TWI353378B - A novel phosphor for white light-emitting diodes a - Google Patents

A novel phosphor for white light-emitting diodes a Download PDF

Info

Publication number
TWI353378B
TWI353378B TW096105034A TW96105034A TWI353378B TW I353378 B TWI353378 B TW I353378B TW 096105034 A TW096105034 A TW 096105034A TW 96105034 A TW96105034 A TW 96105034A TW I353378 B TWI353378 B TW I353378B
Authority
TW
Taiwan
Prior art keywords
light
fluorescent composition
composition
fluorescent
emitting diode
Prior art date
Application number
TW096105034A
Other languages
Chinese (zh)
Other versions
TW200833819A (en
Inventor
Teng Ming Chen
Woan Jen Yang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW096105034A priority Critical patent/TWI353378B/en
Publication of TW200833819A publication Critical patent/TW200833819A/en
Application granted granted Critical
Publication of TWI353378B publication Critical patent/TWI353378B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Description

13*53378 九、發明說明: 【發明所屬之技術領域】 本發明係提供一種新穎螢光組成物及其製法,特別是用 於發光裝置上之螢光組成物》 【先前技術】 利用發光二極體(light-emitting diode,LED)’產生與太 陽光色相似之白光,以大幅取代傳統日光燈等白光照明,是 本世紀照明光源科技領域積極硏發的目標,因爲與傳統光源 相比,而且,發光二極體比傳統照明設備高出1 0倍以上的 使用壽命,而且體積小 '亮度高,在製作過程與廢棄處理上 更較傳統光源環保等許多優點,而被視爲下一世代的光源。 目前單晶片白光LED的技術主要有兩種方式:第一種 是以發光波長小於400nm的紫外光發光二極體(UV-LED)的 晶片當作激發光源激發紅、綠、藍(RGB)三種不同光色的 螢光體(phosphor )來混合形成白光;第二種是以藍光發光 二極體的晶片激發黃光螢光組成物而產生白光。在第一種方 法中,需要尋找數種在品質、劣化程度搭配得宜的螢光組成 物以控制白光光源品質:在第二種方法中,尋找適當品質的 黃光螢光劑十分重要,除了已知的釔鋁石榴石結構的 Y3Al5012:Ce3+ (YAG:Ge)螢光組成物(日本專利公告第 1 0-5 6208號)以外,還未有其他有效的黃光材料或者其他材 料出現。此外,白光的產生一直是藉著兩種以上螢光物質發 出不同波長的冷光(luminescence)混合達成,如果使用直接 發白光的單一物質,將大幅簡化製程,是產業界追求的目標 13*5337813*53378 IX. Description of the invention: [Technical field of the invention] The present invention provides a novel fluorescent composition and a method for preparing the same, particularly for a fluorescent composition on a light-emitting device. [Prior Art] Using a light-emitting diode Light-emitting diode (LED) produces white light similar to sunlight, which greatly replaces white light such as traditional fluorescent lamps. It is an active target in the field of lighting source technology in this century, because it is compared with traditional light sources. The light-emitting diode is more than 10 times longer than the traditional lighting equipment, and the volume is small, the brightness is high, and the manufacturing process and the disposal process are more environmentally friendly than the conventional light source, and it is regarded as the light source of the next generation. . At present, there are two main methods for single-chip white LED technology: the first one is to use ultraviolet light emitting diode (UV-LED) with an emission wavelength of less than 400 nm as an excitation light source to excite red, green and blue (RGB). Phosphors of different light colors are mixed to form white light; secondly, the yellow light-emitting composition of the blue light-emitting diode generates white light. In the first method, it is necessary to find several fluorescent compositions that are well matched in quality and deterioration to control the quality of the white light source: in the second method, it is important to find a suitable quality yellow fluorescent agent, except for known ones. There are no other effective yellow materials or other materials other than the Y3Al5012:Ce3+ (YAG:Ge) fluorescent composition of the yttrium aluminum garnet structure (Japanese Patent Publication No. 10-6208). In addition, the generation of white light has always been achieved by the luminescence mixing of two or more kinds of fluorescent substances at different wavelengths. If a single substance that directly emits white light is used, the process will be greatly simplified, which is the goal pursued by the industry 13*53378

然而在照明的運用上,白光發光二極體便扮演了積極取 代傳統照明的重要角色;一般而言,我們將白光發光二極體 結構分爲使用螢光組成物與未使用螢光組成物兩種,而使用 螢光組成物的結構又可分爲(1)藍光發光二極體激發YAG 螢光組成物、(2)藍光發光二極體激發YAG與紅色螢光組 成物,以及(3 )紫外光(UV)發光二極體激發螢光組成物等 三種。 就人類的視覺觀點而言,感覺上同樣的色彩實際上卻有 可能是由不同波長的色光所混合產生的效果,而紅、藍、綠 三原色光按照不同比例的搭配,可以在視覺上感受不同色彩 的光,此乃三原色原理(水野博之著,"光電工學的基礎” ,第五章,復漢出版社,民國82年)。國際照明委員會(CIE, Commission Internationale de I’Eclairage)確定了原色當量 單位,標準的白光光通量比爲:Φγ: (Dg: 〇)b=l: 4.5907 :0.0601 原色光單位確定後,白光Fw的配色關係爲:However, in the use of lighting, white light-emitting diodes play an important role in actively replacing traditional lighting; in general, we divide the white light-emitting diode structure into a fluorescent composition and an unused fluorescent composition. And the structure using the fluorescent composition can be further divided into (1) blue light emitting diode excited YAG fluorescent composition, (2) blue light emitting diode excited YAG and red fluorescent composition, and (3) The ultraviolet (UV) light-emitting diode excites the fluorescent composition and the like. As far as the human visual point of view is concerned, the same color may actually be the result of mixing different colors of light, and the red, blue and green colors of the primary colors can be visually different according to different proportions. The color of light, this is the principle of the three primary colors (Shui Yebo, "The Foundation of Photoelectric Engineering", Chapter 5, Fuhan Publishing House, Republic of China 82). The International Commission on Illumination (CIE, Commission Internationale de I'Eclairage) The primary color equivalent unit, the standard white light flux ratio is: Φ γ: (Dg: 〇) b = l: 4.5907 : 0.0601 After the primary color light unit is determined, the white light Fw color matching relationship is:

Fw = 1 [R] + 1 [G] + 1 [B] 其中R代表紅光,G代表綠光,B代表藍光。 對任意一彩色光F而言,其配方程式爲Fw= r[R] + g[G] + b[B],其中r、g、b爲紅、藍、綠三色係數(可由配色實 驗測得),其對應的光通量(Φ)爲:0>=680(R+4.5907G + 0.060 1 B)流明(lumen,簡稱lm,爲照度單位),其中r、g、 b的比例關係決定了所配色的光之色彩度(色彩飽和程度), -- 三 13*53378 它們的數値則決定了所配成彩色光的亮度。r[R]、g[G]、b[B] 通稱爲物理三原色,三色係數間的關係,可以利用矩陣加以 表不,經過標準化(normalization)之後可以寫成:F=X[X] + Y[Y]+Z[Z]=m{x[X]+y[Y]+z[Z]},其中 m =X+Y+Z 且 χ = (X/m)、y = (Y/m)、z = (Z/mp 每一個發光波長都有 特定的r、g、b値,將可見光區範圍的合爲X,g値相加總 合爲Y’ b値相加總合爲Z,因此我們可以使用X、y直角座 標來表示螢光組成物發光的色度,這就是我們所謂 C.I.E.1931標準色度學系統,簡稱C.I.E.色度座標。當量測 光譜後’計算各個波長光線對光譜的貢獻,找出x、y値後 ’在色度座標圖上標定出正確的座標位置,也就可以定義出 螢光組成物所發出光之顏色。 然而,目前白光LED最多的作法,利用互補色調配白 光的原理’以波長460nm的InGaN藍光晶粒塗上一層YAG 螢光物質,利用藍光LED照射螢光物質產生與藍光互補的 黃光,再利用透鏡原理將互補的藍光、黃光混合,即可得到 肉眼所見的白光,只需用單一晶粒,因此成本較低,不過這 種方法會使得光譜中缺乏紅色,使得在照射紅色物體時,會 顯示出偏黃色的紅色,無法獲得真實的色彩演光性。因此, 目前亦有開發數種紅光螢光組成物與YAG:Ce所產生之黃光 混合,加以改善並且獲得較佳光源演色係數。但是,由於兩 種不同的主體螢光組成物間,其劣化的程度差異甚大,因此 容易產生色彩的偏差,而無法產生自然的白光。 有鑑於此,提供一種可以改善光源演色係數,同時達到 1353378 高穩定之白光單一主體之螢光組成物,並使其能應用於白光 發光二極體裝置之螢光層,則可以用以取代現今發光二極體 的轉換螢光組成物商品的潛力,且對於白光發光二極體的暖 色性與演色性上更能有所提升。 【發明內容】 本發明係提供一種白色發光二極體用之新穎螢光組成 物,其係爲可轉換的且發射波長由黃綠光調變至紅光,且同 時具有金屬硫化物Ba2_xDxES3化學組成之螢光組成物,其中 D爲Ce3+、Eu2 +或者該等二離子之組合;E爲Mg、Zn或該 等二元素之組合。並且其中X之數値範圍爲O.OOOlSxSl 。而且,本發明之螢光組成物於380-450nm波長光源的激發 下,其色度座標値爲〇.25$χ$0·70,0.20^y$0.50之範圍 內。 其次,本發明之新穎螢光組成物,藉由紫外光或藍光發 光二極體的之激發下’使其可與激發光源混合產生高穩定度 、高演色性之白光。 本發明之Ba2-XDXES3化學組成之螢光組成物之合成係 將均勻混合的反應物粉末放入氧化鋁舟中加熱至850 °C ~1 05 0°C進行燒結2〜8小時,再將所得之粉末進行螢光光譜 、CIE色度座標測定、全反射光譜等系列特性鑑定。 【實施方式】 爲使該所屬技術領域中具有通常知識者能更進一步瞭 解本發明之組成成分及其機械特性,茲配合具體實施例、圖 式與表格詳加說明’當更容易瞭解本發明之目的、技術內容 1353378 、特點及其所達成之功效。 本發明係關於新穎螢光組成物與使用該新穎螢光組成 物之發光裝置。其主要目的係爲能開發夠被近紫外光及藍光 激發且同時擁有可調變黃綠光至紅光螢光組成物。 螢光轉換材料(螢光轉換組成物)係可將所產生的紫外 光或藍色光轉換爲不同波長的可見光。而其所產生的可見光 顏色則取決於螢光組成物的特定成份。該螢光組成物可能僅 含有單一種螢光組成物或者兩種或兩種以上的螢光組成物 。而要將LED作爲光源,則需要能夠產生更亮更白的光線 才可以作爲LED燈具使用。因此,在本發明之一實施例中 ,其將螢光組成物塗佈於LED上以產生白光。而每一種螢 光組成物在不同的波長激發下均可轉換爲不同的顏色的光 ,例如在紫外光或藍光LED之25 0nm〜500nm波長下,則可 轉換爲可見光。而由激發螢光組成物轉換而成的可見光具有 高強度與高亮度的特性。 本發明之較佳實施例中其中之一,係爲一種發光裝置或 燈,該發光裝置係包括一半導體光源,也就是發光二極體晶 片,以及連接於該發光二極體晶片上之電性導引線。該電性 導引線可由薄片狀電板予以支持,其係用以提供電流給予發 光二極體而使之發出輻射線。 該發光裝置係可包含任何一種半導體藍光或者紫外光 光源,其所產生的輻射線係直接照射在螢光組成物上而產生 白光。在本發明之一較佳實施例中,該半導體藍色發光二極 體係可摻雜各種雜質。因此該發光二極體(LED)係可包含各 13.53378 種適合的ΠΙ-ν、II-VI或IV-IV半導體層,且其發射之輻射 波長較佳爲250~500nm。該發光二極體包括至少由GaN、 ZnSe或SiC所構成之半導體層。例如,由通式iniGajAlkN (其中OSi; OSj; OSk而i+j+k=l)氮化物所組成之發光 二極體,其所激發的波長範圍大於250nm而小於500nm。這 種發光二極體半導體係已爲習知之技術,而本發明係可以利 用這樣的發光二極體作爲激發光源。然而本發明所能使用的 激發光源不僅限定於上述發光二極體,所有半導體所能激發 的光源均可以使用,包括半導體雷射光源。 此外,一般而言’所討論的發光二極體係指無機發光二 極體,但所屬技術領域中具有通常知識應可以輕易的瞭解前 述之發光二極體晶片係可由有機發光二極體或者其他輻射 來源所取代。 本發明係提供一種發光裝置,其係包含一半導體光源, 該半導體光源之發光波長係介於250nm〜500nm;以及一螢光 材料組成物,該螢光材料組成物會受該半導體光源所發出的 光而激發:其中該螢光組成物係爲一種白色發光二極體用之 新穎螢光組成物’其係可轉換且發射波長由黃綠光調變至紅 光’且同時具有金屬硫化物Ba2-XDXES3化學組成之螢光組成 物’其中D爲Ce3+、Eu2 +或者該等二離子之組合;e爲Mg 、Zn或該等二元素之組合。並且其中X之數値範圍爲〇〇〇〇1 各x^l。而且’本發明之螢光組成物於380-450nm波長光源 的激發下,其色度座標値爲0.25Sx$0.70,0.20$y$0.50 之範圍內。 -10- 13-53378 而該半導體光源係可爲發光二極體光源,且亦可爲有機 發光二極體光源。本發明之螢光組成物係塗佈於該發光二極 體上,並利用發光二極體光源作爲激發光源,而產生出白光 〔實施例1〕 本發明之新穎螢光組成物係利用固態法於高溫中製備 ,以製造(Ba2-xEux)ZnS3爲例,其包括下列步驟:依化學計 量秤取硫化鋇、硫化鋅、及氧化銪,將之研磨並均勻混合後 ,置入氧化鋁舟中,送入石英管狀爐內,在硫化氫和氬氣之 混合氣氛下,以8 50〜1 05 0°C之溫度進行2〜8小時燒結。 本發明之螢光組成物係於主體晶格中摻雜Ce3+、Eu2 + 或二離子共摻之組合,其組成之比例爲0.0001 $ 1。當x 之數値小於0.000 1時,發光效率過低;當X之數値大於1 時,濃度消光效應使得發光效率隨X値增加而呈逐漸下降》 〔實施例2〕 藉由前述固態法於高溫製備Bai.xl_x2Ce3 + xlEu2 + x2ZnS3 螢光組成物,其中xl係爲0至0.002的範圍,而x2爲0至 0.016的範圍內,其起始材料爲純度高達99.99%之硫化鋇、 硫化鋅、氧化鈽與氧化銪(BaS、ZnS、Ce02、Eu203 ;購自 於美國Aldrich化學公司),依化學計量秤取所需並將之混合 在含有30%之H2S/Ar的環境下,於高溫900〜1 000°C下進行 2〜7小時燒結。隨後利用BruckerAXS D8對於該粉末產物進 行X光繞射分析(未顯示於圖式中),並且收集在10。<2Θ < 8 0°範圍內的產物。由於藍光發光二極體之發光波長係介 -11- 1353378Fw = 1 [R] + 1 [G] + 1 [B] where R stands for red light, G stands for green light, and B stands for blue light. For any color light F, the formula is Fw=r[R] + g[G] + b[B], where r, g, b are red, blue, and green three color coefficients (can be measured by color matching experiment) ()), the corresponding luminous flux (Φ) is: 0 gt; = 680 (R + 4.5907G + 0.060 1 B) lumens (lumen, referred to as lm, is the unit of illumination), where the proportional relationship of r, g, b determines The color of the color of the color (color saturation), -- three 13 * 53378 their number determines the brightness of the color light. r[R], g[G], b[B] are generally referred to as physical three primary colors. The relationship between the three color coefficients can be expressed by the matrix. After normalization, it can be written as: F=X[X] + Y [Y]+Z[Z]=m{x[X]+y[Y]+z[Z]}, where m =X+Y+Z and χ = (X/m), y = (Y/m ), z = (Z/mp Each light-emitting wavelength has a specific r, g, b値, the combination of the visible light range is X, g値 is added to the total Y' b, and the total sum is Z, Therefore, we can use X, y rectangular coordinates to indicate the chromaticity of the fluorescent composition, which is what we call the CIE1931 standard colorimetric system, referred to as CIE chromaticity coordinates. After the equivalent spectrum, calculate the ray spectrum of each wavelength. The contribution, find x, y値, after calibrating the correct coordinate position on the chromaticity coordinate map, you can define the color of the light emitted by the fluorescent composition. However, the current practice of white LEDs is the most complementary. The principle of color tone with white light is coated with a layer of YAG phosphor with a wavelength of 460 nm of InGaN blue crystal, and the yellow light is irradiated by the blue LED to generate a yellow light complementary to the blue light, and then the lens principle is used to The complementary blue and yellow light can be used to obtain the white light seen by the naked eye. It only needs to use a single crystal grain, so the cost is low, but this method will make the spectrum lack red, so that when the red object is illuminated, it will show a bias. The yellow color is not able to obtain true color light. Therefore, there are also several kinds of red fluorescent compositions developed to mix with the yellow light produced by YAG:Ce to improve and obtain a better color rendering coefficient. However, Since the degree of deterioration between the two different main body fluorescent components is very different, color deviation is easily generated, and natural white light cannot be generated. In view of this, it is possible to improve the color rendering coefficient of the light source while achieving high stability of 1353378. The fluorescent composition of a single body of white light and its ability to be applied to the phosphor layer of a white light emitting diode device can be used to replace the potential of the converted fluorescent composition of today's light emitting diodes, and for white light The warm color and color rendering of the light-emitting diode can be improved. [Invention] The present invention provides a white light-emitting diode. A novel fluorescent composition which is a fluorescent composition which is convertible and whose emission wavelength is modulated from yellow-green to red, and which has a chemical composition of metal sulfide Ba2_xDxES3, wherein D is Ce3+, Eu2+ or such a combination of diions; E is Mg, Zn or a combination of the two elements, and wherein the number of X is in the range of 0.001O1SxSl. Moreover, the fluorescent composition of the present invention is excited by a light source of a wavelength of 380-450 nm. The chromaticity coordinate 値 is in the range of 〇.25$χ$0·70, 0.20^y$0.50. Secondly, the novel fluorescent composition of the present invention is excited by the ultraviolet or blue light emitting diode to make it It can be mixed with the excitation light source to produce white light with high stability and high color rendering. The synthesis of the fluorescent composition of the Ba2-XDXES3 chemical composition of the present invention is carried out by uniformly mixing the reactant powder into an alumina boat and heating it to 850 ° C ~ 1 0 0 ° C for 2 to 8 hours, and then obtaining the obtained powder. The powder is characterized by a series of characteristics such as fluorescence spectrum, CIE chromaticity coordinate measurement, and total reflection spectrum. [Embodiment] In order to further understand the composition of the present invention and its mechanical characteristics, those skilled in the art will be described in detail with reference to the specific embodiments, drawings and tables. Purpose, technical content 1353378, characteristics and the effects achieved. The present invention relates to novel fluorescent compositions and light emitting devices using the novel fluorescent compositions. Its main purpose is to develop a composition that is excited by near-ultraviolet light and blue light and has a variable yellow-green light to red light. The fluorescent conversion material (fluorescent conversion composition) converts the generated ultraviolet light or blue light into visible light of different wavelengths. The color of the visible light produced depends on the specific composition of the fluorescent composition. The fluorescent composition may contain only a single fluorescent composition or two or more fluorescent compositions. To use the LED as a light source, you need to be able to produce brighter and whiter light before it can be used as an LED fixture. Thus, in one embodiment of the invention, a phosphor composition is applied to the LED to produce white light. Each of the phosphor compositions can be converted to light of different colors by excitation at different wavelengths, for example, at a wavelength of 25 nm to 500 nm of the ultraviolet or blue LED, which can be converted into visible light. The visible light converted from the excited fluorescent composition has high intensity and high brightness. One of the preferred embodiments of the present invention is a light-emitting device or a lamp, the light-emitting device comprising a semiconductor light source, that is, a light-emitting diode chip, and an electrical connection to the light-emitting diode chip. Lead wire. The electrically conductive lead can be supported by a sheet-like electrical board for providing a current to the light-emitting diode to emit radiation. The illuminating device can comprise any type of semiconductor blue or ultraviolet light source that produces radiation that is directly incident on the fluorescent composition to produce white light. In a preferred embodiment of the invention, the semiconductor blue light emitting diode system can be doped with various impurities. Therefore, the light-emitting diode (LED) may comprise 13.53378 suitable ΠΙ-ν, II-VI or IV-IV semiconductor layers, and the emitted radiation wavelength is preferably 250-500 nm. The light emitting diode includes a semiconductor layer composed of at least GaN, ZnSe or SiC. For example, a light-emitting diode composed of a nitride of the formula iniGajAlkN (where OSi; OSj; OSk and i+j+k = 1) is excited to a wavelength range of more than 250 nm and less than 500 nm. Such a light-emitting diode semiconductor system is a well-known technique, and the present invention can utilize such a light-emitting diode as an excitation light source. However, the excitation light source that can be used in the present invention is not limited to the above-described light-emitting diodes, and all light sources that can be excited by the semiconductor can be used, including semiconductor laser light sources. In addition, in general, the light-emitting diode system in question refers to an inorganic light-emitting diode, but it is generally known in the art that the above-mentioned light-emitting diode chip system can be made of an organic light-emitting diode or other radiation. Replaced by source. The present invention provides a light-emitting device comprising a semiconductor light source having an emission wavelength of 250 nm to 500 nm; and a phosphor material composition which is emitted by the semiconductor light source Photoexcitation: wherein the fluorescent composition is a novel fluorescent composition for a white light-emitting diode, which is convertible and has an emission wavelength modulated from yellow-green to red, and has a metal sulfide Ba2-XDXES3. A fluorescent composition of chemical composition 'where D is Ce3+, Eu2+ or a combination of such diions; e is Mg, Zn or a combination of these two elements. And wherein the number of X ranges from 〇〇〇〇1 to x^l. Further, the fluorescent composition of the present invention has a chromaticity coordinate 値 of 0.25 Sx $ 0.70 and 0.20 $ y $ 0.50 under the excitation of a light source of 380-450 nm. -10- 13-53378 The semiconductor light source can be a light emitting diode light source, and can also be an organic light emitting diode light source. The fluorescent composition of the present invention is applied to the light-emitting diode and uses a light-emitting diode light source as an excitation light source to generate white light. [Example 1] The novel fluorescent composition of the present invention utilizes a solid state method. Prepared at high temperature, taking (Ba2-xEux)ZnS3 as an example, which comprises the following steps: taking strontium sulfide, zinc sulfide, and cerium oxide according to stoichiometry, grinding and uniformly mixing, and placing in an alumina boat. It is fed into a quartz tubular furnace and sintered at a temperature of 850 to 10,000 °C for 2 to 8 hours under a mixed atmosphere of hydrogen sulfide and argon. The fluorescent composition of the present invention is a combination of Ce3+, Eu2+ or diion co-doping in the host lattice, and the composition ratio thereof is 0.0001 $1. When the number of x is less than 0.000, the luminous efficiency is too low; when the number of X is greater than 1, the concentration extinction effect causes the luminous efficiency to gradually decrease as X値 increases. [Example 2] Preparing a Bai.xl_x2Ce3 + xlEu2 + x2ZnS3 fluorescent composition at a high temperature, wherein xl is in the range of 0 to 0.002, and x2 is in the range of 0 to 0.016, and the starting material is strontium sulfide, zinc sulfide, having a purity of up to 99.99%. Cerium oxide and cerium oxide (BaS, ZnS, Ce02, Eu203; purchased from Aldrich Chemical Company, USA), according to the stoichiometric scale, and mixed in an environment containing 30% H2S/Ar, at a high temperature of 900~ Sintering was carried out at 1 000 ° C for 2 to 7 hours. The powder product was then subjected to X-ray diffraction analysis (not shown) using Brucker AXS D8 and collected at 10. <2Θ < 8 0° product. Due to the wavelength of the blue light-emitting diode, the wavelength of the light-emitting diode is -11-1353378

於250nm〜500nm,其較佳爲420nm,因此亦可以使用具有相 同波長之氙燈光源來進行測試前述所產生之新穎螢光組成 物。因此利用配備有450W的氙燈之Spex Fluorolog-3螢光 光譜儀(S.A.設備公司)來測量其螢光光譜與激發光譜,請 參見第1圖與第 2圖,第1圖爲本發明之較佳實施例 (BauwC^ + o.owEi^ + o.oodZnS;螢光組成物之激發光譜圖,其 係利用監控放光波長498 nm所得,而從圖中可知此螢光組 成物在近紫外光與藍光的範圍有良好的激發效率;第2圖爲 本發明之較佳實施例(Ba丨+ 螢光組 成物之螢光光譜圖,其係利用激發波長4 2 0 nm所得,而從 圖中可得知此螢光組成之放光波長涵蓋綠光至紅光的範圍 ,其中綠光至黃橘光的範圍則主要是由Ce3 +所貢獻,橘黃光 至紅光的範圍則主要是由Eu2 +所貢獻。而CIE色度座標則利 用DT-100色度分析儀來檢測所合成之螢光組成物(Laik〇公 司’日本)。其五個不同成分計量之螢光組成物之色度座標 之測試結果,如表1所示。 ----—表 1 _ _Sample No.__χΐ__χ2_(x,y) 1 0.002 0 (0.34, 0.49) 2 0.002 0.004 (0.43, 0.45) 3 0.002 0.008 (0.49, 0.42) 4 0.002 0.012 (0.57, 0.37) 5 0 0.016 (0.64, 0.33) -12- 1353378 因此,可以從表 1 的結果中可以得知 Bai-xl.x2Ce3 + xlEU2 + x2ZnS3營光組成物的色度座標係分別介 於(0.34, 0.49)與(0.64, 0.33)之間,也就是落入黃綠至紅光之 間,請參見第3圖。而當固定Ce3 +之摻雜量,逐漸增加Eu2 + 的摻雜含量時,其Bai_xl.x2Ce3 + xlEu2 + x2ZnS3螢光組成物所 產生的色調則由黃色轉移至橘色。因此可以得知, Ba|.xl.x2Ce3 + xlEu2 + x2ZnS3爲一種發光波長可由黃綠至紅光 調變之螢光組成物,由於其可產生多樣性之色調,因此當其 由藍光發光二極體激發所產生之白光色溫,將較單一黃光 YAG:Ce螢光組成物所產生之白光色溫更爲多元。由於 Ba|.xl.x2Ce3 + xlEu2 + x2ZnS3螢光組成物包含了紅光的波段,因 此由藍色發光二極體激發Bai.xl_x2Ce3 + xlEU2 + x2ZnS3螢光組 成物所產生的白光相較於YAG:Ce螢光組成物所產生的白光 有更佳的演色性,也更適合應用於白色發光二極體,亦更符 合專利要件。Β3ι.χ1-χ2(:ε3 + χιΕιι2 + χ2Ζη83由於其有效之激發波 長涵蓋於近紫外光與藍光之範圍,且其螢光特性爲可調變之 黃綠光至紅光,所以本發明便利用這樣之特性予以分析並加 以利用。 惟以上所述者,僅爲本發明之較佳實施例,當無法據此 限定本發明之實施範圍,而所屬技術領域中具有通常知識者 依據本發明申請專利範圍及發明說明書內容所作之修飾與 變化’皆應屬於本發明專利涵蓋之範圍。 【圖式簡單說明】 第1圖本發明之較佳實施例(Ba丨.wCeho.oMEv^+o.ooOZnSs -13- 1353378 螢光組成物之激發光譜。 第 2 圖 本發明之較佳實施例(Bai .994Ce3 + 〇.〇()2Eu2 + ().()()4)ZnS3 螢光組成物之螢光光譜。 第3圖 本發明之Bai-xl-x2Ce3 + xlEu2 + x2ZnS3螢光組成物 之色度座標圖 ° (1)χ1=0·002 ’ x2=0 ; (2)xl=0.002 - χ2=0.004 ;(3) χ 1 =0.002 > χ2 = 0.008 ; (4) χΐ =0.002 > χ2 = 0.0 1 2 ; (5) χ1=0 ,χ 2 = 0 · 0 1 6。 【主要元件符號說明】From 250 nm to 500 nm, which is preferably 420 nm, it is also possible to use a xenon lamp source having the same wavelength to test the novel fluorescent composition produced as described above. Therefore, the fluorescence spectrum and excitation spectrum of the Spex Fluorolog-3 fluorescence spectrometer (SA Equipment Co., Ltd.) equipped with a 450 W xenon lamp are measured. Please refer to FIG. 1 and FIG. 2, and FIG. 1 is a preferred embodiment of the present invention. Example (BauwC^ + o.owEi^ + o.oodZnS; excitation spectrum of the fluorescent composition, which is obtained by monitoring the emission wavelength of 498 nm, and it is known from the figure that the fluorescent composition is in near-ultraviolet light and blue light. The range of the excitation has good excitation efficiency; the second figure is a preferred embodiment of the invention (the fluorescence spectrum of the Ba丨+ fluorescent composition, which is obtained by using the excitation wavelength of 410 nm, and is obtained from the figure It is known that the emission wavelength of the fluorescent light covers the range of green light to red light, wherein the range of green light to yellow orange light is mainly contributed by Ce3 + , and the range of orange light to red light is mainly contributed by Eu 2 + . The CIE Chromaticity Coordinate uses the DT-100 colorimetric analyzer to detect the synthesized fluorescent composition (Laik〇's Japan). The test results of the chromaticity coordinates of the fluorescent composition measured by five different components, As shown in Table 1. ----—Table 1 _ _Sample No.__χΐ__χ2_(x , y) 1 0.002 0 (0.34, 0.49) 2 0.002 0.004 (0.43, 0.45) 3 0.002 0.008 (0.49, 0.42) 4 0.002 0.012 (0.57, 0.37) 5 0 0.016 (0.64, 0.33) -12- 1353378 Therefore, It can be seen from the results in Table 1 that the chromaticity coordinate system of the Bai-xl.x2Ce3 + xlEU2 + x2ZnS3 camp light composition is between (0.34, 0.49) and (0.64, 0.33), that is, falling into yellow-green. Between red and light, please refer to Figure 3. When the doping amount of Ce3 + is fixed and the doping content of Eu2 + is gradually increased, the color tone of the Bai_xl.x2Ce3 + xlEu2 + x2ZnS3 fluorescent composition is The yellow color shifts to orange color. Therefore, it can be known that Ba|.xl.x2Ce3 + xlEu2 + x2ZnS3 is a fluorescent composition whose emission wavelength can be modulated from yellow-green to red light, because it can produce a variety of colors, so when The white light color temperature generated by the blue light emitting diode excitation is more diverse than the white light color temperature produced by the single yellow YAG:Ce fluorescent composition. Since Ba|.xl.x2Ce3 + xlEu2 + x2ZnS3 fluorescent composition Contains the band of red light, so the Bai.xl_x2Ce3 + xlEU2 + x2ZnS3 fluorescent group is excited by the blue light-emitting diode The white light produced by the object has better color rendering than the white light produced by the YAG:Ce fluorescent composition, and is more suitable for the white light-emitting diode, and is more in line with the patent requirements. Β3ι.χ1-χ2(:ε3 + χιΕιι2 + χ2Ζη83, since its effective excitation wavelength covers the range of near-ultraviolet light and blue light, and its fluorescent characteristic is adjustable yellow-green light to red light, the present invention facilitates the use of such The features are analyzed and utilized. The above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, and those skilled in the art have the scope of patent application according to the present invention. Modifications and variations of the contents of the description of the invention are intended to be within the scope of the invention. [FIG. 1] FIG. 1 is a preferred embodiment of the invention (Ba丨.wCeho.oMEv^+o.ooOZnSs -13- 1353378 Excitation spectrum of the fluorescent composition. Fig. 2 is a fluorescence spectrum of a preferred embodiment of the invention (Bai.994Ce3 + 〇.〇()2Eu2 + ().()()4) ZnS3 fluorescent composition. Fig. 3 is a chromaticity coordinate diagram of the fluorescent composition of Bai-xl-x2Ce3 + xlEu2 + x2ZnS3 of the present invention ° (1) χ 1 = 0·002 ' x2 = 0; (2) xl = 0.002 - χ 2 = 0.004 ; 3) χ 1 = 0.002 > χ 2 = 0.008 ; (4) χΐ = 0.002 > χ 2 = 0.0 1 2 ; (5) χ1=0, χ 2 = 0 · 0 1 6. [Main component symbol description]

-14--14-

Claims (1)

1353378 修正本 第096 1 05034號「白色發光二極體用之新穎螢光組成物及其 製造方法」專利案 (2011年4月14日修正) 十、申請專利範圍: 1. 一種發光波長可由黃綠至紅光調變之螢光組成物,其特徵 在於該種螢光組成物具有金屬硫化物型Ba2_xDxES3之主要 組成,其中D爲Ce3+、Eu2+、或該二離子共摻之組合;E 爲Mg、Zn、或該二元素之組合,並且其中X之數値範圍1353378 Revised the patent No. 096 1 05034 "New Fluorescent Composition for White Light-Emitting Diodes and Its Manufacturing Method" (Amended on April 14, 2011) X. Patent Application Range: 1. One wavelength of light can be yellow A green to red light-modulating fluorescent composition characterized in that the fluorescent composition has a main composition of a metal sulfide type Ba2_xDxES3, wherein D is a combination of Ce3+, Eu2+, or the two-ion co-doping; E is Mg , Zn, or a combination of the two elements, and wherein the number of X ranges 爲 0.000 1 $ X < 1。 2.如申請專利範圍第1項之螢光組成物,其中將該螢光組成 物塗佈於發光二極體上,藉由該發光二極體所發射之一次 輻射激發螢光組成物產生二次輻射。 3 ·如申請專利範圍第2項之螢光組成物,其中一次輻射爲紫 外光,以介於300和380 nm之間。 4.如申請專利範圍第2項之螢光組成物,其中一次輻射爲紫 藍光,以介於380和410 nm之間,並且與至少一種螢光 組成物之二次輻射結合,以獲得白光。 5 ·如申請專利範圍第2項之螢光組成物,其中一次輻射爲藍 光,以介於4 1 〇和4 5 0 nm之間,並且與至少一種螢光組 成物之二次輻射結合,以獲得白光。 6.如申請專利範圍第3項之螢光組成物,其發光色調係於 CIE色度座標(x,y)之中,其中X之數値範圍爲〇_30彡xS 0.70’ y之數値範圍爲〇.25SyS〇.50。 7·如申請專利範圍第4項之螢光組成物,其發光色調係於 1353378 修正本 CIE色度座標(x,y)之中,其中x之數値範圍爲0.25Sx客 0.70,y之數値範圍爲0.20SyS0.50。 8 .如申請專利範圍第5項之螢光組成物,其發光色調係於 CIE色度座標(x,y)之中,其中X之數値範圍爲0.25SxS 0.70,y之數値範圍爲〇.20SyS0.50。 9. 一種發光裝置,其係包含一半導體光源,該半導體光源之 發光波長係介於25 0nm〜5 00nm ;以及一螢光材料組成物, 該螢光材料組成物會受該半導體光源所發出的光而激發 :其中該螢光組成物係選自於如申請專利範圍第1項至第 8項中任一項之螢光組成物。 10. 如申請專利範圍第9項之發光裝置,其中該光源係爲一 發光二極體。 1 1 .如申請專利範圍第9項之發光裝置,其中該光源係爲一 有機發光結構。 12.如申請專利範圍第9項之發光裝置,其中該螢光組成物 係塗佈於光源表面的上方。 1 3 · —種製造用於如申請專利範圍第1項至8項中任一項之 螢光組成物的方法,其係利用固態合成法於85(TC至1200 °C予以熔融燒結合成。 14.如申請專利範圍第13項之方法,其合成時間需反應2~ 10 小時。Is 0.000 1 $ X < 1. 2. The fluorescent composition of claim 1, wherein the fluorescent composition is coated on the light-emitting diode, and the fluorescent composition is excited by the primary radiation emitted by the light-emitting diode. Secondary radiation. 3. A fluorescent composition as claimed in claim 2, wherein the primary radiation is ultraviolet light between 300 and 380 nm. 4. A fluorescent composition according to claim 2, wherein the primary radiation is violet blue, between 380 and 410 nm, and combined with secondary radiation of at least one of the fluorescent compositions to obtain white light. 5. The fluorescent composition of claim 2, wherein the primary radiation is blue light, between 4 1 4 and 4500 nm, and combined with the secondary radiation of at least one fluorescent composition, Get white light. 6. The fluorescent composition of claim 3, wherein the luminescent color is in the CIE chromaticity coordinate (x, y), wherein the range of X is 〇 _ 30 彡 x S 0.70 y 値The range is 〇.25SyS〇.50. 7. The fluorescent composition of claim 4, the luminescent color of which is corrected in the CIE chromaticity coordinates (x, y) of 1353378, where the number of x ranges from 0.25 Sx to 0.70, the number of y The range of 値 is 0.20SyS0.50. 8. The fluorescent composition of claim 5, wherein the luminescent color is in the CIE chromaticity coordinate (x, y), wherein the range of X is 0.25 SxS 0.70, and the range of y is 〇 .20SyS0.50. 9. A light-emitting device comprising a semiconductor light source having an emission wavelength of between 25 nm and 500 nm; and a phosphor material composition, the phosphor material composition being emitted by the semiconductor light source Excited by light: wherein the fluorescent composition is selected from the fluorescent composition of any one of items 1 to 8 of the patent application. 10. The illuminating device of claim 9, wherein the light source is a light emitting diode. The illuminating device of claim 9, wherein the light source is an organic light emitting structure. 12. The illuminating device of claim 9, wherein the fluorescent composition is applied above the surface of the light source. A method for producing a fluorescent composition according to any one of claims 1 to 8, which is synthesized by melt-sintering at 85 (TC to 1200 ° C) by solid state synthesis. If the method of claim 13 is applied, the synthesis time needs to be 2 to 10 hours.
TW096105034A 2007-02-12 2007-02-12 A novel phosphor for white light-emitting diodes a TWI353378B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096105034A TWI353378B (en) 2007-02-12 2007-02-12 A novel phosphor for white light-emitting diodes a

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096105034A TWI353378B (en) 2007-02-12 2007-02-12 A novel phosphor for white light-emitting diodes a

Publications (2)

Publication Number Publication Date
TW200833819A TW200833819A (en) 2008-08-16
TWI353378B true TWI353378B (en) 2011-12-01

Family

ID=44819238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096105034A TWI353378B (en) 2007-02-12 2007-02-12 A novel phosphor for white light-emitting diodes a

Country Status (1)

Country Link
TW (1) TWI353378B (en)

Also Published As

Publication number Publication date
TW200833819A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
DK2360226T3 (en) Phosphorus, method of displacing the emission wavelength of phosphorus, and light source and LED
TWI296648B (en) Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
TWI356507B (en) Yellow fluorescent body and white luminant device
US8044410B2 (en) White light-emitting diode and its light conversion layer
KR100911001B1 (en) A novel phosphor for white light-emitting diodes and fabrication of the same
TW200814359A (en) Highly saturated red-emitting Mn (IV) activated phosphors and method of fabricating the same
TW200536160A (en) Oxynitride phosphor and a light emitting device
JP5562534B2 (en) Novel phosphor and its production
CN113201342A (en) Ce3+Activated silicate broadband green fluorescent powder and preparation method and application thereof
JP2016535719A (en) Phosphor
US20190013445A1 (en) Phosphor and illumination device utilizing the same
TWI577782B (en) A phosphor and a light-emitting device containing the same
TWI266563B (en) Compound, phosphor composition and light-emitting device containing the same
CN114574206B (en) Fluorescent powder for white light-emitting diode and synthesis method and application thereof
TWI363085B (en) A novel phosphor and fabrication of the same
TWI353378B (en) A novel phosphor for white light-emitting diodes a
JP2008516042A (en) White light emitting device
TW556365B (en) Method to fabricate LED for white light source
KR102496975B1 (en) Phosphor compositions and lighting apparatus thereof
TWI512082B (en) A red nitride phosphor with high color rendering and high heat characteristics
TWI673342B (en) Phosphor and illumination device
CN101633842B (en) Luminophor and manufacturing method thereof
TWI390015B (en) Warm white light emitting diodes and their bromide
TWI428428B (en) Phosphors and light emitting device using the same
TWI516572B (en) Phosphors, and light emitting device employing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees