TWI332016B - Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate - Google Patents

Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate Download PDF

Info

Publication number
TWI332016B
TWI332016B TW95149745A TW95149745A TWI332016B TW I332016 B TWI332016 B TW I332016B TW 95149745 A TW95149745 A TW 95149745A TW 95149745 A TW95149745 A TW 95149745A TW I332016 B TWI332016 B TW I332016B
Authority
TW
Taiwan
Prior art keywords
modified
functional group
composition
coupling agent
powder
Prior art date
Application number
TW95149745A
Other languages
Chinese (zh)
Other versions
TW200827386A (en
Inventor
Jung Mu Hsu
Jen Hsiung Hsiao
Chich Ming Lin
Wen Hsien Chou
Jenwen Yu
Original Assignee
Ind Tech Res Inst
Asia Electronic Material Co
Career Technology Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Asia Electronic Material Co, Career Technology Mfg Co Ltd filed Critical Ind Tech Res Inst
Priority to TW95149745A priority Critical patent/TWI332016B/en
Publication of TW200827386A publication Critical patent/TW200827386A/en
Application granted granted Critical
Publication of TWI332016B publication Critical patent/TWI332016B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

13.32016 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有機反應官能基之無機奈米顆 粒與聚醯亞胺所形成之組成物與複材薄膜之製備,尤指一 種包括聚醯亞胺與改質雙馬來醯亞胺之組成物與其複材 ^薄膜之製備。 【先前技術】 、 軟性印刷電路板(Flexible Printed Cirxuit,FPC) #又稱軟性銅箔基板,經曝光、顯影、及蝕刻加工後,獲得 期望设計之電路導線,可作為電子產品電流訊號傳輸的媒 介。軟性印刷電路板以立體配線為主要特點訴求,更具有 可撓、輕、薄、短小之特性,亦稱為可撓性印刷電路板, ^相關產品大致區分為單面板、雙面板及多層板等。由於 -FPC具有輕、肖 '短小、可撓曲、防靜電、低消耗功率及 可依空間設計改變而多樣性特性,在今日電子科技化與通 ,鲁訊產品,皆強調輕薄短小、耐曲折性的趨勢,軟性印刷電 -路板應用市場不斷增加,且具龐大市場潛力,諸如筆記型 .電腦、摺疊式手機、LCD平面顯示器、數位相機、攝影機、 光碟機等皆需要應用軟板材料。 軟性印刷電路板最主要的原材料為軟性銅箔基板 (Flexible Copper Clad Laminate,簡稱 FCCL),基板依 〃疋否3有接著劑,可區分為有膠系三層軟性軟性銅箔基 板(3L-CCL)和無膠系兩層軟性銅箔基板(2Lfccl)二種二 有穆系三層軟性銅領基板(3L_CCL)由於含有接著劑因而 19861 5 1332016 .在某些性能項目顯得較差,例如尺寸安定性㈣熱性方 面,在應用上受到較多限制。無㈣兩層軟性銅搭基板 (2L FCCL)不但在尺寸安定性與耐熱性,同樣包含細線路 .衣備此力6有較優異的表現,相較於有膠系基板,更具 有較佳的線路解析度、㈣性佳’良好的尺寸安定性、電 ,氣特性、财曲折與信賴性,亦提昇Fpc產品應用範圍。 通常,兩層軟性銅箔基板之製作係使用聚醯亞胺 (polyimide,PI)塗佈於銅箔基材表面形成兩層銅箔基 _板。但由於聚醯亞胺的熱膨脹係數(CTE)大於4〇卯‘艺, 遠大於銅的熱膨脹係數約17.8ppm/t: ’故必須導入較剛 硬的分子鏈節,減少聚醯亞胺與銅箔的CTE差異。該方法 雖然降低了聚醯亞胺的CTE而減少了聚醯亞胺與銅箔的 ‘ CTE差異,但卻使得聚醯亞胺分子結構變得更剛硬 ' (rigid),平整性雖獲得改善,但反而造成聚醯亞胺與銅 箔間接著力變差,導致線路的製備過程中容易產生線路剝 馨離之缺陷,無法達到FPC製程之要求。 中華民國專利公告號158619號「高粘著性聚醯亞胺 組成物」、美國專利公告第5200474與5372891號揭示包 含巴比土酸(Barbituric Acid)改質之雙馬來醯亞胺 (Modified j^is迎alejjnide,MBMI )的聚醯亞胺組成物應 用。然而該專利並未教示使用經改質之無機添加物與改質 之雙馬來酿亞胺及聚醯亞胺組成物之應用。 【發明内容】 有赛於上述問題,本發明之主要目的即係在於提供一 6 19861 4 $ 13.32016 種具有低熱膨脹係數之聚醯亞胺組成物與複材薄膜之製 備。 ' 本發明之另-目的係提供—種具有高―性之聚酿 亞胺組成物與複材薄膜之製備。 本發明之又-目的係提供—種可以降低熱應力之雙 ’層軟性銅箔基板及其製法。 • 本發明之再一目的係提供一種可以避免表面翹曲 (warp)之雙層軟性銅箔基板及其製法。 • #本發明之又-目的係提供一種具有優異Cu/pi介面 接著力之雙層軟性銅箔基板及其製法。 為達上述目的’本發明提供—種具有機反應官能基之 無機奈米顆粒與聚醯亞胺所形成之組成物,包括聚醯亞 .胺、改質之雙馬來酿亞胺以及偶合劑改質之無機奈米添加 .物。由於該無機奈米添加物係經偶合劑改質而具有有機官 能基’以該組成物製作複材薄膜時,改質之無機奈米添加 籲物與改質之雙馬來醯亞胺募聚物分子化學反應結合,再與 聚蕴亞,分子鏈形成半互穿式交聯網狀結構。本發明具有 •機反應g此基之無機奈米顆粒與聚酿亞胺所形成之複材 薄膜中’改質之無機奈米添加物可均勻地分佈於聚醯亞胺 .基材上,故能有效地降低該複材薄膜之熱膨脹係數、改善 複材薄膜的耐熱性與機械性質,同時增加該複材薄膜與銅 箱基板間的接著力’故特別適合用於製作雙層軟性銅羯基 板,可以降低薄膜製備時高溫硬化所產生之應力,避免產 品複材發生翹曲之情形。 19861 7 1332016 本發明亦提供一種製造聚醯亞胺複材薄膜之方法,包 _括(a)使用偶合劑改質無機奈米粉體,將有機官能基導入 該無機奈米粉體;(b)將步驟(a)所製得之改質無機奈米粉 體加入含有改質雙馬來醯亞胺之聚醯胺酸組成物溶液;以 ‘ 及(c)加熱乾燥步驟(b)所製得之聚醯胺酸組成物溶液,使 • 聚醯胺酸經高溫環化轉成為聚醯亞胺基材。 * 本發明又提供一種製造雙層軟性銅箔基板之方法,包 括(a)使用偶合劑改質無機奈米粉體,將有機官能基導入 鲁該無機奈米粉體;(b)將步驟(a)所製得之改質無機奈米粉 體加入含有改質雙馬來醯亞胺之聚醯胺酸組成物溶液;以 及(c)將步驟(b)所製得之聚醯胺酸組成物溶液塗佈於銅 箔基材,高溫加熱進行環化反應,促成聚醯胺酸轉化為聚 -醯亞胺,最後獲得雙層軟性銅箔基板之成品。 【實施方式】 本發明具有機反應官能基之無機奈米顆粒與聚醯亞 胺所形成之組成物,包括聚醯亞胺、改質之雙馬來醯亞胺 -®以及偶合劑改質之無機奈米添加物;其中,該聚醯亞胺可 由聚醯胺酸經高溫環醯亞胺化而形成。於一具體實例中, •係使用雙酐與二胺進行反應形成聚醯胺酸。該雙酐的實 -例包括,但非限於四氫呋喃四羧酸雙酐、環戊四羧酸雙 酐、雙環-[2,2,2]-辛烯(7)-2,3,5,6-四羧酸-2,3,5,6-雙酐、2,3,6,7-萘四羧酸雙酐、3,3’,4,4’-二苯基四羧酸 雙酐、1,4, 5, 8-萘四羧酸雙酐、苯均四酸酐、1,2, 5, 6-萘四羧酸雙酐、雙(3, 4-二羰苯基)雙酐、及雙(3, 4-二羧 8 19861 I丄以υΐ613.32016 IX. Description of the Invention: [Technical Field] The present invention relates to the preparation of a composition and a composite film formed of an inorganic nanoparticle having an organic reactive functional group and a polyimide, in particular, a poly Preparation of a composition of a quinone imine and a modified bismaleimide and a composite thereof. [Previous technology], Flexible Printed Cirxuit (FPC) #also known as flexible copper foil substrate, after exposure, development, and etching process, obtain the desired design of the circuit leads, which can be used as electronic product current signal transmission. medium. Soft printed circuit boards are characterized by three-dimensional wiring, and are more flexible, light, thin, and short. They are also called flexible printed circuit boards. ^The related products are roughly divided into single-panel, double-panel and multi-layer boards. . Because -FPC has the characteristics of light, short 'short, flexible, anti-static, low power consumption and space design change, today's electronic technology and communication, Lucent products, emphasize light and short, resistant to twists and turns Sexual trend, soft printing electric-road board application market is increasing, and has huge market potential, such as notebook type, computer, folding mobile phone, LCD flat panel display, digital camera, camera, CD player, etc., need to apply soft board material. The most important raw material for flexible printed circuit boards is Flexible Copper Clad Laminate (FCCL). The substrate can be divided into three layers of flexible soft copper foil substrate (3L-CCL). ) and two-layer soft copper foil substrate (2Lfccl) without glue, two layers of soft copper collar substrate (3L_CCL) due to the inclusion of adhesives, 19961 5 1332016. Poor performance in some performance items, such as dimensional stability (4) In terms of heat, it is subject to more restrictions in application. No (four) two-layer soft copper substrate (2L FCCL) not only has dimensional stability and heat resistance, but also contains fine lines. This has a superior performance, and is better than a rubber substrate. Line resolution, (four) good quality 'good dimensional stability, electricity, gas characteristics, financial distortion and reliability, also enhance the application range of Fpc products. Generally, two layers of a soft copper foil substrate are formed by coating polyimide (PI) on the surface of a copper foil substrate to form a two-layer copper foil substrate. However, since the thermal expansion coefficient (CTE) of polyimine is greater than 4〇卯' art, it is much larger than the thermal expansion coefficient of copper of about 17.8ppm/t: 'So it is necessary to introduce harder molecular chain links to reduce polyimine and copper. The CTE difference of the foil. Although this method reduces the CTE of polyimine and reduces the 'CTE difference between polyimine and copper foil, it makes the molecular structure of polyimine more rigid, and the flatness is improved. However, on the contrary, the adhesion between the polyimide and the copper foil is deteriorated, which leads to defects in the process of preparing the circuit, which cannot easily meet the requirements of the FPC process. The Republic of China Patent Publication No. 158619, "Highly Adhesive Polyimine Compositions", U.S. Patent Nos. 5,200,474 and 5,372,891 disclose Bismaleimide modified with Barbituric Acid (Modified j) ^is Ying alejjnide, MBMI) Polyimine composition application. However, this patent does not teach the use of modified inorganic additives and modified bismaleimide and polyimine compositions. SUMMARY OF THE INVENTION In order to solve the above problems, the main object of the present invention is to provide a 6 19861 4 $ 13.32016 preparation of a polyimine composition having a low coefficient of thermal expansion and a composite film. Another object of the present invention is to provide a high-strength polyaniline composition and a composite film. Still another object of the present invention is to provide a double-layer flexible copper foil substrate which can reduce thermal stress and a method of making same. A further object of the present invention is to provide a two-layer flexible copper foil substrate which can avoid surface warpage and a method of making same. • The present invention is also directed to providing a two-layer flexible copper foil substrate having excellent Cu/pi interface adhesion and a method of making the same. In order to achieve the above object, the present invention provides a composition of an inorganic nanoparticle having an organic reactive functional group and a polyimine, including a polyamine, a modified bismaleimide, and a coupling agent. Modified inorganic nano added. Since the inorganic nano-additive is modified by a coupling agent and has an organic functional group to form a composite film with the composition, the modified inorganic nano-addition and the modified bismaleimide are gathered. The chemical reaction of the molecules is combined, and then with the cluster, the molecular chain forms a semi-interpenetrating network structure. The present invention has an organic reaction, and the modified inorganic nano-additive of the composite nano-particle formed by the inorganic nano-particle and the poly-imine can be uniformly distributed on the polyimine substrate. The utility model can effectively reduce the thermal expansion coefficient of the composite film, improve the heat resistance and mechanical properties of the composite film, and increase the adhesion between the composite film and the copper box substrate, so it is particularly suitable for making a double-layer soft copper matte substrate. It can reduce the stress generated by high temperature hardening during film preparation and avoid the warpage of the product composite. 19861 7 1332016 The present invention also provides a method for producing a polytheneimide composite film, comprising: (a) modifying a inorganic nanopowder using a coupling agent, introducing an organic functional group into the inorganic nanopowder; (b) The modified inorganic nano-powder prepared in the step (a) is added to a solution of the poly-proline composition containing the modified bismaleimide; and the poly (a) obtained by heating and drying the step (b) A solution of the proline acid composition converts the poly-proline to a polyimine substrate by high temperature cyclization. The invention further provides a method for manufacturing a double-layered flexible copper foil substrate, comprising: (a) modifying the inorganic nano-powder with a coupling agent, introducing the organic functional group into the inorganic nano-powder; (b) step (a) The modified inorganic nano-powder obtained is added to a solution of a poly-proline composition containing modified bismaleimide; and (c) a solution of the poly-proline composition obtained in the step (b) is coated It is coated on a copper foil substrate and heated at a high temperature to carry out a cyclization reaction, which promotes the conversion of poly-proline to poly-imine, and finally obtains a finished product of a double-layered soft copper foil substrate. [Embodiment] The composition of the inorganic nanoparticle and the polyimine of the invention having the functionally reactive functional group comprises a polyimine, a modified bismaleimide-®, and a coupling agent. An inorganic nano-additive; wherein the poly-imine is formed by polyamidating a high temperature cyclic hydrazine. In one embodiment, the phthalic anhydride is reacted with a diamine to form a polyamic acid. Examples of the dianhydride include, but are not limited to, tetrahydrofuran tetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid dianhydride, bicyclo-[2,2,2]-octene (7)-2,3,5,6 -tetracarboxylic acid-2,3,5,6-dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 3,3',4,4'-diphenyltetracarboxylic acid dianhydride, 1,4, 5, 8-naphthalenetetracarboxylic acid dianhydride, pyromellitic anhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, bis(3,4-dicarbonylphenyl) dianhydride, and Double (3, 4-dicarboxyl 8 19861 I丄 to υΐ6

求基)醚雙酐。典型的二胺通式為H2N-R,-NH2,其中R,可 為芳g基、知肪基、環狀脂肪基、或含石夕烧之脂肪基。 於一具體實例中,該改質之雙馬來醯亞胺係由式(工) 戶斤不之巴比土酸或其衍生物:Solvent base ether anhydride. A typical diamine is of the formula H2N-R, -NH2, wherein R, which may be an aryl g group, an aliphatic group, a cyclic aliphatic group, or a fat group containing a zealand. In one embodiment, the modified bismaleimide is a barbituric acid or a derivative thereof:

(式中’ 1與R2係獨立地選自-H、_CH3、_C2H5、_C6li5、-CHC(CH3)2、-CH2CH(CH3)2、-CH2CH2CH(CH3)2、或 -CH(CH3)-(CH2)2-CH3)與式(Π)所示之雙馬來酸亞胺: OHCX /f o onWherein '1 and R2 are independently selected from -H, -CH3, _C2H5, _C6li5, -CHC(CH3)2, -CH2CH(CH3)2, -CH2CH2CH(CH3)2, or -CH(CH3)-( CH2)2-CH3) and the dimaleic acid imide shown by formula (Π): OHCX /fo on

c CMO N π (式中,R可為芳香基、脂肪基、環狀脂肪基、或含矽烷 之脂肪基) 進行反應所製得。雙馬來醯亞胺的實例包括,但非 限於Ν,Ν’-乙烯-雙馬來醯亞胺、N,Ν’-丁烯-雙馬來醯亞 胺、Ν,Ν’-六亞甲基-雙馬來醯亞胺、Ν,Ν’-苯撐-雙馬來醯 亞胺、Ν,Ν,-4,4,-二苯基曱烷-雙馬來醯亞胺、Ν,Ν’-4,4’_ 二苯喊-雙馬來酿亞胺、Ν,Ν’_4, 4’-二苯硬-雙馬來酿亞 胺、Ν,Ν,-4,4,-二環己基曱烷-雙馬來醯亞胺、Ν,Ν,- 9 19861 1332016 ' 苯二曱基-雙馬來醯亞胺、及Ν,Ν’-二苯基環己烷-雙馬來 醯亞胺。 含有巴比土酸改質之雙馬來醯亞胺與聚醯胺酸之組 成物溶液,經高溫加熱聚醯胺酸環化轉換成聚醯亞胺,醯 ’ 亞胺環化過程中之脫水縮合與改質雙馬來醯亞胺自由基 . 架橋之雙重效應下,經均勻混合與高溫環化之加工,最終 - 固化形成半互穿式交聯網狀結構(semi-IPN),如第1圖之 -. 結構示意圖所示。使得聚醯亞胺複材薄膜之熱膨脹係數有 •效下降,並加強了聚醯亞胺複材薄膜與銅箔基材間之剝離 接著強度’因此改善傳統聚醯亞胺樹脂與銅箔間剝離強度 不足之缺陷。 本發明之組成物更進一步添加經偶合劑改質之無機 '奈米添加物,特別是無機奈米粉體。利用偶合劑之改質, -將有機官能基導入無機奈米粉體,在巴比土酸觸媒的加成 反應下,與改質之雙馬來醯亞胺行部份自由基開環反應, •籲最後在高溫架橋反應與聚醯亞胺形成半互穿式交聯網狀 _·結構之奈米混成複材。本發明所使用之改質無機添加物, 二有活丨生有機官能基,能與馬來醯亞胺寡聚物及聚醯亞胺 形成半互穿式交聯網狀結構。如第2圖之結構示意圖,聚 ^亞=高分子基材a、改質之馬㈣亞胺寡聚物b與偶合 改貝之無機奈米粉體c酿亞胺,係經高溫 =半”式交聯網狀結構。由於改質之無機添加= :或任思(random)分散於聚醯亞胺基材中,而是有效 ”聚醜亞胺且與馬來酿亞胺寡聚物形成半互穿式交聯網 10 19861 1332016 狀結構’因此促成改質之無機奈米粉體能均句分佈於聚酿 亞胺基材上’不致發生巨相分離與團聚現象,可大幅提昇 聚酿亞胺複材薄臈之機械性質與对熱性質。因此、僅需要 少量的改質奈米粉體,即可有效添加於㈣亞胺組成物, 造成限制㈣亞胺自由體積的鬆他行為(relaxation behavior)’進而低聚醯亞胺之熱膨脹係數。 該偶合劑的實例包括具有乙稀基官能基之石夕院偶合 劑、具有胺基官能基之石夕貌偶合劑、以及油酸偶合劑,盆 中,油酸偶合劑係具有下式所示之結構 、c CMO N π (wherein R may be an aromatic group, a fatty group, a cyclic aliphatic group, or a decane-containing aliphatic group) is obtained by carrying out a reaction. Examples of bismaleimide include, but are not limited to, hydrazine, Ν'-ethylene-bismaleimide, N, Ν'-butene-bismaleimide, hydrazine, Ν'-hexamethylene Base-bismaleimide, anthracene, Ν'-phenylene-bismaleimide, anthracene, anthracene,-4,4,-diphenylnonane-bismaleimide, anthracene, anthracene '-4,4'_ Diphenyl shouting - Double Malay Imine, Ν, Ν '_4, 4'-Diphenyl hard-Bismaleimide, hydrazine, hydrazine, -4,4,-bicyclic Hexyl decane-bismaleimide, hydrazine, hydrazine, - 9 19861 1332016 'Benzyldiphenyl-bismaleimide, and hydrazine, Ν'-diphenylcyclohexane-dual malayan amine. a solution containing a mixture of bismaleimide and polylysine modified with barbituric acid, which is cyclized by polypyridyl acid to a polyimine at a high temperature, and dehydrated during the cyclization of the imine Condensation and modification of bismaleimide free radicals. Under the double effect of bridging, the process of uniform mixing and high-temperature cyclization finally forms a semi-interpenetrating network-like structure (semi-IPN), such as the first Figure - The structure diagram is shown. The thermal expansion coefficient of the polyimide film is reduced, and the peeling strength between the polyimide film and the copper foil substrate is enhanced, thereby improving the peeling between the conventional polyimide resin and the copper foil. Defects of insufficient strength. Further, the composition of the present invention is further added with an inorganic 'nano additive modified with a coupling agent, particularly an inorganic nano-powder. By modifying the coupling agent, - introducing the organic functional group into the inorganic nano-powder, and performing a partial free radical ring-opening reaction with the modified bismaleimide under the addition reaction of the barbituric acid catalyst, • At the end of the high temperature bridging reaction and polyimine forming a semi-interpenetrating cross-linked network of _· structure of nano-mixed composite material. The modified inorganic additive used in the present invention has a living organic functional group and can form a semi-interpenetrating network structure with the maleimide oligomer and the polyimine. As shown in the structure diagram of Fig. 2, poly? sub = polymer substrate a, modified horse (tetra) imine oligomer b and coupling modified Beibei inorganic nano powder c-imine, high temperature = half" Cross-network structure. Due to the modified inorganic addition = : or random (random) dispersed in the polyimide substrate, but effective "poly ugly imine and semi-intercalated with the maleimine oligomer Wearable Internet 10 19861 1332016 Shaped structure 'Therefore, the modified inorganic nano-powder can be uniformly distributed on the poly-imine substrate. 'The phenomenon of macrophase separation and agglomeration does not occur, and the poly-imine composite material can be greatly improved. The mechanical properties and thermal properties of bismuth. Therefore, only a small amount of modified nano-powder is required, which can be effectively added to the (iv) imine composition, resulting in a limitation on the thermal expansion coefficient of the (IV) imine free volume and the relaxation coefficient of the oligo-imine. Examples of the coupling agent include a Shixiyuan coupling agent having a vinyl functional group, a Shixia coupling agent having an amino functional group, and an oleic acid coupling agent, and the oleic acid coupling agent has the following formula Structure,

CH3-(CH2)„-CH= CH-(CH2)„-C00H (式中η為1至14之整數)。本發明中可使用無機奈米 粉體作為添加物,其實例包括氧切、氧化鍺、氧化錫、 氧化鉛:氧化硒、氧化銻、氧化鋁、氧化鋅、氧化碲、氧 化硼、乳化鎵、氧化銦、或氧化絲之奈米粉體。於一具體 實例中’係使用具有乙烯基官能基之石夕烧偶合劑改質二氧 化石夕奈米粉體’如第3圖之化學機制示意所示。為了獲得 完全純化具有機反應官能基之二氧切奈米顆粒,較佳係 選擇與偶合㈣解參數相近之㈣進行純化分離未反應 之偶,劑’例如使用A151料偶合劑(溶解參數為Η cal /cm ),可選用溶解參數亦為7. 8 ^丨1/2/』3/2之己 炫溶劑,而獲得職純化末端帶有乙烯基官能基之二氧 化矽奈米粉體。 本發明之組成物中,經偶合劑改質之無機奈米添加物 引占固含量總重之0.5至15%,較佳為0.5至繼,更 19861 11 1332016 佳為0· 5至5% ;巴比土酸改質之雙馬來醯亞胺可佔固含 量總重之1至10% ’其餘為聚醯亞胺。 本發明亦提供一種具有機反應官能基之無機奈米顆 粒與聚醯亞胺所形成之複材薄臈,包括聚醯亞胺、改質之 雙馬來醯亞胺、以及偶合劑改質之無機奈米添加物,其 中’醒亞胺無機奈米添加物係經偶合劑改質而具有有機官 ' 能基,與巴比土酸改質之馬來醯亞胺寡聚物分子化學反應 . 結合後’再與聚醯亞胺分子鏈形成半互穿式交聯網狀結構 籲(sem i -1PN) ’故該無機添加物得以均勻分佈於該聚酸亞胺 基材。可使用具有乙烯基官能基之矽烷偶合劑、具有胺基 官能基之石夕烷偶合劑、或油酸偶合劑改質無機奈米添加 物。於一具體實例中’係使用矽烷偶合劑改質二氧化矽奈 .米粉體’將乙烯基官能基帶入二氧化矽奈米粉體。接著, -所製得之改質二氧化矽奈米粉體加入含有巴比土酸改質 雙馬來醯亞胺之聚醯胺酸組成物溶液。該改質二氧化矽奈 ••鲁米粉體的含量係佔固含量總重之〇. 5至丨5%,較佳為〇. 5 ' 至10%,更佳為0. 5至5% ,巴比土酸改質之雙馬來醯亞 胺的含量係佔固含量總重之丨至丨〇% 。加熱該添加有改 質一氧化石夕奈米粉體之溶液,使該改質之二氧化石夕奈米粉 •體與巴比土酸改質之馬來醯亞胺寡聚物分子化學反應結 合,再與高溫環化之聚醯亞胺分子鏈形成半互穿式交聯網 狀結構,而均勻地分佈於該聚醯亞胺基材,即為本發明之 聚醯亞胺複材薄膜。 該複材薄膜可應用於製作雙層軟性銅箔基板。首先, 12 19861 1332016 使用偶合劑改質無機奈米粉體,將有機官能基導入該無機 奈米粉體,例如使用矽烷偶合劑改質二氧化矽奈米粉體, 將乙烯基官能基導入該二氧化矽奈米粉體表面。接著,將 所製得之改質一氧化矽奈米粉體加入含有巴比土酸改質 雙馬來醯亞胺之聚醯胺酸組成物溶液,其中該改質二氧化 -矽奈米粉體的含量係佔固含量總重之0.5至15% ,較佳 為0.5至10% ,更佳為0·5至5% ,巴比土酸改質之雙馬 來酿亞胺的含量係佔固含量總重之4 1〇%。將該添加 鲁有改質—氧化;^奈米粉體之溶液塗佈於㈣基材,加熱進 打乾燥,使聚醯胺酸醯亞胺經高溫環化為聚醯亞胺,即可 製得表面形成有該聚醯亞胺複材薄膜之雙層軟性銅羯基 板0 以下係藉由特定之具體實施例進—步說明本發明之 .特點與功效,但非用於限制本發明之範疇。 實施例 丄偶合劑改質之% 將偶合劑A151與正己烧溶劑攪拌均勻,再加入粒名 ^2挪之二氧㈣奈米粉體胁均句,二氧切奈以 體與偶合劑之重量比為1:2。在8〇t迴流加熱4小時马 2改質反應,使將有射能基導人二氧切奈米粉體表 =過歧應後之溶液,取出㈣物。使用正己炫清洗分 :物三次後’置於供箱内以11(rc供烤12至16小幢 白色粉末,即為偶合劑改質之二氧化矽奈米粉體。’ 19861 13 1332016 FTIR官能基的圖譜之特徵鑑定係以未改質之二氧化 石夕表面 Si-OH(3400 cnT1 : 0-H 鍵結拉伸(bonding stretching))以及偶合劑官能基 CH3-CH2 ( 544,470 cm—1 : 變形振動(deformation vibration))消失與否做為改質 ' 反應與純化程度之參考依據。第4圖係顯示偶合劑、未改 • 質之二氧化矽奈米粉體、及經偶合劑改質具有乙烯基官能 - 基之二氧化矽奈米粉體的FTIR圖譜。經偶合劑改質之二 • 氡化矽表面Si-OH ( 3400 cnT1 : 0-H鍵結拉伸(bonding Φ stretching)),與偶合劑官能基 CH3-CH2 ( 544, 470 cnT1 : 變形振動(deformation vibration))完全消失,代表反 應完全與100%純化,而=CH2 ( 2975 cnT1 :對稱拉伸振動 (symmetric stretching vibration))微弱的波峯,代表 • 改質後之二氧化矽奈米粉體具有乙烯基官能基。 在氮氣環境下,以l〇°C/min昇溫速率進行熱重量分 析(J_hermogjavimetric 达nalysis: TGA)。第 5 圖之 TGA / β圖譜顯示其間重量殘存量,經計算,改質後具有乙烯基官 .· 能基之二氧化矽奈米粉體,有機相含量約為11%,與第4 圖結果符合,證明偶合劑已有效改質二氧化矽奈米粉體使 其具有乙烯基官能基。 • 針對未改質之二氧化矽奈米粉體以及經偶合劑改質 具有乙烯基官能基之二氧化矽奈米粉體,使用CH3-(CH2)„-CH=CH-(CH2)„-C00H (wherein η is an integer from 1 to 14). In the present invention, inorganic nanopowder may be used as an additive, and examples thereof include oxygen chopping, cerium oxide, tin oxide, lead oxide: selenium oxide, cerium oxide, aluminum oxide, zinc oxide, cerium oxide, boron oxide, emulsified gallium, and oxidation. Indium, or nanowire powder of oxidized silk. In a specific example, the use of a sulphur-coupled coupler having a vinyl functional group to modify a smectite powder is shown schematically in the chemical mechanism of Figure 3. In order to obtain completely purified dioxonella particles having an organic reactive functional group, it is preferred to select a coupling parameter similar to that of the coupling (IV). (4) Purify and separate unreacted couples, for example, using A151 coupling agent (dissolution parameter is Η) Cal / cm ), a sensitizing solvent having a dissolution parameter of 7. 8 ^ 丨 1/2 / 3 / 2 / 2 can be used, and a cerium oxide nano powder having a vinyl functional group at the end is obtained. In the composition of the present invention, the inorganic nano-additive modified by the coupling agent occupies 0.5 to 15% of the total weight of the solid content, preferably 0.5 to 1900, and more preferably 0. 5 to 5%. The barbituric acid modified bismaleimide can account for 1 to 10% of the total solid content. The balance is polyimine. The invention also provides a composite material thin layer formed by inorganic nanoparticle and organic polyimide having an organic reactive functional group, comprising polyimine, modified bismaleimide, and a coupling agent modified. Inorganic nano-additive, wherein the 'waking imine inorganic nano-additive is modified by a coupling agent to have an organic official energy base, and is chemically reacted with a barbituric acid-modified maleic imine oligomer. After binding, a semi-interpenetrating network structure is formed with the polyimine molecular chain (sem i -1PN), so the inorganic additive is uniformly distributed on the polyimide substrate. The inorganic nano-additive may be modified using a decane coupling agent having a vinyl functional group, an anthracycline coupling agent having an amino functional group, or an oleic acid coupling agent. In one embodiment, the phthalocyanine coupling modified cerium oxide nano sized powder is used to carry the vinyl functional group into the cerium oxide nanopowder. Next, the prepared modified cerium oxide nanopowder is added to a polyamic acid composition solution containing barbituric acid modified bismaleimide. 5至5%,更优选为0. 5至5%, the content of the modified cerium oxide nano-Rumient powder is 总. 5 to 5%, preferably 〇. 5 ' to 10%, more preferably 0.5 to 5%, The content of bismaleimide modified by barbituric acid accounts for 丨% to 9% of the total solid content. Heating the solution containing the modified nitric oxide ceramsite powder to combine the modified cerium oxide cerium powder body with the molecular chemical reaction of the barbituric acid modified maleic imine oligomer Further, the high-temperature cyclized polyimine molecular chain forms a semi-interpenetrating network structure, and is uniformly distributed on the polyimide substrate, which is the polyimine composite film of the present invention. The composite film can be applied to produce a double-layer flexible copper foil substrate. First, 12 19861 1332016 using a coupling agent to modify the inorganic nano-powder, introducing an organic functional group into the inorganic nano-powder, for example, using a decane coupling agent to modify the cerium oxide nanopowder, and introducing a vinyl functional group into the cerium oxide Nano powder surface. Next, the prepared modified nitric oxide nano-powder powder is added to a polyamic acid composition solution containing barbituric acid-modified bismaleimide, wherein the modified di-n-oxide nanopowder powder The content is from 0.5 to 15%, preferably from 0.5 to 10%, more preferably from 0.5 to 5%, based on the total weight of the solid content, and the content of the bismale acid modified by the barbituric acid is the solid content. The total weight is 4 1〇%. The addition of the modified-oxidized; solution of the nano-nano powder is applied to the (four) substrate, heated and dried, and the polyamidimide is cyclized to a polyimine at a high temperature to obtain a solution. The double-layered soft copper ruthenium substrate having the polyimine composite film formed on the surface 0. The features and effects of the present invention are described in detail by way of specific embodiments, but are not intended to limit the scope of the invention. Example %% of the modifier modification The coupling agent A151 and the hexane solvent were uniformly stirred, and then the granules of the dioxin (tetra) nitrite powder and the weight ratio of the dioxin to the coupling agent were added. It is 1:2. After 8 hours of reflux heating at 8 Torr, the horse 2 modification reaction was carried out so that the solution of the dioxin-cut dioxodine powder was over-discriminated and the (four) material was taken out. Use the positive cleansing wash: after three times, 'put in the box to 11 (rc for baking 12 to 16 small white powder, which is the coupling agent modified cerium oxide nano powder. ' 19861 13 1332016 FTIR functional group The characterization of the map is based on unmodified silica dioxide Si-OH (3400 cnT1: 0-H bonding stretching) and coupling agent CH3-CH2 (544,470 cm-1) : Deformation vibration disappeared or not as a reference for the degree of modification and purification. Figure 4 shows the coupling agent, unmodified cerium oxide nanopowder, and modified by coupling agent. FTIR spectrum of vinyl functional group-based cerium oxide nanopowder powder. Modified by coupling agent • 氡 氡 矽 surface Si-OH ( 3400 cnT1 : 0-H bonding Φ stretching), And the coupling agent CH3-CH2 (544, 470 cnT1: deformation vibration) completely disappeared, indicating that the reaction is completely 100% purified, while =CH2 (2975 cnT1: symmetric stretching vibration) is weak The crest, which represents • the modified cerium oxide The rice flour has a vinyl functional group. Thermogravimetric analysis (J_hermogjavimetric analysis: TGA) is carried out at a heating rate of 10 ° C / min under a nitrogen atmosphere. The TGA / β spectrum of Figure 5 shows the residual weight during the calculation, calculated After modification, it has a vinyl official. The energy base of cerium oxide nano-powder has an organic phase content of about 11%, which is consistent with the results of Figure 4, which proves that the coupling agent has effectively modified the cerium oxide nanopowder to make it It has a vinyl functional group. • For the unmodified cerium oxide nanopowder and the cerium oxide nanopowder modified with a vinyl functional group via a coupling agent,

Photal-Otsuka Electronics LPA-3100 Laser Particle Analyzer進行動態雷射散射測試(dynamic Laser Scatter: DLS)。以N-曱基咯烷酮(NMP)作為溶劑,確認 14 19861 、一 一虱化矽奈米粉體溶於特定溶劑之粒徑尺 、,測試粒徑範圍1μπ]〜20 nm。如 改質具有乙烯基 夺所不經偶合劑 一邱丞S把基之一乳化矽奈米粉體的粒徑〈2〇 nm ’顯示二氧切奈米粉體經改質後,依然維持其原來太 米尺寸且無顆粒聚集現象產生。 ’、不 表 10 ) 改質前 改質後 &lt;20 nm &lt;20 nm &lt; 20 nm &lt; 20 nm 例2 :改皙之彆馬來醯亞胺 將8. 66克N,N’-4, 4’-二笨基曱烷—雙馬來醯亞胺溶 '於20克r —丁内酯,並於混合溶液中加入1克巴比土酸。 -於丨1〇它之溫度條件下攪拌加熱1小時,製得巴比土酸改 質之雙馬來醯亞胺。 合成例3 :聚醯胺酸 將 17. 45 克(0.087M)之 4, 4’-二胺基二苯醚(dde)置 於500毫升四頸反應器中’加入130毫升之N-甲基ν»各烧 •酮(NMP)及30毫升之二曱苯使其溶解。接著,添加18. 55 克(0. 085M)之苯均四酸酐(PMDA)於氮氣及室溫條件下反 應3小時,再加入〇. 436克(〇. 02M)之苯均四酸酐繼續反 應2小時,獲得固含量18· 5%之聚醯胺酸溶液。 15 19861 1332016 复施例l 將合成例1之改質二氧化矽奈米粉體與合成例2所製 得巴比土酸改質之雙馬來醯亞胺加入合成例3之聚醯胺 酸溶液’其中,改質二氧化矽奈米粉體係佔固含量總重之 1% ’巴比土酸改質之雙馬來醯亞胺係佔固含量總重之5 • % ,聚醯胺酸則佔固含量總重之94% 。將聚醯胺酸組成 浴液離心脫去泡珠’使用塗佈機將該聚醯胺酸組成物溶液 塗佈於銅箔基材上,放入高溫氮氣(N2)烘箱以階梯式升 •溫方式進行烘烤。首先,在8〇°C烘烤30分鐘。接著,逐 次升溫至120°C、15(TC、及200X:分別烘烤30分鐘,再 以350 C烘烤60分鐘。最後,得到完全環化與乾燥之兩 層軟性銅箔基板(2L-FCCL)。 實施例2 重複實施例1之相同方法製備兩層軟性銅箔基板。該 改質二氧化矽奈米粉體改為固含量總重之3% ,巴比土酸 改質之雙馬來醯亞胺係佔固含量總重之5%,聚酿胺酸則 佔固含量總重之92% 。 實施例&amp; 重複實施例1之相同方法製備兩層軟性銅羯基板。 改質二氧化矽奈米粉體改為固含量總重之5% ,巴比土 改質之雙馬來醯亞胺係佔固含量 董之5/°,聚醯胺酸 佔固含置總重之90% 。 19861 16 1332016 比較例1 使用合成例3之聚醯胺酸溶液重複實施例1之方法製 備兩層軟性銅箔基板。該聚醯胺酸溶液並未添加巴比土酸 改質之雙馬來酿亞胺及改質之二氧化石夕奈米粉體。 比較例2 重複實施例1之相同方法製備二層軟性銅箔基板。該 聚醯胺酸溶液並未添加巴比土酸改質之雙馬來醯亞胺,並 使用未改質之二氧化石夕奈米粉體,該二氧化石夕奈米粉體佔 固含里總重之15% ’聚醯胺酸則佔固含量總重之85% 。 • 比較例3 - 重複實施例1之相同方法製備二層軟性銅箔基板。該 聚醯胺酸溶液並未添加改質之二氧化矽奈米粉體,該巴比 鲁土酸改質之雙馬來醯亞胺係佔固含量總重之5% ,聚醯胺 酸則佔固含量總重之95% 。 將上述各實施例及比較例所製得之二層軟性銅箔基 板放置於25%之過硫酸銨溶液中,將溫度控制並設定為 6〇 C,完全將銅箔蝕刻去除,得到聚醯亞胺複材薄膜。接 著,取出聚醯亞胺複材薄膜充分水洗乾淨,放置於烘箱以 120 C之溫度條件烘烤3〇分鐘。使用聚醯亞胺複材薄臈與 兩層軟性銅箔基板做為測試樣品,以下列分析方法,測試 各樣品之特性,特性結果於表2。 17 19861The Photal-Otsuka Electronics LPA-3100 Laser Particle Analyzer performs dynamic laser scatter (DLS) testing. Using N-mercaprolidone (NMP) as a solvent, it was confirmed that the size of the 14 19861, one-by-one bismuth nano-powder powder was dissolved in a specific solvent, and the test particle size range was 1 μπ] to 20 nm. If the modification has a vinyl-free coupling agent, the particle size of one of the emulsified glutinous rice powders <2〇nm' shows that the dioxonide powder has been modified to maintain its original rice. Size and no particle agglomeration. ', not Table 10> After upgrading, &lt;20 nm &lt; 20 nm &lt; 20 nm &lt; 20 nm Example 2: Modified 马 马 马 醯 醯 8 8 8. 66 g N, N'- 4, 4'-di-p-decyl-ane-maleimide was dissolved in 20 g of r-butyrolactone, and 1 g of barbituric acid was added to the mixed solution. - The mixture was heated under stirring at a temperature of 1 Torr to obtain a barbituric acid-modified bismaleimide. Synthesis Example 3: Polylysine 17.45 g (0.087 M) of 4,4'-diaminodiphenyl ether (dde) was placed in a 500 ml four-necked reactor 'Addition of 130 ml of N-methyl group ν» each burning ketone (NMP) and 30 ml of diphenylbenzene to dissolve. Next, 18.55 g (0.085 M) of pyromellitic anhydride (PMDA) was added to react under nitrogen at room temperature for 3 hours, and then 436 g (〇. 02 M) of pyromellitic anhydride was added to continue the reaction 2 In an hour, a polyamine solution having a solid content of 18.5% was obtained. 15 19861 1332016 Remedy Example l The modified cerium oxide nanopowder of Synthesis Example 1 and the bismaletic acid modified bismaleimide prepared in Synthesis Example 2 were added to the polyaminic acid solution of Synthesis Example 3. ' Among them, the modified cerium oxide nano-powder system accounts for 1% of the total solid content. The barley glutamic acid-modified double-male yttrium yttrium occupies 5 % of the total solid content, and the poly-proline contains 94% of the total solid content. The polylysine composition bath was centrifuged to remove the beads. The polylysine composition solution was applied to a copper foil substrate using a coater, and placed in a high temperature nitrogen (N2) oven to provide stepwise temperature rise. The way to bake. First, bake at 8 ° C for 30 minutes. Then, the temperature was sequentially raised to 120 ° C, 15 (TC, and 200X: baked for 30 minutes, and then baked at 350 C for 60 minutes. Finally, a two-layer soft copper foil substrate (2L-FCCL) which was completely cyclized and dried was obtained. Example 2 A two-layer flexible copper foil substrate was prepared in the same manner as in Example 1. The modified cerium oxide nanopowder was changed to 3% of the total solid content, and the barbituric acid modified double horses. The imine group accounts for 5% of the total solid content, and the poly-aracine acid accounts for 92% of the total solid content. EXAMPLES &amp; A two-layer soft copper matte substrate was prepared in the same manner as in Example 1. Modified cerium oxide. The nano-powder is changed to 5% of the total solid content, and the barley-modified bismuth imide is the solid content of 5/°, and the poly-proline contains 90% of the total weight. 19861 16 1332016 Comparative Example 1 A two-layer flexible copper foil substrate was prepared by repeating the method of Example 1 using the polyamidic acid solution of Synthesis Example 3. The polyamic acid solution was not added with barbituric acid modified bismaleimide. And modified cerium oxide cerium powder. Comparative Example 2 A two-layer flexible copper foil substrate was prepared in the same manner as in Example 1. The polyaminic acid solution is not added with barbituric acid-modified bismaleimide, and unmodified zirconium dioxide powder is used, and the dioxide dioxide has a total solid weight. 15% 'polyglycine accounted for 85% of the total solid content. · Comparative Example 3 - A two-layer flexible copper foil substrate was prepared in the same manner as in Example 1. The polyamic acid solution was not modified. In the cerium oxide nano-powder powder, the Bamaru sulphate-modified double-maleimide-based yttrium occupies 5% of the total solid content, and the poly-proline contains 95% of the total solid content. The two-layer soft copper foil substrate prepared in the examples and the comparative examples was placed in a 25% ammonium persulfate solution, and the temperature was controlled and set to 6 〇C, and the copper foil was completely removed by etching to obtain a polyimide film. Then, the polyimine composite film was taken out and washed thoroughly, and then placed in an oven and baked at a temperature of 120 C for 3 minutes. The polyimide and the two layers of the soft copper foil substrate were used as test samples. The characteristics of each sample were tested by the following analytical methods, and the characteristic results are shown in Table 2. 17 19861

13.32016 本發明之熱重量分析、剝離強度、及熱膨脹係數測試 方法’根據下列方法進行測試: (1) 熱重量分析儀(工hermo見ravimetric达nalysis: TGA):通入氮氣,以1〇〇c/min昇溫速率測試樣品熱裂解 起始溫度(以 on-set temperature of 5% wt. Loss 為比 較與分析標準)。 (2) 剝離強度:使用ΐρ〇ΤΜ-650(2. 4. 9)測試方法A 與C ’測試各實施例與比較例之銅箔基板,蝕刻後的測試 ί線路試片置於9〇度角剝離夾具,以萬能測試機測定其對 應拉力’測試銅箔被拉離聚醯亞胺膜的單位寬度之拉力 (kgf/cm)。 (3) 熱膨脹係數:以熱機械分析儀 ‘ (Ihermo肛echanical包nalysis: TMA)測量,在氮氣環境以 -及30至30(TC溫度範圍間,以1〇。〇 /min升溫速率,測試 各實施例與比較例之聚醯亞胺複材薄膜,在受熱前後單位 鲁溫度下的長度差及原始長度比值(ppm/t:)。 表2 熱重量分析°c 剝離強度 (kgf/cm) 熱膨脹係數 (ppm/°C ) 實施例1 585.73 1.18 24. 65 實施例2 587. 65 1. 32 22. 15 實施例3 595. 96 1. 48 20. 17 比較例1 555. 42 0. 40 35. 60 比較例2 580. 78 1. 08 24. 76 比較例3 585. 26 1.13 26. 48 18 19861 1332016 根據表2之結果可得知’添加1、3、5%經改質具有 乙烯基官能基之二氧化矽奈米粉體配合改質雙馬來醯亞 胺寡聚物所形成的聚醯亞胺複材薄膜具有顯著性能的提 昇效果,尤指較佳的熱重力分析(TGA)、熱穩定性、及較 佳剝離強度,同時亦呈現較低的熱膨脹係數。實施例3 與無添加任何添加物的比較例丨比較,發現實施例3之聚 醯亞胺複材薄膜的膨脹係數從35. 6〇 ppm/t&gt;c下降至2〇 U ppm/c,剝離強度由0 40 kgf/cm提升至148 比較例2中、添加傳統二氧化矽奈米粉體佔全體組成 物重里比15%所得之聚醯亞胺複材塑膠膜和實施例^〜3 具有相近的熱膨脹係數,且實施例1〜3的剝離強度皆較 比較例2佳。本發明只需少量加入丨至5% ,即可有效達 到提升聚醯亞胺膜機械性能之目的。比較例3中,只添加 雙馬來酿亞胺寡聚物並無添加改f二氧切奈米粉體,和 實施例1 i 3比較可發現,添加少量改質二氧化碎奈米粉 •體,可有效大幅提升聚醯亞胺膜之機械性能。 藉由掃描式電子顯微鏡(s E M )觀察本發明實施例之聚 酿亞胺組成物所製成之複材薄膜,半互穿式交聯網狀結i 組織可被充分清楚透視。第6a圖為添加傳統未改質之二 氧化矽奈米粉體,重量比佔全體組成物固含量1%之聚醯 亞胺㈣之掃描式電子顯微鏡照圖則為實施例 3之聚醯亞胺組成物所製成之複材薄獏電子顯微鏡照 片第6a圖中明顯具有許多微米級的顆粒和凹洞,足見 未改質之二氧切奈米粉體呈現隨意散佈且有凝聚成較 19861 19 1332016 大顆粒的傾向。第6b圖中’並沒有發現明顯的凹洞或顆 :篡It經改質之二氧化矽奈米粉體、改質之雙馬來醯亞 胺券♦物和聚醯亞胺組成互呈半互穿式交聯網,造成改質 之雙馬來gi亞胺寡聚物和經改質之:氧切奈米粉體均、 二=於聚酿亞胺基材上’因此不會有明顯的凹洞或粉 體凝集的顆粒現象產生。 惟上述實施例僅為例示性說明本發明之原理及其功 效,並非用於限制本發明,任何熟習此項技藝之人士均可 在不違背本發明之精衫範訂,對上料_進行修飾 與變化因此,本發明之權利保護範圍,應如 專利範圍所列。 &quot; 【圖式簡單說明】 ' 第1圖係顯示聚醯亞胺與改質雙馬來醯亞胺形成半 -互穿式交聯網狀結構之示意圖; 第2圖係顯示聚醯亞胺、改質之馬來醯亞胺、及偶合 鲁劑改質之無機添加物形成半互穿式交聯網狀結構之示意 第3圖係顯示偶合劑改質無機添加物之化學機制示 、圖, 第4圖係顯示偶合劑、未改質之二氧化矽奈米粉體、 及差偶σ μ丨改質具有乙烯基官能基之二氧化碎奈米粉體 的FTIR圖譜; 第5圖係顯示偶合劑、未改質之二氧化矽奈米粉體、 及經偶合齊J改質具有乙烯基官能基之二氧化石夕奈米粉體 19861 1332016 的TGA圖譜與其間重量殘存量; 第6a圖係添加傳統未改質之二氧化矽奈米粉體,重 量比佔全體組成物固含量&lt;1%之聚醯亞胺薄膜之掃描式 電子顯微鏡照片;以及 第6b圖係本發明實施例3之聚醯亞胺組成物所製成 之複材薄膜電子顯微鏡照片。 [ 主要元件符 號 說明】 a 聚醯亞 胺 南 分子基材 b 改質之 馬 來 醯亞胺寡聚物 c 偶合劑 改 質 之無機奈米粉體 A 未改質 之 二 氧化矽奈米粉體 B 偶合劑 C 經偶合 劑 改 質之二氧化矽奈米粉體 21 1986113.32016 The test method for thermogravimetric analysis, peel strength, and coefficient of thermal expansion of the present invention is tested according to the following methods: (1) Thermogravimetric analyzer (see: ravimetric analysis: TGA): nitrogen gas is introduced, 1 〇〇c /min heating rate test sample thermal cracking onset temperature (on-set temperature of 5% wt. Loss for comparison and analysis criteria). (2) Peel strength: The copper foil substrate of each of the examples and the comparative examples was tested using ΐρ〇ΤΜ-650 (2.4.9) test methods A and C', and the etched test ί line test piece was placed at 9 degrees. The angle peeling jig was measured by a universal testing machine for the tensile force (kgf/cm) of the unit width of the test copper foil pulled away from the polyimide film. (3) Thermal expansion coefficient: measured by thermomechanical analyzer' (Ihermo analical package nalysis: TMA), tested in nitrogen atmosphere at - and 30 to 30 (TC temperature range, at 1 〇. 〇 / min heating rate, test each The ratio of the length difference and the original length ratio (ppm/t:) of the polyimide film of the examples and the comparative examples before and after the heating. Table 2 Thermogravimetric analysis °c Peel strength (kgf/cm) Thermal expansion Coefficient (ppm/°C) Example 1 585.73 1.18 24. 65 Example 2 587. 65 1. 32 22. 15 Example 3 595. 96 1. 48 20. 17 Comparative Example 1 555. 42 0. 40 35. 60 Comparative Example 2 580. 78 1. 08 24. 76 Comparative Example 3 585. 26 1.13 26. 48 18 19861 1332016 According to the results of Table 2, it can be known that 'addition 1, 3, 5% modified with vinyl functional groups The ruthenium dioxide nano-powder combined with the modified bismaleimide oligomer formed by the polyimide film has a significant performance improvement effect, especially better thermal gravity analysis (TGA), thermal stability Properties, and better peel strength, while also exhibiting a lower coefficient of thermal expansion. Example 3 Comparative example with no added additives丨Comparatively, it was found that the expansion coefficient of the polyimine composite film of Example 3 decreased from 35.6 pm/t&gt;c to 2 〇U ppm/c, and the peel strength was increased from 0 40 kgf/cm to 148. 2, the addition of the conventional cerium oxide nanopowder to the total composition weight ratio of 15% of the polyimine composite plastic film and the examples ^ ~ 3 have similar thermal expansion coefficient, and the peel strength of Examples 1 to 3 Both of them are better than Comparative Example 2. The present invention can effectively achieve the purpose of improving the mechanical properties of the polyimide film by adding a small amount of 5% to 5%. In Comparative Example 3, only the bismaleimide oligomer is added. Compared with the example 1 i 3, it can be found that adding a small amount of modified dioxane powder can effectively improve the mechanical properties of the polyimide film by scanning. Electron microscopy (s EM ) observation of the composite film made of the polyanilin composition of the examples of the present invention, the semi-interpenetrating cross-linked network i-structure can be fully clearly seen. Figure 6a shows the addition of the traditional unmodified Quality of cerium oxide nano-powder, the weight ratio accounts for 1% of the solid content of the whole composition The scanning electron microscope photograph of the quinone imine (4) is a composite material of the polyimine composition of the embodiment 3, which is characterized by a plurality of micron-sized particles and pits. The unmodified dioxonide powder exhibited a tendency to scatter randomly and condense into larger particles than the 19861 19 1332016. In Figure 6b, 'there are no obvious pits or grains: 篡It has been modified by cerium oxide nanopowder, and the modified double-maleimide yoke and poly-imine are semi-mutual Wear-through networking, resulting in a modified double-malay gi imine oligomer and modified: oxygen chopped nano-powder, two = on the poly-imine substrate 'so there will be no obvious cavities Or the phenomenon of particle agglomeration of the powder is produced. However, the above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the present invention, and anyone skilled in the art can modify the loading _ without departing from the scope of the present invention. Variations and therefore the scope of the invention should be as set forth in the scope of the patent. &quot; [Simple diagram of the diagram] 'The first diagram shows a schematic diagram of the semi-interpenetrating network structure of polyimine and modified bismaleimide; Figure 2 shows polyimine, The schematic diagram of the semi-interpenetrating cross-linking network structure of the modified maleic amine and the inorganic additive modified by the coupling agent is shown in Fig. 3. The chemical mechanism of the modified inorganic additive is shown in the figure. Figure 4 shows the FTIR spectrum of the coupling agent, the unmodified cerium oxide nanopowder, and the difference σ μ 丨 modified TiO2 powder with vinyl functional group; Figure 5 shows the coupling agent, The TGA spectrum of the unmodified cerium oxide nanopowder and the conjugated J-modified sulphur dioxide sulphide sulphate powder 19861 1332016 and the residual weight between them; the 6a figure is traditionally unchanged a scanning electron micrograph of a bismuth dioxide nanopowder powder having a weight ratio of a solid content of &lt;1% of the total composition; and a composition of the polyimine of the third embodiment of the present invention Electron micrograph of a composite film made of material. [ Description of main component symbols] a Polyimine submolecular substrate b Modified maleic imine oligomer c Coupled agent modified inorganic nanopowder A Unmodified niobium oxide nanopowder B Mixture C modified by a coupling agent of cerium oxide nanopowder 21 19861

Claims (1)

1332016 _ _ 第95149745號專利申請案 ” (99年8月24日) 、十、申請專利範圍: S K If Ί 1. 一種具有機反應官能基之無機奈米顆粒與聚醯亞胺 所形成之組成物,包括: (A) 聚醯亞胺; (B) 經巴比土酸改質之雙馬來醯亞胺;以及 (C) 偶合劑改質之無機奈米添加物,其中,該偶 合劑係選自具有乙烯基官能基之矽烷偶合劑、具有胺 φ 基^旎基之矽烷偶合劑、及油酸偶合劑所構成之組 群。 、 2. • 3.1332016 _ _ Patent Application No. 95194945 (August 24, 1999), X. Patent Application: SK If Ί 1. Composition of an inorganic nanoparticle with an organic functional group and polyimine And comprising: (A) polyimine; (B) a bismaleimide modified with barbituric acid; and (C) an inorganic nano-additive modified by a coupling agent, wherein the coupler It is selected from the group consisting of a decane coupling agent having a vinyl functional group, a decane coupling agent having an amine φ group, and an oleic acid coupling agent. 4· 5. 如申請專利範圍第1項之組成物,其中,該油酸偶合 劑係具有下式所示之結構 CH3-(CH2)„-CH= CH-(CH2)n-C00H 式中’ η為1至14之整數。 如申請專利範圍第i項之組成物,其中,該無機奈米 、V力物备、選自氧化咬、氧化錯、氧化錫、氧化錯、氧 ,硒、氧化銻、氧化鋁、氧化鋅、氧化碲、氧化硼、 氧化鎵、氧化銦、及氧化紐所構成之組群之奈米粉體。 如申請專利範圍第1項之組成物’其中,該無機奈米 添加物係二氧化矽奈米粉體。 如申請專利範圍第i項之組成物,其中,該成分(c) 係為經矽烷偶合劑改質而具有乙烯基官能基之二氧 化石夕奈米粉體。 如申請專利範圍第1項之組成物,其中,該成分(c) 係占組成物固含量總重之〇.5至15% 。 22 19861修正版 6· 1332016 ‘ ' , . 第95149745號專利申請案 ' (99年8月24日) .7.如申請專利範圍第1項之組成物,其中,該成分(B) 係占組成物固含量總重之1至1 0% 。 8. —種具有機反應官能基之無機奈米顆粒與聚醯亞胺 所形成之複材薄膜,包括聚醯亞胺、經巴比土酸改質 之雙馬來醯亞胺、以及具有乙烯基官能基之二氧化矽 奈米粉體,其中,該聚醯亞胺分子鏈交會成有機高分 子基材,具有乙烯基官能基之二氧化矽奈米粉體與巴 φ 比土酸改質之馬來醯亞胺寡聚物分子鏈結合後,再與 聚醯亞胺分子鏈形成半互穿式交聯網狀結構 (seini -1PN) 〇 9. 如申請專利範圍第8項之複材薄膜,其中,該經矽烷 偶合劑改質而具有乙烯基官能基之二氧化石夕奈米粉 體係均勻分佈於該聚醯亞胺基材。 -10. —種雙層軟性銅箱基板,包括銅箱基材以及形成於該 鋼猪基材表面如申請專利範圍8項之複材薄膜。 鲁11.種製造聚酿亞胺複材薄膜之方法,包括下列步驟: (a) 使用矽烷偶合劑改質無機奈米粉體,將有機 • 官能基導入該無機奈米粉體表面,得到具有乙烯基官 能基之二氧化矽奈米粉體; (b) 將步驟(a)所製得之具有乙烯基官能基之二 氧化矽奈米粉體加入含有經巴比土酸改質之雙馬來 醯亞胺之聚醯胺酸組成物溶液;以及 (c) 加熱乾燥步驟(b)所製得之聚醯胺酸組成物 洛液,使聚醯胺酸高溫環化為聚醯亞胺。 19861修正版 23 1332016 第95149745號專利申請案 (99年8月24曰) 12.如申請專利範圍第U項之方法,其中,該改質無機 奈米粉體係以固含量總重之0.5至15%白勺㈣加至該 含有經巴比土酸改質之雙馬來醯亞胺之聚醯胺酸組 成物溶液。 13·種製造雙層軟性銅箔基板之方法,包括下列步驟: (a) 使用矽烷偶合劑改質無機奈米粉體,將有機 宫能基導入該無機奈米粉體,得到具有乙烯基官能基 之二氧化矽奈米粉體; (b) 將步驟(a)所製得之具有乙烯基官能基之二 氧化硬奈米粉體加入包含經巴比土酸改質之雙馬來 醯亞胺之聚醯胺酸組成物溶液;以及 (c) 將步驟(b)所製得之聚醯胺酸組成物溶液塗 佈於銅猪基材,加熱進行乾燥,使聚醯胺酸高溫環化 為聚醯亞胺。 U.如申請專利範圍第13項之方法,其中,該改質無機 奈米粉體係以固含量總重之0. 5至15%的量添加至該 含有經巴比土酸改質之雙馬來醯亞胺之聚醯胺酸組 成物溶液。 24 19861修正版4. The composition of claim 1, wherein the oleic acid coupling agent has the structure CH3-(CH2) „-CH= CH-(CH2)n-C00H in the formula: η is an integer from 1 to 14. The composition of claim i, wherein the inorganic nano, V-material is selected from the group consisting of oxidative biting, oxidizing, tin oxide, oxidizing, oxygen, selenium, oxidation a nano-powder composed of ruthenium, aluminum oxide, zinc oxide, ruthenium oxide, boron oxide, gallium oxide, indium oxide, and oxidized ruthenium. The composition of the first aspect of the patent application 'where the inorganic nano The additive is a cerium oxide nano powder. The composition of claim i, wherein the component (c) is a cerium oxide powder having a vinyl functional group modified by a decane coupling agent. For example, the composition of claim 1 of the patent scope, wherein the component (c) accounts for 55 to 15% of the total solid content of the composition. 22 19861 Revision 6· 1332016 ' ' , Patent No. 95194945 Application ' (August 24, 1999) .7. If the composition of the scope of claim 1 is included, The component (B) accounts for 1 to 10% of the total weight of the solid content of the composition. 8. A composite film of inorganic nanoparticle and polyimine with an organic functional group, including polyimine a bismaleimide modified with barbituric acid and a ceria nanopowder having a vinyl functional group, wherein the polyamidene molecular chain is intercalated into an organic polymer substrate having a vinyl group The functional group of cerium oxide nano-powder is combined with the glutamic acid-modified maleic imine oligomer molecular chain, and then forms a semi-interpenetrating network structure with the polyimine molecular chain (seini -1PN) 〇9. A composite film according to claim 8 wherein the cerium oxide system having a vinyl functional group modified by a decane coupling agent is uniformly distributed on the polyamidomino group -10. A double-layer flexible copper box substrate comprising a copper box substrate and a composite film formed on the surface of the steel pig substrate as claimed in the patent scope 8. Lu 11. Production of poly-imine composite material The method of film comprises the following steps: (a) upgrading the inorganic naphthalene with a decane coupling agent a rice flour body, an organic functional group is introduced onto the surface of the inorganic nano-powder to obtain a cerium oxide nanopowder having a vinyl functional group; (b) a oxidizing resin having a vinyl functional group prepared in the step (a) a nanometer powder containing a solution of a polyamic acid composition containing bismaleimide modified with barbituric acid; and (c) a polylysine composition prepared by heating and drying step (b) Liquid, a high-temperature cyclization of poly-proline to polyimine. 19861 Rev. 23 1332016 Patent Application No. 95,945,745 (August 24, 1999) 12. The method of claim U, wherein The modified inorganic nano-powder system is added to the solution of the poly-proline composition containing bismaleimide modified by barbituric acid at a total solid weight of 0.5 to 15%. 13. A method for producing a double-layered flexible copper foil substrate, comprising the steps of: (a) modifying a inorganic nanopowder with a decane coupling agent, and introducing an organic holenyl group into the inorganic nanopowder to obtain a vinyl functional group.二 二 矽 ; ; ; ; ; ; ; ; ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( a solution of the amino acid composition; and (c) applying a solution of the polyamic acid composition prepared in the step (b) to a copper pig substrate, heating and drying to cyclize the polyglycol to a polypyrene amine. U. The method of claim 13, wherein the modified inorganic nano-powder system is added to the double-horse containing barbituric acid modified by a total solid content of 0.5 to 15%. A solution of a polyaminic acid composition of quinone. 24 19861 revision
TW95149745A 2006-12-29 2006-12-29 Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate TWI332016B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149745A TWI332016B (en) 2006-12-29 2006-12-29 Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149745A TWI332016B (en) 2006-12-29 2006-12-29 Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate

Publications (2)

Publication Number Publication Date
TW200827386A TW200827386A (en) 2008-07-01
TWI332016B true TWI332016B (en) 2010-10-21

Family

ID=44817224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149745A TWI332016B (en) 2006-12-29 2006-12-29 Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate

Country Status (1)

Country Link
TW (1) TWI332016B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706995B (en) * 2017-12-05 2020-10-11 財團法人工業技術研究院 Resin composition
WO2020199086A1 (en) * 2019-04-01 2020-10-08 律胜科技股份有限公司 Flexible display cover substrate

Also Published As

Publication number Publication date
TW200827386A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
JP4237694B2 (en) (Fine powder) Polyimide-based compositions partially derived from fluoropolymers and useful as electronic substrates, and related methods and compositions
TWI267442B (en) Flexible copper-polyimide laminate and manufacturing method thereof
JPWO2007015545A1 (en) Metal-coated polyimide film
TW202041572A (en) Polyamic acid resin, polyimide resin and resin composition containing thereof
TWI765392B (en) Polyimide film, method of producing the same, and multilayer film, flexible metal foil laminate and electronic component containing the same
TW201113327A (en) Polyamic acid resin composition and polyimide film prepared therefrom
JPH0362988A (en) Flexible printed circuit board and its manufacturing method
JP2014532087A (en) Polymer resin composition, polyimide resin film, method for producing polyimide resin film, metal laminate and circuit board
CN101280107B (en) Polyimide resin, flexible copper clad laminate made therefrom and preparation of the flexible copper clad laminate
TW201206696A (en) Flexible metal-clad laminate
CN110218321B (en) Polyamide acid and preparation method thereof, polyimide heat-conducting film and preparation method thereof
CN109337072B (en) Low DK and DF polymer composition, copper-clad plate and circuit board
TW202118816A (en) Polyimide film, method of producing the same, and multilayer film, flexible metal foil laminate and electronic component containing the same
Wang et al. Phosphinated poly (imide-siloxane) hybrid films with enhanced adhesion strength and reduced dielectric constant
TWI332016B (en) Composites comprising nano-inorganic particles with the organically functional group applied in the manufactures of polyomide film and two-layered flexible copper clad substrate
JPWO2005084088A1 (en) Wiring board laminate
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP7230148B2 (en) Metal-clad laminates and circuit boards
JP4606191B2 (en) Manufacturing method of laminate
WO2023013224A1 (en) Polyimide resin, resin composition comprising polyimide resin and cured product thereof
TW202225269A (en) Resin composition,adhesive film, laminate, coverlay film, copper foil with resin, metal-crad laminate and circuit board
JP2010533362A (en) Circuit board
KR102445910B1 (en) Polyimide film with high dimensional stability and manufacturing method thereof
JP2006062135A (en) Laminate and its manufacturing method
WO2023112849A1 (en) Isocyanate-modified polyimide resin, and resin composition containing said isocyanate-modified polyimide resin and cured product of same