TWI330466B - All-digital phase-locked loop circuit and control method thereof - Google Patents

All-digital phase-locked loop circuit and control method thereof Download PDF

Info

Publication number
TWI330466B
TWI330466B TW95143973A TW95143973A TWI330466B TW I330466 B TWI330466 B TW I330466B TW 95143973 A TW95143973 A TW 95143973A TW 95143973 A TW95143973 A TW 95143973A TW I330466 B TWI330466 B TW I330466B
Authority
TW
Taiwan
Prior art keywords
signal
clock
feedback
phase
control
Prior art date
Application number
TW95143973A
Other languages
Chinese (zh)
Other versions
TW200824284A (en
Inventor
Chua Chih Wang
Sheng Lun Tseng
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW95143973A priority Critical patent/TWI330466B/en
Publication of TW200824284A publication Critical patent/TW200824284A/en
Application granted granted Critical
Publication of TWI330466B publication Critical patent/TWI330466B/en

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

九、發明說明: 【發明所屬之技術頜诚】 本案係關於一種鎖相迴路電路及方法’尤其是關於一種 全數位元件之鎖相迴路電路及方法。 【先前技術】 有關習知之鎖相迴路方法’目前大致有下列分類: 1 ·類比鎖相迴路:由相位偵測器、充電幫浦、迴路濾 波器、電壓控制震盡器與除頻電路所組成,以人工佈局方 式來實現,而其中迴路濾波器為一使用RC元件的電路, 須消耗額外佈局面積,且易受製程飄移與雜訊影響’參考 先前技術文獻[1](C.-C· Chung,and C.-Y Lee,"An all-digital phase_1〇cked loop for high-speed clock generation, " /£££ j Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2〇〇3 )及[2](T. Olsson,and P. Nilsson,"A digitally c〇ntr〇jje(j pll for SoC applications, ''IEEE J. Solid-State 以,vol. 39, no. 5, pp. 751-760, May 2004·)。 2·數位鎖相迴路:由相位頻率偵測器、控制單元、數 位控制震盪器及除頻電路所組成’以人工佈局方式來實 現’不易修改設計規格且修改設計時間冗長,參考先前技 術文獻[3] (J.-S. Chiang, and K.-Y Chen,"The design of an all-digital phase-locked loop with small DCO hardware and fast ίοςίς^ » IEEE Trans. Circuits and Systems //, vol. 46,7,pp. 945-950,July 1999.)及[4](J. Dunning,G. Garcia5 j. Lundberg, and Ed Nuckolls, "An all-digital 113769.doc 1330466 phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors, " IEEE J. Solid-State . C/rctz沿,v〇l. 30, no. 4, PP. 412-422, Apr. 2004.)。 3.全數位鎖相迴路:與數位鎖相迴路之架構雷同,最 大差異在於其實現方式為使用標準元件庫搭配合成軟體、 自動佈局及繞線軟體,參考先前技術文獻[丨]、[2]及 [5](T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, "Design and ^ analysis of a portable high-speed clock generator, - IEEE Trans. Circuits Systems II, vol. 48, no. 4, pp. 367-375, Apr. 2001_)。使用;準元件庫设計,雖可避免人工佈局之變異 因素,但使用標準元件庫之設計流程,所有訊號皆為全擺 幅,雖能確保每顆電晶體都能正常動作,卻也因此付出了 過多的功率消耗。 因此,有必要提供一種創新且具進步性的全數位元件之 鎖相迴路電路及方法’以解決上述問題。 φ 【發明内容】 本發明之一目的在於提供一種全數位元件之鎖相迴路電 路,係依據一除頻倍率及一參考時脈,產生一對應頻率之 輸出時脈訊號,該電路包含:一相位頻率偵測器、一控制 电路、一輸出數位控制震盪器、一回授數位控制震盪器及 一除頻電路。該相位頻率偵測器依據輸入之該參考時脈及 一回授時脈之誤差,產生一領先或落後訊號。該控制電路 依據該領先或落後訊號,產生相對應之至少一控制訊號。 忒輸出數位控制震盪器依據該控制電路之控制訊號,產生 H3769.doc 1330466 該對應頻率之輪出時脈訊號。該回授數位控制震盪器依據 該控制電路之控制訊號,產生對應頻率之一回授時脈訊 號。該除頻電路依據該除頻倍率’將該回授時脈訊號進行 除頻後’計算得該回授時脈,以回授至該相位頻率偵測 器。Nine, invention description: [Technology of the invention belongs to the jaw] This case relates to a phase-locked loop circuit and method', especially to a phase-locked loop circuit and method for a full-digital component. [Prior Art] The conventional phase-locked loop method 'has roughly the following classifications: 1 · Analog phase-locked loop: consists of a phase detector, a charging pump, a loop filter, a voltage control, and a frequency-dividing circuit. It is realized by manual layout, and the loop filter is a circuit using RC components, which consumes additional layout area and is susceptible to process drift and noise influence. Refer to the previous technical literature [1] (C.-C· Chung, and C.-Y Lee, "An all-digital phase_1〇cked loop for high-speed clock generation, " /£££ j Solid-State Circuits, vol. 38, no. 2, pp. 347- 351, Feb. 2〇〇3) and [2](T. Olsson, and P. Nilsson, "A digitally c〇ntr〇jje(j pll for SoC applications, ''IEEE J. Solid-State to, vol 39, no. 5, pp. 751-760, May 2004·). 2. Digital phase-locked loop: consisting of phase frequency detector, control unit, digitally controlled oscillator and frequency-dividing circuit. To achieve 'not easy to modify the design specifications and modify the design time is too long, refer to the previous technical literature [3] (J.-S. Chi Ang, and K.-Y Chen,"The design of an all-digital phase-locked loop with small DCO hardware and fast ίοςίς^ » IEEE Trans. Circuits and Systems //, vol. 46,7,pp. 945- 950, July 1999.) and [4] (J. Dunning, G. Garcia 5 j. Lundberg, and Ed Nuckolls, "An all-digital 113769.doc 1330466 phase-locked loop with 50-cycle lock time suitable for high- Performance microprocessors, " IEEE J. Solid-State . C/rctz, v〇l. 30, no. 4, PP. 412-422, Apr. 2004.). 3. Full digital phase-locked loop: Similar to the structure of digital phase-locked loop, the biggest difference is that the implementation method is to use standard component library with synthetic software, automatic layout and winding software. Refer to the previous technical literature [丨], [2] And [5] (T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, "Design and ^ analysis of a portable high-speed clock generator, - IEEE Trans. Circuits Systems II, Vol. 48, no. 4, pp. 367-375, Apr. 2001_). Use; quasi-component library design, although avoiding the variation of artificial layout, but using the standard component library design process, all signals are full swing, although it can ensure that each transistor can operate normally, but also pay Excessive power consumption. Therefore, it is necessary to provide an innovative and progressive phase-locked loop circuit and method for all-digital components to solve the above problems. φ [ SUMMARY OF THE INVENTION One object of the present invention is to provide a phase-locked loop circuit for a full-digital component, which generates an output clock signal corresponding to a frequency according to a frequency division ratio and a reference clock. The circuit includes: a phase The frequency detector, a control circuit, an output digital control oscillator, a feedback digital control oscillator and a frequency dividing circuit. The phase frequency detector generates a leading or trailing signal according to the error of the input reference clock and the feedback clock. The control circuit generates at least one corresponding control signal according to the leading or trailing signal.忒 Output digital control oscillator according to the control signal of the control circuit, generating H3769.doc 1330466 the corresponding frequency of the round-trip clock signal. The feedback digital control oscillator generates a feedback clock signal corresponding to one of the corresponding frequencies according to the control signal of the control circuit. The frequency dividing circuit divides the feedback clock signal according to the frequency dividing ratio ', and calculates the feedback clock to be fed back to the phase frequency detector.

其个,該控制電路具有—時脈控制器,用以於每兩個參 料脈週期為—處理,其中於第—個參考時脈正緣觸 發時’致能該回授數位控制震£器使該回授時脈與該參考 h脈作JL緣對齊’於第二個參考時脈正緣觸發時,該相位 頻率偵測器偵測該參考時脈與該回授時脈之誤差;於第二 個參考時脈貞緣觸發時,依據該相位頻率㈣器之該領先 或落後訊號,將該控制訊號送至該回授數位控制震盪器, 並同時禁能該回授數位控制震盪器。 因此’本發明之全數位元件之鎖相迴路電路於每個處理In one case, the control circuit has a clock controller for processing each of the two reference pulse periods, wherein when the first reference clock positive edge is triggered, the enable feedback control device is enabled. Aligning the feedback clock with the reference h pulse as the JL edge. When the second reference clock is triggered, the phase frequency detector detects the error between the reference clock and the feedback clock; When the reference clock edge triggers, according to the leading or trailing signal of the phase frequency (four), the control signal is sent to the feedback digital control oscillator, and the feedback digital control oscillator is disabled at the same time. Therefore, the phase-locked loop circuit of the full digital component of the present invention is processed at each

週期内’將禁能該回授數位控制震盪器半個參考時脈週 期’減少該回授數位控制震盪器之工作時間,以降低功率 消耗,並使本發明之全數位元件之鎖相迴路電路以使用較 低的功率消耗,達到輪出相同的效果,而且無須額外加任 何類比元件與電路。 本發明之另—目的在於提供一種全數位元件之鎖相迴路 控制方法,應用於如請求項i之全數位元件之鎖相迴路控 制電路’該鎖相迴路控制方法係以每兩個參考時脈週期: -處理週期’纟包含下列步騍:⑷於第—個參考時脈正緣 觸發時,致能該㈣數位控制震盈器使該回授時脈與該參 \ 13769.doc 」川466 考呀脈作正緣對齊’·⑻於第二個參考時脈正緣觸發時,該 頻率偵測盗偵測該參考時脈與該回授時脈之誤差·及 〇第—個參考時脈負緣觸發時,依據該相位頻率偵測器之 該項先或洛後訊號,將該控制訊號送至該回授數位控制震 盪。°並同時禁能該回授數位控制震盪器。 【實施方式】 >考圖1,其顯示本發明全數位元件之鎖相迴路電路之 电路方塊圖。本發明全數位元件之鎖相迴路電路1〇係依據 一除頻倍率(MOD)及一參考時脈(CLK_REF),產生一對應 頻率之輸出時脈訊號。本發明全數位元件之鎖相迴路電路 〇 匕 έ ‘ 相位頻率偵測器 11 (phase frequency detector, ) 控制電路 12 (power-saving controller, _ TRL) 回授數位控制震盈器13 (feedback digital-controlled oscillator , FB_DC〇) 、 一 輸出數 位控制 震盪器 14 (output digital-controlled oscillator’ OUT—DCO)及一 除頻電路15 (frequency divider,DIV)。該相位頻率偵測器 η依據輸入之該參考時脈(CLK_REF)及一回授時脈 (CLK—FB)之誤差’產生一領先訊號(up)或落後訊號 (DO WN)。該誤差可為相位或頻率之誤差。 參考圖2,其顯示本發明相位頻率偵測器丨丨之電路方塊 圖。該相位頻率偵測器U包含:一第—輸入級非同步重置 D型正反器111、一第二輸入級非同步重置〇型正反器 Π2、二數位脈衝放大器113、114、—第一輪出級非同步 重置D型正反器115及一第二輸出級非同步重置D型正反器 H3769.doc 116。1330466 該第一輸入級非同步重置D型正反器1U及該第二輸入級 非同步重置D型正反器112分別具有—時脈輸入埠、一資料 埠(D)、一重置埠(CLR)及一輸出埠(Q)。該參考時脈 (CLK—REF)與該回授時脈(CLK_FB)分別為該第一輸入級非 同步重置D型正反器ill及該第二輪入級非同步重置D型正 反器112之該時脈輸入埠。該等資料埠(D)連接至一高電位 (1)。該等重置埠(CLR)為該第一輸入級非同步重置〇型正 反器111及該第二輸入級非同步重置D型正反器η]之輸出 埠訊號與一外部重置訊號(RESET一B)做邏輯運算回授之訊 號,該尊輸出埠(Q)分別為該第一輸入級非同步重置D型正 反态111及該第二輸入級非同步重置D型正反器112之qDuring the period, 'will disable the feedback digital control oscillator half reference clock period' reduce the working time of the feedback digital control oscillator to reduce power consumption and make the phase-locked loop circuit of the full digital component of the present invention In order to use the lower power consumption, the same effect can be achieved, and no additional analog components and circuits are required. Another object of the present invention is to provide a phase-locked loop control method for a full-digital component, which is applied to a phase-locked loop control circuit of a full-digital component such as claim i. The phase-locked loop control method is used for every two reference clocks. Period: - Processing period '纟 contains the following steps: (4) When the first reference clock is triggered by the positive edge, enable the (four) digit control shaker to make the feedback clock and the reference \ 13769.doc The pulse is positively aligned. (8) When the second reference clock is triggered by the positive edge, the frequency detection detects the error between the reference clock and the feedback clock, and the first reference clock negative edge. When triggered, according to the first or last signal of the phase frequency detector, the control signal is sent to the feedback digital control to oscillate. ° and disable the feedback digital oscillator at the same time. [Embodiment] > FIG. 1 is a circuit block diagram showing a phase-locked loop circuit of a full-digital component of the present invention. The phase-locked loop circuit 1 of the full digital component of the present invention generates an output clock signal corresponding to a frequency according to a frequency division ratio (MOD) and a reference clock (CLK_REF). The phase-locked loop circuit of the all-digital component of the present invention 〇匕έ 'phase-frequency detector, control circuit 12 (power-balance controller, _TRL), the digital-controlled shake-in device 13 (feedback digital- The controlled oscillator (FB_DC〇), an output digital-controlled oscillator's OUT-DCO, and a frequency divider (DIV). The phase frequency detector η generates a leading signal (up) or a backward signal (DO WN) according to the error of the input reference clock (CLK_REF) and a feedback clock (CLK-FB). This error can be an error in phase or frequency. Referring to Figure 2, there is shown a block diagram of a phase frequency detector of the present invention. The phase frequency detector U includes: a first-input stage asynchronous reset D-type flip-flop 111, a second input-stage asynchronous reset type flip-flop Π2, two-digit pulse amplifiers 113, 114, The first round of the asynchronous reset D-type flip-flop 115 and the second output stage asynchronous reset D-type flip-flop H3769.doc 116. 1330466 The first input stage asynchronous reset D-type flip-flop The 1U and the second input stage asynchronous reset D-type flip-flops 112 respectively have a clock input port, a data port (D), a reset port (CLR), and an output port (Q). The reference clock (CLK_REF) and the feedback clock (CLK_FB) are respectively the first input stage asynchronous reset D-type flip-flop ill and the second round-level asynchronous reset D-type flip-flop The clock input of 112 is 埠. This data 埠(D) is connected to a high potential (1). The reset port (CLR) is an output signal and an external reset of the first input stage asynchronous reset type flip-flop 111 and the second input stage asynchronous reset D type flip-flop η] The signal (RESET-B) is a logic operation feedback signal, and the output 埠(Q) is the first input stage asynchronous reset D-type positive and negative state 111 and the second input stage asynchronous reset type D Positive and negative device 112

二數位脈衝放大器包括一第一數位脈衝放大器113及一 第二數位脈衝放大器114。由於第一輸入級非同步重置D型 正反器111及該第二輸入級非同步重置D型正反器Η】之輪 二數位脈衝 出會因兩時脈相位差距產生時間極短之脈衝, 放大器113、114用以將該第一輸入級非同步重置d型正反 器ill及該第二輸入級非同步重置〇型正反器112之該等輸 出埠之訊號延遲放大。 該第一輸出級非同步重置D型正反器115及該第二輸入級 非同步重置D型正反器116分別具有一時脈輸入埠、一資料 痒⑴)、一童置埠(CLR)及一輪出埠(Q卜該參考時脈 (CLK—REF)與該回授時脈(Clk_FB)分別為該第—輪出級非 113769.doc • 10- 1330466 同v重置D型正反gg 115及該第二輸出級非同步重置D型正 反器116之該時脈輸入埠。該等資料埠(D)連接至一高電位 • ⑴該#重置埠(CLR)分別連接至二數位脈衝放大器 U3、U4之輸出。該等輸出埠(Q)分別為該第一輸出級非 同步重置D型正反器115及該第二輸出級非同步重置D型正 反器116之Q埠,且分別為該領先訊號(up)及該落後訊號 (DOWN)。 • 參考圖3,其顯示本發明數位脈衝放大器之電路示意 圖。以數位脈衝放大器113為例說明,其將極短脈衝之輸 入訊號(ουτυ)加以延遲並延長其脈衝長度後輸出(Bu), 使該數位脈衝放大器】丨3之輸出訊號(BU)得以被第一輸出 級非同步重置D型正反器115辨別。 再參考圖1,該控制電路12依據該領先或落後訊號 (UP’DOWN),產生相對應之至少一控制訊號。該等控制訊 號包含·一粗調控制訊號(c〇arse)、一細調控制訊號(Fine) 鲁 及一啟動訊號(R-FB)。該回授數位控制震盪器13依據該控 制電路12之該等控制訊號,產生對應頻率之一回授時脈訊 號(DCO_OUT)。 參考圖4’其顯示本發明回授數位控制震盪器之電路示 意圖。該回授數位控制震盪器13包含:一粗調電路131、 一細調電路132及一反及閘133。該反及閘133之輸入為該 啟動訊號(R一FB)與該回授時脈訊號(DC〇一〇υτ),藉由該啟 動訊號由低電位變為高電位之動作,使該反及閘丨33之輸 出產生一起始訊號。 ll3769.doc -11 - 1330466 該粗調電路13 1用以接收該起始訊號,並輸出一粗調輸 出訊號(COARSE_OUT),該粗調電路131具有複數個串接The two-bit pulse amplifier includes a first digital pulse amplifier 113 and a second digital pulse amplifier 114. Since the first input stage asynchronously resets the D-type flip-flop 111 and the second input stage asynchronously resets the D-type flip-flop Η], the round two-digit pulse is generated due to the two-time phase difference. The pulses, the amplifiers 113, 114 are used to delay the amplification of the signals of the first input stage asynchronous reset d-type flip-flop ill and the second input stage asynchronous reset-type flip-flop 112. The first output stage asynchronous reset D-type flip-flop 115 and the second input stage asynchronous reset D-type flip-flop 116 respectively have a clock input 埠, a data itch (1), and a child 埠 (CLR) ) and one round of exit (Q - the reference clock (CLK - REF) and the feedback clock (Clk_FB) are respectively the first round of the non-113769.doc • 10- 1330466 with v reset D-type positive and negative gg 115 and the second output stage asynchronously reset the clock input port of the D-type flip-flop 116. The data 埠(D) is connected to a high potential. (1) The #reset port (CLR) is connected to the second The output of the digital pulse amplifiers U3, U4. The output outputs Q(Q) are respectively the first output stage asynchronous reset D-type flip-flop 115 and the second output stage asynchronous reset D-type flip-flop 116 Q埠, and the leading signal (up) and the backward signal (DOWN) respectively. • Referring to Figure 3, there is shown a circuit diagram of the digital pulse amplifier of the present invention. The digital pulse amplifier 113 is taken as an example to illustrate that it will be extremely short pulsed. The input signal (ουτυ) is delayed and extended by the pulse length to output (Bu), so that the digital pulse amplifier] The output signal (BU) of 3 can be discriminated by the first output stage asynchronous reset D-type flip-flop 115. Referring again to Figure 1, the control circuit 12 generates a corresponding signal according to the leading or trailing signal (UP'DOWN). At least one control signal, the control signal includes a coarse control signal (c〇arse), a fine control signal (Fine) and an activation signal (R-FB). The feedback digital control oscillator 13 is based on The control signals of the control circuit 12 generate a feedback signal (DCO_OUT) corresponding to one of the corresponding frequencies. Referring to Figure 4', there is shown a circuit diagram of the feedback control oscillator of the present invention. The feedback digital control oscillator 13 includes a coarse adjustment circuit 131, a fine adjustment circuit 132 and a reverse gate 133. The input of the reverse gate 133 is the start signal (R-FB) and the feedback clock signal (DC〇一〇υτ), The action of the start signal from the low level to the high level causes the output of the back gate 33 to generate a start signal. ll3769.doc -11 - 1330466 The coarse adjustment circuit 13 1 is configured to receive the start signal, and Output a coarse adjustment output signal (COARSE_OUT), the coarse adjustment Road 131 has a plurality of series

之粗調單元134、135、136、137及一第一多對一多工器 138。每一粗調單元輸出對應之粗調多工訊號,該第一多 對一多工器138用以接收來自該等粗調單元之該等粗調多 工訊號’並依據該粗調控制訊號(Coarse),輸出該粗調輸 出訊號(C0ARSE_0UT)。在本實施例中,該第一多對一多 工器138係為一第一多對一單熱編碼多工器。 該細調電路132用以接收該粗調輸出訊號 (C0ARSE—0UT)及該細調控制訊號(Fine),輸出該回授時 脈sfl號(DCO_OUT)並回授至該反及閘133。該回授數位控 制震盪器1 3藉由輸入之粗調或微調控制訊號(c〇arse、The coarse adjustment units 134, 135, 136, 137 and a first many-to-one multiplexer 138. Each coarse adjustment unit outputs a corresponding coarse adjustment multiplex signal, and the first multi-to-one multiplexer 138 is configured to receive the coarse adjustment multiplex signals from the coarse adjustment units and control the signals according to the coarse adjustment ( Coarse), output the coarse output signal (C0ARSE_0UT). In this embodiment, the first many-to-one multiplexer 138 is a first many-to-one single-coded multiplexer. The fine adjustment circuit 132 is configured to receive the coarse output signal (C0ARSE_OUT) and the fine control signal (Fine), output the feedback clock sfl number (DCO_OUT), and feed back to the inverse gate 133. The feedback digital control oscillator 13 controls the signal by coarse or fine adjustment of the input (c〇arse,

Fine),以選擇不同之延遲路徑’產生出不同頻率之該回 授時脈訊號(DC0_0UT)。Fine), to select different delay paths' to generate the feedback clock signal (DC0_0UT) of different frequencies.

參考圖5’其顯示本發明粗調單元之電路示意圖。以第 粗調單元134為例說明,該第一粗調單元134包含:複數 個串接緩衝閘501、502、503及一第二多對一多工器5〇5。 該等緩衝閘501、502、503用以接收一單元輸入訊號 (CELL—IN),每一緩衝閘輸出一路徑輸出訊號,最後一個 緩衝閘503之輸出為單元輸出訊號(CELL—〇υτ)。第二多對 一多工器505用以接收該單元輸入訊號及該等路徑輸出訊 號,並依據該粗調控制訊號(c〇arse),輪出該粗調多工訊 號(CELL 一 MX_0UT)。在本實施例中,該第二多對一多工 器505係為―第二多對—單熱編碼多工器。利用該粗調單 113769.doc -12· 1330466 元’單元輸入訊號(CELL_IN)可藉由粗調控制訊號(Coarse) 選擇不同路徑由該第二多對一單熱編碼多工器505輸出該 粗調多工訊號(CELL_MX_OUT),亦可直接經過複數個串 接緩衝閘501 、502、503輸出該單元輸出訊號 (CELL 0UT)。 參考圖6,其顯示本發明細調單元之電路示意圖。該細 調單元13 2包含複數級串接細調架構,每一細調架構包 含:四個緩衝閘及一個四對一多工器,用以接收該粗調輸 出訊號(COARSE一OUT)及該細調控制訊號(Fine),輸出該 回授時脈訊號(DCO_OUT)。四個緩衝閘具有不同規格。細 調單元係根據輸入之細調控制訊號(Fine)選擇輸入之粗調 輸出§fl號(COARSE一OUT)之通過路徑,並輸出該回授時脈 訊號(DCO_OUT)。 再參考圖1 ’該輸出數位控制震盪器14依據該控制電路 12 之控制訊號(Avg_coarse、Avg_fine 及 R_〇UT),產生該 對應頻率之輸出時脈訊號(CLK_OUT)。該輸出數位控制震 盈器14之電路與該回授數位控制震盈器I]之電路類似,在 此不加贅述。該除頻電路15依據該除頻倍率(河〇1)),將該 回授時脈訊號(DCO_OUT)進行除頻後,計算得該回授時 脈(CLK一FB),以回授至該相位頻率偵測器丨i。 參考圖7,其顯示本發明控制電路所採用之二元搜尋演 算法示意圖。每當該相位頻率偵測器丨丨輸出發生極性改 k,搜哥步級即減半,搜尋方向亦反相,直到最小步級為 止。前述之搜尋步級為控制電路12中增減目前控制訊號 113769.doc •13· 1330466 (Coarse,Fine)之單位。 之=圖I:顯示本發明控制電路之降低功率控制方法 2有皮么-圖。請配合參相丨,本發明之該控 Π 控制器121’用以於每兩個參考時脈週期為一 處理週期,其令於第一個參考 一 Α), At ^ 可予脈正緣觸發時(時間點 致此該回授數位控制震盪器13使該 (CLK肩與該參考時脈(CL :又時脈 參考時脈正緣觸發時刚點 ,0|, ^ A J这相位頻率偵測器11偵 ά考時脈(CLK—REF)與該回授時脈(CLK—fb)之誤差 ==考時脈負緣觸發時(時間點C),依據該相位頻 授數二之該:先或落後訊號,將該控制訊號送至該回 二桩:制震盪""13 ’並同時禁能該回授數位控制震盪器 二矣者等待下—個處理週期。如此週而復始,可藉由前 ,成功減少該回授數位控制震盪器U之功率消耗, 同時亦不影響整體電路正常工作。 年祕 本土明之全數位元件之鎖相迴路電路10於每個處 理週期内’將禁能該回授數位控制震盪器13半個參考時脈 力^ ,減乂 4回授數位控制震盪器13之工作時間,以降低 功率消耗,並使本發明之全數位元件之鎖相迴路電路10以 吏用車乂低的功率消耗’達到輸出相同的效果,而且無須額 外加任何類比元件與電路。 參考圖9,#貼—丄 操作方法^1: 制電路所採用之降低功率之 ^ 該刼作方法分為四個階段:初始階段、粗調階 、'田調階段與鎖定階段。於電路重置之後即為初始階 I I3769.doc 1330466 段。當相位頻率偵測器11偵測到參考時脈(CLK_REF)與回 授時脈(CLK—FB)之相位頻率誤差時(up d〇wn = οι 0Γ 1 〇),即進入粗調階段,否則即維持初始階段;當相位頻 率债測器11偵測到參考時脈(CLk_REF)與回授時脈 (CLK一FB)相位頻率相同時(UP,d〇wn= 11),即進入鎖定 階段。 電路於粗調階段時,控制電路12僅更動控制前述粗調電 • 路131之粗調控制訊號(coarse),粗略調整回授數位控制 震盈益13之輸出時脈(DCO_〇UT)。當粗調之搜尋步級為 一並且參考時脈(CLK—REF)與回授時脈(CLK_FB)仍有相位 頻率差距時(UP,DOWN = 01 or 1 〇),即進入細調階段,否 貝J即維持粗調階段’當相位頻率偵測器11彳貞測到參考時脈 (CLK一REF)與回授時脈(CLK_FB)相位頻率相同時 (UP,D〇WN = 11),即進入鎖定階段。 電路於細調階段時’控制電路12僅更動控制前述細調電 鲁 路132之細調控制訊號(Fine),微幅調整回授數位控制 震盪器13之輸出時脈 (DCO_〇U1〇。當參+ # ^ (CLK—REF)與回授時脈(CLk_FB)仍有相位頻率差距時 (UP,DOWN= 01 or 1〇),繼續維持細調階段;當相位頻率 偵’則器11彳貞測到參考時脈(CLK—REF)與回授時脈(CLIC FB) 相位頻率相同時(UP,DOWN=ll),即進入鎖定階段。 電路於鎖定階段時,控制電路12即致能輸出控制震盈器 14 ’並且將過去64個參考時脈週期之控制訊號平均值 (Avg_coarse,Avg_fine)送至輸出控制震盪器14,同時將 113769.doc •15· 1330466 鎖疋訊號(LOCK) s為高電位,可微調輸出數位控制震 盈器Η輪出時脈頻_ (CLK—〇υτ),達到減少輸出時脈訊 號抖動之目的。當參考時脈(CLK_REF)與回授時脈 (<31^-1^)仍有相位頻率差距時(1;?,0〇冒>1=01〇1<10),即 回到細調階段;當相位頻率偵測器i丨偵測到參考時脈 (CLK_REF)與回授時脈(CLK_FB)相位頻率相同時 (UP’DOWN^ 11) ’即保持在鎖定階段。 惟上述實施例僅為說明本發明之原理及其功效,而非限 制本發明。因此’習於此技術之人士對上述實施例進行修 改及變化仍不脫本發明之精神。本發明之權利範圍應如後 述之申請專利範圍所列。 【圖式簡單說明】 圖1顯示本發明全數位元件之鎖相迴路電路之電路方塊 圖; 圖2顯示本發明相位頻率偵測器之電路方塊圖; 圖3顯示本發明數位脈衝放大器之電路示意圖; 圖4顯示本發明回授數位控制震盪器之電路示意圖; 圖5顯示本發明粗調單元之電路示意圖; 圖6顯示本發明細調單元之電路示意圖; 圖7顯示本發明控制電路之二元搜尋演算法示意圖; 圖8顯示本發明控制電路之降低功率控制方法之波型示 意圖;及 圖9顯示本發明控制電路之降低功率之操作方法。 【主要元件符號說明】Referring to Figure 5', there is shown a circuit diagram of the coarse tuning unit of the present invention. Taking the coarse adjustment unit 134 as an example, the first coarse adjustment unit 134 includes: a plurality of serial connection buffer gates 501, 502, 503 and a second many-to-one multiplexer 5〇5. The buffer gates 501, 502, 503 are configured to receive a unit input signal (CELL_IN), each buffer gate outputs a path output signal, and the output of the last buffer gate 503 is a unit output signal (CELL_〇υτ). The second plurality of pairs of multiplexers 505 are configured to receive the unit input signals and the path output signals, and rotate the coarse adjustment multiplex signals (CELL_MX_0UT) according to the coarse control signal (c〇arse). In the present embodiment, the second many-to-one multiplexer 505 is a "second multiple-pair" single thermal code multiplexer. The coarse input order 113769.doc -12· 1330466 yuan 'unit input signal (CELL_IN) can be selected by the second multi-to-one single thermal code multiplexer 505 by selecting a different path by a coarse control signal (Coarse). Adjust the multiplex signal (CELL_MX_OUT), or directly output the unit output signal (CELL 0UT) through a plurality of serial buffer 501, 502, 503. Referring to Figure 6, there is shown a circuit diagram of the fine tuning unit of the present invention. The fine tuning unit 13 2 includes a plurality of cascaded fine tuning architectures, each fine tuning architecture comprising: four buffer gates and a four-to-one multiplexer for receiving the coarse adjustment output signal (COARSE-OUT) and the Fine-tune the control signal (Fine) and output the feedback clock signal (DCO_OUT). The four buffer gates are available in different sizes. The fine adjustment unit outputs the §fl number (COARSE-OUT) through the coarse adjustment of the input fine control signal (Fine) and outputs the feedback clock signal (DCO_OUT). Referring to FIG. 1 again, the output digital control oscillator 14 generates an output clock signal (CLK_OUT) corresponding to the control signal according to the control signals (Avg_coarse, Avg_fine, and R_〇UT) of the control circuit 12. The circuit of the output digital control oscillator 14 is similar to the circuit of the feedback digital control oscillator I] and will not be described here. The frequency dividing circuit 15 divides the feedback clock signal (DCO_OUT) according to the frequency dividing ratio (He 〇 1), and calculates the feedback clock (CLK-FB) to be fed back to the phase frequency. The detector 丨i. Referring to Figure 7, there is shown a schematic diagram of a binary search algorithm employed by the control circuit of the present invention. Whenever the phase frequency detector 发生 output changes polarity, the search step is halved, and the search direction is also inverted until the minimum step is stopped. The aforementioned search step is a unit for increasing or decreasing the current control signal 113769.doc •13· 1330466 (Coarse, Fine) in the control circuit 12. = Figure I: shows the method of reducing power control of the control circuit of the present invention. In conjunction with the phase contrast, the control controller 121' of the present invention is configured to treat each of the two reference clock cycles as a processing cycle, which is to be triggered by the first reference. Time (the time point is this feedback digital control oscillator 13 to make this (CLK shoulder and the reference clock (CL: again when the clock reference clock positive edge trigger, 0|, ^ AJ phase frequency detection The error between the detector 11 test clock (CLK_REF) and the feedback clock (CLK_fb) == when the test pulse negative edge is triggered (time point C), according to the phase frequency, the number is two: first Or behind the signal, send the control signal to the second two: the shock ""13' and at the same time disable the feedback control of the digital control oscillator waiting for the next processing cycle. Before, the power consumption of the feedback digital oscillator U is successfully reduced, and the overall operation of the oscillator is not affected. The phase-locked loop circuit 10 of the full-digital component of the local secret is disabled in each processing cycle. Grant digital control oscillator 13 half reference clock force ^, minus 回 4 feedback digital control oscillator 1 The working time of 3 is to reduce the power consumption, and the phase-locked loop circuit 10 of the full digital component of the present invention achieves the same effect by using the low power consumption of the vehicle, and does not need to add any analog components and circuits. Referring to Figure 9, #贴丄 operation method ^1: The power reduction method used in the circuit is divided into four stages: initial stage, coarse adjustment stage, 'field adjustment stage and lock stage. After the set is the initial stage I I3769.doc 1330466. When the phase frequency detector 11 detects the phase frequency error of the reference clock (CLK_REF) and the feedback clock (CLK_FB) (up d〇wn = οι 0Γ 1 〇), that is, enter the coarse adjustment phase, otherwise the initial phase is maintained; when the phase frequency debt detector 11 detects that the reference clock (CLk_REF) and the feedback clock (CLK-FB) have the same phase frequency (UP, d) 〇 wn = 11), that is, enter the lock phase. When the circuit is in the coarse adjustment phase, the control circuit 12 only controls the coarse control signal (coarse) of the coarse adjustment electric circuit 131, and roughly adjusts the feedback digital control effect. Output clock (DCO_〇UT). When When the coarse search step is one and the reference clock (CLK_REF) and the feedback clock (CLK_FB) still have a phase frequency difference (UP, DOWN = 01 or 1 〇), that is, enter the fine adjustment phase, That is, the coarse adjustment phase is maintained. 'When the phase frequency detector 11 detects that the reference clock (CLK_REF) and the feedback clock (CLK_FB) have the same phase frequency (UP, D〇WN = 11), the lock phase is entered. When the circuit is in the fine tuning phase, the control circuit 12 only controls the fine control signal (Fine) of the fine tuning circuit 132, and adjusts the output clock of the digitally controlled oscillator 13 (DCO_〇U1〇). . When the parameter + # ^ (CLK_REF) and the feedback clock (CLk_FB) still have a phase frequency difference (UP, DOWN = 01 or 1〇), continue to maintain the fine tuning phase; when the phase frequency is detected, then the device 11彳贞When the reference clock (CLK_REF) and the feedback clock (CLIC FB) have the same phase frequency (UP, DOWN=ll), they enter the lock phase. When the circuit is in the lock phase, the control circuit 12 enables the output of the control oscillator 14' and sends the control signal average (Avg_coarse, Avg_fine) of the past 64 reference clock cycles to the output control oscillator 14, which will be 113769. Doc •15· 1330466 The lock signal (LOCK) s is high, and the output digital can be fine-tuned to control the pulse frequency _ (CLK_〇υτ) when the oscillator is turned out to reduce the jitter of the output clock signal. When the reference clock (CLK_REF) and the feedback clock (<31^-1^) still have a phase frequency difference (1;?, 0 &> 1 = 01 〇 1 < 10), that is, back to fine tuning Phase; when the phase frequency detector i丨 detects that the reference clock (CLK_REF) and the feedback clock (CLK_FB) have the same phase frequency (UP'DOWN^11), it remains in the lock phase. However, the above-described embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit block diagram of a phase-locked loop circuit of a full digital component of the present invention; FIG. 2 is a circuit block diagram of a phase frequency detector of the present invention; and FIG. 3 is a circuit diagram of a digital pulse amplifier of the present invention. 4 is a schematic circuit diagram of a feedback control unit of the present invention; FIG. 5 is a circuit diagram of a coarse adjustment unit of the present invention; FIG. 6 is a circuit diagram of a fine adjustment unit of the present invention; Schematic diagram of the search algorithm; FIG. 8 is a schematic diagram showing the waveform of the power reduction control method of the control circuit of the present invention; and FIG. 9 shows the operation method of reducing power of the control circuit of the present invention. [Main component symbol description]

ί S 113769.doc .16- 本發明全數位元件之鎖相迴路電路 相位頻率偵測器 控制電路 回授數位控制震盪器 輸出數位控制震盪器 除頻電路 第一輸入級非同步重置D型正反器 第二輸入級非同步重置D型正反器 第一數位脈衝放大器 第二數位脈衝放大器 第一輸出級非同步重置D型正反器 第二輸出級非同步重置D型正反器 時脈控制器 粗調電路 細調電路 反及閘 第一粗調單元 第二粗調單元 第η-1粗調單元 第η粗調單元 第一多對一單熱編碼多工器 緩衝閘 緩衝閘 缓衝閘 第二多對一單熱編碼多工器 < S >S S 113769.doc .16- The phase-locked loop circuit of the full digital component of the invention phase frequency detector control circuit feedback digital control oscillator output digital control oscillator frequency divider circuit first input stage asynchronous reset D type positive Counter second input stage asynchronous reset D-type flip-flop first digital pulse amplifier second digital pulse amplifier first output stage non-synchronous reset D-type flip-flop second output stage non-synchronous reset D-type positive and negative Clock controller coarse adjustment circuit fine adjustment circuit reverse gate first coarse adjustment unit second coarse adjustment unit η-1 coarse adjustment unit η coarse adjustment unit first many to one single thermal coding multiplexer buffer brake buffer Gate buffer gate second many-to-one single thermal code multiplexer < S >

Claims (1)

1330460 十、申請專利範圍: —種全數位7C件之鎖相迴路電路,係依據—除頻倍率及 /考%脈,產生-對應頻率之輸出時脈訊號,該電路 包含: 士 —相位頻率偵測器,依據輸人之該參考時脈及一回授 扦脈之誤差,產生一領先或落後訊號; 控制電路’依據該領先或落後訊號,產生相對應之 至少一控制訊號; -輪出數位控制震盪器,依據該控制電路之控制訊 旒,產生該對應頻率之輸出時脈訊號; 〇 D授數位控制展盧器,依·據該控制電路之控制訊 號,產生對應頻率之—回授時脈訊號;及 —除頻电路’依據該除頻倍率,將該回授時脈訊號進 丁除頻後,4异得該回授時脈,以回授至該相位頻率偵 測1 ; 其中,該控制電路具有-時脈控制器’用以於每兩個 f考時脈理週期’其中於第-個參考時脈正 表觸發時,致能該回授數位控制震盈器使該回授時脈與 該參考時脈作正緣對齊;於第二個參考時脈正緣觸發 X相位頻率偵測a m丨該參考時脈與該回授時脈之 邊差’於第二個參考時脈貞緣觸發時,依據該相位頻率 偵測盗之該領先或落後訊號’將該控制訊號送至該回授 數位控制震盪器’並同時禁能該回授數位控制震盪器。 2.如請求们之鎖相迴路電路,其中該相位頻率谓測器包 113769.doc 含: 輸人級㈣步重置D型正反器及1二輸入級 5 v重置D型正反器,分別具有_時脈輸入埠、 :::為:Γ埠及一輪出蟑;該參考時脈與該回授時脈 j為該第一輸入級非同步重置D型正反器及該第二輸 入級非同步重置D型正反器之該時脈輸入埠,該等資料1330460 X. Patent application scope: - A phase-locked loop circuit of all-digit 7C parts is based on - in addition to the frequency ratio and /% of the pulse, the output-corresponding frequency output clock signal, the circuit includes: Shi-phase frequency detection The detector generates a leading or trailing signal according to the error of the reference clock and the feedback pulse of the input; the control circuit generates at least one corresponding control signal according to the leading or trailing signal; Controlling the oscillator, according to the control signal of the control circuit, generating an output clock signal of the corresponding frequency; 〇D granting a digital control to the display device, according to the control signal of the control circuit, generating a corresponding frequency--the feedback clock The signal; and the frequency-dividing circuit 'receives the frequency-receiving frequency to the frequency-receiving frequency signal, and then the feedback clock is sent back to the phase frequency detection 1; wherein the control circuit Having a -clock controller for each of the two f-times of the pulse period, wherein when the first reference clock is triggered, the feedback digital control is enabled to cause the feedback clock to The clock is positively aligned; the second reference clock positive edge triggers the X phase frequency detection. The reference clock and the edge of the feedback clock are triggered by the second reference clock edge. The leading or trailing signal 'sending the control signal to the feedback digital control oscillator' is detected according to the phase frequency and the feedback digital control oscillator is disabled at the same time. 2. The phase-locked loop circuit of the requester, wherein the phase frequency predator packet 113769.doc includes: input stage (four) step reset D-type flip-flop and 1 two-input stage 5 v reset D-type flip-flop , having _clock input 埠, ::: is: Γ埠 and one round of exit; the reference clock and the feedback clock j are the first input stage asynchronous reset D-type flip-flop and the second The input stage asynchronously resets the clock input of the D-type flip-flop, such information 埠連接至-高電位,該等重置槔為該第—輸人級非同步 重置D型正反器及該第二輸人級非同步重置d型正反器之 輸料訊號與—外部重置訊號做邏輯運算回授之訊號; 該等輸料分別為該第—輸人級非同步重置D型正反器 及°亥第一輪入級非同步重置D型正反器之q埠; 二數位脈衝放大器,用以將該等輸出埠之訊號延遲放 大; -第-輪出級非同步重置D型正反器及一第二輸出級 非同步重置D型正反器,分別具有—時脈輸人槔、一資 料、—重置蟑及—輸出埠;該參考時脈與該回授時脈 分別為該第一輪出級非同步重置D型正反器及該第二輪 出級非同步重置D型正反器之該時脈輸人蜂,該等資料 谭連接至一高電位,該等重置埠分別連接至二數位脈衝 放大器之輸出,該等輸出埠分別為該第一輪出級非同步 重置D型正反器及該第二輸出級非同步重置d型正反器之 Q埠,且分別為該領先訊號及該落後訊號。 3.如吻求項1之鎖相迴路電路,其中該控制電路之控制訊 號包3 . —粗調控制訊號、一細調控制訊號及一啟動訊 113769.doc -2- 1330466 號。 4. 如請求項3之鎖相迴路電路,其中該回授數位控制震盪 . 器包含: 一反及閘,其輸入為該啟動訊號與該回授時脈訊號, 藉由S亥啟動訊號由低電位變為南電位之動作,使該反及 閘之輸出產生一起始訊號; 一粗調電路,用以接收該起始訊號,並輸出一粗調輸 鲁 出訊號’該粗調電路具有複數個串接之粗調單元及一第 一多對一多工器,每一粗調單元輸出對應之粗調多工訊 號,該第一多對一多工器用以接收該等粗調多工訊號, 並依據該粗調控制訊號,輸出該粗調輸出訊號;及 細調電路,用以接收該粗調輪出訊號及該細調控制 訊號,輸出該回授時脈訊號並迴授至該反及閘。 5. 如請求項4之鎖相迴路電路,其中該粗調單元包含: 複數個串接缓衝閘,用以接收一單元輸入訊號,每一 ® 緩衝閘輸出一路徑輸出訊號;及 一第二多對一多工器,用以接收該單元輪入訊號及該 等路徑輸出訊號’並依據該粗調控制訊號,輸出該粗調 多工訊號。 6_如請求項4之鎖相迴路電路,其中該細調單元包含複數 級串接細調架構,每一細調架構包含:四個緩衝閘及一 個四對-多卫器,用以接收該粗調輸出訊號及該細調控 制訊號’輪出該回授時脈訊號。 7. —種全數位元件之鎖相迴路控制方法,應用於如請求項 113769.doc 5玄鎖相迴路控制 週期’其包含下 :::«每 ⑷於第""個參考時脈正緣觸發時,致能該回授數位控 制震盪器使該回授時脈與該參考時脈作正緣對齊; (b)於第二個參考時脈正緣觸發時,該相位頻率偵測器 偵測該參考時脈與該回授時脈之誤差;及 (C)第二個參考時脈負緣觸發時,依據該相位頻率摘測 器之該領先或落後訊號’將該控制訊號送至該回授 數位控制震盪器’並同時禁能該回授數位控制震盈 器。 113769.doc埠Connected to a high potential, the reset 槔 is the feed signal of the first-input-level non-synchronous reset D-type flip-flop and the second input-level asynchronous reset d-type flip-flop and The external reset signal is a logic operation feedback signal; the feeds are respectively the first-input-level non-synchronous reset D-type flip-flop and the first-stage non-synchronous reset D-type flip-flop The second digital pulse amplifier is used to delay the amplification of the signal of the output ;; - the first-round non-synchronous reset D-type flip-flop and the second output-stage non-synchronous reset D-type positive and negative The device has a clock input port, a data, a reset port, and an output port; the reference clock and the feedback clock are respectively the first round out-of-synchronous reset D-type flip-flops and The second round of out-of-synchronization resets the clock input bee of the D-type flip-flop, the data is connected to a high potential, and the resets are respectively connected to the outputs of the two-digit pulse amplifiers. The output 埠 is the Q埠 of the first-stage out-of-order asynchronous reset D-type flip-flop and the second output-stage asynchronous reset d-type flip-flop. Respectively for the leading signal and the backward signal. 3. The phase-locked loop circuit of the game of claim 1, wherein the control signal of the control circuit includes a coarse control signal, a fine control signal, and a start signal 113769.doc -2- 1330466. 4. The phase-locked loop circuit of claim 3, wherein the feedback digital control oscillator comprises: a reverse gate, the input is the start signal and the feedback clock signal, and the signal is low by the S-hai start signal The action of changing to the south potential causes the output of the anti-gate to generate a start signal; a coarse adjustment circuit for receiving the start signal and outputting a coarse adjustment signal: the coarse adjustment circuit has a plurality of strings a coarse adjustment unit and a first multi-to-one multiplexer, each coarse adjustment unit outputs a corresponding coarse adjustment multiplex signal, and the first multi-to-one multiplexer is configured to receive the coarse adjustment multiplex signals, and And outputting the coarse adjustment signal according to the coarse control signal; and the fine adjustment circuit for receiving the coarse adjustment signal and the fine control signal, outputting the feedback clock signal and feeding back to the reverse gate. 5. The phase-locked loop circuit of claim 4, wherein the coarse tuning unit comprises: a plurality of serial buffers for receiving a unit input signal, each of the buffer gates outputting a path output signal; and a second The multi-pair multiplexer is configured to receive the unit round-in signal and the path output signals 'and output the coarse-tuning multiplex signal according to the coarse control signal. 6_ The phase-locked loop circuit of claim 4, wherein the fine-tuning unit comprises a complex-level serial fine-tuning architecture, each fine-tuning architecture comprising: four buffer gates and a four-pair-multi-guard to receive the The coarse output signal and the fine control signal 'round the feedback clock signal. 7. A phase-locked loop control method for all-digital components, as applied in the request item 113769.doc 5 锁 phase-locked loop control cycle 'which contains the following ::: «every (4) in the "" reference clock positive When the edge is triggered, enabling the feedback digital control oscillator to align the feedback clock with the reference clock; (b) when the second reference clock is triggered, the phase frequency detector detects Measuring the error between the reference clock and the feedback clock; and (C) when the second reference clock is triggered by the edge, the leading or trailing signal of the phase frequency extractor sends the control signal to the back The digital control oscillator is also disabled and the digital feedback oscillator is disabled at the same time. 113769.doc
TW95143973A 2006-11-28 2006-11-28 All-digital phase-locked loop circuit and control method thereof TWI330466B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95143973A TWI330466B (en) 2006-11-28 2006-11-28 All-digital phase-locked loop circuit and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95143973A TWI330466B (en) 2006-11-28 2006-11-28 All-digital phase-locked loop circuit and control method thereof

Publications (2)

Publication Number Publication Date
TW200824284A TW200824284A (en) 2008-06-01
TWI330466B true TWI330466B (en) 2010-09-11

Family

ID=44771462

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95143973A TWI330466B (en) 2006-11-28 2006-11-28 All-digital phase-locked loop circuit and control method thereof

Country Status (1)

Country Link
TW (1) TWI330466B (en)

Also Published As

Publication number Publication date
TW200824284A (en) 2008-06-01

Similar Documents

Publication Publication Date Title
JP4741705B2 (en) Initialization circuit for delay-locked loop
US8929498B2 (en) Techniques for varying a periodic signal based on changes in a data rate
TWI321898B (en) Phase detecting circuit having adjustable gain curve and method thereof
US20040119521A1 (en) Adaptive frequency clock signal
US20130271193A1 (en) Circuits and methods to guarantee lock in delay locked loops and avoid harmonic locking
CN110830041B (en) Continuous integer frequency divider with 50% duty cycle and phase-locked loop circuit comprising same
JP4883850B2 (en) Semiconductor device
TWI469524B (en) Method and apparatus for generating an output clock with low clock jitter
CN107528585B (en) Phase-locked loop with electrical overload protection circuit
JP2008066879A (en) Oversampling circuit, and oversampling method
JP2009302692A (en) Clock and data recovery circuit
WO2019222245A1 (en) Digital phase-locked loop
US6834093B1 (en) Frequency comparator circuit
JP2002198808A (en) Pll circuit and optical communication receiving device
US8169241B2 (en) Proportional phase comparator and method for phase-aligning digital signals
JP2005033392A (en) Semiconductor integrated circuit device
JP2012049660A (en) Phase lock loop
US20150200588A1 (en) Low-power, self-biasing-capable charge pump with current matching capabilities
JP7077298B2 (en) Methods and equipment for clock phase generation
US6973155B2 (en) Highly scalable glitch-free frequency divider
TWI330466B (en) All-digital phase-locked loop circuit and control method thereof
JP2005252447A (en) Lock detection circuit and method
JP3617456B2 (en) PLL circuit and optical communication receiver
TW474064B (en) Digital frequency comparators
US20070041484A1 (en) Method and system for a digital frequency divider

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees