TWI352958B - Liquid crystal display panel and the driving metho - Google Patents
Liquid crystal display panel and the driving metho Download PDFInfo
- Publication number
- TWI352958B TWI352958B TW95145372A TW95145372A TWI352958B TW I352958 B TWI352958 B TW I352958B TW 95145372 A TW95145372 A TW 95145372A TW 95145372 A TW95145372 A TW 95145372A TW I352958 B TWI352958 B TW I352958B
- Authority
- TW
- Taiwan
- Prior art keywords
- line
- liquid crystal
- crystal display
- display panel
- data
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
1352958 【發明所屬之技術領域】 本發明係關於一種液晶顯示面板及其驅動方法,特別是 一種關於改良資料線訊號之提供方式以及補償相關寄生電容 效應的液晶顯示面板及其驅動方法。 【先前技術】 隨著液晶顯示面板的廣泛應用’使用者對於液晶顯示面 板的品質,如高亮度、高對比、高解析度、高顏色飽和度及 # 快速時間反應等的要求也越來越高。尤其隨著面板面積加 大’使用液晶顯示面板製成家用平面顯示器,如液晶電視, 已成為液晶顯示面板的重要應用。一般傳統液晶顯示面板多 . 為乍視角,只有在液晶顯示面板的正面才能觀看到正常的畫 面,若要以較大之視角觀看時會有顏色失真,甚至會發生階 調反轉(gray inversion)之現象,亦即明處及暗處顛倒的 狀況。因此如何增廣視角已成為製造液晶顯示面板時需要解 決之重要課題。 鲁 在眾多增廣視角的方法中,液晶垂直排列(Vertical A11 gnmen t ; VA )仍為目前市場上的主流技術之一。然當液晶 分子為朝向單一方向垂直排列(m〇n〇_d〇main VA),隨著電 場旋轉方向時,因為所有液晶分子都平行,故相反角度的視 角仍然受到侷限而無法觀賞。所以有多區域垂直排列 (multi-domain VA)之技術被廣泛應用及改進,以增進各種角 度的視覺品質。其中日本富士通公司曾嘗試在彩色渡光片上 設置凸塊(ridge or bump) ’利用凸塊產生之傾斜電場以控 1352958 制液曰曰分子依照所在區域自動排列轉向。然而由於凸塊之設 計使得彩色濾光片與主動矩陣基板間需要精確對準,並且在 彩色遽光片上要多增加一層覆蓋物(〇ver⑽㈣),因此 造成良率不佳與成本增加。 為改善上述多區域垂直排列液晶顯示器之缺點,一種對 角扭轉垂直排列(Blas_Bending Verticai化卿㈤;BBVA) 之液晶顯示面板係被提出。第1圖係習知對角扭轉垂直排列 φ 之液晶顯示面板之剖面視圖。該液晶顯示面板10包含一彩色 濾光片11、一液晶層12及一主動矩陣基板13,彩色濾光片 11及主動基板13分別具有—透明基板丨丨i及丨3卜彩色濾光 片11上有一共同電極112與主動基板13上有一畫素電極 * 134’且該共同電極112和畫素電極134之間會形成一主要電 • 場,而主動基板13上之控制電極133與畫素電極134則產生 使液晶分子121形成傾倒角度對稱之電場。另有一絕緣層132 設於控制電極133及畫素電極134之間。 _ 仁疋田< Vc〇n <Vp,於區域a之中央會產生 disclination線,其中vCE、及VP分別代表控制電極、共 同電極及畫素電極之電位。該種兩眼外轉(disclinati〇n) 線會造成液晶層12之光穿透率降低、反應時間變緩慢及液晶 分子不穩定等現象。為避免此一不良現象產生,因此希望在 極性反轉(polarity inversion)時要能滿足下列條件: 當晝素為正極性(positive frame)時,則Vu>Vp〉 Vc。™ ....(條件一);及BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel and a method of driving the same, and more particularly to a liquid crystal display panel and a method of driving the same for improving the manner of providing a signal line signal and compensating for a related parasitic capacitance effect. [Prior Art] With the wide application of liquid crystal display panels, users are increasingly demanding the quality of liquid crystal display panels such as high brightness, high contrast, high resolution, high color saturation, and #fast time response. . In particular, as the panel area is increased, the use of a liquid crystal display panel to form a home flat panel display, such as a liquid crystal television, has become an important application of the liquid crystal display panel. Generally, there are many conventional liquid crystal display panels. For the viewing angle, only the front side of the liquid crystal display panel can be viewed as a normal picture. If viewed from a larger viewing angle, there will be color distortion, and even a gray-inversion will occur. The phenomenon, that is, the situation where the light and the dark are reversed. Therefore, how to widen the viewing angle has become an important issue to be solved when manufacturing a liquid crystal display panel. In many ways to increase the viewing angle, vertical alignment of liquid crystal (Vertical A11 gnmen t; VA) is still one of the mainstream technologies on the market. However, when the liquid crystal molecules are arranged vertically in a single direction (m〇n〇_d〇main VA), as the liquid crystal molecules rotate in the direction, since all the liquid crystal molecules are parallel, the angle of view of the opposite angle is still limited and cannot be viewed. Therefore, multi-domain VA technology is widely used and improved to enhance the visual quality of various angles. Among them, Fujitsu of Japan tried to set a bump (bump or bump) on the color light-emitting sheet to use the tilting electric field generated by the bump to control the 1352958 liquid helium molecule to automatically align according to the region. However, due to the design of the bumps, precise alignment between the color filter and the active matrix substrate is required, and an additional cover (〇ver(10)(4)) is added to the color light-emitting sheet, resulting in poor yield and cost. In order to improve the shortcomings of the above-described multi-region vertical alignment liquid crystal display, a liquid crystal display panel in which a diagonal torsion vertical alignment (Blas_Bending Verticai (5); BBVA) is proposed. Fig. 1 is a cross-sectional view of a liquid crystal display panel in which a diagonally perpendicularly arranged φ is diagonally arranged. The liquid crystal display panel 10 includes a color filter 11, a liquid crystal layer 12, and an active matrix substrate 13. The color filter 11 and the active substrate 13 have a transparent substrate 丨丨i and a 丨3 color filter 11 respectively. There is a common electrode 112 and a pixel electrode 134' on the active substrate 13, and a main electric field is formed between the common electrode 112 and the pixel electrode 134, and the control electrode 133 and the pixel electrode on the active substrate 13 are formed. 134 generates an electric field which causes the liquid crystal molecules 121 to form a tilt angle symmetry. Another insulating layer 132 is disposed between the control electrode 133 and the pixel electrode 134. _ 仁疋田< Vc〇n <Vp, a disclination line is generated in the center of the area a, where vCE and VP represent the potentials of the control electrode, the common electrode and the pixel electrode, respectively. This kind of two-eye outward disc (disclinati〇n) line causes a decrease in the light transmittance of the liquid crystal layer 12, a slow reaction time, and instability of the liquid crystal molecules. In order to avoid this undesirable phenomenon, it is desirable to satisfy the following conditions in polarity inversion: When the halogen is a positive frame, Vu > Vp > Vc. TM .... (Condition 1); and
當晝素為負極性(negative frame)時,則K 6 •(條件二)。 該書=圖?國三星電子所提出之畫素結構等效電路圖, ~之电路將能消除兩眼外轉線之缺點。亦即可 料件-及條件二。但由於其每個畫素2„皆包含三個== :截,故只要其中-個薄膜電晶雜損壞,則該畫素即= :,因此製造良率目前仍無法達到可接受之標準。另—方面When the halogen is a negative frame, then K 6 • (Condition 2). The book = map? The equivalent circuit diagram of the pixel structure proposed by Samsung Electronics, the circuit of ~ will eliminate the shortcomings of the external line of the two eyes. Also available as item - and condition 2. However, since each pixel contains three ==: truncations, as long as one of the thin films is damaged, the pixel is = :, so the manufacturing yield is still unable to meet acceptable standards. Another aspect
條掃描線上連接之㈣電晶體數量太多,造成掃描訊號 傳运有嚴重的RC延遲(delay)現象。The number of (4) transistors connected to the scanning line is too large, causing severe RC delay in scanning signal transmission.
㈤鎏於上述所提各種廣視角液晶顯示器產品之缺點,作者 曾於2004年提出一種垂直排列之廣視角液晶顯示器技術(詳 見台灣專利公告號1239424)。第3圖係此種垂直排列之液晶 顯示面板之畫素結構等效電路圖。其中僅示意列出四個相; 之晝素,係分別由掃描線36卜362及363 (分別代表I” k和G„)和資料線351、352及353 (分別代表^^和 仉)交又形成。每一個畫素包含第一薄膜電晶體T|、第二薄 骐電晶體T2、一控制電極34及一畫素電極33。該第一薄膜 電晶體T,之第一極端連接至一資料線353及第二極端連接至 該畫素電極33,又其閘極連接至一掃描線363。該第二薄臈 電晶體τ2之第一極端連接至另—相鄰之資料線352,其第二 極端連接至該控制電極34,又其閘極連接至另一相鄰之掃描 線3 62 ^畫素電極33及共同電極37間形成液晶電容c,,控 制電極34及畫素電極33形成對角扭轉電容c2,又控制電極 34及共同電極37間也有一電容C3形成。 以第3圖中1與Gm交又處所在之畫素β(右下角之畫素 7 1352958 二二^旦素㈣猎由其左右兩側之資料線352及353和上 掃描線362及363所控制,其中在晝素操作過程中’ 描訊號在兩相鄰水平掃描週期或-垂直掃描週 ,-”別可讓控制電極34及畫素電極33寫人電位之波 二雷且控制34因著畫素電極33之電位改變會產生-耦 :位而使付控制電極34之電位極性可隨畫素極性33改 藉此,在畫素Β為正極性時’控制電極34之(5) In view of the shortcomings of the various wide-angle liquid crystal display products mentioned above, the author proposed a vertically arranged wide viewing angle liquid crystal display technology in 2004 (see Taiwan Patent Publication No. 1239424 for details). Fig. 3 is a diagram showing the equivalent circuit diagram of the pixel structure of such a vertically arranged liquid crystal display panel. Only four phases are listed; the elements are respectively composed of scan lines 36 362 and 363 (representing I" k and G „, respectively) and data lines 351, 352 and 353 (representing ^^ and 仉, respectively) Formed again. Each of the pixels includes a first thin film transistor T|, a second thin germanium transistor T2, a control electrode 34, and a pixel electrode 33. The first thin film transistor T has a first terminal connected to a data line 353 and a second terminal connected to the pixel electrode 33, and a gate connected to a scan line 363. The first terminal of the second thin germanium transistor τ2 is connected to another adjacent data line 352, the second terminal of which is connected to the control electrode 34, and the gate thereof is connected to another adjacent scan line 3 62 ^ A liquid crystal capacitor c is formed between the pixel electrode 33 and the common electrode 37. The control electrode 34 and the pixel electrode 33 form a diagonal torsional capacitance c2, and a capacitor C3 is formed between the control electrode 34 and the common electrode 37. In Figure 3, 1 and Gm intersect with the pixel β (the pixel in the lower right corner is 1 1352958), and the data lines 352 and 353 and the upper scanning lines 362 and 363 are hunted by the left and right sides. Control, wherein during the operation of the halogen element, the 'signal number is in two adjacent horizontal scanning periods or - vertical scanning period, -" the control electrode 34 and the pixel electrode 33 can be written to the potential of the wave and the control 34 The potential change of the pixel electrode 33 generates a -coupled position such that the polarity of the potential of the control electrode 34 can be changed with the pixel polarity 33, and when the pixel is positive, the control electrode 34
:控制在高於晝素電極33之電位Vp;又在畫素6為負極: 日了控制電極34之電位VcE將可控制在低於晝素電極μ之電 位:'而達到滿足上述條件一及條件二之要求。且如第⑽ 所不’每—晝素中係只包含二個薄膜電晶體(I及L),故可 提高面板製程之良率以及改善畫素之開口率。另一方面,因 同條掃描線上連接之薄膜電晶體數量減少,亦降低了掃描 §亿號傳送之RC延遲之問題。 然而如第3圖之畫素設計,其每—晝素係、分別由其左右 兩側之資料線和上下兩側之掃描線所控制,亦即每個晝素皆 須電耦合兩條資料線及兩條掃描線;換言之,以整個面板I 畫素矩陣區來看,若—晝素矩陣包含η個晝素行及出個畫素 列(即一 Ι1ΧΠ1之畫素矩陣),如第4圖所示,則該畫素矩陣 將需η + 1條資料線(D,、Dn+1)& m + i條掃描線(Gl〜GmH)以驅動每 一晝素。亦即,畫素矩陣4〇〇之最外圍左右側將各具有一資 料線,分別為資料線D,和資料線DnH,以及最外圍上下側將 各具有一掃描線,分別為掃描線G|及掃描線。然而,就 傳統面板内之一 nxm畫素矩陣而言,若其内每一畫素只具一 8 1352958 ί寻膜電晶體’則一般而言其只需η條資料線及m條掃描線來 驅動晝素即可’是故其係搭配一能提供η個資料訊號之源極 驅動器及一能提供m個掃描訊號之閘極驅動器。 而如第4圖之晝素矩陣結構因具有η+ι條資料線及!„+1 條掃描線’因此其需搭配一能提供丨個資料訊號之源極驅 動窃及一能提供m+1個掃描訊號之閘極驅動器。換言之,傳 統之/、此提供η個貧料訊號及m個掃描訊號的源極及閘極驅: controlling the potential Vp higher than the halogen electrode 33; and the pixel 6 is the negative electrode: the potential VcE of the control electrode 34 can be controlled to be lower than the potential of the halogen electrode μ: ' Condition 2 requirements. And as in (10), each of the alizarin contains only two thin film transistors (I and L), so that the yield of the panel process can be improved and the aperture ratio of the pixels can be improved. On the other hand, the reduction in the number of thin film transistors connected to the same scanning line also reduces the problem of scanning the RC delay of the §100 million transmission. However, as in the pixel design of Figure 3, each of the elements is controlled by the data lines on the left and right sides and the scanning lines on the upper and lower sides, that is, each element must be electrically coupled to two data lines. And two scan lines; in other words, according to the entire panel I pixel matrix area, if the pixel matrix contains n pixel rows and a pixel column (ie, a pixel matrix of 1Ι1), as shown in FIG. As shown, the pixel matrix will require η + 1 data lines (D, Dn+1) & m + i scan lines (G1 ~ GmH) to drive each element. That is, the left and right sides of the outermost periphery of the pixel matrix 4〇〇 each have a data line, which is a data line D, and a data line DnH, and the upper and lower sides of the outer periphery each have a scan line, which is a scan line G| And scan lines. However, in the case of an nxm pixel matrix in a conventional panel, if each pixel has only one 8 1352958 Å film-forming transistor, it generally requires only n data lines and m scanning lines. It is a combination of a source driver that provides n data signals and a gate driver that provides m scan signals. For example, the matrix structure of Figure 4 has η+ι data lines and! „+1 scan lines' so it needs to be equipped with a source driver that can provide one data signal and a gate driver that can provide m+1 scan signals. In other words, the traditional/this provides n lean materials. Source and gate drive of signal and m scan signals
動器將不再適用’而需額外設計—新的源極及閘極驅動器與 之,配。例如,以1024χ768之XGV面板為例,傳統之源極驅 動器係提供1024個資料訊號,然而若如第4圖之畫素矩陣 彻’則其將需一能提1〇25個資料訊號之源極驅動器。然而, 如同我們所知,要重新設計一個驅動器尤其是一源極驅動 器’其將耗費相當之成本,有鑑於此虽待針對第4圖之畫素 矩陣彻提出一種改良式之液晶顯示面板及驅動方法來解決 此一問題。 【發明内容】 視角之_月之目的係提供—種液晶顯示面板,其具有廣 使^素為正極性時’控制電極之電位將 曰问於畫素電極之電位, 之電位低於書辛電極 L素為負極性時,控制電極 -傳統之源極驅動器所I且“料線之資料訊號可由 矩陣= : = 的係提供一種液晶顯示面板,其畫素 3Π個畫素行及㈣畫素列,並分別由州條資 9 丄乃烈58 料線和m+l條掃描線控制其内之畫素,且其只需由晝素矩 陣區外°卩提供n個資料訊號即可驅動該n+1條資料線。 本發明之另一目的係提供一種液晶顯示面板,其具有 Γ1 + 1 /{条資中! LL· ”’寸·深用以控制面板内之畫素,而其n +1條資料線之 訊戒可由一JL古 . /、有η個貢料訊號輸出源之傳統源極驅動器所 提供,不需另外設計一新的源極驅動器。 本發明之再—目的係提供一種液晶顯示面板,具有一The actuator will no longer be suitable for 'an additional design' - a new source and gate driver with it. For example, in the case of an XGV panel of 1024 χ768, a conventional source driver provides 1024 data signals. However, if the pixel matrix of Figure 4 is used, it will need to provide a source of 1 to 25 data signals. driver. However, as we know, to redesign a driver, especially a source driver, will cost a considerable amount of money, and in view of this, an improved liquid crystal display panel and driver will be proposed for the pixel matrix of FIG. The method to solve this problem. SUMMARY OF THE INVENTION The purpose of the viewing angle is to provide a liquid crystal display panel, which has a wide potential when the positive polarity is used, and the potential of the control electrode will be asked about the potential of the pixel electrode, and the potential is lower than the book oscillating electrode. When the L element is a negative polarity, the control electrode - the conventional source driver I and "the data signal of the material line can be provided by the matrix = : = system provides a liquid crystal display panel with 3 pixels per pixel and (4) pixel columns. And the state-controlled pixels are controlled by the state-owned 9 丄乃烈58 material line and m+l scanning line, and the n-data signal can be driven by the n-data source to drive the n+ 1 data line. Another object of the present invention is to provide a liquid crystal display panel having Γ1 + 1 /{"in the middle! LL·"" inch deep used to control the pixels in the panel, and its n +1 The signal line of the data line can be provided by a JL ancient / / traditional source driver with n tributary signal output sources, without the need to design a new source driver. A further object of the present invention is to provide a liquid crystal display panel having a
旦’、單’其内部資料線之總數多於畫素行之總數,且其 可在未改變傳統之源極驅動器之結構下來操作内部晝素, ^ 。所可能引發之訊號傳送RC延遲與寄生電容不對 稱之問題。 根據上述之目的,本發明提供一種液晶顯示面板,該液晶顯示面板 ^ 3 :素轉,其包含由複數條資料線及複數條掃描線相互交又所形 ^之稷數個晝素,其中,每一個晝素包含第一薄膜電晶體、第二薄膜電Once, the total number of internal data lines is larger than the total number of pixels, and it can operate the internal elements without changing the structure of the traditional source driver. The signal transmission RC delay that may be caused is not symmetrical to the parasitic capacitance. According to the above object, the present invention provides a liquid crystal display panel, wherein the liquid crystal display panel comprises a plurality of elements, wherein the plurality of data lines and the plurality of scanning lines intersect each other. Each of the halogens includes a first thin film transistor and a second thin film
一〜控制電極及—晝素電極。該第—薄膜電晶體之第—極端連接至 :==!二極端連接至該畫素電極,又其閘極連接至-掃描線。該 晶體之第—極端連接至另—相鄰之資料線,第二極端連接至 連接至另—相鄰之掃描線。其中,該畫素矩陣中 取外圍兩條該貧料線之_,摇— 相鄰之讀線,該邊界資娜係與另-非 相狀讀線指,且該邊界:雜频細鄰之f 線。該液晶齡面板,除了財廣 *… 與另-非相鄰之資料線連結,狀相偷特14外,由於錢將邊界資線 藉此,其可搭配-傳統之源極驅動器;^料訊號可因此而減少; 新的源極驅動器。同時,_ 旦’、,而不需另外設計一 精由邊界資料線與其相鄰之畫素 10 1352958 电極間所設置之輔助線,進而改善了資料訊號於傳送過程 中所可能產生之訊號RC延遲與寄生電容不對稱之問題。 【實施方式】A ~ control electrode and - halogen electrode. The first terminal of the first thin film transistor is connected to :==! The two terminals are connected to the pixel electrode, and the gate is connected to the - scan line. The first end of the crystal is connected to the other adjacent data line, and the second end is connected to the other adjacent scan line. Wherein, the pixel matrix takes the _ of the two peripheral lean lines, and shakes the adjacent read line, and the boundary is a non-phased read line finger, and the boundary: the frequency is closely related to the line f line. The liquid crystal age panel, in addition to Caiguang*... is connected with another non-adjacent data line, and the shape is sneaked out of the 14th, because the money will be used by the border line, it can be matched with the traditional source driver; Can be reduced as a result; new source drivers. At the same time, _ _ ', without the need to separately design a precision line set between the boundary data line and its adjacent pixel 10 1352958 electrode, thereby improving the signal RC that may be generated during the transmission of the data signal The problem of delay and asymmetry of parasitic capacitance. [Embodiment]
第5圖係根據本發明第一實施例之液晶顯示面板之等效 電路示意圖,其中該液晶顯示面板5〇〗包含—nxm之畫素矩 陣5〇〇,其整體結構係同於第四圖之畫素矩陣4〇〇,具有n 個畫素行及!1!個畫素列,並由n + 1條資料線及m+1條掃描線 控制其内畫素,而每一畫素内各薄膜電晶體與電容間之連結 方式係與第四圖之連結方式相同,故於此不再贅述,且相同 之兀件係以相同之符號表示之。一源極驅動器5〇2具有η個 訊號源輸出腳(signal output pin) PrPn,提供⑽資料源 訊號T晝素矩陣500之n+1條資料線。而為解決源極驅動器 5〇2資料訊號總數無法與資料線總數匹配之問題本發明係5 is a schematic diagram of an equivalent circuit of a liquid crystal display panel according to a first embodiment of the present invention, wherein the liquid crystal display panel 5 includes a pixel matrix 5 of -nxm, and the overall structure is the same as that of the fourth figure. The pixel matrix is 4〇〇, with n pixel lines and! 1! A series of pixels, and n + 1 data lines and m + 1 scanning lines control the internal pixels, and the connection between each thin film transistor and the capacitor in each pixel is the same as the fourth picture The connection is the same, and therefore will not be described again, and the same components are denoted by the same symbols. A source driver 5〇2 has n signal source output pins PrPn, which provide (10) n+1 data lines of the data source signal T-cell matrix 500. In order to solve the problem that the source driver 5〇2 data signal cannot match the total number of data lines, the present invention is
如第5圖所示,將畫素矩陣5〇〇之左側最外圍之資料線^, 稱-邊界資料線,與另一非相鄰之資料線電性連結,如圖卜 資料線D, ^系與資料線D3電性相連結,換言之,資料線匕之 資料訊號係由資料線D3所提供。如此一來,該州條資料線 將只需η個資料訊號源,故其將可匹配—傳統之只能提供η 個資料訊號源之源極驅動器,而Μ再重新設計—源極驅動 器;且如第5圖之實施例之資料線連接方式,亦將使得資料 線⑴所對應之晝素行(即第"条晝素行)於晝素顯示操作時, 滿足條件—及條件二之要求,關於此點以及液晶顯示面板 5 01之晝素顯示操作方式將說明如下。 …圖係示心歹j出第5圖中任意六個相鄰之畫素單元, 其_包含兩個位於第1條* ^ 怿畫素仃之畫素及四個分別位於第2As shown in Fig. 5, the data line ^, called the boundary data line on the leftmost side of the left side of the pixel matrix 5, is electrically connected to another non-adjacent data line, as shown in Fig. 2, data line D, ^ It is connected to the data line D3. In other words, the data signal of the data line is provided by the data line D3. In this way, the state data line will only need n data sources, so it will be matched—the traditional source driver that only provides n data sources, and then redesigned—the source driver; The data line connection method of the embodiment of FIG. 5 will also make the data line (1) corresponding to the prime line (ie, the " the line of the line) in the display operation of the element, satisfy the requirements of the condition - and condition 2, This point and the pixel display operation mode of the liquid crystal display panel 511 will be explained as follows. ...the diagram shows that there are any six adjacent pixel units in Figure 5, and the _ contains two pixels in the first *^ 怿 仃 及 及 and four in the second
條和第3條書素行之全音 M — 旦素。弟6圖所示之六個相鄰畫素,係 分別由掃描線561、562 ^ , ’’ 及563 (为別代表掃描線G!、G2和G3) 和資料線 551、552、b ' M3及554 (分別代表資料線仇、Dz、 仏和DO交又形成。每一個書 — u旦f早兀包含第一缚膜電晶體T丨、 第一薄膜電晶體Τζ、一控制啻权Q/4 ^ . 衩制電極34、一畫素電極33、一丘同 電極37、—液晶電^、—對角扭轉電容〇及—電容心、且 中各元件之連結方式係同如前述。 八 任取第6財非第1條晝素行上之畫素為例,如取第2 ι、_素仃t旦素D為例’第7圓係顯示相關驅動訊號應用 於第6圖畫素D之一例子。^及ν〇3係分別代表作用於資料 線552及553之資料訊號,又及Vu分別代表作用於掃描 線562及563之知招訊號,在每一垂直掃描週期内之掃描波 ?包含於Tp之時間内的第一波形及第二波形。第7圖 取下-列之波形為晝素!)的相關電極之電位變化,其中L及 V4別代表晝素D之畫素電極33及控制電極34之電位。 複參第7圖,當時間係在Vc2前半部分之&時間内,因 其第二薄膜電晶體丁2被VG2選擇而開啟,同時間之資料訊號 VD2會因此寫入控制電極% ,如圖所示控制電極以之電位由 原本之電位(低於VCQ01)改變為與vD2相同之電位(高於D。 同時因第-薄膜電晶體Tl被VG3選擇而開啟,資料訊號VD3之 電位(低於V⑽)會因此寫入晝素電極33。又在L後半部分 Τ τ間β □第一溥膜電晶體T|被V。選擇而開啟,同時 12 1352958 間之資料訊號Vm之電位(高於vct)B)會因此寫入晝素電極33, 由於此時第二薄膜電晶體T2為關閉,所以控制電極34為浮 動(floating)之狀態,而控制電極34會受到電容耦合之效 應而提升至更高的電位。 由第7圖可清楚看見,在畫素為正極性時,則滿足^ >VP>L。當-垂直掃猫週期結束後,因畫素之極性改變為 負極性,則又滿足VcKVKV^。故第6圖之畫素結構並搭配如 #第7圖之控制波形’將可使每一畫素單元之操作滿足條件一 (vCE> vP> 及條件二(VcE〈Vp<v一,進而消除兩眼外轉線 (chsdination)之問題1而,本發明之畫素之驅動訊號 :並非以第7圖之驅動方式為限,任何能使得畫«作滿足條 件一及條件二之驅動方式tb或$ ' 式白為適用。此外,要注意的是,以 畫素D為例,其畫素電極33之電位係由資料訊號VD3提供, =以:示所要求之畫面’故對於畫素電極33的電位大小 =即:料訊…大小值)之精準度將有較嚴謹之要求;而 • 控制廷極34之電位係由資料吒妒V裎祉 八早m… 貝科几遗Vd2&供’用以產生使液晶 刀子形成傾倒角對稱之電場。 目的係只是為產生-傾倒角電場,電位供給其 將不需如書辛電極之電位I: 其電位之大小值要求 拟 位要求來得嚴謹。故,大體上來說, 對於控制電極之電位要求口 性相反(如第7圖所干b與畫素電極33之極 W )及P可使畫素操作滿足條件-(〜> ^ σ… (Vp>V_)。是故同理,如第6圖所示, 田紅作弟I條畫素行上之晝心 D2之铳铗介π从, χ旦京仃兩側貧料線D丨及 u遽亦⑽此極性相反’亦即與資料線d,(即邊界資料 13 1352958 線)相連接之資料線Da,其所提供之訊號之極性必須與資料線 D2之極性相反。另外,誠如前面所提,由於控制電極^之電 位要求並非如畫素電極33之要求嚴謹,因此本發明主要係採 控制電極34之電位由其它資料線所提供(如資料線⑴之電位 係由資料線h所提供),然而在其它實施例十’當不排除畫 素電極33之電位由其它資料線提供之可能。 一般而言,液晶顯示面板為解決串音(cr〇ss talking) φ 或閃爍(f 1 icker)之問題,通常會採取如面反轉(frame inversion)、列反轉(row inversi〇n)、行反轉(c〇lumn inversion)或點反轉(dot inversion)等反轉驅動技術,其 中,又以點反轉驅動技術最為常用。而點反轉驅動之特徵之 一係為相鄰兩資料線之訊號極性彼此相反。因此,第5圖或 - 第6圖之液晶顯示面板,若在點反轉驅動之操作下,則資料 線D2與資料線Da之訊號極性將彼此相反。故,第5圖之實施 例將邊界資料線(資料線⑴)與資料線Da電性相連接於c處, • 將可使邊界資料線獲取與資料線D2極性相反之電壓。且由於 邊界^料線與資料線Da之跨距最短,故邊界資料線係與資料 線D3相連結係為較佳,不但可節省所需之線材成本,亦因傳 輸路線較短而使資料線整體之電阻值較小,進而減少訊號延 遲之問題。然而值得注意的是,邊界資料線並非限於連接於 資料線Da,其亦可連結於任何可提供一相反於資料線I (即 與該邊界資料線相鄰之資料線)之訊號極性的資料線。如第8 圖所不,在另一實施例中,邊界資料線係與資料線h連接於 E處。另外’雖然第5圖中邊界資料線與資料線I之連接處 1352958 c係位於晝素” _之外部,然而本發明並未限定連接處( 之所在’其亦可設於畫素矩陣500内之任何位置。 此外’雖然第5圖之面板之掃描線端(閘極端)部分,為 對應於㈣條掃描線,亦需提供…個掃描訊號以供驅動畫 素’即傳統只能提供m個掃描訊號之閉極驅動器亦將不再適 用。:然而,由於閘極驅動器之電路設計一般而言將比源極驅 動裔之電路設計來得容易,因此重新設計—閘極驅動器將比 鲁重新設計-源極驅動器所耗之成本來得低廉許多。故,關於 m+H条掃描線之訊號提供’建議可重新設計一閘極驅動器與 之搭配’而本發明將主要著重在面板之資料訊號之提供方式 的設計°然而’事實上’在其它實施中’本發明之源極端之 冑料訊號之提供方式亦可推廣至閘極端掃描訊號之提供。 第5圖之第一實施例中,係將畫素矩陣500左邊最外側 資料線D,定義為一邊界資料線,並將該邊界資料線與資料線 Da電性連接,藉由源極驅動器5〇2之訊號輸出腳h同時提供 • 資料訊號予邊界資料線及資料線m。如此一來畫素矩陣5〇〇 即可匹配一傳統之源極驅動器來控制面板。同理可推得,在 另一實施例中,如第9圖所示,亦可定義晝素矩陣6〇〇右邊 最外側資料線D„h為一邊界資料線,並將該邊界資料線與資 料線電性連接於F處,或與任何能提供和資料線Dn相反 之訊號極性之資料線電性連結,如此一來原先需要n+1個資 料訊號之面板,將轉而只需η個資料訊號,故可匹配一傳統 之源極驅動器。至於,晝素矩陣6〇〇之訊號波形操作方式係 與第一實施例相似’於此不再贅述。然而,特別注意的是’ 15 1352958 為配合第9圖之資料線連接設計,其畫素單元内之元件之連 接方式,係與第5圖内之元件連接方式左右顛倒,亦即以最 後一條資料線内之畫素為例,其第二電晶體T2係位於晝素内 之右側並與邊界資料線(資料線])nt,)連結,而第一電晶體τi 係位於畫素内之左側並連結於資料線Dn,如此一來藉由邊界 貧料線與資料線相連接於F處將可提供控制電極34所需之電 位。 φ 然而,如第10圖所示,在第五圖之面板畫面操作之過程 中母晝素行中之母一畫素之晝素電極33與其相鄰之資料 線間,將會產生產生一寄生電容Ci,以及每一畫素之控制電 ' 極34與其相鄰之資料線間,亦會產生一寄生電容C2。然而, 如第1 〇圖所示,以一 mxn畫素矩陣為例,每一晝素行係包含 m個晝素,且由於每-資料線與其相鄰兩側之畫素電極^皆 會產生一寄生電容Cl及ο,因此源極驅動器5〇2每一輸出腳 所對應之資料線將分別耦合2m個Ci及2m個G。但由於輸出 •腳P2係對應連接於資料線D3與邊界資料線,因此,輸出腳 P3所對應之資料線將有別於其它輸出腳而與3m個匕及個 C,耦接。是故,其耦合之總寄生電容值將大於其他輸出腳。 如此一來,於面板畫面操作中,輸出腳P2所對應的電容 總負載將遠大於其他輸出腳,並造成由輸出腳&輸出之訊號 於傳輸過程令產生嚴重的RC延遲問題。例如,以資料線〇2 /、邊界貝料線(貧料線Di)上之資料訊號傳輸來做比較,第11 a 圖與第11 b圖為根據第一實施例(第5圖或第i 〇圖所示),分 J為資料、線與邊界資料線上訊號延遲現象示$圖。第U a 16 1352958 圖中G係表示一掃描線之掃描訊號,w。係一從輸出腳ρι發出 之原始訊號波形,該訊號波形將透過資料線〇2傳輸並配合各 掃描線之驅動而被該行之對應畫素所接收。然而,如前所述, 由於資料線h其上之寄生電容效應,將使得訊號傳輸至資料 線末端時產生RC延遲現象,而使得其所對應畫素行末端之畫 素所接收到之訊號波形變形如w·,即該晝素之有效充電時間 將縮短為Tu。同樣地,第llb圖中Wfl係一從輸出腳p2發出 φ 之原始訊號波形,然而,由於輸出腳P2所連結之寄生電容總 值係比其他之輸出腳都來得大,即其RC延遲效應將比其他資 料線嚴重,因此戎行末端之晝素所接收到之訊號波形L其失 ; 真程度(變形程度)將比第Ua圖中之^來得嚴重,而其有效 充電時間T。2將比Τει更短,造成晝素充電(charging)不足, ' 而影響顯示品質。 為解決如第lib圖之資料線訊號延遲之問題,本發 明基於第5圖實施例之結構更進—部提出—改良設計,如第 鲁12圖所示。第12圖係本發明之第二實施例,其大部結構係 與第5圖相同’且相同之元件以相同之編號表示,唯差異處 在於第12圖中之晝素矩陣區6〇〇之最左側之第i條畫素行中 之每且素内增6又一輔助線L,輔助線l係位於邊界資料線 以及與該邊界資料線相鄰之薄膜電晶體Tz之間。較佳地,輔 助、.泉L係„又於邊界貪料線及其相鄰之晝素電極或控制電極 34 ^間’其結構不意圖如第j3圖所示。第u圖係第u圖 之第1條晝素仃内之晝素結構示意圖,然而要注意的是第工2 圖之旦素結構並非以第丄3圖所示為限,任何與第卫2圖之電 17 1352958 路寻效之畫素結構皆為適 在第13圖中,第一條書素行内 之畫素結構中,辅助蟑τΑ ^ W订 補助線L係位於邊界資料線(D〇與—畫 極3 3及控制電極3 4之間。較佳地 ,、 ^ ± 土地’輔助線L係大致平行於 畫素電極33與控制雷炻w 市J甩極34。輔助線L·可以為一浮接綠赤·击 結一時變訊號或非時變訊號, .”、 / S連 一 夂訊唬其中該非時變訊號可以為一極Articles and Articles 3 are full of sounds M - Dan. The six adjacent pixels shown in Figure 6 are scanned lines 561, 562 ^, '' and 563 (for the scan lines G!, G2 and G3, respectively) and data lines 551, 552, b ' M3 And 554 (representing the data line, the Dz, the 仏 and the DO intersection respectively. Each book - u den f early contains the first film transistor T 丨, the first thin film transistor Τζ, a control 啻 right Q / 4 ^ . The electrode 34, the pixel electrode 33, the same electrode 37, the liquid crystal, the diagonal torsion capacitance and the capacitance are connected as described above. Take the picture on the sixth line of the first financial line, for example, take the 2nd ι, _ 仃 仃 旦 旦 D 为 ' ' ' ' 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第Examples: ^ and ν〇3 represent the data signals acting on data lines 552 and 553, respectively, and Vu represents the known signals applied to scan lines 562 and 563, respectively. Scanning waves in each vertical scanning period include The first waveform and the second waveform during the time of Tp. Figure 7 takes the potential change of the relevant electrode of the waveform of the lower-column, where L and V4 represent D of the pixel electrode 33 and the pixel electrode 34, the potential of the control. Referring to Figure 7, when the time is in the first half of Vc2, the second thin film transistor D is turned on by VG2, and the data signal VD2 is written to the control electrode %, as shown in the figure. The potential of the control electrode is changed from the original potential (below VCQ01) to the same potential as vD2 (higher than D. At the same time, the potential of the data signal VD3 is turned on because the first-thin film transistor T1 is selected by VG3. V(10)) is thus written into the halogen electrode 33. In the second half of the L, β τ, the first 溥 film transistor T| is selected and turned on, and the potential of the data signal Vm between 12 1352958 (higher than vct) B) will therefore be written to the halogen electrode 33. Since the second thin film transistor T2 is turned off at this time, the control electrode 34 is in a floating state, and the control electrode 34 is lifted to a greater extent by the effect of capacitive coupling. High potential. As is clear from Fig. 7, when the pixel is positive, it satisfies ^ > VP > L. When the period of the vertical-sweeping cat is over, the polarity of the pixel changes to the negative polarity, and then VcKVKV^ is satisfied. Therefore, the pixel structure of Fig. 6 and the control waveform of Fig. 7 will make the operation of each pixel unit satisfy the condition one (vCE>vP> and condition two (VcE<Vp<v one, and thus eliminate The problem of the two-eye chsdination 1 is that the driving signal of the pixel of the present invention is not limited to the driving mode of the seventh figure, and any driving mode tb that satisfies the condition 1 and the condition 2 can be made. $ ' is white for application. In addition, it should be noted that, in the case of pixel D, the potential of the pixel electrode 33 is provided by the data signal VD3, = to show the desired picture 'so for the pixel electrode 33 The potential of the potential = that is: the size of the material ... size value) will have more stringent requirements; and • control the potential of the Tingji 34 by the data 吒妒 V 裎祉 eight early m... Beko several Vd2 & for ' The purpose is to generate an electric field that causes the liquid crystal knife to form a tilt angle. The purpose is only to generate a -pour angle electric field, and the potential supply is not required to be as precise as the potential I of the book oscillating electrode: the magnitude of the potential requires the quasi-position requirement. In general, the potential of the control electrode is required to be oral. Conversely (such as the dry b of Figure 7 and the pole W of the pixel electrode 33) and P, the pixel operation can satisfy the condition - (~> ^ σ... (Vp>V_). Therefore, the same figure, as shown in Fig. 6. As shown, Tian Hong’s singer’s singularity on the line of D2’s D π π , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , (ie, boundary data 13 1352958 line) The data line Da connected, the polarity of the signal provided must be opposite to the polarity of the data line D2. In addition, as mentioned above, the potential requirement of the control electrode is not as pixel The requirements of the electrode 33 are rigorous. Therefore, in the present invention, the potential of the control electrode 34 is mainly provided by other data lines (for example, the potential of the data line (1) is provided by the data line h), but in other embodiments, the drawing is not excluded. The potential of the element electrode 33 is provided by other data lines. In general, the liquid crystal display panel is used to solve the problem of crosstalk (cr〇ss talking) φ or flicker (f 1 icker), and usually takes a face inversion (frame) Inversion), column inversion (row inversi〇n), line inversion (c〇lumn inversion) or dot inversion Inverted driving technology (dot inversion), in which point inversion driving technology is most commonly used. One of the characteristics of dot inversion driving is that the signal polarities of two adjacent data lines are opposite to each other. Therefore, Figure 5 or - In the liquid crystal display panel of Fig. 6, if the dot inversion drive operation is performed, the signal polarities of the data line D2 and the data line Da will be opposite to each other. Therefore, the embodiment of Fig. 5 will be the boundary data line (data line (1) ) Connected to the data line Da electrically connected to c, • will make the boundary data line obtain the voltage opposite to the polarity of the data line D2. Since the span of the boundary material line and the data line Da is the shortest, the boundary data line is better connected with the data line D3, which not only saves the required wire cost, but also makes the data line short due to the short transmission path. The overall resistance value is small, which reduces the problem of signal delay. However, it is worth noting that the boundary data line is not limited to being connected to the data line Da, and may be connected to any data line that provides a signal polarity opposite to the data line I (ie, the data line adjacent to the boundary data line). . As shown in Fig. 8, in another embodiment, the boundary data line and the data line h are connected to E. In addition, although the connection between the boundary data line and the data line I in Fig. 5 is located outside the 昼素"_, the present invention does not limit the connection (which may be located in the pixel matrix 500). In any position. In addition, although the scanning line end (gate extreme) of the panel of Figure 5 corresponds to the (four) scanning lines, it is also necessary to provide a scanning signal for driving the pixels. The closed-circuit driver for the scan signal will no longer be suitable. However, since the circuit design of the gate driver is generally easier than the circuit design of the source driver, the redesign - the gate driver will be redesigned than the Lu - The cost of the source driver is much lower. Therefore, the signal of the m+H scanning line provides a suggestion that a gate driver can be redesigned and the present invention will mainly focus on the way the information signal of the panel is provided. However, in other implementations, the manner in which the source signal of the source of the invention is provided can also be extended to the provision of the gate extreme scanning signal. In the embodiment, the outermost data line D on the left side of the pixel matrix 500 is defined as a boundary data line, and the boundary data line is electrically connected to the data line Da, and the signal output pin of the source driver 5〇2 is used. h simultaneously provides a data signal to the boundary data line and the data line m. Thus, the pixel matrix 5 can match a conventional source driver to control the panel. Similarly, in another embodiment, As shown in Fig. 9, the outermost data line D„h on the right side of the pixel matrix 6〇〇 can also be defined as a boundary data line, and the boundary data line and the data line are electrically connected to the F, or any energy The data line of the signal polarity opposite to the data line Dn is electrically connected, so that the panel which originally needs n+1 data signals will only need n data signals, so it can match a conventional source driver. As for the signal waveform operation mode of the pixel matrix 6〇〇, it is similar to the first embodiment, and will not be described here. However, it is particularly noted that '15 1352958 is designed to match the data line connection design of FIG. The connection of the components within the unit The connection between the components in Figure 5 and the left is reversed, that is, the pixel in the last data line is taken as an example. The second transistor T2 is located on the right side of the pixel and is connected to the boundary data line (data line). Nt,) is connected, and the first transistor τi is located on the left side of the pixel and is connected to the data line Dn, so that the control electrode 34 can be provided by connecting the boundary lean line to the data line at F. The potential required. Φ However, as shown in Fig. 10, during the operation of the panel picture of the fifth figure, a parasitic capacitance will be generated between the parental electrode 33 of the mother pixel and the adjacent data line. A parasitic capacitance C2 is also generated between Ci, and the control power of each pixel, 34, and its adjacent data line. However, as shown in the first diagram, taking an mxn pixel matrix as an example, each elementary line system contains m elements, and each pixel element and its adjacent two sides of the pixel electrode generate one. The parasitic capacitances C1 and ο, so the data lines corresponding to each output pin of the source driver 5〇2 are respectively coupled with 2m Ci and 2m G. However, since the output pin P2 is connected to the data line D3 and the boundary data line, the data line corresponding to the output pin P3 is different from the other output pins and coupled with 3m and C. Therefore, the total parasitic capacitance value of its coupling will be greater than the other output pins. As a result, in the panel screen operation, the total load of the capacitor corresponding to the output pin P2 will be much larger than the other output pins, and the signal outputted by the output pin & causes a serious RC delay problem in the transmission process. For example, comparing the data signal transmission on the data line 〇2/, the boundary bedding line (the lean line Di), the 11th and 11b are according to the first embodiment (Fig. 5 or i) In the figure, the sub-J is the $ map for the signal delay on the data, line and boundary data lines. U a 16 1352958 In the figure, G represents a scanning signal of a scanning line, w. The original signal waveform is sent from the output pin ρι, and the signal waveform will be transmitted through the data line 〇2 and driven by the corresponding scan lines to be received by the corresponding pixels of the line. However, as mentioned above, due to the parasitic capacitance effect on the data line h, the RC delay phenomenon occurs when the signal is transmitted to the end of the data line, so that the signal waveform received by the pixel at the end of the corresponding pixel line is deformed. If w·, the effective charging time of the element will be shortened to Tu. Similarly, in Fig. 11b, Wfl is an original signal waveform of φ from the output pin p2. However, since the total value of the parasitic capacitance connected to the output pin P2 is larger than that of other output pins, the RC delay effect will be It is more serious than other data lines, so the signal waveform L received by the terminal element is lost; the true degree (degree of deformation) will be worse than that in the Ua diagram, and its effective charging time T. 2 will be shorter than Τ ει, resulting in insufficient charging of the sputum, 'and affect the display quality. In order to solve the problem of the delay of the data line signal as in the lib diagram, the present invention is based on the structure of the embodiment of Fig. 5, which is further improved, as shown in Fig. 12. Figure 12 is a second embodiment of the present invention, the majority of which is the same as in Figure 5, and the same elements are denoted by the same reference numerals, except that the difference is in the pixel matrix area in Fig. 12. Each of the leftmost ith pixel rows is incremented by 6 additional auxiliary lines L, and the auxiliary line 1 is located between the boundary data line and the thin film transistor Tz adjacent to the boundary data line. Preferably, the auxiliary, the spring L system is in the boundary between the impurity line and its adjacent halogen electrode or control electrode 34 ^, and its structure is not intended to be as shown in the figure j3. The first part of the structure of the elementary structure in the 昼素仃, however, it should be noted that the structure of the second element of the figure 2 is not limited to the figure shown in Figure 3, and any circuit with the second dynasty is 17 1352958. The effect of the pixel structure is suitable in Figure 13, in the first pixel structure of the pixel structure, the auxiliary 蟑τΑ ^ W subscription line L is located in the boundary data line (D〇 and - painting pole 3 3 and Preferably, the ^' land' auxiliary line L is substantially parallel to the pixel electrode 33 and the control Thunder w city J pole 34. The auxiliary line L· can be a floating green red Knocking a time-varying signal or a non-time-varying signal, .", /S even a message, where the non-time-changing signal can be a pole
性為正之訊號,例如,辅肋始I 位。 補助線L可以直接連接-共同電極電 同理’第12圖之晝素结槿, 一 w …°異在面板進行顯示操作時,輔 助線L·與晝素電極33間_ ,*» '生—寄生電容Ο以及與控制電 極34間產生一寄生電究p 2如第14圖所示。藉由輔助線L - 之設計’將可避免邊界資料錄伽+主 線/、旦素電極3 3和控制電極3 4 .間分別產生寄生電容,亦即,邊界資料線將不㈣接寄生電 -和CP進而大幅降低邊界資料線之電容負載。然而,如 第14圖所示,若辅助線l盥邊™ '、透界責枓線間之間隔過小,亦將 會使輔助線L與邊界資料線問 针踝間另產生一寄生電容Ο (如圖虛 鲁 線所示)’而該電容C3亦將伟;}日,真田一 ’起仔邊界育料線之電容負载增加, 最後終究無法改善邊界眘粗給— 介貝枓線之RC負載過大之問題。因此, 在設計時輔助線L與邊界眘祖的 、運介貝枓線間之間距應至少維持一適當 距離d(如第14圖所示),擗备hi , 避免d過小,較佳地,d之選擇係 使得C3之電容值遠小於(^愈广 π U興C2之電容值為原則。 如前所述,由於邊界資料線與輔助線L間維持一適當之 間距d,使得邊界資料後盘姑Λ 十,杲只辅助線L間之寄生電容(^與〇和 C2相較下可以忽略不計。卜私 比1又弟14圖與第1〇圖可知,第14 圖之邊界資料線並無耦接如第]η固中 仍恢如弟10圖之寄生電容(^與C2,因 18 1352958 此將大幅降低輸出腳p2之傳導線路的電容負裁進而大幅改 善如第爪圖之訊號延遲問題。由第14圖亦知,輔助線L 之設計具有下列兩項主要功能:⑴.將邊界資料線與其相鄰 之畫素電極和控制電極隔離開來’使得邊界資料線虚晝素電 ,極和控制電極間不致產生寄生電容,進而改善輸出腳 P3訊號傳輸之RC延遲問題(2)•藉由辅助線L之設置,使得辅 助線L與其相鄰之畫素電極33和控制電極%間能分別產生 籲-耦合電容。和C2’而使第!條畫素行内之左右兩側之寄生 電容效應對稱,避免造成該畫素行與其它畫素行之亮度不 均’而影響畫面之顯示品質。然而,在另一實施例中,為求 :設計^單並改善訊號Μ延遲之問題,畫素面板之設計亦可 •…、u如帛12圖之輔助 '線L而^堇將邊界資料線與畫素電極 以及控制電極之間距拉A,使得邊界資料線與畫素電極以及 控制電極間不致產生寄生電容或僅產生微小之寄生電容,如 此亦能改善队延遲之問題。不過,誠如前述,如此之設計由 ® ;、乏輔助線L,其將使晝素電極之左右兩側電容無法對 知,進而影響到顯示品f。同理,如前所述,在另_實施例 中右疋義資料線DnH為邊界資料線,則亦可仿照上述第二 μ知例之實施方式’於第9圖之面板之帛η + ι條晝素行上增 叹—輔助線L,而得如第15圖所示之設計。 在第1 2圖之實施例中,整個nXm畫素矩陣區6〇〇亦可定 義為面板之顯不區。然而如第二實施例中所述,由於邊界資 斗I >、輔助線L間之間距須維持一適當之距離d,因此,在 另實施例中,我們可將邊界資料線直接設置於面板之顯示 19 1352958 區外,稭此拉大 _ ,味興補助線间I此離,如第 圖所示。第16圖係為本發明楚 ^ 月之弟三實施例,其令,虛線之部 分表不整個面板之顯示區s, 而邊界資料線係設置於顯示區S 之外。在第16圖中,整個書+# # 患素矩陣依然係由n + 1條資料 ㈣條掃指線所構成之咖畫素矩陣,其t第i條書素行; 分割為兩個次畫素行,分別為寬幅為CU之-第-次書辛行盘 寬幅為d2之一第二次晝素行。 —京仃與 仃第—次畫素行係位於顯示區sSexuality is a positive signal, for example, the auxiliary rib starts at the I position. The auxiliary line L can be directly connected - the common electrode is the same as the morpheme of the 12th figure, when the display operation is performed on the panel, the auxiliary line L· and the halogen electrode 33 are _ , *» ' - Parasitic capacitance Ο and a parasitic voltage between the control electrode 34 and p 2 are as shown in Fig. 14. By the design of the auxiliary line L - ', it is possible to avoid the parasitic capacitance between the boundary data recording gamma + main line /, the denier electrode 3 3 and the control electrode 3 4 , that is, the boundary data line will not be connected to the parasitic electric power - And CP further greatly reduces the capacitive load of the boundary data line. However, as shown in Fig. 14, if the interval between the auxiliary line l'TM' and the through-line line is too small, a parasitic capacitance Ο will be generated between the auxiliary line L and the boundary data line. As shown in the phantom line) 'and the capacitor C3 will also be wei;}, the capacitance load of the real field of the sacred boundary line of the sacred field is increased, and finally, the boundary cannot be improved, and the RC load of the 介 枓 line is given. Too big a problem. Therefore, at the time of design, the distance between the auxiliary line L and the border of the ancestors and the sacred line should be maintained at least an appropriate distance d (as shown in Fig. 14), and hi is prepared to avoid d being too small, preferably, The choice of d is such that the capacitance value of C3 is much smaller than that of (^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^盘Λ Λ 10, 杲 only the auxiliary line L parasitic capacitance (^ and 〇 and C2 can be neglected. Bu private ratio 1 and brother 14 map and the first map can be seen, the boundary data line of Figure 14 and Uncoupling, as in the case of the first], still recovers the parasitic capacitance of the 10th figure (^ and C2, because 18 1352958 will greatly reduce the capacitance of the output line of the output pin p2, and thus greatly improve the signal delay as in the claw diagram Question. It is also known from Figure 14 that the design of the auxiliary line L has the following two main functions: (1) Separating the boundary data line from its adjacent pixel electrode and control electrode to make the boundary data line imaginary, No parasitic capacitance is generated between the pole and the control electrode, thereby improving the output pin P3 RC delay problem of transmission (2) • By the setting of the auxiliary line L, the auxiliary line L and its adjacent pixel electrode 33 and the control electrode % can respectively generate a snap-coupling capacitance, and C2' to make the ... The parasitic capacitance effect on the left and right sides of the pixel line is symmetrical, so as to avoid the brightness unevenness of the pixel line and other pixel lines, which affects the display quality of the picture. However, in another embodiment, in order to design: To improve the delay of the signal, the design of the pixel panel can also be...., u, as shown in Figure 12, the auxiliary line 'L' and the distance between the boundary data line and the pixel electrode and the control electrode are pulled A, so that the boundary data line It does not cause parasitic capacitance or only tiny parasitic capacitance between the pixel electrode and the control electrode, which can also improve the delay of the team. However, as mentioned above, the design is made of ®; and the auxiliary line L, which will make The capacitances on the left and right sides of the halogen electrode are not known, which affects the display product f. Similarly, as described above, in the other embodiment, the right data line DnH is the boundary data line, and the same can be said. Two μ know the truth The method of applying 'in the 帛 + + ι 昼 行 — — 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助 辅助The matrix area 6〇〇 can also be defined as a display area of the panel. However, as described in the second embodiment, since the boundary between the boundary line I > and the auxiliary line L must be maintained at an appropriate distance d, therefore, In another embodiment, we can directly set the boundary data line outside the display area of the panel 19 1352958, and the straw is widened _, and the taste line of the Xianxing auxiliary line is as shown in the figure. Figure 16 is the present invention. The third embodiment of the Chu ^ month brother, in which the dotted line portion does not represent the display area s of the entire panel, and the boundary data line is disposed outside the display area S. In Fig. 16, the entire book +# # 素 素 matrix is still a coffee pixel matrix composed of n + 1 data (four) sweeping lines, which is the tth ith book line; divided into two sub-picture lines , the width of the CU - the first - book Xin disk width is one of the second d2 lines. - Gyeonggi and 仃第-次画素行系 are located in the display area s
内’並包含一畫素電極33盥押制 控制電極34用以顯示書辛.而 第二次畫素行位於顯示區s外 —", ^ ^ _ 卜其中’輔助線L係位於第一 -人旦素行内。然而,在另一會 叮 例中,輔助線L·與邊界資料 線亦可皆設於第二次晝素行内, —、丁内亦即,輔助線L與邊界資料 線皆位於顯示區S外。在另一麻Α 、’ ^ ^ 只苑例中,如第16圖所示,第 -:人旦素行係為由輔助線L與資料、"2所界定之區域,而第 -次畫素行為辅助線L與邊界資料線所界定之區域,即,敕 顯不區S係為輔助線L與資料線IW斤界定之區域。正 較佳地,在第16圖之實施例中, a ^ d1 ^ ^ . 第—次畫素行之寬幅 -、第一-人畫素行之寬幅d2 A j日楚 办A_ . 見恍為相寻,且等於其他畫素行之 見幅’如此之畫素區佈局,將全 程之朵置ρ足- 里素Q之尺寸規格及畫素製 輔 9力a柱之合易度,且因邊界資料線與 =之距離至少保持—個晝素行之寬幅,而使邊界資料 二二旦素電極和控制電極間不致產生寄生電容。另外,在另 貫施例中,第16圖中之第女士备 ^ _ 口甲之矛人里素仃内之第二電晶體τ2 亦可没置於第二次全去> 出,介Β 17 _ |素仃中亦即設置於顯示區S外,如第 所示。同理’如前所述’若定義資料線^為邊界資料 20 1352958 線則亦可仿照上述第三實施例之實施方式,而得如第} 8 圖所示之設計。 如上所述,本發明之特徵與優點在於,其提供一種液晶 顯示面板,具有一畫素矩陣,其内部資料線之總數大於畫素 行之總數,且其可在未改變傳統之源極驅動器之結構下來操 作面板畫素’亦即其資料線所需之資料訊號可全由傳統之源 極驅動器所提供,因此不需再重新設計—新的驅動器與之匹 配同吋本發明也同時提出一解決可能存在之訊號延遲之問 題及寄生電容不對稱而致顯示品質不佳之方法。然而,本發 明之設計並非僅限於應用於如第6圖所示之晝素結構,其亦 可應用於任何具有如下之晝素結構特徵之面板:(丨)具有η 個畫素行及m個晝素列之畫素矩陣區,其中複數個晝素形成 於該畫素矩陣區内之n + 1條資料線和mH條掃描線之交叉處 (2)每一畫素單元至少包含兩個電晶體及一晝素電極,且每一 晝素單元係藉由其左右兩側之資料線所提供之訊號控制之。 因此,誠如上述(1)(2)兩點之畫素結構特徵,本發明亦可應 用於如第2圖所示之具有三個薄膜電晶體之晝素面板。 本發明技術内容及技術特點已揭示如上,然而熟悉本項 技術之人士仍可能基於本發明之教示及揭示而作各種^背離 本發明精神之替換及修飾。因此,本發明之保護範圍應不限 於實施例所揭示者,而應包括各種不背離本發明之替換及修 飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 第1圖係習知對角扭轉垂直排列之液晶顯示面板之剖面 視圖; 21 1352958 第2圖係韓國三星電子所提出之畫素等效電路圖; 第3圖係本發明之液晶顯示面板之像素等效電路圖; 第4圓係本發明液晶顯示面板之畫素矩陣圖; 第5圖係本發明第一實施例液晶顯示面板之畫素矩陣会士 構及源極驅動器之示意圖; 第6圖係根據第5圖之畫素單元示意圖; 第7圖係作用於第6圖之晝素之驅動訊號波形圖; • 第8圖係根據本發明第一實施例之另一實施例之液晶顯 示面板示意圖; 第9圖係根據本發明第一實施例之另一實施例之液晶顯 示面板; ' 第1 〇圖係顯示第5圖液晶顯示面板於操作過程中所產生 • 之寄生電容示意圖; 第1 1圖係顯7F第1 0圖液晶顯示面板於操作過程中所產 生之訊號延遲現象示意圖; • 第12圖係本發明第二實施例之液晶顯示面板示意圖; 第13圖係根據第12圖之晝素單元之一結構示意圖; 第14圖係顯示第12圖液晶顯示面板於操作過程中所產 生之寄生電容示意圖; 第15圖係根據本發明第二實施例之另一實施例示意圖; 第16圖係本發明第三實施例之液晶顯示面板示意圖: 第17圖係根據本發明第三實施例之另一實施例示意 圖;及 第18圖係根據本發明第三實施例之另一實施例示意圊 22 1352958 【主要元件符號說明】Inside 'and contains a pixel electrode 33 盥 control electrode 34 for displaying the book Xin. And the second pixel line is outside the display area s -", ^ ^ _ 卜 where the 'auxiliary line L is at the first - People are in the line. However, in another example, the auxiliary line L· and the boundary data line may also be located in the second pixel line, wherein the auxiliary line L and the boundary data line are located outside the display area S. . In another case of paralysis, ' ^ ^ only court, as shown in Figure 16, the -: human line is the area defined by the auxiliary line L and the data, "2, and the first-order pixel The area defined by the behavior auxiliary line L and the boundary data line, that is, the area where the S line is defined by the auxiliary line L and the data line IW. Preferably, in the embodiment of Fig. 16, a ^ d1 ^ ^ . The width of the first pixel line - the width of the first - person pixel line d2 A j day Chu A_. See Looking for, and equal to the other pixels of the line of view, the layout of the picture area, the whole process of the ρ foot - the size specifications of the lysin Q and the photographic element auxiliary 9 force a column of the ease, and because of the boundary The distance between the data line and the = is kept at least as wide as the width of the element, so that no parasitic capacitance is generated between the boundary data and the control electrode. In addition, in the other example, the second transistor τ2 in the maiden 仃 里 里 第 第 第 第 第 第 第 第 亦可 亦可 亦可 第二 第二 第二 第二 第二 第二17 _ | is also placed outside the display area S, as shown. Similarly, if the definition data line is defined as the boundary data 20 1352958 line, the design of the third embodiment can be modeled as shown in the figure. As described above, the present invention is characterized in that it provides a liquid crystal display panel having a pixel matrix whose total number of internal data lines is larger than the total number of pixel lines, and which can be used without changing the structure of the conventional source driver. Down the operation panel pixel's data signal required for its data line can be provided by the traditional source driver, so there is no need to redesign - the new driver matches it. The invention also proposes a solution The problem of signal delay and the asymmetry of parasitic capacitance result in poor display quality. However, the design of the present invention is not limited to the application to the halogen structure as shown in Fig. 6, but it can also be applied to any panel having the following structural features: (丨) having n pixel rows and m 昼a pixel matrix region of the prime column, wherein a plurality of pixels are formed at intersections of n + 1 data lines and mH scanning lines in the pixel matrix region (2) each pixel unit includes at least two transistors And a halogen electrode, and each of the pixel units is controlled by signals provided by the data lines on the left and right sides thereof. Therefore, the present invention can also be applied to a pixel panel having three thin film transistors as shown in Fig. 2, as in the pixel structure characteristics of the above two points (1) and (2). The technical contents and technical features of the present invention have been disclosed as above, but those skilled in the art can still make various substitutions and modifications of the present invention based on the teachings and disclosures of the present invention. Therefore, the scope of the invention should be construed as being limited by the scope of the invention, and the invention is intended to BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of a conventional liquid crystal display panel with diagonally twisted vertical alignment; 21 1352958 Fig. 2 is a pixel equivalent circuit diagram proposed by Samsung Electronics, Korea; Fig. 3 is a diagram of the present invention A pixel equivalent circuit diagram of a liquid crystal display panel; a fourth circle is a pixel matrix diagram of the liquid crystal display panel of the present invention; and FIG. 5 is a schematic diagram of a pixel matrix structure and a source driver of the liquid crystal display panel of the first embodiment of the present invention; 6 is a schematic diagram of a pixel unit according to FIG. 5; FIG. 7 is a driving signal waveform diagram of a pixel acting on FIG. 6; FIG. 8 is another embodiment according to the first embodiment of the present invention; A schematic diagram of a liquid crystal display panel; FIG. 9 is a liquid crystal display panel according to another embodiment of the first embodiment of the present invention; 'The first diagram shows the parasitic capacitance generated by the liquid crystal display panel of FIG. 5 during operation. FIG. 1 is a schematic diagram showing a signal delay phenomenon generated during operation of a liquid crystal display panel according to FIG. 1; FIG. 12 is a schematic diagram of a liquid crystal display panel according to a second embodiment of the present invention; Figure 13 is a schematic view showing the structure of a pixel unit according to Fig. 12; Figure 14 is a schematic diagram showing the parasitic capacitance generated during operation of the liquid crystal display panel of Fig. 12; Fig. 15 is a second embodiment of the present invention BRIEF DESCRIPTION OF THE DRAWINGS FIG. 16 is a schematic view of a liquid crystal display panel according to a third embodiment of the present invention: FIG. 17 is a schematic view showing another embodiment of a third embodiment of the present invention; and FIG. 18 is a diagram according to the present invention. Another embodiment of the third embodiment is shown in FIG. 22 1352958 [Description of main component symbols]
10 液晶顯不面板 11 彩色濾光片 111 ' 131 透明基板 112 共同電極 12 液晶層 121 液晶分子 13 主動基板 132 絕緣層 133 控制電極 134 晝素電極 20 晝素 ΊΥ ’ 第一電晶體 TV, 第二電晶體 C/, 液晶電容 c2’, 對角扭轉電容 CV ’ 電容 24 畫素電極 251 、252 掃描線 261 、262 資料線 27 共同電極 T. 第一薄膜電晶體 T2 第二薄膜電晶體 C. 液晶電谷 C2 對角扭轉電容 〇3 電容 33 畫素電極 34 控制電極 351 、352、353 資料線 361 、362、363 掃描線 37 共同電極 D l〜 D η + 1育料線 G1 ~ G m +1掃描線 400 晝素矩陣 P.~ Pnn輸出腳 c連接處 500 畫素矩陣 501 液晶顯承面板 551. ~554資料線 561- -5 6 3掃描線 B、1 )晝素單元 Vi)2 〜 VD3貧料訊號電位 VG2 ~ V G 3掃描訊號電位 V c o m 共同電極電位 TcE J 驅動時間 23 135295810 LCD display panel 11 color filter 111 '131 transparent substrate 112 common electrode 12 liquid crystal layer 121 liquid crystal molecule 13 active substrate 132 insulating layer 133 control electrode 134 halogen electrode 20 昼素ΊΥ 'first transistor TV, second Transistor C/, Liquid crystal capacitor c2', Diagonal torsion capacitance CV' Capacitor 24 Pixel electrode 251, 252 Scan line 261, 262 Data line 27 Common electrode T. First thin film transistor T2 Second thin film transistor C. Liquid crystal Electric valley C2 diagonal torsion capacitance 〇3 capacitance 33 pixel electrode 34 control electrode 351, 352, 353 data line 361, 362, 363 scanning line 37 common electrode D l~ D η + 1 breeding line G1 ~ G m +1 Scan line 400 pixel matrix P.~ Pnn output pin c connection 500 pixel matrix 501 LCD display panel 551. ~554 data line 561- -5 6 3 scan line B, 1) halogen unit Vi) 2 ~ VD3 Lean signal potential VG2 ~ VG 3 scan signal potential V com common electrode potential TcE J drive time 23 1352958
Tp驅動時間 VCE控制電極電位 600晝素矩陣 F連接處 W 〇原始訊號波形 W-延遲訊號波形 700畫素矩陣 d、cl·、d2間隔距離 S顯示區 VP晝素電極電位 E連接處 6 0 1液晶顯示面板 Cl~ C3寄生電容 G知描訊说波形 TC1、TC2效充電時間 L輔助線 800晝素矩陣Tp driving time VCE control electrode potential 600 pixel matrix F connection W 〇 original signal waveform W-delay signal waveform 700 pixel matrix d, cl·, d2 separation distance S display area VP element electrode potential E connection 6 0 1 Liquid crystal display panel Cl~ C3 parasitic capacitance G knows the waveform TC1, TC2 effect charging time L auxiliary line 800 pixel matrix
24twenty four
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95145372A TWI352958B (en) | 2006-12-05 | 2006-12-05 | Liquid crystal display panel and the driving metho |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95145372A TWI352958B (en) | 2006-12-05 | 2006-12-05 | Liquid crystal display panel and the driving metho |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200826031A TW200826031A (en) | 2008-06-16 |
TWI352958B true TWI352958B (en) | 2011-11-21 |
Family
ID=44772266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95145372A TWI352958B (en) | 2006-12-05 | 2006-12-05 | Liquid crystal display panel and the driving metho |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI352958B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI753482B (en) * | 2019-08-20 | 2022-01-21 | 友達光電股份有限公司 | Dsiplay panel |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI398713B (en) * | 2009-10-08 | 2013-06-11 | Au Optronics Corp | Array substrate and flat display device |
TWI599830B (en) * | 2016-05-09 | 2017-09-21 | 友達光電股份有限公司 | Pixel array and display device |
-
2006
- 2006-12-05 TW TW95145372A patent/TWI352958B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI753482B (en) * | 2019-08-20 | 2022-01-21 | 友達光電股份有限公司 | Dsiplay panel |
Also Published As
Publication number | Publication date |
---|---|
TW200826031A (en) | 2008-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10282042B2 (en) | Method and apparatus for reducing pin count in in-cell touch display driver IC | |
JP3924485B2 (en) | Method for driving liquid crystal display device and liquid crystal display device | |
TWI396027B (en) | Liquid crystal display | |
KR101374935B1 (en) | Liquid crystal display reordered inversion | |
JP5322377B2 (en) | Liquid crystal display device and driving method thereof | |
US20070120798A1 (en) | Liquid crystal display panel and driving method for liquid crystal display panel | |
KR101230301B1 (en) | Liquid crystal display and driving method thereof | |
CN101978504A (en) | Tft, shift register, scanning signal line drive circuit, and display | |
JPWO2007105700A1 (en) | Active matrix substrate and display device using the same | |
CN107077035A (en) | Active matrix substrate and display panel | |
EP1561149A2 (en) | Liquid crystal display and driving method thereof | |
TW200805228A (en) | Liquid crystal display | |
TW201101279A (en) | Liquid crystal display panel and pixel driving method thereof | |
TW201430802A (en) | Pixel unit and pixel array | |
CN107885001A (en) | Display panel and the Rimless escope including the display panel | |
TW200914968A (en) | Liquid crystal display device | |
TWI352958B (en) | Liquid crystal display panel and the driving metho | |
TWI596403B (en) | Array substrate and display panel | |
TW200813541A (en) | Liquid crystal display | |
CN100472302C (en) | Alternative thin film transistors for liquid crystal displays | |
JP2006251322A (en) | Liquid crystal display device and electronic information apparatus | |
TW201227661A (en) | Display panel, pixel circuit and driving method of voltage driving device therein | |
WO2011048872A1 (en) | Liquid crystal display device circuit, liquid crystal display device board, and liquid crystal display device | |
TWI281065B (en) | Multi-domain vertically alignment (MVA) LCD and Method for compensating color shifting | |
TW201205157A (en) | Liquid crystal display panel |