TWI327171B - Cold roller steel sheet having superior formability, process for producing the same - Google Patents

Cold roller steel sheet having superior formability, process for producing the same Download PDF

Info

Publication number
TWI327171B
TWI327171B TW095115563A TW95115563A TWI327171B TW I327171 B TWI327171 B TW I327171B TW 095115563 A TW095115563 A TW 095115563A TW 95115563 A TW95115563 A TW 95115563A TW I327171 B TWI327171 B TW I327171B
Authority
TW
Taiwan
Prior art keywords
steel sheet
less
rolled steel
cold
precipitates
Prior art date
Application number
TW095115563A
Other languages
Chinese (zh)
Other versions
TW200702456A (en
Inventor
Jeong Bong Yoon
Sang Ho Han
Sung Il Kim
Man Young Park
Kwang Geun Chin
Ho Seok Kim
Jin Hee Chung
Original Assignee
Posco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco filed Critical Posco
Publication of TW200702456A publication Critical patent/TW200702456A/en
Application granted granted Critical
Publication of TWI327171B publication Critical patent/TWI327171B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

1327171 九、發明說明: 【發明所屬^技術領域】 [工藝範圍] 本發明係關於一種以鈦(Ti)為基礎之無插入型 5 (interstltial free)(IF)冷軋鋼片材,其可使用作為汽車、家用 電子用具等等用之材料。更特別的是,本發明係關於一種 可高度成型之以Ti為基礎的吓冷軋鋼片材,其屈服強度可 由於該細微析出物的分佈而提高;及關於該以丁丨為基礎的 IF冷軋鋼片材之製造方法。 1〇 【先前技術】 [技藝背景] 通常來說’使用於汽車及家用電子用具之冷軋鋼片材 需要具有優良的室溫抗老化性及烘烤硬化能力,且一起耳 有高強度及優異的成形性。 15 老化為一種因已溶解的元素(諸如,C及N)凝固至錯位 所造成的硬化而引起之應變老化現象。因為老化會造成缺 陷(稱為“拉伸應變”),故重要的是需保證優良的室溫抗老化 性。 烘烤硬化能力意謂著強度會由於已溶解的碳(其為在 2〇 加壓成形、接著塗裝及乾燥後,所遺留在固體溶液狀態中 之稍微小量的碳)之存在而增加。具有優良的烘烤硬化能力 之鋼片材可克服來自高強度之加壓成形困難。 可藉由批次退火A1-淨靜鋼來對鋁(A1)-淨靜錦授予室 溫抗老化性及烘烤硬化能力。但是,延長該抵次退火時間 5 1327171 會造成A1-淨靜鋼之生產力低,且該鋼材料會在不同位置處 有劇烈的變化。此外,該A1-淨靜鋼具有10-20百萬帕之烘烤 硬化(BH)值(在塗裝前後之屈服強度差),此顯露出屈服強度 之增加低。 5 在此情況下,已藉由加入碳化物及氮化物形成元素(諸 如’ Ti及Nb) ’接著連續退火來發展出一具有優良的室溫抗 老化性及烘烤硬化能力之無插入型(IF)鋼。 例如’日本未審查的專利公告案號Sho 57-041349描述 出藉由加入0.4-0.8%的錳(Μη)及0.04-0.12%的磷(P)來提高 10 以Ti為基礎的if鋼之強度。但是,在非常低碳if鋼中,Ρ會 由於在晶界處之分晶現象而發生二次加工脆性的問題。 曰本未審查的專利公告案號Hei 5-078784描述出藉由 加入量超過0.9%及不超過3.0%的Μη作為固體溶液補強元 素’來提南強度。 15 韓國專利公開公報案號2003-0052248描述出藉由加入 0-5-2.0%的Μη來取代Ρ且與鋁(Α1)及硼(Β)—起,可改良抗二 次加工脆性和強度及可加工性。 曰本未審查的專利公告案號Hei 10-158783描述出藉由 減低P含量及使用Μη及Si作為固體溶液補強元素,來提高強 20 度。根據此公告,Μη的使用量最高為0.5%,A1(作為除氧 劑)的使用量為0.1%及氮(Ν)(作為雜質)限制為0.01%或較 少。若Μη含量增加時,電鍍特徵將惡化。 曰本未審查的專利公告案號Hei 6-057336揭示出藉由 加入0.5-2.5%的銅(Cu)’以形成ε-Cu析出物,來提高IF鋼強 6 度。由於ε-Cu析出物存在,故可獲得高強度的正鋼,但是if 鋼之可加工性將惡化。 曰本未審查的專利公告案號Hei 9-227951及Hei 10-265900建議出一種與碳化物之可加工性或表面缺陷改 良相關的技術’其使用Cu作為碳化物析出之晶核。根據前 公告,加入0.005-0.1%的Cu,以便在吓鋼的硬化冷軋期間析 出CuS,且使用該CuS析出物作為晶核,以在熱軋期間形成 Cu-Ti-C-S析出物。此外,前公告描述出會在再結晶期間, 於Cu-Ti-C-S析出物鄰近增加可形成與該板之表面平行的 {111}平面之晶核數目,此將促成改良可加工性。根據後公 告’將0.01-0.05%的Cu加入至if鋼,以獲得(^析出物,然 後使用該CuS析出物作為碳化物析出之晶核,以減低所溶解 的碳(C)量,此將導致改良表面缺陷。根據先述技藝,因為 在冷軋鋼片材之製造期間使用粗糙的c u s析出物,碳化物將 會餘留在最後產物中。再者,因為加入一量大於硫(s)量(原 子$比率)的乳液形成(emulsion-forming)元素(諸如Ti及 Zr),主要部分的硫(S)將與Ti或Zr反應而非Cu。 另一方面,曰本未審查的專利公告案號Hei 6-240365 及Hei 7-216340描述出加入Cu與P之組合,以改良烘烤硬化 型IF鋼的抗腐鞋性β根據這些公告,Cu的加入量為 0.05-1.0% ’以保註有經改良的抗腐钱性。但是,事實上會 加入過度大量的Cu(0.2%或更多)。 曰本未審查的專利公告案號Hei 10-280048及Hei 10-287954建議在再加熱那時’將硫化碳(以Ti-C-S為基礎) 溶解在碳化物中且退火’以在結晶晶界中獲得一固體溶 液’因此可獲得30百萬帕或更大的烘烤硬化(BH)值(在烘烤 前後之屈服強度差)。 根據前述提及的公告,可藉由補強固體溶液或使用 ε-Cu析出物來提高強度。使用cu來形成e-Cu析出物及改良 抗腐蝕性。此外,使用Cu作為碳化物析出之晶核。在這些 公告中未提及關於高屈強比(即,屈服強度/抗張強度)增加 及面内各向異性指數減低。若正鋼片材之抗張強度對屈服 強度的比率(即’屈強比)高時,可減低吓鋼片材的厚度,此 可有效地減低重量。此外’若IF鋼片材的面内各向異性指 數低時’可各別在加I期間及在加工後發生較少的敵紋及 耳狀物。 明内容】 [公告] [工藝問題] 本發明的某些具體實施例之目標為提供一種加入以Ti 為基礎的IF冷軋鋼片材’其能獲得高屈強比及低面内各向 異性指數。 本發明之某些具體實施例的另-個目標為提供該IF冷 軋鋼片材之製造方法。 [工藝解決方案] 本發明’已提供—種具有下列組成物之冷乳鋼片 、匕 3 〇.〇1%或較少的C、0.01-〇.2%&Cu、0.005-0.08% 〇1%或較少的八1、0.004%或較少的N、0.2%或較少的 1327171 p、0.0001-0.002%的B、0.005-0.15%的Ti (以重量計),且剩 餘部分為Fe及其它無法避免的雜質’其中該組成物滿足下 列關係:1句Cu/63.5)/(S*/32)幻0 及 S*=s_0.8x(Ti_0.8x (48/14)xN)x(32/48);及該鋼片材包含平均尺寸〇 2微米或較 5 小的CuS析出物。 根據本發明’已提供一種具有下列組成物之冷軋鋼 片材,其包含:0.01%或較少的C、0.01-0.2%的Cu、 0.01-0.3%Mn、0.005-0.08% 的 S、0.1% 或較少的 A1、 0.004% 或較少的 N、0.2% 或較少的 P、〇.〇〇〇ιτ〇·〇〇2% 10的Β、0.005-0.15%的Ti(以重量計),且剩餘部分為Fe 及其它無法避免的雜質,其中該組成物滿足下列關 係:l^Mn/55+Cu/63.5)/(S*/32)S30 及 s*=S-0.8x(Ti-0.8x (48/14)xN)x(32/48);及該鋼片材包含平均尺寸0.2微米或較 小的(Mn,Cu)S析出物。 15 根據本發明,已提供一種具有下列組成物之冷軋鋼片 材,其包含:0.01%或較少的00.01-0.2%的Cu、0.005-0.08% 的S、0.1%或較少的A卜0.004-0.02%的N、0.2%或較少的P、 0.0001-0.002%的B、0.005-0.15%的Ti (以重量計),且剩餘 部分為Fe及其它無法避免的雜質,其中該組成物滿足下列 20 關係:l$(Cu/63.5)/(S*/32)S30,1$(Α1/27)/(Ν*/14)£ΐ〇, S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48)及 N*=N-0.8x(Ti-0.8x (48/32)xS))x(14/48);及該鋼片材包含平均尺寸〇_2微米或較 小的CuS及A1N析出物。 根據本發明,已提供一種具有下列組成物的冷軋鋼片 9 1327171 材’其包含:0.01%或較少的c、0.01-0.2%的Cu、0.01-0.3% 的Μη、0.005-0.08%的 S、0.1%或較少的 A卜 0.004-0.02%的 心0.2%或較少的?、〇0001_0 002%的8、〇.〇〇5-〇15%的1^(以 重量計)’且剩餘部分為Fe及其它無法避免的雜質,其中該 5 組成物滿足下列關係:H(Mn/55+Cu/63.5)/(S*/32)S30, 1<(Α1/27)/(Ν*/14)<1〇 , S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) 及N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48);及該鋼片材包含 平均尺寸0.2微米或較小的(Mn,Cu)S及A1N析出物。 根據本發明,已提供一種具有下列組成物的冷軋鋼片 10 材,其包含0.01%或較少的C、0.08%或較少的S、0.1%或較 少的八卜0.004%或較少的Ν、0·2%或較少的P、〇.〇〇〇l-〇.〇〇2% 的B、0.005-0.15%的Ti、選自於0.01-0.2%的Cu ' 0.01-0.3% 的Μη及0.004-0.2%的N之至少一種(以重量計),且剩餘部分 為Fe及其它無法避免的雜質,其中該組成物滿足下列關 15 係:H(Mn/55+Cu/63.5)/(S*/32)幻0,1s(A1/27)/(N*/14)$10 (其中該N含量為0.004%或更多),s*=S-0.8x(Ti-0.8x (48/14)xN)x(32/48)及 N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48); 及該鋼片材包含選自於平均尺寸0.2微米或較小的 (Mn,Cu)S及A1N析出物之至少一種。 20 當本發明之冷乳鋼片材在該C、Ti、N及S含量間滿足 下列關係時:0.8分Ti*/48)/(C/12)$5.〇 及 Ti=Ti-〇.8x ((48/14)xN+(48/32)xS),它們可顯示出室溫不老化性質。此 外,當該溶質碳(Cs)[Cs=(C-Ti*xl2/48)xl0000,其中 Ti*=Ti-0.8x((48/14)xN+(48/32)xS) ’ 其限制條件為當Ti*小 10 1327171 於0時,Τι*定義為0](其由c及Ti含量決定)之值從5至30時, 本發明的冷軋鋼片材可顯示出烘烤硬化能力。 依該組成物之設計而定,本發明的冷軋鋼片材之特徵 為一具有級數280百萬帕的軟冷軋鋼片材及一具有級數34〇 5 百萬帕或更大的南強度冷軋鋼片材。 當在本發明之組成物中的P含量為〇.〇15%或較少時,可 製造出該具有級數280百萬帕的軟冷軋鋼片材。當該軟的冷 軋鋼片材進一步包含選自於Si及Cr之至少一種的固體溶液 補強元素或P含量範圍為0.015-0.2%時,可獲得340百萬帕或 10 更大之高強度。在單獨含P的高強度鋼中,其p含量範圍為 0.03%至0.2%較佳。於高強度鋼中的Si含量範圍在〇1至 0.8%較佳。於該高強度鋼中的Cr含量範圍在〇.2至1.2較佳。 在本發明之冷軋鋼片材包含選自於Si及Cr的至少一種元素 之實例中’該P含量可自由地設計成0 2%或較少的量。 15 對較好的可加工性來說’本發明之冷軋鋼片材可進一 步包含0.01-0.2重量%的Mo。 根據本發明,已提供一種該冷軋鋼片材的製造方法, 該方法包括將一滿足該組成物之一的平板再加熱至溫度 l,l〇〇°C或較高;在該Αγ3變態點或較高之精軋溫度處熱軋該 20 經再加熱的平板’以提供一經熱軋的鋼片材;以30CTC/分 鐘之速率來冷卻該經熱軋的鋼片材;在7〇(Tc或較低下捲繞 該垣冷卻的鋼片材;冷軋該經捲繞的鋼片材,且連續退火 該經冷軋之鋼片材。 [最佳模式] 11 1327171 本發明將詳細描述在下列。 在本發明之冷軋鋼片材中,分佈有一些具有尺寸0·2微 米或較小的細微析出物。此析出物之實例包括MnS析出 物、CuS析出物及MnS與CuS之複合析出物。這些析出物簡 5 單指為“(Mn,Cu)S”。 本發明家已發現當在以Ti為基礎的IF鋼中分佈有細微 的析出物時,該IF鋼之屈服強度將提高及該IF鋼的面内各 向異性指數將降低,從而將導致可加工性改良。本發明已 基於此研究結果而達成。在本發明令所使用的析出物已在 10 習知之IF鋼中吸引些微的注意。特別是,從屈服強度及面 内各向異性指數的觀點來看,該析出物尚未經積極地使用。 需要調整在以Ti為基礎的IF鋼中之組分,以獲得 (Mn,Cu)S析出物及/或A1N析出物。若該IF鋼包含Ti、Zr及其 它元素時,S及N會優先與Ti及Zr反應。因本發明之冷軋鋼 15片材為加入Ti的IF鋼,Ti會與C、N及S反應。因此,需要調 整该些組分,以便S及N各別析出成(Mn,Cu)S及A1N形式。 如此獲得之細微析出物允許形成微小的結晶晶粒。結 晶晶粒尺寸的細微度將相對地增加結晶晶界之比例。因 此,該經溶解之碳將以較大的量存在於結晶晶界(與在結晶 20晶粒内比較)中,從而達成優良的室溫不老化性質。因為存 在於該結晶晶粒内之經溶解的碳可更自由地漂移,其會黏 結至可移動的錯位,從而影響室溫老化性質。比較上,在 穩定位置中所偏析之經溶_碳(諸如,在結晶日日日界中及在 析出物鄰近中)會於高溫下(例如,塗裝/輯處理溫度)經活 12 1327171 化’從而影響烘烤硬化能力。 分佈在本發明之鋼片材中的細微析出物在由析出物之 提高而引起的屈服強度增加上具有正影響,其可改良強度_ 延展性平衡、面内各向異性指數及可塑性各向異性。為此 5目的,細微的(Mn,Cu)S析出物及A1N析出物必需均勻地分 佈。根據本發明之冷軋鋼片材,影響該析出物之組分的含 量、在組分間之組成物、製造條件及特別是在熱軋後的冷 ^ 卻速率皆在細微析出物之分佈上具有重大影響。 將解釋根據本發明之冷軋鋼片材的構成組分。 10 碳(C)含量限制為0.01%或較少較佳。 碳(C)會影響該冷軋鋼片材的室溫抗老化性及烘烤硬 化能力。當碳含量超過0.01%時,需要加入昂責的試劑^ 以移除殘餘碳,此在經濟上不利且就成形性來說並不想 要。當意欲僅達成室溫抗老化性時’將碳含量維持在低程 15度較佳,其能減少所加入的昂貴試劑Ti之量。各音#彳 佳’且0.0〇5%至〇.〇1%更佳。當該碳含量少於_5%時可 保註室溫抗老化性而沒有增加Ti的量。 銅(Cu)含量範圍在0.01-0.2%較佳。 2〇 提供銅以形成細微的⑽析出物,此可使該結晶晶粒細 _ 微。銅會藉由析出促進作絲降低該冷軋鋼諸之面内各 •肖異性減及提高該冷軋則材的屈服_。$ 了形成細 微的析iU勿’ Cu含量必需為〇.〇1%或更多。當Cu含量多於 μ%時,可獲得粗縫的析出物。。含量範圍:〇.〇33至二% 13 1327171 更佳。 l(Mn)含量範圍在0.01-0.3%較佳。 提供鍾以在鋼之固體溶液狀態中析出硫(如為Μ n S析出 物)’因此可防止發生由所溶解的硫所造成之熱脆性;或其 5已熟知可作為一固體溶液補強元素。從此工藝觀點來看, 通常會加入大量的錳。本發明家已發現當錳含量減少且碌 含量為最佳時,可獲得非常細微的MnS析出物。基於此研 究結果’錳含量限制為0.3%或較少。為了保証此特徵,缝 含量必需為0.01%或更多。當锰含量少於0.01%時(即,殘餘 10在固體溶液狀態中的硫含量高),會發生熱脆性。當錳含量 大於0.3%時,將形成粗糙的MnS析出物,從而使其難以達 成想要的強度。更佳的Μη含量在0.01至0.12%之範圍内。 硫(S)含量限制至0.08%或較少較佳。 硫(S)會與Cu及/或Μη反應,以各別形成CuS及MnS析出 15物。當硫含量大於0.08%時,所溶解的硫之比例將增加。此 所溶解的硫增加將大大損壞該鋼片材之延展性及成形性, 且會增加熱脆性的風險。為了獲得儘可能多的CuS及/或 MnS析出物,硫含量為0.005%或更多較佳。 鋁(A1)含量限制為0.1%或較少較佳。 20 鋁會與氮(N)反應以形成細微的A1N析出物,因此藉由 所溶解的氮來完全防止老化。當該氮含量為〇〇〇4%或更多 時,可充分地形成A1N析出物。在該鋼片材中,細微A1N析 出物的分佈允許形成微小結晶晶粒,且藉由提高析出物來 提高該鋼片材之屈服強度。更佳的A1含量範圍在〇.〇1至 14 1327171 0.1%。 氮(N)含量限制至0.02%或較少較佳。 當意欲使用A1N析出物時,所加入的氮量最高為 0.02%。其它方面,將氮含量控制至0 〇〇4%或較少。當氮含 5 量少於0.004%時,A1N析出物的數目少,因此,將忽略結 晶晶粒之細微度效應及析出物提高效應。比較上,當氛含 量大於0.02%時,難以使用經溶解的氮來保證老化性質。 磷(P)含量限制為0.2%或較少較佳。 磷為一具有優良的固體溶液補強效應同時允許稍微減 1〇低Γ值之70素。磷可保証本發明之析出物經控制的鋼片材具 有高強度。想要的是,在需要強度級數28〇百萬帕之鋼中, 其磷含量限定為〇.〇15%或較少。想要的是,在級數34〇百萬 帕之同強度鋼中的鱗含量限制範圍為超過0 015%及不超過 0.2%。破含量超過〇·2%時可導致鋼片材之延展性減低。因 15此’鱗含量限制為最大〇·2%較佳。當在本發明中加入狀 〇1:時《4 s里可適當地控制在〇 2%或較少,以達成想要的 強度。 硼(B)含量範圍在〇.0001至〇〇〇2%較佳。 加入棚以防止發生二次加工脆性。為此目的,較佳的 ’ 3量為0.0001%或更多。當蝴含量超過⑽〇⑽時該鋼片 材的深拉性會顯著惡化。 欽(Ti) 3塁範圍在〇 〇〇5至〇 較佳。 ,加入鈦之目的為保註不老化性質及改良該鋼片材的成 形性。將Ti(其為一強效的碳化物形成元素)加入至鋼,以在 15 1327171 鋼中形成TiC析出物。該Tic析出物允許所溶解的碳析出, 以保I正不老化性質。當所加入之Ti含量少於0005%時,所 獲得的TiC析出物量非常少。因此,該鋼片材未能良好地紋 理化,從而在該鋼片材的深拉性上僅有些微改良。比較上, 5當所加入的鈦量超過0.15%時,將形成非常大的Tic析出 物。因此,結晶晶粒的細微度效應將減低,此將產生高的 面内各向異性指數、減低屈服強度及電鍍特徵將明顯惡化。 為了獲得(Mn,Cu)S及A1N析出物,將該Mn、Cu、S、 Ti、A1、N及C含量調整在由下列關係所定義之範圍内。在 10下列關係中’所指出的各別組分以重量百分比表示。 l<(Cu/63.5)/(S*/32)<30 ⑴ S*=S-0.8x(Ti-〇.8x(48/14)xN)x(32/48) (2) 在關係1中’S*(其由關係2決定)代表不與Ti反應且之後 與Cu反應的硫含量。為了獲得細微的CuS析出物,最好 15 (Cu/63.5)/(s*/32)值等於或大於1。若(Cu/63.5)/(S*/32)值大 於30時’將分佈不想要的粗糙CuS析出物。為了穩定獲得具 有尺寸0.2微米或較小之CuS析出物,(Cu/63.5)/(S*/32)值的 範圍在1至20較佳,1至9更佳及1至6最佳。 l<(Mn/55+Cu/63.5)/(S*/32)<30 (3) 關係3與(Mn,Cu)S析出物之形成相關,且可藉由將Μη 含量加入至關係1而獲得。為了獲得有效的(Mn,Cu)S析出 物,(Mn/55+Cu/63.5)/(S*/32)值必需為1或較大。當關係3之 值大於30時,將獲得粗糙的(Mn,Cu)S析出物。為了穩定獲 16 1327171 得具有尺寸0.2微米或較小之(Mn Cu)s析出物, (Cu/63.5)/(S*/32)的更佳值範圍在1至20較佳,1至9更佳及1 至6最佳。當一起加入Ml^Cu時,他及以的總和為 0.05-0.4%更佳。此對Μη及Cu總和的限制之理由為想獲得細 5 微的(Mn,Cu)S析出物。 1<(Α1/27)/(Ν*/14)<1〇 ⑷ N*=N-0.8x(Ti-0.8x(48/32)xS)x(14/48) (5) 關係4與細微的(Mn,Cu)S析出物之形成相關》在關係4 中’ N*(其由關係5決定)代表不與Ti反應且之後與A1反應的 10 氮含量。為了獲得細微的A1N析出物,最好該(Α1/27)/(Ν*/14) 值的範圍為1-10。為了獲得有效的A1N析出物,該 (Α1/27)/(Ν*/14)值必需為1或較大。若(Α1/27)/(Ν*/14)值大於 10時,可獲得粗链的A1N析出物,從而造成差的可加工性及 低屈服強度。最好(Α1/27)/(Ν*/14)值的範圍為1至6。1327171 IX. Description of the Invention: [Technical Field] [Technical Field] The present invention relates to a titanium (Ti)-based interstltial free (IF) cold-rolled steel sheet which can be used as Materials used in automobiles, household electronic appliances, etc. More particularly, the present invention relates to a highly formable Ti-based scare-rolled steel sheet whose yield strength can be improved by the distribution of the fine precipitates; and regarding the IF-based IF cold A method of manufacturing a rolled steel sheet. 1〇 [Prior Art] [Technical Background] Generally, 'a cold-rolled steel sheet used in automobiles and household electronic appliances needs to have excellent room temperature aging resistance and bake hardenability, and has high strength and excellent ear together. Formability. 15 Ageing is a phenomenon of strain aging caused by hardening caused by the solidification of dissolved elements (such as C and N) to the misalignment. Since aging causes defects (called "tensile strain"), it is important to ensure excellent room temperature aging resistance. The bake hardening ability means that the strength is increased by the presence of dissolved carbon which is a small amount of carbon left in the state of the solid solution after press forming, followed by coating and drying. A steel sheet having excellent bake hardenability can overcome the difficulty of press forming from high strength. Aluminum (A1)-net Jingjin can be imparted with room temperature aging resistance and bake hardenability by batch annealing A1-jingjing steel. However, extending the annealing time 5 1327171 will result in a low productivity of A1-net steel and the steel material will vary drastically at different locations. In addition, the A1-static steel has a bake hardenability (BH) value of 10-20 MPa (difference in yield strength before and after coating), which shows a low increase in yield strength. 5 In this case, a non-insertion type with excellent room temperature aging resistance and bake hardenability has been developed by adding carbide and nitride forming elements such as 'Ti and Nb' followed by continuous annealing. IF) steel. For example, 'Japanese Unexamined Patent Publication No. Sho 57-041349 describes increasing the strength of 10 Ti-based if steel by adding 0.4-0.8% manganese (Μη) and 0.04-0.12% phosphorus (P). . However, in very low carbon if steel, niobium has a problem of secondary processing brittleness due to the phenomenon of crystallization at the grain boundaries. The unexamined patent publication No. Hei 5-078784 describes the use of Μη in an amount of more than 0.9% and not more than 3.0% as a solid solution reinforcing element'. 15 Korean Patent Laid-Open Publication No. 2003-0052248 describes that by replacing yttrium with addition of 0-5-2.0% Μη and with aluminum (Α1) and boron (Β), the secondary work embrittlement and strength can be improved and Machinability. The unexamined patent publication No. Hei 10-158783 describes an increase of 20 degrees by reducing the P content and using Μη and Si as reinforcing elements for solid solutions. According to this announcement, Μη is used up to 0.5%, A1 (as an oxygen scavenger) is used in an amount of 0.1%, and nitrogen (Ν) (as an impurity) is limited to 0.01% or less. If the Μη content is increased, the plating characteristics will deteriorate. The unexamined patent publication No. Hei 6-057336 discloses that the IF steel is increased by 6 degrees by adding 0.5-2.5% of copper (Cu)' to form ε-Cu precipitates. Since ε-Cu precipitates are present, high strength steel can be obtained, but the workability of if steel will deteriorate. The unexamined patent publication No. Hei 9-227951 and Hei 10-265900 propose a technique relating to the processability of carbides or the improvement of surface defects, which uses Cu as a crystal nucleus for carbide precipitation. According to the foregoing publication, 0.005-0.1% of Cu is added to precipitate CuS during hardening cold rolling of the scare steel, and the CuS precipitate is used as a crystal nucleus to form Cu-Ti-C-S precipitates during hot rolling. In addition, the foregoing publication describes that during the recrystallization, the addition of Cu-Ti-C-S precipitates increases the number of nuclei which can form a {111} plane parallel to the surface of the plate, which contributes to improved processability. According to the post-announcement, 0.01-0.05% Cu is added to the if steel to obtain (^, and then the CuS precipitate is used as a crystal nucleus of carbide precipitation to reduce the amount of dissolved carbon (C), which will Resulting in improved surface defects. According to the prior art, since coarse cus precipitates are used during the manufacture of cold rolled steel sheets, the carbides will remain in the final product. Furthermore, since the amount added is greater than the amount of sulfur (s) ( Atomic$ ratio) of emulsion-forming elements (such as Ti and Zr), the main part of sulfur (S) will react with Ti or Zr instead of Cu. On the other hand, the unexamined patent notice number Hei 6-240365 and Hei 7-216340 describe the addition of a combination of Cu and P to improve the corrosion resistance of bake-hardened IF steel. According to these announcements, the amount of Cu added is 0.05-1.0%. Improved anti-corruption. However, in fact excessive amounts of Cu (0.2% or more) will be added. The unexamined patent publication No. Hei 10-280048 and Hei 10-287954 suggest reheating at that time. 'Dissolve carbon sulfide (based on Ti-CS) in the carbide and anneal 'to A solid solution is obtained in the crystal grain boundary' so that a bake hardenability (BH) value of 30 MPa or more (a difference in yield strength before and after baking) can be obtained. According to the aforementioned announcement, the solid can be reinforced. The solution or the ε-Cu precipitate is used to increase the strength. The cu is used to form the e-Cu precipitate and improve the corrosion resistance. Further, Cu is used as the crystal nucleus of the carbide precipitation. No high yield ratio is mentioned in these publications. (ie, yield strength/tensile strength) increases and the in-plane anisotropy index decreases. If the ratio of the tensile strength to the yield strength of the positive steel sheet (ie, the yield ratio) is high, the sheet of scared steel can be reduced. Thickness, which can effectively reduce the weight. In addition, if the in-plane anisotropy index of the IF steel sheet is low, it can produce less enemies and ears during the addition of I and after processing. [Announcement] [Technical Problem] It is an object of some specific embodiments of the present invention to provide a Ti-based IF cold-rolled steel sheet which is capable of obtaining a high yield ratio and a low in-plane anisotropy index. Another goal of some specific embodiments A method for producing the IF cold-rolled steel sheet is provided. [Process Solution] The present invention has been provided as a cold-mild steel sheet having the following composition, 匕3 〇.〇1% or less C, 0.01-〇. 2% & Cu, 0.005-0.08% 〇 1% or less 8.1, 0.004% or less N, 0.2% or less 1327171 p, 0.0001-0.002% B, 0.005-0.15% Ti (by weight), and the remainder is Fe and other unavoidable impurities' where the composition satisfies the following relationship: 1 sentence Cu/63.5)/(S*/32) illusion 0 and S*=s_0.8x (Ti_0 .8x (48/14) x N) x (32/48); and the steel sheet comprises CuS precipitates having an average size of 微米 2 μm or less. According to the present invention, there has been provided a cold rolled steel sheet having the following composition comprising: 0.01% or less C, 0.01-0.2% Cu, 0.01-0.3% Mn, 0.005-0.08% S, 0.1% Or less A1, 0.004% or less N, 0.2% or less P, 〇.〇〇〇ιτ〇·〇〇2% 10 Β, 0.005-0.15% Ti (by weight), And the remainder is Fe and other unavoidable impurities, wherein the composition satisfies the following relationship: l^Mn/55+Cu/63.5)/(S*/32)S30 and s*=S-0.8x (Ti-0.8 x (48/14) x N) x (32/48); and the steel sheet contains (Mn, Cu) S precipitates having an average size of 0.2 μm or less. According to the present invention, there has been provided a cold-rolled steel sheet having the following composition comprising: 0.01% or less of 00.01-0.2% of Cu, 0.005-0.08% of S, 0.1% or less of Abu 0.004 - 0.02% N, 0.2% or less P, 0.0001-0.002% B, 0.005-0.15% Ti (by weight), and the remainder is Fe and other unavoidable impurities, wherein the composition satisfies The following 20 relationships: l$(Cu/63.5)/(S*/32)S30,1$(Α1/27)/(Ν*/14)£ΐ〇, S*=S-0.8x(Ti-0.8x (48/14)xN)x(32/48) and N*=N-0.8x(Ti-0.8x (48/32)xS))x(14/48); and the steel sheet contains an average size〇 CuS and A1N precipitates of _2 microns or smaller. According to the present invention, there has been provided a cold-rolled steel sheet 9 1327171 having the following composition which comprises: 0.01% or less c, 0.01-0.2% Cu, 0.01-0.3% Μ, 0.005-0.08% S , 0.1% or less A Bu 0.004-0.02% of the heart 0.2% or less? 〇0001_0 002% of 8, 〇.〇〇5-〇15% of 1^(by weight)' and the remainder is Fe and other unavoidable impurities, wherein the 5 composition satisfies the following relationship: H(Mn /55+Cu/63.5)/(S*/32)S30, 1<(Α1/27)/(Ν*/14)<1〇, S*=S-0.8x(Ti-0.8x(48/ 14) xN)x(32/48) and N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48); and the steel sheet comprises an average size of 0.2 μm or more Small (Mn, Cu) S and A1N precipitates. According to the present invention, there has been provided a cold-rolled steel sheet 10 having the following composition comprising 0.01% or less of C, 0.08% or less of S, 0.1% or less of Bab 0.004% or less. Ν, 0. 2% or less of P, 〇.〇〇〇l-〇.〇〇2% of B, 0.005-0.15% of Ti, selected from 0.01-0.2% of Cu '0.01-0.3% Μη and at least one of 0.004-0.2% of N (by weight), and the remainder being Fe and other unavoidable impurities, wherein the composition satisfies the following 15 series: H(Mn/55+Cu/63.5)/ (S*/32) Magic 0, 1s (A1/27) / (N*/14) $10 (where the N content is 0.004% or more), s*=S-0.8x (Ti-0.8x (48 /14) xN)x(32/48) and N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48); and the steel sheet comprises an average size selected from At least one of (Mn, Cu)S and A1N precipitates of 0.2 μm or less. 20 When the cold-mild steel sheet of the present invention satisfies the following relationship between the C, Ti, N and S contents: 0.8 minutes Ti*/48)/(C/12)$5.〇 and Ti=Ti-〇.8x ((48/14)xN+(48/32)xS), they can exhibit room temperature non-aging properties. In addition, when the solute carbon (Cs) [Cs = (C - Ti * xl2 / 48) x l0000, where Ti * = Ti - 0.8x ((48 / 14) x N + (48 / 32) x S) ' When Ti* small 10 1327171 is at 0, Τι* is defined as 0] (which is determined by c and Ti contents) from 5 to 30, the cold-rolled steel sheet of the present invention can exhibit bake hardenability. Depending on the design of the composition, the cold rolled steel sheet of the present invention is characterized by a soft cold rolled steel sheet having a grade of 280 MPa and a south strength having a number of 34 〇 5 MPa or more. Cold rolled steel sheet. When the P content in the composition of the present invention is 〇.〇15% or less, the soft cold-rolled steel sheet having the order of 280 MPa can be produced. When the soft cold-rolled steel sheet further contains a solid solution reinforcing element selected from at least one of Si and Cr or a P content in the range of 0.015 to 0.2%, a high strength of 340 MPa or more is obtained. In the high strength steel containing P alone, the p content is preferably in the range of 0.03% to 0.2%. The Si content in the high strength steel is preferably in the range of from 1 to 0.8%. The Cr content in the high strength steel is preferably in the range of from 0.2 to 1.2. The cold rolled steel sheet of the present invention contains an example of at least one element selected from the group consisting of Si and Cr. The P content can be freely designed to be 0.2% by weight or less. 15 For better workability, the cold rolled steel sheet of the present invention may further contain 0.01 to 0.2% by weight of Mo. According to the present invention, there has been provided a method of producing the cold-rolled steel sheet, the method comprising reheating a plate satisfying one of the compositions to a temperature of 1, l ° C or higher; at the Α γ 3 metamorphic point or The 20 reheated plate is hot rolled at a higher finishing temperature to provide a hot rolled steel sheet; the hot rolled steel sheet is cooled at a rate of 30 CTC/min; at 7 Torr (Tc or The crucible-cooled steel sheet is wound lower; the wound steel sheet is cold-rolled, and the cold-rolled steel sheet is continuously annealed. [Best Mode] 11 1327171 The present invention will be described in detail below. In the cold-rolled steel sheet of the present invention, some fine precipitates having a size of 0.2 μm or less are distributed. Examples of the precipitates include MnS precipitates, CuS precipitates, and composite precipitates of MnS and CuS. These precipitates 5 are simply referred to as "(Mn, Cu)S". The inventors have found that when fine precipitates are distributed in Ti-based IF steel, the yield strength of the IF steel will increase and The in-plane anisotropy index of IF steel will decrease, which will lead to improved workability. The present invention It has been achieved based on the results of this study. The precipitates used in the present invention have attracted little attention in the conventional IF steel. In particular, from the viewpoint of yield strength and in-plane anisotropy index, the precipitation The material has not been actively used. It is necessary to adjust the components in the Ti-based IF steel to obtain (Mn, Cu)S precipitates and/or A1N precipitates. If the IF steel contains Ti, Zr and other elements When S and N are preferentially reacted with Ti and Zr, the 15 sheets of the cold-rolled steel of the present invention are Ti-added IF steel, and Ti reacts with C, N and S. Therefore, it is necessary to adjust the components so that S And N are separately precipitated into (Mn, Cu)S and A1N forms. The fine precipitates thus obtained allow the formation of minute crystal grains. The fineness of crystal grain size will relatively increase the ratio of crystal grain boundaries. The dissolved carbon will be present in a larger amount in the crystal grain boundaries (compared to within the crystal 20 grains) to achieve excellent room temperature non-aging properties because of the dissolved carbon present in the crystal grains. Can drift more freely, it will stick to the movable misalignment, from Affects the room temperature aging properties. In comparison, the dissolved carbon in the stable position (such as in the crystallization date and in the vicinity of the precipitate) will be at high temperatures (for example, coating / processing temperature) ) The activity of 12 1327171 affects the bake hardenability. The fine precipitates distributed in the steel sheet of the present invention have a positive influence on the increase in yield strength caused by the increase of precipitates, which can improve the strength _ extension Sex balance, in-plane anisotropy index, and plasticity anisotropy. For this purpose, fine (Mn, Cu)S precipitates and A1N precipitates must be uniformly distributed. According to the cold-rolled steel sheet of the present invention, the effect is affected. The content of the components of the precipitates, the composition between the components, the manufacturing conditions, and especially the rate of cooling after hot rolling all have a significant influence on the distribution of the fine precipitates. The constituent components of the cold rolled steel sheet according to the present invention will be explained. The carbon (C) content is limited to 0.01% or less. Carbon (C) affects the room temperature aging resistance and baking hardening ability of the cold rolled steel sheet. When the carbon content exceeds 0.01%, it is necessary to add a reagent to remove residual carbon, which is economically disadvantageous and is not desirable in terms of formability. When it is intended to achieve only room temperature aging resistance, it is preferred to maintain the carbon content at a low temperature of 15 degrees, which can reduce the amount of the expensive agent Ti added. Each sound #彳佳' and 0.0〇5% to 〇.〇1% is better. When the carbon content is less than _5%, room temperature aging resistance can be secured without increasing the amount of Ti. The copper (Cu) content is preferably in the range of 0.01 to 0.2%. 2〇 Copper is supplied to form fine (10) precipitates, which makes the crystal grains fine. Copper will reduce the variation in the surface of the cold-rolled steel by precipitation promoting filaments and improve the yield of the cold-rolled material. The formation of a fine analysis of iU does not require a Cu content of 〇.〇1% or more. When the Cu content is more than μ%, coarse precipitates can be obtained. . Content range: 〇.〇33 to 2% 13 1327171 Better. The (Mn) content is preferably in the range of 0.01 to 0.3%. The bell is provided to precipitate sulfur (e.g., Μ n S precipitate) in the solid solution state of steel. Thus, the occurrence of hot brittleness by dissolved sulfur is prevented; or 5 is known as a solid solution reinforcing element. From this process point of view, a large amount of manganese is usually added. The inventors have found that very fine MnS precipitates are obtained when the manganese content is reduced and the enthalpy content is optimal. Based on the results of this study, the manganese content was limited to 0.3% or less. In order to ensure this feature, the seam content must be 0.01% or more. When the manganese content is less than 0.01% (i.e., the residual sulfur content in the state of the solid solution is high), hot brittleness occurs. When the manganese content is more than 0.3%, coarse MnS precipitates are formed, making it difficult to achieve the desired strength. A more desirable Μη content is in the range of 0.01 to 0.12%. The sulfur (S) content is limited to 0.08% or less. Sulfur (S) reacts with Cu and/or Μη to form precipitates of CuS and MnS, respectively. When the sulfur content is more than 0.08%, the proportion of dissolved sulfur will increase. This increase in dissolved sulfur will greatly impair the ductility and formability of the steel sheet and increase the risk of hot brittleness. In order to obtain as many CuS and/or MnS precipitates as possible, a sulfur content of 0.005% or more is preferred. The aluminum (A1) content is limited to 0.1% or less. 20 Aluminum reacts with nitrogen (N) to form fine A1N precipitates, so aging is completely prevented by the dissolved nitrogen. When the nitrogen content is 〇〇〇4% or more, the A1N precipitate can be sufficiently formed. In the steel sheet, the distribution of the fine A1N precipitates allows the formation of minute crystal grains, and the yield strength of the steel sheet is improved by increasing the precipitates. A more desirable A1 content range is from 0.1 to 14 1327171 0.1%. The nitrogen (N) content is limited to 0.02% or less. When the A1N precipitate is intended to be used, the amount of nitrogen added is at most 0.02%. In other respects, the nitrogen content is controlled to 0 〇〇 4% or less. When the nitrogen content is less than 0.004%, the number of precipitates of A1N is small, and therefore, the fineness effect of the crystal grains and the effect of the precipitate increase are ignored. In comparison, when the content of the atmosphere is more than 0.02%, it is difficult to use dissolved nitrogen to ensure aging properties. The phosphorus (P) content is limited to 0.2% or less. Phosphorus is a 70-cell with an excellent solid solution reinforcing effect while allowing a slight decrease of 1 〇. Phosphorus ensures that the controlled steel sheets of the present invention have high strength. It is desirable that in steels requiring a strength grade of 28 MPa, the phosphorus content is limited to 15% or less. It is desirable that the scale content in the same strength steel of 34 MPa is limited to more than 0 015% and not more than 0.2%. When the breaking content exceeds 〇·2%, the ductility of the steel sheet can be reduced. It is preferable to limit the content of the scale to a maximum of 2%. When the condition 1: is added in the present invention, "4 s can be appropriately controlled at 〇 2% or less to achieve the desired strength. The boron (B) content is preferably in the range of 〇.0001 to 〇〇〇2%. Join the shed to prevent secondary processing brittleness. For this purpose, a preferred amount of '3' is 0.0001% or more. When the butterfly content exceeds (10) 〇 (10), the deep drawability of the steel sheet is remarkably deteriorated. It is preferred that the Ti(Ti) 3塁 range is from 〇〇5 to 〇. The purpose of adding titanium is to preserve the non-aging properties and to improve the formability of the steel sheet. Ti, which is a potent carbide forming element, is added to the steel to form TiC precipitates in 15 1327171 steel. The Tic precipitate allows the dissolved carbon to precipitate to maintain a non-aging property. When the Ti content added is less than 0005%, the amount of TiC precipitate obtained is very small. Therefore, the steel sheet is not well textured, so that there is only a slight improvement in the deep drawability of the steel sheet. In comparison, 5 when the amount of titanium added exceeds 0.15%, a very large Tic precipitate is formed. Therefore, the fineness effect of the crystal grains will be reduced, which will result in a high in-plane anisotropy index, a decrease in yield strength, and a significant deterioration in plating characteristics. In order to obtain (Mn, Cu)S and A1N precipitates, the contents of Mn, Cu, S, Ti, A1, N and C were adjusted within the range defined by the following relationship. The individual components indicated by 'in the following relationship' are expressed in weight percent. l<(Cu/63.5)/(S*/32)<30 (1) S*=S-0.8x(Ti-〇.8x(48/14)xN)x(32/48) (2) In relationship 1 Medium 'S* (which is determined by relationship 2) represents the sulfur content that does not react with Ti and then reacts with Cu. In order to obtain fine CuS precipitates, it is preferable that the value of 15 (Cu/63.5) / (s* / 32) is equal to or greater than 1. If the (Cu/63.5)/(S*/32) value is greater than 30, an undesired coarse CuS precipitate will be distributed. In order to stably obtain CuS precipitates having a size of 0.2 μm or less, the (Cu/63.5)/(S*/32) value is preferably in the range of 1 to 20, more preferably 1 to 9, and most preferably 1 to 6. l<(Mn/55+Cu/63.5)/(S*/32)<30 (3) Relationship 3 is related to the formation of (Mn, Cu)S precipitates, and can be added to the relationship 1 by adding Μη content And get. In order to obtain an effective (Mn, Cu)S precipitate, the (Mn/55+Cu/63.5)/(S*/32) value must be 1 or greater. When the value of the relationship 3 is more than 30, a coarse (Mn, Cu) S precipitate is obtained. In order to stably obtain 16 1327171 having a size of 0.2 μm or less (Mn Cu)s, a preferable value range of (Cu/63.5)/(S*/32) is preferably from 1 to 20, and from 1 to 9 is more preferable. Good and 1 to 6 best. When Ml^Cu is added together, the sum of him and the sum is preferably 0.05-0.4%. The reason for this limitation on the sum of Μη and Cu is to obtain a fine (micrometer) (Mn, Cu) S precipitate. 1<(Α1/27)/(Ν*/14)<1〇(4) N*=N-0.8x(Ti-0.8x(48/32)xS)x(14/48) (5) Relationship 4 and The formation of fine (Mn, Cu)S precipitates is related in the relationship 4 'N* (which is determined by the relationship 5) represents the 10 nitrogen content which does not react with Ti and then reacts with A1. In order to obtain fine A1N precipitates, it is preferable that the (Α1/27)/(Ν*/14) value ranges from 1 to 10. In order to obtain an effective A1N precipitate, the (Α1/27)/(Ν*/14) value must be 1 or greater. If the value of (Α1/27)/(Ν*/14) is more than 10, a coarse chain of A1N precipitates can be obtained, resulting in poor workability and low yield strength. Preferably, the value of (Α1/27)/(Ν*/14) ranges from 1 to 6.

根據本發明的冷軋鋼片材之組分,可根據欲獲得的 析出物種類,以不同的方法結合。例如,本發明提供一 種具有下列組成物之冷軋鋼片材,其包含:0.01%或較少 的C、0.08%或較少的S ' 0.1 %或較少的A1、0.004%或較 少的 N、0.2%或較少的 P、0.0001-0.002%的 B、0.005-0.15% 20 的 Ti、選自於 0.01-0.2% 的 Cu、0.01-0.3% 的 Μη 及 0.004-0.2%的Ν之至少一種(以重量計),且剩餘部分為Fe 及其它無法避免的雜質,其中該組成物滿足下列關係: l<(Mn/55+Cu/63.5)/(S*/32)<30 > 1<(Α1/27)/(Ν*/14)<1〇 (附帶條件為N含量為0.004%或更多), 17 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48)及 N*=N-0.8x(Ti-0.8x (48/32)xS))x(14/48);及該鋼片材包含選自於具有平均尺寸 0.2微米或較小的MnS、CuS、MnS及A1N析出物之至少一 種。也就是說,選自於由0.01-0.2%的Cu、0.01-0.3%的Μη 及0.004-0.2%的Ν所組成之群的一或多種將導致具有尺寸 不大於0.2微米的不同(Mn,Cu)S及Α1Ν析出物之組合。 在本發明的鋼片材中,碳會析出成NbC及TiC形式。因 此’該鋼片材的室溫抗老化性及烘烤硬化能力將受到未存 在於NbC及TiC析出物之經溶解的碳之狀態影響。考慮到這 些需求’該Ti及C含量滿足下列關係最佳。 0.8<(Ti*/48+Nb/93)/(C/12)<5.0 ⑹The components of the cold-rolled steel sheet according to the present invention can be combined in different ways depending on the type of precipitate to be obtained. For example, the present invention provides a cold rolled steel sheet having the following composition comprising: 0.01% or less of C, 0.08% or less of S'0.1% or less of A1, 0.004% or less of N 0.2% or less of P, 0.0001-0.002% of B, 0.005-0.15% of 20 Ti, at least one selected from the group consisting of 0.01-0.2% of Cu, 0.01-0.3% of Μη, and 0.004-0.2% of Ν. (by weight), and the remainder is Fe and other unavoidable impurities, wherein the composition satisfies the following relationship: l <(Mn/55+Cu/63.5)/(S*/32)<30 >1<(Α1/27)/(Ν*/14)<1〇 (with the condition that the N content is 0.004% or more), 17 S*=S-0.8x(Ti-0.8x(48/14)xN x (32/48) and N*=N-0.8x (Ti-0.8x (48/32) xS)) x (14/48); and the steel sheet is selected from the group consisting of having an average size of 0.2 μm or At least one of smaller MnS, CuS, MnS, and A1N precipitates. That is, one or more selected from the group consisting of 0.01-0.2% Cu, 0.01-0.3% Μ, and 0.004-0.2% Ν will result in a difference of not more than 0.2 μm (Mn, Cu). ) A combination of S and Α1Ν precipitates. In the steel sheet of the present invention, carbon precipitates into the NbC and TiC forms. Therefore, the room temperature aging resistance and bake hardenability of the steel sheet are affected by the state of dissolved carbon which is not present in the NbC and TiC precipitates. Taking into account these requirements, the Ti and C contents satisfy the following relationships best. 0.8<(Ti*/48+Nb/93)/(C/12)<5.0 (6)

Ti*=Ti-0.8x((48/14)xN+(48/32)xS) (7) 關係6與TiC析出物之形成(以移除在固體溶液狀態中 的碳)相關’因此將達成室溫不老化性質。在關係6中,Ti*(其 由關係1決定)代表與N及S反應且之後與C反應的鈦含量。 當(Ti*/48)/(C/12)值小於0.8時,難以保註室溫不老化性 質。比較上,當(Ti*/48)/(C/12)值大於5時,殘餘在鋼之固 體溶液狀態中的Ti量較多,此將降低鋼的延展性。當意欲 獲得室溫不老化性質而不保証烘烤硬化能力時,將碳含量 限制至0.005%或較少較佳。雖然碳含量多於〇〇〇5%時,當 滿足關係6時亦可獲得室溫不老化性質,但是TiC析出物之 量將增加’從而將降低鋼片材的可加工性。 (8)Ti*=Ti-0.8x((48/14)xN+(48/32)xS) (7) Relationship 6 is related to the formation of TiC precipitates (to remove carbon in the state of solid solution) The temperature is not aging. In relation 6, Ti* (which is determined by relationship 1) represents the titanium content which reacts with N and S and then reacts with C. When the (Ti*/48)/(C/12) value is less than 0.8, it is difficult to maintain the room temperature non-aging property. In comparison, when the value of (Ti*/48)/(C/12) is more than 5, the amount of Ti remaining in the solid solution state of steel is large, which lowers the ductility of the steel. When it is intended to obtain room temperature non-aging properties without guaranteeing bake hardenability, it is preferred to limit the carbon content to 0.005% or less. Although the carbon content is more than 〇〇〇5%, the room temperature non-aging property can be obtained when the relationship 6 is satisfied, but the amount of TiC precipitates will increase', thereby lowering the workability of the steel sheet. (8)

Cs=(C-Ti*xl2/48)xl0000 1327171 (其限制條件為當Ti*小於〇時,Ti*定義為〇β) 闕係8與達_烤硬化能力相關(其來自臟,以 I不)代表不析出成TiC形式之已溶解的碳含量。為了獲 付间,烤硬化值,Cs值必需為5 PPm或更大。若Cs值超過30 5 PPm時,經溶解的碳含量將增加,使其難以獲得室溫不老化 性質。 該細微析出物均勻分佈在本發明之組成物中優良。該 析出物的平均尺寸為0.2微米或較小較佳。根據本發明家^ 進行的研究,當該析出物之平均尺寸大於〇·2微米時,該鋼 10片材具有差的強度及低的面内各向異性指數。再者,在本 發明之組成物中分佈有大量尺寸為0.2微米或較小的析出 物。雖然析出物之分佈數目無特別限制’但較高的析出物 數目更優良。該經分佈的析出物數目為1χ1〇5/平方毫米或更 大較佳’ 1Χ106/平方毫米或更大更佳及1χ1〇7/平方毫米或更 15大最佳。隨著析出物之數目增加,可塑性-各向異性指數將 增加’且面内各向異性指數會降低,結果,將大大改良可 加工性。通常熟知的是,在増加可加工性上會有所限弟), 因為面内各向異性指數會隨著可塑性_各向異性指數増加 而增加。值得注意的是,當分佈在本發明之鋼片材中的析 20出物之數目增加時,該鋼片材的可塑性_各向異性指數將増 加及該鋼片材之面内各向異性指數將降低。本發明之形^ 細微析出物的鋼片材可滿足0.58或較高之屈強比(屈服強度 /抗張強度)。 ^ 當將本發明之鋼片材應用至高強度鋼片材時,它們可 19 1327171 進一步包含選自於P、Si及Cr之至少一種的固體溶液補強元 素。P之加入效應先前已描述’因此省略其說明。 矽(Si)含量範圍在〇_1至0.8%較佳。 S i為一具有固體溶液補強效應且顯示出稍微減低延伸 5度的元素。Sl可保s正本發明之鋼片材(其中該析出物經控制) 的高強度。僅有當Si含量為〇.1%或更多時,可保証高強度。 但是,當Si含量多於0.8%時,鋼片材之延展性將降低。 鉻(Cr)含量範圍在〇.2至1.2%較佳。Cs=(C-Ti*xl2/48)xl0000 1327171 (The limitation is that when Ti* is less than 〇, Ti* is defined as 〇β) 阙8 is related to the ability to reach the sinter hardening (it comes from dirty, I does not ) represents the dissolved carbon content which does not precipitate into a TiC form. In order to obtain the baking hardening value, the Cs value must be 5 PPm or more. If the Cs value exceeds 30 5 PPm, the dissolved carbon content will increase, making it difficult to obtain room temperature non-aging properties. The fine precipitates are uniformly distributed in the composition of the present invention. The average size of the precipitates is preferably 0.2 μm or less. According to a study conducted by the present inventors, when the average size of the precipitate is larger than 〇·2 μm, the steel 10 sheet has poor strength and a low in-plane anisotropy index. Further, a large number of precipitates having a size of 0.2 μm or less are distributed in the composition of the present invention. Although the number of distributions of precipitates is not particularly limited', the number of higher precipitates is more excellent. The number of the precipitates distributed is 1χ1〇5/mm 2 or more preferably '1Χ106/mm 2 or more and more preferably 1χ1〇7/mm 2 or 15 or more. As the number of precipitates increases, the plasticity-anisotropic index increases, and the in-plane anisotropy index decreases, and as a result, the workability is greatly improved. It is generally known that there is a limit to the processability of the addition, because the in-plane anisotropy index increases as the plasticity-anisotropic index increases. It is worth noting that when the number of precipitated 20 materials distributed in the steel sheet of the present invention is increased, the plasticity_anisotropic index of the steel sheet is added to the in-plane anisotropy index of the steel sheet. Will decrease. The steel sheet of the fine precipitate of the present invention can satisfy a yield ratio of 0.58 or higher (yield strength / tensile strength). When the steel sheets of the present invention are applied to a high-strength steel sheet, they may further comprise a solid solution reinforcing element selected from at least one of P, Si and Cr. The effect of the addition of P has been previously described, and thus the description thereof is omitted. The cerium (Si) content is preferably in the range of 〇_1 to 0.8%. S i is an element having a solid solution reinforcing effect and exhibiting a slight decrease in elongation by 5 degrees. Sl protects the high strength of the steel sheet of the present invention in which the precipitate is controlled. High strength is ensured only when the Si content is 〇.1% or more. However, when the Si content is more than 0.8%, the ductility of the steel sheet will be lowered. The chromium (Cr) content is preferably in the range of from 0.2 to 1.2%.

Cr為一具有固體溶液補強效應的元素,其可降低二次 1〇加工脆性溫度及降低老化指數(由於&碳化物形成)心可保 °正本發明之鋼片材(其中該析出物經控制)的高強度,且提供 其以降低該鋼片材之面内各向異性指數。僅有當&含量為 或更夕時可保5正局強度。但是,當Cr含量超過1.2% 時,該鋼片材的延展性將降低。 本發明之冷軋鋼片材可進一步包含鉬(Mo)。 "^月之冷札鋼片材中的钥(Mo)含量範圍在〇.〇]_至 〇·2%較佳。 20 元素加入Mo作為一増加鋼片材的可塑性各向異性指數之 各向異僅有當鉬含量不低於0·01%時,該鋼片材的可塑性- 、眭指數將増加。但是,當鉬含量超過〇2%時該 土性 '各向異性和 日數不會進一步增加且會有熱脆性的危險。 ;此之後’將參考下列的較佳具體實施例來解釋 咧之冷軋鋼Η 奴 村的製造方法。本發明之具體實施例可製得 20 1327171 不同改質’且此改質在本發明之範圍内。 本發明之方法的特徵為透過熱軋及冷軋來加工一滿足 上述所定義的鋼組成物之一的鋼,以在一經冷軋的薄片中 形成具有平均尺寸0.2微米或較小之析出物。在該經冷軋的 5板中之析出物的平均尺寸將受到該鋼組成物之設計及加工 條件影響’诸如再加熱溫度及捲繞溫度。特別是,在熱軋 後之冷卻速率對析出物的平均尺寸有直接影響。 熱軋條件_ 在本發明中,再加熱一滿足上述所定義的組成物之一 10的鋼’然後讓其接受熱軋。該再加熱溫度為1J〇〇°c或較高 較佳。當將該鋼再加熱至溫度低於1,100。(:時,在連續鎮造 期間所形成的粗糙析出物未完全溶解且將餘留。該粗縫的 析出物甚至在熱軋後仍然會餘留。 最好在不低於Ah變態點之精軋溫度下進行熱軋。當該 15 精軋溫度低於Ah變態點時’將產生輾軋晶粒,其將惡化可 加工性及造成差的強度。 在捲繞前及在熱軋後,以300。(:/分鐘或較快的速率進 行冷卻較佳。雖然該組分的組成物經控制以獲得細微的析 出物,該析出物可在冷卻速率低於30CTC/分鐘下具有平均 20尺寸大於〇·2微米。也就是說,當冷卻速率增加時,會產生 許多晶核,因此析出物的尺寸將變成很細很細。因為析出 物的尺寸會隨著冷卻速率增加而減少,故不需要定義出冷 卻速率的上限。但是,當冷卻速率高於i,o〇crc/分鐘時,不 會在析出物的尺寸減少效應上進一步顯示出明顯改良。因 21 1327171 此’冷卻速率的範圍在3〇〇_i〇〇〇°c/分鐘較佳。 捲繞條侔 在熱乾後,在溫度不高於700°C下進行捲繞。當捲繞溫 度高於700°C時,析出物會太粗糙地生長,從而難以保証高 5 強度。 冷軋條件 以50-90%的減低速率來冷軋該鋼。因為低於5〇%的冷 減低速率將導致在退火再結晶後產生小量晶核,在退火後 結晶晶粒過度生長,因此經由退火再結晶的結晶晶粒將變 10粗,此將導致強度及成形性減低。高於90%的冷減低速率 將導致成形性提高,同時將產生過度大量的晶核,使得經 由退火再結晶的結晶晶粒將變成太細,從而損壞鋼的延展 性。 連續退火 連續退火溫度在決定最後產物的機械性質上扮演一重Cr is an element having a reinforcing effect of a solid solution, which can reduce the secondary brittle temperature and reduce the aging index (due to & carbide formation). The steel sheet of the present invention can be controlled (where the precipitate is controlled) High strength and provided to reduce the in-plane anisotropy index of the steel sheet. Only 5 normal strengths can be guaranteed when the & content is or more. However, when the Cr content exceeds 1.2%, the ductility of the steel sheet will be lowered. The cold rolled steel sheet of the present invention may further comprise molybdenum (Mo). The key (Mo) content in the cold-stained steel sheet of "^月 is in the range of 〇.〇]_ to 〇·2%. The elementality of the addition of Mo as a sheet of steel sheet is different. When the molybdenum content is not less than 0. 01%, the plasticity and the niobium index of the steel sheet will increase. However, when the molybdenum content exceeds 〇2%, the soil's anisotropy and the number of days do not increase further and there is a risk of hot brittleness. After that, the manufacturing method of the cold-rolled steel 奴Nu Village will be explained with reference to the following preferred embodiments. Specific embodiments of the invention can produce 20 1327171 different modifications and this modification is within the scope of the invention. The method of the present invention is characterized in that a steel satisfying one of the steel compositions defined above is processed by hot rolling and cold rolling to form a precipitate having an average size of 0.2 μm or less in a cold rolled sheet. The average size of the precipitates in the cold rolled 5 sheets will be affected by the design and processing conditions of the steel composition 'such as reheating temperature and winding temperature. In particular, the cooling rate after hot rolling has a direct influence on the average size of the precipitate. Hot rolling conditions _ In the present invention, a steel 'which satisfies one of the above-defined compositions 10' is reheated and then subjected to hot rolling. The reheating temperature is preferably 1 J 〇〇 ° C or higher. When the steel is reheated to a temperature below 1,100. (: When the coarse precipitate formed during continuous tempering is not completely dissolved and will remain. The precipitate of the coarse slit will remain even after hot rolling. It is better not to be lower than the point of Ah metamorphosis. Hot rolling at the rolling temperature. When the 15 finishing temperature is lower than the Ah deformation point, 'rolling grains will be produced, which will deteriorate the workability and cause poor strength. Before winding and after hot rolling, 300. (:/min or faster rate of cooling is preferred. Although the composition of the component is controlled to obtain fine precipitates, the precipitate may have an average 20 size greater than a cooling rate of less than 30 CTC/min. 〇·2 μm. That is to say, when the cooling rate is increased, many crystal nuclei are generated, so the size of the precipitate will become very fine and fine. Since the size of the precipitate will decrease as the cooling rate increases, it is not necessary. The upper limit of the cooling rate is defined. However, when the cooling rate is higher than i, o 〇 crc / min, there is no further significant improvement in the size reduction effect of the precipitate. Since 21 1327171 this 'cooling rate range is 3 〇〇_i〇〇〇°c Preferably, the winding strip is wound after being dried at a temperature not higher than 700 ° C. When the winding temperature is higher than 700 ° C, the precipitates grow too coarsely, so that it is difficult to ensure high 5 Strength. Cold rolling conditions cold-roll the steel at a reduced rate of 50-90% because a cold reduction rate of less than 5〇% will result in a small amount of crystal nuclei after annealing and recrystallization, and excessive crystal grains after annealing. Growth, so the crystal grains recrystallized via annealing will become 10 thick, which will result in a decrease in strength and formability. A cold reduction rate higher than 90% will result in an increase in formability, while an excessively large number of crystal nuclei will be produced, resulting in The crystal grains that are annealed and recrystallized will become too fine, thereby damaging the ductility of the steel. Continuous annealing The continuous annealing temperature plays a role in determining the mechanical properties of the final product.

20 要角色。根據本發明,在溫度700至900°C下進行該連續退 火較佳。當在溫度低於7〇〇。(:下進行連續退火時,再結晶將 不完全’從而無法餘想要的延展性。比較上,當在溫度 高於900°C下進行連續退火時,再結晶晶粒會變粗链從而 分鐘較佳 將降低鋼強度。料該連續退火,直朗完全再結 之再結晶可完成約10秒或更多。該連續退火進行10秒至3〇 I:實施冷式】 [發明模式] 22 現在,本發明將參考下列實例更詳細地描述β 根據ASTM Ε-8標準測試方法來評估在下列實例中所 製造的鋼片材之機舰質1別是,對每片㈣材進行機 械加工,以獲得標準樣品。使用抗張強度測試機(可從尹士 壯公司(Instron Company)購得,型號6〇25)來測量屈服強 度、抗張強度' 延伸度、可塑性-各向異性指數心值)、面 内各向異性指數(Δγ值)及老化指數。各別利用下列方程式: 及^=^-21^+^)/2來計算可塑性_各向異 性指數rm及面内各向異性指數(^^值)。 鋼片材的老化指數定義為一屈服點延伸度,其藉由退 火每個樣品,接著1.0%的表皮輥軋及在1〇〇它下熱加工2小 時來測量。利用下列程序來測量標準樣品的烘烤硬化(BH) 值。在對每個樣品施加2%應變後,在17(rc下退火該經變 形的樣品20分鐘。測量該經退火的樣品之屈服強度。藉由 從在退火後所測量之屈服強度值中減去在退火前所測量的 屈服強度來計算BH值。 實例1 首先,根據顯不在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼#材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在65〇。匸下 捲繞’以75%的減低速率來冷乾,接著連續退火,以製造〆 經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點)進行 精軋熱軋,且藉由以10°C/秒之速率來加熱該熱軋鋼片材炱 830°C來進行連續退火40秒,以製造出最後的冷軋鋼片材。 1327171 表1 樣品 編號 化學組分(重量%) C Cu S A1 N P B Ί1 其他 All 0.0008 0.17 0.026 0.027 0.0005 0.05 0.0004 0.039 Si:0.02 A12 0.0015 0.09 0.037 0.042 0.0032 0.082 0.0007 0.059 Si:0_15 A13 0.0028 0.12 0.047 0.023 0.0026 0.117 0.0012 0.075 Si:0.25 A14 0.0015 0.08 0.036 0.035 0.0014 0.083 0.0007 0.058 Si:0.17 Μο.Ό.07 A15 0.0017 0.11 0.05 0.034 0.0016 0.082 0.0009 0.072 Si:0.18 Cr:0.17 A16 0.0022 0.11 0.01 0.038 0.0015 0.059 0 0 A17 0.0046 0 0.011 0.029 0.0027 0.125 0.0008 0.16 表220 want a role. According to the present invention, it is preferred to carry out the continuous annealing at a temperature of 700 to 900 °C. When the temperature is below 7〇〇. (: When continuous annealing is performed, recrystallization will be incomplete', so that the desired ductility cannot be obtained. In comparison, when continuous annealing is performed at a temperature higher than 900 ° C, the recrystallized grains become thick and minute. Preferably, the strength of the steel is lowered. The continuous annealing is completed, and the recrystallization can be completed completely for about 10 seconds or more. The continuous annealing is performed for 10 seconds to 3 〇I: the cold type is performed] [Invention Mode] 22 Now, The present invention will be described in more detail with reference to the following examples. Beta is evaluated according to the ASTM Ε-8 standard test method for the mechanical properties of the steel sheets produced in the following examples, and each (four) material is machined to obtain Standard sample. Tensile strength tester (available from Instron Company, model 6〇25) to measure yield strength, tensile strength 'extension, plasticity-anisotropic index heart value, in-plane Anisotropy index (Δγ value) and aging index. The following equations are used: and ^=^-21^+^)/2 to calculate the plasticity _ anisotropy index rm and the in-plane anisotropy index (^^ value). The aging index of the steel sheet is defined as a yield point elongation which is measured by annealing each sample, followed by 1.0% skin rolling and hot working at 1 Torr for 2 hours. The following procedure was used to measure the bake hardenability (BH) values of the standard samples. After applying 2% strain to each sample, the deformed sample was annealed at 17 (rc) for 20 minutes. The yield strength of the annealed sample was measured by subtracting the yield strength value measured after annealing. The BH value was calculated from the measured yield strength before annealing.Example 1 First, a steel plate was prepared according to the composition not shown in the following table. The steel plate was reheated and finish rolled to provide a hot rolled steel. #材. The hot-rolled steel sheet was cooled at a rate of 400 ° C / min, at 65 〇. The underarm winding was chilled at a reduction rate of 75%, followed by continuous annealing to produce a cold chill. Rolled steel sheet. At this time, finish rolling hot rolling is performed at 910 ° C (which is greater than the Ar 3 transformation point), and the hot rolled steel sheet is heated at 830 ° C at a rate of 10 ° C / sec. Continuous annealing was carried out for 40 seconds to produce the final cold-rolled steel sheet. 1327171 Table 1 Sample No. Chemical Composition (% by weight) C Cu S A1 NPB Ί1 Others All 0.0008 0.17 0.026 0.027 0.0005 0.05 0.0004 0.039 Si:0.02 A12 0.0015 0.09 0.037 0.042 0.0032 0.082 0.0007 0.059 Si:0_15 A13 0.0028 0 .12 0.047 0.023 0.0026 0.117 0.0012 0.075 Si:0.25 A14 0.0015 0.08 0.036 0.035 0.0014 0.083 0.0007 0.058 Si:0.17 Μο.Ό.07 A15 0.0017 0.11 0.05 0.034 0.0016 0.082 0.0009 0.072 Si:0.18 Cr:0.17 A16 0.0022 0.11 0.01 0.038 0.0015 0.059 0 0 A17 0.0046 0 0.011 0.029 0.0027 0.125 0.0008 0.16 Table 2

樣品 編號 s* (Cu/63.5)/ (S*/32) (Ti*/48)/ (C/12) CuS析出物之 平均尺寸(微米) CuS析出物之 數目(毫米力 All 0.0059 14.443 2.01 0.06 3.2x106 A12 0.0102 4.4402 0.97 0.06 4.1x106 A13 0.0108 5.5975 1.02 0.06 4.5x106 A14 0.0071 5.6665 1.83 0.05 5.1x106 A15 0.0139 3.9764 U2 0.05 4.3x106 A16 0.0122 4.5458 0 0.08 4.5x106 A17 0 0 7.58 0.08 6.7x104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+148/32)xS) 24 5 1327171 表3 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Γπΐ Δτ ΑΙ (%) SWE (DBTT-t) All 219 348 46 2.22 0.34 0 •70 IS A12 260 398 40 1.93 0.32 0 -60 IS A13 325 451 37 1.85 0.36 0 •50 IS A14 321 457 34 1.82 0.31 0 -50 IS A15 337 455 35 1.79 0.31 0 -60 IS A16 232 348 43 1.12 0.29 0.62 -70 cs A17 275 448 28 1.82 0.48 0 -50 csSample No. s* (Cu/63.5) / (S*/32) (Ti*/48)/ (C/12) Average size of CuS precipitates (μm) Number of CuS precipitates (mm force All 0.0059 14.443 2.01 0.06 3.2x106 A12 0.0102 4.4402 0.97 0.06 4.1x106 A13 0.0108 5.5975 1.02 0.06 4.5x106 A14 0.0071 5.6665 1.83 0.05 5.1x106 A15 0.0139 3.9764 U2 0.05 4.3x106 A16 0.0122 4.5458 0 0.08 4.5x106 A17 0 0 7.58 0.08 6.7x104 S*=S-0.8 x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+148/32)xS) 24 5 1327171 Table 3 Sample No. Mechanical Properties Note Matters YS (million kPa) TS (million kPa) E1 (%) Γπΐ Δτ ΑΙ (%) SWE (DBTT-t) All 219 348 46 2.22 0.34 0 •70 IS A12 260 398 40 1.93 0.32 0 -60 IS A13 325 451 37 1.85 0.36 0 •50 IS A14 321 457 34 1.82 0.31 0 -50 IS A15 337 455 35 1.79 0.31 0 -60 IS A16 232 348 43 1.12 0.29 0.62 -70 cs A17 275 448 28 1.82 0.48 0 -50 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,Ar=面内各向 異性指數,AI=老化指數,SWE=二級加工脆化,IS=本發明的鋼,CS=比較用的鋼 實例2 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 25 15 1327171 表4*Note: YS = yield strength, TS = tensile strength, El = elongation, rm = plasticity - anisotropy index, Ar = in-plane anisotropy index, AI = aging index, SWE = secondary processing embrittlement, IS = steel of the present invention, CS = comparative steel example 2 First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 25 15 1327171 Table 4

樣品 編號 化學組分(重量%) C Μη Cu s A1 N P B Ti 其他 A21 0.0007 0.11 0.09 0.02 0.035 0.0008 0.043 0.0007 0.029 Si:0.08 A22 0.0012 0.08 0.12 0.032 0.039 0.0021 0.08 0.0009 0.049 Si:0.]7 A23 0.0028 0.11 0.16 0.041 0.025 0.0019 0.11 0.0005 0.064 Si:0.3 A24 0.0013 0.09 0.11 0.035 0.043 0.0023 0.082 0.0011 0.057 Si:0.26 Mo:0.1 A25 0.0015 0.1 0.09 0.05 0.025 0.001 0.075 0.0012 0.069 Si:0.32 Cr:0.21 A26 0.0035 0.45 0.14 0.009 0.033 0.0024 0.048 0.005 0 A27 0.0031 0.13 0.03 0.012 0.038 0.0021 0.118 0 0.15 Si:0,33 表5 樣品 編號 Cu+ Mn s* (Mn/55+ Cu/63.5)/ (S*/32) (Ti*/48)/ (C/12) (Mn,Cu)S 析出物之平均 尺寸(微米) (Mn,Cu)S 析出物之數目 (毫米_2) A21 0.2 0.0057 19.173 1 0.04 4.5xl06 A22 0.2 0.0089 11.972 1.01 0.04 5.2x10® A23 0.27 0.0096 14.994 0.86 0.03 6.3x10s A24 0.2 0.008 13.535 1.67 0.04 7.3xl06 A25 0.19 0.0147 7.0611 1.04 0.04 8_9xl06 A26 0.59 0.0125 26.566 -1.2 0.25 1·5χ104 A27 0.16 -0.065 -1.398 10.5 0.16 4.3x104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+i48/32)xS) 26 5 1327171 表6 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) i*m Δγ ΑΙ (%) SWE (DBTT-°C) A21 222 352 46 2.04 0.39 0 -70 IS A22 288 402 39 1.87 0.32 0 -60 IS A23 338 454 35 1.68 0.29 0 -50 IS A24 329 449 34 1.88 0.28 0 -50 IS A25 383 452 35 L64 0.29 0 -50 IS A26 238 342 43 1.21 0.59 1.73 -60 cs A27 302 433 30 1.65 0.48 0 -50 csSample No. Chemical composition (% by weight) C Μη Cu s A1 NPB Ti Other A21 0.0007 0.11 0.09 0.02 0.035 0.0008 0.043 0.0007 0.029 Si:0.08 A22 0.0012 0.08 0.12 0.032 0.039 0.0021 0.08 0.0009 0.049 Si:0.]7 A23 0.0028 0.11 0.16 0.041 0.025 0.0019 0.11 0.0005 0.064 Si:0.3 A24 0.0013 0.09 0.11 0.035 0.043 0.0023 0.082 0.0011 0.057 Si:0.26 Mo:0.1 A25 0.0015 0.1 0.09 0.05 0.025 0.001 0.075 0.0012 0.069 Si:0.32 Cr:0.21 A26 0.0035 0.45 0.14 0.009 0.033 0.0024 0.048 0.005 0 A27 0.0031 0.13 0.03 0.012 0.038 0.0021 0.118 0 0.15 Si:0,33 Table 5 Sample No. Cu+ Mn s* (Mn/55+ Cu/63.5)/ (S*/32) (Ti*/48)/ (C/ 12) (Mn, Cu)S Average size of precipitates (microns) (Mn, Cu) S Number of precipitates (mm_2) A21 0.2 0.0057 19.173 1 0.04 4.5xl06 A22 0.2 0.0089 11.972 1.01 0.04 5.2x10® A23 0.27 0.0096 14.994 0.86 0.03 6.3x10s A24 0.2 0.008 13.535 1.67 0.04 7.3xl06 A25 0.19 0.0147 7.0611 1.04 0.04 8_9xl06 A26 0.59 0.0125 26.566 -1.2 0.25 1·5χ104 A27 0.16 -0.065 -1.398 10.5 0.16 4.3x104 S*=S-0.8x(Ti - 0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+i48/32)xS) 26 5 1327171 Table 6 Sample No. Mechanical Properties Note YS (Hundred Wapa) TS (million kPa) E1 (%) i*m Δγ ΑΙ (%) SWE (DBTT-°C) A21 222 352 46 2.04 0.39 0 -70 IS A22 288 402 39 1.87 0.32 0 -60 IS A23 338 454 35 1.68 0.29 0 -50 IS A24 329 449 34 1.88 0.28 0 -50 IS A25 383 452 35 L64 0.29 0 -50 IS A26 238 342 43 1.21 0.59 1.73 -60 cs A27 302 433 30 1.65 0.48 0 -50 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,!·„=可塑性-各向異性指數,Δγ=面内各向 異性指數,SWE=二次加工脆性,ΑΙ=老化指數,IS=本發明的鋼,CS=比較用的鋼 5 實例3 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Αγ3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 27 15 1327171 表7*Note: YS = yield strength, TS = tensile strength, El = elongation,! „=plasticity-anisotropic index, Δγ=in-plane anisotropy index, SWE=secondary processing brittleness, ΑΙ=aging index, IS=steel of the invention, CS=comparative steel 5 Example 3 First, according to A steel plate is prepared by the composition shown in the following table. The steel plate is hot rolled and rerolled to provide a hot rolled steel sheet. The hot rolled steel is cooled at a rate of 400 ° C / minute. The sheet was wound at 650 ° C for 10, cold rolled at a reduction rate of 75%, followed by continuous annealing to produce a cold rolled steel sheet. At this time, at 910 ° C (which is greater than the Α γ 3 metamorphic point) Finishing hot rolling was performed, and the hot rolled steel sheet was heated to 830 ° C at a rate of 10 ° C / sec for continuous annealing for 40 seconds to produce the final cold rolled steel sheet. 27 15 1327171 Table 7

樣品 編號 化學組分(重量%) C Cu S A1 N P B Ti 其他 A31 0.0005 0.08 0.023 0.035 0.01 0.044 0.0007 0.057 Si:0.06 A32 0.0016 0.1 0.025 0.042 0.0132 0.084 0.001 0.072 Si:0.16 A33 0.0026 0.16 0.034 0.041 0.0148 0.121 0.0009 0.09 Si:0.21 A34 0.0011 0.09 0.025 0.025 0.0114 0.044 0.0007 0.065 Si:0.09 Mo:0.08 A35 0.0005 0.13 0.023 0.037 0.011 0.046 0.0008 0.06 Cr:0.22 A36 0.0038 0.09 0.013 0.032 0.0012 0.042 0.0005 0 A37 0.0014 0 0.009 0.055 0.012 0.12 0.0005 0.14 Si:0.13 表8 樣品 編號 S* (Cu/63.5)/ (S*/32) (Ti*/48)/ (C/12) N* (Al/27)/ (N*/14) 析出物之 平均尺寸 (微米) 析出物之 數目 (毫米_2) A31 0.0072 5.5772 0.99 0.0031 5.78 0.04 3.9χ106 A32 0.0059 8.5273 0.91 0.0034 6.41 0.04 5.5xl06 A33 0.0077 10.539 0.83 0.0033 6.4 0.03 6.2xl06 A34 0.007 6.47 0.85 0.0032 4.01 0.04 5·3χ106 A35 0.0071 9.2382 1.11 0.0034 5.58 0.04 5.9χ106 A36 0.0148 3.0737 0 0.0048 3.43 0.25 5.5χ106 A37 0 0 17.2 0 -1.6 0.16 4.3χ104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x(48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 28 1327171 表9 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δτ SWE (DBIT-〇C) AI (%) A1 211 352 44 2.11 0.34 -40 0 IS A2 269 408 37 1.98 0.37 -40 0 IS A3 331 452 34 1.81 0.33 -40 0 IS A4 241 392 36 1.89 0.41 -50 0 IS A5 224 384 39 1.81 0.37 -40 0 IS A6 233 359 37 1.11 0.62 -60 1.56 cs A7 283 425 33 1.81 0.57 -40 0 csSample number Chemical composition (% by weight) C Cu S A1 NPB Ti Other A31 0.0005 0.08 0.023 0.035 0.01 0.044 0.0007 0.057 Si:0.06 A32 0.0016 0.1 0.025 0.042 0.0132 0.084 0.001 0.072 Si:0.16 A33 0.0026 0.16 0.034 0.041 0.0148 0.121 0.0009 0.09 Si :0.21 A34 0.0011 0.09 0.025 0.025 0.0114 0.044 0.0007 0.065 Si:0.09 Mo:0.08 A35 0.0005 0.13 0.023 0.037 0.011 0.046 0.0008 0.06 Cr:0.22 A36 0.0038 0.09 0.013 0.032 0.0012 0.042 0.0005 0 A37 0.0014 0 0.009 0.055 0.012 0.12 0.0005 0.14 Si:0.13 Table 8 Sample No. S* (Cu/63.5) / (S*/32) (Ti*/48)/ (C/12) N* (Al/27)/ (N*/14) Average size of precipitates ( Micron) Number of precipitates (mm_2) A31 0.0072 5.5772 0.99 0.0031 5.78 0.04 3.9χ106 A32 0.0059 8.5273 0.91 0.0034 6.41 0.04 5.5xl06 A33 0.0077 10.539 0.83 0.0033 6.4 0.03 6.2xl06 A34 0.007 6.47 0.85 0.0032 4.01 0.04 5·3χ106 A35 0.0071 9.2382 1.11 0.0034 5.58 0.04 5.9χ106 A36 0.0148 3.0737 0 0.0048 3.43 0.25 5.5χ106 A37 0 0 17.2 0 -1.6 0.16 4.3χ104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48 ) Ti*=Ti-0.8x(48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 28 1327171 Table 9 Sample No. Mechanical Properties Precautions YS (Million Pa) TS (Million Pa) E1 (%) Δτ SWE (DBIT-〇C) AI (%) A1 211 352 44 2.11 0.34 -40 0 IS A2 269 408 37 1.98 0.37 -40 0 IS A3 331 452 34 1.81 0.33 -40 0 IS A4 241 392 36 1.89 0.41 -50 0 IS A5 224 384 39 1.81 0.37 -40 0 IS A6 233 359 37 1.11 0.62 -60 1.56 cs A7 283 425 33 1.81 0.57 -40 0 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,Δγ=面内各向 異性指數,SWE=二次加工脆性,ΑΙ=老化指數,IS=本發明的鋼,CS=比較用的鋼 5 實例4 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°c/分鐘之速率來冷卻該經熱軋的鋼片材,在650°c下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 29 15 1327171 表ίο 樣品 編號 化學組分(重量%) C Μη Cu s A1 N P B Ti 其他 A1 0.0006 0.11 0.06 0.017 0.05 0.0113 0.042 0.0009 0.055 Si:0.05 A2 0.0012 0.09 0.12 0.027 0.038 0.0141 0.08 0.001 0.077 Si:0.11 A3 0.0026 0.1 0.11 0.035 0.024 0.0158 0.12 0.0008 0.096 Si:0.09 A4 0.0012 0.08 0.08 0.024 0.049 0.0135 0.032 0.0009 0.073 Si:0.12 M〇:0.075 A5 0.0026 0.11 0.11 0.043 0.046 0.0155 0.03 0.0011 0.104 Si:0.09 Cr:0.22 A6 0.0034 0.45 0.1 0.0083 0.038 0.0015 0.048 0.005 0 A7 0.0038 0.07 0 0.012 0.035 0.0024 0.13 0.005 0.17 Si :0.08*Note: YS = yield strength, TS = tensile strength, El = elongation, rm = plasticity - anisotropy index, Δ γ = in-plane anisotropy index, SWE = secondary processing brittleness, ΑΙ = aging index, IS = steel of the present invention, CS = steel for comparison 5 Example 4 First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 29 15 1327171 Table ί sample number chemical composition (% by weight) C Μη Cu s A1 NPB Ti Other A1 0.0006 0.11 0.06 0.017 0.05 0.0113 0.042 0.0009 0.055 Si:0.05 A2 0.0012 0.09 0.12 0.027 0.038 0.0141 0.08 0.001 0.077 Si:0.11 A3 0.0026 0.1 0.11 0.035 0.024 0.0158 0.12 0.0008 0.096 Si:0.09 A4 0.0012 0.08 0.08 0.024 0.049 0.0135 0.032 0.0009 0.073 Si:0.12 M〇:0.075 A5 0.0026 0.11 0.11 0.043 0.046 0.0155 0.03 0.0011 0.104 Si:0.09 Cr:0.22 A6 0.0034 0.45 0.1 0.0083 0.038 0.0015 0.048 0.005 0 A7 0.0038 0.07 0 0.012 0.035 0.0024 0.13 0.005 0.17 Si :0.08

表11 樣品 編號 Cu+ Mn s* (Mn/55+ Cu/63.5)/ (S*/32) (Ti*/48)/ (C/12) N* (Al/27)/ (N*14) 析出物之 平均尺寸 (微米) 析出物 之數目 (毫米·2) A1 0.17 0.0042 22.453 1.5 0.0032 8.03 0.06 ----- 4.4xl〇7 A2 0.21 0.007 16.123 1.06 0.004 4.93 0.05 7.0x1 〇7 A3 0.21 0.0069 16.435 1.03 0.0032 3.89 0.06 ----- 6.2xl〇7 A4 0.16 0.0048 18.039 1.49 0.0032 7.97 0.06 — — 5.9x1 〇7 A5 0.22 0.0102 11.7 0.95 0.0033 7.29 0.06 ~----- 6.4x1 〇7 A6 0.55 0.0105 29.751 0 0.0038 5.15 0.25 — 1.5χ1〇4 A7 0.07 0 -0.542 9.8 0 0 0.04 ------! 3·5χ1〇5 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Τι *=Ti-0.8x((48/14)xN+148/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xSi)x(14/48) 30 5 1327171 表12 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δτ ΑΙ (%) SWE (DBIT-〇C) A1 218 355 44 2.14 0.39 0 •70 IS A2 265 402 38 1.85 0.35 0 -60 IS A3 328 455 35 1.68 0.4 0 -60 IS A4 234 363 41 2.11 0.37 0 -60 IS A5 219 350 44 2.06 0.35 0 -50 IS A6 202 355 38 1.59 0.39 0 -60 cs A7 338 458 24 1.31 0.58 0.55 -70 cs *注意: YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,△!·=面内各向 異性指數,AI=老化指數,SWE=二次加工脆性,IS=本發明的鋼,Cs=比較用的鋼Table 11 Sample No. Cu+ Mn s* (Mn/55+ Cu/63.5)/ (S*/32) (Ti*/48)/ (C/12) N* (Al/27)/ (N*14) Precipitation Average size of material (micron) Number of precipitates (mm·2) A1 0.17 0.0042 22.453 1.5 0.0032 8.03 0.06 ----- 4.4xl〇7 A2 0.21 0.007 16.123 1.06 0.004 4.93 0.05 7.0x1 〇7 A3 0.21 0.0069 16.435 1.03 0.0032 3.89 0.06 ----- 6.2xl〇7 A4 0.16 0.0048 18.039 1.49 0.0032 7.97 0.06 — — 5.9x1 〇7 A5 0.22 0.0102 11.7 0.95 0.0033 7.29 0.06 ~----- 6.4x1 〇7 A6 0.55 0.0105 29.751 0 0.0038 5.15 0.25 — 1.5χ1〇4 A7 0.07 0 -0.542 9.8 0 0 0.04 ------! 3·5χ1〇5 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32 /48) Τι *=Ti-0.8x((48/14)xN+148/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xSi)x(14/48) 30 5 1327171 Table 12 Sample No. Mechanical Properties Considerations YS (million kPa) TS (million kPa) E1 (%) Δτ ΑΙ (%) SWE (DBIT-〇C) A1 218 355 44 2.14 0.39 0 •70 IS A2 265 402 38 1.85 0.35 0 -60 IS A3 328 455 35 1.68 0.4 0 -60 IS A4 234 363 41 2.11 0.37 0 -60 IS A5 219 350 44 2.06 0.35 0 -50 IS A6 202 355 38 1.5 9 0.39 0 -60 cs A7 338 458 24 1.31 0.58 0.55 -70 cs *Note: YS=yield strength, TS=tensile strength, El=extension, rm=plasticity-anisotropic index, △!·=in-plane Anisotropy index, AI = aging index, SWE = secondary processing brittleness, IS = steel of the invention, Cs = steel for comparison

實例5 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°c/分鐘之速率來冷卻該經熱軋的鋼片材,在650°c下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 31 15 1327171 表13Example 5 First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 31 15 1327171 Table 13

樣品 編號 化學組分(重量%) C Μη Ρ S Α1 Ti Β Ν 其他 A51 0.0009 0.1】 0.008 0.022 0.039 0.035 0.0007 0.0008 A52 0.0013 0.08 0.032 0.031 0.043 0.049 0.0009 0.0021 Si:0.15 A53 0.0025 0.11 0.058 0.043 0.028 0.067 0.0005 0.0019 Si:0.33 A54 0.0017 0.09 0.082 0.037 0.047 0.057 0.0011 0.0023 Si:0.24 M〇:0.082 A55 0.0016 0.1 0.118 0.052 0.022 0.075 0.0012 0.001 Si:0.31 Cr:0_13 A56 0.0035 0.45 0.048 0.009 0.033 0 0.005 0.0024 A57 0.0031 0.13 0.118 0.012 0.038 0.15 ---ϋ 0 0.0021 Si:0.33 表14 樣品 編號 s* (Mn/55)/ (S*/32) (Ti*/48)/ (C/12) A51 0.0045 14.211 1.78 A52 0.0079 5.8631 1.16 A53 0.01 6.3706 1.02 A54 0.01 5.255 0.93 A55 0.0135 4.3217 1.54 A56 0.0125 20.927 -1.2 A57 -0.065 -1.165 10.5 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+(48/32)xS)Sample No. Chemical composition (% by weight) C Μη Ρ S Α1 Ti Β Ν Other A51 0.0009 0.1] 0.008 0.022 0.039 0.035 0.0007 0.0008 A52 0.0013 0.08 0.032 0.031 0.043 0.049 0.0009 0.0021 Si:0.15 A53 0.0025 0.11 0.058 0.043 0.028 0.067 0.0005 0.0019 Si :0.33 A54 0.0017 0.09 0.082 0.037 0.047 0.057 0.0011 0.0023 Si:0.24 M〇:0.082 A55 0.0016 0.1 0.118 0.052 0.022 0.075 0.0012 0.001 Si:0.31 Cr:0_13 A56 0.0035 0.45 0.048 0.009 0.033 0 0.005 0.0024 A57 0.0031 0.13 0.118 0.012 0.038 0.15 - --ϋ 0 0.0021 Si:0.33 Table 14 Sample No. s* (Mn/55)/ (S*/32) (Ti*/48)/ (C/12) A51 0.0045 14.211 1.78 A52 0.0079 5.8631 1.16 A53 0.01 6.3706 1.02 A54 0.01 5.255 0.93 A55 0.0135 4.3217 1.54 A56 0.0125 20.927 -1.2 A57 -0.065 -1.165 10.5 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8 x((48/14)xN+(48/32)xS)

32 1327171 表15 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δγ ΑΙ (%) SWE (DBTT-t) A51 189 295 49 2.21 0.35 0 -50 IS A52 209 332 45 1.93 0.28 0 -50 IS A53 315 362 41 1.96 0.22 0 •50 IS A54 234 380 36 1.75 0.24 0 -40 IS A55 238 407 38 1.63 0.21 0 -50 IS A56 243 339 44 1.38 0.42 3.6 -40 cs A57 225 404 38 1.79 0.43 0 -40 cs32 1327171 Table 15 Sample No. Mechanical Properties Considerations YS (million kPa) TS (million kPa) E1 (%) Δγ ΑΙ (%) SWE (DBTT-t) A51 189 295 49 2.21 0.35 0 -50 IS A52 209 332 45 1.93 0.28 0 -50 IS A53 315 362 41 1.96 0.22 0 •50 IS A54 234 380 36 1.75 0.24 0 -40 IS A55 238 407 38 1.63 0.21 0 -50 IS A56 243 339 44 1.38 0.42 3.6 -40 cs A57 225 404 38 1.79 0.43 0 -40 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,!·„=可塑性-各向異性指數,Δγ=面内各向 異性指數,ΑΙ=老化指數,SWE=二次加工脆性,IS=本發明的鋼,CS=比較用的鋼 實例6 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Αγ3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 33 15 1327171 表16*Note: YS = yield strength, TS = tensile strength, El = elongation,! „=plasticity-anisotropic index, Δγ=in-plane anisotropy index, ΑΙ=aging index, SWE=secondary processing brittleness, IS=steel of the invention, CS=comparative steel example 6 First, according to the display A steel plate was prepared in the following table. The steel plate was hot rolled and rerolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / minute. The material is wound at 650 ° C for 10 times, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. At this time, at 910 ° C (which is greater than the Α γ 3 metamorphic point) Finishing hot rolling was performed, and the hot rolled steel sheet was heated to 830 ° C at a rate of 10 ° C / sec for continuous annealing for 40 seconds to produce the final cold rolled steel sheet. 33 15 1327171 16

樣品 編號 化學組分(重量%) C P S A1 Ή Β Ν 其他 A61 0.0008 0.008 0.023 0.042 0.059 0.0007 0.0103 A62 0.0017 0.035 0.025 0.044 0.074 0.001 0.0135 Si:0.13 A63 0.0025 0.061 0.034 0.039 0.095 0.0009 0.015 Si:0.24 A64 0.0012 0.085 0.025 0.024 0.066 0.0007 0.0117 Si:0.11 Mo:0.06 A65 0.0006 0.12 0.023 0.038 0.061 0.0008 0.0112 Cr:0.13 A66 0.0038 0.042 0.013 0.032 0 0.0005 0.0012 A67 0.0014 0.12 0.009 0.055 0.14 0.0005 0.012 Si:0.13 表17 樣品 編號 (Ti*/48)/ (C/12) N* (Al/27)/ (N*/14) 析出物之平均 尺寸(微米) 析出物之數目 (毫米’ A61 0.67 0.003 7.32 0.05 6.3xl05 A62 1.03 0.0032 7.06 0.05 6.3xl05 A63 1.31 0.0024 8.59 0.05 8.4xl06 A64 0.81 0.0033 3.77 0.05 7.3x106 A65 1.12 0.0034 5.78 0.05 6.2χ106 A66 -1.2 0.0048 3.43 0.05 4.5χ105 A67 17.2 -0.018 -1.6 0.28 3.5χ103 Ti*=Ti-0.8x((48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 34 5 1327171 表18 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δτ SWE (DBTT-°C) AI (%) A61 209 349 44 2.03 0.25 -60 0 IS A62 282 399 37 1.72 0.24 -50 0 IS A63 339 457 34 1.73 0.27 -50 0 IS A64 219 360 42 2.21 0.29 -50 0 IS A65 354 449 33 1.73 0.21 -60 0 IS A66 189 348 45 1.32 0.43 -40 0.94 cs A67 335 457 26 ],53 0.24 •40 0 csSample No. Chemical composition (% by weight) CPS A1 Ή Β Ν Other A61 0.0008 0.008 0.023 0.042 0.059 0.0007 0.0103 A62 0.0017 0.035 0.025 0.044 0.074 0.001 0.0135 Si:0.13 A63 0.0025 0.061 0.034 0.039 0.095 0.0009 0.015 Si:0.24 A64 0.0012 0.085 0.025 0.024 0.066 0.0007 0.0117 Si:0.11 Mo:0.06 A65 0.0006 0.12 0.023 0.038 0.061 0.0008 0.0112 Cr:0.13 A66 0.0038 0.042 0.013 0.032 0 0.0005 0.0012 A67 0.0014 0.12 0.009 0.055 0.14 0.0005 0.012 Si:0.13 Table 17 Sample No. (Ti*/48)/ (C/12) N* (Al/27)/ (N*/14) Average size of precipitates (micron) Number of precipitates (mm] A61 0.67 0.003 7.32 0.05 6.3xl05 A62 1.03 0.0032 7.06 0.05 6.3xl05 A63 1.31 0.0024 8.59 0.05 8.4xl06 A64 0.81 0.0033 3.77 0.05 7.3x106 A65 1.12 0.0034 5.78 0.05 6.2χ106 A66 -1.2 0.0048 3.43 0.05 4.5χ105 A67 17.2 -0.018 -1.6 0.28 3.5χ103 Ti*=Ti-0.8x((48/14)xN+ (48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 34 5 1327171 Table 18 Sample No. Mechanical Properties Notes YS (Million Pa) TS (million kPa) E1 (%) Δ τ SWE (DBTT-°C) AI (%) A61 209 349 44 2.03 0.25 -60 0 IS A62 282 399 37 1.72 0.24 -50 0 IS A63 339 457 34 1.73 0.27 -50 0 IS A64 219 360 42 2.21 0.29 -50 0 IS A65 354 449 33 1.73 0.21 -60 0 IS A66 189 348 45 1.32 0.43 -40 0.94 cs A67 335 457 26 ],53 0.24 •40 0 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性·各向異性指數,Δγ=面内各向 異性指數,SWE=二次加工脆性,ΑΙ=老化指數,IS=本發明的鋼,CS=比較用的鋼 實例7 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Αγ3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 35 15 1327171 表19*Note: YS = yield strength, TS = tensile strength, El = elongation, rm = plasticity · anisotropy index, Δ γ = in-plane anisotropy index, SWE = secondary processing brittleness, ΑΙ = aging index, IS = Steel of the present invention, CS = Comparative Steel Example 7 First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Α γ 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 35 15 1327171 Table 19

樣品 編號 化學組分(重量%) C Si Μη Ρ s A1 Ti B N 其他 A71 0.0009 0 0.11 0.038 0.017 0.053 0.058 0.0005 0.0119 A72 0.0012 0.11 0.09 0.053 0.026 0.038 0.076 0.001 0.0147 Si:0.11 A73 0.0008 0.1 0.11 0.109 0.033 0.015 0.094 0.0008 0.0158 Si:0.1 A74 0.0012 0.12 0.1 0.032 0.024 0.049 0.073 0.0009 0.0133 Si:0.12 Mo:0.05 A75 0.0026 0.09 0.11 0.03 0.043 0.046 0.104 0.0011 0.0155 Si:0.09 Cr:0.28 A76 0.0018 0 0.68 0.045 0.009 0.048 0.057 0.0004 0.0021 A77 0.0037 0.05 0.1 0.114 0.01 0.008 0 0.0011 0.0067 Si :0.05 表20 樣品 編號 s* (Mn/55)/ (S*/32) (Ti*/48)/ (C/12) N* (Al/27)/ (N*/14) 析出物之 平均尺寸 (微米) 析出物 之數目 (毫米’ A71 0.0035 18.419 1.38 0.0031 8.79 0.05 6.3x105 A72 0.007 7.512 0.93 0.0042 4.64 0.05 6.3xl05 A73 0.006 10.703 3.46 0.0031 2.5 0.05 8.4xl06 A74 0.0045 12.864 1.61 0.003 8.51 0.05 7.3xl06 A75 0.0102 6.2698 0.95 0.0033 7.29 0.05 6.2x106 A76 -0.018 -21.59 5.62 -0.009 -2.9 0.05 4.5x105 Ml 0.0198 2.9383 -2.1 0.0095 0.44 0.28 3·5χ103 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+(48/321xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 36 5 1327171 表21 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Γρί Δτ SWE (DBTT-°C) AI (%) A71 215 357 46 2.04 0.39 -40 0 IS A72 243 382 41 1.89 0.35 •50 0 IS A73 271 425 34 1.75 0.27 -50 0 IS A74 232 371 42 1.84 0.24 -50 0 IS A75 226 364 41 1.89 0.22 -60 0 IS A76 189 347 42 1.92 0.42 -40 0 cs A77 293 418 36 1.32 0.34 -60 3.51 csSample number Chemical composition (% by weight) C Si Μη Ρ s A1 Ti BN Other A71 0.0009 0 0.11 0.038 0.017 0.053 0.058 0.0005 0.0119 A72 0.0012 0.11 0.09 0.053 0.026 0.038 0.076 0.001 0.0147 Si:0.11 A73 0.0008 0.1 0.11 0.109 0.033 0.015 0.094 0.0008 0.0158 Si: 0.1 A74 0.0012 0.12 0.1 0.032 0.024 0.049 0.073 0.0009 0.0133 Si: 0.12 Mo: 0.05 A75 0.0026 0.09 0.11 0.03 0.043 0.046 0.104 0.0011 0.0155 Si: 0.09 Cr: 0.28 A76 0.0018 0 0.68 0.045 0.009 0.048 0.057 0.0004 0.0021 A77 0.0037 0.05 0.1 0.114 0.01 0.008 0 0.0011 0.0067 Si :0.05 Table 20 Sample No. s* (Mn/55) / (S*/32) (Ti*/48)/ (C/12) N* (Al/27)/ (N* /14) Average size of precipitates (micron) Number of precipitates (mm] A71 0.0035 18.419 1.38 0.0031 8.79 0.05 6.3x105 A72 0.007 7.512 0.93 0.0042 4.64 0.05 6.3xl05 A73 0.006 10.703 3.46 0.0031 2.5 0.05 8.4xl06 A74 0.0045 12.864 1.61 0.003 8.51 0.05 7.3xl06 A75 0.0102 6.2698 0.95 0.0033 7.29 0.05 6.2x106 A76 -0.018 -21.59 5.62 -0.009 -2.9 0.05 4.5x105 Ml 0.0198 2.9383 -2.1 0.0095 0.4 4 0.28 3·5χ103 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) Ti*=Ti-0.8x((48/14)xN+(48/321xS) N *=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 36 5 1327171 Table 21 Sample No. Mechanical Properties Notes YS (Million Pa) TS (Million Pa) E1 ( %) ίρί Δτ SWE (DBTT-°C) AI (%) A71 215 357 46 2.04 0.39 -40 0 IS A72 243 382 41 1.89 0.35 •50 0 IS A73 271 425 34 1.75 0.27 -50 0 IS A74 232 371 42 1.84 0.24 -50 0 IS A75 226 364 41 1.89 0.22 -60 0 IS A76 189 347 42 1.92 0.42 -40 0 cs A77 293 418 36 1.32 0.34 -60 3.51 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,rrn=可塑性-各向異性指數,Ar=面内各向 異性指數,AI=老化指數,SWE=二次加工脆性,IS=本發明的鋼,Cs=比較用的鋼 實例8 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 37 15 1327171 表22*Note: YS = yield strength, TS = tensile strength, El = elongation, rrn = plasticity - anisotropy index, Ar = in-plane anisotropy index, AI = aging index, SWE = secondary processing brittleness, IS = Steel of the present invention, Cs = Comparative Steel Example 8 First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 37 15 1327171 Table 22

樣品 編號 化學組分(重量%) C P S A1 Cu Ti B N 其他 B81 0.0021 0.009 0.011 0.037 0.09 0.017 0.0005 0.0011 B82 0.0017 0.026 0.01 0.026 0.11 0.021 0.0009 0.0024 B83 0.0018 0.05 0.012 0.027 0.08 0.015 0.0004 0.0005 Si:0.02 B84 0.0028 0.082 0.01 0.032 0.12 0.018 0.0007 0.0015 Si:0.18 B85 0.0021 0.113 0.011 0.034 0.12 0.021 0.001 0.0018 Si:0.24 B86 0.0017 0.082 0.008 0.033 0.09 0.017 0.0007 0.0019 Si:0.18 M〇:0,074 B87 0.0022 0.082 0.01 0.029 0.12 0.019 0.0006 0.0016 Si:0.18 Cr:0.21 B88 0.0022 0.063 0.008 0.029 0.11 0.055 0.0005 0.0012 B89 0.0033 0.12 0.009 0.037 0 0 0.0008 0.0027 表23 樣品 編號 (Cu/63.5)/(S*/32) Cs 析出物之平均尺寸 (微米) 析出物之數目 (毫米’ B81 12.8 19.043 0.06 1.8xl06 B82 24 10.957 0.06 2.1xl06 B83 8.52 18 0.06 2.5xl06 B84 23.3 23.286 0.05 3.2x106 B85 24.9 13.843 0.06 4.1xl06 B86 26.5 11.529 0.06 3.2χ106 B87 27.4 15.471 0.05 4.1χ106 B88 -2.8 -75 0.08 4.5χ105 B89 0 33 0.08 6.2χ104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48), Cs=(C-Ti*xl2/48)x 10000 -Ti*=Ti-0.8x((48/14)xN+(48/32)xS) 38 1327171 表24 樣品 機械性質 注意 事項 編號 YS (百萬帕) TS (百萬帕) E1 (%) Δτ ΑΙ (%) BH值 (百萬帕) SWE (DBTT-°C) B81 183 305 49 1.93 0.32 0 37 -40 IS B82 193 332 48 1.88 0.32 0 41 -50 IS B83 204 349 44 1.88 0.29 0 47 -50 IS B84 267 402 39 1.75 0.27 0 67 -60 IS B85 329 450 36 1.65 0.19 0 37 -50 IS B86 325 455 35 1.61 0.31 0 41 -50 IS B87 333 449 34 1.66 0.24 0 45 -50 IS B88 232 348 43 1.92 0.29 0 0 -50 cs B89 279 453 29 1.22 0.48 3.8 92 -70 cs *注意:Sample No. Chemical composition (% by weight) CPS A1 Cu Ti BN Other B81 0.0021 0.009 0.011 0.037 0.09 0.017 0.0005 0.0011 B82 0.0017 0.026 0.01 0.026 0.11 0.021 0.0009 0.0024 B83 0.0018 0.05 0.012 0.027 0.08 0.015 0.0004 0.0005 Si:0.02 B84 0.0028 0.082 0.01 0.032 0.12 0.018 0.0007 0.0015 Si:0.18 B85 0.0021 0.113 0.011 0.034 0.12 0.021 0.001 0.0018 Si:0.24 B86 0.0017 0.082 0.008 0.033 0.09 0.017 0.0007 0.0019 Si:0.18 M〇:0,074 B87 0.0022 0.082 0.01 0.029 0.12 0.019 0.0006 0.0016 Si:0.18 Cr:0.21 B88 0.0022 0.063 0.008 0.029 0.11 0.055 0.0005 0.0012 B89 0.0033 0.12 0.009 0.037 0 0 0.0008 0.0027 Table 23 Sample No. (Cu/63.5)/(S*/32) Cs Average size of precipitates (μm) Number of precipitates (mm' B81 12.8 19.043 0.06 1.8xl06 B82 24 10.957 0.06 2.1xl06 B83 8.52 18 0.06 2.5xl06 B84 23.3 23.286 0.05 3.2x106 B85 24.9 13.843 0.06 4.1xl06 B86 26.5 11.529 0.06 3.2χ106 B87 27.4 15.471 0.05 4.1χ106 B88 -2.8 -75 0.08 4.5χ105 B89 0 33 0.08 6.2χ104 S*=S-0.8x(Ti-0.8x(48/14)x N)x(32/48), Cs=(C-Ti*xl2/48)x 10000 -Ti*=Ti-0.8x((48/14)xN+(48/32)xS) 38 1327171 Table 24 Sample Machinery Nature Note No. YS (million kPa) TS (million kPa) E1 (%) Δτ ΑΙ (%) BH value (million kPa) SWE (DBTT-°C) B81 183 305 49 1.93 0.32 0 37 -40 IS B82 193 332 48 1.88 0.32 0 41 -50 IS B83 204 349 44 1.88 0.29 0 47 -50 IS B84 267 402 39 1.75 0.27 0 67 -60 IS B85 329 450 36 1.65 0.19 0 37 -50 IS B86 325 455 35 1.61 0.31 0 41 -50 IS B87 333 449 34 1.66 0.24 0 45 -50 IS B88 232 348 43 1.92 0.29 0 0 -50 cs B89 279 453 29 1.22 0.48 3.8 92 -70 cs *Note:

YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,Δγ=面内各向 異性指數,ΑΙ=老化指數,SWE=二次加工脆性,is=本發明的鋼,cS=比較用的鋼 5 實例9 百无 10 根像顯不在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋5玄鋼平板,以提供一經熱乾的鋼片材。 以400C/分鐘之速率來冷卻該經熱軋的鋼片材在下 捲繞’以75%的減低速率來冷軋,接著連續退火,以製造 :經片材。此時,在啊下(其大於峨點) 材m藉由㈣秒之速率來加熱該熱軋麵片 ^來進行連續退火鄉,《製造妓後的冷乾鋼片 39 15 1327171 表25YS = yield strength, TS = tensile strength, El = elongation, rm = plasticity - anisotropy index, Δ γ = in-plane anisotropy index, ΑΙ = aging index, SWE = secondary processing brittleness, is = the present invention Steel, cS = comparative steel 5 Example 9 None of the 10 compositions shown in the table below to prepare a steel plate. Reheating and finish rolling hot rolling of 5 steel panels to provide a heat-dried steel sheet. The hot rolled steel sheet was cooled at a rate of 400 C/min. The lower winding was cold rolled at a reduction rate of 75%, followed by continuous annealing to produce: a sheet. At this time, under the ah (which is greater than the defect), the material m is heated by the rate of (four) seconds to perform continuous annealing. "The cold-dried steel sheet after the manufacture of the crucible 39 15 1327171 Table 25

樣品 編號 化學組分(重量%) C Μη Ρ S Α1 Cu Ti B N 其他 B91 0.0019 0.11 0.008 0.008 0.038 0.12 0.01 0.0008 0.0011 B92 0.0018 0.14 0.024 0.011 0.042 0.14 0.008 0.0007 0.0015 B93 0.0015 0.09 0.041 0.009 0.034 0.1 0.009 0.0005 0.0005 Si:0.08 B94 0.0027 0.1 0.083 0.011 0.046 0.11 0.017 0.0008 0.0013 Si:0.18 B95 0.0022 0.11 0.1 0.011 0.039 0.15 0.016 0.0005 0.002 Si:0.28 B96 0.0019 0.1 0.083 0.010 0.033 0.13 0.013 0.0009 0.0021 Si:0.27 Mo:0.11 B97 0.0025 0.09 0.076 0.013 0.033 0.11 0.02 0.0011 0.0021 Si:0.31 Cr:0.24 B98 0.0022 0.47 0.051 0.008 0.031 0 0.042 0.0007 0.0016 B99 0.0037 0.13 0.12 0.013 0.034 0.03 0 0.005 0.0025 Si:0.32 表26 樣品 編號 Cu+Mn (Mn/55+Cu/63.5)/ (S*/32) Cs 析出物之平均 尺寸(微米) 析出物之數目 (毫米’ B91 0.23 29.1 19 0.05 2.8χ106 B92 0.28 17 18 0.05 2.5xl06 B93 0.19 20.8 15 0.05 2.8xl06 B94 0.21 29.6 27 0.05 2.9xl06 B95 0.26 25.9 22 0.05 3.9x106 B96 0.23 20.1 19 0.04 2.5χ106 B97 0.2 19.9 25 0.04 3.9χ106 B98 0.47 -23 -39 0.25 ]·7χ104 B99 0.16 5.45 37 0.08 6.3x104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) > Cs=(C-Ti*12/48)xl0000 -Ti*=Ti-0.8x((48/]4)xN+(48/32)xS) 40 1327171 表27 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δτ ΑΙ (%) BH值 (百萬帕) SWE (DBTT-°C) B91 188 309 48 L91 0.32 0 43 -50 IS B92 210 331 46 1.88 0.29 0 44 -40 IS B93 225 357 45 1.85 0.35 0 39 -50 IS B94 292 399 39 1.75 0.32 0 47 -60 IS B95 343 452 34 1.61 0.28 0 53 -50 IS B96 333 447 34 1.66 0.28 0 42 -50 IS B97 328 452 35 1.65 0.27 0 55 -60 IS B98 201 351 41 1.92 0.45 0 0 -50 cs B99 312 437 31 1.21 0.2 4.5 89 -50 csSample No. Chemical composition (% by weight) C Μη Ρ S Α1 Cu Ti BN Other B91 0.0019 0.11 0.008 0.008 0.038 0.12 0.01 0.0008 0.0011 B92 0.0018 0.14 0.024 0.011 0.042 0.14 0.008 0.0007 0.0015 B93 0.0015 0.09 0.041 0.009 0.034 0.1 0.009 0.0005 0.0005 Si: 0.08 B94 0.0027 0.1 0.083 0.011 0.046 0.11 0.017 0.0008 0.0013 Si:0.18 B95 0.0022 0.11 0.1 0.011 0.039 0.15 0.016 0.0005 0.002 Si:0.28 B96 0.0019 0.1 0.083 0.010 0.033 0.13 0.013 0.0009 0.0021 Si:0.27 Mo:0.11 B97 0.0025 0.09 0.076 0.013 0.033 0.11 0.02 0.0011 0.0021 Si:0.31 Cr:0.24 B98 0.0022 0.47 0.051 0.008 0.031 0 0.042 0.0007 0.0016 B99 0.0037 0.13 0.12 0.013 0.034 0.03 0 0.005 0.0025 Si:0.32 Table 26 Sample No. Cu+Mn (Mn/55+Cu/63.5)/ ( S*/32) Cs Average size of precipitates (micron) Number of precipitates (mm' B91 0.23 29.1 19 0.05 2.8χ106 B92 0.28 17 18 0.05 2.5xl06 B93 0.19 20.8 15 0.05 2.8xl06 B94 0.21 29.6 27 0.05 2.9xl06 B95 0.26 25.9 22 0.05 3.9x106 B96 0.23 20.1 19 0.04 2.5χ106 B97 0.2 19.9 25 0.04 3.9χ106 B98 0.47 -23 -39 0.25 ]·7χ104 B99 0.16 5.45 37 0.08 6.3x104 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) > Cs=(C-Ti *12/48)xl0000 -Ti*=Ti-0.8x((48/]4)xN+(48/32)xS) 40 1327171 Table 27 Sample No. Mechanical Properties Notes YS (Million Pa) TS (Million Pa E1 (%) Δτ ΑΙ (%) BH value (million kPa) SWE (DBTT-°C) B91 188 309 48 L91 0.32 0 43 -50 IS B92 210 331 46 1.88 0.29 0 44 -40 IS B93 225 357 45 1.85 0.35 0 39 -50 IS B94 292 399 39 1.75 0.32 0 47 -60 IS B95 343 452 34 1.61 0.28 0 53 -50 IS B96 333 447 34 1.66 0.28 0 42 -50 IS B97 328 452 35 1.65 0.27 0 55 -60 IS B98 201 351 41 1.92 0.45 0 0 -50 cs B99 312 437 31 1.21 0.2 4.5 89 -50 cs

*注意 YS=屈服強度,TS=抗張強度,El=延伸度,!·„>=可塑性-各向異性指數,Ar=面内各向 異性指數,AI=老化指數,SWE=二次加工脆性,IS=本發明的鋼,Cs=比較用的鋼 5 實例10 首先,根據顯示在下表中之組成物來製備一鋼平板。*Note YS = yield strength, TS = tensile strength, El = elongation,! ·„>=plasticity-anisotropic index, Ar=in-plane anisotropy index, AI=aging index, SWE=secondary processing brittleness, IS=steel of the invention, Cs=comparative steel 5 Example 10 First A steel plate was prepared according to the composition shown in the table below.

再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Αγ3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 41 1327171 表28The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Α γ 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 41 1327171 Table 28

樣品 編號 化學組分(重量%) C P S A1 Cu Ti B N 其他 B01 0.0019 0.008 0.008 0.039 0.09 0.006 0.0005 0.0088 B02 0.0017 0.027 0.01 0.042 0.14 0.007 0.0005 0.0072 B03 0.0018 0.042 0.009 0.038 0.12 0Ό07 0.0007 0.0】 Si;0.07 B04 0.0016 0.086 0.011 0.04 0.1 0.016 0.001 0.0125 Si:0.14 B05 0.0026 0.12 0.018 0.062 0.16 0.045 0.0009 0.0139 Si:0.2 B06 0.0025 0.044 0.025 0.055 0.09 0.065 0.0006 0.012 Si:0.11 M〇:0.084 B07 0.0022 0.043 0.009 0.033 0.12 0.029 0.0009 0.01 Cr:0.27 B08 0.0025 0.041 0.0】2 0.054 0 0.063 0.0005 0.0012 B09 0.0054 0.11 0.011 0.055 0.09 0 0.001 0.011 Si:0.15 表29 樣品 編號 (Cu/63.5)/ (S*/32) (Al/27)/ (N*/14) Cs 析出物之平均 尺寸(微米) 析出物之數目 (毫米’ B01 2.57 2.1 19 0.06 2.8xl06 B02 4.2 2.6 17 0.06 3.7xl06 B03 3.04 1.81 18 0.06 3_5xl06 B04 2.43 1.75 16 0.05 4.7x106 B05 5.63 3.81 26 0.04 5.5x106 B06 5.75 7.44 25 0.05 4.3χ106 B07 7.41 2.97 22 0.04 5.2χ106 B08 0 -2.8 -77 0.2 2.5χ104 B09 1.67 2.03 54 0.05 4.4χ106 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) > Cs=(C-Ti*xl2/48)xl0000 > Ti*=Ti-0.8x((48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 42 1327171 表30 樣品 编號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) I'm Δτ ΑΙ ΒΗ值 (百萬帕) SWE (DBTT-°C) B01 209 325 50 1.91 0.35 0 48 •50 IS B02 219 344 47 1.83 0.29 0 38 -40 IS B03 217 355 43 1.88 0.31 0 42 -50 IS B04 292 411 36 1.79 0.29 0 43 -50 IS B05 339 450 33 1.66 0.25 0 55 -40 IS B06 248 390 38 1.75 0.32 0 52 -50 IS B07 243 389 39 1.77 0.35 0 45 -40 IS B08 202 339 40 1.99 0.52 0 0 -50 cs B09 291 431 32 1.28 0.19 3.9 104 •40 csSample No. Chemical composition (% by weight) CPS A1 Cu Ti BN Other B01 0.0019 0.008 0.008 0.039 0.09 0.006 0.0005 0.0088 B02 0.0017 0.027 0.01 0.042 0.14 0.007 0.0005 0.0072 B03 0.0018 0.042 0.009 0.038 0.12 0Ό07 0.0007 0.0] Si;0.07 B04 0.0016 0.086 0.011 0.04 0.1 0.016 0.001 0.0125 Si:0.14 B05 0.0026 0.12 0.018 0.062 0.16 0.045 0.0009 0.0139 Si:0.2 B06 0.0025 0.044 0.025 0.055 0.09 0.065 0.0006 0.012 Si:0.11 M〇:0.084 B07 0.0022 0.043 0.009 0.033 0.12 0.029 0.0009 0.01 Cr:0.27 B08 0.0025 0.041 0.0]2 0.054 0 0.063 0.0005 0.0012 B09 0.0054 0.11 0.011 0.055 0.09 0 0.001 0.011 Si:0.15 Table 29 Sample No. (Cu/63.5) / (S*/32) (Al/27)/ (N*/14) Cs Average size of precipitates (micron) Number of precipitates (mm' B01 2.57 2.1 19 0.06 2.8xl06 B02 4.2 2.6 17 0.06 3.7xl06 B03 3.04 1.81 18 0.06 3_5xl06 B04 2.43 1.75 16 0.05 4.7x106 B05 5.63 3.81 26 0.04 5.5x106 B06 5.75 7.44 25 0.05 4.3χ106 B07 7.41 2.97 22 0.04 5.2χ106 B08 0 -2.8 -77 0.2 2.5χ104 B09 1.67 2.03 54 0.05 4. 4χ106 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) > Cs=(C-Ti*xl2/48)xl0000 > Ti*=Ti-0.8x( (48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 42 1327171 Table 30 Sample No. Mechanical Properties Precautions YS (million kPa) TS (million kPa) E1 (%) I'm Δτ ΑΙ ΒΗ (million kPa) SWE (DBTT-°C) B01 209 325 50 1.91 0.35 0 48 •50 IS B02 219 344 47 1.83 0.29 0 38 -40 IS B03 217 355 43 1.88 0.31 0 42 -50 IS B04 292 411 36 1.79 0.29 0 43 -50 IS B05 339 450 33 1.66 0.25 0 55 -40 IS B06 248 390 38 1.75 0.32 0 52 -50 IS B07 243 389 39 1.77 0.35 0 45 -40 IS B08 202 339 40 1.99 0.52 0 0 -50 cs B09 291 431 32 1.28 0.19 3.9 104 •40 cs

*注意 YS=屈服強度,TS=抗張強度,El=延伸度,!·„=可塑性-各向異性指數,Δγ=面内各向 異性指數,ΑΙ=老化指數,SWE=二次加工脆性,IS=本發明的鋼,CS=比較用的鋼 5 實例11*Note YS = yield strength, TS = tensile strength, El = elongation,! · „=plasticity-anisotropic index, Δγ=in-plane anisotropy index, ΑΙ=aging index, SWE=secondary processing brittleness, IS=steel of the invention, CS=comparative steel 5 Example 11

首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片村。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 43 15 1327171 表31First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet village. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 43 15 1327171 Table 31

樣品 編號 化學組分(重量%) C Μη Ρ S Α1 Cu Ti B N 其他 B11 0.0014 0.1 0.007 0.008 0.042 0.09 0.009 0.0005 0.0094 B12 0.0016 0.13 0.023 0.011 0.052 0.08 0.01 0.0007 0.0076 B13 0.0017 0.09 0.044 0.01 0.053 0.08 0.018 0.0009 0.011 Si:0.07 B14 0.0012 0.1 0.084 0.009 0.035 0.11 0.02 0.0008 0.0128 Si:0.12 B15 0.0024 0.13 0.117 0.015 0.061 0.16 0.055 0.0011 0.0142 Si :0.09 B16 0.0025 0.11 0.035 0.026 0.028 0.09 0.038 0.0009 0.013 Si:0.11 Mo.O.072 B17 0.0022 0.12 0.033 0.009 0.043 0.09 0.04 0.0009 0.014 Si:0.09 Cr0.25 B18 0.0018 0.52 0.045 0.009 0.035 0 0.06 0.006 0.0022 B19 0.0042 0.11 0.127 0.01 0.043 0.09 0 0.005 0.0018 Si:0.08 表32 樣品 編號 Cu+ Mn (Mn/55+ Cu/63.5)/ (S*/32) (A1727)/ (N*/14) Cs 析出物之平均 尺寸(微米) 析出物之 數目(毫米’ Bll 0.19 6.11 2.28 14 0.06 l.lxlO7 B12 0.21 6.91 3.23 16 0.06 9_5xl06 B13 0.17 5.62 2.86 17 0.06 1.7x107 B14 0.21 6.66 1.7 12 0.05 1.9x107 B15 0.29 24.3 5.68 24 0.05 3.2x107 B16 0.2 4.42 1.27 25 0.05 3_8χ107 B17 0.21 14.1 3.1 22 0.04 4.5χ107 B18 0.52 -15 -2 -79 0.25 1·8χ104 B19 0.2 8.66 4.85 42 0.06 8.3χ105 S*=S-0.8x(Ti-0_8x(48/14)xN)x(32/48), Cs=(C-Ti*xl2/48)xl0000 > Ti*=Ti-0.8x((48/14)xN+(48/32)xS) N*=N-0_8x(Ti^0.8x(48/32)xS))x(14/48) 44 1327171 表33 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δτ ΑΙ ΒΗ值 (百萬帕) SWE (DBTT-°C) B11 201 321 48 1.94 0.34 0 35 -40 IS B12 211 342 46 1.89 0.31 0 42 •50 IS B13 221 359 45 1.91 0.35 0 36 -60 IS B14 269 410 37 1.77 0.32 0 39 -60 IS B15 332 462 33 1.63 0.31 0 47 -60 IS B16 237 360 42 1.85 0.31 0 53 -60 IS B17 227 353 42 1.83 0.33 0 55 -50 IS B18 184 352 39 1.99 0.45 0 0 -50 cs B19 343 453 25 1.27 0.21 6.2 93 -60 csSample No. Chemical composition (% by weight) C Μη Ρ S Α1 Cu Ti BN Other B11 0.0014 0.1 0.007 0.008 0.042 0.09 0.009 0.0005 0.0094 B12 0.0016 0.13 0.023 0.011 0.052 0.08 0.01 0.0007 0.0076 B13 0.0017 0.09 0.044 0.01 0.053 0.08 0.018 0.0009 0.011 Si: 0.07 B14 0.0012 0.1 0.084 0.009 0.035 0.11 0.02 0.0008 0.0128 Si:0.12 B15 0.0024 0.13 0.117 0.015 0.061 0.16 0.055 0.0011 0.0142 Si :0.09 B16 0.0025 0.11 0.035 0.026 0.028 0.09 0.038 0.0009 0.013 Si:0.11 Mo.O.072 B17 0.0022 0.12 0.033 0.009 0.043 0.09 0.04 0.0009 0.014 Si:0.09 Cr0.25 B18 0.0018 0.52 0.045 0.009 0.035 0 0.06 0.006 0.0022 B19 0.0042 0.11 0.127 0.01 0.043 0.09 0 0.005 0.0018 Si:0.08 Table 32 Sample No. Cu+ Mn (Mn/55+ Cu/63.5)/ (S*/32) (A1727) / (N*/14) Cs Average size of precipitates (microns) Number of precipitates (mm' Bll 0.19 6.11 2.28 14 0.06 l.lxlO7 B12 0.21 6.91 3.23 16 0.06 9_5xl06 B13 0.17 5.62 2.86 17 0.06 1.7x107 B14 0.21 6.66 1.7 12 0.05 1.9x107 B15 0.29 24.3 5.68 24 0.05 3.2x107 B16 0.2 4.42 1.27 2 5 0.05 3_8χ107 B17 0.21 14.1 3.1 22 0.04 4.5χ107 B18 0.52 -15 -2 -79 0.25 1·8χ104 B19 0.2 8.66 4.85 42 0.06 8.3χ105 S*=S-0.8x(Ti-0_8x(48/14)xN)x (32/48), Cs=(C-Ti*xl2/48)xl0000 > Ti*=Ti-0.8x((48/14)xN+(48/32)xS) N*=N-0_8x(Ti^ 0.8x(48/32)xS))x(14/48) 44 1327171 Table 33 Sample No. Mechanical Properties Notes YS (Million Pa) TS (Million Pa) E1 (%) Δτ ΑΙ Devaluation (Million Pa SWE (DBTT-°C) B11 201 321 48 1.94 0.34 0 35 -40 IS B12 211 342 46 1.89 0.31 0 42 •50 IS B13 221 359 45 1.91 0.35 0 36 -60 IS B14 269 410 37 1.77 0.32 0 39 - 60 IS B15 332 462 33 1.63 0.31 0 47 -60 IS B16 237 360 42 1.85 0.31 0 53 -60 IS B17 227 353 42 1.83 0.33 0 55 -50 IS B18 184 352 39 1.99 0.45 0 0 -50 cs B19 343 453 25 1.27 0.21 6.2 93 -60 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,Δγ=面内各向 異性指數,ΑΙ=老化指數,SWE=二次加工脆性,IS=本發明的鋼,Cs=比較用的鋼 5 實例12*Note: YS = yield strength, TS = tensile strength, El = elongation, rm = plasticity - anisotropy index, Δ γ = in-plane anisotropy index, ΑΙ = aging index, SWE = secondary processing brittleness, IS = steel of the invention, Cs = steel for comparison 5 Example 12

首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 45 15 1327171 表34First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 45 15 1327171 Table 34

樣品 編號 化學組分(重量%) C Μη Ρ S Α1 Ti B N 其他 B21 0.0018 0.08 0.011 0.008 0.037 0.007 0.0004 0.0014 B22 0.0015 0.05 0.052 0.009 0.044 0.008 0.0006 0.0016 B23 0.0029 0.11 0.08 0.011 0.029 0.02 0.0009 0.0017 B24 0.0025 0.09 0.108 0.011 0.032 0.011 0.0007 0.0027 Si:0.14 B25 0.0017 0.07 0.089 0.015 0.038 0.031 0.0009 0.0042 M〇:0.077 B26 0.0026 0.12 0.093 0.011 0.039 0.014 0.001 0.0031 Cr:0.14 B27 0.0021 0.45 0.045 0.009 0.038 0.058 0.0007 0.0021 B28 0.0024 0.32 0.11 0.008 0.024 0 0.007 0.0013 表35 樣品 編號 (Mn/55)/(S*/32) Cs 析出物之平均尺寸 (微米) 析出物之數目 (毫米5 B21 7.37 18 0.06 1.2χ105 B22 4.11 15 0.06 1.2xl05 B23 22.7 23.657 0.05 1·8χ105 B24 5.76 25 0.05 2.2χ106 B25 8.83 13.3 0.05 3.1χ106 B26 8.65 26 0.04 3.7χ106 B27 -14 -72 0.06 3.4x104 B28 18.8 24 0.22 2.3χ103 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48), Cs=(C-Ti*12/48)xl0000, Ti*=Ti-0.8x((48/14)xN+(48/32)xS) 46 5 I327l7l 表36Sample No. Chemical composition (% by weight) C Μη Ρ S Α1 Ti BN Other B21 0.0018 0.08 0.011 0.008 0.037 0.007 0.0004 0.0014 B22 0.0015 0.05 0.052 0.009 0.044 0.008 0.0006 0.0016 B23 0.0029 0.11 0.08 0.011 0.029 0.02 0.0009 0.0017 B24 0.0025 0.09 0.108 0.011 0.032 0.011 0.0007 0.0027 Si:0.14 B25 0.0017 0.07 0.089 0.015 0.038 0.031 0.0009 0.0042 M〇:0.077 B26 0.0026 0.12 0.093 0.011 0.039 0.014 0.001 0.0031 Cr:0.14 B27 0.0021 0.45 0.045 0.009 0.038 0.058 0.0007 0.0021 B28 0.0024 0.32 0.11 0.008 0.024 0 0.007 0.0013 35 Sample No. (Mn/55)/(S*/32) Cs Average size of precipitates (micron) Number of precipitates (mm 5 B21 7.37 18 0.06 1.2χ105 B22 4.11 15 0.06 1.2xl05 B23 22.7 23.657 0.05 1·8χ105 B24 5.76 25 0.05 2.2χ106 B25 8.83 13.3 0.05 3.1χ106 B26 8.65 26 0.04 3.7χ106 B27 -14 -72 0.06 3.4x104 B28 18.8 24 0.22 2.3χ103 S*=S-0.8x(Ti-0.8x(48/14)xN )x(32/48), Cs=(C-Ti*12/48)xl0000, Ti*=Ti-0.8x((48/14)xN+(48/32)xS) 46 5 I327l7l Table 36

樣品 蝙號 -···· 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) Δτ ΑΙ (%) BH值 (百萬帕) SWE (DBTT,C) B21 189 301 51 2.02 0.35 0 43 -50 IS B22 227 356 44 1.97 0.32 0.27 0 39 -50 IS B23 259 409 38 1.81 0 59 -60 IS B24 321 459 34 1.58 0.21 0 54 -50 IS B25 280 447 32 1.59 0.24 0 35 -40 IS B26 313 457 32 1.49 0.21 0 53 -50 IS B27 211 354 40 1.96 0.33 0 0 -40 cs B28 — 254 454 25 1.56 0.28 0 -70 cs *注意:Sample bat number -···· Mechanical properties Note YS (million kPa) TS (million kPa) E1 (%) Δτ ΑΙ (%) BH value (million kPa) SWE (DBTT, C) B21 189 301 51 2.02 0.35 0 43 -50 IS B22 227 356 44 1.97 0.32 0.27 0 39 -50 IS B23 259 409 38 1.81 0 59 -60 IS B24 321 459 34 1.58 0.21 0 54 -50 IS B25 280 447 32 1.59 0.24 0 35 -40 IS B26 313 457 32 1.49 0.21 0 53 -50 IS B27 211 354 40 1.96 0.33 0 0 -40 cs B28 — 254 454 25 1.56 0.28 0 -70 cs *Note:

Ys=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,△『=面内各向 異性指數,AI=老化指數,SWE=二次加工脆性,1S=本發明的鋼,Cs=比較用的鋼 5 實例13 首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以4〇crc/分鐘之速率來冷卻該經熱軋的鋼片材,在65〇cCt 10捲-兔以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼騎。此時,在9阶下(W3變態點) 秒之速率來加熱該熱札鋼月 朴連續退火卿,以製造岐後的冷軋鋼片 材。 47 15 1327171 表37Ys = yield strength, TS = tensile strength, El = elongation, rm = plasticity - anisotropy index, △ " = in-plane anisotropy index, AI = aging index, SWE = secondary processing brittleness, 1S = this Steel of the invention, Cs = steel for comparison 5 Example 13 First, a steel plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 4 〇 crc/min, cold rolled at 65 〇cCt 10 rolls-rabbit at a reduction rate of 75%, followed by continuous annealing to produce a cold rolled steel ride. At this time, the hot-rolled steel was continuously heated at a rate of 9 seconds (W3 metamorphic point) to produce a cold rolled steel sheet after the crucible. 47 15 1327171 Table 37

樣品 編號 化學組分(重量%) C P S A1 Ti B N 其他 B31 0.0011 0.009 0.011 0.039 0.005 0.0006 0.0084 B32 0.0014 0.05 0.008 0.053 0.009 0.0008 0.0072 B33 0.0026 0.084 0.013 0.062 0.031 0.0008 0.0089 Si:0.11 B34 0.0017 0.11 0.01 0.05 0.051 0.001 0.013 Si:0.27 B35 0.0026 0.033 0.012 0.033 0.041 0.0007 0.012 Si:0.23 Μ〇:0·055 B36 0.0028 0.11 0.011 0.05 0.019 0.0011 0.0095 Si:0.18 Cr:0.12 B37 0.0013 0.055 0.01 0.052 0.052 0.0007 0.0019 B38 0.0038 0.12 0.012 0.022 0 0.0009 0.003 表38 樣品 編號 (Al/27)/(N*/14) Cs 析出物之平均尺寸 (微米) 析出物之數目 (毫米5 B31 1.96 11 0.06 3.5χ106 B32 3.74 14 0.06 3·2χ106 B33 6.06 26 0.05 4.1χ106 B34 6.65 17 0.05 5_3χ106 B35 2.95 26 0.05 4.4x106 B36 3.18 28 0.04 5.9x106 B37 -3.6 -63 0.21 1.8χ104 B38 1.79 38 0.07 2.2x104 Cs=(C-Ti*12/48)xl0000, Ti*=Ti-0.8x((48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 48 5 1327171 表39 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) EI (%) Δγ ΑΙ (%) BH值 (百萬帕) SWE (DBTT-°C) B31 188 312 51 1.99 0.31 0 36 -40 IS B32 217 344 45 1.88 0.25 0 37 -50 IS B33 271 404 38 1.7 0.23 0 52 -50 IS B34 330 458 32 1.74 0.31 0 42 -50 IS B35 220 362 41 1.89 0.29 0 58 -50 IS B36 333 453 32 1.59 0.21 0 58 -60 IS B37 196 355 41 1.32 0.43 0 0 cs B38 329 452 27 1.21 0.18 5.2 88 -40 cs *注意: YS=屈服強度,TS=抗張強度,El=延伸度,rni=可塑性-各向異性指數,Δγ=面内各向 異性指數,ΑΙ=老化指數,SWE=二次加工脆性,IS=本發明的鋼,Cs=比較用的鋼 實例14Sample number Chemical composition (% by weight) CPS A1 Ti BN Other B31 0.0011 0.009 0.011 0.039 0.005 0.0006 0.0084 B32 0.0014 0.05 0.008 0.053 0.009 0.0008 0.0072 B33 0.0026 0.084 0.013 0.062 0.031 0.0008 0.0089 Si:0.11 B34 0.0017 0.11 0.01 0.05 0.051 0.001 0.013 Si :0.27 B35 0.0026 0.033 0.012 0.033 0.041 0.0007 0.012 Si:0.23 Μ〇:0·055 B36 0.0028 0.11 0.011 0.05 0.019 0.0011 0.0095 Si:0.18 Cr:0.12 B37 0.0013 0.055 0.01 0.052 0.052 0.0007 0.0019 B38 0.0038 0.12 0.012 0.022 0 0.0009 0.003 38 Sample No. (Al/27)/(N*/14) Cs Average size of precipitates (micron) Number of precipitates (mm 5 B31 1.96 11 0.06 3.5χ106 B32 3.74 14 0.06 3·2χ106 B33 6.06 26 0.05 4.1χ106 B34 6.65 17 0.05 5_3χ106 B35 2.95 26 0.05 4.4x106 B36 3.18 28 0.04 5.9x106 B37 -3.6 -63 0.21 1.8χ104 B38 1.79 38 0.07 2.2x104 Cs=(C-Ti*12/48)xl0000, Ti*=Ti-0.8 x((48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 48 5 1327171 Table 39 Sample No. Mechanical Properties Note YS (million kPa) TS ( 10,000 (%) Δγ ΑΙ (%) BH value (million kPa) SWE (DBTT-°C) B31 188 312 51 1.99 0.31 0 36 -40 IS B32 217 344 45 1.88 0.25 0 37 -50 IS B33 271 404 38 1.7 0.23 0 52 -50 IS B34 330 458 32 1.74 0.31 0 42 -50 IS B35 220 362 41 1.89 0.29 0 58 -50 IS B36 333 453 32 1.59 0.21 0 58 -60 IS B37 196 355 41 1.32 0.43 0 0 Cs B38 329 452 27 1.21 0.18 5.2 88 -40 cs *Note: YS = yield strength, TS = tensile strength, El = elongation, rni = plasticity - anisotropy index, Δγ = in-plane anisotropy index, ΑΙ = aging index, SWE = secondary processing brittleness, IS = steel of the invention, Cs = comparative steel example 14

首先,根據顯示在下表中之組成物來製備一鋼平板。 再加熱及精軋熱軋該鋼平板,以提供一經熱軋的鋼片材。 以400°C/分鐘之速率來冷卻該經熱軋的鋼片材,在650°C下 10 捲繞,以75%的減低速率來冷軋,接著連續退火,以製造 一經冷軋的鋼片材。此時,在910°C下(其大於Ar3變態點) 進行精軋熱軋,且藉由以l〇°C/秒之速率來加熱該熱軋鋼片 材至830°C來進行連續退火40秒,以製造出最後的冷軋鋼片 材。 49 15 1327171 表40 樣品 編號 化學組分(重量%) C Μη Ρ S Α1 Ti B N 其他 B41 0.0015 0.12 0.009 0.007 0.039 0.0] 0.0008 0.0073 B42 0.0018 0.08 0.024 0.009 0.042 0.008 0.0005 0.0094 B43 0.0012 0.09 0.044 0.008 0.043 0.009 0.0007 0.0079 Si:0.06 B44 0.0026 0.11 0.077 0.012 0.054 0.022 0.0008 0.011 Si:0.12 B45 0.0018 0.11 0.11 0.016 0.052 0.051 0.0011 0.0125 Si:0.11 B46 0.0021 0.1 0.041 0.013 0.067 0.033 0.0009 0.0083 Si:0.09 M〇:0.056 B47 0.0019 0.11 0.041 0.008 0.042 0.019 0.0006 0.0095 Cr:0.33 B48 0.0016 0.68 0.045 0.009 0.048 0.052 0.0004 0.0021 B49 0.0037 0.1 0.114 0.01 0.008 0 0.0011 0.0067 Si:0.05First, a steel flat plate was prepared according to the composition shown in the following table. The steel plate is reheated and finish rolled to provide a hot rolled steel sheet. The hot rolled steel sheet was cooled at a rate of 400 ° C / min, wound at 650 ° C, cold rolled at a reduction rate of 75%, and then continuously annealed to produce a cold rolled steel sheet. material. At this time, finish rolling hot rolling was performed at 910 ° C (which is greater than the Ar 3 metamorphic point), and continuous annealing was performed for 40 seconds by heating the hot rolled steel sheet to 830 ° C at a rate of 10 ° C / sec. To produce the final cold rolled steel sheet. 49 15 1327171 Table 40 Sample No. Chemical composition (% by weight) C Μη Ρ S Α1 Ti BN Other B41 0.0015 0.12 0.009 0.007 0.039 0.0] 0.0008 0.0073 B42 0.0018 0.08 0.024 0.009 0.042 0.008 0.0005 0.0094 B43 0.0012 0.09 0.044 0.008 0.043 0.009 0.0007 0.0079 Si: 0.06 B44 0.0026 0.11 0.077 0.012 0.054 0.022 0.0008 0.011 Si: 0.12 B45 0.0018 0.11 0.11 0.016 0.052 0.051 0.0011 0.0125 Si: 0.11 B46 0.0021 0.1 0.041 0.013 0.067 0.033 0.0009 0.0083 Si: 0.09 M〇: 0.056 B47 0.0019 0.11 0.041 0.008 0.042 0.019 0.0006 0.0095 Cr:0.33 B48 0.0016 0.68 0.045 0.009 0.048 0.052 0.0004 0.0021 B49 0.0037 0.1 0.114 0.01 0.008 0 0.0011 0.0067 Si:0.05

表41 樣品 編號 (Mn/55)/(S*/32) (Al/27)/(N*/14) Cs 析出物之平均 尺寸(微米) 析出物之數目 (毫米’ B41 5.66 2.92 15 0.06 5.1χ106 B42 2.52 2.17 18 0.06 4.9x106 B43 3.55 2.77 12 0.06 5.8xl06 B44 3.91 3.03 26 0.05 6.9xl06 B45 9.03 5.31 18 0.05 8.1xl06 B46 7.71 8.19 21 0.05 6.8x106 B47 5.44 2.98 19 0.04 8.8χ106 B48 -25 -3.3 -62 0.21 1.8χ104 B49 2.94 0.44 37 0.07 8.3x105Table 41 Sample No. (Mn/55)/(S*/32) (Al/27)/(N*/14) Cs Average size of precipitates (micron) Number of precipitates (mm' B41 5.66 2.92 15 0.06 5.1 Χ106 B42 2.52 2.17 18 0.06 4.9x106 B43 3.55 2.77 12 0.06 5.8xl06 B44 3.91 3.03 26 0.05 6.9xl06 B45 9.03 5.31 18 0.05 8.1xl06 B46 7.71 8.19 21 0.05 6.8x106 B47 5.44 2.98 19 0.04 8.8χ106 B48 -25 -3.3 -62 0.21 1.8χ104 B49 2.94 0.44 37 0.07 8.3x105

S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) » Cs=(C-Ti*xl2/48)xlOOOO -Ti*=Ti-0.8x((48/14)xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 50 1327171 表42 樣品 編號 機械性質 注意 事項 YS (百萬帕) TS (百萬帕) E1 (%) rm Δτ ΑΙ (%) BH值 (百萬帕) SWE (DBTT-°C) B41 194 311 49 1.98 0.41 0 38 -50 IS B42 209 325 47 1.82 0.37 0 45 -40 IS B43 219 355 43 1.79 0.39 0 38 -50 IS B44 267 395 39 1.71 0.29 0 48 -40 IS B45 322 459 33 1.51 0.25 0 39 -60 IS B46 239 360 41 1.61 0.26 0 44 -50 IS B47 233 368 42 1.57 0.28 0 41 -50 IS B48 185 348 42 1.92 0.42 0 0 -40 cs B49 378 461 27 1.12 0.34 4.1 96 -60 csS*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48) » Cs=(C-Ti*xl2/48)xlOOOO -Ti*=Ti-0.8x((48/ 14) xN+(48/32)xS) N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48) 50 1327171 Table 42 Sample No. Mechanical Properties Note YS (Million帕) TS (million kPa) E1 (%) rm Δτ ΑΙ (%) BH value (million kPa) SWE (DBTT-°C) B41 194 311 49 1.98 0.41 0 38 -50 IS B42 209 325 47 1.82 0.37 0 45 -40 IS B43 219 355 43 1.79 0.39 0 38 -50 IS B44 267 395 39 1.71 0.29 0 48 -40 IS B45 322 459 33 1.51 0.25 0 39 -60 IS B46 239 360 41 1.61 0.26 0 44 -50 IS B47 233 368 42 1.57 0.28 0 41 -50 IS B48 185 348 42 1.92 0.42 0 0 -40 cs B49 378 461 27 1.12 0.34 4.1 96 -60 cs

*注意: YS=屈服強度,TS=抗張強度,El=延伸度,rm=可塑性-各向異性指數,Ar=面内各向 異性指數,AI=老化指數,SWE=二次加工脆性,IS=本發明的鋼,Cs=比較用的鋼*Note: YS = yield strength, TS = tensile strength, El = elongation, rm = plasticity - anisotropy index, Ar = in-plane anisotropy index, AI = aging index, SWE = secondary processing brittleness, IS = steel of the invention, Cs = steel for comparison

在本發明中所闡明的較佳具體實施例不提供做為本發 明之限制,而是提供作為闡明用途。任何具有實質上與在 所附加的申請專利範圍中所定義之本發明的工藝精神相同 之構造及相同操作效應的具體實施例皆包含在本發明之工 10 藝範圍内。 [工業可行性] 如可從上述描述明瞭,根據本發明之冷軋鋼片材,在 以Ti為基礎的IF鋼中之細微析出物分佈允許形成微小結晶 晶粒,結果,可藉由提高析出物來降低面内各向異性指數 15 及提高屈服強度。 51 1327171The preferred embodiments illustrated in the present invention are not provided as a limitation of the invention, but are provided for illustrative purposes. Any specific embodiment having substantially the same construction and the same operational effects as the process spirit of the present invention defined in the appended claims is included in the scope of the present invention. [Industrial Feasibility] As can be seen from the above description, according to the cold-rolled steel sheet of the present invention, the fine precipitate distribution in the Ti-based IF steel allows the formation of minute crystal grains, and as a result, the precipitate can be enhanced To reduce the in-plane anisotropy index of 15 and increase the yield strength. 51 1327171

I:圖式簡單說明3 (無) 【主要元件符號說明】 (無) 52I: Simple description of the figure 3 (none) [Explanation of main component symbols] (None) 52

Claims (1)

1327171 十、申請專利範圍: 1. 一種具有優異成形性的冷軋鋼片材,該冷軋鋼片材具有 下列組成物’其包含:較少的C、0.01-0.2%的 Cu、0.005-0.08%的S、0.1%或較少的A卜0.004%或較少 5 的N、0.2%或較少的P、〇.〇〇01_〇.〇〇2%的B、0.005-0.15% 的Ti(以重量計),且剩餘部分為Fe及其它無法避免的雜 質; 其中該組成物滿足下列關係: lS(Cu/63.5)/(S*/32)S3〇 及 s*=S-0.8x(Ti-0.8x(48/14)xN)x 10 (32/48);及 其中該鋼片材包含平均尺寸0.2微米或較小的CuS 析出物。 2. 如申請專利範圍第1項之冷軋鋼片材,其中該組成物更 包含0.01-0.3%的Μη及滿足下列關係: 15 l<(Mn/55+Cu/63.5)/(S*/32)S30;及該鋼片材包含平均尺 寸0.2微米或較小的(Mn,Cu)S析出物。 3. 如申請專利範圍第1項之冷軋鋼片材,其中該N含量為 0.004-0.02%及該組成物滿足下列關係:κ(Α1/27)/ (Ν*/14)<10及N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48);及 20 該鋼片材包含平均尺寸0.2微米或較小的A1N析出物。 4. 如申請專利範圍第1項之冷軋鋼片材,其中該組成物更 包含0.01-0.3%的Μη及0.004至0.02%的N,且滿足下列關 係:K(Mn/55+Cu/63.5)/(S*/32)S3〇, l$(Al/27)/(N*/14)S10 及N*=N-0.8x(Ti-0.8x(48/32)xS)x(14/48);及該鋼片材包 53 1327171 含平均尺寸0.2微米或較小的(Mn,Cu)S析出物及A1N析 出物。 5. —種具有優異成形性之冷軋鋼片材,該冷軋鋼片材具有 下列組成物’其包含:0.01%或較少的C、0.08%或較少 5 的s、〇. 1 %或較少的A1、0.004%或較少的N、0.2%或較 少的 P、0.0001-0.002% 的 B ' 0.005—0.15%的 Ti、選自於 0.01-0.2% 的 Cu、0.01-0.3% 的 Μη及 0.004-0.2% 的 N之至 少一種(以重量計)’且剩餘部分為Fe及其它無法避免的 雜質, 10 其中該組成物滿足下列關係: l<(Mn/55+Cu/63.5)/(S*/32)<30 » 1<(Α1/27)/(Ν*/14)<10 » 其中該N含量為〇.0〇4%或更多, S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48)及 N*=N-0.8x(Ti- 0.8x(48/32)xS))x(14/48);及 15 其中該鋼片材包含選自於具有平均尺寸0.2微米或 較小的(Mn,Cu)S及A1N析出物之至少一種。 6. 如申請專利範圍第1或5項之冷軋鋼片材,其中該c、Ti、 N及S含量滿足下列關係:〇及 Ti*=Ti-0.8x((48/14)xN+(48/32)xS)。 20 7·如申請專利範圍第6項之冷軋鋼片材,其中該C含量為 0.005%或較少。 8.如申請專利範圍第1或5項之冷乾鋼片材,其中該溶質碳 (Cs)[Cs=(C-Ti*xl2/48)xl〇〇〇〇,其中 Ti*=Ti_〇 8χ((48/14) xN+(48/32)xS),其限制條件為當Ti*小於0時,Ti*定義 54 1327171 為0]由C及Ti含量決定,其值從5至30。 9. 如申請專利範圍第8項之冷軋鋼片材,其中該C含量為 0.001-0.01%。 10. 如申請專利範圍第1至5項之任何一項的冷軋鋼片材,其 5 中該冷軋鋼片材滿足0.58或較高的屈強比(屈服強度/抗 張強度)。 11. 如申請專利範圍第1至5項之任何一項的冷軋鋼片材,其 中該析出物之數目為lxlO6/平方毫米或更大。 12. 如申請專利範圍第1或5項之冷軋鋼片材,其中該P含量 10 為0.015%或較少。 13. 如申請專利範圍第1或5項之冷軋鋼片材,其中該P含量 為0.03%至0.2%。 14. 如申請專利範圍第1或5項之冷軋鋼片材,其中該組成物 更包含選自於0.1-0.8%的Si及0.2-1.2%的Cr之至少一種。 15 15.如申請專利範圍第1或5項之冷軋鋼片材,其中該組成物 更包含0.01-0.2%的Mo。 16. 如申請專利範圍第14項之冷軋鋼片材,其中該組成物更 包含0.01-0.2%的Mo。 17. 如申請專利範圍第2、4及5項之任何一項的冷軋鋼片 20 材,其中該Μη及Cu之總和從0.05%至0.4%。 18. 如申請專利範圍第2、4及5項之任何一項的冷軋鋼片 材,其中該Μη含量為0.01-0.12%。 19. 如申請專利範圍第2、4及5項之任何一項的冷軋鋼片 材,其中該(Mn/55+Cu/63.5)/(S*/32)值的範圍在1至9。 55 1327171 20. 如申請專利範圍第3、4及5項之任何一項的冷軋鋼片 材,其中該(Α1/27)/(Ν*/14)值在1至6。 21. —種具有優異成形性的冷軋鋼片材之製造方法,該方法 其步驟包括: 5 將一平板再加熱至溫度l,l〇〇°C或較高,該平板 具有下列組成物,其包含:0.01%或較少的C、 0.01-0.2% 的 Cu、0.005-0.08% 的 S、0.1% 或較少的 A1、0.004%或較少的N、0.2%或較少的P、 0.0001-0.002%的 B、0.005-0.15% 的 Ti(以重量計), 10 且剩餘部分為Fe及其它無法避免的雜質,而且該組 成物滿足下列關係:lS(Cu/63.5)/(S*/32)S30及 S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48); 在Ar3變態點或較高的精軋溫度下熱軋該經再加熱 的平板,以提供一熱軋鋼片材; 15 以300°C/分鐘或較高之速率來冷卻該熱軋鋼片材; 在700°C或較低下捲繞該經冷卻的鋼片材; 冷軋該經捲繞的鋼片材;及 連續退火該冷軋鋼片材,該冷軋鋼片材包含平均尺 寸0.2微米或較小的CuS析出物。 20 22.如申請專利範圍第21項之方法,其中該組成物更包含 0.01-0.3% 的 Μη 且滿足下列關係 : 1<(厘11/55+〇1/63.5)/(5*/32)^30;及該鋼片材包含平均尺 寸0.2微米或較小的(Mn,Cu)S析出物。 23.如申請專利範圍第21項之方法,其中該N含量為 56 1327171 0.004-0.02%及該組成物滿足下列關係: 12(Al/27)/(N*/14)S10 及 N*=N-0.8x(Ti-0.8x(48/32)xS))x (14/48);及該鋼片材包含平均尺寸0.2微米或較小的A1N 析出物。 5 24.如申請專利範圍第21項之方法,其中該組成物更包含 0.01-0.3%的Μη,該N含量為0.004-0.02%且該組成物 滿足下列關係:1句Mn/55+Cu/63.5)/(S*/32)<30, 1<(Α1/27)/(Ν*/14)<10 及 N*=N-0.8x(Ti-0.8x(48/32)xS))x (14/48);及該鋼片材包含平均尺寸0.2微米或較小的 10 (Mn,Cu)S析出物及A1N析出物。 25. —種具有優異成形性的冷軋鋼片材之製造方法,該方法 其步驟包括: 將一平板再加熱至溫度1,loot:或較高,該平板具有 下列組成物,其包含·· 0.01 %或較少的C、0.08%或較少 15 的S、0.1%或較少的A1、0.004%或較少的N、0·2%或較 少的Ρ、0.0001-0.002%的Β、0.005-0.15%的 Ti、選自於 0.01-0.2% 的 Cu、0.01-0.3% 的 Μη及 0.004-0.2% 的 N之至 少一種(以重量計),且剩餘部分為Fe及其它無法避免的 雜質,而且該組成物滿足下列關係·· 20 l<(Mn/55+Cu/63.5)/(S*/32)<30 » 1<(Α1/27)/(Ν*/14)<10 » 其中該Ν含量為0.004%或更多,S*=S-0.8x(Ti-0.8x(48/14) xN)x(32/48)及N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48); 在Ar3變態點或較高之精軋溫度下熱軋該經再加熱 的平板,以提供一熱軋鋼片材; 57 1327171 以300°C/分鐘或較高之速率來冷卻該熱軋鋼片材; , 在7〇〇°C或較低下捲繞該經冷卻的鋼片材; , 冷軋該經捲繞的鋼片材;及 連績退火該冷軋鋼片材,該冷軋鋼片材包含選自於 5 具有平均尺寸0.2微米或較小的(Mn,Cu)S及AIN析出物 之至少一種。 26. 如申請專利範圍第21或25項之方法,其中該c、Ti、N φ 及S含量滿足下列關係: 0.8<(Ti*/48)/(C/12)<5.0 及 Ti*=Ti-〇.8x((48/14)xN+ 10 (48/32)xS)。 27. 如申請專利範圍第26項之方法,其中該c含量為〇〇〇5% 或較少。 28. 如申請專利範圍第21或25項之冷軋鋼片材其中該溶質 碳(CS)[CS=(C-Ti*xl2/48)xl〇〇〇〇,其中 Ti*=Ti_〇 8χ 15 ((48/14)XN+(48/32)xS) ’其限制條件為當Ti*小於0時, • Ti*定義為0]由c及Ti含量決定,其值從5至30。 29. 如申請專利範圍第28項之方法,其中該。含量為 0.001-0.01% 〇 30. 如申請專利範圍第21至25項之任何—項的方法,其中該 • 20 冷軋鋼片材滿足㈣或較高的屈強比(屈服強度/抗張強 度)。 , •如申請專利範圍第21至25項之任何—項的方法,其中該 析出物之數目為lxl〇6/平方毫米或更大。 32.如申請專利範圍第21或25項之方法,其中該p含量為 58 1327171 0.015%或較少。 33. 如申請專利範圍第21或25項之方法,其中該P含量從 0.03%至0.2%。 34. 如申請專利範圍第21或25項之方法,其中該組成物更包 5 含選自於0.1-0.8%的Si及0.2-l_2%Cr之至少一種。 35. 如申請專利範圍第21或25項之方法,其中該組成物更包 含0.01-0.2% 的 Mo。 36. 如申請專利範圍第34項之方法,其中該組成物更包含 0.01-0.2%的 Mo。 10 37.如申請專利範圍第22、24或25項之方法,其中該Μη及 Cu的總和從0.08%至0.4%。 38. 如申請專利範圍第22、24或25項之方法,其中該Μη含 量為0.01-0.12%。 39. 如申請專利範圍第22、24或25項之方法,其中該 15 (Mn/55+Cu/63.5)/(S*/32)值的範圍從1至9。 40. 如申請專利範圍第23、24或25項之方法,其中該 (Α1/27)/(Ν*/14)值的範圍從1至6。 591327171 X. Patent application scope: 1. A cold-rolled steel sheet having excellent formability, the cold-rolled steel sheet having the following composition 'contains: less C, 0.01-0.2% Cu, 0.005-0.08% S, 0.1% or less A Bu 0.004% or less 5 N, 0.2% or less P, 〇.〇〇01_〇.〇〇2% B, 0.005-0.15% Ti ( Weight) and the remainder is Fe and other unavoidable impurities; wherein the composition satisfies the following relationship: lS(Cu/63.5)/(S*/32)S3〇 and s*=S-0.8x(Ti- 0.8x (48/14) x N) x 10 (32/48); and wherein the steel sheet contains CuS precipitates having an average size of 0.2 μm or less. 2. For cold-rolled steel sheet according to item 1 of the patent application, wherein the composition further comprises 0.01-0.3% of Μη and satisfies the following relationship: 15 l<(Mn/55+Cu/63.5)/(S*/32 And S30; and the steel sheet comprises (Mn, Cu)S precipitates having an average size of 0.2 μm or less. 3. The cold rolled steel sheet according to item 1 of the patent application, wherein the N content is 0.004 to 0.02% and the composition satisfies the following relationship: κ (Α1/27) / (Ν*/14) <10 and N *=N-0.8x (Ti-0.8x(48/32)xS))x(14/48); and 20 The steel sheet contains an A1N precipitate having an average size of 0.2 μm or less. 4. The cold rolled steel sheet according to item 1 of the patent application, wherein the composition further comprises 0.01-0.3% of Μη and 0.004% to 0.02% of N, and satisfies the following relationship: K(Mn/55+Cu/63.5) /(S*/32)S3〇, l$(Al/27)/(N*/14)S10 and N*=N-0.8x(Ti-0.8x(48/32)xS)x(14/48 And the steel sheet package 53 1327171 contains (Mn, Cu)S precipitates and A1N precipitates having an average size of 0.2 μm or less. 5. A cold-rolled steel sheet having excellent formability, the cold-rolled steel sheet having the following composition 'containing: 0.01% or less C, 0.08% or less 5 s, 〇. 1% or less Less A1, 0.004% or less N, 0.2% or less P, 0.0001-0.002% B' 0.005-0.15% Ti, selected from 0.01-0.2% Cu, 0.01-0.3% Μη And 0.004-0.2% of at least one of N (by weight) and the remainder is Fe and other unavoidable impurities, 10 wherein the composition satisfies the following relationship: l <(Mn/55+Cu/63.5)/( S*/32)<30 » 1<(Α1/27)/(Ν*/14)<10 » wherein the N content is 〇.0〇4% or more, S*=S-0.8x( Ti-0.8x(48/14)xN)x(32/48) and N*=N-0.8x(Ti-0.8x(48/32)xS))x(14/48); and 15 wherein the steel The sheet contains at least one selected from the group consisting of (Mn, Cu)S and A1N precipitates having an average size of 0.2 μm or less. 6. For the cold-rolled steel sheet of claim 1 or 5, wherein the c, Ti, N and S contents satisfy the following relationship: 〇 and Ti*=Ti-0.8x((48/14)xN+(48/ 32) xS). 20 7. A cold rolled steel sheet according to item 6 of the patent application, wherein the C content is 0.005% or less. 8. The cold-dried steel sheet according to claim 1 or 5, wherein the solute carbon (Cs) [Cs=(C-Ti*xl2/48)xl〇〇〇〇, wherein Ti*=Ti_〇 8χ((48/14) xN+(48/32)xS), with the constraint that when Ti* is less than 0, the Ti* definition 54 1327171 is 0] is determined by the C and Ti contents, and the value ranges from 5 to 30. 9. A cold rolled steel sheet according to item 8 of the patent application, wherein the C content is 0.001 to 0.01%. 10. The cold-rolled steel sheet according to any one of claims 1 to 5, wherein the cold-rolled steel sheet satisfies a yield ratio of 0.58 or higher (yield strength/tensile strength). 11. The cold rolled steel sheet according to any one of claims 1 to 5, wherein the number of the precipitates is lxlO6/mm 2 or more. 12. The cold rolled steel sheet according to claim 1 or 5, wherein the P content 10 is 0.015% or less. 13. The cold rolled steel sheet according to claim 1 or 5, wherein the P content is from 0.03% to 0.2%. 14. The cold rolled steel sheet according to claim 1 or 5, wherein the composition further comprises at least one selected from the group consisting of 0.1-0.8% of Si and 0.2-1.2% of Cr. 15. A cold rolled steel sheet according to claim 1 or 5, wherein the composition further comprises 0.01 to 0.2% of Mo. 16. The cold rolled steel sheet of claim 14, wherein the composition further comprises 0.01 to 0.2% Mo. 17. The cold rolled steel sheet 20 of any one of claims 2, 4 and 5, wherein the sum of the Μη and Cu is from 0.05% to 0.4%. 18. The cold rolled steel sheet according to any one of claims 2, 4 and 5, wherein the Μη content is from 0.01 to 0.12%. 19. A cold rolled steel sheet according to any one of claims 2, 4 and 5, wherein the (Mn/55+Cu/63.5)/(S*/32) value ranges from 1 to 9. 55 1327171 20. The cold rolled steel sheet according to any one of claims 3, 4 and 5, wherein the (Α1/27)/(Ν*/14) value is from 1 to 6. 21. A method of producing a cold rolled steel sheet having excellent formability, the method comprising the steps of: 5 reheating a plate to a temperature of 1, l ° C or higher, the plate having the following composition, Contains: 0.01% or less of C, 0.01-0.2% of Cu, 0.005-0.08% of S, 0.1% or less of A1, 0.004% or less of N, 0.2% or less of P, 0.0001- 0.002% B, 0.005-0.15% Ti (by weight), 10 and the remainder is Fe and other unavoidable impurities, and the composition satisfies the following relationship: lS(Cu/63.5)/(S*/32 S30 and S*=S-0.8x(Ti-0.8x(48/14)xN)x(32/48); hot rolling the reheated plate at an Ar3 metamorphic point or a higher finishing temperature, To provide a hot rolled steel sheet; 15 to cool the hot rolled steel sheet at a rate of 300 ° C / min or higher; to wind the cooled steel sheet at 700 ° C or lower; cold rolling the warp a coiled steel sheet; and the cold-rolled steel sheet is continuously annealed, the cold-rolled steel sheet comprising CuS precipitates having an average size of 0.2 μm or less. 20. The method of claim 21, wherein the composition further comprises 0.01-0.3% of Μη and satisfies the following relationship: 1<(PCT 11/55+〇1/63.5)/(5*/32) ^30; and the steel sheet contains (Mn, Cu)S precipitates having an average size of 0.2 μm or less. 23. The method of claim 21, wherein the N content is 56 1327171 0.004-0.02% and the composition satisfies the following relationship: 12(Al/27)/(N*/14)S10 and N*=N - 0.8x (Ti-0.8x (48/32) x S)) x (14/48); and the steel sheet contains A1N precipitates having an average size of 0.2 μm or less. 5. The method of claim 21, wherein the composition further comprises 0.01-0.3% of Μη, the N content is 0.004-0.02% and the composition satisfies the following relationship: 1 sentence Mn/55+Cu/ 63.5)/(S*/32)<30, 1<(Α1/27)/(Ν*/14)<10 and N*=N-0.8x(Ti-0.8x(48/32)xS) ) x (14/48); and the steel sheet contains 10 (Mn, Cu) S precipitates and A1N precipitates having an average size of 0.2 μm or less. 25. A method of producing a cold rolled steel sheet having excellent formability, the method comprising the steps of: reheating a plate to a temperature of 1, loot: or higher, the plate having the following composition, comprising 0.01 % or less C, 0.08% or less 15 S, 0.1% or less A1, 0.004% or less N, 0.2% or less Ρ, 0.0001-0.002% Β, 0.005 -0.15% Ti, at least one selected from the group consisting of 0.01-0.2% Cu, 0.01-0.3% Μη, and 0.004-0.2% N by weight, and the balance being Fe and other unavoidable impurities, Further, the composition satisfies the following relationship: 20 l <(Mn/55+Cu/63.5)/(S*/32)<30 » 1<(Α1/27)/(Ν*/14)<10 » Wherein the niobium content is 0.004% or more, S*=S-0.8x (Ti-0.8x(48/14) xN)x (32/48) and N*=N-0.8x (Ti-0.8x ( 48/32) xS)) x (14/48); hot rolled the reheated plate at the Ar3 metamorphic point or higher finishing temperature to provide a hot rolled steel sheet; 57 1327171 at 300 ° C / Cooling the hot rolled steel sheet at a minute or higher rate; winding the cooled steel sheet at 7 ° C or lower; The wound steel sheet; and the continuous-annealed cold-rolled steel sheet, the cold-rolled steel sheet comprising at least (Mn, Cu)S and AIN precipitates having an average size of 0.2 μm or less One. 26. The method of claim 21, wherein the c, Ti, N φ and S contents satisfy the following relationship: 0.8 < (Ti * / 48) / (C / 12) < 5.0 and Ti * =Ti-〇.8x((48/14)xN+ 10 (48/32)xS). 27. The method of claim 26, wherein the c content is 〇〇〇5% or less. 28. A cold rolled steel sheet according to claim 21 or 25 wherein the solute carbon (CS) [CS = (C-Ti*xl2/48) xl〇〇〇〇, wherein Ti*=Ti_〇8χ 15 ((48/14)XN+(48/32)xS) 'The constraint is that when Ti* is less than 0, • Ti* is defined as 0] is determined by the c and Ti contents, and the value ranges from 5 to 30. 29. If the method of claim 28 is applied, it should be. The method of any one of clauses 21 to 25, wherein the 20 cold rolled steel sheet satisfies (4) or a higher yield ratio (yield strength/tensile strength). The method of any one of claims 21 to 25, wherein the number of the precipitates is lxl 〇 6 / square millimeter or more. 32. The method of claim 21, wherein the p content is 58 1327171 0.015% or less. 33. The method of claim 21, wherein the P content is from 0.03% to 0.2%. 34. The method of claim 21, wherein the composition further comprises at least one selected from the group consisting of 0.1-0.8% of Si and 0.2-1% of Cr. 35. The method of claim 21, wherein the composition further comprises 0.01-0.2% Mo. 36. The method of claim 34, wherein the composition further comprises 0.01-0.2% Mo. The method of claim 22, 24 or 25, wherein the sum of the Μη and Cu is from 0.08% to 0.4%. 38. The method of claim 22, 24 or 25, wherein the Μη content is from 0.01 to 0.12%. 39. The method of claim 22, 24 or 25, wherein the 15 (Mn/55+Cu/63.5)/(S*/32) value ranges from 1 to 9. 40. The method of claim 23, 24 or 25, wherein the (Α1/27)/(Ν*/14) value ranges from 1 to 6. 59
TW095115563A 2005-05-03 2006-05-02 Cold roller steel sheet having superior formability, process for producing the same TWI327171B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20050037183 2005-05-03
KR1020050129240A KR100723180B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129241A KR100723160B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anistropy and process for producing the same
KR1020050129238A KR100723182B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anistropy and process for producing the same
KR1020050129242A KR100723159B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same

Publications (2)

Publication Number Publication Date
TW200702456A TW200702456A (en) 2007-01-16
TWI327171B true TWI327171B (en) 2010-07-11

Family

ID=37652804

Family Applications (3)

Application Number Title Priority Date Filing Date
TW095115562A TWI346141B (en) 2005-05-03 2006-05-02 Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
TW095115563A TWI327171B (en) 2005-05-03 2006-05-02 Cold roller steel sheet having superior formability, process for producing the same
TW095115565A TWI309263B (en) 2005-05-03 2006-05-02 Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW095115562A TWI346141B (en) 2005-05-03 2006-05-02 Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW095115565A TWI309263B (en) 2005-05-03 2006-05-02 Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same

Country Status (6)

Country Link
US (2) US20080185077A1 (en)
JP (3) JP4954980B2 (en)
KR (42) KR100723158B1 (en)
CN (3) CN101171355A (en)
MX (3) MX2007013677A (en)
TW (3) TWI346141B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775338B1 (en) * 2006-11-21 2007-11-08 주식회사 포스코 Cold rolled steel sheet having high yield ratio and excellent formability and the method for manufacturing the same
KR100957960B1 (en) * 2007-12-26 2010-05-17 주식회사 포스코 Cold rolled steel sheet having good formability and surface quality and process for producing the same
KR101030898B1 (en) * 2008-08-28 2011-04-22 현대제철 주식회사 solid carbon/nitrogen composition bake hardenable steel sheet, and method for producing the same
CN101348884B (en) * 2008-09-11 2010-05-12 北京科技大学 440MPa grade niobium-containing high-strength IF steel and manufacturing method thereof
JP5272714B2 (en) * 2008-12-24 2013-08-28 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
KR101121829B1 (en) * 2009-08-27 2012-03-21 현대제철 주식회사 Hot-rolled steel sheet having high strength, and method for producing the same
CN102747281B (en) * 2012-07-31 2014-10-29 首钢总公司 Production method of batch annealing interstitial-free (IF) steel
CN102925796B (en) * 2012-10-30 2014-07-09 鞍钢股份有限公司 Non-alloyed ultra-low carbon structure cold-rolled sheet and production method thereof
KR101318060B1 (en) 2013-05-09 2013-10-15 현대제철 주식회사 Hot stamping product with advanced toughness and method of manufacturing the same
KR101611762B1 (en) * 2014-12-12 2016-04-14 주식회사 포스코 Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same
DE102016110661A1 (en) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
CN110026433B (en) * 2019-03-20 2021-07-23 首钢集团有限公司 Method for improving surface quality of P-containing high-strength IF steel continuous annealing plate
WO2021095182A1 (en) * 2019-11-13 2021-05-20 日本製鉄株式会社 Steel material
KR102566353B1 (en) 2021-08-26 2023-08-14 현대제철 주식회사 Cold-rolled steel sheet with excellent plastic anisotropy and strength and method of manufacturing the same

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825436A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of deep drawing cold rolling steel plate having slow aging property and small anisotropy
JPS5884929A (en) * 1981-11-17 1983-05-21 Nippon Steel Corp Production of cold-rolled steel plate for deep drawing having excellent nonaging property and curing performance for baked paint
JPS5967322A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for deep drawing
JPH01191765A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JPH07116509B2 (en) * 1989-02-21 1995-12-13 日本鋼管株式会社 Non-oriented electrical steel sheet manufacturing method
JPH05339640A (en) * 1990-12-10 1993-12-21 Kobe Steel Ltd Production of cold rolled steel sheet reduced in plastic anisotropy
US5200005A (en) * 1991-02-08 1993-04-06 Mcgill University Interstitial free steels and method thereof
US5332453A (en) * 1992-03-06 1994-07-26 Kawasaki Steel Corporation High tensile steel sheet having excellent stretch flanging formability
JP3096165B2 (en) * 1992-08-18 2000-10-10 川崎製鉄株式会社 Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP3219220B2 (en) * 1993-03-31 2001-10-15 住友金属鉱山株式会社 Air electrode precursor green sheet and molten carbonate fuel cell using the same
US5531839A (en) * 1993-10-05 1996-07-02 Nkk Corporation Continously annealed cold-rolled steel sheet excellent in balance between deep drawability and resistance to secondary-work embrittlement and method for manufacturing same
JPH07179946A (en) * 1993-12-24 1995-07-18 Kawasaki Steel Corp Production of high workability high tensile strength cold rolled steel plate excellent in secondary working brittleness resistance
JPH08283909A (en) * 1995-04-17 1996-10-29 Nippon Steel Corp Cold rolled steel sheet excellent in uniformity of workability and its production
JP3420370B2 (en) * 1995-03-16 2003-06-23 Jfeスチール株式会社 Thin steel sheet excellent in press formability and method for producing the same
JP3293450B2 (en) * 1996-02-27 2002-06-17 日本鋼管株式会社 Manufacturing method of cold-rolled steel sheet for deep drawing
DE19628714C1 (en) 1996-07-08 1997-12-04 Mannesmann Ag Process for the production of precision steel tubes
JP3745496B2 (en) * 1997-04-18 2006-02-15 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JPH11241140A (en) * 1998-02-26 1999-09-07 Nippon Steel Corp Hot dip galvanized steel sheet high in yield strength at 800 to 850×c and excellent in roll formability and its production
JPH11269625A (en) * 1998-03-25 1999-10-05 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production
JP4301638B2 (en) * 1999-05-27 2009-07-22 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent high temperature strength
JP2000345293A (en) * 1999-06-08 2000-12-12 Nippon Steel Corp Cold rolled steel sheet for deep drawing, excellent in hardenability by nitriding
WO2001012864A1 (en) * 1999-08-10 2001-02-22 Nkk Corporation Method of producing cold rolled steel sheet
JP4069591B2 (en) * 2000-02-29 2008-04-02 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy
EP1571230B1 (en) * 2000-02-29 2006-12-13 JFE Steel Corporation High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
EP2312010A1 (en) * 2000-06-20 2011-04-20 JFE Steel Corporation Steel sheet and method for manufacturing the same
JP2002155489A (en) * 2000-11-15 2002-05-31 Shikibo Ltd Dryer canvas for paper manufacturing
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
JP2002327257A (en) * 2001-04-26 2002-11-15 Nippon Steel Corp Hot-dip aluminized steel sheet superior in press formability, and manufacturing method therefor
JP4319817B2 (en) * 2001-11-19 2009-08-26 新日本製鐵株式会社 Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP2003041342A (en) * 2002-05-29 2003-02-13 Nkk Corp Cold rolled steel sheet superior in stamping property
US20040250930A1 (en) * 2002-06-28 2004-12-16 Hee-Jae Kang Super formable high strength steel sheet and method of manufacturing thereof
KR100928797B1 (en) * 2002-12-26 2009-11-25 주식회사 포스코 Ultra low carbon bainite steel with excellent toughness of high heat input welding heat affected zone and manufacturing method
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability

Also Published As

Publication number Publication date
KR100742953B1 (en) 2007-07-25
KR20060115627A (en) 2006-11-09
KR20060115615A (en) 2006-11-09
KR20060115641A (en) 2006-11-09
TWI346141B (en) 2011-08-01
KR20060115643A (en) 2006-11-09
MX2007013676A (en) 2008-01-28
KR20060115625A (en) 2006-11-09
TW200702444A (en) 2007-01-16
KR100742934B1 (en) 2007-07-25
KR100742933B1 (en) 2007-07-25
KR20060115629A (en) 2006-11-09
KR100742935B1 (en) 2007-07-25
KR20060115640A (en) 2006-11-09
KR20060115638A (en) 2006-11-09
KR20060115632A (en) 2006-11-09
KR20060115317A (en) 2006-11-08
KR20060115630A (en) 2006-11-09
KR100742919B1 (en) 2007-07-25
KR20060115616A (en) 2006-11-09
MX2007013677A (en) 2008-01-28
KR20060115320A (en) 2006-11-08
KR20060115623A (en) 2006-11-09
KR100742948B1 (en) 2007-07-25
KR100742930B1 (en) 2007-07-25
KR20060115635A (en) 2006-11-09
KR100723182B1 (en) 2007-05-29
KR20060115621A (en) 2006-11-09
KR100742950B1 (en) 2007-07-25
KR20060115310A (en) 2006-11-08
KR20060115319A (en) 2006-11-08
CN101171355A (en) 2008-04-30
KR20060115647A (en) 2006-11-09
US20080185077A1 (en) 2008-08-07
KR100723158B1 (en) 2007-05-30
KR100742819B1 (en) 2007-07-25
KR20060115622A (en) 2006-11-09
KR100723180B1 (en) 2007-05-30
KR20060115639A (en) 2006-11-09
KR100723216B1 (en) 2007-05-29
KR20060115636A (en) 2006-11-09
KR100742932B1 (en) 2007-07-25
KR20060115626A (en) 2006-11-09
KR20060115633A (en) 2006-11-09
KR20060115316A (en) 2006-11-08
KR100742918B1 (en) 2007-07-25
KR100742945B1 (en) 2007-07-25
KR100723159B1 (en) 2007-05-30
KR100742940B1 (en) 2007-07-25
KR100742936B1 (en) 2007-07-25
CN101184858A (en) 2008-05-21
KR20060115637A (en) 2006-11-09
KR100742943B1 (en) 2007-07-25
KR100723181B1 (en) 2007-05-29
KR20060115313A (en) 2006-11-08
KR100742947B1 (en) 2007-07-25
KR20060115646A (en) 2006-11-09
KR20060115644A (en) 2006-11-09
KR20060115624A (en) 2006-11-09
KR100742927B1 (en) 2007-07-25
CN101184858B (en) 2010-12-08
KR20060115634A (en) 2006-11-09
KR20060115312A (en) 2006-11-08
KR20060115318A (en) 2006-11-08
KR20060115614A (en) 2006-11-09
KR20060115314A (en) 2006-11-08
KR20060115315A (en) 2006-11-08
KR100723163B1 (en) 2007-05-30
US20090126837A1 (en) 2009-05-21
KR100742937B1 (en) 2007-07-25
KR20060115631A (en) 2006-11-09
KR100742931B1 (en) 2007-07-25
KR100742952B1 (en) 2007-07-25
KR100742941B1 (en) 2007-07-25
MX2007013675A (en) 2008-01-28
KR20060115645A (en) 2006-11-09
KR100723165B1 (en) 2007-05-30
KR100742951B1 (en) 2007-07-25
KR20060115311A (en) 2006-11-08
CN101171356A (en) 2008-04-30
KR100742949B1 (en) 2007-07-25
KR100742944B1 (en) 2007-07-25
KR100742917B1 (en) 2007-07-25
JP2008540826A (en) 2008-11-20
TW200702455A (en) 2007-01-16
JP2008540825A (en) 2008-11-20
KR100723160B1 (en) 2007-05-30
KR20060115642A (en) 2006-11-09
KR100742818B1 (en) 2007-07-25
KR100723164B1 (en) 2007-05-30
CN100557058C (en) 2009-11-04
JP4954981B2 (en) 2012-06-20
TW200702456A (en) 2007-01-16
KR100742926B1 (en) 2007-07-25
KR100742954B1 (en) 2007-07-25
KR20060115628A (en) 2006-11-09
KR100742929B1 (en) 2007-07-25
KR20060115309A (en) 2006-11-08
JP4964870B2 (en) 2012-07-04
TWI309263B (en) 2009-05-01
JP4954980B2 (en) 2012-06-20
KR100742939B1 (en) 2007-07-25
KR100742955B1 (en) 2007-07-25
JP2008540827A (en) 2008-11-20
KR100742938B1 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
TWI327171B (en) Cold roller steel sheet having superior formability, process for producing the same
TWI461546B (en) High strength cold rolled steel sheet excellent in uniform elongation and hole expandability and a method of manufacturing the same
TWI502081B (en) Molten galvanized steel sheet and method of manufacturing the same
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
KR100473497B1 (en) Thin steel sheet and method for production thereof
KR101676137B1 (en) High strength cold rolled, hot dip galvanized steel sheet with excellent bendability and hole expansion property, and method for production thereof
KR101747034B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
BR112017000027B1 (en) method for manufacturing high strength steel sheet and high strength steel sheet
JP2008514820A (en) High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
EP1888799B1 (en) Cold rolled steel sheet having superior formability, process for producing the same
KR20150074943A (en) Hot rolled steel sheet having excellent deformation anisotropy in sheared edge and anti fatigue property and method for manufacturing the same
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
MX2011000449A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis.
KR101449135B1 (en) Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same
KR101463667B1 (en) Cold-rolled steel plate and method for producing same
EP1888800B1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
EP1885899B1 (en) Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same
JP2023507801A (en) Cold-rolled steel sheet with excellent heat resistance and formability and its manufacturing method
TWI252258B (en) Cold rolled steel sheet having aging resistance and superior formability, and method of manufacturing the same
KR101439608B1 (en) Formable hot-rolled steel sheet with excellent formability and method for manufacturing thereof
CN117966011A (en) Hot dip galvanized steel sheet for easy-open end pull ring and manufacturing method thereof
BR112018072187B1 (en) TWIP STEEL SHEET, COLD ROLLED ONE TIME, COLD RUNNED A SECOND TIME AND RECOVERED AND METHOD FOR PRODUCING TWIP STEEL SHEET
KR20130050438A (en) Galvannealed steel sheet and process for production thereof