TWI335305B - The metallic bipolar plate of solid oxide fuel cell with perovskite protective coating and method of manufacturing thereof - Google Patents

The metallic bipolar plate of solid oxide fuel cell with perovskite protective coating and method of manufacturing thereof Download PDF

Info

Publication number
TWI335305B
TWI335305B TW096100524A TW96100524A TWI335305B TW I335305 B TWI335305 B TW I335305B TW 096100524 A TW096100524 A TW 096100524A TW 96100524 A TW96100524 A TW 96100524A TW I335305 B TWI335305 B TW I335305B
Authority
TW
Taiwan
Prior art keywords
bipolar plate
layer
lsmo
metal bipolar
powder
Prior art date
Application number
TW096100524A
Other languages
Chinese (zh)
Other versions
TW200829510A (en
Inventor
Chun Jung Lu
Chaur Jeng Wang
Chen Chia Chou
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW096100524A priority Critical patent/TWI335305B/en
Publication of TW200829510A publication Critical patent/TW200829510A/en
Application granted granted Critical
Publication of TWI335305B publication Critical patent/TWI335305B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

1*335305 九、發明說明: 【發明所屬之技術領域】 本發明是關於固態氧化燃料電池(S0FC)金屬雙極板 (metal 1 ic Interconnects)之性能改良,特別是一種利用 穩定1弓鈦礦結構(perovski te)氧化物作為金屬雙極板的 保護,使金屬雙極板抗高溫氧化性提升的製造方法,金屬 雙極板可長時間維持原有的金屬高導電性,且也可阻礙含 鉻合金表面產生高價鉻化合物易揮發的氣體進入電極與 電解質,避免固態氧化燃料電池的發電效率及壽命下降。 【先前技術】1*335305 IX. Description of the Invention: [Technical Field] The present invention relates to performance improvement of solid oxide fuel cell (S0FC) metal 1 ic interconnects, in particular to the use of a stable 1 canalite structure (perovski te) oxide as a metal bipolar plate protection, the metal bipolar plate is resistant to high temperature oxidation, the metal bipolar plate can maintain the high conductivity of the original metal for a long time, and can also hinder the chromium The surface of the alloy generates a volatile gas of a high-valent chromium compound to enter the electrode and the electrolyte, thereby avoiding a decrease in power generation efficiency and life of the solid oxide fuel cell. [Prior Art]

近年來固態氧化燃料電池的雙極板元件,改採用價格 較低廉且易加工的耐高溫合金,此類合金材料通常都含有 Cr和A1的添加,使表面形成緻密的Cr2〇3與Al2〇3保護合 金。雖然此類的氧化皮膜可提升金屬雙極板抗高溫氧化 性,但是其電阻率都相當高,且隨在高溫操作的溫度愈高 氧化皮膜厚度愈厚,導致金屬雙極板的電阻大幅度上升, 將阻礙固態氧化燃料電池的電流傳送,進而使其發電效率 下降。 目前有研究將妈鈦礦(perovskite)結構氧化物 La^SrxMnOa彼覆在金屬雙極板表面,隔絕合金底材的周圍 氣氛,減少氧對合金底材的入侵,進而減緩合金的高溫氧 化,而LahSrxMnOs本身就是運用在陰極材料,具有較高 的電子導電性,所以並不會阻礙金屬雙極板原有的高導電 性0 相關先前文獻:In recent years, the bipolar plate components of solid-state oxidized fuel cells have been replaced by low-cost and easy-to-process high-temperature resistant alloys. These alloy materials usually contain Cr and A1, which form dense Cr2〇3 and Al2〇3 on the surface. Protect the alloy. Although such an oxide film can improve the high temperature oxidation resistance of the metal bipolar plate, its electrical resistivity is relatively high, and the higher the temperature at high temperature operation, the thicker the oxide film thickness, resulting in a significant increase in the resistance of the metal bipolar plate. It will hinder the current transfer of the solid oxide fuel cell, which will reduce its power generation efficiency. At present, research has been conducted to coat the perovskite structure oxide La^SrxMnOa on the surface of the metal bipolar plate to isolate the surrounding atmosphere of the alloy substrate, reduce the invasion of the alloy substrate by oxygen, and thus slow down the high temperature oxidation of the alloy. LahSrxMnOs itself is used in cathode materials and has high electronic conductivity, so it does not hinder the original high conductivity of metal bipolar plates.

Client’s Docket No. : 0950089 6 TT’s Docket No : 0912-A50929-TW / Draft-Final / Chiin 1*335305 【J.-H. Kim,R. -H. SongandS.-H. Hyun, “Effect of Slurry-coated LaSrMn〇3 on the Electrical Property of Fe-Cr Alloy for Metallic Interconnect of S0FC” , Solid State Ionics, Vol.174, pp.185-191 (2004)】, 此文獻使用(La〇.85Srfl.i5)D.9Mn〇3的勝體塗覆在Fe_16Cr合 金表面,塗覆(LaD.85Sn.15V9Mn〇3試片經1200°C在Ar氣氛 + 10%H2燒結2小時。其結果顯示在此環境燒結過程中 (LaD.uSro.do.gMnOs會分解成其他不穩定的相,而分解出來 的其他氧化物,將導致金屬雙極板的電阻上升。Client's Docket No. : 0950089 6 TT's Docket No : 0912-A50929-TW / Draft-Final / Chiin 1*335305 [J.-H. Kim, R. -H. SongandS.-H. Hyun, "Effect of Slurry- Coated LaSrMn〇3 on the Electrical Property of Fe-Cr Alloy for Metallic Interconnect of S0FC” , Solid State Ionics, Vol. 174, pp. 185-191 (2004)], This document uses (La〇.85Srfl.i5)D The winning body of .9Mn〇3 was coated on the surface of Fe_16Cr alloy, and the coating (LaD.85Sn.15V9Mn〇3 test piece was sintered at 1200 ° C for 2 hours in Ar atmosphere + 10% H 2 . The results show that during the environmental sintering process (LaD.uSro.do.gMnOs will decompose into other unstable phases, and other oxides decomposed will cause the resistance of the metal bipolar plate to rise.

[J. Q. Li and P. Xiao, “Fabrication and characterization of La〇.sSr〇.2Mn〇3/meta 1 interfaces for application in SOFCs” , Journal of the European Ceramic Society, Vol. 21, pp. 659-668 (2001)】,此 文獻將La〇.8Sr〇.2Mn〇3網印在金屬界面上,並在1200°C不同 氣氛燒結,其結果顯示在Ar氣氛與真空燒結, 1^。.88犷。.21411〇3會分解成(1^。.881*().2)2|{11〇4+又、(1(&,81')2〇3 與MnO,且在1200°C的空氣、Ar氣氛及真空燒結,均會 使La。· eSro. 2Mn〇3層與合金底材界面間形成較厚的氧化層 皮膜,均不利於金屬雙極板的導電性。 目前研究為了將LahSrxMnCb緻密燒結在金屬雙極板 表面上,均在1200°C的高溫燒結,而一般耐高溫合金均 無法承受1200°C的高溫,均會使合金表面形成厚度過厚 且高電阻的氧化皮膜。因此須在惰性氣氛或真空下燒結, 但Lai-xSrxMn〇3在高溫1200°C低氧分壓氣氛中,將會分解 成其他氧化物,分解的氧化物其電阻較高,導致金屬雙極 板的電阻上升,降低了固態氧化燃料電池的發電效率及壽[JQ Li and P. Xiao, "Fabrication and characterization of La〇.sSr〇.2Mn〇3/meta 1 interfaces for application in SOFCs", Journal of the European Ceramic Society, Vol. 21, pp. 659-668 (2001 In this paper, La〇.8Sr〇.2Mn〇3 is screen printed on the metal interface and sintered at 1200 °C in different atmospheres. The results are shown in an Ar atmosphere and vacuum sintering, 1^. .88犷. .21411〇3 will be decomposed into (1^..881*().2)2|{11〇4+ again, (1(&,81')2〇3 with MnO, and air at 1200 °C , Ar atmosphere and vacuum sintering, will form a thick oxide film between the La.·eSro. 2Mn〇3 layer and the alloy substrate interface, which is not conducive to the conductivity of the metal bipolar plate. The current study in order to dense LahSrxMnCb Sintering on the surface of the metal bipolar plate is sintered at a high temperature of 1200 ° C, and generally the high temperature resistant alloy can not withstand the high temperature of 1200 ° C, which will form an oxide film with excessive thickness and high resistance on the surface of the alloy. Sintering in an inert atmosphere or under vacuum, but Lai-xSrxMn〇3 will decompose into other oxides in a low-oxygen partial pressure atmosphere at a high temperature of 1200 ° C. The decomposed oxide has a high electrical resistance, resulting in the resistance of the metal bipolar plate. Rising, reducing the power generation efficiency and life of solid oxide fuel cells

Client’s Docket No·: 0950089 TT*s Docket No : 0912-A50929-TW/Draft-Final/Chlin 7 1-335305 命。 【發明内容】 本發明目的在耐高溫合金表面上塗覆La^xSixMnC^ 保護層,避免Lai_xSrxMn03保護層因在燒結過程中,發生 分解成其他高電阻的氧化物,導致此保護層的導電性降低 及減少合金底材的高溫抗氧化性。因此,本發明提供一層 10〜100 μιη完整的鈣鈦礦結構LakSixMnOs保護層,使其 保持原有的高導電性並有效隔絕合金底材外界的大氣,提 向金屬雙極板的兩溫抗氧化性及維持長時間的南溫導電 性,延長固態氧化燃料電池的操作壽命。 本發明的另一個目的在於La^SrxMnC^保護層因燒 . 結過程中,減少La^SrxMnC^保護層與合金底材界面間的 . 氧化皮膜形成。形成過厚的氧化皮膜,將導致金屬雙極板 " 的電阻大幅提高,降低固態氧化燃料電池的發電效率及操 作壽命。 【實施方式】Client’s Docket No·: 0950089 TT*s Docket No : 0912-A50929-TW/Draft-Final/Chlin 7 1-335305 Life. SUMMARY OF THE INVENTION The object of the present invention is to coat a surface of a high temperature resistant alloy with a La^xSixMnC^ protective layer to prevent the Lai_xSrxMn03 protective layer from decomposing into other high-resistance oxides during sintering, resulting in a decrease in conductivity of the protective layer. Reduce the high temperature oxidation resistance of the alloy substrate. Therefore, the present invention provides a layer of 10 to 100 μm intact perovskite structure LakSixMnOs protective layer, which maintains the original high conductivity and effectively isolates the atmosphere outside the alloy substrate, and provides two-temperature oxidation resistance to the metal bipolar plate. Sexuality and maintain long-term south-temperature conductivity, extending the operational life of solid oxide fuel cells. Another object of the present invention is to reduce the formation of an oxide film between the La^SrxMnC^ protective layer and the alloy substrate interface during the sintering process of the La^SrxMnC^ protective layer. The formation of an excessively thick oxide film will greatly increase the resistance of the metal bipolar plate and reduce the power generation efficiency and operating life of the solid oxide fuel cell. [Embodiment]

本發明係一種La^SixMnOs保護層塗層製造方法,避 免使 Lai_xSrxMn〇33 在燒結過程中分解成 La^xSi^MnOw、(LahxSrxhMnOw、MnO、La2〇3 與 SrO 等氧化物,破壞了保護層的連續緻密性,且上述分解的氧 化物其電阻較高,因此LahSrxMnC^分解將不利於金屬雙 極板的高溫抗氧化性及導電性。所以在合金表面燒結出完 整連續的鈣鈦礦結構La^SrxMnOs保護層,可阻止合金受 到外界氣氛的〇2之入侵,進而提高金屬雙極板的高溫抗 氧化性。而妈欽礦結構Lai_xSrxMn〇3本身就具有南導電The invention relates to a method for manufacturing a La^SixMnOs protective layer coating, which avoids decomposing Lai_xSrxMn〇33 into La^xSi^MnOw, (LahxSrxhMnOw, MnO, La2〇3 and SrO oxides) during sintering, and destroys the protective layer. Continuous compactness, and the above-mentioned decomposed oxides have high electrical resistance, so LahSrxMnC^ decomposition will be detrimental to the high-temperature oxidation resistance and electrical conductivity of the metal bipolar plates. Therefore, a complete continuous perovskite structure is sintered on the surface of the alloy. The protective layer of SrxMnOs can prevent the alloy from being invaded by the external atmosphere of 〇2, thereby improving the high temperature oxidation resistance of the metal bipolar plate. The Lai_xSrxMn〇3 itself has a south conductivity.

Client’s Docket No. : 0950089 8 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 1.335305 性,只要La^xSrxMnC^維持原有結構而不轉變成其他氧化 物,則金屬雙極板可長時間保持高導電性,避免因電阻提 高導致固態氧化燃料電池的發電效率及操作壽命下降。 實施例1 請參閱『第1圖』所示,係本發明之La0.7Sr0.3MnO3 (以 下皆簡稱LSMO)保護塗層之製作流程圖。本發明之實施 例的LSMO粉末製作方法,並未特別受到限制,可使用 固相合成法、液相合成法與氣相合成法,只要製備出的粉 末的粒徑在1 μπι以下即可。 本實施例之LSMO粉末是採用氧化物法製備,製作 出穩定鈣鈦礦結構的陶瓷粉末,再進行LSMO漿料調製, 其詳細製作流程請參閱『第2圖』所示。第一步驟配粉, 先將La203粉末放進高溫箱型爐進行高溫550°C烘烤5小 - 時,因為La203容易與大氣中的水氣反應成La(OH)3,所 以需經烘烤後才秤量出La203所需的重量,烘烤後粉末須 避免再與大氣中的水氣接觸,接著分別以化學計量比配重 計算出La203、SrC03與Μη02粉末的重量。把秤好的3 g 種粉末混合置入塑膠瓶中,在瓶中加入1/2瓶高的氧化锆 球,氧化結球直徑為10 mm,再倒入6~7分滿的酒精,瓶 口封好後固定在行星式球磨機上,進行濕球磨24小時, 使粉末能均勻混合在一起,並且減少球團形成及降低粉末 的粒徑,也可讓粉末大小與形狀更加均勻。經濕球磨後, 放置90°C烘箱乾燥處理,乾燥後的粉末使用350 mesh的 篩網進行過篩,確保粉末無團聚並使粉末粒徑更均勻分 佈。接著進行煆燒(Calcination)處理,將充分球磨與過篩 的混合粉末,放置在ll〇〇°C下煆燒3.5小時。煆燒過程Client's Docket No. : 0950089 8 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 1.335305 Properties, as long as La^xSrxMnC^ maintains the original structure without conversion to other oxides, the metal bipolar plate can be used for a long time. Maintain high conductivity and avoid the decrease in power generation efficiency and operating life of solid oxide fuel cells due to increased resistance. [Embodiment 1] Referring to Fig. 1, there is shown a flow chart for the production of a protective coating of La0.7Sr0.3MnO3 (hereinafter referred to as LSMO) of the present invention. The method for producing the LSMO powder of the embodiment of the present invention is not particularly limited, and a solid phase synthesis method, a liquid phase synthesis method, and a gas phase synthesis method can be used as long as the particle size of the prepared powder is 1 μm or less. The LSMO powder of the present embodiment is prepared by an oxide method to produce a ceramic powder having a stable perovskite structure, and then LSMO slurry is prepared. For the detailed production process, please refer to "Fig. 2". The first step is to mix the powder, first put the La203 powder into the high temperature box furnace and bake at a high temperature of 550 °C for 5 hours. Because La203 easily reacts with the moisture in the atmosphere to form La(OH)3, it needs to be baked. After weighing, the weight required for La203 is measured. After baking, the powder should be avoided from contact with moisture in the atmosphere. Then, the weights of La203, SrC03 and Μη02 powders are calculated by stoichiometric weighting. Mix 3 g of powder of the scale into a plastic bottle, add 1/2 bottle of high zirconia balls to the bottle, oxidize the ball with a diameter of 10 mm, and then pour 6 to 7 minutes of full alcohol. After being fixed on a planetary ball mill, wet ball milling is carried out for 24 hours to uniformly mix the powders together, and to reduce pellet formation and reduce the particle size of the powder, and to make the powder size and shape more uniform. After wet ball milling, it was placed in an oven at 90 ° C for drying, and the dried powder was sieved using a 350 mesh sieve to ensure that the powder was not agglomerated and the powder particle size was more evenly distributed. Next, a calcination treatment was carried out, and the mixed powder which was sufficiently ball-milled and sieved was placed and simmered at ll ° C for 3.5 hours. Simmering process

Client’s Docket No. : 0950089 9 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin Γ335305 Ϊ免1將/ill的碳酸物、水分、㈣等碳氫化合物去除, 末π成所=S粉末特性’並藉由熱化學反應使混合的粉 過程=C ’且經由瑕燒可使往後lsm〇燒結 XRH八把# "大罝縮減。煆燒完成後,LSMO粉末進行 XRD二旅規察粉末是否是遍〇的触礦結構,如果 煆繞,刀直到:Λ還有其广结構的殘留相,則需再作第二次 理後,同揭Γ σ粉末完全成為LSM〇粉末為止。煆燒處 再做一次循環濕球磨、乾燥與過篩處理,確Client's Docket No. : 0950089 9 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin Γ335305 Isolation 1 removes carbon dioxide, water, (tetra) and other hydrocarbons from /ill, and finally π becomes the =S powder characteristics 'And by the thermochemical reaction to make the mixed powder process = C ' and through the simmering sm 〇 〇 〇 〇 X X X X X X 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 After the simmering is completed, the LSMO powder is subjected to XRD two brigade to check whether the powder is a full-touch structure. If the knives are entangled, the knives will continue to be treated for the second time until: The same Γ Γ 粉末 powder completely becomes LSM 〇 powder. Simmering place, do another cycle of wet ball milling, drying and sieving,

俨是均勻的分佈。本製備鈣鈦礦結構粉末步驟- t it' xsrxMn〇3,仏χ以·4,可進一步控制所製 ^ 疋 Lai:xSrxMn〇3,〇 J ‘χ^〇 3,較佳的範圍是 社,瑕佳實施例是控制在x=0.3。本製備鈣鈦礦 、,,°構叙末步騍之LSMO粉末平均粒徑控制在1[xm以下。、 旦本發明的LSMO漿料製備流程,將LSM〇粉末以微 ,天平秤出所需的重量,把粉末倒入溶劑(松油醇)與結合 ㈣(乙基纖維素),重量比例約為10 : 4〜5 : 0.2,溶劑比 例以HMC)聚料所需的濃稠度作稍許調整,經充份授拌 均句混合後的漿料倒入三滾筒混料機,漿料由大滾筒的間 距重複滾動均句後,再換下個較小的滾筒間距重複滾動, 直到LSMO粉末在漿料中均勻的分散才結束。調好的 LSMO裝料放進可密封的容器,避免低溫冷藏保存時, LSMO装料溶劑的揮發,造成LSM〇漿料濃度的改變。 金屬雙極板所採用的耐高溫合金,可為鎳基合·金、鉻 基合金或鐵基不銹鋼。本實施例採用22〇5雙相不銹鋼(以 下皆簡稱:2205DSS)作為金屬雙極板材料,一般耐高溫合 金的熱膨脹係數(Thermal Expansion Coefficient,TEC)均俨 is a uniform distribution. The preparation method of the perovskite structure powder-t it' xsrxMn〇3, 仏χ4, can further control the 疋Lai:xSrxMn〇3, 〇J 'χ^〇3, the preferred range is A preferred embodiment is to control at x = 0.3. The average particle size of the LSMO powder prepared by the preparation of the perovskite, and the final step of the structure is controlled to be less than 1 [xm. In the LSMO slurry preparation process of the present invention, the LSM(R) powder is weighed to a desired weight by a microbalance, and the powder is poured into a solvent (terpineol) and a combination (4) (ethylcellulose), and the weight ratio is about 10 : 4~5 : 0.2, the solvent ratio is slightly adjusted according to the consistency required for the HMC). After mixing the mixed slurry, the slurry is poured into a three-roller mixer. The slurry is made up of a large roller. After the pitch is repeatedly rolled and the sentence is repeated, the next smaller roller pitch is repeatedly rolled until the LSMO powder is evenly dispersed in the slurry. The adjusted LSMO charge is placed in a sealable container to avoid the volatilization of the LSMO charge solvent during cryopreservation, resulting in a change in the LSM slurry concentration. The high temperature resistant alloy used in the metal bipolar plate may be a nickel base alloy, a chromium base alloy or an iron base stainless steel. In this embodiment, 22〇5 duplex stainless steel (hereinafter referred to as 2205DSS) is used as the material of the metal bipolar plate, and the thermal expansion coefficient (TEC) of the general high temperature resistant alloy is generally used.

Client's Docket No. : 0950089 1〇 TT's Docket No : 0912-A50929-TW/Draft-Final/Chlin 1-335305 高於LSMO,因此耐高溫合金與LSMO熱膨脹係數的差異 不可太大,範圍約10 X 10_6/°C〜20 X 1(T6/°C,避免燒結 過程使LSMO保護塗層破裂,各材料的成分與熱膨脹係 數如表1所示。 表1試驗材料的化學成分(wt%)與熱膨脹係數 I I I I I Ύνη~I 77TT7r6~7v^T" 材料 Mn Ni Cr Mo Fe TEC ax (xlO'6/°C) 30〇C~1200〇C 2205DSS 1.46 5.20 22.73 2. 83 Bal. 18. 048 430SS 0.48 - 15.97 - Bal. 15.569 LSMO - - - - - 12.259Client's Docket No. : 0950089 1〇TT's Docket No : 0912-A50929-TW/Draft-Final/Chlin 1-335305 Higher than LSMO, so the difference between the high temperature alloy and LSMO thermal expansion coefficient is not too large, the range is about 10 X 10_6/ °C~20 X 1 (T6/°C, avoiding the sintering process to break the LSMO protective coating. The composition and thermal expansion coefficient of each material are shown in Table 1. Table 1 Chemical composition (wt%) and thermal expansion coefficient IIIII of the test material Ύνη~I 77TT7r6~7v^T" Material Mn Ni Cr Mo Fe TEC ax (xlO'6/°C) 30〇C~1200〇C 2205DSS 1.46 5.20 22.73 2. 83 Bal. 18. 048 430SS 0.48 - 15.97 - Bal . 15.569 LSMO - - - - - 12.259

將LSMO漿料塗佈在2205DSS表面上,塗佈方式沒 有限制,可採用刷塗、浸鍍或網版印刷等方式,保護層的 厚度控制在5〜100 μπι’我們測試低於1 μιη的LSMO保護 層,並不足於保護合金底材,太厚會阻礙金屬雙極板的電 流傳導,因此保護層的厚度較佳是控制在20〜80 μιη,最 佳是控制在20〜60 μηι。本實施例採用網版印刷塗覆LSMO 漿料,塗層厚度可以由網版控制,且塗層分佈也較均勻, 網版選用60 mesh的網布,塗佈感光乳劑的厚度30 μιη, 網印後試片(以下皆簡稱2205LSM)放置烤箱以130°C烤乾 使漿料溶劑揮發。烤乾試片放置於高溫氣氛爐進行燒結, 利用機械幫浦抽出爐内的空氣,再通入惰性氣氛進爐内。 本實施例採用N2氣氛保護2205DSS,避免高溫燒結使合 金底材表面產生大量氧化物。2205LSM在1100°C溫度燒 結1.5小時,升/降溫速率是100°C/hr,升溫過程中在400 °C停留1小時去除結合劑(debinder)。 燒結結果請參閱『第3圖』所示,係本第1實施例之The LSMO slurry is coated on the surface of 2205DSS. The coating method is not limited. It can be brushed, immersed or screen printed. The thickness of the protective layer is controlled at 5~100 μπι'. We test LSMO below 1 μηη. The protective layer is not sufficient to protect the alloy substrate. Too thick will hinder the current conduction of the metal bipolar plate. Therefore, the thickness of the protective layer is preferably controlled at 20 to 80 μm, and the optimum is controlled at 20 to 60 μm. In this embodiment, the LSMO slurry is coated by screen printing, the thickness of the coating can be controlled by the screen, and the coating distribution is relatively uniform. The screen is made of 60 mesh mesh, and the thickness of the coated emulsion is 30 μιη, screen printing. The test piece (hereinafter referred to as 2205LSM) was placed in an oven and baked at 130 ° C to evaporate the slurry solvent. The baked test piece is placed in a high-temperature atmosphere furnace for sintering, and the air in the furnace is extracted by a mechanical pump, and then introduced into the furnace through an inert atmosphere. In this embodiment, the 2205DSS is protected by an N2 atmosphere to avoid high-temperature sintering to produce a large amount of oxide on the surface of the alloy substrate. The 2205LSM was sintered at a temperature of 1100 ° C for 1.5 hours, the rate of rise/fall was 100 ° C / hr, and the binder was removed at 400 ° C for 1 hour during the temperature rise. The sintering result is shown in Fig. 3, which is the first embodiment.

Client’s Docket No. : 0950089 TT's Docket No : 0912-A50929-TW/Draft-Final/Chlin 11 1-335305Client’s Docket No. : 0950089 TT's Docket No : 0912-A50929-TW/Draft-Final/Chlin 11 1-335305

SEM橫截面圖。如圖所示,層10在1100°C燒結1.5小時 後,其厚度約在45 μιη,經XRD與EDS鑑定分析並沒有 發現其他氧化物產生,仍然維持原有的鈣鈦礦結構。因 此,燒結後LSMO保護層具有高電子導性及化學穩定性。 在層10與層12界面間,會形成一單層緻密且薄的層11, 層11厚度約在1〜2 // m,層11經XRD與EDS鑑定分析 主要組成是Cr203與(Cr, Μη)304尖晶石相氡化物。層11 的厚度很薄,並不會明顯影響到金屬雙極板的導電性,加 上層10富有大量Μη存在,使層11容易轉變為導電性較 高的(Cr, Μη)304,且層11是很連續緻密的,可更有效的 阻礙〇2向層12擴散,有助於減緩金屬雙極板的氧化速率。 2205LSM進行800°C於空氣氣氛的氧化動力學分 析,請參閱『第4圖』所示。由圖4所見,橫軸為氧化時 間,縱軸為試片單位面積的重量增加量,曲線31遠低於 曲線30,其顯示2205DSS有LSMO保護層可以有效降低 氧化速率達2.21個數量級,因此減緩合金底材的氧化層 厚度成長,避免金屬雙極板的電阻迅速上升,使固態氧化 燃料電池的操作壽命得以延長。 2205LSM進行800°C於空氣氣氛的高溫電性量測分 析,請參閱『第5圖』所示。由圖5所示,橫軸為氧化時 間,縱轴為試片截面積的電阻改變量,曲線40於800°C 空氣氣氛500小時之高溫電阻量測,曲線40的電阻隨操 作時間的增加而增加,原因是2205DSS表面電阻較高的 氧化皮膜厚度持續成長,導致固態氧化燃料電池的發電效 率將會隨操作時間增加而下降。曲線41相較於曲線40, 其高溫電阻隨操作時間的增加而緩慢的減少,其原因是層SEM cross-sectional view. As shown in the figure, after sintering at 1100 ° C for 1.5 hours, the thickness of layer 10 was about 45 μηη, and no other oxides were found by XRD and EDS analysis, and the original perovskite structure was maintained. Therefore, the LSMO protective layer after sintering has high electron conductivity and chemical stability. Between the interface of layer 10 and layer 12, a single layer of dense and thin layer 11 is formed. The thickness of layer 11 is about 1~2 // m. The layer 11 is characterized by XRD and EDS. The main composition is Cr203 and (Cr, Μη ) 304 spinel phase telluride. The thickness of the layer 11 is very thin, and does not significantly affect the conductivity of the metal bipolar plate, and the layer 10 is rich in a large amount of ,, so that the layer 11 is easily converted into a highly conductive (Cr, )) 304, and the layer 11 It is very continuous and dense, which can more effectively hinder the diffusion of 〇2 to layer 12, which helps to slow the oxidation rate of metal bipolar plates. 2205LSM performs an oxidation kinetic analysis of 800 ° C in an air atmosphere, as shown in Figure 4. As seen from Fig. 4, the horizontal axis is the oxidation time, the vertical axis is the weight increase per unit area of the test piece, and the curve 31 is much lower than the curve 30, which shows that the 2205DSS has an LSMO protective layer which can effectively reduce the oxidation rate by 2.21 orders of magnitude, thus slowing down The thickness of the oxide layer of the alloy substrate is increased to avoid the rapid rise of the resistance of the metal bipolar plate, and the operating life of the solid oxide fuel cell is prolonged. The 2205LSM performs a high-temperature electrical measurement at 800 °C in an air atmosphere, as shown in Figure 5. As shown in Fig. 5, the horizontal axis represents the oxidation time, the vertical axis represents the resistance change amount of the cross-sectional area of the test piece, and the curve 40 is measured at a high temperature resistance of the air atmosphere of 800 ° C for 500 hours, and the resistance of the curve 40 increases with the operation time. The increase is due to the continuous growth of the oxide film thickness of the 2205DSS surface resistance, which causes the power generation efficiency of the solid oxide fuel cell to decrease with the increase of the operation time. Compared with curve 40, curve 41 has a high temperature resistance that decreases slowly with increasing operating time due to the layer

Client’s Docket No. : 095⑻89 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 12 1335305 10有效阻礙〇2向層12入侵,使層與層12界面間的 層11的厚度’並沒有隨操作時間增加而有所成長,且層 10富有大量Μη,使層11的高電阻Cr203氧化物轉變成 較低電阻(Cr,Mn)304尖晶石相氧化物,因此電阻隨操作 時間的增加而緩慢的減少。 在上述的各項實驗,在1100T:燒結的層1〇可避免 LSM◦發生分解情形,仍保持結構完整且穩定的鈣鈦礦結 構,有效隔絕02向層12入侵,防止2205DSS的高電阻 氧化皮膜迅速成長,降低了金屬雙極板的導電性。Client's Docket No. : 095(8)89 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 12 1335305 10 effectively hinders the invasion of layer 2 to layer 12, so that the thickness of layer 11 between the layer and layer 12 interface does not follow The time increases and grows, and the layer 10 is rich in Μη, transforming the high-resistance Cr203 oxide of layer 11 into a lower-resistance (Cr, Mn) 304 spinel phase oxide, so the resistance is slow as the operation time increases. Reduction. In the above experiments, at 1100T: the sintered layer 1〇 can avoid the decomposition of LSM◦, still maintain a structurally complete and stable perovskite structure, effectively insulate the invasion of 02 to layer 12, and prevent the high resistance oxide film of 2205DSS. Rapid growth reduces the electrical conductivity of metal bipolar plates.

實施例2 實施例2採用430不銹鋼(以下皆簡稱:430SS)作為 金屬雙極板材料,LSMO粉末製作方法、LSMO漿料調製 方法、LSMO塗佈方式及LSMO燒結流程皆與實施例1 相同。430SS的材料成分與熱膨脹係數,如表1所示。 燒結結果請參閱『第6圖』所示,係本第2實施例之 SEM橫截面圖。如圖所示,層i〇a在ii〇〇°c燒結1.5小 時後’其厚度約在25 μιη,經XRD與EDS鑑定分析並沒 有發現其他氧化物產生,仍然維持原有的鈣鈦礦結構,因 此’燒結後LSMO保護層具有高電子導電性及化學穩定 性。在層10a與層22界面間,形成一單層緻密且薄的層 11a,厚度約在1〜2#m,經XRD與EDS鑑定分析主要組 成是Cr2〇3與(Cr,Mn)3〇4尖晶石相氧化物。 上述結果與實施例1類似,所以同樣地實施例2在 ll〇〇°C燒結的層l〇a可避免LSMO發生分解,仍保持結構 完整且穩定的鈣鈦礦結構,有效隔絕02向層22入侵,防 止430SS的高電阻氧化皮膜迅速成長,降低了金屬雙極板Example 2 In Example 2, 430 stainless steel (hereinafter abbreviated as: 430SS) was used as the metal bipolar plate material, and the LSMO powder production method, the LSMO slurry preparation method, the LSMO coating method, and the LSMO sintering process were all the same as in Example 1. The material composition and thermal expansion coefficient of 430SS are shown in Table 1. The sintering result is shown in Fig. 6 and is a SEM cross-sectional view of the second embodiment. As shown in the figure, the layer i〇a is sintered at ii〇〇°c for 1.5 hours, and its thickness is about 25 μm. It has not been found by XRD and EDS to find other oxides and still maintain the original perovskite structure. Therefore, the 'LSMO protective layer after sintering has high electron conductivity and chemical stability. Between the layer 10a and the layer 22 interface, a single layer of dense and thin layer 11a is formed, and the thickness is about 1~2#m. The main components of the identification by XRD and EDS are Cr2〇3 and (Cr,Mn)3〇4. Spinel phase oxide. The above results are similar to those of the embodiment 1, so that the layer l〇a sintered in the ll 〇〇 °C of the embodiment 2 can prevent the decomposition of the LSMO, and maintain the structurally intact and stable perovskite structure, effectively isolating the 02 layer 22 Invasion prevents the high-resistance oxide film of 430SS from growing rapidly and reduces the metal bipolar plate

Client’s Docket No. : 0950089 1 3 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 1-335305 的導電性。 實施例3 實施例3採用2205DSS作為金屬雙極板材料,LSMO 粉末製作方法、LSMO漿料調製方法及LSMO塗佈方式皆 與實施例1相同。此實施例的2205LSM改為1000°C溫度 N2氣氛燒結2小時,升/降溫速率是100°C/hr,升溫過程 中在400°C停留1小時去除結合劑(debinder)。Client’s Docket No. : 0950089 1 3 TT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 1-335305 Conductivity. Example 3 In Example 3, 2205DSS was used as the metal bipolar plate material, and the LSMO powder production method, the LSMO slurry preparation method, and the LSMO coating method were the same as in the first embodiment. The 2205LSM of this example was changed to a 1000 ° C temperature N2 atmosphere for 2 hours, the rate of rise/fall was 100 ° C / hr, and the binder was removed at 400 ° C for 1 hour during the temperature rise.

燒結結果請參閱『第7圖』所示,係本第3實施例之 SEM橫截面圖。如圖所見,層10b在1000°C燒結2小時 後,其厚度約在30 μιη,經XRD與EDS鑑定分析並沒有 發現其他氧化物產生,仍然維持原有的鈣鈦礦結構。因 此,燒結後LSMO保護層具有高電子導電性及化學穩定 性。在層1 Ob與層12b界面間,形成一單層敏密且薄的層 lib,厚度約在1〜2/i m,經XRD與EDS鑑定分析主要組 成是Cr203與(Cr, Mn)3〇4尖晶石相氧化物。 上述結果與實施例1類似,所以同樣地實施例3在 l〇〇〇°C燒結的層l〇b可避免LSMO發生分解,仍保持結構 完整且穩定的鈣鈦礦結構,有效隔絕〇2向層12b入侵, 防止2205的高電阻氧化皮膜迅速成長,降低了金屬雙極 板的導電性。但因為燒結溫度降低,層l〇b的燒結結合強 度較小,所以LSMO在研磨拋光過程有輕微脫落現象, 為此可推斷更低於1000°C燒結LSMO,並無法使LSMO 燒結起來,因為考慮可能使用不同高溫爐燒結及不同熱電 偶量測温度,燒結溫度可接受±50°C的差異,因此LSMO 的理想燒結溫度約950〜1150°C。而燒結時間1〜3小時都 是合理的範圍。The sintering result is shown in Fig. 7, which is a SEM cross-sectional view of the third embodiment. As can be seen, after the layer 10b was sintered at 1000 ° C for 2 hours, its thickness was about 30 μηη, and no other oxides were found by XRD and EDS analysis, and the original perovskite structure was maintained. Therefore, the LSMO protective layer after sintering has high electron conductivity and chemical stability. Between the layer 1 Ob and the layer 12b interface, a single layer of dense and thin layer lib is formed, and the thickness is about 1~2/im. The main components of the identification by XRD and EDS are Cr203 and (Cr, Mn)3〇4. Spinel phase oxide. The above results are similar to those of the first embodiment, so that the layer l〇b sintered in the case of the third embodiment can avoid the decomposition of the LSMO and maintain the structurally intact and stable perovskite structure, effectively separating the two directions. The layer 12b invades to prevent the rapid growth of the high-resistance oxide film of 2205 and reduce the conductivity of the metal bipolar plate. However, because the sintering temperature is lowered, the sintering bond strength of the layer l〇b is small, so the LSMO has a slight shedding phenomenon during the grinding and polishing process. Therefore, it can be inferred that the LSMO is sintered below 1000 ° C, and the LSMO cannot be sintered because of consideration. It is possible to use different high temperature furnace sintering and different thermocouples to measure the temperature. The sintering temperature can be ±50 °C, so the ideal sintering temperature of LSMO is about 950~1150 °C. The sintering time of 1 to 3 hours is a reasonable range.

Client’s Docket No. : 0950089 XT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 14 Γ335305 比較例1 比較例1採用2205DSS作為金屬雙極板材料,lSMO 粉士製作方法、LSM0漿料調製方法及lsmo塗佈方式皆 與實施例1相同。此比較例1的2205LSM改為12〇〇。(:温 度N2氣氛燒結2小時,升/降溫速率是l〇(rC/hr,升溫過 程中在4ο〇ΐ停留1小時去除結合劑(debinder)。Client's Docket No. : 0950089 XT's Docket No : 0912-A50929-TW / Draft-Final / Chlin 14 Γ335305 Comparative Example 1 Comparative Example 1 uses 2205DSS as a metal bipolar plate material, lSMO powder production method, LSM0 slurry preparation method and The lsmo coating method was the same as in Example 1. The 2205LSM of this Comparative Example 1 was changed to 12〇〇. (: The temperature was sintered in a N2 atmosphere for 2 hours, and the rate of rise/fall was 1 Torr (rC/hr), and the binder was removed at 4 〇ΐ for 1 hour during the temperature rise.

燒結結果請參閱『第8圖』所示,係本比較例1之 SEM橫戴面圖。如圖所示,層i〇c在12〇〇t:燒結2小時 後’其厚度約在20 μιη,經XRD、EDS與ΕΡΜΑ鑑定分 析 LSMO 已分解成 Lai_xSrxMnO㈣、(LakSi^MnO^、 、La2〇3與SrO等氧化物。層1 〇c與層12C界面間, 生成了多層且以不規則分佈、不同型態的層llc,其總厚 度約5〜8 μιη,經xrD、EDS與ΕΡΜΑ鑑定分析,層11c 白色部分為LaCr03,顏色較深的部分為(Mn,Cr)304尖晶 石相與Cr2〇3混合組成。 上述結果與實施例1比較’LSMO已分解成其他氧化 物二層10c的電阻相對提高且也不是穩定的結構,無法有 f Μ邑〇2向層12c入侵’並沒有明顯提升22〇5DSS的高 恤抗氧化性,使層llc的厚度在操作環境中會持續的增 加’且層lie在燒結後厚度高於實施例1的層u,因此 匕車乂例1的尚溫電阻絕對高於實施例1,且電阻會隨操作 時間的增加而增加。 八由此證明,本發明的LSMO製造方法,可避免LSMO 刀解成其他氧化物,仍保持結構完整且穩定的鈣鈦礦結 構三有效隔絕〇2向合金底材入侵,防止合金表面的高電 阻氧化皮膜迅速成長,降低了金屬雙極板的導電性,導致 了固態氧化燃料電池的發電效率及操作壽命下降。The sintering results are shown in Fig. 8 and are the SEM cross-sectional views of Comparative Example 1. As shown in the figure, layer i〇c is 12 烧结t: after sintering for 2 hours, its thickness is about 20 μηη, and it is decomposed into Lai_xSrxMnO (4), (LakSi^MnO^, La2〇) by XRD, EDS and ΕΡΜΑ. 3 and SrO and other oxides. Between layer 1 〇c and layer 12C interface, a multi-layered and irregularly distributed, different type of layer llc has a total thickness of about 5~8 μιη, which is identified by xrD, EDS and ΕΡΜΑ. The white portion of layer 11c is LaCr03, and the portion with darker color is composed of (Mn, Cr) 304 spinel phase mixed with Cr2〇3. The above results are compared with Example 1 'LSMO has been decomposed into other oxide layers 10c The resistance is relatively increased and is not a stable structure, and there is no intrusion of the layer 12c into the layer 12c. The corrosion resistance of the 22〇5DSS is not significantly improved, and the thickness of the layer llc is continuously increased in the operating environment. And the thickness of the layer lie after sintering is higher than that of the layer u of the embodiment 1, so the temperature resistance of the brake example 1 is absolutely higher than that of the embodiment 1, and the resistance increases with the increase of the operation time. Invented LSMO manufacturing method to avoid LSMO knife solution into other oxygen The material still maintains a structurally complete and stable perovskite structure. The three effectively insulates the ruthenium into the alloy substrate, prevents the high-resistance oxide film on the surface of the alloy from rapidly growing, and reduces the conductivity of the metal bipolar plate, resulting in solid oxidized fuel. The power generation efficiency and operating life of the battery are degraded.

Client’s Docket No. : 0950089 TT’s Docket No : 0912-A50929-TW/Draft-Final/Chlin 15 Γ335305 【圖式簡單說明】 第1圖為本發明LSMO保護塗層製造方法之流程圖。 第2圖為本發明LSMO粉末製作流程圖。 第3圖為本發明2205LSM於1100°C燒結1.5小時之 SEM橫截面圖。 第4圖為2205DSS與2205LSM於800°C空氣之氧化 動力學曲線。 第5圖2205DSS與2205LSM於800°C之ASR與時間 關係圖。Client’s Docket No. : 0950089 TT’s Docket No : 0912-A50929-TW/Draft-Final/Chlin 15 Γ335305 [Simplified Schematic] Figure 1 is a flow chart of the method for manufacturing the LSMO protective coating of the present invention. Figure 2 is a flow chart of the LSMO powder production of the present invention. Figure 3 is a SEM cross-sectional view of the 2205 LSM of the present invention sintered at 1100 ° C for 1.5 hours. Figure 4 shows the oxidation kinetics of air at 800 °C for 2205DSS and 2205LSM. Figure 5 is a plot of ASR versus time at 800 °C for 2205DSS and 2205LSM.

第6圖為本發明430LSM於1100°C燒結1_5小時之 SEM橫截面圖。 第7圖為本發明2205LSM於1000°C燒結2小時之 SEM橫截面圖。 第8圖為本發明2205LSM於1200°C燒結2小時之 SEM橫截面圖。 【主要元件符號說明】 10、 10a、10b、10c LSMO 層; 11、 11a、lib、11c 氧化皮膜; 12、 12b、12c 2205雙相不銹鋼; 22 430不銹鋼; 30 2205DSS氧化增重曲線; 31 2205LSM氧化增重曲線; 40 2205DSS之ASR隨時間改變曲線; 41 2205LSM之ASR隨時間改變曲線。Figure 6 is a SEM cross-sectional view of the 430LSM of the present invention sintered at 1100 ° C for 1-5 hours. Figure 7 is a SEM cross-sectional view of the 2205 LSM of the present invention sintered at 1000 ° C for 2 hours. Figure 8 is a SEM cross-sectional view of the 2205 LSM of the present invention sintered at 1200 ° C for 2 hours. [Main component symbol description] 10, 10a, 10b, 10c LSMO layer; 11, 11a, lib, 11c oxide film; 12, 12b, 12c 2205 duplex stainless steel; 22 430 stainless steel; 30 2205DSS oxidation weight gain curve; 31 2205LSM oxidation Weight gain curve; 40 2205DSS ASR changes curve with time; 41 2205LSM ASR changes curve with time.

Client’s Docket No· : 0950089 16 TT's Docket No : 0912-A50929-TW / Draft-Final ! ChlinClient’s Docket No· : 0950089 16 TT's Docket No : 0912-A50929-TW / Draft-Final ! Chlin

Claims (1)

•τι v 申請專利範圍 1 · 一種具鈣鈦礦結構保護塗層之固態氧化物燃料電 池金屬雙極板之製造方法,其包括: 製備鈣鈦礦結構La〇.7SrG.3Mn〇3粉末; 調製LaG.7Sr().3Mn03粉末成漿料; 以網版印刷方式塗佈該漿料在一金屬雙極板之表面 上,該金屬雙極板為耐高溫合金,熱膨脹係數範圍在1〇 χ 1〇'6/〇C~20 x l〇-6/°C ;• τι v patent application scope 1 · A method for manufacturing a solid oxide fuel cell metal bipolar plate with a perovskite structure protective coating, comprising: preparing a perovskite structure La〇.7SrG.3Mn〇3 powder; LaG.7Sr().3Mn03 powder is slurried; the slurry is coated on the surface of a metal bipolar plate by screen printing, the metal bipolar plate is a high temperature resistant alloy, and the thermal expansion coefficient is in the range of 1 〇χ 1 〇 '6 / 〇 C ~ 20 xl 〇 -6 / ° C; 將塗佈有漿料的該金屬雙極板進行一燒結步驟, 燒結溫度為9 5 0〜115 〇 °C,燒結時間為 結氣氮為Ar氣京^, 1〜3小時,燒 〇.7Sr〇.3Mn03 保護 形成5〜100/zm之鈣鈦礦結構的。 層在該金屬雙極板表面。The metal bipolar plate coated with the slurry is subjected to a sintering step at a sintering temperature of 950 to 115 〇 ° C, and the sintering time is a gas of nitrogen gas of Ar gas, 1 to 3 hours, and burned. 7Sr 〇.3Mn03 protects the formation of a 5~100/zm perovskite structure. The layer is on the surface of the metal bipolar plate. 1717
TW096100524A 2007-01-05 2007-01-05 The metallic bipolar plate of solid oxide fuel cell with perovskite protective coating and method of manufacturing thereof TWI335305B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096100524A TWI335305B (en) 2007-01-05 2007-01-05 The metallic bipolar plate of solid oxide fuel cell with perovskite protective coating and method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096100524A TWI335305B (en) 2007-01-05 2007-01-05 The metallic bipolar plate of solid oxide fuel cell with perovskite protective coating and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
TW200829510A TW200829510A (en) 2008-07-16
TWI335305B true TWI335305B (en) 2011-01-01

Family

ID=44818037

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096100524A TWI335305B (en) 2007-01-05 2007-01-05 The metallic bipolar plate of solid oxide fuel cell with perovskite protective coating and method of manufacturing thereof

Country Status (1)

Country Link
TW (1) TWI335305B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231136B2 (en) 2014-04-29 2016-01-05 National Central University Method for preparing perovskite film and solar cell thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621650A (en) * 2022-04-02 2022-06-14 深圳通微新能源科技有限公司 Slurry and method for making protective coating for solid oxide fuel cell electrode plate
CN117142858B (en) * 2023-10-31 2024-03-08 矿冶科技集团有限公司 Intelligent thermal control coating material with high-strength compact phase change characteristic and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231136B2 (en) 2014-04-29 2016-01-05 National Central University Method for preparing perovskite film and solar cell thereof

Also Published As

Publication number Publication date
TW200829510A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Jiang et al. (La0. 75Sr0. 25)(Cr0. 5Mn0. 5) O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells
Ishihara et al. Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film
Molin et al. Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures
JP5762295B2 (en) New materials and structures for low temperature SOFC
Wang et al. Electrochemical characteristics of nano-structured PrBaCo2O5+ x cathodes fabricated with ion impregnation process
JP4971187B2 (en) Method for controlling shrinkage and porosity during sintering of multilayered structures.
JP5591526B2 (en) Solid oxide cell and solid oxide cell stack
Fu et al. An efficient ceramic-based anode for solid oxide fuel cells
Sengodan et al. Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution
Xin et al. Development of the spinel powder reduction technique for solid oxide fuel cell interconnect coating
Park et al. Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte
Montero et al. Comparative study of perovskites as cathode contact materials between an La0. 8Sr0. 2FeO3 cathode and a Crofer22APU interconnect in solid oxide fuel cells
AU778854B2 (en) Method of fabricating an assembly comprising an anode-supported electrolyte, and ceramic cell comprising such an assembly
Chen et al. Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells
JP5780656B2 (en) Solid electrolyte membrane, fuel cell, and fuel cell
JP2016533017A (en) Metal-supported solid oxide fuel cell
JP2016533017A5 (en)
Shong et al. Effects of lanthanum-based perovskite coatings on the formation of oxide scale for ferritic SOFC interconnect
Khan et al. Synthesize and characterization of ceria based nano-composite materials for low temperature solid oxide fuel cell
KR20140048738A (en) Cathode composite for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
Lenka et al. Evaluation of La0. 75Sr0. 25Cr0. 5Mn0. 5O3 protective coating on ferritic stainless steel interconnect for SOFC application
Wang et al. Effects of (LaSr)(CoFeCu) O3− δ cathodes on the characteristics of intermediate temperature solid oxide fuel cells
Zhang et al. (La, Sr)(Ti, Fe) O3− δ perovskite with in‐situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
Mohamed et al. The structural, thermal and electrochemical properties of MnFe1− x-yCuxNiyCoO4 spinel protective layers in interconnects of solid oxide fuel cells (SOFCs)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees