TWI334256B - Power factor correction circuit and method of varying switching frequency - Google Patents

Power factor correction circuit and method of varying switching frequency Download PDF

Info

Publication number
TWI334256B
TWI334256B TW093110996A TW93110996A TWI334256B TW I334256 B TWI334256 B TW I334256B TW 093110996 A TW093110996 A TW 093110996A TW 93110996 A TW93110996 A TW 93110996A TW I334256 B TWI334256 B TW I334256B
Authority
TW
Taiwan
Prior art keywords
current
voltage
power factor
input
correction circuit
Prior art date
Application number
TW093110996A
Other languages
Chinese (zh)
Other versions
TW200505137A (en
Inventor
Joel Turchi
Original Assignee
Semiconductor Components Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Components Ind filed Critical Semiconductor Components Ind
Publication of TW200505137A publication Critical patent/TW200505137A/en
Application granted granted Critical
Publication of TWI334256B publication Critical patent/TWI334256B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Description

1334256 九、發明說明: 【發明所屬之技術領域】 —般而言,本發明係與積體電路有關,更特_ + ^ 與積體功率因素修正電路有關。 【先前技術】1334256 IX. Description of the invention: [Technical field to which the invention pertains] In general, the present invention relates to an integrated circuit, and more specifically _ + ^ relates to an integrated power factor correction circuit. [Prior Art]

、J "千囚素,㈡_H 僅在接近其峰值電壓位準(而非在整個循環中)時才自六^ (alternating current ; AC)幹線汲取電流。 又"丨 cq々既定配 ..周路中的所有用戶之電壓峰值均發生在 間,其總六女 果為使網路之發電機在電壓峰值時負 /…·" W电流,而在| 他時間則電流很小或無電流。該負載 ,、 失真、三相配電網路中的+線電流偏高、二=料 作之裝置的可能故障。為避免線路失真,地== 司被迫擴大其配電網路,因而需要較大的資金投人 ,某些政府正嘗試藉由要求系統製造商在—些電 併入功率因素修正(pFc)來緩解該 T'· IEC1000-3-2^iA^ . 碭例如,歐洲的 2規4要求在照明系統以及某些其他電氣穿置 之:源中具有咖,通常由PFC電路實現,該等,= 遂大於幹線頻率之頻率經由—線圈而電 隨後經由一蛆执_ 1 计深电流’亚 建立一受到進ΓΓ 線圈電流釋放至一電容器中,以 v調整之直流(direci current ;DC)供瘅泰麻 次系統供電。電流交換受到控制,以致绫 流之平岣值鱼 Λ级線圈電 /、幹線電壓成比例,即同相並實質 弦^方法所得之功率因辛為0 995戈更大/貝上為正 瓦句次更大,而以1.0為理想 9l803.doc 1334256 值。 先前的PFC電路之一主要部分在一連續導電模式下運 作,其中在先月ίι循環之線圈電流釋放至零之前引發一新的 交換循環。連續導電模式P F C系統需要—高性能線圈以及一 具有快速恢復時間的阻擋二極體以維持有效的功率轉換。 然而,高性能線圈及阻擋二極體的成本較高,從而增加了 連續模式PFC糸統之製造成本。此外,此等系統通常以一固 定交換頻率運作,因而產生一高峰值能量,其需要一昂貴 的濾波器以抑制所造成之電磁干擾 interference ; EMI)。 其他PFC系統在一臨界或邊界導電模式下運作其中在 線圈電流剛好達到零時引發_新的交換循環^界導電模 式電路提供高的功率因f ’但其在較寬之交換頻率範圍内 運作且而要複雜而昂貴的濾波器以抑制EM〗。此外’在 -力率條件下,父換頻率很高,以致pFC電路中的傳播延遲 使可達到的功率因素降低。 ,:他PFC電路在—非連續模式下運作,纟中在每一交換 :衣中的時間週期内線圈電流可以衰減至零。可使此等 先以-m定㈣進行交換,以縮小贿頻譜並允許使用 乍^EMim 1而,與連續導電模式電路相似, 此等系統以一單_瓶.玄·立+古丨欠,士 頻辜產生问峰值位準之輻射能量,其即 使以窄頻帶渡波器仍可能難以抑制。 、 因而,雪i — 士 一 、 在—党控範圍内進行交換的PFC電路及方 +以減少—電氣系統之EMI濾波成本。 9l803.doc 1334256 【發明内容】 圖中具有相同代號的元件擁有類似功能。 圖1為一功率因素修正(PFC)電路1〇〇之示意圖該電路用 於修正一交流(AC)幹線的功率因素,該幹線在一正弦Ac電 壓VAC下運作並向一負載28提供一負載電流Il〇ad。pFc電 路1〇〇由一在一非連續模式下運作且其供應電壓Vcc=i2 〇 伏特之PFC控制電路10控制,並包括一電磁干擾(emi)濾波 态15、一電容器19、一二極體橋2〇、電阻器“至以及“、 一電感器或線圈25、一阻擋二極體26以及一輸出電容器27。 PFC私路1〇〇在一輸出節點3〇處產生一直流(dc)輸出電壓 V〇ut 0 【實施方式】 般而5,PFC電路1〇〇藉由在—輸入節點32處修正功率 因素而向AC幹線提供-高功率因素,該節點在一藉由對 VAC整流而取得之輸人電壓Vin下運作。實際上,pFc電路 1〇0使用回授以在節點32與橋的負端子之間產生—電阻 負載,其在圖1之具體實施例中於接地電位下運作。由此, 流經節點32且因此流經AC幹線之電流平均值與v…同相。 特定言之,PFC電路1〇〇係用作—升高交換調整器,其中 電阻器16至17係用作-分麼器以建立-提升至高於VAC峰 ,位準之位準的¥贿值。在—具體實施例中,當VAC的值 々為—百一十伏特均方根(rootmean-square ;RMS)且頻率約 為五十赫料,PFC電路⑽所產生之輸出電❹謝值約為 四百伏特DC。在VAC的值約為—百—十伏特均方根(RMS) 9t803.doc Ϊ334256 且V〇ut之頻率約為六十赫茲的某些地理區域,pFC電路1 〇〇 可產生之V0UT值約為二百三十伏特〇(:。可選擇pFc電路 組件之尺寸、崩潰電壓等使得將ν〇υτ設定為約四百伏特dc 的系統可在世界的幾乎任何幹線上運作。該等系統稱為通 用幹線系統。在大多數地區,VAC的一般範圍約為正負百 分之二十。 在一替代性具體實施例中,PFC電路丨〇〇係配置為將—功 率因素修正功能與一電壓調整器組合在一單級中,其產生 之V0UTW電壓低於峰值VAC電壓。例如,可選擇電阻器16 至17,使得PFC電路100提供位準為例如5伏特的 EMI濾波器15為一低通濾波器,其通過VAC之低頻成分, 而抑制由PFC電路100產生的高頻交換信號。在—具體實施 例中,EMI濾波器1 5係配置為抑制在一千赫茲以上之信號 成分。 二極體橋20為一標準全波橋整流器,其對線路電壓vac 進行整流並在節點32處產生一整流正弦波輸入電壓να,其 頻率為VAC頻率的兩倍或約一百赫茲、峰值約為三百—十 伏特。電容器19連接在二極體橋20的兩端以進—步減少 VAC雜訊。 線圈25的電感Lm—般為loo.o微亨,並具有一低等效串聯 電阻以進行高效運作。 PFC控制電路10包括一電晶體29、一脈衝寬度調變 (pulsewidth modulated ; PWM)控制電路 31 及一振盪器 35。 PWM控制電路10自振盪器35接收一時脈信號CLK並引發 9l803.doc 1334256, J " Thousands of people, (2) _H draw current from the alternating current (AC) mains only when it is close to its peak voltage level (rather than during the entire cycle). Also "丨cq々 is always matched.. The peak voltage of all users in Zhouluzhong is in between, and the total of six female fruits is to make the network generator negative at the peak of the voltage /...·" W current, and in | At his time there is little or no current. The load, distortion, + line current in the three-phase distribution network is high, and the second is the possible failure of the device. In order to avoid line distortion, the land == division is forced to expand its distribution network, which requires a large capital investment. Some governments are trying to incorporate the power factor correction (pFc) by requiring the system manufacturer to Mitigating the T'· IEC1000-3-2^iA^. 砀 For example, the European Regulation 2 requires that in the lighting system and some other electrical wear: the source has a coffee, usually implemented by a PFC circuit, etc., =遂 is greater than the frequency of the mains frequency via the coil and then the electric current is then passed through a _1 _1 deep current 'sub-establishment of a coil current is released into a capacitor, v adjusted DC (direci current; DC) for 瘅泰Power supply system. The current exchange is controlled so that the turbulent value of the turbulent value of the fish-scale coil is proportional to the electric current and the mains voltage, that is, the power obtained by the in-phase and the substantial chord method is 0 995 ge larger / the upper watt is a positive wattage Larger, with 1.0 as the ideal 9l803.doc 1334256 value. A major portion of the previous PFC circuit operates in a continuous conduction mode in which a new switching cycle is initiated before the coil current of the previous month's cycle is released to zero. The continuous conduction mode P F C system requires a high performance coil and a blocking diode with fast recovery time to maintain efficient power conversion. However, the high cost of the high performance coil and the blocking diode increases the manufacturing cost of the continuous mode PFC system. Moreover, such systems typically operate at a fixed switching frequency, thereby producing a high peak energy that requires an expensive filter to suppress the resulting electromagnetic interference (EMI). Other PFC systems operate in a critical or boundary conduction mode where the coil current just reaches zero. The new switching cycle provides a high power factor f' but operates over a wide range of switching frequencies. It is complicated and expensive to suppress EM. In addition, under the force rate condition, the parent switching frequency is so high that the propagation delay in the pFC circuit reduces the achievable power factor. ,: His PFC circuit operates in a discontinuous mode, in which the coil current can decay to zero during each exchange: time period in the garment. This can be first exchanged with -m (four) to reduce the bribe spectrum and allow the use of 乍^EMim 1, similar to the continuous conduction mode circuit, these systems are owed by a single _ bottle. Xuan Li + ancient 丨The frequency of the ray is the peak energy level, which may be difficult to suppress even with a narrow band. Therefore, Xue Yi, Shi Yi, PFC circuit and party exchanged within the scope of party control to reduce the EMI filtering cost of the electrical system. 9l803.doc 1334256 SUMMARY OF THE INVENTION Elements having the same code in the figure have similar functions. 1 is a schematic diagram of a power factor correction (PFC) circuit for correcting the power factor of an alternating current (AC) mains that operates under a sinusoidal Ac voltage VAC and provides a load current to a load 28. Il〇ad. The pFc circuit 1 is controlled by a PFC control circuit 10 operating in a discontinuous mode and having a supply voltage Vcc = i2 〇 volts, and includes an electromagnetic interference (emi) filter state 15, a capacitor 19, a diode Bridge 2, resistor "to and", an inductor or coil 25, a blocking diode 26 and an output capacitor 27. The PFC private circuit generates a direct current (dc) output voltage V〇ut 0 at an output node 3〇. [Embodiment] 5. The PFC circuit 1 is modified by the power factor at the input node 32. Providing a high power factor to the AC mains, the node operates at a input voltage Vin obtained by rectifying the VAC. In effect, the pFc circuit 1 〇 0 uses feedback to create a resistive load between the node 32 and the negative terminal of the bridge, which operates at ground potential in the particular embodiment of FIG. Thus, the average value of the current flowing through node 32 and thus through the AC mains is in phase with v.... In particular, the PFC circuit 1 is used as a boost switching regulator, in which resistors 16 to 17 are used as a slave to establish a boost to a level above the VAC peak. . In a specific embodiment, when the value of VAC is —-100 volt root mean square (RMS) and the frequency is about 50 Hz, the output power of the PFC circuit (10) is approximately Four hundred volts DC. In some geographical areas where the value of VAC is approximately -100-ten volts root mean square (RMS) 9t803.doc Ϊ 334256 and the frequency of V〇ut is approximately sixty hertz, the VOUT value of the pFC circuit 1 约为 can be approximately Two hundred and thirty volts volts (: The size of the pFc circuit component can be selected, the breakdown voltage, etc., so that the system that sets ν〇υτ to about 400 volts dc can operate on almost any trunk line in the world. These systems are called universal Trunk system. In most areas, the general range of VAC is approximately plus or minus twenty percent. In an alternative embodiment, the PFC circuit is configured to combine a power factor correction function with a voltage regulator. In a single stage, the VOUTW voltage generated is lower than the peak VAC voltage. For example, resistors 16 through 17 may be selected such that the PFC circuit 100 provides an EMI filter 15 having a level of, for example, 5 volts as a low pass filter, It suppresses the high frequency switching signals generated by the PFC circuit 100 by the low frequency components of the VAC. In a specific embodiment, the EMI filter 15 is configured to reject signal components above one kilohertz. a standard full wave A bridge rectifier rectifies the line voltage vac and produces a rectified sinusoidal input voltage να at node 32 at a frequency of twice the VAC frequency or about one hundred hertz and a peak value of about three hundred to ten volts. The VAC noise is further reduced at both ends of the diode bridge 20. The inductance Lm of the coil 25 is generally loo.o micro-henry and has a low equivalent series resistance for efficient operation. The PFC control circuit 10 includes A transistor 29, a pulse width modulated (PWM) control circuit 31 and an oscillator 35. The PWM control circuit 10 receives a clock signal CLK from the oscillator 35 and triggers 9l803.doc 1334256

稱為一驅動化號V D R [ v E並開關電晶體2 9的脈衝系列。電 阻器16與17係用作一分壓器以分割輸出電壓ν〇υτ&而在一 輸入36處產生一回授信號Vfb。在一具體實施例中,pwMIt is called a drive series V D R [ v E and switches the pulse series of transistors 29. Resistors 16 and 17 are used as a voltage divider to divide the output voltage ν 〇υ τ & and generate a feedback signal Vfb at an input 36. In a specific embodiment, pwM

冬一内部產生之參考電壓進行 比較以調變vDR1VE脈衝的寬度。從而,當負載28汲取增大 的負載電流IL0AD以使電容器27放電及減少輸出電壓ν〇υτ 日守,回授電壓vFB的位準相應較低。作為回應,pWM控制電 路3 1增加VDRIVE脈衝之寬度,從而增加自線圈25向電容器 27轉移的電荷,以將V〇UT調整至其指定位準。因此,如負 載電流IL〇AD相對於VIN之頻率或約一百二十赫茲保持恆定, PWM控制電路3丨係配置為使Vdrive脈衝之寬度在一 Αχ循 環中保持恆定。在一具體實施例中,pFC控制電路1〇適於整 合在一半導體晶粒上以形成一積體電路。 電晶體29為一,經由線圈25交換線圈電流w之高電心 通道金氧半導體場效電晶體。在一具體實施例中,電晶體 29為一能夠交換峰值大於二安培的Ic〇〖l之功率電晶體。電 晶體29通常具有-大於五百微微法拉的較大閘極電容。電 晶體29顯示為與PFC控制電路1〇的其他組件一起整合在一 晶粒上,但也可作為一外部離散裝置而形成。 凡电冤,爪成分ICHG以及一放電電流 成分Idschg。電晶體29開啟的眭肋狡* > &______The reference voltage generated internally in Winter 1 is compared to modulate the width of the vDR1VE pulse. Thus, when the load 28 draws the increased load current ILOAD to discharge the capacitor 27 and reduces the output voltage ν〇υτ, the level of the feedback voltage vFB is correspondingly lower. In response, the pWM control circuit 3 1 increases the width of the VDRIVE pulse, thereby increasing the charge transferred from the coil 25 to the capacitor 27 to adjust the V〇UT to its designated level. Therefore, if the load current IL 〇 AD is kept constant with respect to the frequency of VIN or about one hundred and twenty Hz, the PWM control circuit 3 is configured such that the width of the Vdrive pulse remains constant in one cycle. In one embodiment, the pFC control circuit 1 is adapted to be integrated on a semiconductor die to form an integrated circuit. The transistor 29 is a high-core channel MOSFET that exchanges the coil current w via the coil 25. In one embodiment, the transistor 29 is a power transistor capable of exchanging Ic〇1 having a peak greater than two amps. The transistor 29 typically has a larger gate capacitance - greater than five hundred picofarads. The transistor 29 is shown integrated with a further component of the PFC control circuit 1A on a die, but can also be formed as an external discrete device. Where the electric raft, the claw component ICHG and a discharge current component Idschg.眭 狡 & * >&______

待恆定。當電晶體29關閉時, 線圈電流I c Ο IL具有^充雷f士、y V τ 心〜入电曲髖U以在線圈25中 疋時’ tchg在一 V〗N循環中保 所儲存的磁能作為放電電流 9I803.doc -10- 1334256To be constant. When the transistor 29 is turned off, the coil current I c Ο IL has a charge of 充 、, y V τ 〜 入 入 入 入 〜 〜 〜 〜 〜 〜 〜 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' t t t t t t t t t t Magnetic energy as discharge current 9I803.doc -10- 1334256

Whg自線圏25流經阻播二極體26至電容器27以在節點π 上建立輸出㈣V咖。放電電流Whg流動時持續的時間稱 為一放電週期TDSCHG ’纟根據放電電流τ⑽之峰值及v【N的 電壓位準而改變。 振盪器35係配置為一電壓控制振盪器,其具有一輸入39 以感測-來自輸人電壓VlN的輸人電流I輸人39在接地電 位附近運作’因此IlN幾乎等於%為8,其中r以為電阻器W 之電阻。由於VIN的形狀為一整流正弦波,&亦具有一整流 正弦形狀,亚因此代表V[N。一輸出提供時脈信號clk,其 頻率根據IIN而改變。在一具體實施例中,選擇Iin的幅度使 得時脈信號CLK在一小於二比一的範圍内改變,里顯著小 於臨界導電模式PFC電路之交換頻率範圍,其頻譜常涵蓋 二十比-或更大的範圍。在-具體實施例中,振遭器抑 生具有-約為四十千赫兹的標稱頻率及—自約三十千赫兹 至約五十千赫茲的範圍之CLK。 受控CLK交換頻率範圍減少在任—單個鮮之峰值麵 幸昌射,並產生一有限的EMI輻射能量譜以允許emi濾波器Η 以-較簡單且低廉的方式進行配置,從而減少pFc電路ι〇〇 之總成本。選擇CLK的標稱運作頻率使得在回應於輸入電 流IlN之其最高位準運作時’ CLK的週期仍足夠低,能夠以 -非連續模式運作PFC電路100’即對於—交換循環的一非 零部分,Ic〇IL為零之一模式。 PFC控制電路1()之交換循環由運作週期遠小於〜週期的 時脈信號CLK引發’因此在任何特定交換擔環中線圈25兩 9l803.doc 1334256 端均有一實質上恆定之電壓vIN。由此,充電電流iCHG以一 約等於v , N / L之斜率線性增加,以達到一峰值 I P E A K = T C H G * V丨N / L。類似地’放電電流I D s c H G之 斜率實質上等於(V0UT-V[N)/L ,且其持續時間Whg flows from line 25 through blocking diode 26 to capacitor 27 to establish an output (4) V coffee at node π. The time during which the discharge current Whg flows is referred to as a discharge period TDSCHG', which varies according to the peak value of the discharge current τ(10) and the voltage level of v[N. The oscillator 35 is configured as a voltage controlled oscillator having an input 39 for sensing - the input current I from the input voltage V1N is input 39 operating near the ground potential 'so the IlN is almost equal to % 8, where r Think of the resistance of resistor W. Since the shape of VIN is a rectified sine wave, & also has a rectified sinusoidal shape, which thus represents V[N. An output provides a clock signal clk whose frequency changes according to IIN. In a specific embodiment, the amplitude of Iin is selected such that the clock signal CLK changes within a range of less than two to one, which is significantly less than the switching frequency range of the critical conduction mode PFC circuit, the spectrum of which often covers twenty to - or more Large range. In a particular embodiment, the oscillator suppresses a nominal frequency of - about forty kilohertz and - CLK ranging from about thirty kilohertz to about fifty kilohertz. The controlled CLK switching frequency range is reduced in the singular-single peak-to-peak and produces a finite EMI radiance energy spectrum to allow the emi filter 配置 to be configured in a simpler and less expensive way, thereby reducing the pFc circuit. The total cost. The nominal operating frequency of CLK is selected such that the period of CLK is still low enough in response to its highest level of operation of input current I1N, capable of operating PFC circuit 100' in a non-continuous mode, ie, a non-zero portion of the switching cycle , Ic〇IL is one of the modes. The switching cycle of the PFC control circuit 1 () is initiated by the clock signal CLK whose operating period is much less than ~ cycle. Thus, the coil 25 has a substantially constant voltage vIN in any particular switching ring. Thus, the charging current iCHG is linearly increased by a slope approximately equal to v, N / L to reach a peak value I P E A K = T C H G * V 丨 N / L. Similarly, the slope of the 'discharge current I D s c H G is substantially equal to (V0UT-V[N)/L and its duration

Tdschg=L*Ipeak/(V〇ut-V〖n)。因此’ ICCML不為零時的總時間 如下可得: 1 )Tcoil=Tchg+Tdschg~L*Ipk·-- 0 ^IN OUT ~^In)Tdschg=L*Ipeak/(V〇ut-V〖n). Therefore, the total time when ICCML is not zero is as follows: 1) Tcoil=Tchg+Tdschg~L*Ipk·-- 0 ^IN OUT ~^In)

因此線圈電流Icoil流動時作為一三角波,其在一 CLK週 期TcLK期間的平均值Ic〇IL CLK如下: 2)Ic〇[L_clk=^.(Z^Therefore, the coil current Icoil flows as a triangular wave whose average value Ic 〇 IL CLK during a CLK period TcLK is as follows: 2) Ic 〇 [L_clk = ^. (Z^

lCLK ^(tchg*Dcycle) 其中 Dcycle-(Tchg+Tdschg)/Tclk 代表在每一 CLK 週期 TcLK中非零線圈電流的負載循環《當平均線圈電流j COIL_CLK. 跟隨vIN的整流正弦形狀時(發生在Tchg*Dcycle為恆定時) ’實現一高功率因素。lCLK ^(tchg*Dcycle) where Dcycle-(Tchg+Tdschg)/Tclk represents the duty cycle of the non-zero coil current in TcLK per CLK cycle "When the average coil current j COIL_CLK. follows the rectified sinusoidal shape of vIN (occurs in When Tchg*Dcycle is constant) 'Achieve a high power factor.

由於負載電流IloaM1定時充電時間Tchg為恆定,為了保 持乘積TCHG*DCYCLE恆定並實現一高功率因素,振盪器35改 變CLK之交換頻率Fsw以維持Dcycle實質上恆定。在輸入電 屋vIN之-週期期間的平均輸人功率<1%>由等式外给出, 3)<p1N>=i^*(TcHG*DcYCLE), 其中VACRMS為線路電壓VAC之均方根值。當負載電 I:怪定時’ PFCf路⑽運作時平均輸人功㈣以保 !·亙疋*MVagrms&l為怪^,Μ的負載條件造成乘 9l803.doc -12- 1334256 4)(Tchg*DCycle)=^1^>Since the load current IloM1 timing charge time Tchg is constant, in order to keep the product TCHG*DCYCLE constant and achieve a high power factor, the oscillator 35 changes the exchange frequency Fsw of CLK to maintain Dcycle substantially constant. The average input power during the period of the input electric house vIN is <1%> is given by the equation, 3) <p1N>=i^*(TcHG*DcYCLE), where VACRMS is the line voltage VAC Root mean square value. When the load power I: strange timing 'PFCf road (10) operation, the average input power (four) to protect! · 亘疋 * MVagrms & l for the strange ^, Μ load conditions caused by 9l803.doc -12- 1334256 4) (Tchg * DCycle)=^1^>

^lACRMS 實現高功#因素所需的交 亦為恆定。自該等關係可見 換頻率F s w由下式給出: 5)F^w=Jlh*<p^ ^〇υτ-Κ, 〇The intersection required for ^lACRMS to achieve the High Power # factor is also constant. From these relationships, the change frequency F s w is given by: 5) F^w=Jlh*<p^ ^〇υτ-Κ, 〇

V~acrms *T2chg V 因此,當交換頻率Fsw與輸出電壓νουτ及瞬時整流輸入電 壓ν〖Ν之間的差值成比例時,PFC電路1〇〇V~acrms *T2chg V Therefore, when the switching frequency Fsw is proportional to the difference between the output voltage νουτ and the instantaneous rectified input voltage ν, the PFC circuit 1〇〇

禪近一的PFC 運作。實際上,在所述穩態條件下,%受到調整,因而 保持恆定,從而等式5)可簡化為: 6)Fsw=Ki*(K2-VIN) > T(:HG以致 時。為實 其中2^%了>常數,Κ2=ν〇υι^調整配置調節 = 在一既定<P!n>&VAC運作點 現一尚功率因素,CLK頻率Fsw有效地受到Vin之調變,以 致Fsw在VIN峰值附近時具有一較低值’而在接近零伏特 時具有-較高值。為實現此項,振盪器35具有在接地電位 附近運作之輸入,其一用於以藉由電阻器18建立的—感測 電流Ιιν來感測輸入電壓VlN,另一用於以藉由電阻器判建立 之一電流I0UT來感測輸出電壓v〇UT。振盪器35自1〇⑽中減去 I,N以取得一差值電流,用於建立CLK週期TcLK的瞬時值, 並由此得到交換頻率Fsw。 PFC電路100之詳細運作可藉由參考圖2的時序圖而加以 說明,該圖顯示在所選交換週期(Τ4·τ〇)與(Τ9 Τ5)期間輸入 電壓vIN、線圈電流Ic()1L、驅動信號ν_Ε及時脈信號clk 之波形,各項之持續時間均在約五十微秒的範圍内且 9l803.doc -13- 1334256 (丁 9-Τ5)>(Τ4_Τ0)。圖2說明二咖循環或週期τ 、 間TO持續至時間Τ4之第—週期、 eL*K 0' „3 自時間Τ5持續至時Zen near one PFC operates. In fact, under the steady-state conditions, % is adjusted and thus remains constant, so Equation 5) can be simplified as: 6) Fsw = Ki * (K2-VIN) > T (: HG for the time. Among them, 2^%> constant, Κ2=ν〇υι^ adjust configuration adjustment= At a given <P!n>&VAC operating point, there is a power factor, and the CLK frequency Fsw is effectively modulated by Vin. Thus, Fsw has a lower value near the peak of VIN' and a higher value near zero volts. To achieve this, oscillator 35 has an input that operates near ground potential, one of which is used to The sensor 18 establishes a sense current Ιιν to sense the input voltage VlN, and the other is used to sense the output voltage v〇UT by establishing a current IOUT by a resistor. The oscillator 35 is subtracted from 1〇(10). I, N to obtain a difference current for establishing an instantaneous value of the CLK period TcLK, and thereby obtaining the switching frequency Fsw. The detailed operation of the PFC circuit 100 can be explained by referring to the timing chart of FIG. 2, which shows Input voltage vIN, coil current Ic()1L, drive during selected switching cycles (Τ4·τ〇) and (Τ9 Τ5) No. ν_Ε The waveform of the pulse signal clk, the duration of each item is in the range of about fifty microseconds and 9l803.doc -13 - 1334256 (Ding 9-Τ5)>(Τ4_Τ0). Figure 2 illustrates the two coffee cycle Or period τ, interval TO lasts to time Τ4 - period, eL*K 0' „3 from time Τ5 lasts until

Β 之第一車父長週期。儘管輸入電壓V 由^ 4 1N作為—整流正弦曲 線而改ICLK週期仍遠短於V[N週期。因 ^ Βα ,. 与ί更好地 況月本令明’顯示VlN時使其在各週Μ為值定,但盆在第 一週期中的值vIN1低於第二週期中之值ViN2。 /、 假定起初時’剛好在時間το之前’ CLK〜[VE均為邏 輯低位準’而電晶體29與阻擔二極體26均關閉,因而 Icoil = 0.0安培。 在τ間TO處,s a丁脈仏號CLK自一邏輯低位準轉換為一 邏輯高位準時,一第一交換循環開始,以引發—驅動信號 VDrivE之脈衝。電晶體29開啟,用充電電流以一線性增 加的速率VIN/L25對線圈25充電,由於電晶體29兩端電壓近 於令,因此整個電壓vIN有效地施加在線圈25兩端。因而, 充電電流ICHG以與V[N的瞬時值以成比例之速率增加。 在時間το至τι之間隔期間,輸入信號Vin具有一實質上恆 定之電壓值V〖NI,因此充電電流1(:叫線性增加,直至時間TI, 此時其達到一峰值iPKI=VlN丨*Tchg/L25 0 在時間T1處’ vDRIVE自一高邏輯位準轉換為一低邏輯位 準’關閉電晶體29以允許儲存在線圈25中的能量經由阻擋 二極體26轉移至電容器27 ^在阻擋二極體26兩端下降之電 麼與一電壓(V〇ut-V丨N)相比之下較小,因而可認為(v0UT-V1NI) 施加在線圈25兩端,且iDSCHG# 一速率(V〇UT_v_)/L25線性減 小’直至其在時間T3=Tl+IPK1*L25/(VOUT-ViN1)時放電至零。 9l803.doc 14 1334256 在時間T2處,時脈信號CLK自~古a世 一 同位準重設至—低位準, 这不引起驅動信號Vdrive電壓位準之改變 自時間T3至時間T4,Ic〇lL在一非 非導電週期内保持為 此為一 PFC電路100非連續運作模式之特徵。 在時間T4處,第-交換循環結束,而另_ 隨後可能有數個CLK交換循環。 、&汗始。 在時間T5處,指定的第二循環開 了舟有低至高CLK 及vDRIVE轉換,但其輸入電壓VtN在—較高的有效電壓值 V,N2>V1N1下運作嘈高的VlN2值引起充電電流Ichg以較快之 速率經由線圈25及電晶體29而線性增加,並在時間T6時達 到一高於峰值Ιρκι之峰值IpK2=ViN2*Β The first car parent cycle. Although the input voltage V is taken as ^ 4 1N as the rectified sinusoidal curve, the ICLK period is still much shorter than V [N cycles. Since ^ Βα , . and ί are better than the month of the month, when VlN is displayed, it is valued in each week, but the value vIN1 of the basin in the first cycle is lower than the value ViN2 in the second cycle. /, Assume that the initial time 'just before time το' CLK~[VE is a logic low level and the transistor 29 and the blocking diode 26 are both off, thus Icoil = 0.0 amps. At the TO between τ, the s a pulse CLK is converted from a logic low level to a logic high level, and a first switching cycle is started to initiate a pulse of the drive signal VDrivE. The transistor 29 is turned on, and the coil 25 is charged with a charging current at a linearly increasing rate VIN/L25. Since the voltage across the transistor 29 is close to the command, the entire voltage vIN is effectively applied across the coil 25. Thus, the charging current ICHG increases at a rate proportional to the instantaneous value of V[N. During the interval of time το to τι, the input signal Vin has a substantially constant voltage value V [NI], so the charging current 1 (: is called linear increase until time TI, at which time it reaches a peak iPKI = VlN 丨 * Tchg /L25 0 At time T1 'vDRIVE transitions from a high logic level to a low logic level' turns off transistor 29 to allow energy stored in coil 25 to be transferred via blocking diode 26 to capacitor 27 ^ The voltage drop across the body 26 is small compared to a voltage (V〇ut-V丨N), so it can be considered that (v0UT-V1NI) is applied across the coil 25, and the iDSCHG# rate (V) 〇UT_v_)/L25 linearly decreases' until it is discharged to zero at time T3=Tl+IPK1*L25/(VOUT-ViN1). 9l803.doc 14 1334256 At time T2, the clock signal CLK is from ~ ancient The same level is reset to the low level, which does not cause the change of the drive signal Vdrive voltage level from time T3 to time T4, and Ic〇lL remains in a non-non-conducting period for this purpose is a non-continuous operation mode of the PFC circuit 100. Characteristics: At time T4, the first-switch cycle ends, and another _ may have several CLKs Change cycle. & sweat start. At time T5, the specified second cycle has a low to high CLK and vDRIVE conversion, but its input voltage VtN operates at a higher effective voltage value of V, N2 > V1N1. The high VlN2 value causes the charging current Ichg to increase linearly at a faster rate via the coil 25 and the transistor 29, and reaches a peak above the peak Ιρκι at time T6. IpK2 = ViN2*

[LOAD[LOAD

一 J Ί 田丄I 為恆定時Tchg=(T1-T〇HT6-T5)具有—恆定值。 在時間T6處,Vdrive進行又一自高至低之轉換以停用電 晶體29 ’並允許儲存在線圈25中的磁能作為放電電流Whg 經由阻撞二極體26而轉移並儲存在電容器27上。自時間T6 至時間T8的間隔期間,在線圈_端施加_實質上怪定電 壓(V〇ut-VIN2),使搭 τ 仗件Idschg用線性方式以斜率 (V〇UT_ViN2)/L25 減少,直至其在時間 T8=T㈣PK2*L25/ (WVIN2)時放電至零。由於Vw〜,線圈電流】㈣達 較高峰值電流Ιρκ2,但以一較低速率(w〜晶5放 包田Ic〇IL放電至零日夺,_第二非導電週期在時間開始, 並持、’、至第_交換循環結束,而另—交換循環在時間π開 始0 9I803.doc !334256 在時間T7處,時脈信號CLK進行一自高至低的轉換,其 不衫響驅動信號V D R Ϊ V E之位準。 圖3為說明PFC電路100之一部分的電路圖,其包括振盪 器35之進一步細節以及電阻器18與45。振盪器35包括電流 鏡57至60、開關62至65、一時序電容器68以及一比較器69 振盪器35係配置為一電壓控制振盪器,其產生時脈信號 CLK作為一產生在一標稱或中心頻率下的脈衝系列,該頻 率與差值(V0UT-ViN)成比例受到調變。When a J Ί field 丄 I is constant, Tchg = (T1 - T 〇 HT6 - T5) has a constant value. At time T6, Vdrive performs another high to low transition to deactivate transistor 29' and allow the magnetic energy stored in coil 25 to be transferred as discharge current Whg via blocking diode 26 and stored on capacitor 27. . During the interval from time T6 to time T8, the _substantially weighed voltage (V〇ut-VIN2) is applied to the coil_end, so that the τ Id Id Idschg is linearly reduced by the slope (V〇UT_ViN2)/L25 until It discharges to zero at time T8 = T (four) PK2 * L25 / (WVIN2). Since Vw~, the coil current] (4) reaches a higher peak current Ιρκ2, but at a lower rate (w~ crystal 5 puts the field Ic〇IL discharge to zero day _, the second non-conductive period starts at time, and holds , ', to the end of the _ exchange cycle, and the other - exchange cycle starts at time π 0 9I803.doc !334256 At time T7, the clock signal CLK performs a high-to-low transition, which does not drive the drive signal VDR Figure 3 is a circuit diagram showing a portion of the PFC circuit 100, including further details of the oscillator 35 and resistors 18 and 45. The oscillator 35 includes current mirrors 57 through 60, switches 62 through 65, and a timing sequence. Capacitor 68 and a comparator 69 oscillator 35 are configured as a voltage controlled oscillator that generates a clock signal CLK as a series of pulses at a nominal or center frequency, the frequency and difference (VOUT-ViN) Proportional is modulated.

時序電容器68係連接在一時序節點7〇與接地電位之間。 容器68通常整合在與PFC控制電路1〇的其他組件相同之 晶粒上,但也可作為一外部電容器而形成。在一具體實施 例中,電容器68之值約為-百微微法拉。電容⑽按順序 由下述之電流iIM2、iIM3、IqM2& Iqm3充電與放電,以在節點 70上形成一三角或斜坡電壓。 丄開=2至65係採用由所示之時脈信號clk或—互補時脈 信號CX尺分別致動或開啟的電晶體來實施。因&,開關 與65在CLK為邏輯高位準時致動或閉合,開關㈣_ 為邏輯高位準而CLK為邏輯低位準時閉合。 比較器69係配置為一滯後比較器,其比較一建立在時序 節點上的電壓與一參考電塵、,以在其輸出上產生時 脈信號比較㈣具有提供互補時脈信號clk及极之 輸出,或^可藉由以一單獨的反 c 1禾顯不)對CLK進行 反相而得。當比較器69產生具有例如_The timing capacitor 68 is connected between a timing node 7 〇 and a ground potential. The container 68 is typically integrated into the same die as the other components of the PFC control circuit 1 ,, but can also be formed as an external capacitor. In one embodiment, capacitor 68 has a value of approximately - hundred picofarads. Capacitor (10) is charged and discharged in sequence by currents iIM2, iIM3, IqM2 & Iqm3 to form a triangular or ramp voltage at node 70. Cleavage = 2 to 65 is implemented using a transistor that is activated or turned on by the clock signal clk or the complementary clock signal CX, respectively. Because &, switch and 65 are actuated or closed when CLK is logic high, switch (4)_ is logic high and CLK is logic low. Comparator 69 is configured as a hysteresis comparator that compares a voltage established at the timing node with a reference dust to produce a clock signal comparison at its output (4) having a complementary clock signal clk and a pole output , or ^ can be obtained by inverting CLK by a single inverse c 1 . When comparator 69 is generated with, for example, _

邏輯尚位準之CLK 寺,一内部滯後電路使比較參考值減 π 印後里乂”^至一 9l803.doc 16 1334256 值(REF HYST)因此,CLK保持邏輯高位準直至^繼 放電至-低於(Vref_Vhyst)的位準,此時clk轉換為一邏輯 低位準。滞後之效果為,v—作為一在ν_(ν_ ν_τ) 之間循%之二角波而產生,如圖2所示。在—供應電壓The logic is still in the CLK temple, an internal hysteresis circuit reduces the reference value by π. After printing, the value is REF HYST. Therefore, CLK remains at a logic high level until ^ is discharged to - low. At the level of (Vref_Vhyst), clk is converted to a logic low level. The effect of hysteresis is that v- is generated as a two-dimensional wave between ν_(ν_ ν_τ), as shown in Figure 2. In-supply voltage

Vcc=12.0伏特的具體實施例中,VREF之值約為三伏特,且 vHYST之值約為—伏特,因&電壓差值(v__m的位準 約為二伏特。 電流鏡57至58包括縮放電晶體,其產生與輪人感測電流 I:N成比例或為其倍數之鏡反射電流IiMi、“、―及!⑽。 類似地’電流鏡59至60包括縮放電晶體,其產生與輸出感 測電流Ι〇υτ成比例或為其倍數之鏡反射電流1〇⑷、ι〇…及 Ι〇Μ3。 振盪态3 5之運作方式如下。假定最初時,時脈信號clk 為邏輯低位準,因此開關63及64閉合,開關62及65斷開, 且VRAMP增加而其值小於,如圖2所示。在時間丁〇處, CLK轉換至一邏輯高位準,其閉合開關62與65並斷開開關 63至64,使電容器68以電流I〇M3放電,同時以電流充電。 電流鏡57至60為比率化,因此I〇M3高於I[M2,從而電流〗〇⑷ 〃、Iim2之代數和造成—淨差值電流(ΙΟΜ:3-Ι1Μ2),其使電容写 68放電以減小Vramp2位準。 在日7間丁2處’ vRAMp達到(vREF-VHYST)之位準,此時clk 轉換至一邏輯低位準,其閉合開關63至64並斷開開關“與 65。隨後電容器68以電流I〇M2充電,並以電流I[M3放電。電 "_L I!M:3及I0M2均已縮玫使得hM:j<];〇M2,造成以一有效差值電 9l803.doc 17 1334256 流(i⑽川⑽)對電容器68進行充電。當電容器68充電至 VrAMP VREFa^·,CLK進行一低至高轉換以開始又一循環。 進v、擇電流鏡57至60的縮放或鏡反射比率,使電容 1 ^ (I〇M2'Ii^)=K3*(Vout-Vin) ^ (I〇M3-IIM2), K:4 (V0UT-VIN)分別充電與放電,其中&與&均為常數。可 見交換頻率Fsw具有如以上等式6)所示形式從而造成_接 近一之功率因素。 圖#說明PFC電路100之一部分的電路圖,其包括一替 代”體貝她例中振盪器3 5之進—步細節以及電阻器1 8。振 盈器35包括電流源δ()至81、電流鏡57至58'開關62至65、 一時序電容器68以及一比較器69。 當CZX為高且開關64閉合時,電流源8〇自供應電壓ye。向 節點70供應—充電參考電流u,而當咖為高且開關“ 閉合時電流源81向節點70供應一縮放或鏡反射放電參考電 流law2。選擇電流鏡57至58及電流源8〇至81之縮放或鏡反 射比率,使得在Μ為高時電容器68以一差值電流 (1阳fi-i丨M3)=k5*(vref-v丨Ν)充電,其中κ5為一常數並以j 差值電流(IREF2_I1M2)=K7*(VREF-VIN)放電,其中〖7為一常數。 顯然,假SVREF為V〇UT的一所需值之代表,此等等式根據 上述等式6)確定交換頻率Fsw,從而實現—接近一之 素。 *、 圖5為說明另一替代性具體實施例中振盪器^之進一步 細節的示意圖。該具體實施例具有與圖4所示具體實施例類 似的運作及結構’但比較器69為非滯後且建立L矣限 9l803.doc *18· 制時具有一限制電 ,甘过丄 1 ,、错由包括電阻器83至84與88 主⑽、一電容器85、一平方雷 、 十万電路或乘法器86、一除法電路 87及—開關90的電路而產生。 如上所不’對於一括卞沾r 、 疋的Il〇ad及TCHG,如CLK頻率Fsw 與(V〇_UT_ V[N)成比例,貝可實現高功率时。然而,如等式 )斤丁如V【N的幅度較高,貝,| Fsw的改變較大特別在峰 值1 一C〇【L電流流動的電壓峰值處。本具體實施例提供一如下 所不減少總頻率改變或抖動的電路。 電阻裔83至84係用作一分割輪入電壓Vin之分壓器,而電 合器85與電阻器83至84配合以產生一低通濾波器,其產生 、.文波貫質上為零或至少小於VIN的整流正弦波形之平均 电壓<ViNl>。在一具體實施例中,選擇電阻器83至84及電 容器85以將低通角頻率設定為約十赫茲,使得Vr實質上為 DC电壓。由於s玄低通遽波’ <V丨N1>表示VIN之平均值。 乘法器86為一標準類比乘法器電路,其計算平均電壓In a particular embodiment where Vcc = 12.0 volts, the value of VREF is approximately three volts, and the value of vHYST is approximately - volts due to & voltage difference (v__m is approximately two volts. Current mirrors 57 through 58 include scaling A transistor that produces a mirror reflection current IiMi, ", and [10) proportional to or in multiples of the wheel sensing current I: N. Similarly, the current mirrors 59 to 60 include a scaled transistor, which produces and outputs The sense current Ι〇υτ is proportional or multiplied by the mirror reflection currents 1〇(4), ι〇... and Ι〇Μ3. The oscillating state 3 5 operates as follows. Assume initially that the clock signal clk is at a logic low level. Thus switches 63 and 64 are closed, switches 62 and 65 are open, and VRAMP is increased and its value is less than, as shown in Figure 2. At time Dc, CLK transitions to a logic high level, which closes switches 62 and 65. The switches 63 to 64 are opened to discharge the capacitor 68 with the current I 〇 M3 while being charged by the current. The current mirrors 57 to 60 are ratiometric, so I 〇 M3 is higher than I [M2, and thus the current 〇 4 (4) 〃, the algebra of Iim 2 And causing - the net difference current (ΙΟΜ: 3-Ι1Μ2), which causes the capacitor to write 68 to discharge The small Vramp2 level. At the 7th interval, the 'vRAMp reaches the level of (vREF-VHYST), at which point clk switches to a logic low level, which closes the switches 63 to 64 and turns off the switch "with 65. Then the capacitor 68 is charged with current I 〇 M2, and is discharged with current I [M3. Electric "_L I! M: 3 and I0M2 have been reduced so that hM: j <]; 〇 M2, resulting in a valid difference of electricity 9l803. Doc 17 1334256 Stream (i(10)chuan(10)) charges capacitor 68. When capacitor 68 is charged to VrAMP VREFa^, CLK performs a low-to-high transition to begin another cycle. V, or current mirror 57 to 60 scaling or mirror The reflection ratio is such that the capacitance 1 ^ (I〇M2'Ii^)=K3*(Vout-Vin) ^ (I〇M3-IIM2), K:4 (V0UT-VIN) are respectively charged and discharged, where && Both are constants. It can be seen that the switching frequency Fsw has the form shown in Equation 6) above, resulting in a power factor close to one. Figure # illustrates a circuit diagram of a portion of the PFC circuit 100, which includes an alternative "body" step-by-step details of the oscillator 35 and the resistor 18. The oscillator 35 includes a current source δ() to 81, current Mirrors 57 to 58' switch 62 to 65, a timing capacitor 68 and a comparator 69. When CZX is high and switch 64 is closed, current source 8 is supplied from supply voltage ye. Supply node 70 is supplied with charging reference current u. The current source 81 supplies a scaling or mirror reflection discharge reference current law2 to the node 70 when the coffee is high and the switch is "closed." The scaling or mirror reflection ratio of the current mirrors 57 to 58 and the current sources 8 〇 to 81 is selected such that the capacitor 68 has a difference current when Μ is high (1 yang fi-i 丨 M3) = k5 * (vref - v 丨Ν) Charging, where κ5 is a constant and is discharged with a j difference current (IREF2_I1M2)=K7*(VREF-VIN), where 7 is a constant. Obviously, the false SVREF is representative of a desired value of V〇UT, which determines the switching frequency Fsw according to the above equation 6), thereby achieving - close to a factor. *, Figure 5 is a schematic diagram illustrating further details of the oscillator in another alternative embodiment. This embodiment has an operation and structure similar to that of the embodiment shown in FIG. 4, but the comparator 69 is non-hysteresis and has a limit of 9l803.doc *18· when there is a limit power, 甘1, The error is generated by a circuit comprising resistors 83 to 84 and 88 main (10), a capacitor 85, a square ray, a 100,000 circuit or multiplier 86, a dividing circuit 87 and a switch 90. As above, for Il 〇 I I 及 及 TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH TCH CLK CLK CLK CLK CLK TCH TCH TCH CLK CLK CLK CLK CLK CLK CLK CLK CLK CLK CLK CLK CLK CLK However, as the equation), the magnitude of V [N is higher, the change of F, | Fsw is larger especially at the peak value of the peak current 1 - C 〇 [L current flowing. This embodiment provides a circuit that does not reduce the overall frequency change or jitter as follows. Resistor 83 to 84 is used as a voltage divider for splitting the turn-in voltage Vin, and the combiner 85 cooperates with the resistors 83 to 84 to generate a low-pass filter which produces, the physics is zero. Or at least less than the average voltage of the rectified sinusoidal waveform of VIN <ViNl>. In one embodiment, resistors 83 through 84 and capacitor 85 are selected to set the low pass angle to about ten hertz such that Vr is substantially the DC voltage. Since s Xuan low pass chopping ' < V 丨 N1 > represents the average value of VIN. Multiplier 86 is a standard analog multiplier circuit that calculates the average voltage

VlN,之平方以產生一平方電壓Vsq=K8*<Vin1>2,其中κ8為一 常數。 除法電路87以VSQ除一參考電壓VREF,以產生一電壓 vum=VDiV=Vref/(K8*<Vini>2),其經由電阻器88耦合,以在 時脈信號CLK為低時於比較器69之一輸入處設定—Vramp 上限。當CLK為高時,開關90閉合,且VDIv為由電阻器88 至89所除的電壓’以將一 vRAMp下限建立在 VUivi=Vref/(k8*<v⑷>’-)*r89/(R88 + R89)的位準處,其中 r88 及尺89分別為電阻器88及89之電阻。 9i803.doc -19- 1334256 a 因此,交換頻率 Fsw=k9*<Vin>NVref_Vin),其中 κ9為一 #數Θ選項允4振1: ft 3 5對交換頻率改變進行限制以便 於EMI濾波。 圖6為一替代性具體實施例中pFc電路1〇〇之示意圖。該 具體實施例無需電阻器i8及其·;肖耗功率Pri8=Ii^Ri8,其令, ‘為電阻器18之電阻。因此’該具體實施例適於需要低備 用功率及小於理想值之功率因素的應用。 圖6之具體實施例以線圈電流Ic〇il之瞬時值而非輸入電 壓vIN調變交換頻率Fsw。平均而言,由於pFc電路1〇〇之功鲁 率因素修正插作,ICCHL^有一與〜同相的正弦波形。 在其經由電阻器72至二極體橋2〇的返回路徑中受到感測, 其於一節點39上在電阻器72兩端建立一電流感測電壓Vcs 以調變Fsw。在-具體實施例中,電阻器72之電阻約為〇」 歐姆’ a此當iC0IL之幅度為一安培日寺,Vcs的值約為_〇1伏 特。或者,可使用其他技術如一電流變壓器而非電流感測 電阻器72來測量IC0IL。使用線圈電流Ic〇il而非輸入電壓〜籲 以改變交換頻率Fsw係一適合連續模式或非連續模式pFc電 路、或適合-將功率因素修正與一下游電壓調整器或轉換 器組合在一單級中之具體實施例的方法。 可認為該具體實施例之功率因素低於先前說明的具體實 施例,因為iC0IL之瞬時值僅近似於Vin的整流正弦波形。儘. 管如此,該形式的功率消耗及製造成本較低,因此適於許_ 多不需最高可及功率因素之應用。在一具體實施例中,可 藉由在電阻器72兩端連接一電容而改善功率因素。選擇電 9l803.doc •20- )〇 容以渡掉高頻成分,如在VIN頻率以上的成分,以在節點39 處產生-更加理想地近似於一整流正弦波之波形。 圖7說明圖6所示具體實施例中PFC電路⑽之—部分其 包括一電阻器82、-電流源78及振盈㈣的電流㈣之進 一步細節。 所示電晶體76至77係形成為NPN雙極電晶體之_匹配或 縮放對,其射極區域按照—預定比率縮放。電流源78經由 %阳體77供應一電流Ir ,以建立一基極-射極電壓將電晶體 76之基極電極偏壓至一固定電位。 電阻器82通常係、形成為—外部電阻器,以避免在^吼流 ,時由電流感測電壓Vcs之負電位所造成的有害效應。如電 晶體76與77具有相同之射極區域比率,其各自的射極將在 實質上相等的電位下運作,因此電流Im々w成比例,因 為vcs=-r72*icoil ; isense實質上等於Imi(忽略57基極電流) 且vcs+(R82*Isense)為零,其中電阻器以之電阻為,並經 過遠擇以經由電晶體76提供—所需的取樣電流r⑽託。隨後 Im-I^^Icoa/R82 4S£nse由電流鏡“至”進行鏡反射以分別 提供微分充電及放電電流(Iref|.w與(Iref2_Imi)至如上所 述之時序節點70。 總之,本發明提供一在一非連續模式下以一固定交換脈 衝見度運作之PFC電路。該非連續運作模式允許pFC電路以 低成本之阻擋二極體製造,從而減少系統成本。一脈衝寬 度調變器與一時脈信號之轉換邊緣同步,從而產生脈衝以 建立,線圈電流的-充電週期。該線圈電流隨後在一放電 9l803.doc -21 - 丄川4256 間放電’以自一輸入信號建立一pFc輸出錢 ::產生時脈信號’使得其時脈週期長於充電及放電週: 從而確保非連續模式運作。該振具有-用於感 :PFC電路之一輸入信號的輸入,用於以一受控方式修改時 q期,⑼而使充電週期與線圈電流負載循環的乘積保持 疋因而’ PFC電路在-預定頻率範圍中交換線圈電流, 以便於用一低成本之EMI濾波器減少電磁干擾。 【圖式簡單說明】 & 圖1為一功率因素修正(PFC)電路之示意圖; 0 圖2為說明pFC電路波形之時序圖; 圖3為包括一振盪器之PFC電路一部分的示意圖; 圖4為一第一替代性具體實施例中振盪器的示意圖; 圖5為一第二替代性具體實施例中振盪器的示意圖; 圖6為一替代性具體實施例中pFC電路之電路圖;以及 圖7為另一替代性具體實施例中PFC電路之電路圖。 【主要元件符號說明】 10 ' 100 功率因素修正電路 15 濾波器 16 、 17 、 45 18 19 20 25 26 電阻器 電阻器 電容器 二極體橋 電感器 阻擋二極體 9l803.doc -22- 1334256 CLK 時脈信號 CLK 互補時脈信號 Dcycle 負載循環 FSw 交換頻率 IcHG 充電電流 Ic-HG 充電電流成分 Ic〇IL 線圈電流 Ic〇IL_CLK 平均線圈電流 Idschg 放電電流 IlMI IlM2、IlM3、 I[M4 鏡反射電流 IlN 輸入電流 Iload 負載電流 I〇Ml I〇M2、I〇M3 鏡反射電流 IpEAK 峰值電流 TO、ΊΠ、T2、T3、 T4 時間 T5、T6、T7、T8、 T9 時間 TcHG 充電週期 TcLK 時脈週期 Tdschg 放電週期 VAC 正弦交流電壓 Vcc 供應電壓 9I803.doc -24- 1334256The square of VlN, to produce a square voltage Vsq = K8 * < Vin1 > 2, where κ8 is a constant. The dividing circuit 87 divides a reference voltage VREF by VSQ to generate a voltage vum = VDiV = Vref / (K8 * < Vini > 2) which is coupled via a resistor 88 to be used in the comparator when the clock signal CLK is low. 69 One input setting - Vramp upper limit. When CLK is high, switch 90 is closed and VDIv is the voltage divided by resistors 88 through 89 ' to establish a lower limit of vRAMp at VUivi = Vref / (k8 * < v (4) > '-) * r89 / (R88 + R89), where r88 and 89 are the resistors of resistors 88 and 89, respectively. 9i803.doc -19- 1334256 a Therefore, the switching frequency Fsw=k9*<Vin>NVref_Vin), where κ9 is a #number option allows 4:1 ft 3 5 to limit the switching frequency change for EMI filtering. Figure 6 is a schematic illustration of a pFc circuit 1 in an alternative embodiment. This embodiment does not require the resistor i8 and its ?; the power consumption Pri8 = Ii^Ri8, which is 'resistance of the resistor 18. Thus, this particular embodiment is suitable for applications requiring low standby power and power factors less than ideal. The embodiment of Figure 6 modulates the switching frequency Fsw with the instantaneous value of the coil current Ic 〇 il instead of the input voltage vIN. On average, ICCHL^ has a sinusoidal waveform in phase with ~ due to the correction of the factor of the pFc circuit. Sensing is sensed in its return path through resistor 72 to diode bridge 2, which establishes a current sense voltage Vcs across resistor 72 at a node 39 to modulate Fsw. In a particular embodiment, the resistance of resistor 72 is approximately 〇 ohms. a. When the amplitude of iC0IL is one ampere, the value of Vcs is approximately _ 〇 1 volt. Alternatively, other techniques such as a current transformer instead of current sense resistor 72 can be used to measure IC0IL. Use coil current Ic〇il instead of input voltage ~ to change the switching frequency Fsw is suitable for continuous mode or discontinuous mode pFc circuit, or suitable - combine power factor correction with a downstream voltage regulator or converter in a single stage The method of the specific embodiment. The power factor of this particular embodiment can be considered to be lower than the specific embodiment previously described because the instantaneous value of iC0IL is only approximate to the rectified sinusoidal waveform of Vin. In this case, the power consumption and manufacturing cost of this form are low, so it is suitable for applications that do not require the highest power factor. In a specific embodiment, the power factor can be improved by connecting a capacitor across resistor 72. Selecting the power to dissipate high frequency components, such as components above the VIN frequency, to produce at node 39 - more ideally approximates the waveform of a rectified sine wave. Figure 7 illustrates further details of the current (four) of the PFC circuit (10) in a particular embodiment of Figure 6 including a resistor 82, a current source 78, and a surge (four). The illustrated transistors 76 through 77 are formed as a matched or scaled pair of NPN bipolar transistors whose emitter regions are scaled by a predetermined ratio. Current source 78 supplies a current Ir via % anode 77 to establish a base-emitter voltage biasing the base electrode of transistor 76 to a fixed potential. The resistor 82 is typically formed as an external resistor to avoid the detrimental effects caused by the negative potential of the current sense voltage Vcs when flowing. If transistors 76 and 77 have the same ratio of emitter regions, their respective emitters will operate at substantially equal potentials, so the current Im 々 w is proportional, since vcs = -r72 *icoil ; isense is substantially equal to Imi (ignoring 57 base current) and vcs+(R82*Isense) is zero, where the resistor is the resistor and is remotely selected to provide the desired sampling current r(10) to the via transistor 76. Then Im-I^^Icoa/R82 4S£nse is mirror-reflected by the current mirror "to" to provide differential charging and discharging currents (Iref|.w and (Iref2_Imi) to the timing node 70 as described above. In summary, this The invention provides a PFC circuit that operates in a discontinuous mode with a fixed switching pulse. This discontinuous mode of operation allows the pFC circuit to block diode fabrication at a low cost, thereby reducing system cost. A pulse width modulator The transition edge of a clock signal is synchronized, thereby generating a pulse to establish a coil current-charge period. The coil current is then discharged in a discharge 9l803.doc -21 - 丄川4256' to create a pFc output from an input signal ::Generate the clock signal' so that its clock period is longer than the charge and discharge cycles: thus ensuring discontinuous mode operation. The oscillator has - for sensing: the input of one of the input signals of the PFC circuit for modification in a controlled manner Time q, (9) keeps the product of the charge cycle and the coil current duty cycle maintained. Thus the 'PFC circuit exchanges the coil current in the predetermined frequency range, so as to use a low cost EMI. The filter reduces electromagnetic interference. [Simplified illustration] & Figure 1 is a schematic diagram of a power factor correction (PFC) circuit; 0 Figure 2 is a timing diagram illustrating the waveform of the pFC circuit; Figure 3 is a PFC circuit including an oscillator Figure 4 is a schematic diagram of an oscillator in a first alternative embodiment; Figure 5 is a schematic diagram of an oscillator in a second alternative embodiment; Figure 6 is an alternative embodiment of a pFC circuit Circuit diagram; and Figure 7 is a circuit diagram of a PFC circuit in another alternative embodiment. [Main component symbol description] 10 '100 power factor correction circuit 15 filter 16, 17, 45 18 19 20 25 26 resistor resistor Capacitor diode bridge inductor blocking diode 9l803.doc -22- 1334256 CLK clock signal CLK complementary clock signal Dcycle load cycle FSw switching frequency IcHG charging current Ic-HG charging current component Ic〇IL coil current Ic〇IL_CLK Average coil current Idschg Discharge current IlMI IlM2, IlM3, I[M4 Mirror reflection current IlN Input current Iload Load current I〇Ml I〇M2, I 〇M3 Mirror reflection current IpEAK Peak current TO, ΊΠ, T2, T3, T4 Time T5, T6, T7, T8, T9 Time TcHG Charging period TcLK Clock period Tdschg Discharge period VAC Sinusoidal AC voltage Vcc Supply voltage 9I803.doc -24 - 1334256

Vcs 電流感測電壓 V〇RI VE 驅動信號 Vfb 回授信號 Vhyst 滯後電壓 vIN 輸入電壓 Vlim 限制電壓 V〇UT 輸出電壓 V ramp 斜坡電壓 Vref 參考電壓 9l803.docVcs current sense voltage V〇RI VE drive signal Vfb feedback signal Vhyst hysteresis voltage vIN input voltage Vlim limit voltage V〇UT output voltage V ramp ramp voltage Vref reference voltage 9l803.doc

Claims (1)

133425b 第093110996號專利申請案 ^-一 中文申請專利範圍替本(99年6^)年月日修正 十、申請專利範圍:^ ^— 丄.一種功率因素修正電路,其包含: 一脈衝寬度調變器,其回應—時脈信號 在一充電週期期間交 ^用以 處的-功率因辛=圈電流,以修正-第-節點 電以建立於 圈電流在一放電週期期間放 電以建立一輪出電壓;以及 充電it’其具有一輪出用以產生其時脈週期長於該 = 歧該放電週期之和的料脈信號,以及—第一 輸入用以感測該功率因素修 時脈週期,1…㈣「 之輸4就以修改該 電週期及… 一負載電流為恆定,該充 圈電流之-負載㈣B :: 總以界定該線 2. 使該負载^號修改該時脈週期以 衣/、該充电週期之乘積保持恆定。 如申請專利範圍第!項之功率 因素修正電路之Kn Μ正電路’其令該功率 而運作。 貿上作為整流正弦波電壓 3.如宇請專利範圍第!項之功率因素修正 哭#形忐& "電路’其中該振盪 ^係形成為—電壓控制振盪器以包括: 斜坡產生器,其回應該時脈信號而運作且 第二節點用以向一電容#廣 '、有一 充電週期期間自一第一土去办嘴^ 座生在該 的斜坡電虔; > _曰加至-第二參考位準 ::較器,其用於比較該斜坡電屋 且具有—與該振|器之輸出_合的輸出; 91803-990615.doc 1334256,___1[Jvta 以及 一电抓鏡,其具有-第-輸入用以接收—代表爷輸入 信號之輸入電流,以a # @ & 代表該輸 以自㈣提供—第-鏡反射電 '丨L δχ電電流減去以修改該時脈週期。 4. 如申請專利範圍第3項之 ’ 於担扯一馇包路,其中該電流 兄k供第一鏡反射電流用以對該第-铲 斜坡產生器包括: ^第—即點充電’且該 -耦合至該第二節點之第一電 電電流丨以及 ”用於供應该充 二=之:二電流源,其用以使該第二節點以-放電 =電,該第二鏡反射電流係自該放電電流減去。 5. 如°月專利^圍第1項之功率因素修正電路,其中該脈衝 寬度調變器具有-輕合之回授輸人成= 電壓以回應該功率因辛m測該輸出 蓉…η 負載電流而調節該 %•脈衝之充電週期。 如申請專利冑圍第!項之功率因素修正電路 電壓之值高於該輸入信號之一峰值電壓。 如申請專利範圍第1項之功率因素修正電路 信號係該線圈電流之代表。 8. 如申請專利範圍第7項之功率因素修正電路—— 含:輕合至該振盪器的第-輸入之感測電阻器二:: 發送該線圈電流以建立一感測電壓。 9. :種在-非連續模式下運作之功率因素修正電路,其包 6. 7. 91803-990615.doc 其中該輸出 其中該輸入 其進一步包 1334256 年月,修正替換頁 "^ •度調變器,其具有一輸入用於接收其脈衝寬 度=表該功率因素修正電路之—負载電流的脈衝而用於 充电已放電以建立一輸出電覆的線圈電流;以及 -振盪器’其具有一輸出用以產生具有所選定之—頻 率的脈衝以將該線圈電流放電至零,並具有一輸入用以 感測該功率因素修正電路的一輸入信號以修改該頻率, 其中該振蓋器係形成作為—電壓控制振盈器以包括: a —斜坡產生器,其回應該時脈信號而運作,並具有— 第二節點用以向一電容供應一充電電流,以產生二在該 充電仙_自-第-參考位準增加至—第二參考位準 的斜坡電壓; -比較器’其用於比較該斜坡電麼與該第—及該第二 /考电壓且具有一與該振盪器之輸出相耦合的輸 以及 —電流鏡,其具有—第—輸人用以接收-代表該輸入 化號之輪入電流,以向該第二節點提供-第-鏡反射電 流用以自該充電電流減去以修改該時脈週期。 1〇.如申請專利範圍第9項之功率因素修正電路,其中該輸出 電壓建立在—節點處,且該等脈衝具有尾緣以使該等緩 圈電流放電至該節點的-電容以建立該輸出電壓。 η.如申請專利範圍㈣項之功率因素修正電路,其中當讀 負載電流恆定時該等脈衝寬度實質上相等。 12.-種修正—輸人信號之—功率因素的方法|其包含: 以一時脈信號產生脈衝以建立一線圈電流的一充電遇 91803-990615.doc 1334256 一~期"’其中該時脈信號之一時脈週期長於該充電週期與該 線圈電流的一放電週期之一和; 在該放電週期期間將該線圈電流放電至零以建立一輪 出電壓;以及 感測該功率因素修正電路之該輸入信號以修改該時脈 週期,其中該輸出電壓之一負載電流為恆定,該充電週 期及該放電週期在該時脈週期期間加總以界定該線圈電 流之一負載循環’且該輸入信號修改該時脈週期以使該 負載循ϊ哀與該充電週期之乘積保持恆定。 13·如申請專利範圍第12項之方法,其進一步包含: 以一充電電流對一電容充電以產生一斜坡電壓; 比較該斜坡電壓與一第一參考電壓以產生該時脈信 號;以及 鏡反射一代表該輸入信號之輸入電流以向該電容提供 一第一鏡反射電流以修改該時脈週期。 14. 如申請專利範圍第13項之方法,其中該鏡反射包括自該 充電電流減去該第一鏡反射電流以修改該時脈週期。 15. 如申請專利範圍第14項之方法,其中該鏡反射包括回應 該時脈k號之第一轉換而致動該第一鏡反射電流。 16_如申請專利範圍第13項之方法,其中該充電包括以該充 電電流增加該斜坡電壓,且該比較包括產生該時脈信號 之一第一轉換。 17.如申請專利範圍第13項之方法,其進一步包含: 以一放電電流對該電容放電以減小該斜坡電壓;以及 91803-9906l5.doc -4- 比車义該斜坡電墨與一第二參考電壓以產生該時脈信號 之一第二轉換。 如申w專利範圍第16項之方法,其進一步包含鏡反射該 輪入电流以提供—第二鏡反射電流用於自該放電電流減 去以修改該時脈週期。 19.—種功率因素修正電路,其包含: 脈衝寬度調變器,其回應一時脈信號而運作,用以 使自冑人電壓建立—線圈電流之腺衝同步,其中該線 圈電流受到放電以建立一輸出電壓; 捃盪器其具有一輸出用以產生一頻率的該時脈信 號以及一輸入用以感測該線圈電流以修改該頻率;以及 輕口至該振盪器的輸入之一電流路#,其用於發送 該線圈電流以建立一感測信號。 , 如中請專利範圍第19項之功率因素修正電路,其中該時 脈信號經由自—第—邏輯位準至-第:邏輯位準的第- 轉換,並經由自該第二邏輯位準至該第—邏輯位準的第 二轉換,且該脈衝寬度調變器回應該等第一轉換而產生 該等脈衝。 4如申請專利範圍第19項之功率因素修正電路,其中該等 脈衝具有一恆定之脈衝寬度。 泛如申請專利範圍第19項之功率因素修正電路,盆中該電 流路徑包括-在其兩端建立該感測信號的電阻器。 91803-9906I5.doc -5- 1334256 第093110996號專利申請案 中文說明書替換頁(99年6月) 七、指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件符號簡單說明: 10 、 100 功率因素修正電路 15 渡波器 16 、 17 、 45 電阻器 19 電容器 20 二極體橋 25 電感器/線圈 26 阻擋二極體 27 電容器 28 負載 29 電晶體 30 節點 31 脈衝寬度調變器 32 節點 35 振盪器 39 > 36 輸入 CLK 時脈信號 IcHG 充電電流 IcOIL 線圈電流 Idschg 放電電流 IlN 輸入電流 91803-990615.doc133425b Patent Application No. 093110996 ^- One Chinese Patent Application Scope (99 years 6^) Years and Months Amendment 10, Patent Application Range: ^ ^— 丄. A power factor correction circuit, including: a pulse width modulation The transformer, the response - the clock signal is used during a charging cycle - the power is due to the sin = loop current, to correct the - node power to establish the loop current to discharge during a discharge cycle to establish a round a voltage; and a charge it' has a round of pulse signal for generating a clock period longer than the sum of the discharge periods, and - the first input is used to sense the power factor to repair the clock cycle, 1... (4) "Transfer 4 to modify the electrical cycle and ... a load current is constant, the charge current - load (four) B :: always define the line 2. Make the load ^ modify the clock cycle to clothing /, The product of the charging cycle is kept constant. For example, the Kn Μ positive circuit of the power factor correction circuit of the application scope of the item [the operation of the power] operates as a rectified sine wave voltage. The power factor of the item is modified by the #哭忐&" circuit', wherein the oscillation is formed as a voltage controlled oscillator to include: a ramp generator that operates in response to the clock signal and the second node is used to Capacitor #广', during a charging cycle, from a first soil to the mouth ^ seated in the slope electricity; > _ 曰 to - second reference level:: comparator, which is used to compare the slope The electric house has an output that is combined with the output of the vibrator; 91803-990615.doc 1334256, ___1 [Jvta and an electric retractor having a -first input for receiving - an input current representing the input signal of the key , a # @ & represents the input from (4) provides - the first mirror reflection electric '丨L δ χ electric current minus to modify the clock cycle. 4. As claimed in the third paragraph of the patent a packet road, wherein the current brother k provides a first mirror reflection current for the first shovel ramp generator to include: ^ first-point charging and the first electrical current 该 coupled to the second node "for supplying the charge 2: two current sources, which are used to make the second node - Discharge = Electricity, the second mirror reflected current is subtracted from the discharge current. 5. For example, the power factor correction circuit of the first item of the patent of the month of the month, wherein the pulse width modulator has a light feedback to the input voltage = the voltage to respond to the power due to the m measurement of the output φ ... η load The current period of the %•pulse is adjusted by the current. For example, apply for a patent! The power factor correction circuit of the item has a voltage higher than a peak voltage of the input signal. The power factor correction circuit signal of item 1 of the patent application range is representative of the coil current. 8. The power factor correction circuit of claim 7 of the patent scope includes: a sense resistor 2 that is coupled to the first input of the oscillator:: The coil current is sent to establish a sense voltage. 9. : Power factor correction circuit operating in - discontinuous mode, package 6. 7. 91803-990615.doc where the output is the input of the further package 1334256 months, the correction replacement page "^ • degree adjustment a transformer having an input for receiving a pulse width = a pulse of a load current of the power factor correction circuit for charging a coil current that has been discharged to establish an output cladding; and an oscillator having a An output for generating a pulse having the selected frequency to discharge the coil current to zero and having an input for sensing an input signal of the power factor correction circuit to modify the frequency, wherein the vibrator is formed The voltage-controlled vibrator includes: a-ramp generator that operates in response to the clock signal and has a second node for supplying a charging current to a capacitor to generate two in the charging - the first reference level is increased to - the second reference level of the ramp voltage; - the comparator ' is used to compare the ramp with the first and the second / test voltage and has a An output coupled to the output of the oscillator and a current mirror having a first-input-receiving-representing a wheel-in current representing the input signal to provide a -first-mirror reflected current to the second node This charging current is subtracted to modify the clock cycle. 1. The power factor correction circuit of claim 9, wherein the output voltage is established at a node, and the pulses have a trailing edge to discharge the buffer current to a capacitance of the node to establish the The output voltage. η. The power factor correction circuit of claim 4, wherein the pulse widths are substantially equal when the read load current is constant. 12.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ One of the signals has a clock period longer than one of the charge period and a discharge period of the coil current; discharging the coil current to zero during the discharge period to establish an output voltage; and sensing the input of the power factor correction circuit Signaling to modify the clock cycle, wherein one of the output voltages is constant, the charge cycle and the discharge cycle are summed during the clock cycle to define a duty cycle of the coil current 'and the input signal modifies the The clock cycle is such that the product of the load cycle and the charge cycle remains constant. 13. The method of claim 12, further comprising: charging a capacitor with a charging current to generate a ramp voltage; comparing the ramp voltage to a first reference voltage to generate the clock signal; and mirror reflection An input current representative of the input signal to provide a first mirror reflected current to the capacitor to modify the clock period. 14. The method of claim 13, wherein the mirror reflection comprises subtracting the first mirror reflection current from the charging current to modify the clock period. 15. The method of claim 14, wherein the mirror reflection comprises actuating the first mirror reflection current in response to the first transition of the clock k. The method of claim 13, wherein the charging comprises increasing the ramp voltage with the charging current, and the comparing comprises generating a first transition of the clock signal. 17. The method of claim 13, further comprising: discharging the capacitor with a discharge current to reduce the ramp voltage; and 91803-9906l5.doc -4- The second reference voltage is used to generate a second conversion of one of the clock signals. The method of claim 16, further comprising mirroring the wheeling current to provide - a second mirror reflecting current for subtracting from the discharging current to modify the clock period. 19. A power factor correction circuit comprising: a pulse width modulator operative in response to a clock signal for synchronizing a self-destruction voltage-coil current of a coil current, wherein the coil current is discharged to establish An output voltage; the oscillator having an output for generating a frequency of the clock signal and an input for sensing the coil current to modify the frequency; and a light port to the input of the oscillator current path# It is used to transmit the coil current to establish a sensing signal. The power factor correction circuit of claim 19, wherein the clock signal is subjected to a first-to-conversion from a -th logic level to a -: logic level, and from the second logic level The second transition of the first logic level, and the pulse width modulator should wait for the first transition to generate the pulses. 4 The power factor correction circuit of claim 19, wherein the pulses have a constant pulse width. A power factor correction circuit as disclosed in claim 19, wherein the current path in the basin includes a resistor that establishes the sensing signal at both ends thereof. 91803-9906I5.doc -5- 1334256 Patent Application No. 093110996 Chinese Manual Replacement Page (June 99) VII. Designation of Representative Representatives: (1) The representative representative of the case is: (1). (2) A brief description of the component symbols of this representative diagram: 10, 100 power factor correction circuit 15 waver 16, 17, 45 resistor 19 capacitor 20 diode bridge 25 inductor/coil 26 blocking diode 27 capacitor 28 load 29 transistor 30 node 31 pulse width modulator 32 node 35 oscillator 39 > 36 input CLK clock signal IcHG charging current IcOIL coil current Idschg discharge current IlN input current 91803-990615.
TW093110996A 2003-05-06 2004-04-20 Power factor correction circuit and method of varying switching frequency TWI334256B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/013859 WO2004107546A1 (en) 2003-05-06 2003-05-06 Power factor correction circuit and method of varying switching frequency

Publications (2)

Publication Number Publication Date
TW200505137A TW200505137A (en) 2005-02-01
TWI334256B true TWI334256B (en) 2010-12-01

Family

ID=33488736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093110996A TWI334256B (en) 2003-05-06 2004-04-20 Power factor correction circuit and method of varying switching frequency

Country Status (5)

Country Link
CN (1) CN100423417C (en)
AU (1) AU2003228831A1 (en)
HK (1) HK1081334A1 (en)
TW (1) TWI334256B (en)
WO (1) WO2004107546A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400127B2 (en) * 2005-05-23 2008-07-15 Semiconductor Components Industries, L.L.C. Method for regulating an output signal and circuit therefor
JP4791260B2 (en) * 2006-06-09 2011-10-12 富士通セミコンダクター株式会社 DC-DC converter, control circuit for DC-DC converter, and control method for DC-DC converter
JP4205744B2 (en) * 2006-08-29 2009-01-07 エルピーダメモリ株式会社 CALIBRATION CIRCUIT, SEMICONDUCTOR DEVICE INCLUDING THE SAME, AND METHOD FOR ADJUSTING OUTPUT CHARACTERISTICS OF SEMICONDUCTOR DEVICE
US7969134B2 (en) * 2008-03-27 2011-06-28 Semiconductor Components Industries, Llc Method of forming a power supply controller and structure therefor
US8040114B2 (en) 2008-11-07 2011-10-18 Power Integrations, Inc. Method and apparatus to increase efficiency in a power factor correction circuit
CN102457175B (en) * 2010-10-29 2013-11-06 英飞特电子(杭州)股份有限公司 Circuit and method used for improving dynamic response speed of PFC (power factor correction)
CN203482091U (en) * 2010-12-24 2014-03-12 半导体元件工业有限责任公司 Converter and power factor controller
US8970068B2 (en) * 2011-02-10 2015-03-03 Draker, Inc. Pseudo-random bit sequence generation for maximum power point tracking in photovoltaic arrays
JP5828106B2 (en) * 2011-04-13 2015-12-02 パナソニックIpマネジメント株式会社 Solid light source lighting device and lighting apparatus using the same
US20130182469A1 (en) * 2012-01-16 2013-07-18 System General Corporation Electro-magnetic interference reduction circuit for power converters and method for the same
US9190900B2 (en) 2012-10-15 2015-11-17 Infineon Technologies Ag Active power factor corrector circuit
CN104377951B (en) * 2014-11-12 2017-04-19 广东美的制冷设备有限公司 power factor correction method and device, air conditioner and electric appliance
JP6778267B2 (en) * 2016-08-30 2020-10-28 ヌヴォトンテクノロジージャパン株式会社 Switching power supply and semiconductor device
US10003328B1 (en) * 2017-08-17 2018-06-19 Qualcomm Incorporated Hybrid pulse-width control circuit with process and offset calibration
US11201540B2 (en) * 2019-02-07 2021-12-14 F'real! Foods, Llc Motor control circuit with power factor correction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146398A (en) * 1991-08-20 1992-09-08 Led Corporation N.V. Power factor correction device provided with a frequency and amplitude modulated boost converter
US5367247A (en) * 1992-08-10 1994-11-22 International Business Machines Corporation Critically continuous boost converter
US5408403A (en) * 1992-08-25 1995-04-18 General Electric Company Power supply circuit with power factor correction
KR0134914B1 (en) * 1995-06-29 1998-04-25 김광호 Analog oscillation circuit

Also Published As

Publication number Publication date
TW200505137A (en) 2005-02-01
WO2004107546A1 (en) 2004-12-09
CN1663101A (en) 2005-08-31
CN100423417C (en) 2008-10-01
AU2003228831A1 (en) 2005-01-21
HK1081334A1 (en) 2006-05-12

Similar Documents

Publication Publication Date Title
TWI334256B (en) Power factor correction circuit and method of varying switching frequency
US7123494B2 (en) Power factor correction circuit and method of varying switching frequency
CN108809100B (en) System and method for regulating output current of power conversion system
Rajagopalan et al. A general technique for derivation of average current mode control laws for single-phase power-factor-correction circuits without input voltage sensing
TWI377769B (en) Fixed-frequency control circuit and method for pulse width modulation
US6882551B2 (en) Switching power supply device
JP4056780B2 (en) Circuit and method for synchronizing an indefinite frequency switching regulator with a phase-locked loop
Chow et al. Single-stage single-switch isolated PFC regulator with unity power factor, fast transient response, and low-voltage stress
Kim et al. New modulated carrier controlled PFC boost converter
US20090231889A1 (en) Method and apparatus for ac to dc power conversion with reduced harmonic current
US20120300515A1 (en) AC/DC Converter with a PFC and a DC/DC Converter
CN105978315B (en) power supply and control method thereof
TW201517475A (en) Controller and power factor correction converter comprising the same
US8503205B2 (en) AC/DC converter with a PFC and a DC/DC converter
WO1998009368A1 (en) Method and apparatus for automatic average current mode controlled power factor correction without input voltage sensing
JP2010115105A (en) Controller used in power factor control (pfc) converter and method for controlling pfc circuit
TW201703415A (en) Systems and methods for regulating output currents of power conversion systems
AU2016372793B2 (en) Welding power supply with extended voltage characteristic
JP2013236424A (en) Control circuit for power supply device
TW201136115A (en) Power factor converter and method
Chow et al. A novel method for elimination of line-current harmonics in single-stage PFC switching regulators
Maswood et al. A novel suppressed-link rectifier-inverter topology with near unity power factor
KR20170045328A (en) Constant on-time(cot) control in isolated converter
KR101892059B1 (en) Constant on-time(cot) control in isolated converter
TW201021390A (en) Accelerated response to load transients in PFM DC-to-DC converters

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees