TWI325823B - Microfluid ejection device having logic and driver circuitry - Google Patents

Microfluid ejection device having logic and driver circuitry Download PDF

Info

Publication number
TWI325823B
TWI325823B TW93134780A TW93134780A TWI325823B TW I325823 B TWI325823 B TW I325823B TW 93134780 A TW93134780 A TW 93134780A TW 93134780 A TW93134780 A TW 93134780A TW I325823 B TWI325823 B TW I325823B
Authority
TW
Taiwan
Prior art keywords
transistors
semiconductor substrate
driver transistors
substrate
less
Prior art date
Application number
TW93134780A
Other languages
Chinese (zh)
Inventor
J Glenn Edelen
George K Parish
Kristi M Rowe
Original Assignee
Lexmark Int Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexmark Int Inc filed Critical Lexmark Int Inc
Priority to TW93134780A priority Critical patent/TWI325823B/en
Application granted granted Critical
Publication of TWI325823B publication Critical patent/TWI325823B/en

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

1325823 九、發明說明: 【發明所屬之技術領域】 本發明關於一種微量流體射出裝置,及特別關於一種射 出裝置之射出頭’其包含高效率邏輯及驅動器電路。 【先前技術】 諸如喷墨式印表機之類的微量流體射出裝置仍然廣泛地 被視為取代雷射印表機最經濟的印表機。該等噴墨式印表 機典型地比雷射印表機對於某些應用具有更大彈性。因為 喷墨式印表機之性能係被增強以在增加印表速度下提供更 高品質的影像’射出頭(喷墨式印表機之主要印表組件)仍然 持續不斷地發展而變得更為複雜。因為該等射出頭更為複 雜所以生產射出頭之成本也隨著增加。然而,仍然還是 需要-種微量、流體射出裝而該裝£具有^強性能是更 好的品質及更高的吞吐量速率。對於印表品質及價格之競 爭壓力可以持、續I求能夠以更經冑方法生產具有增強性能 之射出頭。 【發明内容】 種微量流體射 針對該等前述及其他目的及優點,提出 八叫 ·丨里祖 出頭之半導體基板。該基板包含複數個流體射出致動器 及等致動H被置在該基板上。複數個驅動器電晶體被配 置在該基板上’用以驅動該等複數個流體射出致動器。每 個驅動器電晶體都有-主動區域,該㈣大小在约謂到 小於約15,刪平方微米之範圍内。包含至少-邏輯電晶體 之複數個邏輯電軸合到該等驅動器電晶體。該等驅動号及 97556.doc 1325823 邏輯電晶體係由一高密度陣列之MOS電晶體所提供,其中 至少该等邏輯電晶體具有一在從約〇 _ 1到小於約3微米範圍 内之閘極長度。 在另一實施例中,一微量流體射出裝置配置一微量流體 射出匣。該匣體具有一流體供應來源及一射出頭,該射出 頭被附接於該匣體上而與該流體供應來源呈流體連通狀 態。該射出頭包含一半導體基板,其具有複數個流體射出 致動器’ 3亥專致動器被配置在該基板上。複數個驅動器電 晶體被配置在該基板上,用以驅動該等複數個流體射出致 動器。每個驅動器電晶體有一主動區域,該區域寬度在約 100到小於約400微米之範圍内。包含至少一邏輯電晶體之 複數個邏輯電路被可操作地耦合到該等驅動器電晶體。該 等驅動器及邏輯電晶體包含一高密度陣列之M0S電晶體, 其中至少該邏輯電晶體具有一在從約〇丨到小於約3微米範 圍内之閘極長度》—喷嘴板被附接於該半導體基板上,用 以當該等流體射出致動器一啟動就射出流體。 另一實施例中,一喷墨式印表頭配置一半導體基板。該 基板包3複數個加熱器電阻器,該等電阻器被配置在該基 板上。該等加熱器電阻器有一層類鑽碳保護層,其厚度範 圍在約1000到約3000埃(Angstrom)之間。複數個驅動器電晶 體被配置在基板上,用以驅動該等複數個流體射出致動 器。複數個邏輯電路包含至少一邏輯電晶體以及耦合到該 等驅動器電晶體。該等驅動器及邏輯電晶體提供一高密度 陣列之MOS電晶體’其中至少該等邏輯電晶體之問極長度 97556.doc 1325823 範圍在約0.1到小於約3微米之間。 本發明之-項優點是提供微量流體射出裝置微量流體射 出頭’其要求大量減少基板區域並且還能提供增強功能 性。該等半導體基板可以用於廣泛應用,其包含喷墨式印 刷頭、微量流體冷卻裝置、傳送經過控制之藥物準備量, 及類似的應用。喷墨式印表機應用中,本發明之基板可以 顯著減少併入該等射出頭之印刷頭的製造及原料成本。 【實施方式】 參考圖1,說明微量流體射出裝置之流體匣10。該匣1〇 包含一匣體12,用以供應流體給一流體射出頭丨4。該流體 可以裝在s亥匣體12之儲存區域内或從遠處來源供給該匣 體。 該流體射出頭14包含一半導體基板16及一喷嘴板18,該 喷嘴板18具有一些喷嘴口 20。較佳地,該匣以可拆卸方式 被附接於一微量流體射出裝置,該裝置像是喷墨式印表機 22(圖2)。因此,電氣接點24配置在一軟性電路26上,用以 電氣連接到該微量流體射出裝置❶該軟性電路26包含電跡 線28,該線路連接到該流體射出頭14之基板16。 該流體射出頭14之一部分之未按照比例之放大圖描述於 圖3。在該範例中’該流體射出頭14包含一加熱元件3〇,做 為一流體射出致動器,用以加熱在一流體室32内的流體, 該流體室32形成在喷嘴板18内且在該基板16與一喷嘴口 20 之間。然而,本發明並非受限只能用於含有一加熱元件3〇 之流體射出頭14。在使用加熱元件30的範例中,該等加熱 97556.doc 1325823 ,件是加熱器電阻器,其較佳地具有—層含有類鑽碳的保 濩層該保濩層的厚度範圍在約1 〇〇〇到約3〇〇〇埃之間。其 他流體射出致動器’像是壓電式裝置,也可用以提供根據 本發明之流體射出頭。 流體經過該基板16之開口或槽34 ’及經過連接該槽34與 該流體室32的流體通道36,傳送給該流體室32。該喷嘴板 18較佳地是以黏著方式,藉由—黏著層36而被附接於該基 板16上。如圖3中所描述,該流體室32與流體通道36之流體 特徵是形成在該噴嘴板18内。然而,該等流動特徵可以配 置在獨立的厚膜層上’纟中只含有喷嘴口之喷嘴板係被附 接於该厚膜層上。在一更佳的實施例中,該流體射出頭Μ 是屬於加熱式或壓電式喷墨印表頭。然而,本發明並非要 受限於喷墨印表頭,因為其他類型的流體也可以利用根據 本發明之微量流體射出裝置射出。 再人參考圖2,該流體射出裝置較佳地是喷墨式印表機 22。該印表機22包含一載體4〇,用以夹持一或更多個匣⑺ 及用以在一諸如紙之類的媒體42上,移動該等匣1〇,將該 匣10之流體沉積在該媒體42上。如同前文所提過,該匣上 之接點24與該載體4〇上之接點相配合,用以在該印表機22 與該匣10之間電氣連接。該印表機22之微控制器控制該載 體40移動經過该媒體42,及轉換來自諸如電腦之類的外部 裝置的類比及/或數位輸入,用以控制該印表機22之操作。 藉由該流體射出頭14上之邏輯電路44,偕同該印表機22内 之控制器’控制該流體射出頭14之流體射出。 97556.doc 圖4及5說明一流體射出頭14之較佳的邏輯電路44。該邏 輯電路44包含一 NAND閘極46,該閘極具有一些來自該微量 流體射出裝置或印表機22之輸入48,然後輸出到一反相器 5〇。一較佳反相器50是CMOS邏輯電路,這說明於圖5中, 该反相器50包含一NM0S電晶體52’其在一 p型基板内,及 一 PM0S電晶體54在附近,其是由在一 p型基板内的一 NWELL提供。該反相器50之輸出接到一驅動器電晶體58之 閘極56,該驅動器電晶體58驅動該流體制動器,在此處為 一加熱元件30。在每個加熱器元件30附近至少有一驅動器 電晶體5 8。該加熱器元件3 0較佳地是一電阻器,該電阻範 圍在約70到約150歐姆之間或更大’更佳地在約1 〇〇到約12〇 歐姆之間。 在圖6說明如上文中所描述之反相器5〇的橫斷面圖式。如 上文中所提出,該反相器50包含一 NMOS電晶體52及一 PM0S電晶體54。每個電晶體52及54較佳地具有閘極60及 62 ’該等閘極長度範圍在約〇. 1到小於約3微米之間,較佳 地在約0· 1到約1 · 5微米之間。同樣地,該基板64或nWELL 66 内的通道長度範圍在約〇. 1到小於約3微米之間。利用提供 比較短的閘極長度及通道長度,可以在含有該邏輯電路44 之基板上的區域,配置更為密集的電晶體52及54。該等電 晶體52及54之其他特徵則是很普通,而該反相器5〇是利用 常見的半導體處理技術來製造。 圖7及8是為說明較佳的驅動器電晶體68及7〇在未按照比 例情形下的橫斷面圖。圖9是一驅動器電晶體68之簡化平面 97556.doc 1325823 圖。圖7說明一驅動器電晶體68,其具有一稍微摻雜的汲極 區域72,反之驅動器電晶體7〇包含一稍微摻雜的源極區域 74及一稍微摻雜的汲極區域76。同樣較佳地該等驅動器電 晶體68及70包含閘極78及80,其閘極長度^範圍在約〇」到 小於約3微米之間,較佳地是在約〇.丨到約丨5微米之間,及 一些通道’其通道長度Lc (圖9)範圍在約〇.1到小於約3微米 之間。該等驅動器電晶體68及70之閘極長度Lg讓驅動器電 晶體具有比較低的電阻。典型地,該等驅動器電晶體⑽及 70之電阻小於該電路所造成之總電阻的丨〇%,該總電阻是 由該等加熱器電阻器30、邏輯電路44、驅動器電晶體68或 70,及相關的連接電路所構成。該等驅動器電晶體68及7〇 較佳地是以大於8伏特的電壓操作,較佳地該電壓值在約8 到約12伏特。 該等驅動器電晶體68及70包含一基板82,其較佳地是一 p 型矽基板。對於電晶體68及70,區域84及86是N型摻雜源極 及汲極。區域88是一 P型摻雜區域,其提供該等電晶體源極 接點90及92零電位。該等驅動器電晶體68及7〇之其他特徵 是很普通,而可以利用常見的半導體處理技術,製造驅動 器電晶體68及70。較佳地,該等驅動器電晶體68及7〇之開 啟電阻(an on resistance)小於20歐姆,較佳的電阻在約 小於約20歐姆之間。 在圖1 〇中說明一流體射出頭14未按比例的平面圖。該流 體射出頭14·包含一半導體基板16及一喷嘴板lg,該喷嘴板 被附接於該基板16上。該半導體基板16之裝置區域的佈局 97556.doc 10 1325823 顯示提供邏輯電路44、驅動器電晶體58及加熱器電阻器3〇 之較佳的位置。如圖1〇中所示,該基板16包含一單槽%, 用以提供諸如墨水《流體給該等加&器電P且器30 ’該等加 熱器電阻器30被配置在該槽34之兩側。然而,本發明並非 限制於-基板16只具有一單槽34的情形’也並非限制於諸 如加熱器電阻器30之類的流體射出致動器被配置在該槽% 之兩側的情形。根據本發明之其他基板包含多槽,而流提 射出致動器被配置在該等槽之一彻!或⑷則。該練也可以 不含槽34,流體在該基板16邊緣四周流到該等致動器。不 使用一單槽34,該基板16可以包含多槽或多開口,每一槽 或開口針對一或更多致動器裝置。該喷嘴板18,較佳地由 一諸如聚醯亞胺之類的防墨材料所構成,係附接於該基板 16上。 在圖11之主動區域94之平面圖式中,詳細描述該等驅動 益電晶體58所要求之一主動區域94。該圖式表示一典型加 熱器陣列及主動區域的一部分。該基板16之主動區域94較 佳地具有一寬度尺寸W,其範圍在約i 00到約400微米之 間及整體長度尺寸〇’其範圍在約6,300微米到約26,000 微米之間。該等驅動器電晶體58係以一間距p配置,該間距 範圍在約10微米到約84微米之間。一接地匯流排96及一電 源匯流排98係配置以供電給在該主動區域94内之裝置及該 等加熱器電阻器30。 在一更佳實施例中,在該半導體基板16中一單驅動器電 晶體58之區域具有一主動區域寬度範圍在約ι〇〇到約4〇〇微 97556.doc -11 - 1325823 米之間,及一主動區域面積較佳地小於約15,000平方微 米。藉由使用驅動器電晶體58之閘極長度與通道長度的範 圍在如上述約0.1到小於約3微米之間,可以使得該主動區 域94變小。同樣地’該邏輯電路44(圖10)也要求比較小的區 域,因為使用該專電晶體52及54之閘極長度範圍在約到 小於約3微米之間。 圖12是一根據本發明之諸如印表機22(圖2)之微量流體 射出裝置之部分簡化的邏輯圖式。該裝置包含一主控制系 統100,其連接到該流體射出頭14。參考圖10如上文所描 述’該流體射出頭14包含邏輯電路44、裝置驅動器58及流 體射出致動器30,該等致動器30連接到該等裝置驅動器 58。一可程式化記憶體裝置1〇2可以放在該射出頭14上,或 疋放在6亥印表機22之控制系統1〇〇内。該印表機22包含一電 源供應器104及一 AC到DC轉換器106。該AC到DC轉換器1〇6 供電給該射出頭14及一類比數位轉換器1〇8。該類比數位轉 換器108接收來自一諸如電腦之外部來源的信號11〇,然後 將该k號提供給在該印表機22内之控制器丨丨2。該控制器 112包3邏輯裝置,用以控制該射出頭丨4之功能。該控制器 112也包含局部記憶體及邏輯電路,用以程式化及讀取在該 射出頭14上之該記憶體102,假如有的話。 本發明涵蓋在本發明之該等實施例中所做出的修正及變 化,從該先前描述及該等伴隨圖式,這對於熟悉該技藝的 人疋很清楚。因此,它明確地打算該先前描述及該等伴隨 圖式只供較佳實施例說明用,而非限制於該等實施例,及 97556.doc 12· 1^25823 本發明之真實精神及範圍是參考該等附屬請求項來決定。 【圖式簡單說明】 當連結說明本發明之一或更多不受限制的方面考慮本發 明另外一些優點時,該等優點可以參考該等較佳實施例之 詳細描述而變得明顯,其中遍及該等數個圖式,類似參考 字元標示類似元件: 圖1是一微量流體射出裝置匣,未按照比例,其包含一根 據本發明之微量流體射出頭; 圖2是一根據本發明之較佳微量流體射出裝置的透視圖; 圖3是一根據本發明之微量流體射出頭的一部分在未按 照比例情形下的橫斷面圖式; 圖4是一根據本發明之邏輯電路的概略圖式; 圖5是一根據本發明之邏輯電路之反相器的概略圖式; 圖6是一根據本發明之邏輯電路電晶體的一部分在未按 照比例情形下的橫斷面圖式; 圖7及8是根據本發明之驅動器電晶體的部分在未按照比 例情形下的橫斷面圖式; 圖9是一根據本發明之驅動器電晶體的一部分在未按照 比例情形下的平面圖; 圖1 〇是一典型佈局在未按照比例情形下的平面圖,該佈 局位在一根據本發明之微量流體射出頭的基板上; 圖11是一根據本發明之微量流體射出頭之一主動區域之 一部分在未按照比例情形下的平面圖; 圖12是一根據本發明之微量流體射出裝置之一邏輯圓的 97556.doc 13 1325823 部分概略圖式。 【主要元件符號說明】 10 匣 12 匣體 14 流體射出頭 16 半導體基板 18 喷嘴板 20 喷嘴口 22 喷墨式印表機 24 電氣接點 26 軟性電路 28 電跡線 30 加熱元件 32 流體室 34 開口或槽 36 流體通道 38 黏著層 40 載體 42 媒體 44 邏輯電路 46 NAND閘極 48 輸入 50 反相器 52 NMOS電晶體 97556.doc 541325823 56 58 60 62 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 PMOS電晶體 閘極 驅動Is電晶體 閘極 閘極 驅動電晶體 驅動器電晶體 稍微摻雜的汲極區域 稍微摻雜的源極區域 稍微摻雜的汲極區域 閘極 閘極 基板 N型摻雜源極 N型摻雜汲極 P型摻雜區域 電晶體源極接點 電晶體源極接點 主動區域 接地匯流排 電源匯流排 主控制系統 可程式化記憶體裝置 電源供應器 97556.doc -15- 1325823 106 AC到DC轉換器 108 類比數位轉換器 110 信號 112 控制器 D 長度1325823 IX. Description of the Invention: [Technical Field] The present invention relates to a microfluid ejection device, and more particularly to an ejection head of an injection device, which comprises a high efficiency logic and driver circuit. [Prior Art] A microfluidic ejection device such as an ink jet printer is still widely regarded as the most economical printer in place of a laser printer. These ink jet printers are typically more resilient to certain applications than laser printers. Because the performance of inkjet printers is enhanced to provide higher quality images at increased printer speeds' ejection heads (the main printer components of inkjet printers) continue to evolve and become more To be complicated. As these ejection heads are more complex, the cost of producing the ejection head also increases. However, there is still a need for a micro-fluid, fluid-injection package that has a higher quality and a higher throughput rate. The competitive pressure on the quality and price of printing can be sustained and continued to produce an injection head with enhanced performance in a more economical way. SUMMARY OF THE INVENTION A small amount of fluid radiation is directed to these and other objects and advantages. The substrate includes a plurality of fluid ejection actuators and an actuation H is placed on the substrate. A plurality of driver transistors are disposed on the substrate to drive the plurality of fluid ejection actuators. Each driver transistor has an active region that is about a size less than about 15 and a square micron. A plurality of logic electrical axes including at least a logic transistor are coupled to the driver transistors. The drive numbers and the 97556.doc 1325823 logic cell system are provided by a high density array of MOS transistors, wherein at least the logic transistors have a gate in a range from about 〇 1 to less than about 3 microns. length. In another embodiment, a microfluidic ejection device is configured with a microfluid ejection enthalpy. The cartridge has a fluid supply source and an ejection head that is attached to the cartridge to be in fluid communication with the fluid supply source. The ejection head includes a semiconductor substrate having a plurality of fluid ejection actuators disposed on the substrate. A plurality of driver transistors are disposed on the substrate for driving the plurality of fluid ejection actuators. Each driver transistor has an active region having a width in the range of from about 100 to less than about 400 microns. A plurality of logic circuits including at least one logic transistor are operatively coupled to the driver transistors. The drivers and logic transistors comprise a high density array of MOS transistors, wherein at least the logic transistors have a gate length in a range from about 〇丨 to less than about 3 microns" - a nozzle plate is attached to the On the semiconductor substrate, the fluid is ejected as soon as the fluid ejection actuators are activated. In another embodiment, an ink jet printer head is provided with a semiconductor substrate. The substrate package 3 has a plurality of heater resistors, and the resistors are disposed on the substrate. The heater resistors have a diamond-like carbon protective layer having a thickness ranging from about 1000 to about 3,000 angstroms (Angstrom). A plurality of driver optoelectronics are disposed on the substrate for driving the plurality of fluid ejection actuators. A plurality of logic circuits include at least one logic transistor and is coupled to the driver transistors. The drivers and logic transistors provide a high density array of MOS transistors wherein at least the logic transistors have a length of 97556.doc 1325823 ranging from about 0.1 to less than about 3 microns. An advantage of the present invention is to provide a microfluidic ejection device microfluidic ejection head' which requires a substantial reduction in substrate area and also provides enhanced functionality. The semiconductor substrates can be used in a wide variety of applications, including ink jet print heads, microfluidic cooling devices, delivery of controlled drug preparations, and the like. In ink jet printer applications, the substrates of the present invention can significantly reduce the manufacturing and raw material costs of printheads incorporating such ejection heads. [Embodiment] Referring to Fig. 1, a fluid crucible 10 of a microfluid ejection device will be described. The crucible 1 includes a body 12 for supplying fluid to a fluid ejection head. The fluid can be contained within the storage area of the slab 12 or supplied to the raft from a remote source. The fluid ejection head 14 includes a semiconductor substrate 16 and a nozzle plate 18 having a plurality of nozzle openings 20. Preferably, the file is detachably attached to a microfluidic ejection device, such as an ink jet printer 22 (Fig. 2). Accordingly, electrical contacts 24 are disposed on a flexible circuit 26 for electrical connection to the microfluidic ejection device. The flexible circuit 26 includes electrical traces 28 that are coupled to substrate 16 of fluid ejection head 14. An unscaled enlarged view of a portion of the fluid ejection head 14 is depicted in FIG. In this example, the fluid ejection head 14 includes a heating element 3 〇 as a fluid ejection actuator for heating fluid within a fluid chamber 32 formed in the nozzle plate 18 and at The substrate 16 is between a nozzle opening 20. However, the invention is not limited to use only with the fluid ejection head 14 containing a heating element 3〇. In the example of the use of the heating element 30, the heating 97556.doc 1325823, which is a heater resistor, preferably has a layer of a layer containing diamond-like carbon, the thickness of the layer being in the range of about 1 〇 I found it between about 3 angstroms. Other fluid ejection actuators, such as piezoelectric devices, can also be used to provide a fluid ejection head in accordance with the present invention. Fluid passes through the opening or slot 34' of the substrate 16 and through the fluid passage 36 connecting the slot 34 to the fluid chamber 32 to the fluid chamber 32. The nozzle plate 18 is preferably attached to the substrate 16 by an adhesive layer 36 in an adhesive manner. As depicted in Figure 3, the fluidic features of the fluid chamber 32 and fluid passage 36 are formed within the nozzle plate 18. However, the flow features can be disposed on a separate thick film layer. A nozzle plate having only a nozzle opening in the crucible is attached to the thick film layer. In a more preferred embodiment, the fluid ejection head is a heated or piezoelectric ink jet printer head. However, the invention is not intended to be limited to ink jet printer heads, as other types of fluids can also be ejected using the microfluidic ejection device in accordance with the present invention. Referring again to Figure 2, the fluid ejection device is preferably an ink jet printer 22. The printer 22 includes a carrier 4 for holding one or more cartridges (7) and for moving the cartridges on a medium 42 such as paper to deposit the fluid of the crucible 10. On the media 42. As previously mentioned, the contacts 24 on the support cooperate with the contacts on the carrier 4 for electrical connection between the printer 22 and the cassette 10. The microcontroller of the printer 22 controls the movement of the carrier 40 through the media 42 and converts analog and/or digital inputs from an external device such as a computer for controlling the operation of the printer 22. The fluid from the fluid ejection head 14 is controlled by the controller (in the printer 22) by the logic circuit 44 on the fluid ejection head 14. 97556.doc Figures 4 and 5 illustrate a preferred logic circuit 44 for a fluid ejection head 14. The logic circuit 44 includes a NAND gate 46 having an input 48 from the microfluidic ejection device or printer 22 and output to an inverter 5A. A preferred inverter 50 is a CMOS logic circuit. This is illustrated in FIG. 5. The inverter 50 includes an NMOS transistor 52' in a p-type substrate and a PMOS transistor 54 in the vicinity. Provided by a NWELL in a p-type substrate. The output of the inverter 50 is coupled to a gate 56 of a driver transistor 58 which drives the fluid brake, here a heating element 30. At least one driver transistor 58 is adjacent each heater element 30. The heater element 30 is preferably a resistor having a resistance range of between about 70 and about 150 ohms or greater, more preferably between about 1 Torr and about 12 ohms. A cross-sectional view of the inverter 5A as described above is illustrated in FIG. As suggested above, the inverter 50 includes an NMOS transistor 52 and a PMOS transistor 54. Each of the transistors 52 and 54 preferably has gates 60 and 62' having a gate length ranging from about 0.1 to less than about 3 microns, preferably from about 0.1 to about 1.5 microns. between. Likewise, the length of the channel in the substrate 64 or nWELL 66 ranges from about 0.1 to less than about 3 microns. By providing a relatively short gate length and channel length, more dense transistors 52 and 54 can be placed in the area on the substrate containing the logic circuit 44. Other features of the transistors 52 and 54 are common, and the inverter 5 is fabricated using conventional semiconductor processing techniques. Figures 7 and 8 are cross-sectional views showing preferred driver transistors 68 and 7 in the non-conventional case. Figure 9 is a simplified plan view of a driver transistor 68, 97556.doc 1325823. Figure 7 illustrates a driver transistor 68 having a slightly doped drain region 72, whereas the driver transistor 7A includes a slightly doped source region 74 and a slightly doped drain region 76. Also preferably, the driver transistors 68 and 70 include gates 78 and 80 having a gate length ranging from about 〇 to less than about 3 microns, preferably from about 〇.丨 to about 丨5. Between the micrometers, and some of the channels 'the channel length Lc (Fig. 9) ranges from about 〇.1 to less than about 3 microns. The gate length Lg of the driver transistors 68 and 70 allows the driver transistor to have a relatively low resistance. Typically, the resistance of the driver transistors (10) and 70 is less than 丨〇% of the total resistance caused by the circuit, the total resistance being by the heater resistor 30, the logic circuit 44, the driver transistor 68 or 70, And related connection circuits are formed. The driver transistors 68 and 7 are preferably operated at voltages greater than 8 volts, preferably from about 8 to about 12 volts. The driver transistors 68 and 70 include a substrate 82, which is preferably a p-type germanium substrate. For transistors 68 and 70, regions 84 and 86 are N-type doped sources and drains. Region 88 is a P-type doped region that provides zero potential for the transistor source contacts 90 and 92. Other features of the driver transistors 68 and 7 are common, and the driver transistors 68 and 70 can be fabricated using conventional semiconductor processing techniques. Preferably, the driver transistors 68 and 7 have an on resistance of less than 20 ohms and a preferred resistance of less than about 20 ohms. A plan view of a fluid ejection head 14 that is not to scale is illustrated in FIG. The fluid ejection head 14 includes a semiconductor substrate 16 and a nozzle plate lg to which the nozzle plate is attached. The layout of the device area of the semiconductor substrate 16 is shown in 97556.doc 10 1325823. The preferred locations for providing the logic circuit 44, the driver transistor 58 and the heater resistor 3A are shown. As shown in FIG. 1A, the substrate 16 includes a single slot % for providing, for example, ink "fluid to the heaters" and the heaters 30 are disposed in the slots 34. On both sides. However, the present invention is not limited to the case where the substrate 16 has only one single groove 34' and is not limited to the case where fluid ejection actuators such as the heater resistor 30 are disposed on both sides of the groove %. Other substrates according to the present invention comprise a plurality of slots, and the flow extracting actuator is disposed in one of the slots; or (4). The practice may also include no slots 34 through which fluid flows around the edges of the substrate 16. Without a single slot 34, the substrate 16 can include multiple slots or multiple openings, each slot or opening for one or more actuator devices. The nozzle plate 18, preferably composed of an ink repellent material such as polyimide, is attached to the substrate 16. In the plan view of the active region 94 of Figure 11, one of the active regions 94 required by the drive transistor 58 is described in detail. This figure represents a typical heater array and a portion of the active area. The active region 94 of the substrate 16 preferably has a width dimension W ranging from about i 00 to about 400 microns and an overall length dimension 〇' ranging from about 6,300 microns to about 26,000 microns. The driver transistors 58 are arranged at a pitch p ranging from about 10 microns to about 84 microns. A ground bus 96 and a power bus 98 are configured to supply power to the devices in the active region 94 and the heater resistors 30. In a more preferred embodiment, a region of a single driver transistor 58 in the semiconductor substrate 16 has an active region width ranging from about ι to about 4 〇〇 975 56 56 56 975 975 975 975 975 975 975 975 975 , , , , , , , , And an active area is preferably less than about 15,000 square microns. The active region 94 can be made smaller by using the gate length of the driver transistor 58 and the length of the channel between about 0.1 and less than about 3 microns as described above. Similarly, the logic circuit 44 (Fig. 10) also requires a relatively small area because the gate lengths of the transistors 52 and 54 are in the range of about less than about 3 microns. Figure 12 is a partially simplified logic diagram of a microfluidic ejection device such as printer 22 (Figure 2) in accordance with the present invention. The apparatus includes a main control system 100 coupled to the fluid ejection head 14. Referring to Figure 10, as described above, the fluid ejection head 14 includes a logic circuit 44, a device driver 58 and a fluid ejection actuator 30 to which the actuators 30 are coupled. A programmable memory device 1 2 can be placed on the ejection head 14 or placed in the control system 1 of the 6-printer 22. The printer 22 includes a power supply 104 and an AC to DC converter 106. The AC to DC converter 1〇6 supplies power to the output head 14 and an analog-to-digital converter 1〇8. The analog digital converter 108 receives a signal 11 from an external source such as a computer and then provides the k number to the controller 丨丨2 in the printer 22. The controller 112 includes 3 logic devices for controlling the function of the ejection heads 4. The controller 112 also includes local memory and logic circuitry for programming and reading the memory 102 on the ejection head 14, if any. The present invention encompasses modifications and variations made in the embodiments of the present invention, which are apparent from the foregoing description and the accompanying drawings. Therefore, it is expressly intended that the foregoing description and the accompanying drawings are for the purpose Refer to these sub-requests to decide. BRIEF DESCRIPTION OF THE DRAWINGS The advantages of the present invention will become apparent when referring to the detailed description of the preferred embodiments. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a microfluidic ejection device, not including a microfluidic ejection head according to the present invention; FIG. 2 is a comparison of the present invention. Figure 3 is a cross-sectional view of a portion of a microfluidic ejection head according to the present invention, not to scale; Figure 4 is a schematic diagram of a logic circuit in accordance with the present invention; Figure 5 is a schematic diagram of an inverter of a logic circuit in accordance with the present invention; Figure 6 is a cross-sectional view of a portion of a transistor of a logic circuit in accordance with the present invention, not to scale; Figure 7 and 8 is a cross-sectional view of a portion of a driver transistor according to the present invention in a non-proportional manner; FIG. 9 is a portion of a driver transistor according to the present invention in an uncomparable ratio 1 is a plan view of a typical layout on a substrate that is not in proportion, on a substrate of a microfluidic ejection head according to the present invention; and FIG. 11 is a microfluid ejection head according to the present invention. A plan view of one of the active regions in a non-proportional case; Figure 12 is a partial schematic view of a logical circle of one of the ones of the microfluid ejection device according to the present invention, 97556.doc 13 1325823. [Main component symbol description] 10 匣12 匣 body 14 fluid ejection head 16 semiconductor substrate 18 nozzle plate 20 nozzle port 22 inkjet printer 24 electrical contact 26 flexible circuit 28 electrical trace 30 heating element 32 fluid chamber 34 opening Or slot 36 fluid channel 38 adhesive layer 40 carrier 42 media 44 logic circuit 46 NAND gate 48 input 50 inverter 52 NMOS transistor 97556.doc 541325823 56 58 60 62 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 PMOS transistor gate drive Is transistor gate gate drive transistor driver transistor slightly doped drain region slightly doped source region slightly doped drain region gate gate Substrate N-type doped source N-type doped drain P-type doped region transistor source contact transistor source contact active region ground busbar power busbar main control system programmable memory device power supply 97556.doc -15- 1325823 106 AC to DC Converter 108 Analog to Digital Converter 110 Signal 112 Controller D Length

Lc 通道長度 L〇 閘極長度Lc channel length L〇 gate length

W 寬度W width

97556.doc •16·97556.doc •16·

Claims (1)

1325823 、申請專利範圍: 一種微量流體射出頭之半導體基板,該基板包含: 複數個流體射出致動器,其被配置在該基板上. 複數個驅動器電晶體,其被配置在該基板上,用以驅 動該等複數個流體射出致動器,該等驅動器電晶體中之 每一者具有-主動區域,而該主動區域之範圍在約刪 到小於約15,0〇〇平方微米之間;及 複數個邏輯電路,其包含至少一邏輯電晶體,該邏輯 電晶體被耦合至該等驅動電晶體; 其中該等驅動器及邏輯電晶體中之每一者包含一高密 具有 度陣列的MOS電晶體,其中至少 從約〇. 1到小於約3微米之閘極長度 2. 如請求们之半導體基板,其中該等流體射出致動器包含 多個加熱器電阻器。 3. 如請求項2之半導體基板,其中該等加熱器電阻器具有一 在從約70到約15〇歐姆範圍内之電阻。 4·如清求項1之半導體基板,其中該等驅動器電晶體包含多 個電晶體,其具有一稍微摻雜汲極區域。 5. 如請求項1之半導體基板,其中該等驅動器電晶體具有一 主動區域寬度,其範圍在從約⑽到小於約彻微米之間。 6. 如請求们之半導體基板,其中該等邏輯電路被配置以選 擇該等驅動ϋ電晶體之-閘極,用以驅動該等射出致動 器。 7·如請求項1之半導體基板,其中該等驅動器電晶體具有一 97556.doc 小於20歐姆之開啟電阻。 土 ,其中該等驅動器電晶體包含多 個電晶體’其具有-稍微摻雜源極及沒極區域。 如請求項1之半導體基板,#中該等驅動器電晶體包含多 =體,其具有-範圍在從約0」到小於約3微問 極長度。 9. 10. 如凊求項1之半導體基板’纟中該等驅動器電晶體包含多 個電晶體’其具有一範圍在從約0.1到小於約3微米之間的 通道長度。 U.-種喷墨印表機之印表頭,其包含如請求項i之半導體基 板。 12. 如請求項"之印表頭’其中該等流體射出致動器包含多 個加熱器電阻器,且該等加熱器電阻器具有一保護層, 該保護層係由_碳所構成,其具有-範圍在從約1000 到約3000埃之厚度。 13. —種微量流體射出裝置之微量流體射出匣,其包含: 一匣體,其具有一流體供應來源及一射出頭,該射出 頭被附接於該匣體上而與該流體供應來源呈流體連通狀 態;該射出頭包含: 一半導體基板,其具有複數個流體射出致動器,該 等致動器被配置在該基板上; 複數個驅動器電晶體,其被配置在該基板上,用以 驅動該等複數個流體射出致動器,該等驅動器電晶體中 之每一者具有一主動區域寬度,其範圍在從約100到小於 97556.doc 1325823 約400微米之間;及 複數個邏輯電路’其包含至少一邏輯電晶體,該邏 輯電晶體以可操作的方式輕合到該等驅動器電晶體; 其中該等驅動H及邏輯電晶體中之每—者包含一高 密度陣列的MOS電晶體,#丄 , 电曰日體,其中至少該邏輯電晶體具有一 從約ο.1到小於約3微米間之閘極長度;及 一喷嘴板’其被附接於該半導體基板,用以一旦啟 動該等流體射出致動器時從該喷嘴板射出流體。 14. 15. 16. 17. 18. 19. 20. 如請求項U之微量流體射心,其中該等流體射出致動 器包含多個加㈣電阻器’其電阻範圍在從約7G到約150 歐姆間。 如請求項13之微量流體射出 .^ 对出匠,其中該等驅動器電晶體 中之母—者的該基板之該主動區域係在從約画到小於 約15,〇〇〇平方微米之範圍内。 如請求項13之微量流體射出 句人夕加 出匠,其中該等驅動器電晶體 ,^ ^ 〜、有-稍微摻雜汲極區域。 如Μ求項13之微量流體射出 閘極’以供驅動該等射 其中該等驅動器電晶體 其中該等驅動器電晶體 置以選擇料㈣”晶^其中料邏輯電路被配 出致動器。 如請求項13之微量流體射出匣 具有—小於20歐姆之開啟電阻 如請求項13之微量流體射出匣 包含多個電晶體,其且有一姑,寻驅勤器電晶1 如請求if ; 7鄉:、 微摻雜源極及汲極區域。 夂項12之微置流體射出匣, 系荨流體射出致動器包 97556.doc 1325823 含多個加熱器電阻器,且該等加熱器電阻器有一保護 層,該保護層係由類鐵碳所構成,其具有—範圍 1000到約3000埃之厚度。 約 2!·如請求項12之微量流體射_,其中該等驅動器電晶體 包含多個電晶體’其具有-範圍在約〇1到小於約3微米之 間的間極長度。 22. —種喷墨式印表頭之半導體基板,該基板包含: 複數個加熱器電阻器,其被配置在該基板上,且該等 加熱器電阻器有一保護層,該保護層係由類鑽碳所構 成,其具有一範圍在約1 000到約3 〇〇〇埃間之厚度; 複數個驅動器電晶體,其被配置在該基板上,用以驅 動該等複數個流體射出致動器;及 複數個邏輯電路,其包含至少一邏輯電晶體,該邏輯 電晶體被耦合到該等驅動器電晶體; 其t該等驅動器及邏輯電晶體中之每一者包含一高密 度陣列的MOS電晶體’其中至少該邏輯電晶體具有一在 約0.1到小於約3微米間之閘極長度。 23. 如請求項22之半導體基板’其中該等加熱器電阻器之電 阻範圍在70到150歐姆之間。 24. 如請求項22之半導體基板’其中該等驅動器電晶體包含 多個電晶體,其具有一梢微摻雜汲極區域。 25. 如請求項22之半導體基板,其中該等驅動器電晶體具有 一主動區域寬度,其範圍在從約100到小於約400微米之 間。 97556.doc 1325823 26. 如請求項22之半導體基板,其中該等邏輯電路被配置以 選擇該等驅動器電晶體之一閘極,以供驅動該等射出致 動器。 27. 如請求項22之半導體基板,其中該等驅動器電晶體具有 一小於20歐姆之開啟電阻。 28. 如請求項22之半導體基板,其中該等驅動器電晶體包含 多個電晶體,其具有一稍微摻雜源極及汲極區域。 29. 如請求項22之半導體基板,其中該等驅動器電晶體包含 多個電晶體’其具有一範圍在從約〇. 1到小於約3微米之間 的閘極長度。 30. 如請求項22之半導體基板,其中該等驅動器電晶體包含 多個電晶體,其具有一範圍在從約0.1到小於的3微米之間 的通道長度。 97556.doc1325823, the scope of patent application: a semiconductor substrate of a microfluid ejection head, the substrate comprises: a plurality of fluid ejection actuators disposed on the substrate. A plurality of driver transistors are disposed on the substrate, Driving the plurality of fluid ejection actuators, each of the driver transistors having an active region, wherein the active region ranges from less than about 1,500 square microns; and a plurality of logic circuits including at least one logic transistor coupled to the driver transistors; wherein each of the drivers and logic transistors comprises a high density array of MOS transistors, Wherein at least from about 0.1 to less than about 3 microns of gate length 2. As claimed in the semiconductor substrate, wherein the fluid ejection actuator comprises a plurality of heater resistors. 3. The semiconductor substrate of claim 2, wherein the heater resistors have a resistance in a range from about 70 to about 15 ohms. 4. The semiconductor substrate of claim 1, wherein the driver transistors comprise a plurality of transistors having a slightly doped drain region. 5. The semiconductor substrate of claim 1 wherein the driver transistors have an active region width ranging from about (10) to less than about ten micrometers. 6. A semiconductor substrate as claimed, wherein the logic circuits are configured to select the gates of the drive transistors to drive the output actuators. 7. The semiconductor substrate of claim 1, wherein the driver transistors have a turn-on resistance of less than 20 ohms of 97556.doc. Soil, wherein the driver transistors comprise a plurality of transistors 'which have a slightly doped source and a non-polar region. The semiconductor substrate of claim 1 wherein the driver transistors comprise a plurality of bodies having a range ranging from about 0" to less than about 3 microseconds. 9. 10. The semiconductor substrate of claim 1 wherein the driver transistors comprise a plurality of transistors having a channel length ranging from about 0.1 to less than about 3 microns. U. A printhead for an ink jet printer comprising a semiconductor substrate as claimed in claim i. 12. The request header "print head' wherein the fluid ejection actuators comprise a plurality of heater resistors, and the heater resistors have a protective layer, the protective layer being comprised of carbon Having a thickness ranging from about 1000 to about 3000 angstroms. 13. A microfluidic ejection device for a microfluid ejection device, comprising: a cartridge having a fluid supply source and an ejection tip attached to the cartridge to be associated with the fluid supply source a fluid communication state; the ejection head comprising: a semiconductor substrate having a plurality of fluid ejection actuators, the actuators being disposed on the substrate; a plurality of driver transistors disposed on the substrate, Driving the plurality of fluid ejection actuators, each of the driver transistors having an active region width ranging from about 100 to less than 97556.doc 1325823 to about 400 microns; and a plurality of logic The circuit 'includes at least one logic transistor that is operatively coupled to the driver transistors; wherein each of the drivers H and the logic transistors comprises a high density array of MOS a crystal, #丄, an electrothermal body, wherein at least the logic transistor has a gate length from about ο. 1 to less than about 3 microns; and a nozzle plate is attached to A semiconductor substrate, in the event of such a fluid exit start actuator for emitting fluid from the nozzle plate. 14. 15. 16. 17. 18. 19. 20. The microfluidic centroid of claim U, wherein the fluid ejection actuator comprises a plurality of (four) resistors having a resistance ranging from about 7 G to about 150 Ohm. The microfluidic emission of claim 13 is in the range of from about 1500 square microns to about 5,000 square microns of the substrate of the substrate in the driver transistor. . The trace fluids of claim 13 are injected into the shovel, where the driver transistors, ^^~, have - slightly doped bungee regions. For example, the microfluidic emitter gate of item 13 is for driving the emitters of the driver transistors, wherein the driver transistors are placed in a selective material (four) crystal system circuit is equipped with an actuator. The trace fluid ejection enthalpy of claim 13 has a turn-on resistance of less than 20 ohms. The trace fluid ejection enthalpy of claim 13 contains a plurality of transistors, and there is a phantom, and the seeker is required to be as if; , micro-doped source and drain region. The micro-fluid ejection device of the item 12, the system fluid ejection actuator package 97556.doc 1325823 contains a plurality of heater resistors, and the heater resistors have a protection a layer, the protective layer being composed of iron-like carbon having a thickness ranging from 1000 to about 3000 angstroms. About 2! The microfluidic ray of claim 12, wherein the driver transistors comprise a plurality of transistors 'It has an interpole length ranging from about 1 to less than about 3 microns. 22. A semiconductor substrate for an ink jet printer head, the substrate comprising: a plurality of heater resistors configured to On the substrate, and The heater resistors have a protective layer comprised of diamond-like carbon having a thickness ranging from about 1 000 to about 3 angstroms; a plurality of driver transistors configured to The substrate is configured to drive the plurality of fluid ejection actuators; and a plurality of logic circuits including at least one logic transistor coupled to the driver transistors; Each of the logic transistors includes a high density array of MOS transistors 'where at least the logic transistor has a gate length between about 0.1 and less than about 3 microns. 23. The semiconductor substrate of claim 22 Wherein the resistance of the heater resistor ranges from 70 to 150 ohms. 24. The semiconductor substrate of claim 22 wherein the driver transistors comprise a plurality of transistors having a tip micro-doped drain region 25. The semiconductor substrate of claim 22, wherein the driver transistors have an active region width ranging from about 100 to less than about 400 microns. 97556.doc 1325823 26. The semiconductor substrate of claim 22, wherein the logic circuits are configured to select one of the gates of the driver transistors for driving the output actuators. 27. The semiconductor substrate of claim 22, wherein the drivers The transistor has a turn-on resistance of less than 20 ohms. 28. The semiconductor substrate of claim 22, wherein the driver transistors comprise a plurality of transistors having a slightly doped source and drain regions. The semiconductor substrate of item 22, wherein the driver transistors comprise a plurality of transistors having a gate length ranging from about 0.1 to less than about 3 microns. 30. The semiconductor substrate of claim 22, wherein the driver transistors comprise a plurality of transistors having a channel length ranging from about 0.1 to less than 3 microns. 97556.doc
TW93134780A 2004-11-12 2004-11-12 Microfluid ejection device having logic and driver circuitry TWI325823B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93134780A TWI325823B (en) 2004-11-12 2004-11-12 Microfluid ejection device having logic and driver circuitry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93134780A TWI325823B (en) 2004-11-12 2004-11-12 Microfluid ejection device having logic and driver circuitry

Publications (1)

Publication Number Publication Date
TWI325823B true TWI325823B (en) 2010-06-11

Family

ID=45074284

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93134780A TWI325823B (en) 2004-11-12 2004-11-12 Microfluid ejection device having logic and driver circuitry

Country Status (1)

Country Link
TW (1) TWI325823B (en)

Similar Documents

Publication Publication Date Title
US6726300B2 (en) Fire pulses in a fluid ejection device
TWI296573B (en) Element body for recording head and recording head having element body
US5648804A (en) Compact inkjet substrate with centrally located circuitry and edge feed ink channels
TWI325820B (en) Printhead having embedded memory device
US10730312B2 (en) Fluid ejection device
KR101112533B1 (en) Fluid Ejection Device
TWI267449B (en) Circulation through compound slots
JP4859213B2 (en) Element base of recording head, recording head, recording apparatus
JP2004050742A (en) Recording head and image recorder
TWI296971B (en) Fluid ejection assembly
TWI325823B (en) Microfluid ejection device having logic and driver circuitry
US7018012B2 (en) Microfluid ejection device having efficient logic and driver circuitry
JP2004148813A (en) Liquid jet head, method of manufacturing the same, and liquid jet device
JP4532890B2 (en) Recording head and recording apparatus provided with the recording head
JP2005212134A (en) Ink jet recording head and ink jet recorder
JP6964676B2 (en) Fluid discharge die molded inside the molding body
MXPA06005397A (en) Microfluid ejection device having efficient logic and driver circuitry
US20220332125A1 (en) Control of pump generators and drop generators
JP2005138425A (en) Recording head and recorder provided with the same
JP2005125507A (en) Ink jet recording head and ink jet recorder
JPH08216411A (en) Thermal head substrate for thermal ink jetting and driving method thereof
JP2003118120A (en) Head for ink jet recording and ink jet recorder
JP2008068444A (en) Inkjet print head
JP2005138426A (en) Recording head board, ink jet recording head, recording head cartridge, and ink jet recorder

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees
MM4A Annulment or lapse of patent due to non-payment of fees