 200 〇ν〇800 S ο 833 〇 inch ±20 0.60 inch Ό 470 Implement Tong 2 m 400 〇 VO 600 S 833 〇 inch 〇 +1 _ 1 1 1 1 0.42 00 2.8 inch 520 m. Inch Example 1 300 ο ν〇600 S Ο CN 833 〇±10 0.62 ID 470 470 Premixer [residence time (measured 値)] [seconds] [rpm] [seconds] [rpm] [seconds] revolution ratio (r2/n) discharge amount (injection amount of mold) [cm3/min] [μιη] [μηι] [g/cm3] Hardness (JIS-A) 1 [MPa] 1 1 ί—1 1 1 rj ε 2 L»J Rotor rotation number η Residence time (measured 値) Rotor rotation number r2 Residence time (measured 値) Average bubble Hole diameter [Average 値 (Dav)] Average 値 deviation Average 値 Deviation mean 値 Deviation First mixing mixer (stirring mixer) < In i Π i Deviation ΐ φ (3: ί 分π ΐ i I 1 ' 1 ί Cell Diameter density ii 11 ii ϊ -34- (32) According to the production method of the present invention, it is possible to efficiently produce an amine having a fine and uniform cell structure, high mechanical strength, and small variation in mechanical strength at different portions. Ethyl acetonate foam. The urethane foam obtained by the production method of the present invention can be applied to the field of building materials (earthquake materials, seismic materials, etc.), railway materials (earthquake materials, impact absorption) Materials, etc., vehicle fields (impact absorbing materials, etc.), various rubber substitutes (light elastomers, etc.), cosmetics (puffs, etc.), coils (〇A coils, etc.), sanitary products (toilet seats, etc.), etc. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. U1] to [5] are schematic diagrams schematically showing the manufacturing method of the present invention. Fig. 2 is a view showing a stirring mixer used as a first agitating mixer or a second mixing agitator. Fig. 3 is an explanatory view showing a schematic configuration of an example of a premixer. [Description of main component symbols] 10: First agitating mixer 20: Second agitating mixer 21: outer casing 21 1 : outer tube 212 : inner tube - 35 - (33) (33) 1355392 2 I 3 : cooling medium flow path 2 1 4 : cooling medium inflow port 2 1 5 : cooling medium outflow port 2 1P : column 22 : mixing chamber 23 : rotor 23P : column 24 : rotating shaft 2 5 1, 2 5 2 : raw material supply nozzle 2 6 : gas supply nozzle 2 7 : raw material discharge port 3 0 : premixer 3 1 : Outer casing 32: spacer 3 3: mixing chamber 34: rotor 35: rotating shaft. 36: first nozzle 3 7: second nozzle 3 8: raw material discharge port 3 9 : spiral groove 40: mold-36

Claims (1)

13553921355392 十、申請專利範圍 第94 1 33 577號專利申請案 中文申請專利範圍修正本 民國97年2月19曰修正 1·—種胺基申酸乙酯發泡體的製造方法,其係採用機 械起泡法製造胺基甲酸乙酯發泡體的方法,其特徵係包含 下述步驟:於第一攪拌混合機中,在惰性氣體氛圍下對含 有多元醇及異氰酸酯的可形成胺基甲酸乙酯的液態組合物 進行機械攪拌,從而調製成在該液態組合物中分散有惰性 氣體的泡沫狀組合物,再將該泡沫狀組合物輸送到第二攪 拌混合機中進行機械攪拌,而後從第二攪拌混合機中排 出; - 在第一攪拌混合機中進行攪拌時的轉子轉數^爲200 〜150〇rpm,在第二攪拌混合機中進行攪拌時的轉子轉數 Γ2 爲 240 〜3000rpm,轉數比 Γ2/η 爲 1.2 〜5.0。 2.如申請專利範圍第1項之胺基甲酸乙酯發泡體的製 造方法,其中在泡沫狀組合物被輸送到的第二攪拌混合機 中導入惰性氣體,於第二攪拌混合機中,在惰性氣體氛圍 下再次對泡沫狀組合物進行機械攪拌。 3 .如申請專利範圍第1或2項之胺基甲酸乙酯發泡體 的製造方法,其中在泡沬狀組合物被輸送到的第二攪拌混 合機中加入用於形成胺基甲酸乙酯發泡體的添加劑。 4 ·如申請專利範圍第1或2項之胺基甲酸乙酯發泡體 的製造方法,其中在泡沫狀組合物被輸送到的第二攪拌混 1355392 合機中加入化學發泡劑。 5.如申請專利範圍第1或2項之胺基甲酸乙醋發泡體 的製造方法,其中,於預混合機中’不存在惰性氣體的情 況下對多元醇及異氰酸酯進行攪拌混合,從而獲得可形成 胺基甲酸乙酯的液態組合物,再將該液態組合物供給第一 攪拌混合機》X. Application for Patent Scope No. 94 1 33 577 Patent Application Revision of Chinese Patent Application Scope Amendment of the Republic of China on February 19, 1997. 1 - Amino acid-ethyl ester foam manufacturing method, which is based on mechanical A method for producing a urethane foam by a bubble method, comprising the steps of: forming a urethane-containing ethyl ester and an isocyanate-containing urethane in an inert gas atmosphere in a first agitating mixer; The liquid composition is mechanically stirred to prepare a foamed composition in which an inert gas is dispersed in the liquid composition, and the foamed composition is transferred to a second agitating mixer for mechanical agitation, and then from the second agitation. Discharge in the mixer; - The number of revolutions of the rotor when stirring in the first agitating mixer is 200 to 150 rpm, and the number of revolutions of the rotor when stirring in the second agitating mixer is 240 to 3000 rpm, the number of revolutions The ratio Γ2/η is 1.2 to 5.0. 2. The method for producing a urethane foam according to claim 1, wherein the inert gas is introduced into the second agitating mixer to which the foam composition is delivered, in the second agitating mixer, The foamed composition was again mechanically agitated under an inert gas atmosphere. 3. The method for producing a urethane foam according to claim 1 or 2, wherein a second agitating mixer to which the foam composition is delivered is added for forming an ethyl urethane. Additive for foam. A method for producing a urethane foam according to claim 1 or 2, wherein a chemical foaming agent is added to the second agitating mixture 1355392 to which the foamed composition is delivered. 5. The method for producing a urethane foam according to claim 1 or 2, wherein the polyol and the isocyanate are stirred and mixed in a premixer in the absence of an inert gas, thereby obtaining A liquid composition of ethyl urethane can be formed, and the liquid composition is supplied to the first agitating mixer"
TW94133577A 2004-10-20 2005-09-27 Method for producing urethane foam TWI355392B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305372A JP4491837B2 (en) 2004-10-20 2004-10-20 Production method of urethane foam.

Publications (2)

Publication Number Publication Date
TW200615290A TW200615290A (en) 2006-05-16
TWI355392B true TWI355392B (en) 2012-01-01

Family

ID=36535941

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94133577A TWI355392B (en) 2004-10-20 2005-09-27 Method for producing urethane foam

Country Status (3)

Country Link
JP (1) JP4491837B2 (en)
CN (1) CN100554302C (en)
TW (1) TWI355392B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696280B (en) * 2009-10-23 2011-07-20 河南科达节能环保有限公司 Process for foam moulding of fluorine-free polyurethane
JP5555121B2 (en) * 2010-10-08 2014-07-23 株式会社イノアックコーポレーション Flame retardant polyurethane foam and method for producing the same
JP2020186309A (en) * 2019-05-14 2020-11-19 日本発條株式会社 Open cell-structured sponge and cosmetic puff
CN112175157A (en) * 2020-09-29 2021-01-05 洛阳科博思新材料科技有限公司 Polyurethane material and preparation method thereof, and polyurethane sleeper pad and preparation method thereof
CN112142939B (en) * 2020-10-21 2022-06-10 惠彩材料科技(苏州)有限公司 Mixed foaming method of polyurethane

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397810A (en) * 1989-07-19 1995-03-14 Mitsui Toatsu Chemicals, Inc. Polyol, polyurethane resin and utilization thereof
JP3176058B2 (en) * 1990-11-05 2001-06-11 三井化学株式会社 Polyol and its use
JP2618804B2 (en) * 1993-04-28 1997-06-11 三洋化成工業株式会社 Method for producing foamed polyurethane moldings
JP2001294640A (en) * 2000-04-11 2001-10-23 Bridgestone Corp Heat-accumulating mechanical froth type polyurethane foam and method for producing the same
JP3665608B2 (en) * 2000-12-15 2005-06-29 三洋化成工業株式会社 Rigid polyurethane foam-forming composition for foaming mechanical floss and foam molded article
DE10129062A1 (en) * 2001-06-15 2002-12-19 Basf Ag Process for the production of highly elastic polyurethane foams
US6600001B1 (en) * 2002-01-11 2003-07-29 Crompton Corporation Alkylamino oxamides as low odor, non-fugitive catalysts for the production of polyurethanes
JP2003211461A (en) * 2002-01-22 2003-07-29 Bridgestone Corp Device and method for manufacturing polyurethane foam and method for manufacturing roller of polyurethane foam
JP2004149781A (en) * 2002-10-07 2004-05-27 Sanyo Chem Ind Ltd Method for producing rigid polyurethane foam
JP2006509070A (en) * 2002-12-04 2006-03-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Organometallic catalyst composition and polyurethane production process using said catalyst
CN1191289C (en) * 2003-06-18 2005-03-02 清华大学 Synthesis of amphiphilic biodegradable polyurethane elastomer
JP4466313B2 (en) * 2004-10-20 2010-05-26 日本ポリウレタン工業株式会社 A method for producing a polyurethane foam.

Also Published As

Publication number Publication date
JP4491837B2 (en) 2010-06-30
CN100554302C (en) 2009-10-28
CN1763118A (en) 2006-04-26
JP2006117751A (en) 2006-05-11
TW200615290A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
JP6324450B2 (en) Composition
TWI355392B (en) Method for producing urethane foam
CN1240736C (en) Manufacture of MDI-TDI based flexible polyurethane foams
TWI386422B (en) Method of producing railway pad
CN1880356A (en) Carbon dioxide blown low density, flexible microcellular polyurethane elastomers
JP2010503750A (en) Isocyanate-terminated polycaprolactone polyurethane prepolymer
JP2007284625A (en) Foamed polyurethane elastomer and preparation method thereof and pad for railroad
JP2011038005A (en) Manufacturing method of foamed polyurethane elastomer
JP4907812B2 (en) Method for producing PIPA polyol
CN1478111A (en) Process to improve polyurethane foam performance
CN1763125A (en) Polyurethane foaming body production method
CN1827663A (en) Soft polyurethane foam production method
CN100344665C (en) Fast demold/extended cream time polyurethane formulations
TWI787420B (en) Polishing pad
JP5225901B2 (en) Method for producing aqueous polyurethane resin, aqueous polyurethane resin and film
JP4109228B2 (en) Method for producing flexible polyurethane foam for headrest
JP6985587B2 (en) Abrasive pad
CN101646708B (en) Polyisocyanate composition for flexible polyurethane foam and process for the production of flexible polyurethane foam by the use of the composition
JP2016194034A (en) Production method of urethane foam
JP6489866B2 (en) Rigid polyurethane foam
JP2006249422A (en) Molding resin composition of polyurethane for cutting work
JP7395853B2 (en) Polishing pad and resin composition for polishing pad
JP6489849B2 (en) Rigid polyurethane foam
JP2004231678A (en) Composition for molding rigid polyurethane foam and method for producing rigid polyurethane foam using the same composition
JP2004176019A (en) Rigid polyurethane foam-molding composition and method for producing rigid polyurethane foam by using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees