TWI352238B - Pixel structure and manufacturing method of liquid - Google Patents

Pixel structure and manufacturing method of liquid Download PDF

Info

Publication number
TWI352238B
TWI352238B TW99125396A TW99125396A TWI352238B TW I352238 B TWI352238 B TW I352238B TW 99125396 A TW99125396 A TW 99125396A TW 99125396 A TW99125396 A TW 99125396A TW I352238 B TWI352238 B TW I352238B
Authority
TW
Taiwan
Prior art keywords
electrode
pattern
halogen
liquid crystal
lower electrode
Prior art date
Application number
TW99125396A
Other languages
Chinese (zh)
Other versions
TW201115226A (en
Inventor
Chieh Wei Chen
Cheng Han Tsao
Jenn Jia Su
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW99125396A priority Critical patent/TWI352238B/en
Publication of TW201115226A publication Critical patent/TW201115226A/en
Application granted granted Critical
Publication of TWI352238B publication Critical patent/TWI352238B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

AU0708017-1 25784-Itwf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種畫素結構及具有此畫素結構之 液晶顯示面板的製造方法’且特別是有關於一種可使液晶 分子呈現多域配向(multi-domain alignment)排列的晝素結 構及具有此晝素結構之液晶顯示面板的製造方法。 【先前技術】 市場對於液晶顯示面板的性能要求是朝向高對比 (high contrast ratio)、無灰階反轉(no gray scale inversi〇n)、 色偏小(little color shift)、亮度高(high luminance)、高色彩 豐富度、高色彩飽和度、快速反應與廣視角等特性^目前, 月色夠達成廣視角要求的技術有扭轉向列型(twist nematic, TN)液晶加上廣視角膜(wide viewing film)、共平面切換型 (in-plane switching,IPS)液晶顯示面板、邊際場切換型 (fringe field switching)液晶顯示面板、多域垂直配向型 (multi-domain vertically alignment ’ MVA)液晶顯示面板等 方式。 習知之多域垂直配向式液晶顯示面板是利用配向結 構(alignment structure)的配置以令不同區域内的液晶分子 以不同角度傾倒’而達到廣視角的功效。配向結構包括有 配向凸塊(alignment protrusion)以及設置於電極上的配向 狹縫(alignment slit)。然而,配向凸塊與配向狹縫周邊液晶 分子的傾倒方向往往不明確(disclination),而造成漏光的情 1352238 AU0708017-1 25784-1twf.doc/n 形’進一步使得液晶顯示面板的顯示對比降低。若為了遮 蔽漏光的情形而配置對應於配向凸塊或配向狭缝的遮光 層’又會使顯示開口率受到限制。因此,一種聚合物穩定 配向(Polymer-stablized alignment, PSA)以形成多領域配向 的配向方式被提出’以改善多域垂直配向式液晶顯示面板 顯示對比不佳的問題。 聚合物穩定配向製程須先將反應性單體摻雜於液晶 層中’並施與液晶層特定的電壓。在此電壓下以一光線或 熱源照射液晶層,則反應性單體會聚合並固化,以於液晶 層兩側的基板上同時形成穩定層(stabilizing layer)。其中, 穩定層的分子會呈現特定的排列方式,有助於使液晶分子 以不同的方向傾倒與排列,而達到廣視角顯示效果。由於, 穩定層的配置不會使液晶顯示面板發生漏光的現象,因而 有助於提高液晶顯示面板的顯示對比。可惜的是,聚合物 穩定配向的製程過程中往往會產生一些缺陷,而使部份液 晶分子的倒向不符合理想,因此仍有進一步改善的需要。 【發明内容】 本發明是提供一種畫素結構,以解決習知之聚合物穩 定配向式晝素結構之液晶分子排列不符合理想的問題。 本發明另提供一種液晶顯示面板的製造方法,以製造 液晶分子排列方向符合理想的多域配向式液晶顯示面板。 本發明提出一種電性連接一掃描線以及一資料線的 晝素結構,其包括第一主動元件、第二主動元件、電性連 4 1352238 AU0708017-1 25784-ltwf.doc/nAU0708017-1 25784-Itwf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a pixel structure and a method of fabricating a liquid crystal display panel having the same, and is particularly relevant A halogen structure capable of exhibiting a multi-domain alignment of liquid crystal molecules and a method of manufacturing a liquid crystal display panel having the same. [Prior Art] The market performance requirements for liquid crystal display panels are toward high contrast ratio, no gray scale inversi〇n, little color shift, and high luminance. ), high color richness, high color saturation, fast response and wide viewing angle. ^At present, the technology that meets the wide viewing angle requirements of moonlight is twist nematic (TN) liquid crystal plus wide viewing angle film (wide) Viewing film), in-plane switching (IPS) liquid crystal display panel, fringe field switching liquid crystal display panel, multi-domain vertical alignment 'MVA' liquid crystal display panel Waiting for the way. The conventional multi-domain vertical alignment type liquid crystal display panel is configured to utilize a configuration of an alignment structure to cause liquid crystal molecules in different regions to be tilted at different angles to achieve a wide viewing angle. The alignment structure includes an alignment protrusion and an alignment slit disposed on the electrode. However, the direction in which the alignment molecules and the liquid crystal molecules around the alignment slit are tilted is often discriminated, and the light leakage causes the display contrast of the liquid crystal display panel to be further lowered. If the light shielding layer corresponding to the alignment bump or the alignment slit is disposed in order to shield the light leakage, the display aperture ratio is limited. Therefore, a polymer-stablized alignment (PSA) to form a multi-domain alignment is proposed to improve the poor display of multi-domain vertical alignment liquid crystal display panels. The polymer stable alignment process requires first doping the reactive monomer into the liquid crystal layer and applying a specific voltage to the liquid crystal layer. When the liquid crystal layer is irradiated with a light or a heat source at this voltage, the reactive monomer is polymerized and solidified to simultaneously form a stabilizing layer on the substrates on both sides of the liquid crystal layer. Among them, the molecules of the stabilizing layer will exhibit a specific arrangement, which helps to tilt and align the liquid crystal molecules in different directions to achieve a wide viewing angle display effect. Since the configuration of the stable layer does not cause light leakage of the liquid crystal display panel, it contributes to improvement of display contrast of the liquid crystal display panel. It is a pity that the process of polymer stabilization and alignment tends to cause some defects, and the reverse of some liquid crystal molecules is not ideal, so there is still a need for further improvement. SUMMARY OF THE INVENTION The present invention is directed to a pixel structure for solving the problem that the alignment of liquid crystal molecules of a conventional polymer-stabilized aligned halogen structure is not satisfactory. The present invention further provides a method of fabricating a liquid crystal display panel to produce a multi-domain alignment type liquid crystal display panel in which liquid crystal molecules are aligned in an ideal direction. The present invention provides a halogen structure electrically connected to a scan line and a data line, comprising a first active element, a second active element, and an electrical connection. 4 1352238 AU0708017-1 25784-ltwf.doc/n

接第一主動元件的第一畫素電極、電性連接第二主動元件 的第二晝素電極及第一電容下電極。第一主動元件與第二 主動元件皆電性連接掃描線以及資料線。第一晝素電極具 有一第一交又圖案以及與第一交叉圖案連接的多組第一^ 紋圖案。第二晝素電極具有一第二交又圖案以及與第二交 叉圖案連接的多組第二條紋圖案。第一電容下電極位於第 一交又圖案下方並包括一第一區域以及多個第二區域。第 一晝素電極大體遮蔽第一區域且不遮蔽多個第二區域。第 一區域與多個第二區域的面積比約為1〇:1〜3〇〇:1,較佳約 第一區域係不 在本發明之一實施例中,上述之至少一 與資料線重疊。 在本發明之一實施例中,在垂直第一電容下電極之延 伸方向上,上述之第一區域的一寬度與第二區域的一 之比例約為1.01:1〜50:1。 又The first pixel electrode of the first active component is connected to the second pixel electrode of the second active component and the first capacitor lower electrode. The first active component and the second active component are electrically connected to the scan line and the data line. The first halogen electrode has a first intersection pattern and a plurality of sets of first pattern patterns connected to the first intersection pattern. The second halogen electrode has a second intersection pattern and a plurality of sets of second stripe patterns connected to the second intersection pattern. The first capacitor lower electrode is located below the first intersection pattern and includes a first region and a plurality of second regions. The first halogen electrode substantially shields the first region and does not shield the plurality of second regions. The area ratio of the first area to the plurality of second areas is about 1 〇: 1 〜 3 〇〇: 1, preferably about the first area. In one embodiment of the invention, at least one of the above overlaps with the data line. In an embodiment of the invention, the ratio of a width of the first region to a portion of the second region is about 1.01:1 to 50:1 in the extending direction of the vertical first capacitor lower electrode. also

在本發明之一實施例中,畫素結構更包括一第一電容 上電極以及一絕緣層。第一電容上電極位於第一晝素電= 與第一電容下電極之間,而絕緣層位於第一電容;電極以 及第一電容上電極之間。此外,第一電容上電極例如具= 一第一開口。第一開口可以是位於第一交又圖案之中/、、、 暴露出位於第一電容下電極上方之部分絕緣層。進一$= 言’畫素結構更包括位在第一畫素電極以及第一電容上= 極之間的介電層,其中第一晝素電極更具有一第一 -广 g ' 口, 而第一開口的位置至少重疊於第一開口。另外,给 昂二開口 5 1352238 AU0708017-1 25784-ltwf.doc/n 例如是大於第一開口。 在本發明之一實施例中,晝素結構更包括一介電層, 位在第一晝素電極以及第一電容下電極之間,第一晝素電 極更具有一第二開口以暴露出位於第一區域上方之部分介 電層。 在本發明之一實施例中,上述之第一晝素電極更具有 多個細狹縫,位於第一交又圖案以及第一條紋圖案之間且 細狹縫之一端連接第一交又圖案而細狹缝之另一端遠離第 一交又圖案。 在本發明之一實施例中,晝素結構更包括一第二電容 下電極,位於第二交叉圖案下方。另外,晝素結構可以更 包括-第二電容上電^ ’位於第二晝素電極以及第二電容 下電極之間。 在本發明之-實施例中,上述之第二晝素電極具有多 個細狹縫,位於第二交叉_以及第二條_案之間且細 狹縫之-端連接第二交叉圖案而細狹縫之另—端遠離第二 交又圖案。 本發明再提出-種晝素結構,其電性連 及一資料線。此晝素結構包括第—主動元件、第二主^ ^電性連接第-主動元件的第一晝素電極、電性連 2動元件的第二畫素電極、第一電容下電極、絕緣層以 及”電層。第-主動元件與第二主動元件皆 線以及資料線。第-畫*雷搞且*帛a 接婦^ 貝观#畺素電極具有一第一交又圖案以及盘 第一父又圖案連接的多組第一條紋圖案, ^ AU07080I7-1 25784-Itw£doc/n 具有第二交又圖案以及與第二交又圖案連接的多組第二條 紋圖案。第一電容下電極位於第一交叉圖案下方。第一電 容上電極位於第一畫素電極以及第一電容下電極之間。絕 緣層位於第一電容下電極以及第一電容上電極之間。介電 層位於第一電容上電極以及第一畫素電極之間,其中第一 電谷上電極具有一第一開口’位於第一交叉圖案之中心以 暴露出位於第一電容下電極上方之部分絕緣層。 在本發明之一實施例中,上述之第一晝素電極更具有 一第二開口 ’第二開口的位置至少重疊於第一開口。此外, 第一開口例如是大於第一開口。 在本發明之一實施例中,上述之第一畫素電極更具有 多個細狹縫,位於第一交叉圖案以及第一條紋圖案之間。 細狹縫之一端連接第一交叉圖案而細狹縫之另一端遠離第 一交叉圖案》 在本發明之一實施例中,晝素結構更包括位於第二交 又圖案下方的第二電容下電極》此外,晝素結構可更 一第二電容上電極,位於第二電容下電極以及第二全 極之間。 在本發明之一實施例中,上述之第二晝素電極且 個細狹縫,位於第二交叉圖案以及第二條紋圖案之^且f 狹縫之一端連接第二交叉圖案而細狹縫之另一端二肩 交叉圖案。 、離第二 本發明又提出一種晝素結構,其電性連接一 及一資料線。畫素結構包括第一主動元件、第二主動=件以 1352238 AU0708017-1 25784-ltwf.doc/n 電性連接第一主動元件的第一畫素電極、電性連接第二主 動元件的第二晝素電極、第一電容下電極以及一絕緣層。 第一主動元件與第二主動元件皆電性連接掃描線以及資料 線第一畫素電極具有一第一交叉圖案以及與第一交叉圖案 連接的多組第一條紋圖案。第二晝素電極具有第二交又圖 案以及與第二交又圖案連接的多組第二條紋圖案。第一電 容下電極位於第一交叉圖案下方。絕緣層位於第一電容下 電極以及第一晝素電極之間,其中第一晝素電極更具有一 開口以暴露出位於第一電容下電極上方之部分絕緣層。 本發明更提出一種液晶顯示面板的製造方法。首先, 提供一液晶顯示面板半成品。此液晶顯示面板半成品包括 陣列基板、對向基板以及液晶層。陣列基板中包括多個如 以上實施例所述的任一種晝素結構,對向基板與陣列基板 對向設置。液晶層則位於陣列基板以及對向基板之間,且 液晶層具有複數單體。接著,在陣列基板以及對向基板之 間產生一壓差。之後,聚合單體。 在本發明之一實施例中,上述之在陣列基板以及對向 基板之間產生壓差之步驟係包括提供一接地電位於對向基 板以及提供第一電壓於第一電容下電極。上述之第一電^ 具有一正半周號以及一負半周信號而正半週訊號的峰值 與負半周信號的峰值相差10伏特至1〇〇伏特。另外,壓差 約為5伏特至50伏特。 在本發明之一實施例中,上述之聚合單體之步驟係包 括光聚合單體、熱聚合單體或上述組合。 AU0708017-1 25784-ltwf.doc/η 本發明藉著改變畫素結構中電容下電極的圖案,使得 電容下電極未被其料體層覆蓋的區域面積比例減小。因 此’本發明之畫素結構顧於聚合物穩定配向式液晶顯示 面板時,有助於改善液晶分子傾倒方向不明確的情形。另 外’本發明更可在電容下電極上方的導體層巾形成對應於 晝素電極中央,財穩絲合她向製程中使液晶 分子朝向正確的方向排列。 為讓本發明之_L述和其他目的、特徵和優點能更明顯 易懂’下文待舉較佳實施例’並配合所_式,作詳細說 明如下。 【實施方式】 圖1入與® 1B缘示為-種聚合物穩定配向式液晶顯示 面板的配向製程。首先,請參照圖1A,提供-液晶顯示面 板半成品10A。液晶顯示面板半成品1〇A包括一陣列基板 2〇、一對向基板30以及液晶層4〇。陣列基板2〇包括多個 晝素22。對向基板30上則配置有對向電極32。此外,液 晶層40包括多個液晶分子42以及多個單體,其中單體 44可以是找合單魅相是鮮合賴或是上述之組 合0 接著,請參照圖1B,在陣列基板2〇以及對向基板3〇 之間產生—璧差。詳細來說,產生此I差的方法是先提供 一接地電位於對向基板30之對向電極32,並且提供第一 電壓於晝料列22之電極層上。第_電壓舉例來說具有一 1352238 AU0708017-1 25784-ltwf.doc/nIn an embodiment of the invention, the pixel structure further includes a first capacitor upper electrode and an insulating layer. The first capacitor upper electrode is located between the first halogen source = and the first capacitor lower electrode, and the insulating layer is located between the first capacitor; the electrode and the first capacitor upper electrode. Furthermore, the first capacitive upper electrode has, for example, a first opening. The first opening may be a portion of the insulating layer located above the first junction and the pattern, exposed above the first capacitor lower electrode. Further, the pixel structure further includes a dielectric layer between the first pixel electrode and the first capacitor, wherein the first pixel electrode has a first-wide g' port, and the first The position of an opening overlaps at least the first opening. In addition, the angling opening 5 1352238 AU0708017-1 25784-ltwf.doc/n is, for example, larger than the first opening. In an embodiment of the present invention, the halogen structure further includes a dielectric layer between the first halogen electrode and the first capacitor lower electrode, and the first halogen electrode further has a second opening to expose the A portion of the dielectric layer above the first region. In an embodiment of the present invention, the first halogen electrode further has a plurality of thin slits between the first intersection pattern and the first stripe pattern and one end of the thin slit is connected to the first intersection pattern. The other end of the thin slit is away from the first intersection and the pattern. In an embodiment of the invention, the halogen structure further includes a second capacitor lower electrode located below the second cross pattern. In addition, the halogen structure may further include - the second capacitor is powered on between the second pixel electrode and the second capacitor lower electrode. In an embodiment of the invention, the second halogen electrode has a plurality of thin slits between the second cross_ and the second strip, and the end of the thin slit is connected to the second cross pattern and is thin. The other end of the slit is away from the second intersection and the pattern. The invention further proposes a species of halogen structure, which is electrically connected to a data line. The halogen structure includes a first active element, a first primary electrode electrically connected to the first active element, a second pixel electrode electrically connected to the second active element, a first capacitive lower electrode, and an insulating layer And the "electric layer. The first active component and the second active component are both line and data line. The first - painting * Lei engages and * 帛 a 接 women ^ Bei Guan # 畺 电极 electrode has a first intersection and pattern and disk first The plurality of first stripe patterns of the parent pattern are connected, ^ AU07080I7-1 25784-Itw£doc/n has a second intersection pattern and a plurality of sets of second stripe patterns connected to the second intersection pattern. The first capacitor lower electrode The first capacitor upper electrode is located between the first pixel electrode and the first capacitor lower electrode. The insulating layer is located between the first capacitor lower electrode and the first capacitor upper electrode. The dielectric layer is located at the first Between the capacitor upper electrode and the first pixel electrode, wherein the first valley upper electrode has a first opening 'located at a center of the first intersection pattern to expose a portion of the insulating layer above the first capacitor lower electrode. In one embodiment, the above The pixel electrode further has a second opening, wherein the position of the second opening overlaps at least the first opening. Further, the first opening is, for example, larger than the first opening. In an embodiment of the invention, the first pixel is The electrode further has a plurality of thin slits between the first cross pattern and the first stripe pattern. One end of the thin slit is connected to the first cross pattern and the other end of the thin slit is away from the first cross pattern. In an embodiment, the halogen structure further includes a second capacitor lower electrode located below the second intersection pattern. Further, the halogen structure may be further connected to the second capacitor upper electrode between the second capacitor lower electrode and the second full pole. In an embodiment of the present invention, the second halogen electrode and the thin slits are located at one end of the second cross pattern and the second stripe pattern, and one end of the f slit is connected to the second cross pattern and the thin slit The other end of the second shoulder cross pattern. The second invention further provides a halogen structure electrically connected to one and a data line. The pixel structure comprises a first active component and a second active component is 1352238 AU070801 7-1 25784-ltwf.doc/n is electrically connected to the first pixel electrode of the first active component, the second halogen electrode electrically connected to the second active component, the first capacitor lower electrode and an insulating layer. The active element and the second active element are electrically connected to the scan line and the data line first pixel electrode has a first cross pattern and a plurality of sets of first stripe patterns connected to the first cross pattern. The second pixel electrode has a second And a plurality of sets of second stripe patterns connected to the second cross pattern. The first capacitor lower electrode is located under the first cross pattern, and the insulating layer is located between the first capacitor lower electrode and the first halogen element, wherein The pixel electrode further has an opening to expose a portion of the insulating layer above the lower electrode of the first capacitor. The present invention further provides a method of fabricating a liquid crystal display panel. First, a liquid crystal display panel semi-finished product is provided. The liquid crystal display panel semi-finished product includes an array substrate, a counter substrate, and a liquid crystal layer. The array substrate includes a plurality of halogen structures as described in the above embodiments, and the opposite substrate and the array substrate are disposed opposite to each other. The liquid crystal layer is located between the array substrate and the opposite substrate, and the liquid crystal layer has a plurality of monomers. Next, a pressure difference is generated between the array substrate and the opposite substrate. After that, the monomers are polymerized. In one embodiment of the invention, the step of creating a voltage difference between the array substrate and the counter substrate includes providing a ground current to the opposing substrate and providing a first voltage to the first capacitor lower electrode. The first electric transistor has a positive half cycle number and a negative half cycle signal, and the peak value of the positive half cycle signal is different from the peak value of the negative half cycle signal by 10 volts to 1 volt. In addition, the pressure difference is about 5 volts to 50 volts. In an embodiment of the invention, the step of polymerizing the monomers described above comprises a photopolymerizable monomer, a thermally polymerizable monomer or a combination thereof. AU0708017-1 25784-ltwf.doc/η The invention reduces the area ratio of the area of the lower electrode of the capacitor which is not covered by the layer of the material by changing the pattern of the lower electrode of the capacitor in the pixel structure. Therefore, when the pixel structure of the present invention is applied to a polymer-stabilized alignment type liquid crystal display panel, it contributes to an improvement in the direction in which the liquid crystal molecules are tilted. In addition, the present invention can form a conductor layer above the capacitor lower electrode corresponding to the center of the halogen electrode, and the grid is aligned with the liquid crystal molecules in the correct direction. The above description of the present invention and other objects, features and advantages will be more apparent from the following description of the preferred embodiments. [Embodiment] Fig. 1 and the 1B edge are shown as an alignment process of a polymer-stabilized alignment type liquid crystal display panel. First, referring to Fig. 1A, a liquid crystal display panel blank 10A is provided. The liquid crystal display panel semi-finished product 1A includes an array substrate 2A, a pair of substrates 30, and a liquid crystal layer 4A. The array substrate 2 includes a plurality of halogens 22. The counter electrode 32 is disposed on the counter substrate 30. In addition, the liquid crystal layer 40 includes a plurality of liquid crystal molecules 42 and a plurality of cells, wherein the cells 44 may be a single-phase or a combination of the above. Next, please refer to FIG. 1B, on the array substrate 2 And a difference between the opposing substrates 3〇. In detail, the method of generating this I difference is to first provide a grounding electrode on the opposite electrode 32 of the counter substrate 30 and provide a first voltage on the electrode layer of the tantalum column 22. The first voltage has, for example, a 1352238 AU0708017-1 25784-ltwf.doc/n

Si以 信號而正半週訊號的峰值與負半 周信號的峰值相差10伏特至⑽倾。換言之,第1:X 是-交流f壓,而此找電壓的正向峰值與反 差異為10伏特至削伏特。另外,在此步驟中,陣列基板 20以及對向基板30之間的壓差約為5伏特至%伏特。此 壓差與第-電壓的關會受到液晶顯示面板⑽中儲 容與液晶電容的設計而有不_變化。—般而言,應用於 本配向製程的壓差大小約為第一電壓的4〇〜7〇%。 請繼續參照圖1B,陣列基板20以及對向基板30之 間的®差在液晶層4G中產生—電場π晶分子42將沿著 此電場方向而傾倒排列。此時,進行一固化製程(curi% process)使單體44固化,則單體44會在液晶層4〇上下兩 側形成一穩定層46。在此,固化製程例如是提供一能量% 照射於液晶層40中的單體44,以形成穩定層46,其中能 量50可以疋光能或是熱能。換言之,固化製程可以依照單 體44分子的特性,而選擇為光固化製程、熱固化製程或是 上述之組合。穩定層46形成的過程當中,液晶分子42已 經受到電場方向影響而依照特定的方式排列,因此穩定層 46也會依特定排列方式被形成。所以,完成聚合物穩定配 向製程之後,液晶分子42的排列可受到穩定層46的影響 而符合設計者的需求。也就是說,經過上述的配向製程後, 液晶分子42可以呈現多領域配向的排列方式,而有助於提 升液晶顯示面板10B的顯示顯示效果。 圖2繪示為一種應用於聚合物穩定配向式液晶顯示面 1352238 AU0708017-1 25784-1 twf.doc/n 板的晝素結構之比較例。請參照圖2,畫素結構100連接 於掃描線102與資料線104,且畫素結構100包括第一主 動元件106、第二主動元件108、第一晝素電極11〇、第二 晝素電極120、第一電容下電極130以及第二電容下電極 140。第一晝素電極110與第二畫素電極120分別電性連接 第一主動元件106與第二主動元件108。第一電容下電極 130以及第二電容下電極140分別通過第一畫素電極11〇 與第二畫素電極120的中心。第一電容下電極130可區分 為被第一晝素電極110遮蔽的第一區域132以及未被第一 晝素電極遮蔽的多個第二區域134。此外,第一晝素電極 110與第二畫素電極120分別具有多個細狹縫S。 請同時參照圖1B與圖2,將畫素結構1〇〇配置於陣 列基板20上並進行聚合物穩定配向製程。在此步驟中,第 一第壓例如是輸入於第一電容下電極130以及第二電容下 電極140。第一晝素電極110與第二晝素電極則分別與 第一電容下電極130以及第二電容下電極140間輕合而具 有一耦合電壓。此時,細狹縫S會影響液晶層4〇中的電 場’所以液晶分子42會沿著細狹縫S的方向排列,以達 到最佳的配向效果。 然而’在這樣的配向製程中’第一電容下電極13〇未 被第一晝素電極110遮蔽的這些第—區域134會盘對向電 極32間產生另一不同大小的電場’而也可能使液晶分子以 其為中心排列。如此一來,穩定層46形成的過程中,鄰近 第一電容下電極130的液晶分子42無法確實的沿著理神的 11 1352238 AU0708017-1 25784-ltwf.doc/n 方向排列,而使得畫素結構1〇〇的配向效果受到影響。特 別疋第二區域132的面積越大將使得晝素結構100的配向 效果受到影響的程度更加顯著。為了避免上述的問題產 生’本發明提出以下幾種晝素結構,然而以下實施範例僅 為舉例說明並非用以限定本發明。 【第一實施例】 圖3A為本發明第一實施例的晝素結構。請參照圖 3A ’晝素結構2〇〇包括第一主動元件2〇6、第二主動元件 208、電性連接第一主動元件2〇6的第一晝素電極21〇、電 性連接第二主動元件208的第二晝素電極220及第一電容 下電極230。第一主動元件206與第二主動元件2〇8皆電 性連接掃描線202以及資料線204。晝素結構200應用於 圖的液晶顯示面板1〇]B時,可以是將多個晝素結構2〇〇 陣列排列於陣列基板2〇上而形成晝素陣列22。 另外,第一晝素電極210具有一第一交又圖案212以 及與第一交又圖案212連接的多組第一條紋圖案214。第 二晝素電極220具有一第二交叉圖案222以及與第二交又 圖案222連接的多組第二條紋圖案224。第一電容下電極 230位於第一交又圖案212下方並包括一第一區域232以 及多個第二區域234,在本實施例中係以兩個第二區域234 為例’可視製程需求或設計者需要而形成更多個第二區域 234,並不侷限於本發明。第一晝素電極21〇遮蔽第一區域 232且未遮蔽第二區域234。 具體而言,第一晝素電極210更具有多個細狹縫S位Si is signaled and the peak of the positive half cycle signal differs from the peak of the negative half cycle signal by 10 volts to (10). In other words, the 1:X is the -AC f-voltage, and the positive peak-to-counter difference of the found voltage is 10 volts to the volt. Further, in this step, the voltage difference between the array substrate 20 and the opposite substrate 30 is about 5 volts to 100 volts. The difference between the voltage difference and the first voltage is not changed by the design of the memory and the liquid crystal capacitor in the liquid crystal display panel (10). In general, the differential pressure applied to the alignment process is about 4 〇 to 7 〇 % of the first voltage. Referring to Fig. 1B, the difference between the array substrate 20 and the counter substrate 30 is generated in the liquid crystal layer 4G - the electric field π crystal molecules 42 are arranged to be tilted along the direction of the electric field. At this time, a curing process (curi% process) is performed to cure the monomer 44, and the monomer 44 forms a stabilizing layer 46 on both upper and lower sides of the liquid crystal layer 4. Here, the curing process is, for example, providing a unit of energy 44 that is irradiated onto the liquid crystal layer 40 to form a stabilizing layer 46, wherein the energy 50 can be light or thermal. In other words, the curing process can be selected as a photocuring process, a heat curing process, or a combination thereof in accordance with the characteristics of the unit 44 molecules. During the formation of the stabilizing layer 46, the liquid crystal molecules 42 have been arranged in a specific manner due to the direction of the electric field, and thus the stabilizing layer 46 is also formed in a specific arrangement. Therefore, after the completion of the polymer stable alignment process, the alignment of the liquid crystal molecules 42 can be affected by the stabilization layer 46 to meet the designer's needs. That is to say, after the alignment process described above, the liquid crystal molecules 42 can exhibit a multi-domain alignment arrangement, which contributes to the display display effect of the liquid crystal display panel 10B. 2 is a comparative example of a halogen structure applied to a polymer stabilized alignment liquid crystal display surface 1352238 AU0708017-1 25784-1 twf.doc/n. Referring to FIG. 2, the pixel structure 100 is connected to the scan line 102 and the data line 104, and the pixel structure 100 includes a first active device 106, a second active device 108, a first halogen electrode 11A, and a second halogen electrode. 120. The first capacitor lower electrode 130 and the second capacitor lower electrode 140. The first pixel electrode 110 and the second pixel electrode 120 are electrically connected to the first active component 106 and the second active component 108, respectively. The first capacitor lower electrode 130 and the second capacitor lower electrode 140 pass through the center of the first pixel electrode 11 and the second pixel electrode 120, respectively. The first capacitor lower electrode 130 can be divided into a first region 132 that is shielded by the first halogen electrode 110 and a plurality of second regions 134 that are not shielded by the first halogen electrode. Further, the first halogen electrode 110 and the second pixel electrode 120 respectively have a plurality of thin slits S. Referring to Fig. 1B and Fig. 2, the pixel structure 1 is placed on the array substrate 20 to carry out a polymer stable alignment process. In this step, the first first voltage is input to the first capacitor lower electrode 130 and the second capacitor lower electrode 140, for example. The first halogen electrode 110 and the second halogen electrode are respectively coupled to the first capacitor lower electrode 130 and the second capacitor lower electrode 140 to have a coupling voltage. At this time, the fine slit S affects the electric field in the liquid crystal layer 4, so the liquid crystal molecules 42 are arranged in the direction of the thin slit S to achieve an optimum alignment effect. However, in such an alignment process, the first region 134 of the first capacitor lower electrode 13 that is not shielded by the first pixel electrode 110 may generate another electric field of different magnitude between the counter electrode 32, and may also cause The liquid crystal molecules are arranged centered on them. In this way, during the formation of the stabilization layer 46, the liquid crystal molecules 42 adjacent to the first capacitor lower electrode 130 cannot be exactly arranged along the direction of the 1 11352238 AU0708017-1 25784-ltwf.doc/n of the rationality, so that the pixels are The alignment effect of the structure 1〇〇 is affected. The larger the area of the second region 132, the greater the effect of the alignment effect of the halogen structure 100 is. In order to avoid the above problems, the following several structure of the present invention are proposed by the present invention, but the following examples are merely illustrative and are not intended to limit the present invention. [First Embodiment] Fig. 3A shows a halogen structure of a first embodiment of the present invention. Referring to FIG. 3A, the [Variety structure 2 includes a first active device 2〇6, a second active device 208, and a first halogen electrode 21〇 electrically connected to the first active device 2〇6, and a second electrical connection. The second halogen electrode 220 of the active component 208 and the first capacitive lower electrode 230. The first active component 206 and the second active component 2〇8 are electrically connected to the scan line 202 and the data line 204. When the halogen structure 200 is applied to the liquid crystal display panel 1B of the drawing, a plurality of halogen structure 2 arrays may be arranged on the array substrate 2 to form the pixel array 22. In addition, the first halogen electrode 210 has a first intersection pattern 212 and a plurality of sets of first stripe patterns 214 connected to the first intersection pattern 212. The second halogen electrode 220 has a second cross pattern 222 and a plurality of sets of second stripe patterns 224 connected to the second cross pattern 222. The first capacitor lower electrode 230 is located below the first intersection pattern 212 and includes a first region 232 and a plurality of second regions 234. In this embodiment, the two second regions 234 are used as an example. It is necessary to form a plurality of second regions 234, and is not limited to the present invention. The first halogen electrode 21 〇 shields the first region 232 and does not shield the second region 234. Specifically, the first halogen electrode 210 has a plurality of thin slit S bits.

12 (D 1352238 AU0708017-1 25784-ltwf.doc/n 於第一交叉圖案212以及第一條紋圖案214之間且細狹縫 S之一端連接第一交叉圖案212而細狹縫§;之另一端遠離 - 第一交叉圖案212。同樣地,第二晝素電極220也具有多 個細狹縫S,位於第二交又圖案222以及第二條紋圖/案224 之間且細狹缝s之一端連接第二交叉圖案222而細狹縫s 之另一端遠離第二交叉圖案222。 在本實施例中’資料線204與部份的第一電容下電極 φ 230重疊,所以第一電容下電極230大部份的面積都被其 他導體層遮蔽。未被其他導體層遮蔽的部份第一電容下電 極230則構成第二區域234,也就是說’第二區域234不 與資料線204重疊。晝素結構200中,第一區域232與第 二區域234的面積比約為i〇:i〜3〇〇:ι,較佳約為 40:1〜50:卜後者所述比例之第二區域234的面積係表示畫 素結構200中所有第二區域234的面積總計。另外,垂直 第一電容下電極230之延伸方向上,第一區域232的最大 寬度wl與第二區域234的最大寬度w2之比例約可以為大 ® 於1:1且小於50:1,較佳的是l.〇i:l〜50:1。 請同時參照圖2與圖3A,圖2的晝素結構1〇〇中, 第一區域132與多個第二區域134的面積比約略小於 - 10:1。相較於圖2之晝素結構1〇〇而言,本實施例之晝素 結構200中’第二區域234的面積比例較小。因此,若晝 素結構200與晝素結構〗〇 〇以相同尺寸設計而應用於圖i B 之聚合物穩定配向製程時,第二區域234與對向電極32 之間所產生的電場對液晶分子42的影響較不顯著。液晶分 13 1352238 AU0708017-1 25784-ltwf.doc/n 子42不容易以第二區域234為中心排列,而不會在第二區 域234處產生節點。也就是說,液晶分子42可以朝向理想 的方向’亦即細狹缝S的延伸方向傾倒排列,而達到良好 的配向效果。換言之’本實施例的晝素結構2〇〇有助於提 高聚合物穩定配向製程的製程良率,以更進一步提升液晶 顯示面板10B的顯示品質。 簡&之,欲提南穩定聚合物配向製裎的製程良率,可 以改變第一電容下電極230的圖案以使第二區域234的面 積比例縮小或是使第一晝素電極210遮蔽第一電容下電極 230更多的面積。當第一電容下電極230未被其他導體層 遮蔽的面積越小’則在穩定聚合物配向製程中,穩定層46 越能夠在理想的條件之下被固化。此時,液晶顯示面板 的品質將更為提昇。 畫素結構200還可包括第一電容上電極250,其位於 第一晝素電極210與第一電容下電極230之間,第一電容 上電極250舉例而言可為盾形、矩形或其他不規則形狀。 另外’畫素結構200更可包括一位於第二交又圖案222下 方的第一電容下電極240以及一位於第二晝素電極220以 及第二電容下電極240之間的第二電容上電極242。第一 電容下電極230與第一電容上電極25〇間的電容作用以及 第二電容下電極240與第二電容上電極242間的電容作用 有助於調整第一晝素電極210與第二晝素電極220的顯示 電壓。當晝素結構200應用於液晶顯示面板1〇b時,晝素 結構200可使液晶顯示面板10B的顯示效果提升。 1352238 AU0708017-1 25784-ltwf.doc/n 當然,畫素結構200的電容設計並非限定於圖3a所 續'示之結構。圖3B纟會示為本發明第一實施例晝素結構中 另一種第一電容下電極的設計。請參照圖3B,第一區域 232圖案面積可以向第一晝素電極210中央集中而形成一 接近盾形的圖案。當然,畫素結構200中第一電容下電極 230的設計也可以依照其他的設計需求而有不同的圖案。 其中,第一區域232與多個第二區域234的面積比在 10:1〜300:1或/且垂直第一電容下電極23〇的延伸方向上, 第一區域232的最大寬度wl與第二區域234的最大寬度 w2之比例在1.〇1:1〜5〇:1都有助於避免液晶分子倒向不符 合理想狀態的情形。第一區域232與多個第二區域234的 面積比較佳約為40:1〜50:1。 【第二實施例】 圖4A繪示為本發明之第二實施例的晝素結構,而圖 T為沿圖4A的剖線A-A,所繪示的剖面圖。請參照圖4A 、、圖4B ’畫素結構3GG的設計與畫素結構2⑻的設計相 相同的%件在此不另作制。兩者差異之處在於, ^Ί 300中’第一電容上電極350具有-第-開口 352 思素電極31G具有—第二開口 316。此外,第-電 谷下330的圖案設計與晝素結構略有不同。 ,剖面圖來看’畫素結構300更包括一絕緣層360以 及Μ二電f 370。絕緣層360位於第一電容下電極330以 雪搞j谷上電極350之間。介電層370則位在第一晝素 以及第一電容上電極350之間。第一開口 352是 15 1352238 AU0708017· 1 25784-1 twfdoc/π 位於弟一交叉圖; 極330上方之部分絕緣層360:;路;Π广電容下電 少重疊於帛,352,辑至 =部分讓37°。另外,第二開,二^! 第:開Π 352,第-開π 352以及第二開口 316的或 形狀視製㈣求或❹者設計上需求蚊,並以限定 本發明。 在本實施例的電容設計中,第一開口 352與第二開口 316使得位於第一晝素電極31〇中央的部份第二電ϋ電 極330未被其他導體層遮蔽。所以,在聚合物穩定配向製 程中未被導體層遮蔽的第一電容下電極330與對向電極 之間的電場作用有助於使液晶分子以第一畫素電極3丨〇的 ^心為節點而向外分布排列。換言之,晝素結構300的設 計有助於輔助液晶分子朝向理想的方向傾倒。 另外’當晝素結構300中未配置有第一電容上電極350 時’晝素結構3〇〇也可配置有介電層370,位在第一晝素 電極310以及第一電容下電極33〇之間。同時,第一晝素 電極310仍可具有一位於第一晝素電極310中心的第二開 口 316。如此,進行聚合物穩定配向製程時,液晶分子也 可以以第—晝素電極310中心為節點排列,而呈現理想的 配向情形。也就是說,無論第一電容上電極35〇的配置與 否,本發明皆可以藉由在第一電容下電極330上方的導電 ^中,成開口以使部份第一電容下電極330不被遮蔽而提 间穩定聚合物配向製程的良率以及應用畫素結構300的液 1352238 AU070B017-1 25784-ltwf.doc/n 晶顯示面板的品質》當然,在其他實施例中,第二電容下 電極240、第二電容上電極242與第二畫素電極220也可 以具有如圖4A的設計。另外,第一實施例所描述的第一 電容上電極250及第一晝素電極210也可以如圖4C所示 而分別具有第一開口 252以及第二開口 216的設計,以輔 助液晶顯示面板中液晶分子的排列配向。 綜上所述,本發明之畫素結構中藉由電容下電極的圖 案改變使電容電極未被其他導體層遮蔽的區域面積縮小。 所以,本發明的畫素結構應用於液晶顯示面板的聚合物穩 定配向製程時’有助於使液晶分子朝向理想的方向排列。 另外’本發明還提出在畫素結構的第一電容下電極上方導 體層中形成位於第一晝素電極中央的開口。此時,位於第 一畫素電極中央處,第一電容下電極未被其他導體層遮 蔽,而有助於在聚合物穩定配向製程中使液晶分子沿著理 想的方向傾倒。整體而言,本發明之畫素結構可使液晶顯 示面板的配向製程良率提高以進一步提升液晶顯示面板的 顯示效果。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範園^界定者 為準。 【圖式簡單說明】 17 1352238 AU0708017-1 25784-ltwf.doc/n 圖1A與圖IB繪示為一種聚合物穩定配向式液晶顯示 面板的配向製程。 圖2繪示為一種應用於聚合物穩定配向式液晶顯示面 板的晝素結構之比較例。 圖3A為本發明第一實施例的晝素結構。 圖3B繪示為本發明第一實施例晝素結構中另一種第 一電容下電極的設計。 圖4A繪示為本發明之第二實施例的晝素結構。 圖4B為沿圖4A的剖線A-A’所繪示的剖面圖。 圖4C繪示為本發明又一種第一電容下電極的設計。 【主要元件符號說明】 10A、10B :液晶顯示面板 20 :陣列基板 22 :晝素陣列 30:對向基板 32 :對向電極 40 :液晶層 42 :液晶分子 44 :單體 46 :穩定層 50 :能量 100、200、300 :晝素結構 102、202 :掃描線12 (D 1352238 AU0708017-1 25784-ltwf.doc/n between the first cross pattern 212 and the first stripe pattern 214 and one end of the thin slit S is connected to the first cross pattern 212 and the thin slit §; the other end Far away - the first cross pattern 212. Similarly, the second halogen electrode 220 also has a plurality of thin slits S between the second cross pattern 222 and the second fringe pattern / case 224 and one end of the thin slit s The second cross pattern 222 is connected and the other end of the thin slit s is away from the second cross pattern 222. In the embodiment, the data line 204 overlaps with a portion of the first capacitor lower electrode φ 230, so the first capacitor lower electrode 230 Most of the area is shielded by other conductor layers. A portion of the first capacitor lower electrode 230 that is not obscured by the other conductor layers constitutes the second region 234, that is, the 'second region 234 does not overlap the data line 204. In the element structure 200, the area ratio of the first region 232 to the second region 234 is about i 〇: i 〜 3 〇〇: ι, preferably about 40: 1 〜 50: the second region 234 of the latter ratio The area represents the total area of all the second regions 234 in the pixel structure 200. In addition, the vertical The ratio of the maximum width w1 of the first region 232 to the maximum width w2 of the second region 234 may be about 1:1 and less than 50:1, preferably l. 〇i: l 50: 1. Referring to FIG. 2 and FIG. 3A simultaneously, in the pixel structure 1 of FIG. 2, the area ratio of the first region 132 to the plurality of second regions 134 is approximately less than -10:1. Compared with the halogen structure 1〇〇 of FIG. 2, the area ratio of the second region 234 in the halogen structure 200 of the present embodiment is small. Therefore, if the halogen structure 200 and the halogen structure are When the same size design is applied to the polymer stable alignment process of Figure i B, the electric field generated between the second region 234 and the counter electrode 32 has less effect on the liquid crystal molecules 42. Liquid crystal 13 1325238 AU0708017-1 25784 The -ltwf.doc/n sub-42 is not easily aligned around the second region 234, and no node is generated at the second region 234. That is, the liquid crystal molecules 42 can be oriented in the desired direction 'i. The direction of extension is tilted to achieve a good alignment effect. In other words, the alizarin structure of the present embodiment 2〇〇 helps to improve the process yield of the polymer stable alignment process, so as to further improve the display quality of the liquid crystal display panel 10B. Jane &, the process yield of the stable polymer alignment system can be changed. The pattern of the first capacitor lower electrode 230 is such that the area ratio of the second region 234 is reduced or the first halogen electrode 210 shields the first capacitor lower electrode 230. When the first capacitor lower electrode 230 is not the other conductor The smaller the area of the layer masking, the more stable the layer 46 can be cured under ideal conditions during the stable polymer alignment process. At this time, the quality of the liquid crystal display panel will be further improved. The pixel structure 200 may further include a first capacitor upper electrode 250 between the first pixel electrode 210 and the first capacitor lower electrode 230, and the first capacitor upper electrode 250 may be, for example, a shield, a rectangle or the like. Regular shape. In addition, the 'pixel structure 200' may further include a first capacitor lower electrode 240 located below the second intersection pattern 222 and a second capacitor upper electrode 242 located between the second pixel electrode 220 and the second capacitor lower electrode 240. . The capacitive action between the first capacitor lower electrode 230 and the first capacitor upper electrode 25〇 and the capacitance between the second capacitor lower electrode 240 and the second capacitor upper electrode 242 help to adjust the first halogen electrode 210 and the second buffer The display voltage of the element electrode 220. When the halogen structure 200 is applied to the liquid crystal display panel 1b, the halogen structure 200 can enhance the display effect of the liquid crystal display panel 10B. 1352238 AU0708017-1 25784-ltwf.doc/n Of course, the capacitance design of the pixel structure 200 is not limited to the structure shown in Fig. 3a. FIG. 3B shows a design of another first capacitor lower electrode in the pixel structure of the first embodiment of the present invention. Referring to FIG. 3B, the pattern area of the first region 232 may be concentrated toward the center of the first halogen electrode 210 to form a pattern close to the shield. Of course, the design of the first capacitor lower electrode 230 in the pixel structure 200 can also have different patterns according to other design requirements. The area ratio of the first region 232 to the plurality of second regions 234 is 10:1 to 300:1 or/and the direction of extension of the first capacitor lower electrode 23〇, the maximum width w1 of the first region 232 and the first The ratio of the maximum width w2 of the two regions 234 is 1. 〇 1:1 〜 5 〇: 1 to help avoid the situation where the liquid crystal molecules fall backwards in an ideal state. The area of the first region 232 and the plurality of second regions 234 is preferably about 40:1 to 50:1. [Second Embodiment] Fig. 4A is a view showing a structure of a halogen body according to a second embodiment of the present invention, and Fig. 4 is a cross-sectional view taken along line A-A of Fig. 4A. Referring to Fig. 4A and Fig. 4B, the design of the pixel structure 3GG and the design of the pixel structure 2 (8) are the same, and no other parts are used here. The difference between the two is that the first capacitor upper electrode 350 has a -first opening 352 and the second electrode 316 has a second opening 316. In addition, the pattern design of the D-Valley 330 is slightly different from the structure of the halogen. The cross-sectional view of the pixel structure 300 further includes an insulating layer 360 and a second electric f 370. The insulating layer 360 is located between the first capacitor lower electrode 330 and the upper electrode 350. The dielectric layer 370 is between the first pixel and the first capacitor upper electrode 350. The first opening 352 is 15 1352238 AU0708017· 1 25784-1 twfdoc/π is located in the intersection of the brother; the portion of the insulating layer 360 above the pole 330:; road; the power of the capacitor is less overlapping with the 帛, 352, to the = part Let 37°. In addition, the second opening, the second opening, the second opening 352, the first opening π 352 and the second opening 316 or the shape of the (four) seeking or designing the demand for mosquitoes, and to limit the invention. In the capacitor design of this embodiment, the first opening 352 and the second opening 316 are such that a portion of the second electrode electrode 330 located at the center of the first pixel electrode 31 is not shielded by other conductor layers. Therefore, the electric field between the first capacitor lower electrode 330 and the counter electrode that is not shielded by the conductor layer in the polymer stable alignment process contributes to making the liquid crystal molecules node the first pixel electrode 3丨〇 And the distribution is outward. In other words, the design of the halogen structure 300 helps to assist the liquid crystal molecules to tilt in a desired direction. In addition, when the first capacitor upper electrode 350 is not disposed in the halogen structure 300, the halogen structure 3〇〇 may be disposed with the dielectric layer 370, which is located at the first halogen electrode 310 and the first capacitor lower electrode 33〇. between. At the same time, the first halogen electrode 310 can still have a second opening 316 at the center of the first halogen electrode 310. Thus, when the polymer is stably aligned, the liquid crystal molecules can also be arranged at the center of the first halogen electrode 310, thereby exhibiting an ideal alignment condition. In other words, regardless of the configuration of the first capacitor upper electrode 35A, the present invention can be opened in the conductive layer above the first capacitor lower electrode 330 so that part of the first capacitor lower electrode 330 is not The yield of the masking and interstitial stable polymer alignment process and the quality of the liquid 1352238 AU070B017-1 25784-ltwf.doc/n crystal display panel using the pixel structure 300. Of course, in other embodiments, the second capacitor lower electrode 240. The second capacitor upper electrode 242 and the second pixel electrode 220 may also have a design as shown in FIG. 4A. In addition, the first capacitor upper electrode 250 and the first halogen electrode 210 described in the first embodiment may also have a design of the first opening 252 and the second opening 216 as shown in FIG. 4C to assist the liquid crystal display panel. The alignment of the liquid crystal molecules. In summary, in the pixel structure of the present invention, the area of the area where the capacitor electrode is not shielded by the other conductor layers is reduced by the pattern change of the capacitor lower electrode. Therefore, the pixel structure of the present invention is applied to the polymer stable alignment process of the liquid crystal display panel to help align the liquid crystal molecules in a desired direction. Further, the present invention also proposes to form an opening in the center of the first halogen element in the conductor layer above the first capacitor lower electrode of the pixel structure. At this time, at the center of the first pixel electrode, the first capacitor lower electrode is not blocked by the other conductor layers, and contributes to tilting the liquid crystal molecules in an ideal direction in the polymer stable alignment process. In general, the pixel structure of the present invention can improve the alignment process yield of the liquid crystal display panel to further enhance the display effect of the liquid crystal display panel. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is subject to the definition of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS 17 1352238 AU0708017-1 25784-ltwf.doc/n FIGS. 1A and 1B illustrate an alignment process of a polymer stabilized alignment liquid crystal display panel. Fig. 2 is a view showing a comparative example of a halogen structure applied to a polymer-stabilized alignment type liquid crystal display panel. Fig. 3A is a view showing a structure of a halogen body according to a first embodiment of the present invention. FIG. 3B is a diagram showing another design of the first capacitor lower electrode in the pixel structure of the first embodiment of the present invention. 4A illustrates a halogen structure of a second embodiment of the present invention. Fig. 4B is a cross-sectional view taken along line A-A' of Fig. 4A. FIG. 4C illustrates another design of the first capacitor lower electrode of the present invention. [Main component symbol description] 10A, 10B: liquid crystal display panel 20: array substrate 22: halogen array 30: opposite substrate 32: counter electrode 40: liquid crystal layer 42: liquid crystal molecule 44: monomer 46: stable layer 50: Energy 100, 200, 300: Alizarin structure 102, 202: scan line

Claims (1)

1352238 七、申請專利範圍: 1. 一種晝素結構,電性連接一掃描線以及一資料 線’該晝素結構包括. 一第一主動元件,電性連接該掃描線以及該資料線; 一第二主動元件,電性連接該掃描線以及該資料線; 一第一晝素電極,電性連接該第一主動元件,該第一 晝素電極具有一第一交叉圖案以及與該第一交叉圖案連接 的多組第一條紋圖案; 一第二畫素電極,電性連接該第二主動元件,該第二 晝素電極具有一第二交叉圖案以及與該第二交叉圖案連接 的多組第二條紋圖案; 一第一電容下電極,位於該第一交叉圖案下方; 一第一電容上電極,位於該第一晝素電極以及該第一 電容下電極之間; 一絕緣層,位於該第一電容下電極以及該第一電容上 電極之間;以及 一介電層,位於該第一電容上電極以及該第一畫素電 極之間,其中該第一電容上電極具有一第一開口,位於該 第一交叉圖案之中心以暴露出位於該第一電容下電極上方 之部分該絕緣層,其中 .該第一晝素電極更具有一第二開口,該第二開口的位 置至少重疊於該第一開口。 2. 如申請專利範圍第1項所述之晝素結構,其中該 第二開口大於該第一開口。 20 丄:):)“:)〇 100-6-28 第二素中該 及該=-條紋圖案之間且該些細狹 交叉4圖案而該些細狹缝之另-端遠離該ί一 = 專利乾圍第1項所述之晝素結構,更包括 弟一電谷下祕,位於該第二交又圖案下方。 m -第專利範圍第4項所述之晝素結構,更包括 素=電極,位於該第二電容下電極以及該第二晝 第二專 =圍第1項所述之畫素結構,其中該 圖=:::第二,_及 又圖案而該些細狹縫之另 連接該第二交 7 -種全音㈣^ 第二交叉圖案。 線,該晝素結構包括' 連接—掃描線以及一資料 一 =兀:’電性連接該掃描線以及該資料線; 一第I金素;:性連接該掃描線以及該資料線; 書+電^ ί 連接該第一主動元件,該第- 晝素交;動元件, 的多組第二條紋圖案;㈣以及與㈣二交叉圖案連接 一容下電極’位於該第—交又圖案下方;以及 —絕緣層’位於該第—電容下電極以及該第-晝素電 21 100-6-28 ^ 一種液晶顯示面細製造方法,包括: 提供-液晶顯示面板半成品,該液晶顯· 包括 不面板半成品 —:基 =複數如,請專利範圍第卜7 二對向基板,與該陣列基板對向設置;以及 一液晶層,位於該陣列基板以及 間’魏晶層具有複數單體; 基板之 在該陣列基板以及該對向基板之間產 聚合該些單體β Μ,以及 9.、如申請專利範圍第8項所述之方法,其中在 土^以及騎向絲之間產生該壓差之步驟係包括: ,供一接地電位於該對向基板;以及 提供一第一電壓於該第一電容下電極。 =女如申請專利範圍第9項所述之方法,其中該第一 有一正半周信號以及一負半周信號而該正半週訊號 的峰值與該負半周信號的峰值相差10伏特至1G0伏特/ 11.如申請專利範圍第8項所述之方法其中該 約為5休特至5〇伏特。 12'如申請專利範圍第8項所述之方法,其中該聚入 ,些單體之步驟係包括光聚合該些單體、熱聚合該些單^ 或上述組合。 221352238 VII. Patent application scope: 1. A halogen structure, electrically connected to a scan line and a data line 'the halogen structure includes: a first active component electrically connected to the scan line and the data line; a first active component electrically connected to the scan line and the data line; a first halogen electrode electrically connected to the first active component, the first halogen electrode having a first cross pattern and the first cross pattern a plurality of sets of first stripe patterns connected; a second pixel electrode electrically connected to the second active element, the second elementary electrode having a second cross pattern and a plurality of groups of seconds connected to the second cross pattern a stripe pattern; a first capacitor lower electrode located below the first cross pattern; a first capacitor upper electrode between the first pixel electrode and the first capacitor lower electrode; an insulating layer located at the first a capacitor lower electrode and the first capacitor upper electrode; and a dielectric layer between the first capacitor upper electrode and the first pixel electrode, wherein the first capacitor upper electrode a first opening, located at a center of the first cross pattern to expose a portion of the insulating layer above the first capacitor lower electrode, wherein the first halogen electrode further has a second opening, the second opening The location overlaps at least the first opening. 2. The halogen structure of claim 1, wherein the second opening is larger than the first opening. 20 丄:):) ":) 〇100-6-28 in the second element and between the =-strip pattern and the thin narrow intersection 4 pattern and the other end of the thin slits away from the 一一 = patent The structure of the alizarin described in the first paragraph, including the secret of the second brother, is located below the pattern of the second cross. m - the structure of the alizarin described in item 4 of the patent scope, including the element = electrode a pixel structure according to the second capacitor lower electrode and the second layer second, wherein the pattern =::: second, _ and the pattern and the thin slits are further connected The second intersection 7 - a full tone (four) ^ second intersection pattern. The line, the halogen structure comprises a 'connection-scan line and a data one = 兀: 'electrically connected to the scan line and the data line; a first gold素;: sexually connecting the scan line and the data line; the book + electric ^ ί connected to the first active element, the first - elementary intersection; the moving element, the plurality of sets of second stripe patterns; (four) and the (four) two cross pattern Connecting a lower electrode 'below the first-and-forth pattern; and - an insulating layer' is located at the lower portion of the first capacitor And the first halogen battery 21 100-6-28 ^ a liquid crystal display surface fine manufacturing method, comprising: providing - liquid crystal display panel semi-finished product, the liquid crystal display including non-panel semi-finished products - base = complex number, for example, please patent scope a second counter substrate disposed opposite the array substrate; and a liquid crystal layer on the array substrate and the inter-layer has a plurality of monomers; the substrate is polymerized between the array substrate and the opposite substrate The method of claim 8, wherein the step of generating the pressure difference between the soil and the riding wire comprises: providing a grounding electricity in the pair And the method of claim 9, wherein the first method has a positive half cycle signal and a negative half cycle signal and the positive half cycle signal The peak value is different from the peak value of the negative half-cycle signal by 10 volts to 1 G0 volt / 11. The method of claim 8 wherein the method is about 5 s. to 5 volts. 12' as claimed in claim 8 Said Method wherein the polyethylene into, these monomers step of the plurality of lines comprises a photopolymerizable monomer, a thermal polymerization ^ the plurality of single or a combination thereof. 22
TW99125396A 2007-10-18 2007-10-18 Pixel structure and manufacturing method of liquid TWI352238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125396A TWI352238B (en) 2007-10-18 2007-10-18 Pixel structure and manufacturing method of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125396A TWI352238B (en) 2007-10-18 2007-10-18 Pixel structure and manufacturing method of liquid

Publications (2)

Publication Number Publication Date
TW201115226A TW201115226A (en) 2011-05-01
TWI352238B true TWI352238B (en) 2011-11-11

Family

ID=44934371

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125396A TWI352238B (en) 2007-10-18 2007-10-18 Pixel structure and manufacturing method of liquid

Country Status (1)

Country Link
TW (1) TWI352238B (en)

Also Published As

Publication number Publication date
TW201115226A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
TWI360687B (en) Pixel structure and manufacturing method of liquid
CN105182635B (en) Liquid crystal display panel and liquid crystal alignment method thereof
US6894753B2 (en) Method for forming protrusion and opening in pixel region
US20080074602A1 (en) In-plane switching type liquid crystal display device
KR101779510B1 (en) Liquid crystal display and manufacturing method thereof
CN104793401B (en) A kind of display panel and electronic equipment
JP2007047784A (en) Liquid crystal display
WO2010150645A1 (en) Liquid crystal display device
TW201821878A (en) Electrically tunable optical phase modulation element
CN101349841B (en) Polymer steady direction liquid crystal panel and opposite electrode array substrate and its manufacturing method
TW201039029A (en) Liquid crystal display panel and liquid crystal display applying the same
TWI428660B (en) Active device array mother substrate and method of fabricating display panel
JP2008090265A (en) Liquid crystal display device
US20150205174A1 (en) Liquid crystal integrated circuit and method to fabricate same
US7522243B2 (en) Display device and method for fabricating the display device
CN104977736A (en) Display panel of conductive layer with variable line widths
KR20110076725A (en) Array substrate for wide-viewing angle mode liquid crystal display device
CN100524784C (en) Pixel structure and manufacture method of liquid crystal panel possessing same
TWI384298B (en) Liquid crystal display panel and manufacturing method thereof
KR20090103931A (en) Liquid crystal display device with improved switching speed
TWI352238B (en) Pixel structure and manufacturing method of liquid
TWI281587B (en) Wide-viewing angle liquid crystal display
CN112731717B (en) Pixel structure
JP2009003194A (en) Liquid crystal display panel and liquid crystal display device
TW201011374A (en) Polymer-stabilized alignment liquid crystal panel, electrode array substrate and fabricating method thereof