TWI332752B - Method and apparatus for loop control - Google Patents

Method and apparatus for loop control Download PDF

Info

Publication number
TWI332752B
TWI332752B TW96120107A TW96120107A TWI332752B TW I332752 B TWI332752 B TW I332752B TW 96120107 A TW96120107 A TW 96120107A TW 96120107 A TW96120107 A TW 96120107A TW I332752 B TWI332752 B TW I332752B
Authority
TW
Taiwan
Prior art keywords
value
signal
peak
comparator
valley
Prior art date
Application number
TW96120107A
Other languages
Chinese (zh)
Other versions
TW200746624A (en
Inventor
Yu Hsuan Lin
Yuh Cheng
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc filed Critical Mediatek Inc
Publication of TW200746624A publication Critical patent/TW200746624A/en
Application granted granted Critical
Publication of TWI332752B publication Critical patent/TWI332752B/en

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Feedback Control In General (AREA)

Description

1332752 九、發明說明: ’ 【發明所屬之技術領域】 本發明係有關於電子裝置,尤其是有關於迴路控制 電路和其方法。 【先前技術】 第1A圖係為一習知的光學儲存裝置。一般來說, 儲存在光碟中的資料在傳送至解碼器之前,會先經過放 鲁大和數位化的步驟,以將訊號信號的振幅調整為一目標 值。可變增益放大器102,數位轉換器104和自動益增益 控制器106形成一個自動增益控制器回路,用來調整光 學信號#RF的增益。而空白偵測器110提供一額外的資 料通路,用以偵測光學信號#RF的一空白狀態 (blankness),其中光學信號#RF的空白狀態係對應於光碟 片上一軌道中之至少一空白未燒錄區段(blank sector)。如 果光學信號#RF的振幅大小低於一臨界值,則該光學信 鲁號#RF對應該空白狀態,因此解碼器108不啟動,而對 應的光碟片紀錄區段(recording sector)則回報為空白未燒 錄區段。相對的,如果光學信號#尺卩不是空白狀態,則 空白偵測器110傳送一致能訊號信號#en至該解碼器 108,使解碼器108啟動,以對數位轉換器104輸出的資 料信號#DATA進行解碼處理。 第1B圖係為定義空白狀態的示意圖。當光學信號 #RF的振幅大小低於臨界值(+th和-th)時,則對應的紀錄 0758-A32234TWF1 (20070615) 5 1332752 區段則視為空白區段。相對的,當光學信號#1117的振幅 .大小=過臨界值信號時,則對應的紀錄區段則視為非空 白區段,因此啟動解碼器1〇8對資料信號#DATA進行處 理。 第2圖係為習知用於電子裝置,例如光學儲存裝 置的迴路回路控制電路。該迴路回路控制電路主要包 含由可變增益放大器(VGA) 202,數位轉換器(ADC) • 204 ’峰谷值偵測器2〇6和自動增益控制器(agc) 2〇8 所組成的自動增益控制迴路回路,以及由可變增益放大 器202 ’數位轉換器204,偏移控制器21〇和加法器212 組成的偏移控制迴路回路。可變增益放大器2〇將接收之 一光學信號#RF放大,接著傳送至數位轉換器204。如果 光學信號#尺卩的振幅未調整至適當的範圍,數位轉換器 204就沒辦法正確的取樣光學信號#RF以產生數位資料 (資料信號)#DATA。因此,自動增益控制器208藉由 •產生一增益值#@心11用以調節該光學信號#RF的振幅,而 該增益值#§&丨11是由峰谷值偵測器206的偵測結果來決 定。自動增益控制器208根據峰谷值偵測器206所輸出 的啥值及谷值#PB以一步進步階(step size )改變增益值 #gain。整個增益控制迴路回路遞迴地進行,使數位資料 ΑΤΑ的振幅漸漸的逼進目標值。因此步進步階的大小 與增益控制迴路回路的收斂速率成正比。同樣的,偏移 控制器210偵測數位資料#DATA的偏移狀況,並產生平 移訊號信號#offset來補償它。在光學信號送至可變 0758-A32234TWFl(20070615) 6 1332752 增盈放大器202之前,加法器212可直接將該平移訊號 信號#offset補償至光學信號#RF中,而偏移控制器21〇 亦使用另一步進步階遞迴地漸次更新該平移訊號信號 #offset。藉此,整個迴路回路控制機制使光學信號#rf 的偏移狀況漸漸的修正回來。 第3圖係為各種情況的波形圖。圖中顯示,從前端 獲取的光學信號#!^·其振幅未必適合後續處理。舉例來 說’在階段ti,光學信號#RF小於目標值(正目標值+target 和負目標值-target),而增益控制迴路回路漸次地將光學 信號#RF調整趨近該目標值。在階段t2,光學信號#rf 的振幅超過了目標值’所以增難制迴路回路會遞迴地 調整振幅使其趨近目標值^段師㈣是偏移補償的 例子帛2圖所述的偏移控制迴路回路透過迴饋回授广 制漸次地娜光學㈣#RF,確保光學錢辦在傳送^ 數位轉換器2G4時其振幅趨近正確的目標值。然而,迴 路回路的運轉需要花時間, 度太低,光學信魏F的振小則收斂速 二,如果步進步階太大使得收斂速度 :=鐘Γ 回授機制也會表現得不穩定,而降 信號品質。因此,如何調2^b04所接收到的訊號 問題。 正V進步階,是一個很重要的 請參考第4圖。第4罔& Λ 示意圖。如第4圖所示’A一光學儲存媒體的剖面 攸取内圈到最外圈的區域分別 〇758-A32234TWFl(2〇〇7〇615) 7 1332752 為内部驅動區(inner drive area)、導入區(lead-in zone)、 資料區(data zone)、導出區(lead-out zone)及外部驅動區 (outer drive area)。内部驅動區包含不同子區如初始區 (initial zone)、内部碟片測試區(inner disc test zone)、計 數試運轉區(count zone run-in)、内部碟片計數區(inner disc count zone)、内部碟片管理區(inner disc administration zone)以及資料表區(table of contents zone)。内部碟片測試區係用來提供給光學儲存裝置以執 行碟片測試與最佳功率控制(Optimized Power Control, OPC)。光學儲存裝置以不同功率的雷射光束發射至一光 學儲存媒體的内部碟片測試區而形成複數個不同的標 記。然後’藉由讀取這些標記所得到之再生訊號信號, 則被擷取以作為調整發射功率的參考資訊。因此,光學 儲存裝置便可控制發射的雷射光束具有最佳的發射功 率。 而隶佳功率係根據紀錄資料再生§fl號信號的波形不 對稱性所產生。在先前技術中,紀錄資料再生訊號信號 的波形不對稱性係以類比的方式來量測,因而需要花費 較多的佈局空間與較複雜的設計。 當唯讀光碟(例如DVD-ROM)或者可記錄光碟(例 如DVD-RAM )之資料燒錄密度越來越南時’例如傾斜或 者軌道錯誤(mis-track )之伺服誤差將嚴重影響信號之品 質。尤其是於可記錄光碟中,在燒綠期間所發生之伺服 誤差將影響燒綠品質,而在一個適用的部分於再生 0758-A32234TWF1 (20070615) 8 1332752 、(reproduction )期間的伺服誤差將嚴重影響信號的品質。 * 在DVD-RAM光碟中’資訊係燒綠於包含凸紋執 (Land Track)以及凹紋執(Groove Track)之執道中,而凸紋 執(Land Track)以及凹紋軌(Groove Track)於光碟旋轉— 圈( 360°)時將彼此交替。凸紋轨(Land Track)以及凹敌 轨(Groove Track)係於啟始階段用來引導定軌(tracking guide )以減少於高密度且狹窄之軌道彼此之間的干擾。 各軌道包括複數具有相同程度之區段(sector)。在 ®製造光碟時,會在各區段之間嵌入首標區域(Header)。 區段之物理位址係記錄於首標區域中。各區段包括資料 區域以及紀錄物理識別資料(physical identification data,PID)之首標區域。 第5A圖係顯示DVD-RAM光碟之凸紋執之物理形 狀,而第5B圖係顯示於凸紋執之讀取頻道1信號(Read channel 1 signal)之波形。在此,首標區域係重複的設置 於各軌道之每個區段中。具有相同值之四個物理識別資 鲁料(PID 1至PID4 )係記錄於一首標區域中。物理識別資 料PID 1與PID2係設置於脫離執道中心一既定量而物理 識別資料PID3與PID4係以相反於物理識別資料PID1 與PID2之方向而設置於脫離執道中心該既定量,因此及 使雷射光點500脫離了執道中心,仍可正確地讀取物理 識別資料(PID1至PID4)。 第5B圖所示之讀取頻道1信號可以由凸紋執取 得,其中標號ISHD1、ISHD2、ISHD3、以及ISHD4分 c S) 0758-A32234TWFl(20070615) 9 1332752 .. 別代表可變頻率振盈信號(variable-frequency k oscillator,VFO )之首標區 Headerl、Header2、Header3、 以及Header4之直流谷值(DC bottom)。同樣的,物理 識別資料(PID1至PID4 )於凹紋執之配置位置係與於凸 紋執相反,第6A圖係顯示DVD-RAM光碟之凹紋軌之物 理形狀,而第6B圖係顯示於凹紋執之讀取頻道1信號 (Read channel 1 signal)之波形。 第7圖係顯示第5 A圖與第5B圖中所顯示之首標區 #·域之放大圖。在首標區域之結構中,物理識別資料PID1、 PID2以及物理識別資料PID3與PID4係以相反方向設置 於脫離軌道中心一既定量之位置。用來同步以及偵測ID 信號且具有特定頻率之VFO信號以及顯示區段之物理位 址之ID信號係分別記錄於各物理識別資料^ VFO信號具 有4T之記錄格式(T為時脈信號之週期)。如第7圖所 示’首標區域包括VF01區域701以及PID1 702、VF02 區域 703 以及 PID2 704、VF03 區域 705 以及 PID3 706、 春以及VF04區域707以及PID4 708。在第7圖中,當雷 射光點700穿過凹紋軌之首標區域,可以得到如第8圖 所示之讀取頻道1信號#1$。在第8圖中,VF01信號802 對應於第7圖之VF01區域701,而VF03信號803對應 於第7圖之VF03區域705。 第9圖係顯示傳統用以偵測DVD-RAM光碟之執道 中心誤差以及傾斜誤差之裝置。峰值偵測電路901偵測 讀取頻道1信號#RF之峰值並產生峰值信號,而谷值摘 0758-A32234TWFl(20070615) 1〇 1332752 - 測電路902偵測讀取頻道1信號#RF之谷值並產生谷值 . 信號。取樣保持電路903A及903B分別取樣於區域VF01 以及VF03之峰值以及谷值信號,並保存所取樣之信號 直到被數位轉換器(analog to digital converters,ADC) 905A以及905B取樣為止。其中,數位轉換器905A以及 905B為低取樣速率之類比數位轉換器。軌道中心誤差偵 測器907根據數位轉換器905A以及905B所取樣之峰值 以及谷值計算轨道中心誤差。傾斜誤差偵測器909根據 _數位轉換器905B所取樣之谷值計算傾斜誤差。 然而,由於取樣保持電路903A及903B為類比電 路,相較於數位電路,具有較差之正確性。再者,取樣 保持電路903A及903B之取樣次數受限於其切換頻率。 因此,要在短時間内更頻繁的使用取樣保持電路903A及 903B來偵測讀取頻道1信號#RF是非常困難的,因而降 低了偵測正確性。若要更頻繁的偵測讀取頻道1信號 #RF,必須使用更複雜之取樣保持電路。然而,此舉將導 籲致用以偵測DVD-RAM光碟之執道中心誤差以及傾斜誤 差之裝置之成本以及尺寸。 【發明内容】 下列實施例具體的說明如何以較佳的方式實現本發 明。實施例僅供說明一般應用的方式,而非用以限縮本 發明的範圍。實際範圍以申請專利範圍所列為準。 其中一實施例係為一種光學儲存裝置,用以從一光 0758-A32234TWF1 (20070615) 11 1332752 ,獲取光學訊號進行迴路控制。當中包含—可變增 大器’可根據—增益值將該光學訊號放大。一峰容 一偵測器偵測該放大後的光學訊號之一峰值和一谷值。 控制器將該蜂值和該谷值與—臨界值比較,以產 伯j 4·控制喊。—訊號控制迴路根據料值和該谷 今第第—步階更新該增益值。該第—步階係受 5亥第一控制訊號調節。 用以地,該光學儲存裝置可包含-數位轉換器, 用/取㈣可變增益放大器的輸出以產生-資料訊號。 =峰夺值偵測器係、根據該資料訊號找出該峰值和該谷 值0 σ 貝轭例中,该訊號控制迴路包含一自動增益控 該模式控制器包含―第—比較器和―第二比較 亥峰值與谷值各別與一正高臨界值和一負高臨界 一第一模式判斷_該第一比較器和該第二 一=的輪出端。如果該峰值超出該正高臨界值,該第 二真值’否則輸出—假值。如果該谷值低 臨界值’該第二比較器輸出一直值,否則輸出 又二如果該第_比較器和第二比較器同時輸出真 模式判斷器輸出該第—控制訊號至該自動 增益控制器。 ^ Λ第比較态進一步將該峰值與一正低臨界值比 二臨界值低於該正高臨界值。同樣的,該第二 义口口、纟將該谷值與—負低臨界值比較,該負低臨 0758-A32234TWF1 (200706 i 5) 121332752 IX. Description of the invention: ‘Technical field to which the invention pertains. The present invention relates to electronic devices, and more particularly to loop control circuits and methods therefor. [Prior Art] Fig. 1A is a conventional optical storage device. In general, the data stored on the disc is subjected to a step of scaling and digitizing before being transmitted to the decoder to adjust the amplitude of the signal signal to a target value. Variable gain amplifier 102, digital converter 104 and automatic gain controller 106 form an automatic gain controller loop for adjusting the gain of optical signal #RF. The blank detector 110 provides an additional data path for detecting a blankness of the optical signal #RF, wherein the blank state of the optical signal #RF corresponds to at least one blank in a track on the optical disc. Burning sector. If the amplitude of the optical signal #RF is less than a critical value, the optical signal #RF corresponds to a blank state, so the decoder 108 does not start, and the corresponding disc recording sector returns blank. Unburned section. In contrast, if the optical signal # is not blank, the blank detector 110 transmits the coincidence signal signal #en to the decoder 108, causing the decoder 108 to be activated to output the data signal #DATA to the digital converter 104. Perform decoding processing. Figure 1B is a schematic diagram of defining a blank state. When the amplitude of the optical signal #RF is below the critical value (+th and -th), the corresponding record 0758-A32234TWF1 (20070615) 5 1332752 is considered a blank segment. In contrast, when the amplitude of the optical signal #1117 is the value of the over-critical value signal, the corresponding recorded segment is regarded as a non-empty segment, so the decoder 1 8 is activated to process the data signal #DATA. Figure 2 is a circuit loop control circuit conventionally used in electronic devices, such as optical storage devices. The loop loop control circuit mainly includes an automatic consisting of a variable gain amplifier (VGA) 202, a digital converter (ADC), a 204 'peak-to-valley detector 2〇6, and an automatic gain controller (agc) 2〇8. A gain control loop loop, and an offset control loop loop comprised of a variable gain amplifier 202 'digital converter 204, offset controller 21 〇 and adder 212. The variable gain amplifier 2 amplifies the received optical signal #RF and then transmits it to the digital converter 204. If the amplitude of the optical signal #卩 is not adjusted to an appropriate range, the digital converter 204 cannot correctly sample the optical signal #RF to generate a digital data (data signal) #DATA. Therefore, the automatic gain controller 208 adjusts the amplitude of the optical signal #RF by generating a gain value #@心11, and the gain value #§&11 is detected by the peak-to-valley detector 206. The results are determined. The automatic gain controller 208 changes the gain value #gain in a step size according to the threshold value and the valley value #PB output from the peak-to-valley detector 206. The entire gain control loop loop is recursively moved so that the amplitude of the digital data volume is gradually forced into the target value. Therefore, the size of the step is proportional to the convergence rate of the gain control loop. Similarly, the offset controller 210 detects the offset condition of the digital data #DATA and generates a panning signal #offset to compensate for it. Before the optical signal is sent to the variable 0758-A32234TWF1 (20070615) 6 1332752 gain amplifier 202, the adder 212 can directly compensate the translation signal #offset into the optical signal #RF, and the offset controller 21〇 is also used. In another step, the progressive signal recursively updates the translation signal #offset. Thereby, the entire loop loop control mechanism gradually corrects the offset condition of the optical signal #rf. Figure 3 is a waveform diagram for various situations. The figure shows that the optical signal #!^· obtained from the front end is not necessarily suitable for subsequent processing. For example, at stage ti, the optical signal #RF is smaller than the target value (positive target value + target and negative target value - target), and the gain control loop circuit gradually adjusts the optical signal #RF to approach the target value. In phase t2, the amplitude of the optical signal #rf exceeds the target value', so the increasing loop circuit will recursively adjust the amplitude to approach the target value. ^Section (4) is an example of offset compensation. The shift control loop loops through the feedback feedback to the wide-ranging gradual Dina optics (4) #RF, ensuring that the optical money is approaching the correct target value when transmitting the digital converter 2G4. However, the operation of the loop circuit takes time, the degree is too low, and the vibration of the optical signal Wei F is convergent. If the step is too large, the convergence speed: = the clock feedback mechanism will be unstable. Reduce signal quality. Therefore, how to adjust the signal received by 2^b04. Positive V step is a very important one. Please refer to Figure 4. Section 4 & Λ Schematic. As shown in Fig. 4, the section of the A-optical storage medium is taken from the inner ring to the outermost circle. 〇758-A32234TWFl (2〇〇7〇615) 7 1332752 is the inner drive area, and is imported. Lead-in zone, data zone, lead-out zone, and outer drive area. The internal drive zone includes different sub-zones such as an initial zone, an inner disc test zone, a count zone run-in, and an inner disc count zone. , an inner disc administration zone and a table of contents zone. The internal disc test area is used to provide optical storage for disc testing and optimized power control (OPC). The optical storage device emits a plurality of different marks by emitting laser beams of different powers to an internal disc test area of an optical storage medium. Then, the reproduced signal signal obtained by reading these marks is captured as reference information for adjusting the transmission power. Therefore, the optical storage device can control the emitted laser beam to have the best emission power. The Lijia power is generated based on the waveform asymmetry of the §fl signal reproduced from the recorded data. In the prior art, the waveform asymmetry of the recorded data reproduction signal is measured in an analogous manner, and thus requires more layout space and more complicated design. When the data burn density of a CD-ROM (such as a DVD-ROM) or a recordable disc (such as a DVD-RAM) becomes more and more south, the servo error such as tilt or mis-track will seriously affect the quality of the signal. Especially in recordable discs, the servo error that occurs during green burning will affect the green quality, and the servo error will be seriously affected during a suitable part of the regeneration of 0758-A32234TWF1 (20070615) 8 1332752 (reproduction). The quality of the signal. * On DVD-RAM discs, 'Information is burned green in the way of including Land Track and Groove Track, while Land Track and Groove Track are on The disc rotates - the circle (360°) will alternate with each other. The Land Track and the Groove Track are used at the beginning to guide the tracking guide to reduce interference between the high density and narrow tracks. Each track includes a plurality of sectors having the same degree. When you create a disc, the header area is embedded between the sections. The physical address of the segment is recorded in the header area. Each section includes a data area and a header area for recording physical identification data (PID). Fig. 5A shows the physical shape of the relief of the DVD-RAM disc, and Fig. 5B shows the waveform of the read channel 1 signal. Here, the header area is repeatedly set in each section of each track. Four physical identification materials (PID 1 to PID4) having the same value are recorded in a header area. The physical identification data PID 1 and PID 2 are set at the detachment center, and the physical identification data PID3 and PID4 are set at the detachment center in the opposite direction to the physical identification data PID1 and PID2, and thus The laser spot 500 is out of the center of the road and the physical identification data (PID1 to PID4) can still be read correctly. The read channel 1 signal shown in Fig. 5B can be obtained by the embossing, wherein the symbols ISHD1, ISHD2, ISHD3, and ISHD4 are divided into c S) 0758-A32234TWFl (20070615) 9 1332752 .. (variable-frequency k oscillator, VFO) The DC valley of Headerrl, Header2, Header3, and Header4 of the header area. Similarly, the physical identification data (PID1 to PID4) is placed opposite to the relief in the concave pattern, and the 6A is the physical shape of the concave track of the DVD-RAM disc, and the 6B is shown in The waveform of the read channel 1 signal is read by the concave pattern. Fig. 7 is an enlarged view showing the header area #· field shown in Figs. 5A and 5B. In the structure of the header area, the physical identification data PID1, PID2, and the physical identification data PID3 and PID4 are disposed in opposite directions at a certain quantitative position from the center of the track. The ID signal of the VFO signal for synchronizing and detecting the ID signal and having a specific frequency and the physical address of the display section are respectively recorded in each physical identification data. The VFO signal has a recording format of 4T (T is the period of the clock signal) ). As shown in Fig. 7, the 'header area' includes the VF01 area 701 and the PID1 702, the VF02 area 703, and the PID2 704, the VF03 area 705, and the PID3 706, the spring and VF04 area 707, and the PID4 708. In Fig. 7, when the laser spot 700 passes through the header area of the pit track, the read channel 1 signal #1$ as shown in Fig. 8 can be obtained. In Fig. 8, the VF01 signal 802 corresponds to the VF01 area 701 of Fig. 7, and the VF03 signal 803 corresponds to the VF03 area 705 of Fig. 7. Figure 9 shows a conventional device for detecting the center error and tilt error of a DVD-RAM disc. The peak detection circuit 901 detects the peak value of the read channel 1 signal #RF and generates a peak signal, and the valley value is 0758-A32234TWFl (20070615) 1〇1332752 - the detection circuit 902 detects the valley value of the read channel 1 signal #RF And produce a valley value. Signal. The sample and hold circuits 903A and 903B sample the peak and valley signals of the regions VF01 and VF03, respectively, and store the sampled signals until they are sampled by the digital to digital converters (ADC) 905A and 905B. Among them, the digital converters 905A and 905B are analog converters of a low sampling rate. The track center error detector 907 calculates the track center error based on the peak values and valley values sampled by the digital converters 905A and 905B. The tilt error detector 909 calculates the tilt error based on the valley value sampled by the_bit converter 905B. However, since the sample and hold circuits 903A and 903B are analog circuits, they are inferior in accuracy compared to digital circuits. Furthermore, the number of samples of the sample and hold circuits 903A and 903B is limited by the switching frequency. Therefore, it is very difficult to use the sample and hold circuits 903A and 903B to detect the channel 1 signal #RF more frequently in a short time, thereby reducing the detection accuracy. To detect channel 1 signal #RF more frequently, a more complex sample-and-hold circuit must be used. However, this will result in the cost and size of the device used to detect the center of the DVD-RAM disc and the tilt error. SUMMARY OF THE INVENTION The following examples specifically illustrate how the invention can be implemented in a preferred manner. The examples are for illustrative purposes only, and are not intended to limit the scope of the invention. The actual scope is subject to the scope of the patent application. One of the embodiments is an optical storage device for obtaining optical signals for loop control from a light 0758-A32234TWF1 (20070615) 11 1332752. The inclusion of a -variable booster amplifies the optical signal based on the gain value. A peak detector detects a peak and a valley of the amplified optical signal. The controller compares the bee value with the valley value and the threshold value to control the shouting. - The signal control loop updates the gain value based on the material value and the first step of the valley. The first step is regulated by the first control signal of 5 hai. Alternatively, the optical storage device can include a digital converter that uses/takes (four) the output of the variable gain amplifier to generate a data signal. = peak capture detector system, according to the data signal to find the peak and the valley value 0 σ yoke example, the signal control loop includes an automatic gain control, the mode controller includes a "first" comparator and Comparing the peak value and the valley value with a positive high threshold and a negative high threshold, the first mode judges the first comparator and the second one. If the peak exceeds the positive high threshold, the second true value is otherwise output - a false value. If the valley value is low, the second comparator outputs a constant value, otherwise the output is two if the first comparator and the second comparator simultaneously output a true mode determiner to output the first control signal to the automatic gain controller. . ^ Λ The first state further compares the peak value with a positive low threshold value and the second critical value is lower than the positive high critical value. Similarly, the second mouth and mouth compare the valley value with a negative low threshold value, the negative low is 0758-A32234TWF1 (200706 i 5) 12

:/JZ 負高二界值,該,值低於該正低臨界 节穴輸出一真值,否則輸出-假值。如果 低臨界值,該第二比較器輸出-直值, 輸出:::如果該第—比較器和第二比較器同時 該自動增益式判斷器輸出該第-控制訊號至 如果二f第一模式判斷器可以是-及閘(and)。 加“:控制訊號係為—真值’該自動增益控制器增 以加速該可變增益放大器、數位轉換器和 自動增盆控制器所形成的增益控制迴路。 在另貝施例中,該訊號控制迴路包含下列元件。 :味移控制器偵測該資料訊號的偏移狀況,產生一平移 除邊光學㈣的偏移一加法器在該光學訊號 變增益放大器之前以平移訊號更新該光學訊 二士°广式控制11根據該峰值㈣谷值與該臨界值的比 丰挪®產生第一控制訊號。該平移訊號係依據一第二 夕 '新’而该第二步階係由該第二控制訊號調節。 錢式控制器中,—第_比較器將該峰值與一正高 比較’―第二比較器將該谷值與-負高臨界值比 杈:,第二模式判斷器,耦接該第一比較器和該第二比 較輸出端。如果該峰值超出該正高臨界值,該第一 Μ又^輸出—真值’否則輸出—假值。如杲該谷值低於 Α負问臨界值’該第二比較器輸出—直值,否則輸出一 假值。如果該第—比較器和第二比較器其t之—輸出真 07 58-A32234TWF1 (20070615) 13 1332752 值’則邊第二模式判斷!I輸出該第二控制訊號至該 控制益。該第二模式判斷器係為一或閘(〇R)或一互斥 閘(XOR)。如果該第一控制訊號為一真值,則該 控制=增加該第二步階以加速該可變增益放大器、數位 轉換偏私控制器和加法器所形成的平移控制迴路。 另一實施例提出實作於上述光學儲存裝置中的迴路 控制方法。雖然本發明以較佳實施例說明如上,: /JZ Negative high two-boundary value, the value is lower than the positive low-thickness corner output a true value, otherwise the output-false value. If the threshold is low, the second comparator outputs a straight value, and the output is ::: if the first comparator and the second comparator simultaneously output the first control signal to the second f mode The determiner can be - and gate. Add ": control signal is - true value". The automatic gain controller is added to accelerate the gain control loop formed by the variable gain amplifier, the digital converter and the automatic basin controller. In another example, the signal The control loop includes the following components: The taste shift controller detects the offset of the data signal, and generates an offset-off edge optical (4) offset. The adder updates the optical signal by a translation signal before the optical signal variable gain amplifier. The wide control 11 generates a first control signal according to the peak value of the peak value (four) and the threshold value. The translation signal is based on a second eve 'new' and the second step is determined by the second Control signal adjustment. In the money controller, the -th comparator compares the peak value with a positive height' - the second comparator compares the valley value with the - negative high threshold value: the second mode determiner is coupled The first comparator and the second comparison output. If the peak exceeds the positive high threshold, the first Μ output is - true value 'otherwise output - false value. If the valley value is lower than the negative threshold Value 'the second comparator Output - straight value, otherwise output a false value. If the first comparator and the second comparator have its t - output true 07 58-A32234TWF1 (20070615) 13 1332752 value 'the second mode judgment! I output the first Second control signal to the control benefit. The second mode determiner is a gate (〇R) or a mutual exclusion gate (XOR). If the first control signal is a true value, the control = increase the number Two steps to accelerate the translational control loop formed by the variable gain amplifier, the digital conversion bias controller, and the adder. Another embodiment proposes a loop control method implemented in the above optical storage device. Although the present invention is preferred The description of the embodiment is as above.

理解的是本發明的範圍A必如此限定。才目料,任 於相同精神或對習知技術者為顯而易見的 二 =蓋範圍内。因此專利要求範圍必須以最廣二: 【實施方式】 以下將介紹根據本發明所述之較佳實施㈣。 明的是,本發明提供了許多可應用之發明概念揭露 :特定實施例僅是說明達成以及使用本發明? 式,不可用以限制本發明之範圍。 々 $槿;圖料光學儲存裝置的實施例。本實施例的 :5 :以在。空白制器!㈣使用從數位轉換 ^的資料信號#DATA幻貞測空白狀態,藉此節省第Ί 圖所示空白細U0資料路徑上的電路成本。 =聊係讀位電路的方式實作,成本更低於電 :;;L1A圖中,數位轉換器輸出的資料信物atI 叙至自動触㈣ϋΠ)6,而自騎益㈣ 0758-A32234TWFl(20070615) 14 1332752 一控制訊號信號#ctrl至可變增益放大器1 〇2以調整光學 信號#RF的增益值。藉此信號#DATA的大小在遞迴調整 的過程中漸漸逼近一目標值。由於資料信號#1)入丁人的大 小一直在變動中,空白偵測器i 〇2〇可能判斷錯誤。為了 確保判斷正確,本發明提出一種臨界值信號產生器 1010,用以提供動態的臨界值信號#th,正比於控制訊號 化嫉;#ctrl。當資料信號#dΑΤΑ被放大時該臨界值信號#th 也被放大,使得空白偵測器1〇2〇偵測空白狀態的功能不 受到可變增益放大器1〇2增益的影響。 如果空白狀態持續了一段時間,該自動增益控制器 回路可能又逐漸的把光學信號#RF的增益放大到趨近於 該目‘值,形成我們不樂見的發散現象。因此在空白偵 測器102G中另有-個功能來解決這個問題。如果該資料 仏號#DATA的大小沒超過臨界值信號#th,表示光學信號 信號#RF是處於空白狀態。這時空白偵測器刪發出一 暫停訊號信號#hold給自動增益控制器1〇6,命令它暫停 更新控制sfl唬k 5l;#ctd。如此一來,可以使空白狀態下 的光學信號#RF之增益就保持不變。在此同時空白债測 仍然持續在進行。當發現資料信號#DATA是非空白狀態 時’則自動增益控制H 1()6重新啟動,繼續更新控制訊 號信號#ctrl,以恢復自動增益控制器回路的功能。 11A圖係為第10圖中臨界值信號產生器觀的一 實施例。第11B圖表示增益和控制訊號信號的關係 圖。臨界值信號#th基本上和可變增益放大器ι〇2中的增 0758-A32234TWFl(20070615) 15 1332752 ::樣,都正比於控制訊號信號細。為7簡化該臨界 、信號產生器1010的實作,可採用數位電路以近似運算 的4方式來產生該線性關係。在第11B圖中,曲線z代表 可變增益放大器102根據控制訊號信號#ctrl產生的增益 值。直線乃和乃代表臨界值信號產生器1010使用 似曲線,用來產生臨界值信號#th。臨界值信號產生器 包含一加法器1106, 一控制器1102和一乘法器 1104。直線yi和乃可以表示為 yn=anx+bn 其中η是整數,an是斜率,而匕是偏移值。 在第11A圖中’控制器11〇2根據控制訊號信號#ctH 的大小產生一斜率值#sl〇pe和一偏移值#〇ffset。接著乘法 态1104將控制訊號信號紅⑺乘以斜率值#si叩而相乘 結果送至加法器1106,與該偏移值#〇ffset相加,以產生 =界值L號#th。控制^號#ctri的大小可以區分為複數個 範圍母範圍對應一組不同的斜率值和偏移值。舉例 來說,在第UB圖中n等於2,所以使用兩條直線來近 似曲線z。當該控制信號#ctrl的大小為第一範圍,則該控 U 102產生斜率值ai以及偏移值當該控制信號 #ctrl的大小為第二範圍,則該控制器11〇2產生斜率值& 以及偏移值by n的值不限定為2,而數字越大可以得到2 越精確的近似結果。此外,臨界值信號產生器ι〇ι〇也可 以包3數位查s旬表,查詢表中包含不同的控制訊號信 號紅汁1,以及其對應之不同的臨界值信號#也。曲線z通 〇758-A32234TWF1(20〇70615) 16 1332752 常是在習知的校準程序中就能決定,因此臨界值信號產 生β 1010的設定也可以在校準的時候一併設定。 第12圖係為第10圖中空白偵測器1〇2〇的一實施 例。該空白偵測器1〇2〇包含三個數位元件,高通濾波器 1202,遲滯元件(hysteresis)12〇4和計數器12〇6。該高通 濾波器1202過濾資料訊號信號#DATA中的低頻成份, 留下高頻的部份。該遲滯元件12〇4耦接高通濾波器 • Π02,將5亥貝料信號#£)八1^量化為一種方波訊號信號的 幵v式,只有〇和丨兩種狀態,各具有不同的工作週期 (duratlon)。該計數器丨2〇6統計該方波訊號信號的工作週 期以產生一計數值,並利用該計數值來判斷光學信號#rf 的空白狀態是否成立。 臨界值信號#th可以輸入至遲滯元件12〇4中,用以 調整產生方波訊號信號的靈敏度。當高通濾波器12〇2輸 出的貝料#唬#〇八丁入在振幅大小低於臨界值信號#th對 應之振幅大小程度時輸出低位準訊號信號,當高通濾波 器1202輸出的資料信號銳丁八錢幅大小高於臨界值 信號齡對應之振幅大小程度時輸出高位準訊號信號,以 形成該方波訊號信號。而計數器讓在計數方波信號的 工作週期時就,#偵測到低位準方波信號時,即判斷為 空白狀態。當計數ϋ 1206偵測到高位準方波信號時,即 判斷為非空白狀態,並送出致能訊號信號存⑶將解碼器 108啟動,使解碼器108開始對資料信號#〇八丁八進行解 碼處理。 0758-A32234TWF1(20〇70615) 17 1332752 、 於另-實施财,臨界值信號#th也可以輸人至計數 • !2〇6中,用以改變空白狀態是否成立的判斷標 。牛例來說,若偵測到低位準方波信號之計數 ^於臨界值錢之-預料數值時,㈣斷為空^ 恐三當计數$ 1206偵測到高位準方波信號日夺,即判斷為 狀心並送出致能jg號#en將解碼器1 〇8啟動,^吏 解碼器—1G8開始對:#料信號#DATA進行解碼處理。 第13圖係為本發明實際應用時的波形變化示音 Φ圖。在U階段,資料訊號信獅ΑΤΑ的大小並未超過^ 界值信號她,所以光學信號#RF被回報為空白狀態,而 自動增益控制器1G6受暫停訊號信號#hold的控制而暫停 更新,使臨界值信號#th維持不變的值。在t2階段,資料 信號#D ATA超過臨界值信號,所以自動增益控制器回 路恢復運作’漸漸的將#料信號舰以放大而趨近於目 標值(+-target)。同時,臨界值信號#th也隨著資料信號 #DATA的增益變大而放大。在〇階段中,資料信號 #DATA的大小回復小於臨界值信號#th,意即進入另一段 =白狀態。值得注意的是此時的臨界值信號#th比u階段 時之臨界值信號#也還高。如果臨界值信號#化未能動態 調整’則t3階段的資料信號#DATA可能被固定的臨界^ 信號# t h誤判斷為非空白狀態。在13階段既然已判斷為空 白狀態,則自動增益控制器回路又進入暫停狀態,使臨 界值信號#比和可變增益放大器1〇2的增益一樣都維持在 不變的值。在t4階段中表示資料信出現了超過 0758-A32234TWF1 (20070615) 18 1332752 :::的情況’所以自動增益控制器回路遞迴的運作使 , 隹此问時,臨界值信號#th 」 退者增盈下降。上述的例子說明了本發明動態地 調}臨界值信號#th來避免錯誤的判斷結果。 第Η圖係㈣測空白狀態的流程圖。在步驟雇It is understood that the scope A of the present invention must be so limited. It is only in the scope of the second = cover that is obvious to the same spirit or to those skilled in the art. Therefore, the scope of patent claims must be the most extensive: [Embodiment] The preferred embodiment (4) according to the present invention will be described below. It is to be understood that the invention has been described by the invention of the invention It is not intended to limit the scope of the invention. 々 $槿; an embodiment of a picture optical storage device. This embodiment: 5: in the. Blank controller! (4) Using the data signal #DATA from the digital conversion ^DATA to detect the blank state, thereby saving the circuit cost on the blank fine U0 data path shown in Fig. = Chatting the way of reading the bit circuit, the cost is lower than the electricity:;; In the L1A picture, the data converter of the digital converter outputs atI to the automatic touch (four) ϋΠ) 6, and the self-ride (four) 0758-A32234TWFl (20070615) 14 1332752 A control signal signal #ctrl to variable gain amplifier 1 〇2 to adjust the gain value of optical signal #RF. Thereby, the size of the signal #DATA gradually approaches a target value during the recursive adjustment. Since the size of the data signal #1) has been changing, the blank detector i 〇2〇 may judge the error. In order to ensure correctness, the present invention proposes a threshold signal generator 1010 for providing a dynamic threshold signal #th proportional to the control signal #; #ctrl. The threshold signal #th is also amplified when the data signal #dΑΤΑ is amplified, so that the function of the blank detector 1〇2〇 detecting the blank state is not affected by the gain of the variable gain amplifier 1〇2. If the blank state continues for a while, the automatic gain controller loop may gradually amplify the gain of the optical signal #RF to approach the value of the target, forming a divergence phenomenon that we are not happy with. Therefore, there is another function in the blank detector 102G to solve this problem. If the size of the data apostrophe #DATA does not exceed the threshold value signal #th, it indicates that the optical signal signal #RF is in a blank state. At this time, the blank detector deletes a pause signal #hold to the automatic gain controller 1〇6, and commands it to pause the update control sfl唬k 5l; #ctd. In this way, the gain of the optical signal #RF in the blank state can be kept constant. At the same time, the blank debt test is still going on. When the data signal #DATA is found to be non-blank, then the automatic gain control H 1 () 6 is restarted, and the control signal signal #ctrl is continuously updated to restore the function of the automatic gain controller loop. The 11A diagram is an embodiment of the threshold signal generator view in Fig. 10. Figure 11B shows the relationship between the gain and the control signal. The threshold value signal #th is substantially equal to the increase in the variable gain amplifier ι〇2, 0758-A32234TWFl (20070615) 15 1332752, which is proportional to the control signal signal. To simplify the implementation of the critical, signal generator 1010, a digital circuit can be employed to generate the linear relationship in a four-way operation. In Fig. 11B, a curve z represents a gain value generated by the variable gain amplifier 102 based on the control signal signal #ctrl. The straight line sum and the representative threshold signal generator 1010 use a curve to generate the threshold signal #th. The threshold signal generator includes an adder 1106, a controller 1102 and a multiplier 1104. The straight line yi and can be expressed as yn=anx+bn where η is an integer, an is the slope, and 匕 is the offset value. In Fig. 11A, the controller 11〇2 generates a slope value #sl〇pe and an offset value #〇ffset according to the size of the control signal signal #ctH. Multiply state 1104 then multiplies control signal red (7) by slope value #si叩 and multiplies the result to adder 1106, which is added to offset value #〇ffset to produce = boundary value L##th. The size of the control ^##tritri can be divided into a plurality of ranges. The range of the mother corresponds to a different set of slope values and offset values. For example, in the UB diagram n is equal to 2, so use two straight lines to approximate the curve z. When the size of the control signal #ctrl is the first range, the control U 102 generates the slope value ai and the offset value. When the size of the control signal #ctrl is the second range, the controller 11〇2 generates the slope value &; and the value of the offset value by n is not limited to 2, and the larger the number, the more accurate the approximation result. In addition, the threshold signal generator ι〇ι〇 can also check the digital table by 3 digits, the query table contains different control signal signals red juice 1, and its corresponding different threshold signal #also. The curve z-pass 〇 758-A32234TWF1 (20〇70615) 16 1332752 is usually determined in the conventional calibration procedure, so the setting of the threshold signal generation β 1010 can also be set at the time of calibration. Fig. 12 is an embodiment of the blank detector 1〇2〇 in Fig. 10. The blank detector 1 〇 2 〇 includes three digital components, a high pass filter 1202, a hysteresis 12 〇 4 and a counter 12 〇 6. The high pass filter 1202 filters the low frequency components of the data signal signal #DATA, leaving a high frequency portion. The hysteresis element 12〇4 is coupled to the high-pass filter • Π02, and quantizes the 5 haibe signal #£) 八1^ into a 幵v type of a square wave signal, which has only two states, 〇 and ,, each having a different Work cycle (duratlon). The counter 丨2〇6 counts the working period of the square wave signal to generate a count value, and uses the count value to determine whether the blank state of the optical signal #rf is established. The threshold value signal #th can be input to the hysteresis element 12〇4 to adjust the sensitivity of the square wave signal generation. When the high-pass filter 12〇2 outputs the bedding material #唬#〇八丁入, the low-level signal signal is output when the amplitude magnitude is lower than the amplitude corresponding to the threshold value signal #th, and the high-pass filter 1202 outputs the data signal sharply. When the size of the Dingba money is higher than the amplitude corresponding to the threshold signal age, the high level signal is output to form the square wave signal. The counter makes it possible to judge the blank state when the low-order square wave signal is detected when the duty cycle of the square wave signal is counted. When the count ϋ 1206 detects the high quasi-square wave signal, it is judged to be a non-blank state, and the enable signal signal is sent (3) to activate the decoder 108, so that the decoder 108 starts decoding the data signal #〇八八八deal with. 0758-A32234TWF1(20〇70615) 17 1332752 In the other way, the threshold value signal #th can also be input to the count • !2〇6, which is used to change whether the blank state is true or not. In the case of a cow, if the count of the low-order quasi-square wave signal is detected at the critical value-expected value, (4) the break is empty ^ fear three counts $1206 to detect the high quasi-square wave signal, ie It is judged as the center of the heart and sends the enabler jg##en to start the decoder 1 〇8, and the decoder —1G8 starts the decoding process of the #material signal#DATA. Figure 13 is a diagram showing the waveform change Φ of the actual application of the present invention. In the U stage, the size of the information signal letter lion does not exceed the threshold value of her, so the optical signal #RF is reported as a blank state, and the automatic gain controller 1G6 is suspended by the control of the pause signal #hold, so that The threshold value signal #th remains unchanged. In the t2 phase, the data signal #D ATA exceeds the threshold signal, so the automatic gain controller loops back to operation. Gradually, the #signal ship is zoomed in to approach the target value (+-target). At the same time, the threshold value signal #th is also amplified as the gain of the data signal #DATA becomes larger. In the 〇 phase, the size of the data signal #DATA is less than the threshold value signal #th, meaning that it enters another segment = white state. It is worth noting that the critical value signal #th at this time is also higher than the critical value signal # at the u stage. If the threshold signal # is not dynamically adjusted, the data signal #DATA of the t3 stage may be erroneously judged to be a non-blank state by the fixed critical ^ signal # t h . Since the 13th stage has been judged to be blank, the automatic gain controller circuit enters the pause state again, so that the critical value signal # is maintained at a constant value as with the gain of the variable gain amplifier 1〇2. In the t4 phase, it indicates that the data letter has exceeded the condition of 0758-A32234TWF1 (20070615) 18 1332752 ::: 'So the operation of the automatic gain controller loop recurs, so when the question is asked, the threshold value signal #th ” The profit fell. The above example illustrates that the present invention dynamically adjusts the threshold value signal #th to avoid erroneous judgment results. The third diagram is a flow chart for measuring the blank state. Hired in steps

If:!,大器1〇2根據控制信伽將光學信號 卞在步驟腦中’該數位轉換器將光學信號瓣 取樣以付到-資料信號缝以。在步驟14〇6中,該自動 增盈控制器根據資料信號#DAT“大小更新控制訊號信 號㈣。在步驟剛中,臨界值信號產生器ι〇ι〇根據 控制訊號錢提供—臨界值錢馳。在步驟i4i〇 中,空白偵測器刪根據臨界值信號偵測資料信號 #DATA的空白狀態。在步驟1412中,如果資料訊號 ^DATA不是空白狀態’則啟動解碼器108對該資料訊號 信號#DATA進行解碼。在步驟1414中,如果該資料信 號#DATA是空白狀態,則空白偵測器1〇2〇關閉解碼器 =8’並暫停自動增益控制器1〇6的運作使自動增益控制 益回路不動作。 第15圖係為本發明實施例之一的迴路回路控制電 路。其該控制迴路回路係可應用於一光學儲存裝置中, 用以對從一光碟獲取的一光學訊號信號進行迴路回路控 制,该光學訊號信號載有相對應之資料,但本發明並不 以此為限。可變增益放大器2〇2 ’數位轉換器2〇4,峰谷 值偵測器206和自動增益控制器208形成了 一個訊號信 〇758-A32234TWF1(20070615) 19 1332752 唬控制迴路回路,控制數位資料#DATA的增益。模式控 制器1500判斷臨界值和振幅的相對狀態,藉以調整在自 動增盈控制器208和偏移控制器21〇中所使用的步進步 产白。可變增盈放大器202根據增益值#gain放大光學信號 #RF ’而數位轉換器204類比數位轉換器204取樣放大後 的光學信號#尺1?以產生數位資料#DATA。隨後,峰谷值 偵測益206偵測數位資料#dΑΤΑ中峰值和谷值的大 •小。模式控制器1500判斷該峰值是否超過正高臨界值 +Hth。正向臨界值+Htll可以是一個大於或等於正目標值 ♦target的值。同樣的,負高臨界值_Hth是個小於等於負 目標值-target的值。如果光學信號#RF被可變增益放大 器202過度放大,使峰值超過正高臨界值+mh而谷值低 於負向臨界值-Hth ’則模式控制器1500發出一第一控制 訊號信號#〇1:1*11通知自動增益控制器2〇8增加步進步階, 而增盈則依據峰值和谷值#1^和調整後的該步進 φ步階而更新,藉此使增益控制迴路回路的收斂速度 在該迴路回路控制電路中,可變增益放大器2〇2, 數位轉換器204 ’偏移控制器210和加法器212組成了另 一個訊號信號控制迴路回路,用以進行偏移補償。如果 只有峰值或谷值其中之-超過了目標值(正目標值也柳 或負目標值-target),則表示發生了如第3圖中階段妃和 t4所示的偏移。同樣的,模式控制器15〇〇藉由正高臨界 值+Hth和負高臨界值-Hth判斷偏移是否發生。如果偵測 到偏移,就發出一第二控制訊號信號#ctrl2通知偏移控制 0758-A32234TWFl(20070615) 20 丄332752 。。210增加步進步階,使偏移控制迴路回路的收斂速度 加快。接著根據數位資料#DATA和調整後的步進步階, 計算出平移訊號信號#Gff紗加法器212祕在偏移控制 :?1〇和可變增益放大器2〇2之間,負責先將平移訊號 U#offSet補償至光學信號#RF中才送至可變增益放大 器202進行放大。If:!, the bulk 1〇2 光学 光学 光学 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据In step 14〇6, the automatic gaining controller updates the control signal signal (4) according to the data signal #DAT. In the step just after, the threshold signal generator ι〇ι〇 provides a threshold value according to the control signal. In step i4i, the blank detector deletes the blank state of the data signal #DATA according to the threshold signal. In step 1412, if the data signal ^DATA is not blank, the decoder 108 is activated to the data signal # DATA is decoded. In step 1414, if the data signal #DATA is blank, the blank detector 1〇2〇 turns off the decoder=8' and suspends the operation of the automatic gain controller 1〇6 to make the automatic gain control benefit The loop circuit does not operate. Figure 15 is a circuit loop control circuit according to an embodiment of the present invention, wherein the control loop circuit can be applied to an optical storage device for looping an optical signal signal obtained from an optical disc. Loop control, the optical signal signal carries corresponding data, but the invention is not limited thereto. Variable gain amplifier 2〇2 'digital converter 2〇4, peak valley The detector 206 and the automatic gain controller 208 form a signal signal 758-A32234TWF1 (20070615) 19 1332752 唬 control loop circuit that controls the gain of the digital data #DATA. The mode controller 1500 determines the relative state of the threshold and the amplitude, The steps used in the automatic gain controller 208 and the offset controller 21A are adjusted to produce whitening. The variable gain amplifier 202 amplifies the optical signal #RF' according to the gain value #gain and the digital converter 204 analog-to-digital conversion The device 204 samples the amplified optical signal #尺1? to generate the digital data #DATA. Subsequently, the peak-to-valley detection benefit 206 detects the large and small peaks and valleys in the digital data #dΑΤΑ. The mode controller 1500 determines the Whether the peak exceeds the positive high threshold + Hth. The positive threshold + Htll can be a value greater than or equal to the positive target value ♦ target. Similarly, the negative high threshold _Hth is a value less than or equal to the negative target value -target. The optical signal #RF is over-amplified by the variable gain amplifier 202 such that the peak exceeds the positive high threshold + mh and the valley is lower than the negative critical value -Hth 'the mode controller 1500 issues a first control The signal signal #〇1:1*11 notifies the automatic gain controller 2〇8 to increase the step of progress, and the gain is updated according to the peak value and the bottom value #1^ and the adjusted step φ step, thereby making The convergence speed of the gain control loop circuit is in the loop loop control circuit, the variable gain amplifier 2〇2, the digit converter 204 'offset controller 210 and the adder 212 form another signal signal control loop loop for performing Offset compensation. If only the peak or valley value exceeds the target value (positive target value or negative target value - target), it means that the offset shown in stage 妃 and t4 in Fig. 3 has occurred. Similarly, the mode controller 15 determines whether or not the offset occurs by the positive high critical value + Hth and the negative high critical value - Hth. If an offset is detected, a second control signal signal #ctrl2 is issued to notify the offset control 0758-A32234TWFl (20070615) 20 丄 332752 . . 210 increases the step of stepping, which speeds up the convergence of the offset control loop. Then, according to the digital data #DATA and the adjusted step progression, the translation signal signal #Gff yarn adder 212 is calculated between the offset control: ?1〇 and the variable gain amplifier 2〇2, which is responsible for first shifting the signal. The U#offSet is compensated to the optical signal #RF before being sent to the variable gain amplifier 202 for amplification.

上,16圖係為第15圖中模式控制器1500的實施例。 j該模式控制器测中包含了 —第—比較器i6i〇和一 第-比較器⑽,各別將峰值谷值卿與正高臨界值 界值·Hth進行比較。如果峰值超過正高臨 i。笫二:比?器1610輸出一真值,否則輸出-假 果工判斷器1640耦接第一比較器1610和第二 咖的輸出端。同樣的,如果谷值比負高臨界值 -光二較器1620輸出真值,反之則輸出假值。 田光子㈣#RF被過度放大時 ;=20都會輸出真值,而第-模式判 體上;虎信號#灿輸出至自動增益控制器208。具 二判斷器1640可以是-個或間_, 而弟一控制訊號信號細rU可以是 =制=的運作模式可切換於-二= 、式。如果弟—控制訊號信號# 速模式’則自動增益控制器208將步進的步值二1為表= 的值。相對的,告筮.乂逛/匕叹為一較大 正常模/1:广控制訊號信編"為。時,表示 式,步進步階的值設為-較小的值。此外,第二 0758-A32234TWF1(20070615) 21 1332752 ,式判斷器1630亦耦接於第一比較器1610和第二比較 =^62〇的輸出端。當偏移發生時,只有第一比較器1610 或第一比較益1620其中之一會輸出真值,這時第二模式 斷态1630發出一第二控制訊號信號#ctrl2給偏移控制 器210。在本實施例中,第二模式判斷器163〇是一個互 斥閘(XOR)。但是用或閘(〇R)實作也是可以的。 另方面’當數位資料#DΑΤΑ的振幅過小的時候, 也會觸發加速模式。舉例來說,第一比較器161〇尚可將 該峰值與低於目標值的一正低臨界值+Lth比較,而第二 比較盗1620也將谷值與高於負目標值的一負低臨界值 -Lth比較。如果峰值低於正低臨界值+Lth,第一比較器 1610輸出一真值,否則輸出一假值。如果谷值比負低臨 界值-Lth還高,則第二比較器162〇輸出真值。當數位資 料#〇人丁人振幅過小,致使第一比較器161〇和第二比較 器1620同時輸出真值時,第一模式判斷器164〇就發出 具有1值的第一控制訊號信號#ctrll至自動增益控制器 20 8以啟動加速模式。正低臨界值+Lth和負低臨界值· 也可以用在偏移的判斷上。 第17圖係為本發明實施例之下產生的波形圖。階段 tl顯示一低於目標值的數位資,以兩階段放大 至目標值。當峰值低於正低臨界值+Lth時,自動增益控 制器208運作於加速模式,所以包絡線的斜率較陡。谷 值的變化原理和峰值是相同的,因具有對稱性。隨著數 位資料#DATA的振幅增加,峰值超過正低臨界值+uh的 0758-A32234TWFl(20070615) 22 1332752 卓I二:則增益控制迴路回路回到正常模式,所以顯示出 ^、緩的斜率。步進步階的調整可使增益控制迴路回路 在振幅與目標值差距很大的時候快速收斂,並在振 近目標值時維持穩定。 西階段t2顯示一高於目標值的數位資料#1)八丁人,趨近 目杌值的步驟分為兩個階段。首先,當數位資料#DATA 勺峰值起過正尚臨界值時,自動增益控制器208 =作於加速模式,由圖可見其斜率是較陡的。隨著增益 乜制迴路回路的遞迴收斂,數位資料#data的振幅降至 ,於正高臨界值+Hth,於是增益控制迴路回路回到正常 2式,以較平緩的斜率向目標值趨近。該正高臨界值+Hth 具體上可以和正目標值+target為同一值(負高臨界值 -Hth和負目標值_target也一樣),如此一來過度放大的 數位資料#DΑΤΑ只會以加速模式進行收斂。 階段t3顯示偏移的狀況。谷值低於負目標值 garget,但是峰值不超過正目標值竹訂弘丨。第15圖的偏 移控制器210將平移訊號信號#〇ffset值加入光學信號 #RF以補彳員這些偏移。由圖可見,當谷值低於負高臨界 值-Hth日守,偏移控制器21〇受第二控制訊號信號紅出2 的觸發運作於加速模式,包絡線的斜率是較陡的。偏移 的狀況可能與過度放大或是放大不足的情況複合發生, 所以自動增盈控制器208和偏移控制器21〇可能會交替 運作以達成目標值。 P白^又t4疋另一種偏移的例子。峰值超過正目標值 0758-A32234TWF1(20070615) 23 ij32752 +iarget但是谷值不超過 •高臨界值+Hth以 負目知值-吨et。在峰值降至正 進行補償。最後在時二===: 數 步帮1:中圖係Λ本發明迴路回路控制方法的流程圖。在 益控制。如果需要H制11208判斷是否需要進行增 法—L 丁步驟⑽4, _峰值和谷值來 備Γ作ί式。如果蜂值高於正高臨界值鄉,而且谷 氏於負尚臨界值-Hth,則於步驟18〇6中 ^自動增益控制器、208使用較高的步進步階來^^ 皿值#gam。^則,於步驟刪中進行正常模式 曰 _中’如科值低於正低臨界值伽而且谷= :;負低^界值摘,也會啟動加速模式。在步驟⑻〇 =,偏移控制器2H)判斷是否需要進行偏移補償。如果 ^信^行步驟1812,決定運作模式為何。如果峰值或 。值其中之-超過了正高臨界值+Hth/負高臨界值舰, 則於步驟1818中進行加速模式。否則於步驟i8i4中進 行正常模式。當所有步驟完成時,程序返回步驟18〇2。 —請參考第19圖。第19圖係為一根據本發明之一第 :實施例之不對稱性量測裝£ i 9⑽之示意圖。不對稱性 量測裝置1900包含一訊號信號調整模組191〇、一數位轉 換器1904、一偵測單元1905、一不對稱性計算單元19〇6 以及一比較器1907。訊號信號調整模組191〇用來調整紀 07S8-A32234TWF1(20070615) 24 1332752 錄資料再生说號彳s號S1 ;數位轉換器1904麵接於訊號信 號調整模組1910用來將調整後之紀錄資料再生訊號信號 si轉換為數位訊號信號S2 ;偵測單元19〇5耦接於數位 轉換益1904,用以根據一控制訊號信號c2來偵測數位 汛唬尨號S2的複數個值。例如,當控制訊號信號為 咼準位位準時,偵測單元19〇5偵測數位訊號信號S2的 複數個值;反之,當控制訊號信號C2為低準位位準時, 偵測單元1905不偵測數位訊號信號S2的複數個值。而 數位訊號信號S2的複數個值包含了數位訊號信號S2的 聲值(peak value)、谷值(bottom value)以及平均值(average value)。不對稱性計算單元19〇6耦接於偵測單元 1905 以 根據偵測單元1905所得到的複數個值來計算數位訊號信 號S2的不對稱值。而比較器19〇7便將不對稱性計算單 元1906所得出的不對稱值與一預定值ρι作比較,以得 出一比較結果。因此光學儲存裝置便可根據該比較結果 來調整發射雷射光束的功率。 汛唬彳§號調整模組191〇包含一偏移(〇ffset)單元 1901、一可變增益放大器(Variable Gain Amplifier, VGA)1902 與一等化器(equalizer)19〇3。偏移單元 19〇1 耦接於紀錄資料再生訊號信號S1與可變增益放大器 Ϊ902之間用以調整紀錄資料再生訊號信號si的偏移 值,可變增ϋ放大器1902用來放大調整後的紀錄資料再 生訊號信號S1;等化器19〇3耦接於可變增益放大器19〇2 的輪出端,用來等化放大後的紀錄資料再生=信號 0758-A32234TWF1 (20070615) 25 1332752 Μ。。偏移單元1901的操作頻寬係為可調,且可根據控制 λ唬彳5唬ci來作調整。例如,當控制訊號信號C1為高 2位位準時,偏移單元19〇1的操作頻寬便可設為高頻寬 帶,反之,當控制訊號信號C1為低準位位準時,偏移單 元1901的操作頻寬便可設為低頻寬帶。 不對稱性叶异單元1906所產生的不對稱值包含了 如·貝他值(beta value,石)。貝他值可根據下列公式產 生./^(Aj+A^Aj-AJ ’ ApPK-DC 及 A2=BT-DC,其 中冷代表貝他值、PK代表峰值、Dc代表平均值以及 BT代表谷值。 此外,於本發明另一實施例中,燒錄於光學儲存媒 體軌道上之標記(marks)具有不同的長度用以表示不同之 資料訊息。因此,紀職料再生錢錢S1龍於不同 的長度標記各自也具有不同的物理特徵。例如,對應於 長度較短標記(短T標記)之紀錄資料再生訊號信號^,、 其峰值’谷值或平均值會不同於長度較長標記(長τ標記 之紀錄#料再生訊號信號M。所以,不對稱值可根據下 Μ A式產生:不對稱值 =((PKl+BTl)/2-(PKs+BTs)/2)/(PKl_BTl),其中 PKl 代表 對應長T標記之峰值、PKs代表對應短 又 机代表對應長τ標記之谷值、以及BTS編==τ 標,己之谷值:於一實施例中,例如blu_ray光學儲存媒體 之長T標記為8T標記,以及blu_ray光學儲存媒 標記為2T標記。 075 8-A32234TWF1 (20070615) 26 1332752 另外,數位訊號信號㈣可提供給光學 作為貧料偵測之使用。 展置以 請參考第20圖。第20圖係為一根據本發明之 了貫施例之不對稱性量測裝置2咖之示意圖。第 係為-根據本發明之—第二實施例之不對稱性量測裝置 2曰_之不意圖。不對稱性量測裝置觸相似於稱 莖測裝置测,其中不同之處僅在於不對稱性量測裝置 2000將第圖中的不對稱性量測裝置觸的訊號⑼ 調整模組1910取代成為訊號信號調整模組2〇ι〇,^ς =1= 能完全相同,為了方便說明,第㈣ 中相同於弟19圖的相關描述將省略不再贅述。 訊號信號調整模組测包含高通渡波器勘、可 放大器2G02以及等化器勘。高·波器纖 用來濾除紀錄貧料再生訊號信號S1的低頻雜訊;可變增 盈放大器2002柄接於高通濾波器纖用來放大濟出^ 紀錄資料再生訊號信號S1;等化器2〇〇3耦接於可變增益 放士器2002的輸出端用來等化放大後的紀錄資料再生訊 號信號S1。高通濾波器細的操作頻寬係為可調,且可 ,據^_古制。孔號心5虎C1來作調整。例如’當控制訊號信號 Μ :·’、」57準位位準時,高通濾波器2001的操作頻寬便可 :為:頻見帶’·反之’當控制訊號信號C1為低準位位準 日丁’冋主通遽波器2001的操作頻寬便可設為低頻寬帶。Above, Fig. 16 is an embodiment of the mode controller 1500 in Fig. 15. j The mode controller includes - a comparator -6i〇 and a first-comparator (10), each comparing the peak valley value with the positive high threshold value Hth. If the peak exceeds the positive high, i.笫 2: What? The device 1610 outputs a true value, otherwise the output-false operator determiner 1640 is coupled to the outputs of the first comparator 1610 and the second coffee. Similarly, if the valley value is lower than the negative high threshold value - the light two comparator 1620 outputs a true value, and vice versa, a false value is output. When Tian Guangzi (4)#RF is over-amplified; =20 will output a true value, and the first-mode is judged; the tiger signal #can is output to the automatic gain controller 208. The second determiner 1640 may be - or _, and the control mode of the control signal signal rU may be === the operation mode can be switched to -2=. If the control signal signal #speed mode is used, the automatic gain controller 208 sets the step value of the step to 1 as the value of the table =. Relatively, admonish. Strolling/sighing is a larger normal mode / 1: wide control signal letter " for. In the expression, the value of the step of step is set to a value smaller than -. In addition, the second 0758-A32234TWF1 (20070615) 21 1332752, the type determiner 1630 is also coupled to the output of the first comparator 1610 and the second comparison =^62〇. When the offset occurs, only one of the first comparator 1610 or the first comparator 1620 outputs a true value, at which time the second mode off state 1630 issues a second control signal #ctrl2 to the offset controller 210. In the present embodiment, the second mode determiner 163 is a mutual repelling gate (XOR). However, it is also possible to use the or gate (〇R). On the other hand, when the amplitude of the digital data #DΑΤΑ is too small, the acceleration mode is also triggered. For example, the first comparator 161 can compare the peak with a positive low threshold + Lth below the target value, and the second comparison 1620 also lowers the valley with a negative lower than the negative target. Threshold - Lth comparison. If the peak value is lower than the positive low threshold + Lth, the first comparator 1610 outputs a true value, otherwise a false value is output. If the valley value is higher than the negative low critical value -Lth, the second comparator 162 outputs a true value. When the digital data #〇人丁人 amplitude is too small, causing the first comparator 161〇 and the second comparator 1620 to simultaneously output the true value, the first mode determiner 164〇 issues the first control signal signal #ctrll having a value of one. The automatic gain controller 20 8 is activated to initiate the acceleration mode. The positive low threshold + Lth and the negative low threshold can also be used in the judgment of the offset. Figure 17 is a waveform diagram generated under the embodiment of the present invention. Stage tl displays a number of digits below the target value and zooms in to the target value in two stages. When the peak is below the positive low threshold + Lth, the automatic gain controller 208 operates in the acceleration mode, so the slope of the envelope is steep. The change principle and peak value of the valley value are the same because of the symmetry. As the amplitude of the digital data #DATA increases, the peak value exceeds the positive low threshold +uh 0758-A32234TWFl (20070615) 22 1332752 Zhuo I 2: The gain control loop loop returns to the normal mode, so the ^, slow slope is displayed. The step-adjustment adjustment allows the gain control loop to converge quickly when the amplitude is significantly different from the target value and to maintain stability when the target value is approached. The western stage t2 shows a digital data higher than the target value #1) 八丁人, the step of approaching the target value is divided into two stages. First, when the peak value of the digital data #DATA spoon has passed the positive threshold, the automatic gain controller 208 = is in the acceleration mode, and the slope is steeper. As the gain loops back and forth, the amplitude of the digital data #data drops to a positive high threshold + Hth, so the gain control loop returns to normal 2, approaching the target with a gentle slope. The positive high threshold +Hth can be specifically the same value as the positive target value +target (the negative high threshold value -Hth and the negative target value _target are also the same), so that the over-amplified digital data #DΑΤΑ will only be performed in the acceleration mode. convergence. Stage t3 shows the status of the offset. The valley value is lower than the negative target value garget, but the peak value does not exceed the positive target value. The offset controller 210 of Fig. 15 adds the translation signal #〇ffset value to the optical signal #RF to compensate for these offsets. It can be seen from the figure that when the valley value is lower than the negative high threshold value -Hth, the offset controller 21 is operated in the acceleration mode by the trigger of the second control signal signal 2, and the slope of the envelope is steep. The offset condition may occur in combination with over-amplification or under-amplification, so the automatic gain controller 208 and the offset controller 21 may alternate to achieve the target value. P white ^ and t4 疋 another example of offset. The peak value exceeds the positive target value. 0758-A32234TWF1(20070615) 23 ij32752 +iarget but the valley value does not exceed • The high threshold value +Hth is the negative value -tet. Compensation is made when the peak value drops to positive. Finally, at time two ===: Step 1: The middle diagram is a flow chart of the loop control method of the present invention. Benefit control. If H system 11208 is required to determine whether it is necessary to add - L step (10) 4, _ peak and valley value for ί. If the bee value is higher than the positive high threshold value and the valley is at the negative critical value -Hth, then in step 18〇6, the automatic gain controller, 208 uses a higher step progression order to determine the value of the dish #gamma. ^ Then, in the step of deleting the normal mode 曰 _ 中 ' If the value is lower than the positive low threshold gamma and valley = :; negative low ^ boundary value pick, will also start the acceleration mode. At step (8) 〇 =, the offset controller 2H) determines whether offset compensation is required. If the letter is OK, step 1812 determines the mode of operation. If peak or . If the value exceeds the positive high threshold + Hth / negative high threshold ship, the acceleration mode is performed in step 1818. Otherwise, the normal mode is performed in step i8i4. When all the steps are completed, the program returns to step 18〇2. - Please refer to Figure 19. Figure 19 is a schematic illustration of an asymmetry measurement device, i i (10), in accordance with one embodiment of the present invention. The asymmetry measuring device 1900 includes a signal signal adjusting module 191A, a digital converter 1904, a detecting unit 1905, an asymmetry calculating unit 19〇6, and a comparator 1907. The signal signal adjustment module 191 is used to adjust the clock 07S8-A32234TWF1 (20070615) 24 1332752 recorded data reproduction number 彳 s number S1; the digital converter 1904 is connected to the signal signal adjustment module 1910 for the adjusted record data The regenerative signal signal si is converted into a digital signal signal S2, and the detecting unit 19〇5 is coupled to the digital conversion benefit 1904 for detecting a plurality of values of the digital apostrophe S2 according to a control signal c2. For example, when the control signal signal is at the level of the level, the detecting unit 19〇5 detects a plurality of values of the digital signal signal S2; otherwise, when the control signal signal C2 is at the low level, the detecting unit 1905 does not detect A plurality of values of the digital signal signal S2 are measured. The plurality of values of the digital signal signal S2 include the peak value, the bottom value, and the average value of the digital signal signal S2. The asymmetry calculation unit 19〇6 is coupled to the detection unit 1905 to calculate the asymmetry value of the digital signal signal S2 according to the plurality of values obtained by the detection unit 1905. The comparator 19〇7 compares the asymmetry value obtained by the asymmetry calculation unit 1906 with a predetermined value ρι to obtain a comparison result. Therefore, the optical storage device can adjust the power of the emitted laser beam based on the comparison result. The 汛唬彳§ adjustment module 191〇 includes an offset (〇ffset) unit 1901, a variable gain amplifier (VGA) 1902, and an equalizer 19〇3. The offset unit 19〇1 is coupled between the recorded data reproduction signal signal S1 and the variable gain amplifier Ϊ902 for adjusting the offset value of the recorded data reproduction signal signal si, and the variable boosting amplifier 1902 is used to amplify the adjusted record. The data reproduction signal signal S1; the equalizer 19〇3 is coupled to the wheel-out end of the variable gain amplifier 19〇2 for equalizing the amplified record data reproduction=signal 0758-A32234TWF1 (20070615) 25 1332752 Μ. . The operating bandwidth of the offset unit 1901 is adjustable and can be adjusted according to the control λ唬彳5唬ci. For example, when the control signal signal C1 is at the upper 2-bit level, the operation bandwidth of the offset unit 19〇1 can be set to the high-frequency broadband, and when the control signal signal C1 is at the low-level level, the offset unit 1901 The operating bandwidth can be set to low frequency broadband. The asymmetry values produced by the asymmetric leaf unit 1906 include, for example, beta values. The beta value can be generated according to the following formula: /^(Aj+A^Aj-AJ ' ApPK-DC and A2=BT-DC, where cold represents beta value, PK represents peak value, Dc represents average value, and BT represents valley value. In addition, in another embodiment of the present invention, the marks burned on the track of the optical storage medium have different lengths for different information messages. Therefore, the reclaimed money of the discipline material is different. The length markers also each have different physical characteristics. For example, the record data reproduction signal signal corresponding to the shorter length mark (short T mark), its peak 'valley or average value will be different from the longer length mark (long τ Marked record # material regenerative signal M. Therefore, the asymmetry value can be generated according to the following formula: asymmetry value = ((PKl + BTl) / 2 - (PKs + BTs) / 2) / (PKl_BTl), wherein PKl represents the peak of the corresponding long T mark, PKs represents the valley of the corresponding short τ mark corresponding to the long τ mark, and BTS code == τ mark, the valley value: in one embodiment, for example, the length of the blu_ray optical storage medium The T mark is 8T mark, and the blu_ray optical storage medium is marked as 2T mark. 75 8-A32234TWF1 (20070615) 26 1332752 In addition, the digital signal signal (4) can be provided for optical use as a lean material detection. Please refer to Figure 20 for display. Figure 20 is a schematic example according to the present invention. A schematic diagram of the asymmetry measuring device 2. The system is a non-intentional asymmetry measuring device according to the second embodiment of the present invention. The asymmetry measuring device is similar to the weighing stem. The measurement device only differs in that the asymmetry measuring device 2000 replaces the signal (9) adjustment module 1910 touched by the asymmetry measuring device in the figure as a signal signal adjusting module 2〇ι〇, ^ς =1= can be exactly the same. For the convenience of description, the related descriptions in Figure 4 are the same as those in the same paragraph. The signal signal adjustment module includes Qualcomm and Waves, 2G02 and equalizers. The wave device fiber is used to filter the low frequency noise of the poor material regenerative signal signal S1; the variable gain amplifier 2002 handle is connected to the high pass filter fiber for amplifying the output signal data regenerative signal signal S1; equalizer 2 〇〇3 is coupled to variable gain The output of the device 2002 is used to equalize the amplified record data regenerative signal S1. The fine operation bandwidth of the high-pass filter is adjustable, and can be, according to the ^_ ancient system. The hole number heart 5 tiger C1 Adjustment. For example, when the control signal signal Μ:·', "57" level is accurate, the operating bandwidth of the high-pass filter 2001 can be as follows: frequency see band '· vice versa when the control signal signal C1 is low level The operating bandwidth of the quasi-day Ding's main pass chopper 2001 can be set to low frequency broadband.

。月多考第21圖。第21圖係為本發明之不對稱性量 測方式的-第-時序圖。於第21圖中,空白訊號信號W 0758-A32234TWF1 (20070615) 27 Ϊ332752 表示紀錄資料再生訊號信號是否是從光學儲存媒體的非 空白區(如資料區)中所產生的。也就是說,當空白訊號信 遽bl為低準位位準時’表示紀錄資料再生訊號信號係從 光學儲存媒體的資料區中所產生;當空白訊號信號bl為 南準位位準時’表示紀錄資料再生訊號信號不是從光學 儲存媒體的資料區中所產生。因此,控制訊號信號C1便 可根據空白訊號信號bl所產生。於第21圖中,當空白 訊號信號Μ為低準位位準時,經由一第一延遲區間du 之後,控制訊號信號Cl才被設為低準位位準。如此一 來,偏移單元1901與高通濾波器2001的操作頻帶便可 於第一延遲區間dtl之後被調整至低頻帶。除此之外,偏 移單兀1901與高通濾波器2〇〇1的操作頻率皆設為高頻 帶0 控制汛號信號C2(位址旗標訊號信號)係根據光學儲 存媒體的位址所產生。於第21圖中’於位址i與位址2 間的所擷取的紀錄㈣再生訊號錢S1係讀㈣以功率 1的功率大小紀錄於光學儲存媒體上之相對應冑記;於位 址2與位址3間的所擷取的紀錄資料再生訊號信號係 讀取自以功率2的功率大小紀錄於光學儲存媒體上之相 對應標記;於絲3與位址4 _所擷取的紀錄資料再 生訊號信號S1係讀取自以功率3的功率大小紀錄於光學 體上之相對應標記。因此,當紀錄資料再生訊號 2 1產生後,再經由—段延遲,控制訊號信號〇便 會被設為高準位位準。而控制訊號信號c2係用來致能谓 0758-A32234TWFl(20070615) 28 3元二=位訊號信號S2的複數個值。如此 對稱值】二二7對卿'對應於功率2的不 出來。 ^力率3的不對稱值/53便可分別產生 測方考:22圖。帛22圖係為本發明之不對稱性量 存:= 圖。控制訊號信號。係根據光學儲 仔媒體的位址所產生。 間的所擷取的⑽於位址1與位址2 ’ · ’ ’Ί料再生訊號信號S1係讀取自以功率 紀錄於光學儲存媒體上之相對應標記;於位 〜t位址3間的所操取的紀錄資料再生訊號信號S1係 二功率2的功率大小紀錄於光學儲存媒體上之相 丁己,於位址3與位址4严曰,#所擷取的紀錄資料再 ,號信號S1係讀取自以功率3的功率大小紀錄於光學 全子媒體上之相對應標記。因此,當紀錄資料再生訊號 ^虎Si產生後,經過一第二延遲時間犯後,控制訊號 C1才被设為低準位位準。如此一來,偏移單元19〇1 與高通濾波器2001的操作頻率便可於控制訊號信號C1 為低準位位準時被調整至低頻帶。除此之外,偏移單元 1901與尚通濾波器2〇〇1的操作頻率皆設為高頻帶。 控制訊號信號C 2 (位址旗標訊號信號)係根據光學儲 存媒體的位址所產生。因此,當紀錄資料再生訊號信號 si產生後,再經由一段延遲,控制訊號信號c2便會被 设為南準位位準。而控制訊號信號C2係用來致能偵測單 元1905去偵測數位訊號信號S2的複數個值。如此一來, 〇758-A32234TWF1(20070615) 29 1332752 對應於功率1的不對稱值0 1、對應於功率2的不對稱值 冷2、對應於功率3的不對稱值冷3便可分別產生出來。 本發明的精神係在於以數位的方式去偵測紀錄資料 再生訊號信號的複數個值並進而去計算其不對稱值。因 此’用來偵測與計算的元件便可以較簡易的設計來完成。 上述不對稱性量測之裝置與方法僅為示範利用不同 功率標記的紀錄資料再生訊號信號來調整光學儲存裝置 的發射功率的實施例而並非將本發明限縮於上述之實施 例中。本發明可適用於任何根據預先標記的再生訊號信 號來動態調整功率的寫入動作中。 第23圖係顯示根據本發明—實施例所述之光碟之 轨道中心補償以及傾斜控制之方塊圖。光學讀取頭2302 具有分開之光學偵測器2303 ’用以偵測雷射光之強度, 並將偵測到之雷射光強度轉換為電子信號。分開之光學 偵測Is 2 3 0 3可以分割為既定數目之光學偵測元件。 如前所述,DVD-RAM光碟具有由凹紋軌以及凸紋 轨所組成之信號執道’資料能夠讀寫至凹紋轨以及凸紋 軌’或者凹紋執以及凸紋執之一者。同樣的,如第7圖 所示,在各區段的開始位置具有交錯之首標區Header 1、 Header2、Header3、以及 Header4。 因此,當設定DVD-RAM光碟2301時,或者在執行 讀寫動作時,由光學讀取頭2302之雷射二極體所發出之 雷射光將投射至DVD-RAM光碟2301之信號執道〇具有 既定狀態之光點係提供至DVD-RAM光碟2301,而由 0758-A32234TWF1 (20070615) 30 1332752 DVD-RAM光碟2301之信號軌道反射之雷射光將反射至 光學偵測器2303。再者,當光點通過DVD-RAM光碟2301 之首標區域(非寫入區)時,光學偵測器23〇3根據分別 由光學偵測元件所偵測並輸出之正比於雷射光強度之電 子信號產生偵測信號(光學信號)#RF。因此,可以得到 第8圖所示之由讀取頻道丨所偵測到之光學信號#1117。 為了由數位轉換器(ADC )2305將類比光學信號#RF 轉換為數位信號,需要使用信號調整模組2304來調整光 學信號#RF之信號位準使其位於數位轉換器23〇5之工作 範圍中,並以位於工作範圍之中央附近較佳。在調整完 光學#號#RF之信號位準後,信號調整模組23〇4產生了 調整後之調整光學信號#^^,並輸出至數位轉換器23〇5。 根據本發明一實施例’信號調整模組2304具有一偏移控 制裝置。根據本發明另一實施例,信號調整模組23〇4具 有一高通濾波器(HPF)。數位轉換器(ADC) 2305將 調整了偏移量之類比調整光學信號#RF’轉換為數位信號 SD。偵測電路2306包括光學傾斜誤差偵測器2306A以 及軌道中心偵測器2306B。偵測電路2306根據數位信號 SD偵測伺服偵測信號。 由DVD-RAM光碟2301所反射之雷射光會因為一些 傾斜狀態而偏離預設之路徑,例如DVD_RAM光碟23〇1 之傾斜。光學傾斜誤差偵測器23〇6A偵測數位信號SD 之直流谷值並根據偵測結果產生光學傾斜誤差TL。根據 本發明一實施例’位於軌道中央之光學傾斜誤差TL可由 0758-A32234TWF1 (20070615) 1332752 … 公式(1)得知: * TL=[(ISHD1+ISHD2)- (ISHD3+ISHD4)]/2I〇 (1) 其中ISHD1、ISHD2 ' ISHD3以及ISHD4分別代表 VFO信號於第6B圖所示之首標區Headerl、Header2、 Header3、Header4之直流谷值,而10為鏡像區之直流位 準。 根據本發明另一實施例,光學傾斜誤差TL可根據 籲將公式(1)簡化為公式(2)而得: TL=ISHD1- ISHD3 (2) 當得到光學傾斜誤差TL,光學傾斜誤差偵測器 2306A輸出光學傾斜誤差TL。經過低通濾波器2307A遽 波後,濾波後之光學傾斜誤差TL輸出至傾斜控制器 2308。傾斜控制器2308產生控制信號TL〜Ctrl以根據光 學傾斜誤差TL校正提供至DVD-RAM光碟2301之光點 之入射角。 哥軌控制包括由根據光束狀態所產生之電子信號侦 測執道誤差信號以及根據執道誤差信號驅動於光學讀取 頭之一哥軌促動器(actuat〇r )以移動光學讀取頭之一目 標鏡片至光碟片之徑向,因此改變光束之位置以追縱目 標執道。根據本發明一實施例,推挽式(push_pull)彳貞測 器2309由哥執頻道(Tracking channel)接收债測信號, 並根據尋執頻道之偵測信號計算轨道誤差。為了補償由 0758-A32234TWFl(20070615) 32 1332752 推挽式偵測器2309所估計的軌道誤差,軌道中央债測器 2306B偵測數位轉換器(ADC) 2305所輸出之數位信號 SD之峰值以及谷值,並根據偵測結產生執道中心誤差 TC。根據本發明一實施例,軌道中心誤差TC可由公式(3) 得知: TC=(ISVFOHDl-ISVFOHD3)/(ISVFOHDl+ISVFOHD3) 其中ISVFOHD1以及ISVFOHD3分別為VFO信號 於第6B圖所示之首標區Headerl、Header3之振幅。 根據本發明另一實施例,執道中心誤差TC可根據將公式 (3)簡化為公式(4)而得: TC=ISVFOHDl-ISVFOHD3 (4) 當得到執道中心誤差TC後,軌道中央偵測器2306B 輸出軌道中心誤差TC。經過低通濾波器2307B濾波後, 濾波後之執道中心誤差TC輸出至尋執控制器2310。尋 轨控制器2310產生控制信號TC_ctrl以根據推挽式偵測 器2309所估計的軌道誤差之位置校正提供至DVD-RAM 光碟2301之光點之位置。 必須注意的是,光學傾斜誤差TL以及軌道中心誤 差TC可根據首標區Headerl以及Header3之VFO信號 而得,其原因是因為首標區Header 1以及Header3之信號 〇758-A32234TWFl(20070615) 33 1332752 振幅較為均勻且容易被偵測。然而,也可利用其他首標 區域之VFO信號來偵測光學傾斜誤差TL以及執道中心 誤差TC。 第24A圖係顯示根據本發明實施例所述之偵測電路 2306以及數位轉換器2305之方塊圖。光學信號#RF係提 供至信號調整模組2304以將信號位準調整至數位轉換器 2305之工作範圍中。信號調整模組2304包括可變增益放 大器(VGA ) 2402、偏移控制器2403A以及等化器 (equalizer ) 2404。可變增益放大器2402調整光學信號 #RF之增益。偏移控制器2403A將光學信號#RF之位準 調整至數位轉換器2305之工作範圍中。等化器2404等 化光學信號#RF以產生調整後之調整光學信號#11?’。在 此,偏移控制器2403A之操作頻寬為可調整的,且操作 頻寬之調整係受到時脈產生裝置2401所提供之控制信號 C4所控制。 數位轉換器2305將調整光學信號#1〇7’轉換為數位 信號SD以供偵測電路2306偵測。偵測電路2306偵測數 位轉換器2305所輸出之數位信號SD,並分別提供所產 生之光學傾斜誤差TL以及執道中心誤差TC至傾斜控制 器2308以及尋軌控制器2310。在此,偵測電路2306偵 測數位信號SD之動作是受到時脈產生裝置2401所提供 之控制信號C5所控制。再者,偏移控制器2403B偏移數 位信號SD以抵銷首標區Header2以及Header4之接面之 間以及其他之信號偏移量。在使用偏移控制器2403B偏 0758-A32234TWFl(20070615) 34 1332752 移數位信號SD後,數位信號Sd即適合用作信號谓測。 在此’偏移控制器2403B偏移數位信號SD之動作是受 到時脈產生裝置2401所提供之控制信號C6所控制。再 者,傾斜控制器2308或尋執控制器2310之輸出信號可 根據無效信號INVALID而被抑制或忽略。 第24B圖係顯示根據本發明另一實施例所述之偵測 電路2306以及數位轉換器2305之方塊圖。與第24A圖 不同之處在於偏移控制器2403A以及2403B由高通滤波 器2403C以及2403D所取代,而用相同標號所標示之元 件係以相同動作操作。高通濾波器2403C之工作範圍係 可調整的,並受到時脈產生裝置2401所提供之控制信號 C4所控制。再者,高通濾波器2403D偏移數位信號SD 以抵銷首標區Header2以及Header4之接面之間以及其他 之信號偏移量。在使用高通濾波器2403D偏移數位信號 SD後’數位信號SD即適合用作信號彳貞測。在此,高通 濾波器2403D之工作範圍係可調整的,並受到時脈產生 裝置2401所提供之控制信號C6所控制。根據本發明一 實施例’時脈產生裝置2401可包括時脈產生單元以根據 既定波形產生控制信號C4、C5、C6。 第25圖係顯示根據本發明一實施例所述之軌道中 心誤差以及傾斜誤差之時序圖。信號IDGATE為由時脈 產生裝置2401所提供之首標預測信號。當信號IDGATE 為高邏輯位準時,光學讀取頭2302係位於DVD-RAM光 碟2301之首標區域,而信號IDGATE為低邏輯位準時, 0758-A32234TWF1 (20070615) 35 1332752 光學讀取頭2302係位於DVD-RAM光碟2301之資料區 域。為了抵銷首標區域以及資料區域之信號偏移量,偏 移控制器2403A以及高通濾波器2403C之頻寬係由控制 信號C4切換至高工作頻寬’而偏移控制器24〇3B以及高 通遽波器2403D之頻寬係由控制信號C6切換至高工作頻 見。偏移控制2403A以及局通濾波器2403C之頻寬於 控制信號C4為高邏輯位準時設定為高工作頻寬,而於控 制信號C4為低邏輯位準時設定為低工作頻寬。控制信號 C6之動作與控制信號C4類似,但與首標區Header 1不 同之處在於控制信號C6於首標區Header3之開始處同樣 設定為高邏輯位準以抵銷首標區Header2與Header3之信 號偏移以遂行資料偵測。控制信號C5於區域VFOl以及 VF03為高邏輯位準。偵測電路2306於控制信號C5為高 邏輯位準時致能以偵測峰值、谷值以及均值。當通過區 域VF03後,即可計算執道中心以及傾斜誤差。 第26圖係顯示根據本發明一實施例所述之用以執 行轨道中心誤差以及傾斜誤差所使用之無效信號 INVALID之時序圖。當發生偵測錯誤時,時脈產生裝置 2401設定無效信號INVALID並傳送至傾斜控制器2308 或尋軌控制器2310,或忽略傾斜誤差偵測器2306A以及 軌道中心偵測器2306B之偵測結果。第26圖顯示一種偵 測錯誤的例子。當控制信號C5設定時且無效信號 INVALID為低邏輯位準時,如標號2600所示,設定無效 信號INVALID以抑制傾斜控制器2308或尋執控制器 0758-A32234TWF1(20070615) 36 1332752 結果’或忽略傾斜誤差_器2驗以及軌 L T偵,則盗2306B之偵測結果。 utrr雖以較佳實施例揭露如上,然其並非用以限 疋本么月的乾圍,任何熟習此項技藝 明之精神和r fi允a ^ 在不脫離本毛 4和乾圍内’當可做些許的更動與潤飾,因 =之保護範圍當視後附之中請專利範圍所界定者為 【圖式簡單說明】 第1A圖係為一習知的光學儲存裝置。 f 1B圖係為定義空白狀態的示意圖。 第2圖係為習知的光學儲存農置所用的㉟圈控制電 路。 第3圖係為各種情況的波形圖。 第4圖係顯示一光儲存媒體之剖面圖。 第5A圖係顯示DVD_RAM光碟之凸紋軌之物理形 狀。 第5B圖係顯示於凸紋軌之讀取頻道1信號之波形。 第6A圖係顯示DVD-RAM光碟之凹紋執之物理 狀。 第6B圖係顯示於凹紋軌之讀取頻道丨信號之波形。 第7圖係顯示第5A圖與第5B圖中所顯示之首標區 域之放大圖。 第8圖係顯示當光點經過凹紋執之首標區域時所得 〇758-A32234TWF1(20070615) 37 1332752 之讀取頻道1信號。 第9圖係顯示傳統用以偵測DVD-RAM光碟之軌道 中心誤差以及傾斜誤差之裝置。 第1〇圖係為一光學儲存裝置的實施例。 第UA圖係為第1〇圖中臨界值產生器的實施例。 =圖表不増益和控制訊號信號#ctrl的關係圖。 第12圖係為第10圖中空白偵測器1020的實施例。 ,13圖係為本發明實際應用時矽波形變化示意圖。 第14圖係為偵測空白狀態的流程圖。 第15圖係為本發明實施例之一的迴圈控制電路。 第16圖係為第15圖中模式控制器的實施例。 第17圖係為本發明實施例之下產生的波形圖。 第18圖係為本發明迴圈控制方法的流程圖。 第19圖係顯示根據本發明一實施例所述之不對稱 性量測裝置。 第20圖係顯示根據本發明另一實施例所述之不對 稱性量測裝置。 第21圖係顯示根據本發明一實施例所述之不對稱 性量測之時序圖。 第22圖係顯示根據本發明另一實施例所述之不對 稱性量測之時序圖。 第23圖係顯示根據本發明一實施例所述之光碟之 軌道中心補償以及傾斜控制之方塊圖。 第24 A圖係顯示根據本發明實施例所述之偵測電路 0758-A32234TWF1 (20070615) 38 1332752 2306以及數位轉換器2305之方塊圖。 第24B圖係顯示根據本發明另一實施例所述之伯測 電路2306以及數位轉換器2305之方塊圖。 第25圖係顯示根據本發明一實施例所述之轨道中 心誤差以及傾斜誤差之時序圖。 第26圖係顯示根據本發明一實施例所述之用以執 行執道中心誤差以及傾斜誤差所使用之無效信號 INVAUD.之時序圖。 【主要元件符號說明】 102、1902、2002、202、2402〜可變增益放大器; 104、1904、204、2305、905A、905B、ADC〜數位轉 換器; 106、208〜自動增益控制器; 108〜解碼器; 110、1020〜空白偵測器; 206〜峰谷值偵測器; 210〜偏移控制器; 212〜加法器; 701〜VF01區域; 703〜VF02區域; 705〜VF03區域; 707〜VF04區域; 702、704、706、708、PID1、PID2、PID3、PID4〜物 理識別資料; 802〜VF01信號; 803〜VF03信號; 901〜峰值偵測電路; 902〜谷值偵測電路; 903A、903B〜取樣保持電路; 0758-A32234TWFl(20070615) 39 1332752 907〜軌道中心誤差偵測器; 909〜傾斜誤差偵測器; 1010〜臨界值信號產生器; 1020〜空白偵測器; 1102〜控制器; 1104〜乘法器; 1106〜加法器; 1202、2001、2403C、2403D〜高通濾波器; 1204〜遲滯元件; 1206〜計數器; 1500〜模式控制器; 1610〜第一比較器; 1620〜第二比較器; 1640〜第一模式判斷器; 1630〜第二模式判斷器; 1900〜不對稱性量測裝置; 1901〜偏移單元; 1903、2003、2404〜等化器; 1905〜偵測單元; 1906〜不對稱性計算單元; 1907〜比較器; 1910、2010、2304〜信號調整模組; 2000〜不對稱性量測裝置; 2301〜DVD-RAM光碟;2302〜光學讀取頭; 2303〜光學偵測器; 2306〜偵測電路; 2306A〜光學傾斜誤差偵測器; 2306B〜軌道中心j貞測器; 2307A、2307B〜低通濾波器; 2308〜傾斜控制器; 2309〜推挽式偵測器; 0758-A32234TWFl(20070615) 40 1332752 23 10〜尋軌控制器; 2403A、2403B〜偏移控制器; #ctrl、#ctrll、#ctrl2、Cl、C2、C4、C5、C6、TL_ctrl #DATA〜數位資料、資料信號; #en〜致能信號; #gain〜增益值; #hold〜暫停信號; #offset〜平移信號; #offset、bi、b2〜偏移值;#PB〜峰值、谷值; #RF〜讀取頻道1信號.、偵測信號、光學信號; #RF’〜調整偵測信號; #slope、a!、a2〜斜率值; #th、+th、-th〜臨界值、臨界值信號; bl〜空白信號;. 21st picture of the monthly multiple test. Figure 21 is a - timing diagram of the asymmetry measurement method of the present invention. In Fig. 21, the blank signal signal W 0758-A32234TWF1 (20070615) 27 Ϊ 332752 indicates whether the recorded data reproduction signal signal is generated from a non-empty area (such as a data area) of the optical storage medium. That is to say, when the blank signal signal bl is at a low level, 'representing that the recorded data reproduction signal signal is generated from the data area of the optical storage medium; when the blank signal signal bl is at the south level, the record data is indicated. The reproduced signal signal is not generated from the data area of the optical storage medium. Therefore, the control signal C1 can be generated based on the blank signal signal bl. In Fig. 21, when the blank signal signal Μ is at the low level, the control signal signal C1 is set to the low level after a first delay interval du. In this way, the operating band of the offset unit 1901 and the high-pass filter 2001 can be adjusted to the low band after the first delay interval dtl. In addition, the operating frequencies of the offset unit 1901 and the high-pass filter 2〇〇1 are both set to high frequency band 0. The control signal C2 (address flag signal signal) is generated according to the address of the optical storage medium. . In Figure 21, 'the recorded record between address i and address 2 (4) regenerative signal money S1 read (4) the corresponding power of the power of 1 is recorded on the optical storage medium; 2, the recorded data retrieving signal signal between the address and the address 3 is read from the corresponding value of the power of the power 2 recorded on the optical storage medium; the record taken from the wire 3 and the address 4 _ The data reproduction signal signal S1 is read from the corresponding mark recorded on the optical body by the power level of the power 3. Therefore, when the recorded data reproduction signal 2 1 is generated, the control signal signal is set to the high level level via the -stage delay. The control signal c2 is used to enable a plurality of values of the 0758-A32234TWF1 (20070615) 28 3 element 2 = bit signal signal S2. Such a symmetry value] 22 2 pairs of Qing 'corresponds to the power 2 does not come out. ^ The asymmetry value /53 of force rate 3 can be separately generated. The 帛22 diagram is the asymmetry of the invention: = map. Control signal signal. It is generated based on the address of the optical storage medium. Between the address 1 and the address 2 ' ′ ' ' 再生 regenerative signal signal S1 is read from the power record on the optical storage medium corresponding mark; in the bit ~ t address 3 The recorded data of the regenerated signal signal S1 is the power level of the second power 2 recorded on the optical storage medium. The address is 3 and the address is 4, and the record data obtained by ## The signal S1 is read from the corresponding mark recorded on the optical whole sub-media by the power level of the power 3. Therefore, after the record data reproduction signal is generated, after a second delay time, the control signal C1 is set to the low level. In this way, the operating frequency of the offset unit 19〇1 and the high-pass filter 2001 can be adjusted to the low frequency band when the control signal signal C1 is at the low level. In addition to this, the operating frequencies of the offset unit 1901 and the NAND pass filter 2 〇〇 1 are both set to a high frequency band. The control signal signal C 2 (address flag signal signal) is generated based on the address of the optical storage medium. Therefore, when the recorded data reproduction signal signal si is generated, the control signal signal c2 is set to the south level level after a delay. The control signal C2 is used to enable the detecting unit 1905 to detect a plurality of values of the digital signal S2. In this way, 〇758-A32234TWF1(20070615) 29 1332752 corresponds to the asymmetry value 0 1 of power 1, the asymmetry value corresponding to power 2 cold 2, the asymmetry value corresponding to power 3 cold 3 can be generated separately . The spirit of the present invention is to digitally detect a plurality of values of a recorded data reproduced signal signal and thereby calculate its asymmetry value. Therefore, the components used for detection and calculation can be easily designed. The apparatus and method for asymmetry measurement described above are merely exemplary embodiments for utilizing different power-coded record data reproduction signal signals to adjust the transmit power of the optical storage device without limiting the present invention to the above-described embodiments. The present invention is applicable to any write operation that dynamically adjusts power based on a pre-marked reproduced signal signal. Fig. 23 is a block diagram showing the track center compensation and tilt control of the optical disk according to the present invention. The optical pickup 2302 has a separate optical detector 2303' for detecting the intensity of the laser light and converting the detected laser light intensity into an electrical signal. Separate optical detection Is 2 3 0 3 can be divided into a given number of optical detection elements. As previously mentioned, a DVD-RAM disc has a signal consisting of a concave track and a embossed track, and the data can be read and written to the concave track and the ridge track or one of the concave and convex lines. Similarly, as shown in Fig. 7, there are interleaved header areas Header 1, Header 2, Header 3, and Header 4 at the beginning of each section. Therefore, when the DVD-RAM disc 2301 is set, or when the read/write operation is performed, the laser light emitted from the laser diode of the optical pickup 2302 will be projected onto the DVD-RAM disc 2301. The spot light of the predetermined state is supplied to the DVD-RAM disc 2301, and the laser light reflected by the signal track of the 0758-A32234TWF1 (20070615) 30 1332752 DVD-RAM disc 2301 is reflected to the optical detector 2303. Furthermore, when the spot passes through the header area (non-write area) of the DVD-RAM disc 2301, the optical detector 23〇3 is proportional to the intensity of the laser light detected and output by the optical detecting element respectively. The electronic signal generates a detection signal (optical signal) #RF. Therefore, the optical signal #1117 detected by the read channel 第 shown in Fig. 8 can be obtained. In order to convert the analog optical signal #RF into a digital signal by a digital converter (ADC) 2305, the signal adjustment module 2304 is required to adjust the signal level of the optical signal #RF to be in the working range of the digital converter 23〇5. And it is better to be located near the center of the working range. After adjusting the signal level of the optical ###RF, the signal adjustment module 23〇4 generates the adjusted optical signal #^^ and outputs it to the digital converter 23〇5. The signal adjustment module 2304 has an offset control device in accordance with an embodiment of the present invention. According to another embodiment of the invention, the signal conditioning module 23〇4 has a high pass filter (HPF). The digital converter (ADC) 2305 converts the analog optical signal #RF' with an offset adjusted to a digital signal SD. Detection circuit 2306 includes optical tilt error detector 2306A and track center detector 2306B. The detecting circuit 2306 detects the servo detecting signal according to the digital signal SD. The laser light reflected by the DVD-RAM disc 2301 may deviate from the preset path due to some tilting state, such as the tilt of the DVD_RAM disc 23〇1. The optical tilt error detector 23〇6A detects the DC valley value of the digital signal SD and generates an optical tilt error TL according to the detection result. According to an embodiment of the present invention, the optical tilt error TL at the center of the track can be obtained by 0758-A32234TWF1 (20070615) 1332752 ... Formula (1): * TL = [(ISHD1 + ISHD2) - (ISHD3 + ISHD4)] / 2I 〇 (1) Where ISHD1, ISHD2 'ISHD3, and ISHD4 represent the DC valleys of the VFO signal in Headerrl, Header2, Header3, Header4, respectively, shown in Figure 6B, and 10 is the DC level of the mirrored area. According to another embodiment of the present invention, the optical tilt error TL can be obtained by simplifying the formula (1) into the formula (2): TL = ISHD1 - ISHD3 (2) When the optical tilt error TL is obtained, the optical tilt error detector The 2306A outputs an optical tilt error TL. After being chopped by the low pass filter 2307A, the filtered optical tilt error TL is output to the tilt controller 2308. The tilt controller 2308 generates control signals TL to Ctrl to correct the incident angle of the light spot supplied to the DVD-RAM disc 2301 in accordance with the optical tilt error TL. The track control includes detecting an obedience error signal from an electronic signal generated according to a state of the beam and driving the optical track reader (actuat〇r) according to the obstruction error signal to move the optical pickup head. A target lens is in the radial direction of the disc, thus changing the position of the beam to track the target. According to an embodiment of the invention, the push-pull detector 2309 receives the debt measurement signal from the tracking channel and calculates the track error based on the detection signal of the channel. To compensate for the orbital error estimated by the 0758-A32234TWFl (20070615) 32 1332752 push-pull detector 2309, the track center debt detector 2306B detects the peak and valley of the digital signal SD output by the digital converter (ADC) 2305. And generate the center error TC according to the detection knot. According to an embodiment of the present invention, the track center error TC can be obtained by the formula (3): TC=(ISVFOHDl-ISVFOHD3)/(ISVFOHDl+ISVFOHD3) wherein ISVFOHD1 and ISVFOHD3 are VFO signals respectively in the header area shown in FIG. 6B The amplitude of Headerl and Header3. According to another embodiment of the present invention, the traffic center error TC can be obtained by simplifying the formula (3) into the formula (4): TC=ISVFOHDl-ISVFOHD3 (4) After obtaining the center error TC, the track center detection The 2306B outputs a track center error TC. After being filtered by the low pass filter 2307B, the filtered center error TC is output to the seek controller 2310. The tracking controller 2310 generates a control signal TC_ctrl to correct the position of the spot supplied to the DVD-RAM disc 2301 in accordance with the position of the track error estimated by the push-pull detector 2309. It must be noted that the optical tilt error TL and the track center error TC can be obtained from the VFO signals of the header areas Headerl and Header3, because the signals of the header area Header 1 and Header 3 are 〇758-A32234TWFl(20070615) 33 1332752 The amplitude is more uniform and easy to detect. However, the VFO signal of other header areas can also be used to detect the optical tilt error TL and the center error TC. Figure 24A is a block diagram showing a detection circuit 2306 and a digital converter 2305 according to an embodiment of the invention. Optical signal #RF is provided to signal conditioning module 2304 to adjust the signal level to the operating range of digital converter 2305. The signal conditioning module 2304 includes a variable gain amplifier (VGA) 2402, an offset controller 2403A, and an equalizer 2404. The variable gain amplifier 2402 adjusts the gain of the optical signal #RF. The offset controller 2403A adjusts the level of the optical signal #RF to the operating range of the digital converter 2305. The equalizer 2404 equalizes the optical signal #RF to produce an adjusted adjusted optical signal #11?'. Here, the operation bandwidth of the offset controller 2403A is adjustable, and the adjustment of the operation bandwidth is controlled by the control signal C4 provided by the clock generating means 2401. The digital converter 2305 converts the adjusted optical signal #1〇7' into a digital signal SD for detection by the detecting circuit 2306. The detecting circuit 2306 detects the digital signal SD output from the digital converter 2305 and provides the generated optical tilt error TL and the center error TC to the tilt controller 2308 and the tracking controller 2310, respectively. Here, the action of the detecting circuit 2306 to detect the digital signal SD is controlled by the control signal C5 provided by the clock generating means 2401. Furthermore, the offset controller 2403B offsets the digital signal SD to offset the difference between the junctions of the header regions Header2 and Header4 and other signal offsets. After shifting the digital signal SD using the offset controller 2403B offset 0758-A32234TWF1 (20070615) 34 1332752, the digital signal Sd is suitable for use as a signal prediction. Here, the operation of the offset controller 2403B offsetting the digital signal SD is controlled by the control signal C6 supplied from the clock generating means 2401. Furthermore, the output signal of the tilt controller 2308 or the seek controller 2310 can be suppressed or ignored according to the invalid signal INVALID. Figure 24B is a block diagram showing a detection circuit 2306 and a digital converter 2305 according to another embodiment of the present invention. The difference from Fig. 24A is that the offset controllers 2403A and 2403B are replaced by high pass filters 2403C and 2403D, and the elements denoted by the same reference numerals operate in the same manner. The operating range of the high pass filter 2403C is adjustable and is controlled by the control signal C4 provided by the clock generating means 2401. Furthermore, the high pass filter 2403D offsets the digital signal SD to offset between the junctions of the header regions Header2 and Header4 and other signal offsets. The digital signal SD is suitable for use as a signal guess after the high-pass filter 2403D is used to offset the digital signal SD. Here, the operating range of the high pass filter 2403D is adjustable and controlled by the control signal C6 provided by the clock generating means 2401. The clock generating means 2401 may include a clock generating unit to generate control signals C4, C5, C6 in accordance with a predetermined waveform, in accordance with an embodiment of the present invention. Fig. 25 is a timing chart showing the track center error and the tilt error according to an embodiment of the present invention. The signal IDGATE is a header prediction signal provided by the clock generating means 2401. When the signal IDGATE is at a high logic level, the optical pickup 2302 is located in the header area of the DVD-RAM disc 2301, and when the signal IDGATE is at the low logic level, 0758-A32234TWF1 (20070615) 35 1332752 optical pickup 2302 is located The data area of the DVD-RAM disc 2301. In order to offset the signal offset of the header area and the data area, the bandwidth of the offset controller 2403A and the high-pass filter 2403C is switched from the control signal C4 to the high working bandwidth 'and the offset controller 24〇3B and the high-pass 遽The bandwidth of the waver 2403D is switched from the control signal C6 to the high operating frequency. The bandwidth of the offset control 2403A and the local pass filter 2403C is set to a high operating bandwidth when the control signal C4 is at a high logic level, and is set to a low operating bandwidth when the control signal C4 is at a low logic level. The action of the control signal C6 is similar to the control signal C4, but differs from the header area Header 1 in that the control signal C6 is also set to a high logic level at the beginning of the header area Header3 to offset the header areas Header2 and Header3. Signal offset for data detection. Control signal C5 is at a high logic level in regions VFO1 and VF03. Detection circuit 2306 is enabled to detect peaks, valleys, and averages when control signal C5 is at a high logic level. After passing through the area VF03, the center of the mission and the tilt error can be calculated. Figure 26 is a timing diagram showing the invalid signal INVALID used to perform the track center error and the tilt error, in accordance with an embodiment of the present invention. When a detection error occurs, the clock generating means 2401 sets the invalid signal INVALID and transmits it to the tilt controller 2308 or the tracking controller 2310, or ignores the detection results of the tilt error detector 2306A and the track center detector 2306B. Figure 26 shows an example of a detection error. When control signal C5 is set and invalid signal INVALID is low logic level, as indicated by reference numeral 2600, invalid signal INVALID is set to suppress tilt controller 2308 or seek controller 0758-A32234TWF1 (20070615) 36 1332752 result 'or ignore tilt Error _ 2 test and track LT detect, then steal the detection result of 2306B. Although utrr is disclosed above in the preferred embodiment, it is not intended to limit the dry circumference of this month. Anyone who is familiar with the skill of the art and r fi allows a ^ to not fall away from the hair 4 and the dry circumference. Make a few changes and refinements, because the scope of protection of the = as attached, please define the patent scope as a simple description of the drawing. Figure 1A is a conventional optical storage device. The f 1B map is a schematic diagram defining a blank state. Figure 2 is a 35-turn control circuit used in conventional optical storage farms. Figure 3 is a waveform diagram for various situations. Figure 4 is a cross-sectional view showing an optical storage medium. Fig. 5A shows the physical shape of the ridge track of the DVD_RAM disc. Figure 5B shows the waveform of the read channel 1 signal displayed on the embossed track. Fig. 6A shows the physical form of the concave pattern of the DVD-RAM disc. Figure 6B shows the waveform of the read channel 丨 signal displayed on the concave track. Fig. 7 is an enlarged view showing the header area shown in Figs. 5A and 5B. Figure 8 shows the read channel 1 signal obtained from the 〇758-A32234TWF1 (20070615) 37 1332752 when the spot passes through the concave region of the concave pattern. Figure 9 shows a conventional device for detecting the track center error and tilt error of a DVD-RAM disc. The first diagram is an embodiment of an optical storage device. The UA diagram is an embodiment of the threshold generator in the first diagram. = Chart does not benefit and control signal signal #ctrl diagram. Figure 12 is an embodiment of a blank detector 1020 in Figure 10. The 13 diagram is a schematic diagram of the waveform change when the invention is actually applied. Figure 14 is a flow chart for detecting blank states. Figure 15 is a loop control circuit of one embodiment of the present invention. Figure 16 is an embodiment of the mode controller of Figure 15. Figure 17 is a waveform diagram generated under the embodiment of the present invention. Figure 18 is a flow chart of the loop control method of the present invention. Fig. 19 is a view showing an asymmetry measuring apparatus according to an embodiment of the present invention. Fig. 20 is a view showing an asymmetry measuring apparatus according to another embodiment of the present invention. Figure 21 is a timing chart showing the asymmetry measurement according to an embodiment of the present invention. Fig. 22 is a timing chart showing the asymmetry measurement according to another embodiment of the present invention. Figure 23 is a block diagram showing the track center compensation and tilt control of an optical disk according to an embodiment of the present invention. Figure 24A shows a block diagram of a detection circuit 0758-A32234TWF1 (20070615) 38 1332752 2306 and a digital converter 2305 in accordance with an embodiment of the present invention. Figure 24B is a block diagram showing a multi-circuit circuit 2306 and a digital converter 2305 according to another embodiment of the present invention. Fig. 25 is a timing chart showing the track center error and the tilt error according to an embodiment of the present invention. Figure 26 is a timing chart showing the invalid signal INVAUD. used to perform the center error and the tilt error according to an embodiment of the present invention. [Description of main component symbols] 102, 1902, 2002, 202, 2402 ~ variable gain amplifier; 104, 1904, 204, 2305, 905A, 905B, ADC ~ digital converter; 106, 208~ automatic gain controller; Decoder; 110, 1020 ~ blank detector; 206 ~ peak valley detector; 210 ~ offset controller; 212 ~ adder; 701 ~ VF01 area; 703 ~ VF02 area; 705 ~ VF03 area; VF04 area; 702, 704, 706, 708, PID1, PID2, PID3, PID4~ physical identification data; 802~VF01 signal; 803~VF03 signal; 901~peak detection circuit; 902~ valley detection circuit; 903A, 903B~ sample and hold circuit; 0758-A32234TWFl (20070615) 39 1332752 907~ track center error detector; 909~ tilt error detector; 1010~threshold signal generator; 1020~ blank detector; 1102~ controller 1104~multiplier; 1106~adder; 1202, 2001, 2403C, 2403D~high-pass filter; 1204~hysteresis component; 1206~counter; 1500~mode controller; 1610~first comparator; 1620~second comparison 16; 40~first mode determiner; 1630~second mode determiner; 1900~ asymmetry measuring device; 1901~offset unit; 1903, 2003, 2404~ equalizer; 1905~detecting unit; 1906~ Symmetry calculation unit; 1907~ comparator; 1910, 2010, 2304~ signal adjustment module; 2000~ asymmetry measurement device; 2301~DVD-RAM optical disc; 2302~ optical read head; 2303~ optical detector 2306~detection circuit; 2306A~ optical tilt error detector; 2306B~ track center j detector; 2307A, 2307B~ low pass filter; 2308~ tilt controller; 2309~ push-pull detector; -A32234TWFl(20070615) 40 1332752 23 10~ Tracking controller; 2403A, 2403B~offset controller; #ctrl, #ctrll, #ctrl2, Cl, C2, C4, C5, C6, TL_ctrl #DATA~ digital data, Data signal; #en~Enable signal; #gain~gain value; #hold〜pause signal; #offset〜translation signal; #offset, bi, b2~offset value; #PB~peak, valley value; #RF~ Read channel 1 signal, detection signal, optical signal; #RF'~ adjust detection No.;! # Slope, a, a2~ slope value; # th, + th, -th~ threshold value, the threshold value signal; bl~ blank signal;

Headerl、Header2、Header3、Header4〜首標區; INVALID〜無效信號; P1〜預定值; S1〜紀錄資料再生信號;S2、SD〜數位信號;Headerl, Header2, Header3, Header4~header area; INVALID~invalid signal; P1~predetermined value; S1~record data reproduction signal; S2, SD~digital signal;

TC〜執道中心誤差; TC_ctrl〜控制信號; yi、y2〜直線; TL〜光學傾斜誤差; tl、t2、t3、t4〜階段; z〜曲線。 0758-A32234TWFl(20070615) 41TC ~ obey center error; TC_ctrl ~ control signal; yi, y2 ~ line; TL ~ optical tilt error; tl, t2, t3, t4 ~ stage; z ~ curve. 0758-A32234TWFl(20070615) 41

Claims (1)

、申請專利範圍·· 1. 一種電子裝詈 含 : 對—資料訊號進行迴路控制,包 大 一可變增益放大器,根據—增益值將㈣料訊號玫 值和-—谷^ 祕大後的㈣訊號之-峰 一模式控制器,辆接該峰 該谷值與-臨界值者 Ί將該峰值和 _ ^ . 、 乂據以產生一第一控制訊號; 〜卫制^路,根據該第一控制訊號產生一第— 並且根據該峰值和該谷值以該第-步階 纟申°月專利i巳圍S 1工員所述之電子裝置,進一步 位!?換器’耦接該可變增益放大器,取樣該可 二曰衷、Α為的輸出以產生-數位資料訊號;其中該峰 合值偵測益係根據該數位資料訊號找出該蜂值和該谷 值。 3. 如申請專利範圍第丨項 訊號控制迴路包含—自動增益控制器。電磁… 4. 如申請專利範圍第1項所述之電子裝置,其中該 模式控制器包含: 第—比較器,將該峰值與一正高臨界值比較; 第二比較器,將該谷值與一負高臨界值比較;以 〇758-A32234TWFl(2〇〇70615) 42 1332752 較器的輸出端;其中 如果該峰值高於該正高臨界值 一真值,否則輸出一假值; 第-模Mmn ’ _該第—比較器和該第二比 該第一比較器輪出 如果該谷值低於該負高臨界值,該第二比較器輪出 真值’否則輸出一假值;以及, the scope of application for patents · · 1. An electronic device contains: a loop control of the data signal, a large variable gain amplifier, according to the - gain value will be (four) material signal value and - - valley ^ secret after the (four) a signal-peak-mode controller that connects the peak and the threshold value to the peak and _ ^ . , to generate a first control signal; The control signal generates a first--and according to the peak value and the valley value, the electronic device described in the first step of the patent is further coupled to the variable gain The amplifier samples the output of the binary signal to generate a digital data signal, wherein the peak value detection system finds the bee value and the bottom value based on the digital data signal. 3. For example, the signal control loop contains the automatic gain controller. 4. The electronic device of claim 1, wherein the mode controller comprises: a first comparator that compares the peak value with a positive high threshold; a second comparator that compares the valley value with a Negative high threshold comparison; to 输出 758-A32234TWFl (2〇〇70615) 42 1332752 comparator output; wherein if the peak is higher than the positive high threshold value, otherwise a false value is output; the first mode Mmn ' _ the first comparator and the second ratio of the first comparator are rotated if the valley value is lower than the negative high threshold value, the second comparator turns out the true value 'otherwise outputs a false value; 如果該第一比較器和第二比較器同時輸出真 模式判斷器輸出該第—控制訊號至該自動增益控 5.如申請專利範圍第4項所述之電子裝置,其中: 該第比較器進—步將該峰值與一正低臨界值比 父,該正低臨界值小於該正高臨界值; 該第二比較器進一步將該谷值與一負低臨界值比 較’該S低臨界值大於該負高臨界值;以及 如果該峰值低於該正低臨界值,該第—比較器輪出 真值’否則輸出一假值; 如果該谷值高於該負低臨界值,該第二比較器輸出 真值,否則輸出一假值;以及 兮如果該第一比較器和第二比較器同時輸出真值,則 =第-模式判斷器輸出該第—控制訊號至該自動增益控 制器。 6·如中請專利範圍第5項所述之電子裝置,其中該 第一模式判斷器係為一及閘(AND gate)。 7.如申凊專利範圍第5項所述之電子裝置,其中該 0758-A32234TWFl(20070615) 43 1332752 自動增益控制器根據該第_控制訊號加大或縮小該第一 步階以調整該可變增益放大器、數位轉換器和自動增益 控制器所形成的增益控制迴路。 曰 8. 如申请專利範圍第1項所述之電子裝置,其中該 訊號控制迴路包含: 八 一偏移控制器,耦接該增益放大器,偵測該資料訊 號的偏移狀況,產生—平移訊號以消除該資料訊號的偏 移;以及 ^ 一加法器,耦接該偏移控制器的輸出端和該可變增 ,放大态的輸入端,在該資料訊號輸入該可變增益放大 器之前以平移訊號更新該資料訊號;其中: °亥模式控制裔根據該峰值和該谷值與該臨界值的比 較結果產生一第二控制訊號;以及 、偏移控制器根據該第二控制訊號產生一第二步階, 並且以該第二步階更新該平移訊號。 9. 如申凊專利範圍第8項所述之電子裝置,其中該 模式控制器包含: 第比較益,將該峰值與一正高臨界值比較; 第一比較器,將該谷值與一負高臨界值比較;以 及 。—第二模式判斷器,耦接該第一比較器和該第二比 較器的輸出端;其中: 如果該峰值高於該正高臨界值,該第一比較器輸出 一真值,否則輸出一假值; 0758-A32234TWFl(2〇〇7〇615) 44 一直值44值低於該負高臨界值,該第二比較器輸出 否則輸出-假值;以及 值,則該第亥一第Γ比較器和第二比較器其中之一輸出真 控制器。"一模式判斷器輸出該第二控制訊號至該偏移 第二;申凊專利範圍第9項所述之電子裝置,其中該 -,式判斷器係為一或閘(0R)或一互斥閘(X0R)。 偏務申請專利範圍第9項所述之電子裝置,其中該 以,二」為根據該第二控制訊號加大或縮小該第二步階 二正該可變增益放大器、數位轉換器、偏移控制器和 加法器所形成的平移控制迴路。 12. 種迴路控制方法,用以對一資料訊號進行迴路 控制,包含: 根據一增益值將該資料訊號放大; 偵測該放大後的資料訊號之一峰值和一谷值; 將該峰值和該谷值與一臨界值比較,以產生一比較 結果;以及 根據該比較結果對該資料訊號進行迴路控制。 13. 如申請專利範圍第12項所述之迴路控制方法, 進一步包含,取樣放大後的資料訊號以產生一數位資料 讯號,其中该峰值和該谷值係根據該數位資料訊號而找 出0 14.如申請專利範圍第12項所述之迴路控制方法, 其中對資料訊號進行迴路控制的步驟包含: 0758-A32234TWFl(20070615) 45 1332752 根據該比較結果以產生一第一步階;以及 以該第一步階更新該增益值。 15·如申請專利範圍第12項所述之迴路控制方法, 其中將該峰值和該谷值與一臨界值比較的步驟包含: 將該峰值與一正高臨界值比較; 將該谷值與一負高臨界值比較;以及 士如果該峰值高於該正高臨界值,而且該谷值低於該 負咼臨界值,則設定一第一控制訊號至一真值。 16. 如申明專利乾圍苐1 $項所述之迴路控制方法, 其中將該峰值和該谷值與一臨界值比較的步驟進一步包 含: 將該峰值與一正低臨界值比較; 將該谷值與一負低臨界值比較;以及 如果該峰值低於該正低臨界值,而且該谷值高於該 負低臨界值,則設定該第一控制訊號至一真值。 17. 如申請專利範圍第16項所述之迴路控制方法, 進一步包含,如果該第一控制訊號係為一真值,則加大 該第一步階以加速該增益值的更新。 18. 如申請專利範圍第12項所述之迴路控制方法, 其中對該資料訊號進行迴路控制的步驟包含: 偵測該資料訊號的偏移狀況,產生一平移訊號以消 除該資料訊號的偏移; 根據該峰值和該谷值與該臨界值的比較結果產生一 第二控制訊號; 〇758-A32234TWFl(200706l5) 46 依據該第二控制訊號產生一第二步階; 以該第二步階更新該平移訊號;以及 ,、在放大该貧料訊號之前根據該平移訊號以平移該資 料訊號。 ' 19.如申印專利範圍第丨8項所述之迴路控制方法, 其中該第二控制訊號的產生步驟包含: 將該峰值與一正高臨界值比較; 將該谷值與一負高臨界值比率交;以及 如果該峰值高於該正高臨界值,或者該谷值低於該 負高臨界值,則設定該第二控制訊號至一真值。If the first comparator and the second comparator simultaneously output the true mode determiner to output the first control signal to the automatic gain control, the electronic device of claim 4, wherein: the comparator is a step of comparing the peak to a positive low threshold value, the positive low threshold value being less than the positive high critical value; the second comparator further comparing the bottom value to a negative low critical value 'the S low threshold value is greater than the a negative high threshold; and if the peak is below the positive low threshold, the first comparator outputs a true value 'otherwise outputs a false value; if the valley value is above the negative low threshold, the second comparator The true value is output, otherwise a false value is output; and if the first comparator and the second comparator simultaneously output a true value, the =-mode determiner outputs the first control signal to the automatic gain controller. 6. The electronic device of claim 5, wherein the first mode determiner is an AND gate. 7. The electronic device of claim 5, wherein the 0758-A32234TWFl (20070615) 43 1332752 automatic gain controller increases or decreases the first step according to the first control signal to adjust the variable A gain control loop formed by a gain amplifier, a digital converter, and an automatic gain controller. The electronic device of claim 1, wherein the signal control circuit comprises: an Bayi offset controller coupled to the gain amplifier to detect an offset of the data signal, and generate a translation signal To eliminate the offset of the data signal; and an adder coupled to the output of the offset controller and the variable input, the input of the variable state, before the data signal is input to the variable gain amplifier to translate The signal updates the data signal; wherein: the mode control mode generates a second control signal according to the peak value and the comparison between the valley value and the threshold value; and the offset controller generates a second signal according to the second control signal Steps, and updating the translation signal in the second step. 9. The electronic device of claim 8, wherein the mode controller comprises: comparing the peak value to a positive high threshold value; the first comparator, the valley value is a negative high Threshold comparison; and. a second mode determiner coupled to the output of the first comparator and the second comparator; wherein: if the peak is higher than the positive high threshold, the first comparator outputs a true value, otherwise the output is false Value; 0758-A32234TWFl(2〇〇7〇615) 44 The value of 44 is lower than the negative high threshold, the second comparator outputs the output-false value; and the value, then the first-first comparator And one of the second comparators outputs a true controller. " a mode determiner outputs the second control signal to the offset second; the electronic device of claim 9, wherein the -, the type determiner is a gate (OR) or a mutual Repel (X0R). The electronic device of claim 9, wherein the second, the second control signal is increased or decreased according to the second control signal, the variable gain amplifier, the digital converter, and the offset A translational control loop formed by the controller and the adder. 12. A loop control method for loop control of a data signal, comprising: amplifying the data signal according to a gain value; detecting a peak value and a valley value of the amplified data signal; The valley value is compared with a threshold value to generate a comparison result; and the data signal is loop controlled based on the comparison result. 13. The loop control method of claim 12, further comprising sampling the amplified data signal to generate a digital data signal, wherein the peak value and the valley value are based on the digital data signal. 14. The loop control method according to claim 12, wherein the step of loop control of the data signal comprises: 0758-A32234TWFl (20070615) 45 1332752 according to the comparison result to generate a first step; The first step updates the gain value. 15. The loop control method of claim 12, wherein the step of comparing the peak value and the valley value to a threshold value comprises: comparing the peak value with a positive high threshold value; A high threshold comparison; and if the peak is above the positive high threshold and the valley is below the negative threshold, a first control signal is set to a true value. 16. The method of loop control as recited in claim 1 , wherein the step of comparing the peak and the valley to a threshold further comprises: comparing the peak to a positive low threshold; The value is compared to a negative low threshold; and if the peak is below the positive low threshold and the valley is above the negative low threshold, the first control signal is set to a true value. 17. The loop control method of claim 16, further comprising, if the first control signal is a true value, increasing the first step to accelerate the update of the gain value. 18. The loop control method of claim 12, wherein the step of loop control of the data signal comprises: detecting an offset of the data signal, generating a translation signal to cancel the offset of the data signal And generating a second control signal according to the comparison between the peak value and the valley value and the threshold value; 〇 758-A32234TWF1 (200706l5) 46 generating a second step according to the second control signal; updating the second step The translation signal; and, before the amplification of the poor signal, the translation signal is translated according to the translation signal. 19. The loop control method of claim 8, wherein the generating the second control signal comprises: comparing the peak value with a positive high threshold value; and using the valley value with a negative high threshold value Ratio matching; and if the peak is higher than the positive high threshold, or the valley is lower than the negative high threshold, setting the second control signal to a true value. 0758-A32234TWF1(2007〇615) 470758-A32234TWF1(2007〇615) 47
TW96120107A 2006-06-05 2007-06-05 Method and apparatus for loop control TWI332752B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80388106P 2006-06-05 2006-06-05

Publications (2)

Publication Number Publication Date
TW200746624A TW200746624A (en) 2007-12-16
TWI332752B true TWI332752B (en) 2010-11-01

Family

ID=38937768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96120107A TWI332752B (en) 2006-06-05 2007-06-05 Method and apparatus for loop control

Country Status (2)

Country Link
CN (1) CN101086854B (en)
TW (1) TWI332752B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000703T5 (en) * 2008-03-27 2011-02-17 Advantest Corp. Measuring device, parallel measuring device, test device, electronic device
TWI576679B (en) * 2014-06-11 2017-04-01 宇能電科技股份有限公司 Offset voltage automatic compensation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69620272T2 (en) * 1996-09-24 2003-07-24 Hewlett Packard Co Data processing equipment and method
US7215632B2 (en) * 2002-03-11 2007-05-08 Matsushita Electric Industrial Co., Ltd. Signal processing apparatus and signal processing method

Also Published As

Publication number Publication date
TW200746624A (en) 2007-12-16
CN101086854B (en) 2011-06-01
CN101086854A (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US7796480B2 (en) Apparatus and methods for light spot servo signal detection
US6744700B2 (en) Optical output adjusting apparatus based on shortest recording marks
US7724090B2 (en) Loop control apparatus and method thereof
US20070280079A1 (en) Asymmetry measurement apparatus
WO2004053856A1 (en) Optical disk unit and aberration correcting method used for this
TWI332752B (en) Method and apparatus for loop control
JP3775564B2 (en) Optical regenerator
JPS6038765A (en) Signal shaping method and apparatus
WO2008007646A1 (en) Optical disc device
EP2026344A1 (en) Optical disc apparatus
TW200805340A (en) Apparatus and methods for light spot servo signal detection
WO2006115254A1 (en) Automatic gain control circuit and signal reproducing device
JP2007207359A (en) Focus control device and focus control method
JP2002342948A (en) Focus controller and focus loop closing method
US20070030772A1 (en) Optical disc apparatus
JP2007207294A (en) Optical disk drive, focus offset adjusting method
CN101086868B (en) Asymmetry measurement apparatus and related method
JP3931774B2 (en) Defect detection device
US7200092B2 (en) Method and device for adjusting reference level
JP4173797B2 (en) Optical disk device
US7603027B2 (en) Information recording medium, information recording device and method, information recording/reproducing device and method, and computer program
JP4077363B2 (en) Automatic gain control device and automatic gain control method
TW201201201A (en) Method and apparatus for determining blank area or data recorded area of disc
JP2005071545A (en) Optical disk drive and tracking balance adjustment method
JP2001357531A (en) Optical disk device