JP4954981B2 - A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method. - Google Patents

A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method. Download PDF

Info

Publication number
JP4954981B2
JP4954981B2 JP2008509936A JP2008509936A JP4954981B2 JP 4954981 B2 JP4954981 B2 JP 4954981B2 JP 2008509936 A JP2008509936 A JP 2008509936A JP 2008509936 A JP2008509936 A JP 2008509936A JP 4954981 B2 JP4954981 B2 JP 4954981B2
Authority
JP
Japan
Prior art keywords
rolled steel
high yield
yield ratio
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008509936A
Other languages
Japanese (ja)
Other versions
JP2008540827A (en
Inventor
ジョン ボン ユン
ノイ ハ チョ
ジン ヒ チュン
マン ヤン パク
クヮン ギュン チン
サン ホ ハン
スン イル キム
ホ セオク キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Priority claimed from PCT/KR2006/001670 external-priority patent/WO2006118425A1/en
Publication of JP2008540827A publication Critical patent/JP2008540827A/en
Application granted granted Critical
Publication of JP4954981B2 publication Critical patent/JP4954981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は自動車、家電製品等の素材に使用されるNbとTiの複合添加IF(Interstitial Free)冷延鋼板に関するものである。より詳細には微細な析出物の分布により降伏強度が増進される高成形性IF冷延鋼板とその製造方法に関するものである。   The present invention relates to a composite-added IF (Interstitial Free) cold rolled steel sheet of Nb and Ti used for materials such as automobiles and home appliances. More specifically, the present invention relates to a high formability IF cold-rolled steel sheet whose yield strength is enhanced by the distribution of fine precipitates and a method for producing the same.

自動車、家電製品に使用される冷延鋼板には強度と成形性の確保とともに常温耐時効特性と焼付硬化性が要求される。   Cold rolled steel sheets used for automobiles and home appliances are required to have normal temperature aging resistance and bake hardenability as well as ensuring strength and formability.

時効は固溶元素(C、N)が転位に固着することにより硬化が起こりながら発生する一種の変形時効現象である。時効はストレッチャーストレイン(Stretcher Strain)という欠陥を誘発するため、常温耐時効特性を確保することが重要である。   Aging is a kind of deformation aging phenomenon that occurs while hardening occurs due to solid solution elements (C, N) adhering to dislocations. Since aging induces a defect called Stretcher Strain, it is important to ensure normal temperature aging resistance.

焼付硬化特性は、微量の炭素を固溶状態に残存させ、プレス成形後、塗装及び乾燥過程を経る間に固溶炭素により強度が増加される。鋼板が焼付硬化特性を有するようになると強度が高くなることによるプレス成形性の困難性を解決することができる。   In the bake hardening characteristic, a small amount of carbon remains in a solid solution state, and after press molding, the strength is increased by the solid solution carbon during a coating and drying process. When the steel sheet has bake-hardening characteristics, the difficulty of press formability due to the increase in strength can be solved.

アルミキルド鋼をバッチ(箱)焼鈍処理すると、常温耐時効特性と焼付硬化特性を与えることは出来る。しかし、バッチ焼鈍は焼鈍時間が長いため、生産性が低く部位別に材質偏差が酷いという短所がある。また、焼付硬化量(塗装処理前の降伏強度と塗装処理後の降伏強度の差異)が10−20MPa程度で降伏強度の上昇量が低い。   When aluminum killed steel is subjected to batch (box) annealing, it is possible to give room temperature aging resistance and bake hardening characteristics. However, since batch annealing has a long annealing time, there is a disadvantage that the productivity is low and the material deviation is severe for each part. Further, the bake hardening amount (difference between the yield strength before the coating treatment and the yield strength after the coating treatment) is about 10-20 MPa, and the increase in the yield strength is low.

従って、Ti、Nbのような炭、窒化物形成元素を添加しながら連続焼鈍により常温耐時効特性と焼付硬化特性を与えることができるIF鋼(Interstitial Free Steel)が開発された。   Therefore, an IF steel (Interstitial Free Steel) has been developed that can provide normal temperature aging characteristics and bake hardening characteristics by continuous annealing while adding charcoal and nitride forming elements such as Ti and Nb.

特許文献1では、Ti系IF鋼で0.4−0.8%のMnと0.04−0.12%のPを添加し強度を確保している。極低炭素成分系のIF鋼でPは粒界偏析による2次加工脆性の問題を発生させる。   In Patent Document 1, 0.4 to 0.8% Mn and 0.04 to 0.12% P are added to Ti-based IF steel to ensure strength. In an extremely low carbon component IF steel, P causes a problem of secondary work embrittlement due to grain boundary segregation.

特許文献2では、Pの代わりに固溶強化元素のMnを0.9超過−3.0%添加して高強度を確保している。   In Patent Document 2, Mn, a solid solution strengthening element, is added in excess of 0.9 to 3.0% instead of P to ensure high strength.

特許文献3では、Pの代わりに0.5−2.0%のMnとAl、B等をともに添加し強度、加工性とともに耐2次加工脆性を改善している。   In Patent Document 3, 0.5 to 2.0% of Mn, Al, B and the like are added in place of P to improve secondary work brittleness resistance as well as strength and workability.

特許文献4では、Pを低めながらMn、Siの固溶強化元素をともに利用し高強度を確保している。この先行技術ではMnを0.5%まで使用し、Alの場合、脱酸剤として0.1%添加し、Nの場合には不純物として0.01%以下に管理する。Mnの含量が多くなるとメッキ特性に良くない。   In Patent Document 4, high strength is secured by using both solid solution strengthening elements of Mn and Si while lowering P. In this prior art, Mn is used up to 0.5%. In the case of Al, 0.1% is added as a deoxidizer, and in the case of N, it is controlled to 0.01% or less as an impurity. When the content of Mn is increased, the plating characteristics are not good.

特許文献5では、IF鋼でCuを0.5−2.5%添加し、ε−Cuの析出相を形成して強度を確保している。ε−Cuの析出相により高強度は確保されるが、加工特性は良くない。   In Patent Document 5, 0.5 to 2.5% of Cu is added to IF steel to form a precipitated phase of ε-Cu to ensure strength. High strength is ensured by the precipitation phase of ε-Cu, but the processing characteristics are not good.

特許文献6及び特許文献7では、Cuを炭化物の析出核として利用し、炭化物により加工性または表面欠陥を改善する技術が提示されている。上記特許文献6はCuを0.005−0.1%添加するIF鋼の粗圧延過程でCuSを析出し、熱間圧延過程でCuSを核にしてCu−Ti−C−Sの析出物を確保している。再結晶過程でCu−Ti−C−Sの析出物の周囲には板面に平行な面{111}を形成する核が増加し加工性が改善されると主張している。上記特許文献7ではIF鋼にCuを0.01−0.05%添加しCuS析出物を炭化物の析出核として利用することにより固溶Cを減少させ表面欠陥を改善させる技術である。   In Patent Document 6 and Patent Document 7, a technique for improving workability or surface defects by using carbide as a precipitation nucleus of carbide is proposed. In Patent Document 6, CuS is precipitated during the rough rolling process of IF steel to which Cu is added in an amount of 0.005-0.1%, and Cu-Ti-C-S precipitates are formed using CuS as a nucleus in the hot rolling process. Secured. It is claimed that nuclei forming a plane {111} parallel to the plate surface increase around the Cu—Ti—C—S precipitate in the recrystallization process, thereby improving workability. In the above-mentioned Patent Document 7, 0.01 to 0.05% of Cu is added to IF steel and CuS precipitates are used as carbide precipitation nuclei to reduce solid solution C and improve surface defects.

これらの先行技術では、粗大なCuS析出物を製造過程中に利用することで、最終製品(冷延鋼板)には炭化物が存在するようになる。さらに、Ti、Zrのような硫化物形成元素が元子量比でS量以上添加しており、Sの大部分がCuよりTiまたはZrと反応するようになっている。   In these prior arts, carbides are present in the final product (cold-rolled steel sheet) by using coarse CuS precipitates during the manufacturing process. Further, sulfide-forming elements such as Ti and Zr are added in an amount of S or more in terms of the element quantity ratio, and most of S reacts with Ti or Zr from Cu.

一方、特許文献8及び特許文献9は、焼付硬化型IF鋼で耐食性を確保するためにCuとPを複合添加している。これら先行技術は耐食性を確保するためにCuを0.05−1.0%の範囲にするが、実際Cuを0.2%以上過量添加する鋼である。   On the other hand, in Patent Document 8 and Patent Document 9, Cu and P are added in combination in order to ensure corrosion resistance in the bake hardened IF steel. These prior arts are steels in which Cu is added in an amount of 0.05 to 1.0% in order to ensure corrosion resistance, but Cu is actually added in an excess amount of 0.2% or more.

特許文献10及び特許文献11には、再加熱焼鈍時に炭硫化物(Ti−C−S系)を炭化物に溶解し結晶粒界に固溶させることによりBH量(焼付前後の降伏強度差)30MPa以上を確保する技術が提案されている。   In Patent Document 10 and Patent Document 11, BH content (difference in yield strength before and after baking) 30 MPa is obtained by dissolving carbon sulfide (Ti—C—S system) in carbide during solidification and resolving at the grain boundary during reheating annealing. Techniques for ensuring the above have been proposed.

上記の先行技術は、固溶強化により強度を高めたりε−Cuの析出相を利用して強度を確保している。Cuの場合にはε−Cuの析出相の他に耐食性の側面または炭化物の析出核として用いている。これら先行技術は、高降伏比(降伏強度/引張強度)と共に面内異方性指数を低くしてはいない。   In the above prior art, the strength is increased by solid solution strengthening or the strength is ensured by using a precipitated phase of ε-Cu. In the case of Cu, in addition to the precipitation phase of ε-Cu, it is used as a corrosion resistant side surface or carbide precipitation nucleus. These prior arts do not lower the in-plane anisotropy index together with the high yield ratio (yield strength / tensile strength).

IF鋼で同じ引張強度に比べて降伏強度が高いと、即ち、降伏比が高いと鋼板の厚さを薄くすることができ、軽量化の効果がある。また、面内異方性指数が低いと加工時、皺の発生が少なくなり加工後には耳(ear)の発生が少ないという長所がある。   If the yield strength of IF steel is higher than that of the same tensile strength, that is, if the yield ratio is high, the thickness of the steel sheet can be reduced, and the weight can be reduced. In addition, when the in-plane anisotropy index is low, the generation of wrinkles is reduced during processing, and there is an advantage that the generation of ears is small after processing.

日本公開特許公報昭57−041349号Japanese Published Patent Publication No. 57-041349 日本公開特許公報平5−078784号Japanese Published Patent Publication No. 5-077884 韓国公開特許公報2003−0052248号Korean Published Patent Publication No. 2003-0052248 日本公開特許公報平10−158783号Japanese Published Patent Publication No. 10-158783 日本公開特許公報平6−057336号Japanese Published Patent Publication No. 6-057336 日本公開特許公報平9−227951号Japanese Published Patent Publication No. 9-227951 日本公開特許公報平10−265900号Japanese Published Patent Publication No. 10-265900 日本公開特許公報平6−240365号Japanese Published Patent Publication No. Hei 6-240365 日本公開特許公報平7−216340号Japanese Published Patent Publication No. 7-216340 日本公開特許公報平10−280048号Japanese Published Patent Publication No. 10-280048 日本公開特許公報平10−287954号Japanese Published Patent Publication No. Hei 10-287954

本発明は高降伏比とともに面内異方性指数を低めることができるNbとTiの複合添加IF冷延鋼板とその製造方法を提供することにその目的がある。   An object of the present invention is to provide a Nb and Ti composite-added IF cold-rolled steel sheet that can reduce the in-plane anisotropy index as well as a high yield ratio, and a method for producing the same.

本発明の冷延鋼板は、重量%で、C:0.01%以下、Cu:0.01−0.2%、S:0.005−0.08%、Al:0.1%以下、N:0.004%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%を含み、残りの
Fe及びその他不可避な不純物で組成され、
1≦(Cu/63.5)/(S/32)≦30、
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)を満たし、CuS析出物の平均の大きさが0.2μm以下になる。
The cold-rolled steel sheet of the present invention is, by weight, C: 0.01% or less, Cu: 0.01-0.2%, S: 0.005-0.08%, Al: 0.1% or less, Including N: 0.004% or less, P: 0.2% or less, B: 0.0001-0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15% , Composed of the remaining Fe and other inevitable impurities,
1 ≦ (Cu / 63.5) / (S / 32) ≦ 30,
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48) is satisfied, and the average size of the CuS precipitate is 0.2 μm or less.

本発明の冷延鋼板は、重量%で、C:0.01%以下、Cu:0.01−0.2%、Mn:0.01−0.3%、S:0.005−0.08%、Al:0.1%以下、N:0.004%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)を満たし、(Mn、Cu)S析出物の平均の大きさが0.2μm以下で分布するようになる。
The cold-rolled steel sheet of the present invention is, by weight, C: 0.01% or less, Cu: 0.01-0.2%, Mn: 0.01-0.3%, S: 0.005-0. 08%, Al: 0.1% or less, N: 0.004% or less, P: 0.2% or less, B: 0.0001-0.002%, Nb: 0.002-0.04%, Ti : 0.005-0.15% inclusive, composed of remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48) is satisfied, and the average size of the (Mn, Cu) S precipitate is 0.2 μm or less. Will come to do.

本発明の冷延鋼板は、重量%で、C:0.01%以下、Cu:0.01−0.2%、S:0.005−0.08%、Al:0.1%以下、N:0.004−0.02%、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Cu/63.5)/(S/32)≦30、
1≦(Al/27)/(N/14)≦10、
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)、N=N−0.8x(Ti−0.8x(48/32)xS)x(14/48)を満たしCuS析出物とAlN析出物の平均の大きさが0.2μm以下で分布するようになる。
The cold-rolled steel sheet of the present invention is, by weight, C: 0.01% or less, Cu: 0.01-0.2%, S: 0.005-0.08%, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15 %, And is composed of the remaining Fe and other inevitable impurities,
1 ≦ (Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Al / 27) / (N * / 14) ≦ 10,
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48), N * = N-0.8x (Ti-0.8x (48/32) xS) x (14/48) is satisfied, and the average size of CuS precipitates and AlN precipitates is distributed at 0.2 μm or less.

本発明の冷延鋼板は、重量%で、C:0.01%以下、Cu:0.01−0.2%、Mn:0.01−0.3%、S:0.005−0.08%、Al:0.1%以下、N:0.004−0.02%、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%を含み、残りの
Fe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Al/27)/(N/14)≦10、
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)、N=N−0.8x(Ti−0.8x(48/32)xS)x(14/48)を満たし、(Mn、Cu)S析出物とAlN析出物の平均の大きさが0.2μm以下で分布する。
The cold-rolled steel sheet of the present invention is, by weight, C: 0.01% or less, Cu: 0.01-0.2%, Mn: 0.01-0.3%, S: 0.005-0. 08%, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002%, Nb: 0.002-0.04 %, Ti: 0.005-0.15%, composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Al / 27) / (N * / 14) ≦ 10,
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48), N * = N-0.8x (Ti-0.8x (48/32) xS) x (14/48) is satisfied, and the average size of (Mn, Cu) S precipitate and AlN precipitate is distributed at 0.2 μm or less.

本発明の冷延鋼板は、重量%で、C:0.01%以下、S:0.08%以下、Al:0.1%以下、N:0.004%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%、ここでCu:0.01−0.2%、Mn:0.01−0.3%、N:0.004−0.2%の1種または2種以上を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Al/27)/(N/14)≦10(但し、Nの含量が0.004%以上の場合)、
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)、N=N−0.8x(Ti−0.8x(48/32)xS)x(14/48)を満たし、(Mn、Cu)S析出物とAlN析出物の少なくとも1種以上が平均の大きさ0.2μm以下で分布される。
The cold-rolled steel sheet of the present invention is, by weight, C: 0.01% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.004% or less, P: 0.2% Hereinafter, B: 0.0001-0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15%, where Cu: 0.01-0.2%, Mn: Containing one or more of 0.01-0.3%, N: 0.004-0.2%, composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Al / 27) / (N * / 14) ≦ 10 (provided that the content of N is 0.004% or more),
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48), N * = N-0.8x (Ti-0.8x (48/32) xS) x (14/48) is satisfied, and at least one of (Mn, Cu) S precipitate and AlN precipitate is distributed with an average size of 0.2 μm or less.

上記の本発明の冷延鋼板において上記C、Ti、Nb、N、Sの含量が次の関係、
0.8≦(Ti/48+Nb/93)/(C/12)≦5.0、Ti=Ti−0.8x((48/14)xN+(48/32)xS)を満たすと、常温非時効特性を有するようになる。また、前記CとTiにより決定されるCs(solute carbon)が5−30[ここで、Cs=(C−Nbx12/93−Tix12/48)x10000、Ti=Ti−0.8x((48/14)xN+(48/32)xS)但し、Ti<0である場合Ti=0とする]を満たすようになると焼付硬化特性を有するようになる。
In the cold-rolled steel sheet of the present invention, the contents of the C, Ti, Nb, N, and S are as follows:
If satisfy 0.8 ≦ (Ti ★ /48+Nb/93)/(C/12)≦5.0,Ti ★ = Ti-0.8x ((48/14) xN + (48/32) xS), room temperature Has non-aging characteristics. Cs (solute carbon) determined by C and Ti is 5-30 [where Cs = (C-Nbx12 / 93-Ti * x12 / 48) x10000, Ti * = Ti-0.8x (( 48/14) xN + (48/32) xS) However, when Ti * <0, Ti * = 0 is satisfied, and bake-hardening characteristics are obtained.

本発明の冷延鋼板は成分設計により280MPa級の軟質冷延鋼板と340MPa以上の高強度冷延鋼板の特性を有する。   The cold-rolled steel sheet of the present invention has characteristics of a soft cold-rolled steel sheet of 280 MPa class and a high-strength cold-rolled steel sheet of 340 MPa or more by component design.

上記の成分系においてPの含量は、0.015%以下にすると280MPa級の軟質冷延鋼板が得られる。この冷延鋼板に固溶強化元素であるSi、Crの1種または2種がさらに含まれるか、Pの含量を0.015−0.2%にすると340MPa以上の高強度特性が確保される。Pが単独で含まれる高強度鋼の場合にはPの含量は0.03−0.2%が好ましい。Siの場合には0.1−0.8%、Crの場合には0.2−1.2%が好ましい。SiとCrが1種以上含まれる場合にPの含量は0.2%以下の範囲で多様に設計されることができる。   In the above component system, when the P content is 0.015% or less, a 280 MPa grade soft cold-rolled steel sheet is obtained. If this cold-rolled steel sheet further includes one or two of solid solution strengthening elements Si and Cr, or a P content of 0.015-0.2%, a high strength characteristic of 340 MPa or more is secured. . In the case of high strength steel containing P alone, the P content is preferably 0.03-0.2%. In the case of Si, 0.1-0.8% is preferable, and in the case of Cr, 0.2-1.2% is preferable. When one or more of Si and Cr are included, the P content can be variously designed within a range of 0.2% or less.

本発明の冷延鋼板において加工性をより改善しようとするのであれば、Moを0.01−0.2%さらに含むことができる。   If workability is to be further improved in the cold-rolled steel sheet of the present invention, Mo may further be included in an amount of 0.01 to 0.2%.

上記の冷延鋼板の製造方法は、前述の本発明の成分系を満たすスラブを1100℃以上の温度で再加熱してから、仕上げの圧延温度をAr変態点以上にし熱間圧延をして300℃/min以上の速度で冷却し、700℃以下の温度で巻取した後、冷間圧延し、連続焼鈍することである。 The manufacturing method of the above-mentioned cold-rolled steel sheet is obtained by reheating a slab satisfying the above-described component system of the present invention at a temperature of 1100 ° C. or higher, then hot rolling the finishing rolling temperature to be higher than the Ar 3 transformation point. Cooling at a rate of 300 ° C./min or more, winding at a temperature of 700 ° C. or less, cold rolling, and continuous annealing.

前述の通り、本発明はNb−Ti複合系IF鋼に微細な析出物を分布させることにより結晶粒を微細化させ、これにより面内異方性指数を低め、また、析出強化により降伏強度を増進させるものである。   As described above, the present invention refines the crystal grains by distributing fine precipitates in the Nb-Ti composite IF steel, thereby reducing the in-plane anisotropy index, and increasing the yield strength by precipitation strengthening. It is to improve.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の冷延鋼板には0.2μm以下の微細な析出物が分布する。この析出物中にはMnS、CuSまたはMnSとCuSの複合析出物が含まれる。上記析出物を簡単に(Mn、Cu)Sで標記する。   In the cold-rolled steel sheet of the present invention, fine precipitates of 0.2 μm or less are distributed. This precipitate includes MnS, CuS, or a composite precipitate of MnS and CuS. The precipitate is simply labeled (Mn, Cu) S.

本発明はNbとTiの複合添加(簡単にNb−Ti複合系と記載する)IF鋼で析出物が微細に分布すると降伏強度が増進され、面内異方性指数が低くなり加工性が改善されるという研究結果に基づき完成したものである。本発明で利用する析出物はIF鋼で注目されなかったものである。さらに、これら析出物は降伏強度と面内異方性の増進側面で積極的に利用されていなかった。   The present invention is a composite addition of Nb and Ti (simply described as Nb-Ti composite system) IF steel, when precipitates are finely distributed, yield strength is enhanced, in-plane anisotropy index is lowered, and workability is improved. It was completed based on the research results. Precipitates used in the present invention were not noticed in IF steel. Furthermore, these precipitates were not actively used in terms of increasing yield strength and in-plane anisotropy.

Nb−Ti複合系IF鋼で(Mn、Cu)S析出物または/及びAlN析出物を確保するためには、成分管理が必要である。IF鋼にTi、Zr等が含まれていると、SやNはTi、Zrと優先的に反応する。本発明の冷延鋼板はNb−Ti複合系IF鋼であるため、TiがC、N、Sと反応するようになる。従って、Sが(Mn、Cu)Sで、NはAlNで析出されるように、諸般成分の管理が必要である。   In order to secure (Mn, Cu) S precipitates and / or AlN precipitates in Nb-Ti composite IF steel, component management is required. When Ti, Zr, etc. are contained in IF steel, S and N react preferentially with Ti, Zr. Since the cold-rolled steel sheet of the present invention is Nb-Ti composite IF steel, Ti reacts with C, N, and S. Therefore, it is necessary to manage various components so that S is (Mn, Cu) S and N is precipitated with AlN.

本発明により得られる微細な析出物は結晶粒を微細にする。結晶粒が微細になると結晶粒界比率が相対的に大きくなる。従って、固溶炭素は結晶粒内より結晶粒界にさらに多く存在するようになり常温非時効特性が確保される。結晶粒内に残存する固溶炭素は移動がより自由であるため、可動転位と結合して常温時効特性に影響を及ぼすようになる。これに反し、結晶粒界や析出物の周辺のように、より安定した位置に偏析する固溶炭素は塗装焼付処理のような高温で活性化され焼付硬化特性に影響を与えるようになる。   The fine precipitate obtained by the present invention makes the crystal grains fine. As the crystal grains become finer, the grain boundary ratio becomes relatively large. Therefore, more solute carbon is present in the crystal grain boundary than in the crystal grain, and normal temperature non-aging characteristics are ensured. Since the solid solution carbon remaining in the crystal grains is more freely moved, it is combined with the movable dislocation and affects the aging characteristics at room temperature. On the other hand, solute carbon that segregates at a more stable position, such as around crystal grain boundaries and precipitates, is activated at a high temperature such as a coating baking process and affects the bake hardening characteristics.

本発明により微細に分布する析出物は析出強化による降伏強度の上昇と強度−延性バランス特性の改善、そして、面内異方性と塑性異方性にも肯定的な影響を与える。このためには(Mn、Cu)S析出物、AlN析出物が微細に分布しなければならない。本発明によると、上記の析出物の微細な分布は析出物に影響を与える成分の含量と成分比条件及び製造条件、特に、熱間圧延が終わった後の冷却速度が最も大きな影響を与える。   The finely distributed precipitates according to the present invention have a positive effect on the increase in yield strength and strength-ductility balance characteristics due to precipitation strengthening, as well as in-plane anisotropy and plastic anisotropy. For this purpose, (Mn, Cu) S precipitates and AlN precipitates must be finely distributed. According to the present invention, the fine distribution of the precipitates described above has the greatest influence on the content of the components affecting the precipitates, the component ratio conditions, and the manufacturing conditions, particularly the cooling rate after hot rolling is finished.

本発明の冷延鋼板の成分について先ず説明する。   First, the components of the cold-rolled steel sheet of the present invention will be described.

炭素(C)の含量は0.01%以下が好ましい。炭素は常温耐時効特性と焼付硬化特性に影響を与える。炭素の含量が0.01%を超える場合には、炭素を除去するために高価のNbとTiをさらに添加するようになり経済性の側面で好ましくなく、成形性の側面でも好ましくない。常温耐時効特性のみを望むのであれば、炭素の含量を低い範囲で管理することが好ましい。これは高価のNbとTi添加量を減らすことができる。焼付硬化特性を確保しようとするのであれば、0.001%以上、より好ましくは0.005%−0.01%の範囲で添加することが好ましい。相対的に炭素の含量を0.005%以下にすると高価のNbとTi添加量を高めなくても常温耐時効特性を確保することができる。   The content of carbon (C) is preferably 0.01% or less. Carbon affects the aging resistance at normal temperature and the bake hardening characteristics. When the carbon content exceeds 0.01%, expensive Nb and Ti are further added to remove carbon, which is not preferable in terms of economy and not preferable in terms of moldability. If only room temperature aging resistance is desired, it is preferable to control the carbon content in a low range. This can reduce the amount of expensive Nb and Ti added. If it is intended to ensure the bake-hardening properties, it is preferable to add 0.001% or more, more preferably 0.005% -0.01%. When the carbon content is relatively 0.005% or less, normal temperature aging characteristics can be ensured without increasing the amount of expensive Nb and Ti added.

銅(Cu)の含量は0.01−0.2%が好ましい。銅は微細なCuS析出物を形成し結晶粒を微細にして面内異方性指数を低め、析出強化により降伏強度を増進させる。このためにはCuの含量が0.01%以上にならないと微細に析出できず、0.2%を超えると粗大に析出する。より好ましいCuの含量は0.03−0.2%にすることである。   The content of copper (Cu) is preferably 0.01-0.2%. Copper forms fine CuS precipitates, makes crystal grains fine, lowers the in-plane anisotropy index, and increases yield strength by precipitation strengthening. For this purpose, fine Cu cannot be precipitated unless the Cu content is 0.01% or more, and coarse precipitation occurs if it exceeds 0.2%. A more preferable Cu content is 0.03-0.2%.

マンガン(Mn)の含量は0.01−0.3%が好ましい。マンガンは鋼中固溶状態の硫黄をMnSで析出し、固溶硫黄による赤熱脆性(Hot shortness)を防いだり、固溶強化元素として知られている。このような技術的観点では、マンガンの含量を高く添加することが一般的である。しかし、本発明ではマンガンの含量を低めながら硫黄の含量が適切になる場合にMnSが非常に微細に析出されるという研究結果に基づいてマンガンの含量を0.3%以下にする。このような特性を確保するためには、マンガンの含量が0.01%以上にならなければならない。マンガンの含量が0.01%未満の場合には固溶状態で残存する硫黄の含量が多いため、赤熱脆性が発生することがある。マンガンの含量が0.3%を超える場合にはマンガンの含量が高くて粗大なMnS析出物が生成され強度確保が困難になる。より好ましくはMnの含量を0.01−0.12%にすることである。   The content of manganese (Mn) is preferably 0.01 to 0.3%. Manganese is known as a solid solution strengthening element by precipitating sulfur in a solid solution state in steel with MnS to prevent red short brittleness (hot shortness) due to solid solution sulfur. From such a technical point of view, it is common to add a high manganese content. However, in the present invention, the manganese content is made 0.3% or less based on the research result that MnS is deposited very finely when the sulfur content becomes appropriate while the manganese content is lowered. In order to ensure such characteristics, the manganese content must be 0.01% or more. When the content of manganese is less than 0.01%, the content of sulfur remaining in a solid solution state is large, so that red heat embrittlement may occur. If the manganese content exceeds 0.3%, the manganese content is high and coarse MnS precipitates are produced, making it difficult to ensure strength. More preferably, the Mn content is 0.01-0.12%.

硫黄(S)の含量は0.08%以下が好ましい。硫黄(S)はCuまたは/及びMnと反応して微細なCuS、MnSの析出物を形成する。硫黄の含量が0.08%を超える場合には固溶された硫黄の含量が多くて延性及び成形性が非常に低くなり、赤熱脆性が発生する恐れがある。CuSまたは/及びMnSの析出物を積極的に得ようとする場合に硫黄の含量は0.005%以上にすることが好ましい。   The content of sulfur (S) is preferably 0.08% or less. Sulfur (S) reacts with Cu or / and Mn to form fine CuS and MnS precipitates. When the sulfur content exceeds 0.08%, the dissolved sulfur content is large, the ductility and formability are very low, and red hot brittleness may occur. When positively obtaining CuS and / or MnS precipitates, the sulfur content is preferably 0.005% or more.

アルミニウム(Al)の含量は0.1%以下が好ましい。アルミニウムは、Nと反応して微細なAlN析出物を形成し固溶窒素による時効を完全に防ぐ。窒素の含量が0.004%以上になると充分なAlNの析出物が確保され、これら析出物が微細に分布すると結晶粒微細化とともに析出強化により降伏強度を増進させる。より好ましいAlの含量は0.01−0.1%である。   The aluminum (Al) content is preferably 0.1% or less. Aluminum reacts with N to form fine AlN precipitates and completely prevents aging by solute nitrogen. When the nitrogen content is 0.004% or more, sufficient AlN precipitates are secured, and when these precipitates are finely distributed, the yield strength is increased by precipitation strengthening as well as refinement of crystal grains. A more preferable Al content is 0.01-0.1%.

窒素(N)の含量は0.02%以下が好ましい。窒素の場合にはAlNの析出物を利用する時には0.02%まで添加し、そうでない場合には0.004%以下に管理する。Nの含量が0.004%未満の場合には析出されるAlNの数が少なくて結晶粒微細化及び析出強化の効果が少ない。窒素の含量が0.02%を超える場合は固溶窒素による時効保証が困難である。   The content of nitrogen (N) is preferably 0.02% or less. In the case of nitrogen, when using the precipitate of AlN, it is added to 0.02%, otherwise it is controlled to 0.004% or less. When the N content is less than 0.004%, the number of precipitated AlN is small, and the effect of crystal grain refinement and precipitation strengthening is small. When the nitrogen content exceeds 0.02%, it is difficult to guarantee aging with solid nitrogen.

リン(P)の含量は0.2%以下が好ましい。リンは、固溶強化効果が高くてr値の低下が少ない元素で、本発明により析出物を制御する鋼で高強度を保証する。280Mpa級の強度が要求される鋼種でPの含量は0.015%以下にすることが良い。340Mpa級以上の高強度の鋼では0.015超過−0.2%にすることが良い。このようなPの含量が0.2%を超える場合には延性が低下し、上限値を0.2%に制限することが好ましい。本発明でSi、Crが添加される場合にはPの含量を0.2%以下の範囲にしながら多様な強度の設計が可能である。   The phosphorus (P) content is preferably 0.2% or less. Phosphorus is an element having a high solid solution strengthening effect and a small decrease in the r value, and ensures high strength in the steel for controlling precipitates according to the present invention. The steel content is required to have a strength of 280 Mpa grade, and the P content is preferably 0.015% or less. For high-strength steel of 340 Mpa grade or higher, it is better to exceed 0.015-0.2%. When the P content exceeds 0.2%, the ductility is lowered and the upper limit is preferably limited to 0.2%. When Si and Cr are added in the present invention, various strength designs can be made while keeping the P content in the range of 0.2% or less.

ホウ素(B)の含量は0.0001−0.002%が好ましい。ホウ素は、2次加工脆性を防ぐために添加するが、このためホウ素の含量が0.0001%以上であることが好ましい。ホウ素の含量が0.002%を超えると深絞り加工性(deep drawing)が大きく低下することがある。   The content of boron (B) is preferably 0.0001-0.002%. Boron is added to prevent secondary work brittleness. For this reason, the boron content is preferably 0.0001% or more. If the boron content exceeds 0.002%, deep drawing may be greatly reduced.

ニオビウム(Nb)の含量は0.002−0.04%が好ましい。Nbは非時効性確保及び成形性向上の目的で添加する。Nbは強力な炭化物生成元素で鋼中に添加されNbC析出物を析出させる。また、NbC析出物は焼鈍中に集合組織を発達させ、深絞り加工性を大きく向上させる効果がある。Nbの添加量が0.002%以下の場合、NbC析出物の析出量が少なすぎて集合組織の発達が少なくて深絞り加工性を改善する効果が殆どない。Nbが0.04%を超える場合、NbC析出物の量が多すぎて深絞り加工性及び伸び率が低くなり成形性が大きく低下することがある。   The content of niobium (Nb) is preferably 0.002 to 0.04%. Nb is added for the purpose of ensuring non-aging properties and improving moldability. Nb is a strong carbide-forming element and is added to steel to precipitate NbC precipitates. NbC precipitates have the effect of developing a texture during annealing and greatly improving deep drawability. When the amount of Nb added is 0.002% or less, the amount of NbC precipitates is so small that there is little development of the texture and there is almost no effect of improving deep drawing workability. When Nb exceeds 0.04%, the amount of NbC precipitates is too large, deep drawing workability and elongation rate are lowered, and moldability may be greatly reduced.

チタニウム(Ti)の含量は0.005−0.15%にする。チタニウムは非時効性確保及び成形性向上の目的で添加するが、チタニウムは強力な炭化物生成元素で鋼中に添加され、TiC析出物を析出させて固溶状態の炭素を析出することにより非時効性を確保する。チタニウムの添加量が0.005%未満の場合、TiC析出物の析出量が少なすぎて集合組織の発達が少なく深絞り加工性を改善させる効果が殆どない。Tiが0.15%を超える場合、TiC析出物の大きさが大きすぎて結晶粒微細化効果が減少し面内異方性指数が高くなり、降伏強度も低下し、メッキ特性が大きく低下する。   The content of titanium (Ti) is 0.005-0.15%. Titanium is added for the purpose of securing non-aging properties and improving formability, but titanium is a strong carbide-forming element and is added to steel to precipitate non-aging by depositing TiC precipitates and solid solution carbon. Ensure sex. When the amount of titanium added is less than 0.005%, the amount of TiC precipitates is so small that there is little effect of improving deep drawing workability with little texture development. When Ti exceeds 0.15%, the size of the TiC precipitate is too large, the grain refinement effect is reduced, the in-plane anisotropy index is increased, the yield strength is lowered, and the plating characteristics are greatly lowered. .

本発明では(Mn、Cu)S、AlN析出物を確保するためにMn、Cu、S、Nb、Ti、Al、N、Cの含量を次のように管理する。下記の関係式で各成分は重量%で使用する。   In the present invention, the contents of Mn, Cu, S, Nb, Ti, Al, N, and C are managed as follows in order to secure (Mn, Cu) S and AlN precipitates. In the following relational expression, each component is used in% by weight.

[関係式1]
1≦(Cu/63.5)/(S/32)≦30
[Relational expression 1]
1 ≦ (Cu / 63.5) / (S / 32) ≦ 30

[関係式2]
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)
[Relational expression 2]
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48)

関係式1でSはTiと反応せず残ってCuと反応するSの含量である。Sは関係式2により決定される。微細なCuS析出物を確保するために関係式1の値は1以上になることが好ましい。関係式1の値が30を超える場合には粗大なCuS析出物が分布するようになって好ましくない。0.2μm以下のCuSを安定的に確保するために好ましい関係式1の値は1−20、より好ましくは1−9、最も好ましくは1−6である。 In relational expression 1, S * is the content of S which does not react with Ti but remains and reacts with Cu. S * is determined by relational expression 2. In order to secure fine CuS precipitates, the value of relational expression 1 is preferably 1 or more. When the value of the relational expression 1 exceeds 30, coarse CuS precipitates are distributed, which is not preferable. In order to stably secure CuS of 0.2 μm or less, a preferable value of the relational expression 1 is 1-20, more preferably 1-9, and most preferably 1-6.

[関係式3]
1≦(Mn/55+Cu/63.5)/(S/32)≦30
[Relational expression 3]
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30

関係式3は(Mn、Cu)Sの析出物を確保するためのもので、関係式1にMnが追加されたものである。関係式3の値が1以上にならないと有効な(Mn、Cu)S析出物を得ることができず、30を超える場合には(Mn、Cu)S析出物が粗大になる。0.2μm以下の(Mn、Cu)Sを安定的に確保するために好ましい関係式3の値は1−20、より好ましくは1−9、最も好ましくは1−6である。MnとCuがともに添加される場合には、上記MnとCuの和は0.05−0.4%がより好ましい。これは微細な(Mn、Cu)Sの析出物を得るためである。   Relational expression 3 is for securing a precipitate of (Mn, Cu) S, and Mn is added to relational expression 1. If the value of the relational expression 3 is not 1 or more, an effective (Mn, Cu) S precipitate cannot be obtained, and if it exceeds 30, the (Mn, Cu) S precipitate becomes coarse. In order to stably secure (Mn, Cu) S of 0.2 μm or less, a preferable value of the relational expression 3 is 1-20, more preferably 1-9, and most preferably 1-6. When both Mn and Cu are added, the sum of Mn and Cu is more preferably 0.05-0.4%. This is to obtain fine (Mn, Cu) S precipitates.

[関係式4]
1≦(Al/27)/(N/14)≦10
[Relational expression 4]
1 ≦ (Al / 27) / (N / 14) ≦ 10

[関係式5]
=N−0.8x(Ti−0.8x(48/32)xS)x(14/48)
[Relational expression 5]
N * = N-0.8x (Ti-0.8x (48/32) xS) x (14/48)

関係式4は、微細なAlN析出物を確保ためのものである。関係式4でNは総Nの含量でTiと反応せず残ってAlと反応するNの含量である。Nは関係式5により決定される。微細なAlN析出物を確保するようにするためには関係式4の値が1−10を満たすことが好ましい。関係式4の値が1以上にならないと有効なAlN析出物が析出できず、10を超える場合にはAlN析出物が粗大で加工性と降伏強度の特性が良くない。より好ましくは関係式4の値が1−6を満たすことである。 Relational expression 4 is for ensuring fine AlN precipitates. In relational expression 4, N * is the total N content which does not react with Ti but remains and reacts with Al. N * is determined by relational expression 5. In order to ensure fine AlN precipitates, it is preferable that the value of relational expression 4 satisfies 1-10. If the value of the relational expression 4 is not 1 or more, an effective AlN precipitate cannot be precipitated, and if it exceeds 10, the AlN precipitate is coarse and the workability and yield strength characteristics are not good. More preferably, the value of relational expression 4 satisfies 1-6.

本発明の冷延鋼板は得ようとする析出物の種類により多様に組み合わせられる。即ち、重量%で、C:0.01%以下、S:0.08%以下、Al:0.1%以下、N:0.004%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%、ここでCu:0.01−0.2%、Mn:0.01−0.3%、N:0.004−0.2%の1種または2種以上を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Al/27)/(N/14)≦10(但し、Nの含量が0.004%以上の場合)、
=S−0.8x(Ti−0.8x(48/14)xN)x(32/48)、N=N−0.8x(Ti−0.8x(48/32)xS)x(14/48)を満たすようにし、0.2μm以下のMnS、CuS、MnSとCuSの複合析出物、AlN析出物の中で少なくとも1種が存在するようになることである。即ち、Cu:0.01−0.2%、Mn:0.01−0.3%、N:0.004−0.2%のグループから少なくとも1種または2種以上を選ぶようになると、0.2μm以下の(Mn、Cu)S、AlN析出物の多様な組み合わせを得ることができる。
The cold-rolled steel sheet of the present invention can be variously combined depending on the type of precipitate to be obtained. That is, by weight, C: 0.01% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.004% or less, P: 0.2% or less, B: 0.00. 0001-0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15%, where Cu: 0.01-0.2%, Mn: 0.01-0. 1% or more of 3%, N: 0.004-0.2%, composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Al / 27) / (N * / 14) ≦ 10 (provided that the content of N is 0.004% or more),
S * = S-0.8x (Ti-0.8x (48/14) xN) x (32/48), N * = N-0.8x (Ti-0.8x (48/32) xS) x (14/48) is satisfied, and at least one kind of MnS, CuS, a composite precipitate of MnS and CuS, and an AlN precipitate of 0.2 μm or less comes to exist. That is, when at least one kind or two or more kinds are selected from the group of Cu: 0.01-0.2%, Mn: 0.01-0.3%, N: 0.004-0.2%, Various combinations of (Mn, Cu) S and AlN precipitates of 0.2 μm or less can be obtained.

本発明では、炭素はNbCとTiCで析出される。従って、NbCとTiCで析出されない固溶炭素の条件により常温耐時効特性と焼付硬化特性が影響を受ける。これを考慮すると、Nb、Ti及びCは次の条件を満たすことが最も好ましい。   In the present invention, carbon is deposited with NbC and TiC. Therefore, normal temperature aging characteristics and bake hardening characteristics are affected by the conditions of solute carbon not precipitated by NbC and TiC. Considering this, it is most preferable that Nb, Ti and C satisfy the following conditions.

[関係式6]
0.8≦(Ti/48+Nb/93)/(C/12)≦5.0、
[Relational expression 6]
0.8 ≦ (Ti ★ / 48 + Nb / 93) / (C / 12) ≦ 5.0,

[関係式7]
Ti=Ti−0.8x((48/14)xN+(48/32)xS)
[Relational expression 7]
Ti * = Ti-0.8x ((48/14) xN + (48/32) xS)

関係式6はNbCとTiCを析出して固溶状態の炭素を除去し、常温非時効特性を確保するためのものである。関係式6でTiは総Tiの含量からN、Sと反応し残ってCと反応するTiの含量である。Tiは関係式7により決定される。 Relational expression 6 is for precipitating NbC and TiC to remove carbon in a solid solution state, thereby ensuring normal temperature non-aging characteristics. In relational expression 6, Ti * is the content of Ti that reacts with N and S and reacts with C from the total Ti content. Ti * is determined by relational expression 7.

関係式6の値が0.8未満の場合には常温非時効特性を確保することが困難で、関係式6の値が5を超えると、鋼中に固溶状態で残っているNbとTiの量が多くて延性が低下する。焼付硬化特性を確保せず常温非時効特性を確保しようとする場合には、炭素の含量を0.005%以下に管理することが好ましい。炭素の含量が0.005%を超える場合に関係式6を満たすと、常温非時効特性は確保できるが、NbとTiC析出物が多くなり加工性が低下することがある。   When the value of the relational expression 6 is less than 0.8, it is difficult to ensure the normal temperature non-aging characteristics. When the value of the relational expression 6 exceeds 5, the Nb and Ti remaining in a solid solution state in the steel The amount of is increased and ductility is lowered. In order to ensure the room temperature non-aging characteristics without securing the bake hardening characteristics, it is preferable to manage the carbon content to 0.005% or less. If the relational expression 6 is satisfied when the carbon content exceeds 0.005%, the non-aging property at room temperature can be ensured, but the Nb and TiC precipitates increase and the workability may decrease.

[関係式8]
Cs=(C−Nbx12/93−Tix12/48)x10000
(但し、Ti<0である場合Ti=0とする)
[Relational expression 8]
Cs = (C-Nbx12 / 93-Ti * x12 / 48) x10000
(However, if Ti <0, Ti = 0)

関係式8は焼付硬化特性を確保するためのもので、CsはNbCとTiCで析出されない固溶炭素の含量を示すものである。Csは関係式8により計算されるが、その値の単位はppmである。Cs値が5ppm以上にならないと焼付硬化量を確保することができず、30ppmを超える場合には固溶炭素の含量が高くて常温非時効性を確保することが困難である。   Relational expression 8 is for ensuring bake hardening characteristics, and Cs indicates the content of solid solution carbon not precipitated by NbC and TiC. Cs is calculated by the relational expression 8, and the unit of the value is ppm. If the Cs value is not 5 ppm or more, the bake hardening amount cannot be ensured, and if it exceeds 30 ppm, the content of solid solution carbon is high and it is difficult to ensure non-aging at room temperature.

本発明の成分系で析出物は微細に分布するほど有利であるが、好ましくは平均の大きさが0.2μm以下である。本発明の研究結果によると、析出物の平均の大きさが0.2μmを超える場合には特に強度が低くなり、面内異方性指数が良くない。   In the component system of the present invention, the precipitate is more advantageous as it is finely distributed, but preferably the average size is 0.2 μm or less. According to the research results of the present invention, when the average size of the precipitates exceeds 0.2 μm, the strength is particularly low and the in-plane anisotropy index is not good.

さらに、本発明の成分系には0.2μm以下の析出物が多量分布しているが、その分布数は特に制限されるものではないが、分布数が高いほど有利である。好ましくは析出物の分布数がmm当り1X10個以上、より好ましくはmm当り1X10個以上、最も好ましくはmm当り1X10個以上である。析出物の分布数が多くなるほど塑性異方性指数が高くなり、面内異方性指数は低くなって加工性が大きく改善される。一般的に塑性異方性指数が高くなると、面内異方性指数は上がり加工性の側面で塑性異方性指数を高めることに限界があると知られている。本発明の析出物の分布数により塑性異方性指数は高くなり面内異方性指数は低くなるという特異な変化は注目するに値する。本発明により微細な析出物が得られると、降伏比(降伏強度/引張強度)が0.58以上を満たす。 Furthermore, although a large amount of precipitates of 0.2 μm or less is distributed in the component system of the present invention, the distribution number is not particularly limited, but the higher the distribution number, the more advantageous. Preferably, the number of precipitates distributed is 1 × 10 5 or more per mm 2 , more preferably 1 × 10 6 or more per mm 2 , and most preferably 1 × 10 7 or more per mm 2 . The greater the number of precipitate distributions, the higher the plastic anisotropy index and the lower the in-plane anisotropy index, so that the workability is greatly improved. In general, it is known that as the plastic anisotropy index increases, the in-plane anisotropy index increases and there is a limit to increasing the plastic anisotropy index in terms of workability. It is worth noting the unique change that the plastic anisotropy index increases and the in-plane anisotropy index decreases according to the number of distributions of the precipitates of the present invention. When fine precipitates are obtained by the present invention, the yield ratio (yield strength / tensile strength) satisfies 0.58 or more.

本発明では340MPa級以上の高強度鋼板で適用する場合には上記Pのような固溶強化元素即ち、P、Si、Crの1種または2種以上を添加することができる。Pについては前述したので重複記載は省略する。   In the present invention, when applied to a high-strength steel sheet of 340 MPa class or higher, a solid solution strengthening element such as P, that is, one or more of P, Si, and Cr can be added. Since P has been described above, repeated description is omitted.

シリコン(Si)の含量は0.1−0.8%が好ましい。Siは固溶強化効果が高くて、且つ伸び率の低下が低い元素で、本発明により析出物を制御する鋼で高強度を保証する。Siの含量が0.1%以上にならないと強度を確保することができず、0.8%を超える場合には延性が低下する。   The silicon (Si) content is preferably 0.1-0.8%. Si is an element having a high solid solution strengthening effect and a low decrease in elongation rate, and guarantees high strength in steel for controlling precipitates according to the present invention. If the Si content is not more than 0.1%, the strength cannot be ensured, and if it exceeds 0.8%, the ductility decreases.

クロム(Cr)の含量は0.2−1.2%が好ましい。Crは固溶強化効果が高くて、且つ2次加工脆性温度を低め、Cr炭化物により時効指数を低める元素で、本発明により析出物を制御する鋼で高強度を保証し、面内異方性指数も低くする。Crの含量が0.2%以上にならないと強度が確保できず、1.2%を超える場合には延性が低下する。   The content of chromium (Cr) is preferably 0.2 to 1.2%. Cr is an element that has a high solid solution strengthening effect, lowers the secondary work brittle temperature, and lowers the aging index by Cr carbide. By the present invention, steel that controls precipitates ensures high strength and in-plane anisotropy. Lower the index. If the Cr content is not 0.2% or more, the strength cannot be secured, and if it exceeds 1.2%, the ductility is lowered.

本発明の冷延鋼板においてモリブデン(Mo)がさらに添加されることができる。   Molybdenum (Mo) can be further added to the cold-rolled steel sheet of the present invention.

モリブデン(Mo)の含量は0.01−0.2%が好ましい。Moは塑性異方性指数を高める元素として添加されるが、その含量が0.01%以上にならないと塑性異方性指数が高くならず、0.2%を超えると塑性異方性指数はこれ以上高くならず熱間脆性を引き起こす恐れがある。   The content of molybdenum (Mo) is preferably 0.01 to 0.2%. Mo is added as an element that increases the plastic anisotropy index. However, if the content is not more than 0.01%, the plastic anisotropy index does not increase. There is a risk of causing hot brittleness without increasing the height.

[冷延鋼板の製造方法]
以下では、本発明の冷延鋼板の製造方法を最も好ましい実施形態を通し説明する。ここで説明する本発明の実施形態は、様々な形態に変形されることができるもので、本発明の範囲が以下説明する実施形態に限定されるものではない。
[Method for producing cold-rolled steel sheet]
Below, the manufacturing method of the cold rolled sheet steel of this invention is demonstrated through the most preferable embodiment. The embodiment of the present invention described here can be modified in various forms, and the scope of the present invention is not limited to the embodiment described below.

本発明は上記の鋼組成を満たす鋼を熱間圧延と冷間圧延を通し冷間圧延板に析出物の平均の大きさが0.2μm 以下を満たすようにすることに特徴がある。冷間圧延板で析出物の平均の大きさは成分設計とともに再加熱温度、巻取温度等の製造工程に影響を受けるが、特に熱間圧延後の冷却速度に直接的な影響を受ける。   The present invention is characterized in that a steel satisfying the above steel composition is subjected to hot rolling and cold rolling so that the average size of precipitates is 0.2 μm or less on the cold rolled sheet. The average size of the precipitates in the cold rolled sheet is affected by the manufacturing process such as the reheating temperature and the coiling temperature as well as the component design, but is particularly directly affected by the cooling rate after hot rolling.

[熱間圧延条件]
本発明では、前記の鋼組成を満たす鋼を再加熱して熱間圧延する。再加熱温度は1100℃以上が好ましい。再加熱温度が1100℃未満の場合には再加熱温度が低くて連続鋳造中に生成された粗大な析出物が完全に溶解されない状態で残っており、熱間圧延後にも粗大な析出物が多く残っているためである。
[Hot rolling conditions]
In the present invention, steel satisfying the above steel composition is reheated and hot rolled. The reheating temperature is preferably 1100 ° C. or higher. When the reheating temperature is less than 1100 ° C., the reheating temperature is low, and coarse precipitates generated during continuous casting remain in a state where they are not completely dissolved, and there are many coarse precipitates even after hot rolling. This is because it remains.

熱間圧延は仕上げの圧延温度をAr変態温度以上の条件で行うことが好ましい。仕上げの圧延温度がAr変態温度未満の場合には圧延粒の生成により加工性が低下するだけではなく、強度も低くなるためである。 The hot rolling is preferably performed under the condition that the finishing rolling temperature is equal to or higher than the Ar 3 transformation temperature. This is because when the finishing rolling temperature is lower than the Ar 3 transformation temperature, not only the workability is lowered due to the formation of rolled grains, but also the strength is lowered.

熱間圧延後、巻取前の冷却速度は300℃/min以上にすることが好ましい。本発明に従って微細な析出物を得るためにその成分比を制御しても冷却速度が300℃/min未満であると析出物の平均の大きさが0.2μmを超えることがある。即ち、冷却速度が速くなるほど多くの核が生成し析出物が微細になるためである。冷却速度が速くなるほど析出物の大きさが微細になるため、冷却速度の上限を制限する必要はないが、冷却速度が1000℃/minより速くなっても析出物の微細化効果がこれ以上大きくならないので冷却速度は300−1000℃/minがより好ましい。   After hot rolling, the cooling rate before winding is preferably 300 ° C./min or more. Even if the component ratio is controlled to obtain fine precipitates according to the present invention, if the cooling rate is less than 300 ° C./min, the average size of the precipitates may exceed 0.2 μm. That is, as the cooling rate increases, more nuclei are generated and the precipitates become finer. There is no need to limit the upper limit of the cooling rate because the size of the precipitate becomes finer as the cooling rate becomes faster. However, even if the cooling rate becomes higher than 1000 ° C./min, the effect of refining the precipitate is larger than this. Therefore, the cooling rate is more preferably 300 to 1000 ° C./min.

[巻取条件]
上記のように熱間圧延をしてから巻取を行うが、巻取温度は700℃以下が好ましい。巻取温度が700℃を超える場合には析出物が非常に粗大に成長し、強度確保が困難である。
[Winding condition]
Winding is performed after hot rolling as described above, and the winding temperature is preferably 700 ° C. or lower. When the coiling temperature exceeds 700 ° C., the precipitate grows very coarsely and it is difficult to ensure the strength.

[冷間圧延条件]
冷間圧延は50−90%の圧下率で行うことが好ましい。冷間圧下率が50%未満の場合には焼鈍再結晶の核生成量が少ないため、焼鈍時結晶粒が非常に大きく成長し、焼鈍再結晶粒の粗大化により強度及び成形性が低下する。冷間圧下率が90%を超える場合には成形性は向上されるが、核生成量が多すぎて焼鈍再結晶粒はむしろ微細すぎて延性が低下する。
[Cold rolling conditions]
Cold rolling is preferably performed at a rolling reduction of 50-90%. When the cold rolling reduction is less than 50%, the amount of nucleation of annealing recrystallization is small, so that the crystal grains grow very large during annealing, and the strength and formability decrease due to the coarsening of the annealing recrystallization grains. When the cold reduction ratio exceeds 90%, the formability is improved, but the nucleation amount is too much, and the annealed recrystallized grains are rather fine and the ductility is lowered.

[連続焼鈍]
連続焼鈍温度は製品の材質を決定する重要な役割をする。本発明では700−900℃の温度範囲で行うことが好ましい。連続焼鈍温度が700℃未満の場合には再結晶が完了しないため目標とする延性値を確保できず、焼鈍温度が900℃を超える場合には再結晶粒の粗大化により強度が低下する。連続焼鈍時間は再結晶が完了するように維持するが、約10秒以上であれば再結晶が完了する。好ましくは連続焼鈍時間を10秒−30分の範囲内にすることである。
[Continuous annealing]
The continuous annealing temperature plays an important role in determining the product material. In this invention, it is preferable to carry out in the temperature range of 700-900 degreeC. When the continuous annealing temperature is less than 700 ° C., recrystallization is not completed, and thus the target ductility value cannot be secured. When the annealing temperature exceeds 900 ° C., the strength decreases due to coarsening of the recrystallized grains. The continuous annealing time is maintained so that the recrystallization is completed, but the recrystallization is completed if it is about 10 seconds or longer. Preferably, the continuous annealing time is within a range of 10 seconds to 30 minutes.

以下、本発明を実施例を通し、より具体的に説明する。   Hereinafter, the present invention will be described more specifically through examples.

実施例で機械的性質はASTM規格(ASTM E−8 standard)による標準試片で加工した後、引張試験機(INSTRON社、Model 6025)を利用し降伏強度、引張強度、伸び率、塑性異方性指数(r値)、面内異方性指数(△r値)及び時効評価指数を測定した。ここでr=(r+2r45+r90)/4、△r=(r−2r45+r90)/2である。 In the examples, the mechanical properties were processed with standard specimens according to the ASTM standard (ASTM E-8 standard), and then yield strength, tensile strength, elongation, plastic anisotropy using a tensile tester (INSTRON, Model 6025). sex index (r m value), the in-plane anisotropy index (△ r value) and were measured aging evaluation index. Here, r m = (r 0 + 2r 45 + r 90 ) / 4, Δr = (r 0 -2r 45 + r 90 ) / 2.

時効評価指数は、焼鈍後1.0%スキンパス圧延した後、試片を100℃で2時間熱処理後に測定された降伏点伸び(Yield Point Elongation)率である。   The aging evaluation index is a yield point elongation rate measured after a 1.0% skin pass rolling after annealing and after heat treatment of the specimen at 100 ° C. for 2 hours.

焼付硬化特性は試片に2%ストレンを加えた後170℃で20分間熱処理後に降伏強度を測定し、測定された降伏強度値で熱処理前の降伏強度値を引いた値をBH値にしたものである。   Bake-hardening characteristics are obtained by measuring the yield strength after heat treatment at 170 ° C. for 20 minutes after adding 2% strain to the specimen, and subtracting the yield strength value before heat treatment from the measured yield strength value to make the BH value. It is.

参考例1
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱して冷延鋼板を製造した。
[ Reference Example 1 ]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. Continuous annealing was performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and the continuous annealing was heated at 830 ° C. for 40 seconds at a rate of 10 ° C./second to produce a cold-rolled steel sheet.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

[実施例2]
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱して冷延鋼板を製造した。
[Example 2]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. Continuous annealing was performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and the continuous annealing was heated at 830 ° C. for 40 seconds at a rate of 10 ° C./second to produce a cold-rolled steel sheet.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例2
下記表の化学組成を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱して行った。
[ Reference Example 2 ]
The steel slab satisfying the chemical composition shown in the table below is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and the continuous annealing was performed by heating at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

[実施例4]
下記表の化学組成を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱した。
[Example 4]
The steel slab satisfying the chemical composition shown in the table below is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and the continuous annealing was heated at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例3
下記表の化学組成を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 3 ]
The steel slab satisfying the chemical composition shown in the table below is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例4
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 4 ]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例5
下記表の化学組成を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 5 ]
The steel slab satisfying the chemical composition shown in the table below is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例6
下記表に提示された化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱し試片を製造した。
[ Reference Example 6 ]
The steel slab satisfying the chemical composition presented in the table below is reheated, hot rolled for finishing, cooled at a rate of 400 ° C / min, wound at 650 ° C, and then cooled at a reduction rate of 75%. Hot rolling and continuous annealing were performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and the continuous annealing was heated at 830 ° C. for 40 seconds at a rate of 10 ° C./second to produce a specimen.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

[実施例9]
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[Example 9]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例7
下記表の化学組成を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 7 ]
The steel slab satisfying the chemical composition shown in the table below is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. Continuous annealing was performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

[実施例11]
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理し冷延鋼板を製造した。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[Example 11]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. A cold-rolled steel sheet was manufactured by continuous annealing. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例8
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 8 ]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. Continuous annealing was performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例9
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 9 ]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. Continuous annealing was performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

参考例10
下記表の化学成分を満たす鋼スラブを再加熱し、仕上げの熱間圧延をして400℃/minの速度で冷却し、650℃で巻取した後、75%の圧下率で冷間圧延と連続焼鈍処理をした。この時の仕上げの圧延温度はAr3変態点以上の910℃であり、連続焼鈍は10℃/秒の速度で830℃で40秒間加熱を行った。
[ Reference Example 10 ]
The steel slab satisfying the chemical composition shown in the following table is reheated, finished hot rolled, cooled at a rate of 400 ° C./min, wound at 650 ° C., and then cold rolled at a reduction rate of 75%. Continuous annealing was performed. The finishing rolling temperature at this time was 910 ° C. above the Ar 3 transformation point, and continuous annealing was performed at 830 ° C. for 40 seconds at a rate of 10 ° C./second.

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

Figure 0004954981
Figure 0004954981

本発明で前記実施形態は一つの例示で、本発明がこれに限定されるものではない。本発明の特許請求の範囲に記載の技術的思想と実質的に同じ構成を有し、同じ作用効果を奏するものは如何なるものでも本発明の技術的範囲に含まれる。   In the present invention, the embodiment is merely an example, and the present invention is not limited thereto. Any device that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same effects can be included in the technical scope of the present invention.

Claims (36)

重量%で、C:0.01%以下、Cu:0.01−0.2%、S:0.005−0.08%、Al:0.1%以下、N:0.02%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%、Mn:0.01−0.3%を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Cu/63.5)/(S/32)≦30、
=S−0.8*(Ti−0.8*(48/14)*N)*(32/48)を満たし、
(Mn、Cu)S析出物の平均の大きさが0.2μm以下になる成形性に優れた高降伏比冷延鋼板。
% By weight, C: 0.01% or less, Cu: 0.01-0.2%, S: 0.005-0.08%, Al: 0.1% or less, N: 0.02% or less, P: 0.2% or less, B: 0.0001-0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15%, Mn: 0.01-0.3 %, And is composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Cu / 63.5) / (S / 32) ≦ 30,
S * = S-0.8 * (Ti-0.8 * (48/14) * N) * (32/48)
(Mn, Cu) A high yield ratio cold-rolled steel sheet having excellent formability with an average size of S precipitates of 0.2 μm or less.
前記Nの含量が0.004−0.02%の場合、
1≦(Al/27)/(N/14)≦10、
=N−0.8*(Ti−0.8*(48/32)*S)*(14/48)を満たし、AlN析出物の平均の大きさが0.2μm以下になることを特徴とする請求項1に記載の成形性に優れた高降伏比冷延鋼板。
When the content of N is 0.004-0.02%,
1 ≦ (Al / 27) / (N * / 14) ≦ 10,
N * = N−0.8 * (Ti−0.8 * (48/32) * S) * (14/48) is satisfied, and the average size of the AlN precipitates is 0.2 μm or less. The high yield ratio cold-rolled steel sheet having excellent formability according to claim 1.
重量%で、C:0.01%以下、S:0.08%以下、Al:0.1%以下、N:0.02%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%、Cu:0.01−0.2%、Mn:0.01−0.3%を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Al/27)/(N/14)≦10(但し、Nの含量が0.004%以上の場合)、
=S−0.8*(Ti−0.8*(48/14)*N)*(32/48)、N=N−0.8*(Ti−0.8*(48/32)*S)*(14/48)を満たし、(Mn、Cu)S析出物とAlN析出物の少なくとも1種以上の平均の大きさが0.2μm以下になる成形性に優れた高降伏比冷延鋼板。
% By weight, C: 0.01% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.02% or less, P: 0.2% or less, B: 0.0001- Including 0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15%, Cu: 0.01-0.2%, Mn: 0.01-0.3% , Composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Al / 27) / (N * / 14) ≦ 10 (provided that the content of N is 0.004% or more),
S * = S-0.8 * (Ti-0.8 * (48/14) * N) * (32/48), N * = N-0.8 * (Ti-0.8 * (48 / 32) * S) * (14/48) is satisfied, and the high yield is excellent in formability in which the average size of at least one of (Mn, Cu) S precipitate and AlN precipitate is 0.2 μm or less. Specific cold rolled steel sheet.
前記C、Ti、Nb、N、Sの含量が次の関係、
0.8≦(Ti/48+Nb/93)/(C/12)≦5.0、Ti=Ti−0.8*((48/14)*N+(48/32)*S)を満たすことを特徴とする請求項1または請求項3に記載の成形性に優れた高降伏比冷延鋼板。
The content of C, Ti, Nb, N, S is the following relationship:
Satisfy 0.8 ≦ (Ti ★ /48+Nb/93)/(C/12)≦5.0,Ti ★ = Ti-0.8 * ((48/14) * N + (48/32) * S) The high yield ratio cold-rolled steel sheet having excellent formability according to claim 1 or 3.
前記Cの含量が0.005%以下であることを特徴とする請求項4に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to claim 4, wherein the C content is 0.005% or less. 前記CとTiにより決定されるCs(solute carbon)が5−30[ここで、Cs=(C−Nb*12/93−Ti*12/48)*10000、Ti=Ti−0.8*((48/14)*N+(48/32)*S)但し、Ti<0である場合Ti=0とする]を満たすことを特徴とする請求項1または請求項3に記載の成形性に優れた高降伏比冷延鋼板。Wherein C is 5-30 [where Cs (solute carbon) which is determined by the Ti, Cs = (C-Nb * 12/93-Ti ★ * 12/48) * 10000, Ti ★ = Ti-0.8 * ((48/14) * N + (48/32) * S) However, when Ti * <0, Ti * = 0 is satisfied. High yield ratio cold rolled steel sheet with excellent formability. 前記Cの含量が0.001−0.01%であることを特徴とする請求項6に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to claim 6, wherein the C content is 0.001 to 0.01%. 降伏比(降伏強度/引張強度)が0.58以上であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to any one of claims 1 to 3, wherein a yield ratio (yield strength / tensile strength) is 0.58 or more. 前記析出物数は1*10個/mm以上であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の成形性に優れた高降伏比冷延鋼板。The high yield ratio cold-rolled steel sheet having excellent formability according to any one of claims 1 to 3, wherein the number of precipitates is 1 * 10 6 pieces / mm 2 or more. 前記Pの含量は0.015%以下であることを特徴とする請求項1または請求項3に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to claim 1 or 3, wherein the P content is 0.015% or less. 前記Pの含量は0.03−0.2%であることを特徴とする請求項1または請求項3に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to claim 1 or 3, wherein the P content is 0.03-0.2%. さらにSi:0.1−0.8%、Cr:0.2−1.2%の1種または2種が含まれることを特徴とする請求項1または請求項3に記載の成形性に優れた高降伏比冷延鋼板。  Furthermore, 1 type or 2 types of Si: 0.1-0.8% and Cr: 0.2-1.2% are contained, It is excellent in the moldability of Claim 1 or Claim 3 characterized by the above-mentioned. High yield ratio cold rolled steel sheet. さらにMoが0.01−0.2% 含まれることを特徴とする請求項1または請求項3に記載の成形性に優れた高降伏比冷延鋼板。  Furthermore, Mo is contained in 0.01-0.2%, The high yield ratio cold-rolled steel plate excellent in formability of Claim 1 or Claim 3 characterized by the above-mentioned. さらにMoが0.01−0.2% 含まれることを特徴とする請求項12に記載の成形性に優れた高降伏比冷延鋼板。  Furthermore, Mo is contained in 0.01-0.2%, The high yield ratio cold-rolled steel plate excellent in formability of Claim 12. 前記MnとCuの和は0.05−0.4%であることを特徴とする請求項3に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to claim 3, wherein the sum of Mn and Cu is 0.05 to 0.4%. Mnの含量は0.01−0.12%であることを特徴とする請求項3に記載の成形性に優れた高降伏比冷延鋼板。  The high yield ratio cold-rolled steel sheet having excellent formability according to claim 3, wherein the Mn content is 0.01-0.12%. 前記(Mn/55+Cu/63.5)/(S/32)が1−9を満たすことを特徴とする請求項3に記載の成形性に優れた高降伏比冷延鋼板。The high yield ratio cold-rolled steel sheet with excellent formability according to claim 3, wherein (Mn / 55 + Cu / 63.5) / (S * / 32) satisfies 1-9. 前記(Al/27)/(N/14)が1−6を満たすことを特徴とする請求項2または請求項3に記載の成形性に優れた高降伏比冷延鋼板。The high yield ratio cold-rolled steel sheet having excellent formability according to claim 2 or 3, wherein (Al / 27) / (N * / 14) satisfies 1-6. 重量%で、C:0.01%以下、Cu:0.01−0.2%、S:0.005−0.08%、Al:0.1%以下、N:0.02%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%、Mn:0.01−0.3%を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Cu/63.5)/(S/32)≦30、
=S−0.8*(Ti−0.8*(48/14)*N)*(32/48)を満たすスラブを1100℃以上の温度で再加熱してから仕上げの圧延温度をAr変態点以上にして熱間圧延し300℃/min以上の速度で冷却し、700℃以下の温度で巻取した後、冷間圧延し、連続焼鈍して平均の大きさが0.2μm以下の(Mn、Cu)S析出物が分布する成形性に優れた高降伏比冷延鋼板の製造方法。
% By weight, C: 0.01% or less, Cu: 0.01-0.2%, S: 0.005-0.08%, Al: 0.1% or less, N: 0.02% or less, P: 0.2% or less, B: 0.0001-0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15%, Mn: 0.01-0.3 %, And is composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Cu / 63.5) / (S / 32) ≦ 30,
Reheat the slab satisfying S * = S-0.8 * (Ti-0.8 * (48/14) * N) * (32/48) at a temperature of 1100 [deg.] C. or higher, and then set the finishing rolling temperature. Hot-rolled at an Ar 3 transformation point or higher, cooled at a rate of 300 ° C./min or higher, wound at a temperature of 700 ° C. or lower, cold-rolled, and continuously annealed to have an average size of 0.2 μm. The manufacturing method of the high yield ratio cold-rolled steel plate excellent in the formability in which the following (Mn, Cu) S precipitates are distributed.
前記Nの含量が0.004−0.02%の場合、1≦(Al/27)/(N/14)≦10、
=N−0.8*(Ti−0.8*(48/32)*S)*(14/48)を満たしAlN析出物の平均の大きさが0.2μm以下になることを特徴とする請求項19に記載の成形性に優れた高降伏比冷延鋼板の製造方法。
When the content of N is 0.004-0.02%, 1 ≦ (Al / 27) / (N * / 14) ≦ 10,
N * = N−0.8 * (Ti−0.8 * (48/32) * S) * (14/48) is satisfied, and the average size of the AlN precipitates is 0.2 μm or less. The manufacturing method of the high yield ratio cold-rolled steel plate excellent in the formability of Claim 19.
重量%で、C:0.01%以下、S:0.08%以下、Al:0.1%以下、N:0.02%以下、P:0.2%以下、B:0.0001−0.002%、Nb:0.002−0.04%、Ti:0.005−0.15%、Cu:0.01−0.2%、Mn:0.01−0.3%を含み、残りのFe及びその他不可避な不純物で組成され、
1≦(Mn/55+Cu/63.5)/(S/32)≦30、
1≦(Al/27)/(N/14)≦10(但し、Nの含量が0.004−0.02%の場合)、
=S−0.8*(Ti−0.8*(48/14)*N)*(32/48)、N=N−0.8*(Ti−0.8*(48/32)*S)*(14/48))を満たすスラブを1100℃以上の温度で再加熱してから仕上げの圧延温度をAr変態点以上にして熱間圧延し300℃/min以上の速度で冷却し、700℃以下の温度で巻取した後、冷間圧延し、連続焼鈍して(Mn、Cu)S析出物とAlN析出物の少なくとも1種以上の平均の大きさが0.2μm以下になる成形性に優れた高降伏比冷延鋼板の製造方法。
% By weight, C: 0.01% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.02% or less, P: 0.2% or less, B: 0.0001- Including 0.002%, Nb: 0.002-0.04%, Ti: 0.005-0.15%, Cu: 0.01-0.2%, Mn: 0.01-0.3% , Composed of the remaining Fe and other inevitable impurities,
1 ≦ (Mn / 55 + Cu / 63.5) / (S / 32) ≦ 30,
1 ≦ (Al / 27) / (N * / 14) ≦ 10 (provided that the content of N is 0.004-0.02%),
S * = S-0.8 * (Ti-0.8 * (48/14) * N) * (32/48), N * = N-0.8 * (Ti-0.8 * (48 / 32) A slab satisfying * S) * (14/48)) is reheated at a temperature of 1100 ° C. or higher and then hot rolled at a finishing rolling temperature of Ar 3 transformation point or higher and a speed of 300 ° C./min or higher. After cooling at 700 ° C. or lower, cold rolling and continuous annealing, the average size of at least one of (Mn, Cu) S precipitate and AlN precipitate is 0.2 μm. The manufacturing method of the high yield ratio cold-rolled steel plate excellent in the formability which becomes the following.
前記C、Ti、Nb、N、Sの含量が次の関係、
0.8≦(Ti/48+Nb/93)/(C/12)≦5.0、Ti=Ti−0.8*((48/14)*N+(48/32)*S)を満たすことを特徴とする請求項19または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。
The content of C, Ti, Nb, N, S is the following relationship:
Satisfy 0.8 ≦ (Ti ★ /48+Nb/93)/(C/12)≦5.0,Ti ★ = Ti-0.8 * ((48/14) * N + (48/32) * S) The manufacturing method of the high yield ratio cold-rolled steel plate excellent in formability of Claim 19 or Claim 21 characterized by the above-mentioned.
前記Cの含量が0.005%以下であることを特徴とする請求項22に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to claim 22, wherein the C content is 0.005% or less. 前記CとTiにより決定されるCs(solute carbon)が5−30[ここで、Cs=(C−Nb*12/93−Ti*12/48)*10000、Ti=Ti−0.8*((48/14)*N+(48/32)*S)但し、Ti<0である場合Ti=0とする]を満たすことを特徴とする請求項19または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。Wherein C is 5-30 [where Cs (solute carbon) which is determined by the Ti, Cs = (C-Nb * 12/93-Ti ★ * 12/48) * 10000, Ti ★ = Ti-0.8 * ((48/14) * N + (48/32) * S) However, when Ti * <0, Ti * = 0 is satisfied. A method for producing a high yield ratio cold rolled steel sheet with excellent formability. 前記Cの含量が0.001−0.01%であることを特徴とする請求項24に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to claim 24, wherein the C content is 0.001 to 0.01%. 降伏比(降伏強度/引張強度)が0.58以上であることを特徴とする請求項19乃至請求項21のいずれか1項に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to any one of claims 19 to 21, wherein a yield ratio (yield strength / tensile strength) is 0.58 or more. . 前記析出物数は1*10個/mm以上であることを特徴とする請求項19乃至請求項21のいずれか1項に記載の成形性に優れた高降伏比冷延鋼板の製造方法。The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to any one of claims 19 to 21, wherein the number of precipitates is 1 * 10 6 pieces / mm 2 or more. . 前記Pの含量は0.015%以下であることを特徴とする請求項19または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to claim 19 or 21, wherein the P content is 0.015% or less. 前記Pの含量は0.03−0.2%であることを特徴とする請求項19または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to claim 19 or 21, wherein the P content is 0.03-0.2%. さらにSi:0.1−0.8%、Cr:0.2−1.2%の1種または2種が含まれることを特徴とする請求項19または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  Furthermore, 1 type or 2 types of Si: 0.1-0.8% and Cr: 0.2-1.2% are contained, It is excellent in the moldability of Claim 19 or Claim 21 characterized by the above-mentioned. A high yield ratio cold rolled steel sheet manufacturing method. さらにMoが0.01−0.2%含まれることを特徴とする請求項19または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  Furthermore, Mo is contained in 0.01-0.2%, The manufacturing method of the high yield ratio cold-rolled steel plate excellent in the formability of Claim 19 or Claim 21 characterized by the above-mentioned. さらにMoが0.01−0.2%含まれることを特徴とする請求項30に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  Furthermore, Mo is contained in 0.01-0.2%, The manufacturing method of the high yield ratio cold-rolled steel plate excellent in the formability of Claim 30 characterized by the above-mentioned. 前記MnとCuの和は0.08−0.4%であることを特徴とする請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet with excellent formability according to claim 21, wherein the sum of Mn and Cu is 0.08-0.4%. Mnの含量は0.01−0.12%であることを特徴とする請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。  The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to claim 21, wherein the Mn content is 0.01-0.12%. 前記(Mn/55+Cu/63.5)/(S/32)が1−9を満たすことを特徴とする請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。The method for producing a high yield ratio cold-rolled steel sheet having excellent formability according to claim 21, wherein (Mn / 55 + Cu / 63.5) / (S * / 32) satisfies 1-9. 前記(Al/27)/(N/14)が1−6を満たすことを特徴とする請求項20または請求項21に記載の成形性に優れた高降伏比冷延鋼板の製造方法。Said (Al / 27) / (N * / 14) satisfy | fills 1-6, The manufacturing method of the high yield ratio cold-rolled steel plate excellent in the formability of Claim 20 or Claim 21 characterized by the above-mentioned.
JP2008509936A 2005-05-03 2006-05-03 A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method. Active JP4954981B2 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
KR20050037183 2005-05-03
KR10-2005-0037183 2005-05-03
KR1020050129239A KR100723181B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR10-2005-0129237 2005-12-26
KR1020050129235A KR100723165B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
KR10-2005-0129235 2005-12-26
KR1020050129236A KR100723164B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR10-2005-0129236 2005-12-26
KR1020050129237A KR100723163B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR10-2005-0129239 2005-12-26
PCT/KR2006/001670 WO2006118425A1 (en) 2005-05-03 2006-05-03 Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same

Publications (2)

Publication Number Publication Date
JP2008540827A JP2008540827A (en) 2008-11-20
JP4954981B2 true JP4954981B2 (en) 2012-06-20

Family

ID=37652804

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008509936A Active JP4954981B2 (en) 2005-05-03 2006-05-03 A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method.
JP2008509934A Active JP4954980B2 (en) 2005-05-03 2006-05-03 High-formability cold-rolled steel sheet and its manufacturing method.
JP2008509935A Active JP4964870B2 (en) 2005-05-03 2006-05-03 High yield ratio cold rolled steel sheet with low in-plane anisotropy and method for producing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008509934A Active JP4954980B2 (en) 2005-05-03 2006-05-03 High-formability cold-rolled steel sheet and its manufacturing method.
JP2008509935A Active JP4964870B2 (en) 2005-05-03 2006-05-03 High yield ratio cold rolled steel sheet with low in-plane anisotropy and method for producing the same

Country Status (6)

Country Link
US (2) US20080185077A1 (en)
JP (3) JP4954981B2 (en)
KR (42) KR100723180B1 (en)
CN (3) CN101171355A (en)
MX (3) MX2007013675A (en)
TW (3) TWI309263B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775338B1 (en) * 2006-11-21 2007-11-08 주식회사 포스코 Cold rolled steel sheet having high yield ratio and excellent formability and the method for manufacturing the same
KR100957960B1 (en) * 2007-12-26 2010-05-17 주식회사 포스코 Cold rolled steel sheet having good formability and surface quality and process for producing the same
KR101030898B1 (en) * 2008-08-28 2011-04-22 현대제철 주식회사 solid carbon/nitrogen composition bake hardenable steel sheet, and method for producing the same
CN101348884B (en) * 2008-09-11 2010-05-12 北京科技大学 440MPa grade niobium-containing high-strength IF steel and manufacturing method thereof
JP5272714B2 (en) * 2008-12-24 2013-08-28 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
KR101121829B1 (en) * 2009-08-27 2012-03-21 현대제철 주식회사 Hot-rolled steel sheet having high strength, and method for producing the same
CN102747281B (en) * 2012-07-31 2014-10-29 首钢总公司 Production method of batch annealing interstitial-free (IF) steel
CN102925796B (en) * 2012-10-30 2014-07-09 鞍钢股份有限公司 Non-alloyed ultra-low carbon structure cold-rolled sheet and production method thereof
KR101318060B1 (en) 2013-05-09 2013-10-15 현대제철 주식회사 Hot stamping product with advanced toughness and method of manufacturing the same
KR101611762B1 (en) * 2014-12-12 2016-04-14 주식회사 포스코 Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same
DE102016110661A1 (en) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
CN110026433B (en) * 2019-03-20 2021-07-23 首钢集团有限公司 Method for improving surface quality of P-containing high-strength IF steel continuous annealing plate
JP6743996B1 (en) * 2019-11-13 2020-08-19 日本製鉄株式会社 Steel
KR102566353B1 (en) 2021-08-26 2023-08-14 현대제철 주식회사 Cold-rolled steel sheet with excellent plastic anisotropy and strength and method of manufacturing the same

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825436A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of deep drawing cold rolling steel plate having slow aging property and small anisotropy
JPS5884929A (en) * 1981-11-17 1983-05-21 Nippon Steel Corp Production of cold-rolled steel plate for deep drawing having excellent nonaging property and curing performance for baked paint
JPS5967322A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for deep drawing
JPH01191765A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JPH07116509B2 (en) * 1989-02-21 1995-12-13 日本鋼管株式会社 Non-oriented electrical steel sheet manufacturing method
JPH05339640A (en) * 1990-12-10 1993-12-21 Kobe Steel Ltd Production of cold rolled steel sheet reduced in plastic anisotropy
US5200005A (en) * 1991-02-08 1993-04-06 Mcgill University Interstitial free steels and method thereof
DE69323441T2 (en) * 1992-03-06 1999-06-24 Kawasaki Steel Co Manufacture of high tensile steel sheet with excellent stretch flangeability
JP3096165B2 (en) * 1992-08-18 2000-10-10 川崎製鉄株式会社 Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP3219220B2 (en) * 1993-03-31 2001-10-15 住友金属鉱山株式会社 Air electrode precursor green sheet and molten carbonate fuel cell using the same
CN1043905C (en) * 1993-10-05 1999-06-30 日本钢管株式会社 Continuously annealed and cold rolled steel sheet
JPH07179946A (en) * 1993-12-24 1995-07-18 Kawasaki Steel Corp Production of high workability high tensile strength cold rolled steel plate excellent in secondary working brittleness resistance
JPH08283909A (en) * 1995-04-17 1996-10-29 Nippon Steel Corp Cold rolled steel sheet excellent in uniformity of workability and its production
JP3420370B2 (en) * 1995-03-16 2003-06-23 Jfeスチール株式会社 Thin steel sheet excellent in press formability and method for producing the same
JP3293450B2 (en) * 1996-02-27 2002-06-17 日本鋼管株式会社 Manufacturing method of cold-rolled steel sheet for deep drawing
DE19628714C1 (en) 1996-07-08 1997-12-04 Mannesmann Ag Process for the production of precision steel tubes
JP3745496B2 (en) * 1997-04-18 2006-02-15 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JPH11241140A (en) * 1998-02-26 1999-09-07 Nippon Steel Corp Hot dip galvanized steel sheet high in yield strength at 800 to 850×c and excellent in roll formability and its production
JPH11269625A (en) * 1998-03-25 1999-10-05 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production
JP4301638B2 (en) * 1999-05-27 2009-07-22 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent high temperature strength
JP2000345293A (en) * 1999-06-08 2000-12-12 Nippon Steel Corp Cold rolled steel sheet for deep drawing, excellent in hardenability by nitriding
EP1136575A4 (en) * 1999-08-10 2008-04-23 Jfe Steel Corp Method of producing cold rolled steel sheet
DE60127879T2 (en) * 2000-02-29 2007-09-06 Jfe Steel Corp. High strength hot rolled steel sheet with excellent stretch aging properties
JP4069591B2 (en) * 2000-02-29 2008-04-02 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy
CN1286999C (en) * 2000-06-20 2006-11-29 杰富意钢铁株式会社 Thin steel sheet and method for manufacturing the same
JP2002155489A (en) * 2000-11-15 2002-05-31 Shikibo Ltd Dryer canvas for paper manufacturing
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
JP2002327257A (en) * 2001-04-26 2002-11-15 Nippon Steel Corp Hot-dip aluminized steel sheet superior in press formability, and manufacturing method therefor
JP4319817B2 (en) * 2001-11-19 2009-08-26 新日本製鐵株式会社 Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP2003041342A (en) * 2002-05-29 2003-02-13 Nkk Corp Cold rolled steel sheet superior in stamping property
EP1518001A4 (en) * 2002-06-28 2006-01-11 Posco Super formable high strength steel sheet and method of manufacturing thereof
KR100928797B1 (en) * 2002-12-26 2009-11-25 주식회사 포스코 Ultra low carbon bainite steel with excellent toughness of high heat input welding heat affected zone and manufacturing method
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability

Also Published As

Publication number Publication date
KR20060115635A (en) 2006-11-09
KR100723180B1 (en) 2007-05-30
KR100742950B1 (en) 2007-07-25
KR100723160B1 (en) 2007-05-30
KR20060115309A (en) 2006-11-08
KR20060115313A (en) 2006-11-08
KR20060115310A (en) 2006-11-08
JP2008540825A (en) 2008-11-20
KR20060115616A (en) 2006-11-09
KR100742935B1 (en) 2007-07-25
KR20060115320A (en) 2006-11-08
KR20060115319A (en) 2006-11-08
KR20060115312A (en) 2006-11-08
KR20060115625A (en) 2006-11-09
KR100742948B1 (en) 2007-07-25
TW200702456A (en) 2007-01-16
KR20060115314A (en) 2006-11-08
KR100723165B1 (en) 2007-05-30
KR100723163B1 (en) 2007-05-30
KR100742939B1 (en) 2007-07-25
KR20060115318A (en) 2006-11-08
KR20060115644A (en) 2006-11-09
KR20060115614A (en) 2006-11-09
KR100742938B1 (en) 2007-07-25
KR100742943B1 (en) 2007-07-25
TWI327171B (en) 2010-07-11
KR100742934B1 (en) 2007-07-25
CN101171355A (en) 2008-04-30
JP4964870B2 (en) 2012-07-04
KR20060115638A (en) 2006-11-09
KR20060115311A (en) 2006-11-08
JP4954980B2 (en) 2012-06-20
KR100742926B1 (en) 2007-07-25
KR100742945B1 (en) 2007-07-25
KR100742930B1 (en) 2007-07-25
KR100742941B1 (en) 2007-07-25
KR20060115637A (en) 2006-11-09
KR100723182B1 (en) 2007-05-29
KR20060115642A (en) 2006-11-09
KR20060115646A (en) 2006-11-09
KR100742932B1 (en) 2007-07-25
KR20060115626A (en) 2006-11-09
KR20060115633A (en) 2006-11-09
KR20060115640A (en) 2006-11-09
KR20060115623A (en) 2006-11-09
KR20060115634A (en) 2006-11-09
KR100742937B1 (en) 2007-07-25
KR20060115615A (en) 2006-11-09
CN100557058C (en) 2009-11-04
KR100723158B1 (en) 2007-05-30
US20080185077A1 (en) 2008-08-07
MX2007013677A (en) 2008-01-28
KR20060115621A (en) 2006-11-09
KR100723181B1 (en) 2007-05-29
KR100742819B1 (en) 2007-07-25
KR20060115647A (en) 2006-11-09
KR20060115624A (en) 2006-11-09
KR20060115639A (en) 2006-11-09
KR100742951B1 (en) 2007-07-25
KR100742944B1 (en) 2007-07-25
KR100723164B1 (en) 2007-05-30
KR20060115628A (en) 2006-11-09
KR20060115630A (en) 2006-11-09
KR100742931B1 (en) 2007-07-25
KR100742952B1 (en) 2007-07-25
KR100742927B1 (en) 2007-07-25
KR20060115641A (en) 2006-11-09
JP2008540827A (en) 2008-11-20
TW200702455A (en) 2007-01-16
KR100742955B1 (en) 2007-07-25
KR100742818B1 (en) 2007-07-25
KR100742947B1 (en) 2007-07-25
MX2007013675A (en) 2008-01-28
KR20060115643A (en) 2006-11-09
KR100723159B1 (en) 2007-05-30
KR20060115315A (en) 2006-11-08
KR100723216B1 (en) 2007-05-29
KR100742936B1 (en) 2007-07-25
KR100742918B1 (en) 2007-07-25
US20090126837A1 (en) 2009-05-21
CN101184858A (en) 2008-05-21
KR20060115317A (en) 2006-11-08
KR100742949B1 (en) 2007-07-25
TWI309263B (en) 2009-05-01
KR20060115636A (en) 2006-11-09
KR20060115316A (en) 2006-11-08
KR100742953B1 (en) 2007-07-25
KR100742929B1 (en) 2007-07-25
CN101171356A (en) 2008-04-30
KR20060115622A (en) 2006-11-09
KR100742919B1 (en) 2007-07-25
TWI346141B (en) 2011-08-01
JP2008540826A (en) 2008-11-20
KR100742940B1 (en) 2007-07-25
MX2007013676A (en) 2008-01-28
KR20060115629A (en) 2006-11-09
KR20060115631A (en) 2006-11-09
KR100742917B1 (en) 2007-07-25
KR20060115627A (en) 2006-11-09
CN101184858B (en) 2010-12-08
KR100742933B1 (en) 2007-07-25
TW200702444A (en) 2007-01-16
KR100742954B1 (en) 2007-07-25
KR20060115645A (en) 2006-11-09
KR20060115632A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4954981B2 (en) A high yield ratio cold-rolled steel sheet excellent in formability and its manufacturing method.
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
WO2006118423A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
KR101185337B1 (en) Batch annealing furnace type cold rolled steel plate having good surface quality and good formability and method for manufacturing the same
EP1885899A1 (en) Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same
WO2006118425A1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
JP4439525B2 (en) Bake-hardening cold-rolled steel sheet with excellent workability and method for producing the same
KR101143157B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR20060058419A (en) High strength cold rolled steel sheet having superior workability and process for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250